Nothing Special   »   [go: up one dir, main page]

WO2024166802A1 - Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, resin, and resin manufacturing method - Google Patents

Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, resin, and resin manufacturing method Download PDF

Info

Publication number
WO2024166802A1
WO2024166802A1 PCT/JP2024/003409 JP2024003409W WO2024166802A1 WO 2024166802 A1 WO2024166802 A1 WO 2024166802A1 JP 2024003409 W JP2024003409 W JP 2024003409W WO 2024166802 A1 WO2024166802 A1 WO 2024166802A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
resin
sensitive
repeating unit
Prior art date
Application number
PCT/JP2024/003409
Other languages
French (fr)
Japanese (ja)
Inventor
英治 福▲崎▼
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024166802A1 publication Critical patent/WO2024166802A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, an actinic ray-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device manufacturing method. More specifically, the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, an actinic ray-sensitive or radiation-sensitive film, a pattern forming method, an electronic device manufacturing method, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition, which can be suitably used in an ultra-microlithography process applicable to a manufacturing process of a VLSI (Large Scale Integration) and a high-capacity microchip, a mold making process for nanoimprinting, and a manufacturing process of a high-density information recording medium, as well as other photofabrication processes.
  • the present invention also relates to a method for producing the resin.
  • Patent Document 1 various manufacturing methods are known for manufacturing resins used in resist compositions.
  • LWR performance refers to the ability to reduce the LWR of a pattern.
  • a further object of the present invention is to provide a method for producing a resin.
  • An actinic ray-sensitive or radiation-sensitive resin composition comprising:
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 12 represents a hydrogen atom or an organic group.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 22 represents an organic group or a halogen atom.
  • a 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  • R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
  • R 31 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 32 represents a hydrogen atom, an organic group, or a halogen atom.
  • R 33 represents a hydrogen atom or an organic group.
  • a 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
  • R 41 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 42 represents a hydrogen atom or an organic group.
  • a 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 41 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
  • R 51 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 52 represents an organic group or a halogen atom.
  • a 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 51 may be the same or different and may be bonded to form a ring.
  • R 61 represents a group that generates an -OH group or a -COOH group upon decomposition by a base.
  • R 62 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 6 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n6 represents an integer of 1 to 5. When n6 is an integer of 2 to 5, multiple R 61 may be the same or different.
  • R 71 represents an organic group or a halogen atom.
  • R 72 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 7 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n7 represents an integer of 0 to 5. When n7 is an integer of 2 to 5, multiple R 71 may be the same or different and may be bonded to form a ring.
  • R 91 , R 101 , R 111 , R 121 , R 141 and R 151 each independently represent an organic group
  • R 81 and R 131 each independently represent a hydrogen atom or an organic group. * represents the bonding position with A 6 .
  • R 161 to R 163 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 161 to R 163 may be linked to each other to form a ring.
  • R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 171 to R 173 may be linked together to form a ring. * indicates the bonding position with A7 .
  • R 184 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 18 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • R 181 to R 183 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. Two of R 181 to R 183 may be bonded to each other to form a ring.
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 12 represents a hydrogen atom or an organic group.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 22 represents an organic group or a halogen atom.
  • a 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  • a pattern forming method comprising the steps of: forming an actinic ray-sensitive or radiation-sensitive film on a substrate from the actinic ray-sensitive or radiation-sensitive resin composition according to any one of items [1] to [4]; exposing the actinic ray-sensitive or radiation-sensitive film; and developing the exposed actinic ray-sensitive or radiation-sensitive film with a developer.
  • a method for producing an electronic device comprising the pattern formation method according to [23].
  • the present invention it is possible to provide an actinic ray-sensitive or radiation-sensitive resin composition having excellent resolution and LWR performance. Furthermore, the present invention can provide an actinic ray-sensitive or radiation-sensitive film using the actinic ray-sensitive or radiation-sensitive resin composition, a pattern forming method, a method for producing an electronic device, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition. Furthermore, the present invention can provide a method for producing a resin.
  • actinic rays or “radiation” refers to, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV: Extreme Ultraviolet), X-rays, soft X-rays, and electron beams (EB: Electron Beam).
  • light means actinic rays or radiation.
  • exposure includes not only exposure to the emission line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light, X-rays, EUV, and the like, but also drawing with particle beams such as electron beams and ion beams.
  • the word "to” is used to mean that the numerical values before and after it are included as the lower limit and upper limit.
  • (meth)acrylate refers to at least one of acrylate and methacrylate.
  • (meth)acrylic acid refers to at least one of acrylic acid and methacrylic acid.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also called molecular weight distribution) (Mw/Mn) of the resin are defined as polystyrene equivalent values measured using a Gel Permeation Chromatography (GPC) device (Tosoh Corporation HLC-8120GPC) (solvent: tetrahydrofuran, flow rate (sample injection amount): 10 ⁇ L, column: Tosoh Corporation TSK gel Multipore HXL-M, column temperature: 40°C, flow rate: 1.0 mL/min, detector: refractive index detector).
  • GPC Gel Permeation Chromatography
  • the notation of groups (atomic groups) that does not indicate whether they are substituted or unsubstituted includes groups that have a substituent as well as groups that have no substituent.
  • alkyl group includes not only alkyl groups that have no substituent (unsubstituted alkyl groups) but also alkyl groups that have a substituent (substituted alkyl groups).
  • organic group in the present specification refers to a group that contains at least one carbon atom. Unless otherwise specified, the substituent is preferably a monovalent substituent. Examples of the substituent include a monovalent nonmetallic atomic group other than a hydrogen atom, and can be selected from the following substituents T.
  • substituent T examples include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; alkoxy groups such as a methoxy group, an ethoxy group, and a tert-butoxy group; a cycloalkyloxy group; an aryloxy group such as a phenoxy group and a p-tolyloxy group; an alkoxycarbonyl group such as a methoxycarbonyl group and a butoxycarbonyl group; a cycloalkyloxycarbonyl group; an aryloxycarbonyl group such as a phenoxycarbonyl group; an acyloxy group such as an acetoxy group, a propionyloxy group, and a benzoyloxy group; an acetyl group, a benzoyl group, an isobutyryl group, Examples of the substituent T include acyl groups
  • examples of the substituent T also include groups having one or more substituents selected from the above-mentioned substituents as the further substituents (for example, monoalkylamino groups, dialkylamino groups, arylamino groups, trifluoromethyl groups, etc.).
  • the bonding direction of the divalent groups is not limited unless otherwise specified.
  • Y when Y is -COO- in a compound represented by the formula "X-Y-Z", Y may be -CO-O- or -O-CO-.
  • the above compound may be "X-CO-O-Z" or "X-O-CO-Z”.
  • the acid dissociation constant (pKa) refers to the pKa in an aqueous solution, and specifically, it is a value calculated based on a database of Hammett's substituent constants and known literature values using the following software package 1. All pKa values described in this specification are values calculated using this software package.
  • Software package 1 Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs).
  • pKa can also be obtained by molecular orbital calculation.
  • a specific example of this method is a method of calculating H + dissociation free energy in an aqueous solution based on a thermodynamic cycle.
  • the H + dissociation free energy can be calculated, for example, by DFT (density functional theory), but various other methods have been reported in literature, and the calculation method is not limited to this.
  • DFT density functional theory
  • Gaussian16 is an example.
  • pKa refers to a value calculated based on a database of Hammett's substituent constants and known literature values using the software package 1, as described above. However, when pKa cannot be calculated by this method, a value obtained by Gaussian 16 based on DFT (density functional theory) is adopted. In this specification, pKa refers to "pKa in an aqueous solution” as described above, but when the pKa in an aqueous solution cannot be calculated, “pKa in a dimethyl sulfoxide (DMSO) solution” will be adopted.
  • DMSO dimethyl sulfoxide
  • solids refers to components that form an actinic ray-sensitive or radiation-sensitive film, and does not include solvents.
  • any component that forms an actinic ray-sensitive or radiation-sensitive film is considered to be a solid even if it is in liquid form.
  • the actinic ray-sensitive or radiation-sensitive resin composition of the present invention (also referred to as the "composition of the present invention") comprises a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2):
  • the composition contains a resin (A) containing at least one type of repeating unit, a compound (B) that generates an acid when irradiated with actinic rays or radiation, and a solvent (S).
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 12 represents a hydrogen atom or an organic group.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 22 represents an organic group or a halogen atom.
  • a 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  • Resin (A) includes a repeating unit represented by the above general formula (1) and a repeating unit represented by general formula (2).
  • the repeating unit represented by general formula (2) has a substituent at R 22 in general formula (2), that is, the carbon atom in the main chain to which the aromatic ring group is bonded has a substituent, so that the glass transition temperature (Tg) of resin (A) is high.
  • an actinic ray-sensitive or radiation-sensitive film obtained from an actinic ray-sensitive or radiation-sensitive resin composition containing a resin with a high Tg the diffusion of an acid generated from a compound that generates an acid upon irradiation with actinic rays or radiation during exposure (hereinafter also referred to as photoacid generator (B)) is suppressed.
  • photoacid generator (B) an acid generated from a compound that generates an acid upon irradiation with actinic rays or radiation during exposure
  • the composition of the present invention is typically a resist composition, and may be a positive resist composition or a negative resist composition.
  • the composition of the present invention may be a resist composition for alkali development or a resist composition for organic solvent development.
  • the composition of the present invention may be a chemically amplified resist composition or a non-chemically amplified resist composition.
  • the composition of the present invention is typically a chemically amplified resist composition.
  • the composition of the present invention can be used to form an actinic ray- or radiation-sensitive film.
  • the actinic ray- or radiation-sensitive film formed using the composition of the present invention is typically a resist film.
  • the resin (A) contained in the composition of the present invention contains at least one type each of the repeating units represented by the above general formula (1) and the repeating units represented by the general formula (2).
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 12 represents a hydrogen atom or an organic group.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • the organic group represented by R 11 is not particularly limited, but examples thereof include the organic groups exemplified above as the substituent T.
  • the organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
  • the organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
  • the organic group may be an acid-decomposable group described later, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid described later, or is preferably a group represented by any one of the general formulae (16) to (17) described later.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 11 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
  • Examples of the organic group represented by R 12 include an alkyl group, a cycloalkyl group, an aryl group, and an alkylcarbonyloxy group.
  • the alkyl group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • the cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
  • the alkyl group in the alkylcarbonyloxy group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • R 12 is preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group represented by A 1 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
  • Examples of the aromatic heterocyclic group represented by A1 include heteroarylene groups having 2 to 15 carbon atoms, such as 5- to 10-membered rings.
  • Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
  • A1 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
  • n1 represents an integer from 0 to 5. It is preferable that n1 is 1 or 2.
  • the repeating unit represented by general formula (1) in resin (A) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (1) to all repeating units in resin (A) is not particularly limited, but can be, for example, 40 to 99 mol %. It is preferably 40 to 70 mol %, and more preferably 47 to 60 mol %.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 22 represents an organic group or a halogen atom.
  • a 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • the organic group represented by R 21 is not particularly limited, but examples thereof include the organic groups listed above as the substituent T.
  • the organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
  • the organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
  • the organic group may be an acid-decomposable group described later, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid described later, or is preferably a group represented by any one of the general formulae (16) to (17) described later.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 21 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferred.
  • R 22 represents an organic group or a halogen atom.
  • Examples of the organic group represented by R 22 include an alkyl group, a cycloalkyl group, an aryl group, an acyl group, and an alkylcarbonyloxy group.
  • the alkyl group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • the cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
  • the acyl group is preferably an acyl group having 1 to 20 carbon atoms.
  • the alkyl group in the alkylcarbonyloxy group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • Examples of the halogen atom represented by R 22 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 22 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
  • A2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group represented by A2 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
  • Examples of the aromatic heterocyclic group represented by A2 include heteroarylene groups having 2 to 15 carbon atoms, such as 5- to 10-membered rings.
  • Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
  • A2 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
  • A1 in the above general formula (1) and A2 in the above general formula (2) are preferably aromatic ring hydrocarbon groups.
  • n2 represents an integer from 0 to 5. It is preferable that n2 is 1 or 2.
  • the repeating unit represented by general formula (2) in resin (A) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (2) relative to all repeating units in the resin (A) is preferably 1 to 60 mol%, more preferably 30 to 60 mol%, still more preferably 40 to 55 mol%, and still more preferably 40 to 53 mol%.
  • the content ratio of the repeating unit represented by the general formula (2) 30 mol % or more, the glass transition temperature of the resin (A) becomes higher, so that the effect of the present invention can be easily obtained.
  • the thermal decomposition temperature can be lowered and the glass transition temperature can be increased, so that it is preferable.
  • the resin (A) preferably has an acid decomposable group.
  • the resin (A) preferably contains a repeating unit having an acid decomposable group.
  • the resin (A) is an acid decomposable resin, typically, in the pattern forming method using the composition of the present invention, when an alkaline developer is used as the developer, a positive pattern is preferably formed, and when an organic developer is used as the developer, a negative pattern is preferably formed.
  • the acid-decomposable group is a group that decomposes under the action of an acid and has an increased polarity.
  • the acid-decomposable group is typically a group that decomposes under the action of an acid to generate a polar group.
  • the acid-decomposable group preferably has a structure in which a polar group is protected by a group (leaving group) that is eliminated under the action of an acid.
  • the polarity of the resin (A) increases under the action of an acid, so that the solubility in an alkaline developer increases and the solubility in an organic solvent decreases.
  • the polar group is preferably an alkali-soluble group, and examples thereof include acidic groups such as a carboxy group, a phenolic hydroxyl group, a fluorinated alcohol group, a sulfonic acid group, a phosphate group, a sulfonamide group, a sulfonylimide group, an (alkylsulfonyl)(alkylcarbonyl)methylene group, an (alkylsulfonyl)(alkylcarbonyl)imide group, a bis(alkylcarbonyl)methylene group, a bis(alkylcarbonyl)imide group, a bis(alkylsulfonyl)methylene group, a bis(alkylsulfonyl)imide group, a tris(alkylcarbonyl)methylene group, and a tris(alkylsulfonyl)methylene group, as well as an alcoholic hydroxyl group.
  • acidic groups
  • Examples of the leaving group which is eliminated by the action of an acid include groups represented by the formulae (Y1) to (Y4).
  • Formula (Y1) -C(Rx 1 )(Rx 2 )(Rx 3 )
  • Formula (Y3) -C(R 36 )(R 37 )(OR 38 )
  • Rx 1 to Rx 3 each independently represent an alkyl group (linear or branched), a cycloalkyl group (monocyclic or polycyclic), an aryl group (monocyclic or polycyclic), an aralkyl group (linear or branched), or an alkenyl group (linear or branched).
  • Rx 1 to Rx 3 are alkyl groups (linear or branched)
  • Rx 1 to Rx 3 each independently represent a linear or branched alkyl group, and it is more preferable that Rx 1 to Rx 3 each independently represent a linear alkyl group.
  • Two of Rx 1 to Rx 3 may be bonded to each other to form a ring (which may be either a monocyclic ring or a polycyclic ring).
  • the alkyl group of Rx 1 to Rx 3 is preferably an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, or a t-butyl group.
  • the cycloalkyl groups of Rx 1 to Rx 3 are preferably monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group, and polycyclic cycloalkyl groups such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group.
  • the aryl group of Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
  • the aralkyl group of Rx 1 to Rx 3 is preferably a group in which one hydrogen atom in the alkyl group of Rx 1 to Rx 3 described above is substituted with an aryl group having 6 to 10 carbon atoms (preferably a phenyl group), and examples thereof include a benzyl group.
  • the alkenyl group of Rx 1 to Rx 3 is preferably a vinyl group.
  • the ring formed by combining two of Rx 1 to Rx 3 is preferably a cycloalkyl group.
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group, and more preferably a monocyclic cycloalkyl group having 5 to 6 carbon atoms.
  • cycloalkyl group formed by combining two of Rx1 to Rx3 for example, one of the methylene groups constituting the ring may be replaced with a heteroatom such as an oxygen atom, a group having a heteroatom such as a carbonyl group, or a vinylidene group.
  • one or more of the ethylene groups constituting the cycloalkane ring may be replaced with a vinylene group.
  • Rx1 is a methyl group or an ethyl group, and Rx2 and Rx3 are bonded to form the above-mentioned cycloalkyl group.
  • R 36 to R 38 each independently represent a hydrogen atom or a monovalent organic group.
  • R 37 and R 38 may be bonded to each other to form a ring.
  • the monovalent organic group include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group.
  • R 36 is a hydrogen atom.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group may contain a heteroatom such as an oxygen atom and/or a group having a heteroatom such as a carbonyl group.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group may have one or more methylene groups replaced with a heteroatom such as an oxygen atom and/or a group having a heteroatom such as a carbonyl group.
  • R 38 may be bonded to another substituent in the main chain of the repeating unit to form a ring.
  • the group formed by bonding R 38 to another substituent in the main chain of the repeating unit is preferably an alkylene group such as a methylene group.
  • Ar represents an aromatic ring group.
  • Rn represents an alkyl group, a cycloalkyl group, or an aryl group.
  • Rn and Ar may be bonded to each other to form a non-aromatic ring.
  • Ar is more preferably an aryl group.
  • the content of repeating units having an acid decomposable group is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all repeating units in resin (A).
  • the content of repeating units having an acid decomposable group is preferably 70 mol% or less, more preferably 60 mol% or less, and even more preferably 50 mol% or less, based on all repeating units in resin (A).
  • the repeating unit having an acid-decomposable group contained in the resin (A) may be a repeating unit represented by the above general formula (1), may be a repeating unit represented by general formula (2), or may be any other repeating unit.
  • the repeating unit having an acid-decomposable group contained in the resin (A) may be one type or two or more types. When the resin (A) contains two or more types of repeating units having an acid-decomposable group, it is preferable that the total content thereof is within the above-mentioned suitable content range.
  • the resin (A) may contain other repeating units in addition to the repeating unit represented by the above general formula (1), the repeating unit represented by the general formula (2), and the repeating unit having an acid-decomposable group.
  • the contents of [0079] to [0172] of WO 2022/024928 are incorporated by reference.
  • the total content of the repeating units represented by the above general formula (1) and the repeating units represented by the general formula (2) in the resin (A) is not particularly limited, but is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more.
  • the method for synthesizing resin (A) is not particularly limited, but it can be synthesized, for example, by radical polymerization. Among them, from the viewpoint of increasing the introduction rate of the repeating unit represented by general formula (2) and obtaining a resin with a high molecular weight, thereby improving the glass transition temperature of the resin, it is preferable to synthesize it using the method for producing the resin of the present invention described later.
  • the weight average molecular weight (Mw) of the resin (A), as a polystyrene equivalent value measured by the GPC method, is preferably 1000 or more, more preferably 2000 or more, even more preferably 4000 or more, and particularly preferably 5000 or more. Also, it is preferably 30000 or less, more preferably 15000 or less.
  • the dispersity (molecular weight distribution, Pd, Mw/Mn) of the resin (A) is preferably from 1 to 5, more preferably from 1 to 3, even more preferably from 1.0 to 3.0, and particularly preferably from 1.1 to 2.0. The smaller the dispersity, the better the resolution and resist shape, and furthermore, the smoother the sidewalls of the resist pattern are, and the better the roughness.
  • the content of the resin (A) is preferably from 40.0 to 99.9 mass %, more preferably from 60.0 to 90.0 mass %, based on the total solid content of the composition of the present invention.
  • Resin (A) may be used alone or in combination of two or more. When two or more resins (A) are used, the total content thereof is preferably within the above-mentioned suitable content range.
  • composition of the present invention contains a compound (B) that generates an acid when irradiated with actinic rays or radiation (hereinafter, also referred to as photoacid generator (B)).
  • the photoacid generator may be in the form of a low molecular weight compound, or may be incorporated into a part of a polymer. In addition, the low molecular weight compound and the photoacid generator incorporated into a part of a polymer may be used in combination.
  • the molecular weight of the photoacid generator is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less. There is no particular lower limit, but a molecular weight of 100 or more is preferable.
  • the photoacid generator is in a form in which it is incorporated into a part of a polymer, it may be incorporated into a part of the resin (A) or into a resin different from the resin (A).
  • the photoacid generator is preferably in the form of a low molecular weight compound.
  • the photoacid generator is preferably a compound that generates an acid having a pKa of ⁇ 2.0 or more upon irradiation with actinic rays or radiation, and more preferably a compound that generates an acid having a pKa of ⁇ 2.0 or more and 1.0 or less.
  • Examples of the photoacid generator (B) include compounds (onium salts) represented by "M + X - ", and are preferably compounds that generate an organic acid upon exposure to light.
  • Examples of the organic acid include sulfonic acids (aliphatic sulfonic acids, aromatic sulfonic acids, camphorsulfonic acids, etc.), carboxylic acids (aliphatic carboxylic acids, aromatic carboxylic acids, aralkyl carboxylic acids, etc.), carbonylsulfonylimide acids, bis(alkylsulfonyl)imide acids, and tris(alkylsulfonyl)methide acids.
  • M + represents an organic cation.
  • the organic cation is a cation represented by formula (ZaI) (hereinafter also referred to as “cation (ZaI)”). ), or a cation represented by formula (ZaII) (hereinafter also referred to as “cation (ZaII)”) is preferred.
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • the number of carbon atoms in the organic groups of R 201 , R 202 , and R 203 is preferably 1 to 30, and more preferably 1 to 20.
  • Any two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group.
  • groups formed by bonding any two of R 201 to R 203 include alkylene groups (e.g., butylene and pentylene groups) and -CH 2 -CH 2 -O-CH 2 -CH 2 -.
  • the organic group of R 201 , R 202 , and R 203 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group.
  • the alkyl group may be either linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5.
  • Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
  • the number of carbon atoms in the cycloalkyl group is not particularly limited, but is preferably 3 to 20, and more preferably 5 to 15.
  • monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group
  • polycyclic cycloalkyl groups such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group are preferred.
  • the aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 15 carbon atoms, further preferably a phenyl group or naphthyl group, and particularly preferably a phenyl group.
  • the heteroaryl group is preferably a heteroaryl group having 3 to 20 carbon atoms.
  • the heteroaryl group preferably contains at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom, and a nitrogen atom. Examples of the heteroaryl group include a pyrrole residue, a furan residue, a thiophene residue, an indole residue, a benzofuran residue, and a benzothiophene residue.
  • R 204 and R 205 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
  • the aryl group of R 204 and R 205 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group of R 204 and R 205 may be an aryl group having a heterocycle with an oxygen atom, a nitrogen atom, or a sulfur atom. Examples of the skeleton of the aryl group having a heterocycle include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group of R 204 and R 205 are preferably a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (e.g., a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (e.g., a cyclopentyl group, a cyclohexyl group, or a norbornyl group).
  • a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms e.g., a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group
  • a cycloalkyl group having 3 to 10 carbon atoms e.g
  • the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may each independently have a substituent.
  • substituents that the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have include an alkyl group (e.g., having 1 to 15 carbon atoms), a cycloalkyl group (e.g., having 3 to 15 carbon atoms), an aryl group (e.g., having 6 to 15 carbon atoms), an alkoxy group (e.g., having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group. It is also preferable that the substituents of R 204 and R 205 each independently form an acid-decomposable group by any combination of the substituents.
  • X - represents an organic anion.
  • the organic anion is not particularly limited, and examples thereof include monovalent or divalent or higher organic anions.
  • anions having a significantly low ability to cause a nucleophilic reaction are preferred, and non-nucleophilic anions are more preferred.
  • non-nucleophilic anions examples include sulfonate anions (aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.), carboxylate anions (aliphatic carboxylate anions, aromatic carboxylate anions, aralkyl carboxylate anions, etc.), sulfonylimide anions, bis(alkylsulfonyl)imide anions, and tris(alkylsulfonyl)methide anions.
  • the aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be a linear or branched alkyl group or a cycloalkyl group, and is preferably a linear or branched alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 30 carbon atoms.
  • the alkyl group may be, for example, a fluoroalkyl group (which may have a substituent other than a fluorine atom, or may be a perfluoroalkyl group).
  • the aryl group in the aromatic sulfonate anion and aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the alkyl group, cycloalkyl group, and aryl group listed above may have a substituent.
  • the substituent is not particularly limited, but examples include a nitro group, a halogen atom such as a fluorine atom or a chlorine atom, a carboxyl group, a hydroxyl group, an amino group, a cyano group, an alkoxy group (preferably having 1 to 15 carbon atoms), an alkyl group (preferably having 1 to 10 carbon atoms), a cycloalkyl group (preferably having 3 to 15 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms), an alkoxycarbonyl group (preferably having 2 to 7 carbon atoms), an acyl group (preferably having 2 to 12 carbon atoms), an alkoxycarbonyloxy group (preferably having 2 to 7 carbon atoms), an alkylthio group (preferably having 1 to 15 carbon atoms), an alkylsulfonyl group (preferably having 1 to 15 carbon
  • the aralkyl group in the aralkyl carboxylate anion is preferably an aralkyl group having 7 to 14 carbon atoms.
  • Examples of the aralkyl group having 7 to 14 carbon atoms include a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group, and a naphthylbutyl group.
  • sulfonylimide anion is the saccharin anion.
  • the alkyl group in the bis(alkylsulfonyl)imide anion and the tris(alkylsulfonyl)methide anion is preferably an alkyl group having 1 to 5 carbon atoms.
  • substituent on these alkyl groups include a halogen atom, an alkyl group substituted with a halogen atom, an alkoxy group, an alkylthio group, an alkyloxysulfonyl group, an aryloxysulfonyl group, and a cycloalkylaryloxysulfonyl group, and a fluorine atom or an alkyl group substituted with a fluorine atom is preferred.
  • the alkyl groups in the bis(alkylsulfonyl)imide anion may be bonded to each other to form a ring structure, which increases the acid strength.
  • non-nucleophilic anions include, for example, phosphorus fluorides (eg, PF 6 ⁇ ), boron fluorides (eg, BF 4 ⁇ ), and antimony fluorides (eg, SbF 6 ⁇ ).
  • Preferred non-nucleophilic anions are aliphatic sulfonate anions in which at least the ⁇ -position of the sulfonic acid is substituted with a fluorine atom, aromatic sulfonate anions substituted with a fluorine atom or a group having a fluorine atom, bis(alkylsulfonyl)imide anions in which an alkyl group is substituted with a fluorine atom, or tris(alkylsulfonyl)methide anions in which an alkyl group is substituted with a fluorine atom.
  • perfluoroaliphatic sulfonate anions preferably having 4 to 8 carbon atoms
  • benzenesulfonate anions having fluorine atoms are more preferable
  • nonafluorobutanesulfonate anions, perfluorooctanesulfonate anions, pentafluorobenzenesulfonate anions, or 3,5-bis(trifluoromethyl)benzenesulfonate anions are even more preferable.
  • the photoacid generator (B) may be at least one selected from the group consisting of the following compounds (I) to (II):
  • Compound (I) is a compound having one or more structural moieties X and one or more structural moieties Y, which generates an acid containing a first acidic moiety derived from the structural moiety X and a second acidic moiety derived from the structural moiety Y when irradiated with actinic rays or radiation:
  • Structural moiety X a structural moiety consisting of an anionic moiety A 1 - and a cationic moiety M 1 + , which forms a first acidic moiety represented by HA 1 when irradiated with actinic rays or radiation.
  • Structural moiety Y a structural moiety consisting of an anionic moiety A 2 - and a cationic moiety M 2 + , which forms a second acidic moiety represented by HA 2 when irradiated with actinic rays or radiation.
  • the compound (I) satisfies the following condition I.
  • Compound PI which is obtained by replacing the cationic moiety M 1 + in the structural moiety X and the cationic moiety M 2 + in the structural moiety Y in the compound (I) with H + , has an acid dissociation constant a1 derived from the acidic moiety represented by HA 1 , which is obtained by replacing the cationic moiety M 1 + in the structural moiety X with H + , and an acid dissociation constant a2 derived from the acidic moiety represented by HA 2 , which is obtained by replacing the cationic moiety M 2 + in the structural moiety Y with H + , and the acid dissociation constant a2 is greater than the acid dissociation constant a1. At least one of the acid dissociation constants a1 is less than 0.
  • compound (I) is, for example, a compound that generates an acid having one of the first acidic site derived from the structural moiety X and one of the second acidic site derived from the structural moiety Y
  • compound PI corresponds to a "compound having HA 1 and HA 2.
  • the acid dissociation constant a1 and the acid dissociation constant a2 of compound PI are calculated as follows: when compound PI becomes a "compound having A 1 - and HA 2 ", the pKa is the acid dissociation constant a1; and when the "compound having A 1 - and HA 2 " becomes a "compound having A 1 - and A 2 - ", the pKa is the acid dissociation constant a2.
  • compound (I) is, for example, a compound that generates an acid having two of the first acidic sites derived from the structural moiety X and one of the second acidic sites derived from the structural moiety Y
  • compound PI corresponds to a "compound having two HA 1 's and one HA 2.
  • the acid dissociation constant of the compound PI is determined, the acid dissociation constant when the compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " and the acid dissociation constant when the "compound having one A 1 - , one HA 1 and one HA 2 " becomes "a compound having two A 1 - and one HA 2 " correspond to the above-mentioned acid dissociation constant a1.
  • the acid dissociation constant when the "compound having two A 1 - and one HA 2 " becomes "a compound having two A 1 - and A 2 - " corresponds to the acid dissociation constant a2. That is, in the case of the compound PI, when the compound has a plurality of acid dissociation constants derived from the acidic site represented by HA 1 obtained by replacing the cationic site M 1 + in the structural site X with H + , the value of the acid dissociation constant a2 is larger than the largest value of the plurality of acid dissociation constants a1.
  • the acid dissociation constant a1 and the acid dissociation constant a2 are determined by the above-mentioned method for measuring an acid dissociation constant.
  • the compound PI corresponds to an acid generated when compound (I) is irradiated with actinic rays or radiation.
  • the structural moieties X may be the same or different from each other.
  • the two or more A 1 ⁇ and the two or more M 1 + may be the same or different from each other.
  • a 1 - and A 2 - , as well as M 1 + and M 2 + may be the same or different, but it is preferable that A 1 - and A 2 - are different.
  • Compound (II) is a compound having two or more of the above structural moieties X and one or more of the following structural moieties Z, and is a compound that generates an acid containing two or more of the first acidic moieties derived from the structural moiety X and the structural moiety Z when irradiated with actinic rays or radiation.
  • Structural moiety Z a non-ionic moiety capable of neutralizing an acid
  • compound (II) is, for example, a compound that generates an acid having two of the first acidic sites derived from the structural site X and the structural site Z
  • compound PII corresponds to a "compound having two HA 1s .”
  • the acid dissociation constant of this compound PII is determined, the acid dissociation constant when compound PII becomes a "compound having one A 1 - and one HA 1 " and the acid dissociation constant when the "compound having one A 1 - and one HA 1 " becomes a "compound having two A 1 -s " correspond to the acid dissociation constant a1.
  • the acid dissociation constants a1 are determined by the above-mentioned method for measuring an acid dissociation constant. At least one of the acid dissociation constants a1 is less than 0.
  • the compound PII corresponds to an acid generated when compound (II) is irradiated with actinic rays or radiation.
  • the two or more structural moieties X may be the same or different, and the two or more A 1 ⁇ and the two or more M 1 + may be the same or different.
  • the nonionic moiety capable of neutralizing an acid in the structural moiety Z is not particularly limited, and is preferably, for example, a moiety containing a group capable of electrostatically interacting with a proton, or a functional group having an electron.
  • Examples of the group capable of electrostatically interacting with a proton or the functional group having electrons include a functional group having a macrocyclic structure such as a cyclic polyether, or a functional group having a nitrogen atom having an unshared electron pair that does not contribute to ⁇ -conjugation.
  • the nitrogen atom having an unshared electron pair that does not contribute to ⁇ -conjugation is, for example, a nitrogen atom having a partial structure shown in the following formula:
  • Examples of partial structures of functional groups having groups or electrons that can electrostatically interact with protons include crown ether structures, azacrown ether structures, primary to tertiary amine structures, pyridine structures, imidazole structures, and pyrazine structures, with primary to tertiary amine structures being preferred.
  • the content of the photoacid generator (B) in the composition of the present invention is preferably 1.0 mass% or more, more preferably 3.0 mass% or more, and even more preferably 5.0 mass% or more, based on the total solid content of the composition of the present invention.
  • the content of the photoacid generator (B) is preferably 30.0 mass% or less, more preferably 25.0 mass% or less, and even more preferably 20.0 mass% or less, based on the total solid content of the composition of the present invention.
  • the photoacid generator (B) may be used alone or in combination of two or more. When two or more types are used, the total content is preferably within the above-mentioned suitable content range.
  • the acid diffusion controller (C) traps the acid generated, for example, from the photoacid generator (B) during exposure, and acts as a quencher that suppresses the reaction of the acid-decomposable resin in unexposed areas caused by excess acid generated.
  • the type of the acid diffusion controller (C) is not particularly limited, and examples thereof include a basic compound (CA), a low molecular weight compound (CB) having a nitrogen atom and a group that is eliminated by the action of an acid, and a compound (CC) whose acid diffusion control ability is reduced or lost by irradiation with actinic rays or radiation.
  • Examples of the compound (CC) include an onium salt compound (CD) of an acid that is weaker than the acid generated from the photoacid generator (B) or the like, and a basic compound (CE) whose basicity is reduced or lost by irradiation with actinic rays or radiation.
  • Specific examples of the basic compound (CA) include those described in paragraphs [0132] to [0136] of WO 2020/066824.
  • Specific examples of the basic compound (CE) whose basicity is reduced or eliminated by irradiation with actinic rays or radiation include those described in paragraphs [0137] to [0155] of WO 2020/066824 and those described in paragraph [0164] of WO 2020/066824.
  • the low molecular weight compound (CB) having a nitrogen atom and a group that is eliminated by the action of an acid include those described in paragraphs [0156] to [0163] of WO 2020/066824.
  • specific examples of the onium salt compound (CD) that is a relatively weak acid relative to the acid generated from the photoacid generator (B) or the like include those described in paragraphs [0305] to [0314] of WO 2020/158337.
  • the content of the acid diffusion controller (the total content when a plurality of types are present) is preferably 0.1 to 15.0 mass %, and more preferably 1.0 to 15.0 mass %, based on the total solid content of the composition of the present invention.
  • the acid diffusion controller may be used alone or in combination of two or more kinds.
  • the composition of the present invention may further contain a hydrophobic resin (also referred to as "resin (D)”) different from resin (A).
  • the hydrophobic resin is preferably designed to be unevenly distributed on the surface of the resist film, but unlike a surfactant, it does not necessarily have to have a hydrophilic group in the molecule, and does not necessarily have to contribute to uniform mixing of polar and non-polar substances.
  • the hydrophobic resin preferably has at least one of fluorine atoms, silicon atoms, and CH3 partial structures contained in the side chain portion of the resin, more preferably has at least two of them.
  • the hydrophobic resin preferably has a hydrocarbon group having 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain. Examples of hydrophobic resins include the compounds described in paragraphs [0275] to [0279] of WO 2020/004306.
  • the content of the hydrophobic resin is preferably from 0.01 to 20.0 mass %, more preferably from 0.1 to 15.0 mass %, based on the total solid content of the composition of the present invention.
  • the hydrophobic resin may be used alone or in combination of two or more. When two or more types are used, the total content is preferably within the above-mentioned preferred content range.
  • the composition of the present invention may contain a surfactant.
  • a surfactant When the composition contains a surfactant, a pattern having better adhesion and fewer development defects can be formed.
  • the surfactant is preferably a fluorine-based and/or silicon-based surfactant. Examples of fluorine-based and/or silicone-based surfactants include the surfactants disclosed in paragraphs [0218] and [0219] of WO 2018/193954.
  • the content of the surfactant is preferably from 0.0001 to 2.0 mass%, more preferably from 0.0005 to 1.0 mass%, and still more preferably from 0.1 to 1.0 mass%, based on the total solid content of the composition of the present invention.
  • the surfactant may be used alone or in combination of two or more. When two or more surfactants are used, the total content is preferably within the above-mentioned preferred content range.
  • the composition of the present invention preferably contains a solvent.
  • the solvent preferably contains (M1) propylene glycol monoalkyl ether carboxylate and (M2) at least one selected from the group consisting of propylene glycol monoalkyl ether, lactate ester, acetate ester, alkoxypropionate ester, linear ketone, cyclic ketone, lactone, and alkylene carbonate.
  • the solvent may further contain components other than the components (M1) and (M2).
  • the combination of the above-mentioned solvent and the above-mentioned resin is preferable from the viewpoint of improving the coatability of the composition of the present invention and reducing the number of development defects of the pattern.
  • the above-mentioned solvent has a good balance of the solubility, boiling point, and viscosity of the above-mentioned resin, so that it is possible to suppress unevenness in the thickness of the resist film and the occurrence of precipitates during spin coating. Details of the components (M1) and (M2) are described in paragraphs [0218] to [0226] of WO 2020/004306, the contents of which are incorporated herein by reference.
  • the solvent further contains components other than components (M1) and (M2)
  • the content of the components other than components (M1) and (M2) is preferably 5 to 30 mass % based on the total amount of the solvent.
  • the content of the solvent in the composition of the present invention is preferably determined so that the solids concentration is 0.5 to 30 mass %, and more preferably 1 to 20 mass %. This further improves the applicability of the composition of the present invention.
  • composition of the present invention may further contain a dissolution inhibiting compound, a dye, a plasticizer, a photosensitizer, a light absorber, and/or a compound that promotes solubility in a developer (for example, a phenol compound having a molecular weight of 1000 or less, or an alicyclic or aliphatic compound containing a carboxyl group).
  • a dissolution inhibiting compound for example, a phenol compound having a molecular weight of 1000 or less, or an alicyclic or aliphatic compound containing a carboxyl group.
  • dissolution-blocking compound is a compound with a molecular weight of 3000 or less that decomposes under the action of acid and reduces its solubility in an organic developer.
  • the present invention also relates to an actinic ray- or radiation-sensitive film formed from the composition of the present invention.
  • the actinic ray- or radiation-sensitive film of the present invention is preferably a resist film.
  • the present invention also relates to a pattern forming method.
  • the pattern forming method of the present invention is preferably a pattern forming method comprising the steps of forming an actinic ray-sensitive or radiation-sensitive film (typically a resist film) on a substrate using the composition of the present invention, exposing the actinic ray-sensitive or radiation-sensitive film, and developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer.
  • the procedure for the pattern formation method using the composition of the present invention is not particularly limited, but it is preferable that the method comprises the following steps.
  • Step 1 forming an actinic ray-sensitive or radiation-sensitive film on a substrate using the composition of the present invention
  • Step 2 exposing the actinic ray-sensitive or radiation-sensitive film
  • Step 3 developing the exposed actinic ray-sensitive or radiation-sensitive film with a developer.
  • Step 1 Actinic ray-sensitive or radiation-sensitive film formation step
  • Step 1 is a step of forming an actinic ray- or radiation-sensitive film on a substrate using the composition of the present invention.
  • An example of a method for forming an actinic ray- or radiation-sensitive film on a substrate using the composition of the present invention is a method in which the composition of the present invention is applied onto a substrate.
  • the composition of the present invention is preferably filtered as necessary before application.
  • the pore size of the filter is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • the filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • the composition of the present invention can be applied by a suitable application method such as a spinner or coater onto a substrate (e.g., silicon, silicon dioxide-coated) such as those used in the manufacture of integrated circuit elements.
  • the application method is preferably spin coating using a spinner.
  • the rotation speed when spin coating using a spinner is preferably 1000 to 3000 rpm (rotations per minute).
  • the substrate may be dried to form an actinic ray-sensitive or radiation-sensitive film. If necessary, various undercoats (inorganic films, organic films, anti-reflection films) may be formed under the actinic ray-sensitive or radiation-sensitive film.
  • the drying method may be, for example, a method of drying by heating. Heating can be performed by a means provided in a normal exposure machine and/or a developing machine, and may also be performed using a hot plate or the like.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, and even more preferably 80 to 130°C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, and even more preferably 60 to 600 seconds.
  • the thickness of the actinic ray-sensitive or radiation-sensitive film is not particularly limited, but is preferably 10 to 120 nm, since it allows for the formation of fine patterns with higher precision.
  • the thickness of the actinic ray-sensitive or radiation-sensitive film is more preferably 10 to 65 nm, and even more preferably 15 to 50 nm.
  • the thickness of the resist film is more preferably 10 to 120 nm, and even more preferably 15 to 90 nm.
  • a top coat may be formed on the actinic ray-sensitive or radiation-sensitive film by using a top coat composition. It is preferable that the top coat composition does not mix with the actinic ray-sensitive or radiation-sensitive film, and can be uniformly applied on the actinic ray-sensitive or radiation-sensitive film.
  • the top coat is not particularly limited, and a conventionally known top coat can be formed by a conventionally known method, for example, a top coat can be formed based on the description in paragraphs [0072] to [0082] of JP2014-059543A. For example, it is preferable to form a top coat containing a basic compound such as that described in JP 2013-61648 A on an actinic ray-sensitive or radiation-sensitive film.
  • the basic compound that the top coat may contain include the basic compounds that may be contained in the composition of the present invention. It is also preferred that the top coat contains a compound containing at least one group or bond selected from the group consisting of an ether bond, a thioether bond, a hydroxyl group, a thiol group, a carbonyl bond, and an ester bond.
  • Step 2 is a step of exposing the actinic ray- or radiation-sensitive film to light.
  • the exposure method may be a method in which the formed actinic ray-sensitive or radiation-sensitive film is irradiated with actinic rays or radiation through a predetermined mask.
  • Examples of the actinic ray or radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams, preferably 250 nm or less, more preferably 220 nm or less, and particularly preferably far ultraviolet light having a wavelength of 1 to 200 nm, specifically KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (157 nm), EUV (13.5 nm), X-rays, and electron beams.
  • the heating temperature is preferably from 80 to 150°C, more preferably from 80 to 140°C, and even more preferably from 80 to 130°C.
  • the heating time is preferably from 10 to 1,000 seconds, more preferably from 10 to 180 seconds, and even more preferably from 30 to 120 seconds. Heating can be carried out by a means provided in a normal exposure machine and/or developing machine, and may be carried out using a hot plate or the like. This step is also called post-exposure bake.
  • Step 3 is a step of developing the exposed actinic ray- or radiation-sensitive film with a developer to form a pattern.
  • the developer may be an alkaline developer or a developer containing an organic solvent (hereinafter, also referred to as an organic developer).
  • Examples of the developing method include a method of immersing a substrate in a tank filled with a developing solution for a certain period of time (dip method), a method of piling up the developing solution on the substrate surface by surface tension and leaving it to stand for a certain period of time to develop (paddle method), a method of spraying the developing solution on the substrate surface (spray method), and a method of continuously discharging the developing solution while scanning a developing solution discharge nozzle at a constant speed onto a substrate rotating at a constant speed (dynamic dispense method).
  • dip method dip method
  • spray method a method of spraying the developing solution on the substrate surface
  • dynamic dispense method a method of continuously discharging the developing solution while scanning a developing solution discharge nozzle at a constant speed onto a substrate rotating at a constant speed
  • the development time is not particularly limited as long as the resin in the unexposed area is sufficiently dissolved, and is preferably from 10 to 300 seconds, more preferably from 20 to 120 seconds.
  • the temperature of the developer is preferably from 0 to 50°C, and more preferably from 15 to 35°C.
  • the alkaline developer is preferably an aqueous alkaline solution containing an alkali.
  • aqueous alkaline solution containing an quaternary ammonium salt such as tetramethylammonium hydroxide, an inorganic alkali, a primary amine, a secondary amine, a tertiary amine, an alcohol amine, or a cyclic amine.
  • the alkaline developer is preferably an aqueous solution of a quaternary ammonium salt such as tetramethylammonium hydroxide (TMAH).
  • TMAH tetramethylammonium hydroxide
  • Appropriate amounts of alcohols, surfactants, etc. may be added to the alkaline developer.
  • the alkaline concentration of the alkaline developer is preferably 0.1 to 20% by mass.
  • the pH of the alkaline developer is preferably 10.0 to 15.0.
  • the organic developer is preferably a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents.
  • the above-mentioned solvents may be mixed in combination, or may be mixed with a solvent other than the above or with water.
  • the water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, and particularly preferably substantially free of water.
  • the content of the organic solvent in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, still more preferably 90% by mass or more and 100% by mass or less, and particularly preferably 95% by mass or more and 100% by mass or less, based on the total amount of the developer.
  • the above pattern formation method preferably includes, after step 3, a step of washing with a rinsing liquid.
  • the rinse liquid used in the rinse step following the step of developing with an alkaline developer is, for example, pure water, to which an appropriate amount of a surfactant may be added.
  • a suitable amount of a surfactant may be added to the rinse solution.
  • the rinse liquid used in the rinse step following the development step using an organic developer is not particularly limited as long as it does not dissolve the pattern, and a solution containing a general organic solvent can be used. It is preferable to use a rinse liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents.
  • the method of the rinsing step is not particularly limited, and examples thereof include a method of continuously discharging a rinsing liquid onto a substrate rotating at a constant speed (spin coating method), a method of immersing a substrate in a tank filled with the rinsing liquid for a certain period of time (dip method), and a method of spraying the rinsing liquid onto the substrate surface (spray method).
  • the pattern forming method may also include a heating step (Post Bake) after the rinsing step. This step removes the developer and rinsing solution remaining between the patterns and inside the pattern due to baking. This step also has the effect of annealing the resist pattern and improving the surface roughness of the pattern.
  • the heating step after the rinsing step is usually performed at 40 to 250°C (preferably 90 to 200°C) for usually 10 seconds to 3 minutes (preferably 30 seconds to 120 seconds).
  • the formed pattern may be used as a mask to perform an etching process on the substrate. That is, the pattern formed in step 3 may be used as a mask to process the substrate (or the underlayer film and the substrate) to form a pattern on the substrate.
  • the method for processing the substrate is not particularly limited, a method is preferred in which the substrate (or the underlayer film and the substrate) is dry-etched using the pattern formed in step 3 as a mask to form a pattern on the substrate.
  • the dry etching is preferably oxygen plasma etching.
  • the composition of the present invention and various materials used in the pattern formation method preferably do not contain impurities such as metals.
  • the content of impurities contained in these materials is preferably 1 mass ppm (parts per million) or less, more preferably 10 mass ppb (parts per billion) or less, even more preferably 100 mass ppt (parts per trillion) or less, particularly preferably 10 mass ppt or less, and most preferably 1 mass ppt or less.
  • impurities include Na, K, Ca, Fe, Cu, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Pb, Ti, V, W, and Zn.
  • Methods for reducing metal and other impurities contained in various materials include, for example, selecting raw materials with low metal content as the raw materials that make up the various materials, filtering the raw materials that make up the various materials, and performing distillation under conditions that minimize contamination as much as possible, such as lining the inside of the equipment with Teflon (registered trademark).
  • impurities may be removed using an adsorbent, or a combination of filtration and an adsorbent may be used.
  • adsorbent known adsorbents can be used, for example, inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
  • inorganic adsorbents such as silica gel and zeolite
  • organic adsorbents such as activated carbon.
  • the content of metal components contained in the cleaning solution after use is preferably 100 ppt by mass or less, more preferably 10 ppt by mass or less, and even more preferably 1 ppt by mass or less. There is no particular lower limit, and 0 ppt by mass or more is preferable.
  • An organic processing liquid such as a rinse liquid may contain a conductive compound to prevent breakdown of chemical liquid piping and various parts (filters, O-rings, tubes, etc.) due to static charging and subsequent static discharge.
  • the conductive compound is not particularly limited, but an example thereof is methanol.
  • the amount added is not particularly limited, but from the viewpoint of maintaining favorable development characteristics or rinsing characteristics, it is preferably 10% by mass or less, and more preferably 5% by mass or less. There is no particular lower limit, and 0.01% by mass or more is preferable.
  • the chemical liquid piping may be made of, for example, stainless steel (SUS), or various piping coated with antistatic polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.).
  • the filter and O-ring may be made of antistatic polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.).
  • the present specification also relates to a method for manufacturing an electronic device, including the above-mentioned pattern formation method, and an electronic device manufactured by this manufacturing method.
  • Preferred embodiments of the electronic device of the present specification include those mounted in electric and electronic equipment (home appliances, OA (Office Automation), media-related equipment, optical equipment, communication equipment, and the like).
  • the present invention also relates to a resin containing at least one type of repeating unit represented by the following general formula (1) and at least one type of repeating unit represented by the following general formula (2).
  • R 11 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 12 represents a hydrogen atom or an organic group.
  • a 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
  • R 21 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 22 represents an organic group or a halogen atom.
  • a 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  • the content ratio of the repeating unit represented by the above general formula (2) to all repeating units in the above resin is preferably 30 to 60 mol %.
  • the weight average molecular weight of the resin is preferably 4,000 or more. It is preferable that A 1 in the above general formula (1) and A 2 in the above general formula (2) are aromatic ring hydrocarbon groups.
  • the present invention also relates to a method for producing a resin by polymerizing at least two types of monomers in the presence of a nitroxide radical represented by the following general formula (N) and a radical polymerization initiator to produce a resin (X) containing at least two types of repeating units represented by the following general formula (3):
  • R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
  • R 31 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 32 represents a hydrogen atom, an organic group, or a halogen atom.
  • R 33 represents a hydrogen atom or an organic group.
  • a 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
  • the groups in formula (3) will be described later.
  • the method for producing the above-mentioned resin (A) is not particularly limited, but it can be preferably produced by the resin production method of the present invention.
  • the resin production method of the present invention can also produce resins other than the resin (A).
  • Step (1) (polymerization step)
  • at least two kinds of monomers are polymerized in the presence of a nitroxide radical represented by the above general formula (N) and a radical polymerization initiator to obtain a nitroxide represented by the above general formula (1).
  • This is a step of producing a resin (X) containing at least two kinds of repeating units.
  • R31 represents an organic group, a halogen atom, or a hydroxyl group
  • R32 represents a hydrogen atom, an organic group, or a halogen atom
  • R33 represents a hydrogen atom or an organic group.
  • A3 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R31 may be the same or different and may be bonded to form a ring. R33 and A3 may be bonded to form a ring.
  • R 31 , R 32 , R 33 , A 3 and n3 have the same meanings as R 31 , R 32 , R 33 , A 3 and n3 in formula (3), and preferred examples thereof are also the same.
  • the groups in formula (3) will be described later.
  • step (1) a monomer other than the monomer represented by the above general formula (3m) may be used depending on the desired resin structure.
  • the monomers may be added to the reaction system all at once, but from the viewpoint of the degree of dispersion of the resulting resin (X) and safety, a multi-stage polymerization method in which the monomers are added in portions may also be used.
  • the reaction in the above step (1) uses a radical polymerization initiator.
  • a radical polymerization initiator for example, azo-based initiators and peroxides are used to initiate polymerization.
  • azo-based initiators are preferred, and azo-based initiators having an ester group, a cyano group, or a carboxyl group are preferred.
  • Preferred initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and dimethyl 2,2'-azobis(2-methylpropionate). If desired, the initiator may be added in multiple batches.
  • nitroxide radical represented by the following general formula (N).
  • the nitroxide radical used in the production method of the present invention is a compound that exists stably in the form of a free radical, and is a radical formed on an oxygen atom bonded to a nitrogen atom.
  • R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
  • Examples of the organic group represented by R1 include organic groups having 1 to 30 carbon atoms, preferably organic groups having 1 to 20 carbon atoms, and more preferably organic groups having 1 to 10 carbon atoms.
  • the organic group represented by R1 is not particularly limited, and examples thereof include an alkyl group and an aryl group.
  • the alkyl group is preferably an alkyl group having 1 to 6 carbon atoms.
  • the aryl group is preferably a phenyl group or naphthyl group having 6 to 10 carbon atoms.
  • the organic group represented by R 1 may further have a substituent.
  • substituents include an alkyl group, an aryl group, an ester group, a hydroxyl group, a carbonyl group, a phosphate ester, and a carboxyalkyl group.
  • Two R 1 may be bonded to form a ring.
  • Examples of the ring formed by bonding two R 1 include a piperidine ring and a pyrrolidine ring.
  • a methylene group forming the ring may be substituted with a carbonyl group.
  • two or more nitroxide radicals represented by formula (N) may be bonded via a single bond or a linking group.
  • nitroxide radical represented by the general formula (N) examples include 2,2,6,6-tetramethyl-1-piperidinyloxy radical (N-1 below), 2,2,6,6-tetraethyl-1-piperidinyloxy radical, 2,2,6,6-tetramethyl-4-oxo-1-pyrrolidinyloxy radical (N-2 below), 2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical, 1,1,3,3-tetramethyl-2-isoindolinyloxy radical, N,N-di-t-butylamineoxy radical, etc.
  • the 2,2,6,6-tetramethyl-1-piperidinyloxy radical (N-1 below) is preferably used in the present invention. Further examples include compounds N-3 to N-9 described below.
  • the ratio of monomer to nitroxide radical is preferably 0.001 to 0.1 moles of nitroxide radical per mole of monomer, and more preferably 0.01 to 0.05 moles.
  • the ratio of the two is within the above range, the molecular weight and molecular weight distribution of the resin can be appropriately controlled, and the resin can be produced at an appropriate polymerization rate, which is preferable.
  • the ratio of the two to be used in combination is not particularly limited, but can be selected from the range of 0.1 to 2 moles, preferably 0.5 to 1.5 moles, and more preferably 0.8 to 1.2 moles of the radical polymerization initiator per mole of the nitroxide radical. It is preferable that the nitroxide radical does not also function as a polymerization initiator. Specifically, it is preferable that the nitroxide radical does not combine with a polymerization initiator and function as a polymerization initiator as a whole.
  • NMP Nitroxide Mediated Polymerization
  • the reaction in the above step (1) is typically carried out in a liquid phase, i.e., the above reaction system typically further contains a solvent.
  • the solvent is not particularly limited as long as it dissolves each component, and examples thereof include alcohol solvents, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, cyclic lactones, linear or cyclic ketones, alkylene carbonates, alkyl carboxylates, alkyl alkoxyacetates, alkyl pyruvates, etc.
  • Other usable solvents include, for example, the solvents described in U.S. Patent Application Publication No. 2008/0248425 A1, paragraphs [0244] and thereafter.
  • the alcohol-based solvent is not particularly limited as long as it contains -OH, but examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 1-methoxy-2-propanol, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, diacetone alcohol, etc.
  • alkylene glycol monoalkyl ether carboxylates include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, ethylene glycol monomethyl ether acetate, and ethylene glycol monoethyl ether acetate.
  • PMEA propylene glycol monomethyl ether acetate
  • PMEA propylene glycol monoethyl ether acetate
  • propylene glycol monopropyl ether acetate propylene glycol monobutyl ether acetate
  • propylene glycol monomethyl ether propionate propylene glycol monoethyl ether propionate
  • ethylene glycol monomethyl ether acetate ethylene glycol monoethyl
  • alkylene glycol monoalkyl ether examples include propylene glycol monomethyl ether (1-methoxy-2-propanol), propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether, and ethylene glycol monoethyl ether.
  • alkylene glycol monoalkyl ethers are included in the alcohol solvents.
  • alkyl alkoxypropionate examples include ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, and ethyl 3-methoxypropionate.
  • Preferred examples of the cyclic lactone include ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -octanoic lactone, and ⁇ -hydroxy- ⁇ -butyrolactone.
  • chain or cyclic ketones examples include 2-butanone (methyl ethyl ketone), 3-methylbutanone, pinacolone, 2-pentanone, 3-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-methyl-3-pentanone, 4,4-dimethyl-2-pentanone, 2,4-dimethyl-3-pentanone, 2,2,4,4-tetramethyl-3-pentanone, 2-hexanone, 3-hexanone, 5-methyl-3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-methyl-3-heptanone, 5-methyl-3-heptanone, 2,6-dimethyl-4-heptanone, 2-octanone, 3-octanone, and 2-nonane.
  • 2-butanone methyl ethyl ketone
  • 3-methylbutanone pinacolone
  • 2-pentanone 3-pentanone
  • Preferred examples include nonanone, 3-nonanone, 5-nonanone, 2-decanone, 3-decanone, 4-decanone, 5-hexen-2-one, 3-penten-2-one, cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone, 2,2-dimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 4-ethylcyclohexanone, 2,2-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,2,6-trimethylcyclohexanone, cycloheptanone, 2-methylcycloheptanone, and 3-methylcycloheptanone.
  • alkylene carbonate examples include propylene carbonate, vinylene carbonate, ethylene carbonate, and butylene carbonate.
  • a preferred example of the alkyl carboxylate is butyl acetate.
  • alkoxy alkyl acetate examples include 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-(2-ethoxyethoxy)ethyl acetate, 3-methoxy-3-methylbutyl acetate, and 1-methoxy-2-propyl acetate.
  • Preferred examples of the alkyl pyruvate include methyl pyruvate, ethyl pyruvate, and propyl pyruvate.
  • solvents may be used alone or in combination of two or more.
  • the above polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. If necessary, the polymerization may be carried out in the presence of a chain transfer agent (e.g., alkyl mercaptan, etc.).
  • a chain transfer agent e.g., alkyl mercaptan, etc.
  • the monomer concentration in the reaction system is preferably from 20 to 70% by mass, and more preferably from 25 to 50% by mass.
  • the reaction temperature is usually from 10°C to 150°C, preferably from 30°C to 120°C, and more preferably from 40°C to 100°C.
  • the reaction time is usually from 1 to 48 hours, preferably from 1 to 24 hours, and more preferably from 1 to 12 hours.
  • a solvent is used in the polymerization step, and the content of the alcohol-based solvent is preferably 20 mass % or more based on the total amount of the solvent.
  • the content of the alcohol solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on the total amount of the above solvents.
  • the alcohol solvent is preferably at least one selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 1-methoxy-2-propanol, methyl lactate, ethyl lactate, and diacetone alcohol.
  • the resin (X) produced by the resin producing method of the present invention will be described below.
  • the resin (X) contains at least two kinds of repeating units represented by the following general formula (3).
  • R 31 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 32 represents a hydrogen atom, an organic group, or a halogen atom.
  • R 33 represents a hydrogen atom or an organic group.
  • a 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
  • R 31 represents an organic group, a halogen atom, or a hydroxyl group.
  • the organic group represented by R 31 is not particularly limited, but examples thereof include the organic groups exemplified above as the substituent T.
  • the organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
  • the organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
  • the organic group represented by R 31 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 31 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 32 represents a hydrogen atom, an organic group or a halogen atom.
  • Examples of the organic group represented by R 32 include an alkyl group, a cycloalkyl group, an aryl group, an acyl group, and an alkylcarbonyloxy group.
  • the alkyl group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • the cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
  • the acyl group is preferably an acyl group having 1 to 20 carbon atoms.
  • the alkyl group in the alkylcarbonyloxy group may be linear or branched.
  • the number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
  • Examples of the halogen atom represented by R 32 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • R 33 represents a hydrogen atom or an organic group.
  • Examples of the organic group represented by R 33 include the same organic groups as those represented by R 32 , and the preferred ranges are also the same.
  • A3 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • the aromatic hydrocarbon group represented by A3 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
  • Examples of the aromatic heterocyclic group represented by A3 include heteroarylene groups having 2 to 15 carbon atoms, and include those having 5 to 10 members.
  • Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
  • A3 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
  • n3 represents an integer from 0 to 5. It is preferable that n3 is 1 or 2.
  • the resin (X) contains at least one type of repeating unit represented by the following general formula (4) and at least one type of repeating unit represented by the following general formula (5).
  • this resin is also referred to as resin (X1).
  • R 41 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 42 represents a hydrogen atom or an organic group.
  • a 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 41 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
  • R 51 represents an organic group, a halogen atom, or a hydroxyl group.
  • R 52 represents an organic group or a halogen atom.
  • a 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 51 may be the same or different and may be bonded to form a ring.
  • homopolymers of ⁇ -substituted styrene-like derivatives can be synthesized by anionic polymerization or cationic polymerization, but have the problem of poor thermal stability, since the main chain is cleaved by heating.
  • NMP Nitroxide Mediated Polymerization
  • R 41 has the same meaning as R 31 in formula (3).
  • the organic group represented by R 41 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 41 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
  • A4 in formula (4) has the same meaning as A3 in formula (3), and preferred examples are also the same. That is, A4 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
  • n4 in general formula (4) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
  • monomers corresponding to the repeating unit represented by general formula (4) include specific examples of monomers corresponding to the repeating unit represented by general formula (1) above.
  • the repeating unit represented by general formula (4) contained in resin (X1) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (4) to all repeating units in resin (X1) is not particularly limited, but can be, for example, 40 to 70 mol %.
  • R 51 has the same meaning as R 31 in formula (3).
  • the organic group represented by R 51 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described below.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 51 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
  • the organic group and halogen atom as R 52 in the general formula (5) include the organic group and halogen atom as R 12 in the general formula (1), and the preferred ranges are also the same.
  • R 52 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
  • A5 in formula (5) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same. That is, A5 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
  • A4 in the general formula (4) and A5 in the general formula (5) are preferably aromatic ring hydrocarbon groups.
  • n5 in general formula (5) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
  • monomers corresponding to the repeating unit represented by general formula (5) include specific examples of monomers corresponding to the repeating unit represented by general formula (2) described above.
  • the repeating unit represented by general formula (5) contained in resin (X1) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (5) to all repeating units in resin (X1) is preferably 30 to 60 mol%, more preferably 40 to 55 mol%, and even more preferably 40 to 53 mol%.
  • Resin (X1) may have a repeating unit other than the repeating unit represented by the general formula (4) and the repeating unit represented by the general formula (5).
  • the other repeating units include the repeating units having an acid-decomposable group described in the above resin (A) and other repeating units.
  • the above-mentioned resin (A) can be obtained by having an acid-decomposable group in any of the repeating units of the resin (X1), i.e., by using a monomer having an acid-decomposable group as the raw material monomer of the resin (X1).
  • the resin (X) is produced via a resin (P1) containing at least one type of repeating unit represented by the following general formula (41) and at least one type of repeating unit represented by the following general formula (51).
  • the production process of resin (P1) is the same as "step (1)" which is the production process of resin (X1) described above. If the resin (P1) is not subjected to any other step (other than step (1)) described below, the resin (P1) is the resin (X).
  • R 411 represents an organic group or a halogen atom.
  • R 42 represents a hydrogen atom or an organic group.
  • a 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 411 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
  • R 511 represents an organic group or a halogen atom.
  • R 52 represents an organic group or a halogen atom.
  • a 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
  • n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 511 may be the same or different and may be bonded to form a ring.
  • the organic group of R 411 has the same meaning as the organic group of R 11 in formula (1).
  • the organic group represented by R 411 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 411 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • A4 in formula (41) has the same meaning as A3 in formula (3), and preferred examples are also the same. That is, A4 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
  • n4 in general formula (41) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
  • monomers corresponding to the repeating unit represented by general formula (41) include those corresponding to the specific examples of monomers corresponding to the repeating unit represented by general formula (41) among the specific examples of monomers corresponding to the repeating unit represented by general formula (1) described above.
  • the repeating unit represented by general formula (41) contained in resin (P1) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (41) to all repeating units in resin (P1) is not particularly limited, but can be, for example, 40 to 70 mol %.
  • the organic group of R 511 has the same meaning as the organic group of R 21 in formula (2).
  • the organic group represented by R 511 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid. It is also preferably a group represented by any one of the general formulae (16) to (17) described below.
  • the organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
  • Examples of the halogen atom represented by R 511 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
  • the organic group and halogen atom as R 52 in the general formula (51) include the organic group and halogen atom as R 22 in the general formula (2).
  • R 52 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
  • A5 in formula (51) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same. That is, A5 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
  • A4 in the general formula (41) and A5 in the general formula (51) are preferably aromatic ring hydrocarbon groups.
  • n5 in general formula (51) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
  • monomers corresponding to the repeating unit represented by general formula (51) include those corresponding to the specific examples of monomers corresponding to the repeating unit represented by general formula (51) among the specific examples of monomers corresponding to the repeating unit represented by general formula (2) described above.
  • the repeating unit represented by general formula (51) contained in resin (P1) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (51) to all repeating units in resin (P1) is preferably 30 to 60 mol%, more preferably 40 to 55 mol%, and even more preferably 40 to 53 mol%.
  • Resin (P1) may have a repeating unit other than the repeating unit represented by the general formula (41) and the repeating unit represented by the general formula (51).
  • the other repeating units include the repeating units having an acid-decomposable group described in the above resin (A) and other repeating units.
  • the above-mentioned resin (A) can be obtained by having an acid-decomposable group in any of the repeating units of the resin (P1), i.e., by using a monomer having an acid-decomposable group as the raw material monomer of the resin (P1).
  • the resin (X) is produced via a resin (P2) that contains at least two kinds of repeating units represented by the following general formula (6), or that contains at least one kind of repeating unit represented by the above general formula (6) and at least one kind of repeating unit represented by the following general formula (7) different from the repeating unit represented by the above general formula (6).
  • this resin is also referred to as resin (P2).
  • step (1) which is the production process of resin (X1) described above. If resin (P2) is not subjected to any other step (other than step (1)) described below, resin (P2) is resin (X).
  • R 61 represents a group that is decomposed by a base to produce an -OH group or a -COOH group (also referred to as a "base-decomposable group").
  • R 62 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 6 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n6 represents an integer of 1 to 5. When n6 is an integer of 2 to 5, multiple R 61 may be the same or different.
  • R 71 represents an organic group or a halogen atom.
  • R 72 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 7 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • n7 represents an integer of 0 to 5. When n7 is an integer of 2 to 5, multiple R 71 may be the same or different and may be bonded to form a ring.
  • Monomers with base-decomposable groups cannot be polymerized in living anionic polymerization because they decompose.
  • living cationic polymerization mainly uses metal compounds as Lewis acid catalysts, which limits the applications due to concerns about metal contamination.
  • the reaction system is acidic, it is difficult to use monomers with acid-decomposable groups as raw material monomers.
  • the inventors conducted research to solve the above problems and found that it is possible to polymerize a monomer having a base-decomposable group by performing radical polymerization (NMP) via a nitroxide radical. It was also found that it is possible to polymerize a monomer having a base-decomposable group and a monomer having an acid-decomposable group.
  • NMP radical polymerization
  • R 61 represents a group that is decomposed by a base to generate an —OH group or a —COOH group.
  • R 61 is preferably a group represented by any one of the following general formulae (8) to (15).
  • R 91 , R 101 , R 111 , R 121 , R 141 and R 151 each independently represent an organic group
  • R 81 and R 131 each independently represent a hydrogen atom or an organic group. * represents the bonding position with A 6 .
  • the organic group represented by R81 , R91 , R101 , R111 , R121 , R131 , R141 , and R151 includes an alkyl group, a cycloalkyl group, and an aryl group.
  • the alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, or a t-butyl group.
  • the cycloalkyl group is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group.
  • the aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group or a naphthyl group.
  • the organic groups represented by R81 , R91 , R101 , R111 , R121 , R131 , R141 and R151 may further have a substituent, and the substituent is preferably a halogen atom such as a fluorine atom.
  • R 81 , R 91 , R 101 , R 111 , R 121 , R 131 , R 141 and R 151 are preferably an alkyl group having 1 to 3 carbon atoms, a trifluoromethyl group or a phenyl group.
  • R 61 is preferably a group represented by any one of general formulas (8) to (11).
  • R 62 in formula (6) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
  • A6 in formula (6) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
  • n6 in general formula (6) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
  • R 81 in the above general formula (8) does not bond with A 6 to form a ring
  • R 121 in the above general formula (12) does not bond with A 6 to form a ring
  • the repeating unit represented by general formula (6) contained in resin (P2) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (6) to all repeating units in resin (P2) is not particularly limited, but can be, for example, 50 to 100 mol %.
  • R 71 has the same meaning as R 11 in formula (3).
  • R 71 is preferably a group that generates an --OH group or a --COOH group upon acid decomposition, and is more preferably a group represented by any one of the following general formulas (16) to (17).
  • R 161 to R 163 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 161 to R 163 may be linked to each other to form a ring.
  • R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 171 to R 173 may be linked together to form a ring. * indicates the bonding position with A7 .
  • the alkyl group represented by R 161 to R 163 may be linear or branched, and may include alkyl groups having 1 to 8 carbon atoms. Preferred are alkyl groups having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
  • the cycloalkyl group represented by R 161 to R 163 may be a monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms, preferably a monocyclic cycloalkyl group having 4 to 6 carbon atoms, and more preferably a cyclopentyl group or cyclohexyl group.
  • Examples of the aryl group represented by R 161 to R 163 include aryl groups having 6 to 15 carbon atoms, such as a phenyl group and a naphthyl group.
  • heteroaryl group represented by R 161 to R 163 examples include heteroaryl groups having 2 to 15 carbon atoms, such as a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, and a carbazolyl group.
  • the alkenyl group represented by R 161 to R 163 includes an alkenyl group having 2 to 6 carbon atoms, and is preferably an alkenyl group having 2 to 4 carbon atoms, such as a vinyl group, a 1-methylvinyl group, a 1-propenyl group, an allyl group, or a 2-methyl-1-propenyl group.
  • the alkynyl group represented by R 161 to R 163 includes an alkynyl group having 2 to 6 carbon atoms.
  • R 161 to R 163 are linked to each other to form a ring, it is preferable that two of R 161 to R 163 are linked to form a cycloalkyl group or a cycloalkenyl group.
  • the cycloalkyl group formed by combining two of R 161 to R 163 includes a monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms, and is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, and is further preferably a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Of these, a monocyclic cycloalkyl group having 5 to 6 carbon atoms is preferred.
  • the cycloalkenyl group formed by combining two of R 161 to R 163 includes monocyclic or polycyclic cycloalkenyl groups having 3 to 10 carbon atoms, and among these, monocyclic cycloalkenyl groups having 5 to 6 carbon atoms are preferred.
  • the substituents represented by R 161 to R 163 may be further substituted with an organic group.
  • the organic group preferably contains 0 to 1 heteroatom.
  • examples of the organic group include an alkyl group (having 1 to 4 carbon atoms), an alkoxy group (having 1 to 4 carbon atoms), etc.
  • One of the methylene groups in the above-mentioned substituents represented by R 104 to R 106 may be replaced with a group having a hetero atom such as a carbonyl group.
  • one of the methylene groups constituting the ring may be replaced by a heteroatom such as an oxygen atom or a sulfur atom, or a group having a heteroatom such as a carbonyl group.
  • the total number of heteroatoms contained in R 161 to R 163 is 0 to 1.
  • Each of R 161 to R 163 preferably contains 1 to 7 carbon atoms.
  • R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group.
  • R 171 to R 173 may be linked together to form a ring.
  • the alkyl group, cycloalkyl group, aryl group, heteroaryl group, alkenyl group, and alkynyl group represented by R 171 to R 173 include the alkyl group, cycloalkyl group, aryl group, heteroaryl group, alkenyl group, and alkynyl group represented by R 161 to R 163 in the above general formula (16).
  • the substituents represented by R 171 to R 173 may be further substituted with an organic group.
  • the organic group preferably contains 0 to 1 heteroatom.
  • examples of the organic group include an alkyl group (having 1 to 4 carbon atoms), an alkoxy group (having 1 to 4 carbon atoms), etc.
  • One of the methylene groups in the above-mentioned substituents represented by R 171 to R 173 may be replaced with a group having a hetero atom such as a carbonyl group.
  • R 173 may be bonded to A 7 in general formula (7) to form a ring.
  • R 72 in formula (7) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
  • A7 in formula (7) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
  • n7 in general formula (7) has the same meaning as n3 in general formula (3), and the preferred examples are also the same.
  • the repeating unit represented by the above general formula (7) is preferably a repeating unit represented by the following general formula (18).
  • the repeating unit represented by the following general formula (18) is a repeating unit having a group that generates an -OH group upon acid decomposition.
  • R 184 represents a hydrogen atom, an organic group, or a halogen atom.
  • a 18 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group.
  • R 181 to R 183 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. Two of R 181 to R 183 may be bonded to each other to form a ring.
  • R 184 in formula (18) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
  • a 18 in formula (18) has the same meaning as A 3 in formula (3), and preferred examples are also the same.
  • R 181 to R 183 in formula (18) have the same meaning as R 161 to R 163 in formula (16), and preferred examples thereof are also the same.
  • Examples of monomers corresponding to the repeating unit represented by general formula (7) include those corresponding to the repeating unit represented by general formula (7) among the specific examples of monomers corresponding to the repeating unit represented by general formula (1) described above and specific examples of monomers corresponding to the repeating unit represented by general formula (2).
  • repeating unit represented by general formula (7) may be of one type or of two or more types.
  • the content ratio of the repeating unit represented by general formula (7) to all repeating units in resin (P2) is not particularly limited, but can be, for example, 10 to 40 mol %.
  • Resin (P2) preferably contains at least two kinds of repeating units in which R 61 in the above general formula (6) is a group represented by any one of the above general formulas (8) to (15).
  • the resin (P2) contains at least two types of repeating units in which A6 in the above general formula (6) is an aromatic ring hydrocarbon group, or contains at least one type each of a repeating unit in which A6 in the above general formula (6) is an aromatic ring hydrocarbon group and a repeating unit in which A7 in the above general formula (7) is an aromatic ring hydrocarbon group.
  • the resin (X) may have at least one selected from a repeating unit derived from an acrylic monomer and a methacrylic repeating unit.
  • the content of at least one selected from the repeating units derived from acrylic monomers and the methacrylic repeating units relative to all repeating units in the resin (X) is not particularly limited, but is preferably 10 mol % or less.
  • the weight average molecular weight (Mw) of the resin (X), as calculated in terms of polystyrene by the GPC method, is preferably 1000 or more, more preferably 2000 or more, even more preferably 4000 or more, and particularly preferably 5000 or more. Also, it is preferably 30000 or less, more preferably 15000 or less.
  • the dispersity (molecular weight distribution, Pd, Mw/Mn) of the resin (X) is preferably from 1 to 5, more preferably from 1 to 3, even more preferably from 1.0 to 3.0, and particularly preferably from 1.1 to 2.0.
  • the method for producing a resin of the present invention may include other steps in addition to the step (1) described above.
  • the method may include a step of decomposing these groups (also referred to as step (2)).
  • the resin (P1) and the resin (P2) are collectively referred to as the resin (P).
  • Step (2) is a step of decomposing a base-decomposable group or an acid-decomposable group that may be contained in the resin (P) to produce a resin (P').
  • R 62 , A 6 and n6 in the general formula (6-1) and the general formula (6-2) have the same meanings as R 62 , A 6 and n6 in the general formula (6), and preferred examples are also the same.
  • base for example, triethylamine, tetra-n-butylammonium fluoride, pyridine, diazabicycloundecene, etc. can be used.
  • the amount of the base is preferably 1 to 5 molar equivalents, more preferably 1.2 to 3 molar equivalents, based on the base-decomposable groups in the resin.
  • the base decomposition reaction is typically carried out in a liquid phase, i.e., the reaction system described above typically further contains a solvent.
  • the solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
  • solvents may be used alone or in combination of two or more.
  • the reaction temperature is usually from 10°C to 100°C, preferably from 20°C to 80°C, and more preferably from 40°C to 80°C.
  • the reaction time is usually 3 to 48 hours, preferably 3 to 24 hours, and more preferably 6 to 12 hours.
  • R 411 in the repeating unit represented by general formula (41) is a group that generates an —OH group or a —COOH group upon acid decomposition
  • step (2) R 411 can be acid-decomposed to give a repeating unit represented by general formula (2-1) or a repeating unit represented by general formula (2-2) below.
  • R 42 , A 4 and n4 in the general formulae (2-1) and (2-2) have the same meanings as R 42 , A 4 and n4 in the general formula (41), and preferred examples are also the same.
  • the acid for example, hydrochloric acid, p-toluenesulfonic acid, hydrobromic acid, etc. can be used.
  • the amount of the acid is preferably 1 to 5 molar equivalents, more preferably 1.2 to 3 molar equivalents, based on the acid-decomposable groups in the resin.
  • the acidolysis reaction is typically carried out in a liquid phase, i.e., the reaction system typically further comprises a solvent.
  • the solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
  • solvents may be used alone or in combination of two or more.
  • the reaction temperature is usually from 10°C to 100°C, preferably from 20°C to 80°C, and more preferably from 40°C to 80°C.
  • the reaction time is usually 3 to 48 hours, preferably 3 to 24 hours, and more preferably 6 to 12 hours.
  • the method for producing a resin of the present invention further includes a step (2) of protecting a phenolic hydroxyl group and a carboxyl group in the repeating unit of the resin (P′) obtained in the step (2) to produce a resin (P′′).
  • the method may include a step (3).
  • step (3) the phenolic hydroxyl group can be reprotected by reacting it with a halogenated compound represented by X-Rc to give a repeating unit represented by the following general formula (2-1c).
  • X represents a halogen atom, preferably a chlorine atom.
  • Rc represents a group that is eliminated by the action of an acid. Specific examples include the above-mentioned leaving groups.
  • R 42 , A 4 and n4 in formula (2-1c) have the same meanings as R 42 , A 4 and n4 in formula (41), and preferred examples are also the same.
  • step (3) a repeating unit having the desired acid-decomposable group can be introduced into the resin.
  • the amount of the compound represented by X-Rc added is not particularly limited and may be adjusted appropriately depending on the desired resin structure.
  • the above protection reaction can be carried out in the presence of a base, such as triethylamine, pyridine, potassium carbonate, etc.
  • a base such as triethylamine, pyridine, potassium carbonate, etc.
  • the amount of the base used may be, for example, 1 to 5 moles per mole of the compound represented by X--Rc.
  • the reaction is typically carried out in a liquid phase, i.e., the reaction system typically further comprises a solvent.
  • the solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
  • solvents may be used alone or in combination of two or more.
  • the reaction temperature is usually from -10°C to 30°C, preferably from -10°C to 20°C, and more preferably from 0°C to 20°C.
  • the reaction time is usually from 1 to 6 hours, preferably from 1 to 4 hours, and more preferably from 1 to 2 hours.
  • the introduction ratio of (A-1):(AA-1) was 58/42, the Mw was 5,400, and the Mw/Mn was 1.19.
  • P-2 to P-37, P-1AA, and P-1BB were synthesized in the same manner as above, except that the monomers and their ratios, solvent, monomer concentration, initiator, nitroxide radical source and its molar equivalent, and monomer solution B dripping time and dripping temperature were changed.
  • P'-2, P'-5, P'-7, P'-8, P'-16, P'-34, and P'-36 were synthesized in the same manner as above, except that the monomers used and their ratios, the solvent, the monomer concentration, the initiator, the nitroxide radical source and its molar equivalent, the time and temperature of monomer solution B dripping, and the temperature of monomer solution A before dripping monomer solution B were changed.
  • Tables 1 and 2 show the synthesis conditions, resin compositions (types of raw material monomers, monomer introduction rates (molar ratios)), resin weight average molecular weights (Mw), and dispersity (Mw/Mn)) for P-1 to P-37, P-1AA, and P-1BB, as well as P'-1, P'-2, P'-5, P'-7, P'-8, P'-16, P'-34, and P'-36.
  • the weight average molecular weight (Mw) and dispersity (Mw/Mn) of the resin were measured by GPC (carrier: tetrahydrofuran (THF)) (polystyrene equivalent amount).
  • the repeating unit content was measured by 13 C-NMR (nuclear magnetic resonance).
  • the raw material monomers are as follows.
  • the raw material monomers are as follows.
  • Pb-1AA, Pb-1BB, Pa-2, Pa-3, Pa-8, Pa-11, Pa-12, Pa-14, Pa-17, Pa-18, Pa-20, Pa-21, Pa-25, Pa-26, Pa-29, Pa-35, Pa-36, Pa-37, Pb-11, Pb-14, Pa'-1, Pa'-2, Pa'-7, Pa'-8, Pa'-16, Pb'-16, Pa'-36 were synthesized in the same manner as Pa-1, Pb-1, Pa-16, and Pa-7 above.
  • resin P-1A synthesized without using nitroxide radicals had a lower introduction ratio of monomer (AA-1) and a smaller molecular weight, even though the charge ratio of monomers (A-1) and (AA-1) was the same as in Synthesis Example 1.
  • resin P-1B was synthesized without using nitroxide radicals.
  • the monomer (AA-1) introduction ratio was the same, but the yield was lower and the molecular weight was smaller.
  • the introduction ratio of (B-1):(BB-1) 69/31, Mw was 3800, and Mw/Mn was 1.60.
  • resin P-16A synthesized without using nitroxide radicals had a lower introduction ratio of monomer (BB-1) and a smaller molecular weight, despite the same feed ratio of monomers (B-1) and (BB-1).
  • Cyclohexanone was added so that the monomer concentration of the solution was 30% by mass, and 8 mol% of dimethyl 2,2'-azobis(2-methylpropionate) was added as an initiator.
  • 0.1 mass of cyclohexanone was heated to 85°C under a nitrogen atmosphere, and the monomer solution was added dropwise over 2 hours, and then the reaction was continued for another 2 hours at 85°C.
  • resist Composition The various components used in the resist compositions of the examples and comparative examples are shown below.
  • ⁇ Hydrophobic resin> D-1 was used as the hydrophobic resin.
  • the content ratio of the repeating unit (content relative to the total repeating units in the resin) is a molar ratio.
  • W-1 Megafac R08 (manufactured by Dainippon Ink and Chemicals, Inc.; fluorine and silicone type)
  • W-2 Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.; silicone-based)
  • W-3 Troysol S-366 (manufactured by Troy Chemical Co., Ltd.; fluorine-based)
  • W-4 PF6320 (manufactured by OMNOVA; fluorine-based)
  • ⁇ Coating of resist composition The prepared resist composition was applied onto a 6-inch Si (silicon) wafer that had been previously treated with hexamethyldisilazane (HMDS) using a spin coater Mark 8 manufactured by Tokyo Electron, and then dried on a hot plate at 130° C. for 300 seconds to obtain a resist film with a thickness of 100 nm. It should be noted that the same results can be obtained even if the Si wafer is replaced with a chromium substrate.
  • HMDS hexamethyldisilazane
  • ⁇ Pattern formation method (1) EB exposure, alkaline development (positive)>
  • the wafer coated with the resist film obtained above was subjected to pattern irradiation using an electron beam lithography device (Advantest Corporation; F7000S, acceleration voltage 50 keV). At this time, lithography was performed so that a 1:1 line and space was formed.
  • the wafer was heated on a hot plate at 100° C. for 60 seconds, immersed in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds, rinsed with water for 30 seconds, and dried. Thereafter, the wafer was rotated at a rotation speed of 4000 rpm for 30 seconds, baked at 95° C. for 60 seconds, and dried.
  • TMAH tetramethylammonium hydroxide
  • the irradiation energy required to resolve a 1:1 line and space pattern with a line width of 50 nm was defined as the sensitivity (Eop).
  • ⁇ Pattern formation method (2) EUV exposure, alkaline development (positive)> The same steps as in the above pattern formation method (1) were carried out, except that an EUV exposure apparatus (Micro Exposure Tool manufactured by Exitech, NA (numerical aperture) 0.3, quadrupole, outer sigma 0.68, inner sigma 0.36) was used instead of the electron beam lithography apparatus. The resolution and LWR performance were evaluated in the same manner as described above. The resist compositions used and the results are shown in Table 5 below.
  • EUV exposure apparatus Micro Exposure Tool manufactured by Exitech, NA (numerical aperture) 0.3, quadrupole, outer sigma 0.68, inner sigma 0.36
  • the present invention it is possible to provide an actinic ray-sensitive or radiation-sensitive resin composition having excellent resolution and LWR performance. Furthermore, the present invention can provide an actinic ray-sensitive or radiation-sensitive film using the actinic ray-sensitive or radiation-sensitive resin composition, a pattern forming method, a method for producing an electronic device, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition. Furthermore, the present invention can provide a method for producing a resin.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided are: an actinic-ray-sensitive or radiation-sensitive resin composition comprising (A) a resin containing at least one type of repeating unit expressed by general formula (1) and at least one type of repeating unit expressed by general formula (2) described in the specification, (B) a compound that generates an acid upon irradiation with actinic rays or radiation, and (S) a solvent; an actinic-ray-sensitive or radiation-sensitive film in which the aforementioned actinic-ray-sensitive or radiation-sensitive resin composition is used; a pattern formation method; an electronic device manufacturing method; a resin that can be used in the actinic-ray-sensitive or radiation-sensitive resin composition; and a resin manufacturing method.

Description

感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、樹脂、及び樹脂の製造方法Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern forming method, method for manufacturing electronic device, resin, and method for manufacturing resin
 本発明は、感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法に関する。より詳細には、本発明は、超LSI(Large Scale Integration)及び高容量マイクロチップの製造プロセス、ナノインプリント用モールド作成プロセス並びに高密度情報記録媒体の製造プロセス等に適用可能な超マイクロリソグラフィプロセス、並びにその他のフォトファブリケーションプロセスに好適に用いることができる感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び感活性光線性又は感放射線性樹脂組成物に用い得る樹脂に関する。
 また、本発明は、樹脂の製造方法にも関する。
The present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, an actinic ray-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device manufacturing method. More specifically, the present invention relates to an actinic ray-sensitive or radiation-sensitive resin composition, an actinic ray-sensitive or radiation-sensitive film, a pattern forming method, an electronic device manufacturing method, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition, which can be suitably used in an ultra-microlithography process applicable to a manufacturing process of a VLSI (Large Scale Integration) and a high-capacity microchip, a mold making process for nanoimprinting, and a manufacturing process of a high-density information recording medium, as well as other photofabrication processes.
The present invention also relates to a method for producing the resin.
 従来、IC(Integrated Circuit)、LSI(Large Scale Integration)などの半導体デバイスの製造プロセスにおいては、レジスト組成物を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域又はクオーターミクロン領域の超微細パターン形成が要求されるようになってきている。それに伴い、露光波長もg線からi線に、更にKrFエキシマレーザー光に、というように短波長化の傾向が見られ、現在では193nm波長を有するArFエキシマレーザーを光源とする露光機が開発されている。また、更に解像力を高める技術として、従来から投影レンズと試料の間に高屈折率の液体(以下、「液浸液」ともいう)で満たす、所謂、液浸法の開発が進んでいる。 Traditionally, in the manufacturing process of semiconductor devices such as ICs (Integrated Circuits) and LSIs (Large Scale Integration), fine processing is performed by lithography using a resist composition. In recent years, with the increasing integration of integrated circuits, there has been a demand for ultra-fine pattern formation in the submicron or quarter-micron range. Accordingly, there has been a trend toward shorter exposure wavelengths, from g-line to i-line and then to KrF excimer laser light, and currently an exposure machine using an ArF excimer laser with a wavelength of 193 nm as a light source has been developed. In addition, as a technology for further increasing resolution, the so-called immersion method, in which a high refractive index liquid (hereinafter also referred to as "immersion liquid") is filled between the projection lens and the sample, has been developed.
 また、現在では、エキシマレーザー光以外にも、電子線(EB)、X線及び極紫外線(EUV)等を用いたリソグラフィーも開発が進んでいる。これに伴い、各種の活性光線又は放射線に有効に感応する種々のレジスト組成物が開発されている。 Currently, in addition to excimer laser light, lithography using electron beams (EB), X-rays, extreme ultraviolet rays (EUV), and other light sources is also being developed. Accordingly, various resist compositions that are effectively sensitive to various types of actinic rays or radiation have been developed.
 更に、レジスト組成物に使用される樹脂の製造方法として、種々の製造方法が知られている(例えば、特許文献1)。 Furthermore, various manufacturing methods are known for manufacturing resins used in resist compositions (for example, Patent Document 1).
日本国特開平10-288839号Japanese Patent Publication No. 10-288839
 昨今、レジスト組成物に求められる性能はますます高くなっている。特に、微細パターンを形成する際の解像性、ラインウィズスラフネス(Line Width Roughness:LWR)性能、及びパターン形状の向上が求められている。LWR性能とはパターンのLWRを小さくできる性能のことを指す。 Recently, the performance required of resist compositions has become increasingly high. In particular, there is a demand for improved resolution, line width roughness (LWR) performance, and pattern shape when forming fine patterns. LWR performance refers to the ability to reduce the LWR of a pattern.
 そこで、本発明は、解像性、及びLWR性能に優れる感活性光線性又は感放射線性樹脂組成物を提供することを課題とする。
 また、本発明は、上記感活性光線性又は感放射線性樹脂組成物を用いて形成される感活性光線性又は感放射線性膜、上記感活性光線性又は感放射線性樹脂組成物を用いたパターン形成方法、電子デバイスの製造方法、及び上記感活性光線性又は感放射線性樹脂組成物に用い得る樹脂を提供することを課題とする。
 さらに、本発明は、樹脂の製造方法を提供することを課題とする。
Therefore, an object of the present invention is to provide an actinic ray-sensitive or radiation-sensitive resin composition that is excellent in resolution and LWR performance.
Another object of the present invention is to provide an actinic ray-sensitive or radiation-sensitive film formed using the actinic ray-sensitive or radiation-sensitive resin composition, a pattern formation method using the actinic ray-sensitive or radiation-sensitive resin composition, a method for producing an electronic device, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition.
A further object of the present invention is to provide a method for producing a resin.
 本発明者らは、以下の構成により上記課題を解決できることを見出した。 The inventors have discovered that the above problems can be solved by the following configuration.
[1]
 下記一般式(1)で表される繰り返し単位と下記一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂(A)、
 活性光線又は放射線の照射により酸を発生する化合物(B)、及び
 溶剤(S)
を含有する感活性光線性又は感放射線性樹脂組成物。
[1]
A resin (A) containing at least one kind of repeating unit represented by the following general formula (1) and at least one kind of repeating unit represented by the following general formula (2):
A compound (B) that generates an acid when exposed to actinic rays or radiation, and a solvent (S).
An actinic ray-sensitive or radiation-sensitive resin composition comprising:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
[2]
 上記樹脂(A)中の全繰り返し単位に対する、上記一般式(2)で表される繰り返し単位の含有比率が、30~60mol%である[1]に記載の感活性光線性又は感放射線性樹脂組成物。
[2]
The actinic ray-sensitive or radiation-sensitive resin composition according to [1], wherein the content of the repeating unit represented by the general formula (2) is 30 to 60 mol % relative to all repeating units in the resin (A).
[3]
 上記樹脂(A)の重量平均分子量が4000以上である[1]又は[2]に記載の感活性光線性又は感放射線性樹脂組成物。
[4]
 上記一般式(1)中のAおよび上記一般式(2)中のAが、芳香環炭化水素基である[1]~[3]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物。
[3]
The actinic ray-sensitive or radiation-sensitive resin composition according to [1] or [2], wherein the resin (A) has a weight average molecular weight of 4,000 or more.
[4]
The actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [3], wherein A 1 in the general formula (1) and A 2 in the general formula (2) are aromatic ring hydrocarbon groups.
[5]
 少なくとも2種類の単量体を、下記一般式(N)で表されるニトロキシドラジカル、及びラジカル重合開始剤存在下で重合し、下記一般式(3)で表される繰り返し単位を少なくとも2種類含む樹脂(X)を製造する樹脂の製造方法。
[5]
A method for producing a resin by polymerizing at least two types of monomers in the presence of a nitroxide radical represented by the following general formula (N) and a radical polymerization initiator to produce a resin (X) containing at least two types of repeating units represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 一般式(N)中、Rは、それぞれ独立に、有機基を表す。2つのRは結合して環を形成してもよい。 In formula (N), R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(3)中、R31は有機基、ハロゲン原子、又は水酸基を表す。R32は水素原子、有機基又はハロゲン原子を表す。R33は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n3は0~5の整数を表す。n3が2~5の整数である場合、複数のR31は、同一であっても異なっていてもよく、結合して環を形成してもよい。R33とAは結合して環を形成してもよい。 In general formula (3), R 31 represents an organic group, a halogen atom, or a hydroxyl group. R 32 represents a hydrogen atom, an organic group, or a halogen atom. R 33 represents a hydrogen atom or an organic group. A 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
[6]
 上記樹脂(X)が、下記一般式(4)で表される繰り返し単位、及び一般式(5)で表される繰り返し単位をそれぞれ少なくとも1種類含む[5]に記載の樹脂の製造方法。
[6]
The method for producing a resin according to [5], wherein the resin (X) contains at least one type of repeating unit represented by the following general formula (4) and at least one type of repeating unit represented by the following general formula (5):
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 一般式(4)中、R41は有機基、ハロゲン原子、又は水酸基を表す。R42は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n4は0~5の整数を表す。n4が2~5の整数である場合、複数のR41は、同一であっても異なっていてもよく、結合して環を形成してもよい。R42とAは結合して環を形成してもよい。
 一般式(5)中、R51は有機基、ハロゲン原子、又は水酸基を表す。R52は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n5は0~5の整数を表す。n5が2~5の整数である場合、複数のR51は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (4), R 41 represents an organic group, a halogen atom, or a hydroxyl group. R 42 represents a hydrogen atom or an organic group. A 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 41 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
In general formula (5), R 51 represents an organic group, a halogen atom, or a hydroxyl group. R 52 represents an organic group or a halogen atom. A 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 51 may be the same or different and may be bonded to form a ring.
[7]
 上記樹脂(X)中の全繰り返し単位に対する、上記一般式(5)で表される繰り返し単位の含有比率が、30~60mol%である[6]に記載の樹脂の製造方法。
[8]
 上記樹脂(X)の重量平均分子量が4000以上である[6]又は[7]に記載の樹脂の製造方法。
[7]
The method for producing a resin according to [6], wherein the content of the repeating unit represented by the general formula (5) in the resin (X) is 30 to 60 mol % relative to all repeating units in the resin (X).
[8]
The method for producing a resin according to [6] or [7], wherein the resin (X) has a weight average molecular weight of 4,000 or more.
[9]
 上記一般式(4)中のAおよび上記一般式(5)中のAが、芳香環炭化水素基である[6]~[8]のいずれか1項に記載の樹脂の製造方法。
[10]
 上記一般式(5)中のR52がアルキル基である[6]~[9]のいずれか1項に記載の樹脂の製造方法。
[9]
The method for producing a resin according to any one of [6] to [8], wherein A 4 in the general formula (4) and A 5 in the general formula (5) are aromatic ring hydrocarbon groups.
[10]
The method for producing a resin according to any one of [6] to [9], wherein R 52 in the general formula (5) is an alkyl group.
[11]
 上記樹脂(X)が、下記一般式(6)で表される繰り返し単位を少なくとも2種類含む、又は、上記一般式(6)で表される繰り返し単位、及び上記一般式(6)で表される繰り返し単位とは異なる下記一般式(7)で表される繰り返し単位をそれぞれ少なくとも1種類含む樹脂(P2)を経由して製造される、[5]に記載の樹脂の製造方法。
[11]
The method for producing a resin according to [5], wherein the resin (X) contains at least two kinds of repeating units represented by the following general formula (6), or is produced via a resin (P2) containing at least one kind each of a repeating unit represented by the above general formula (6) and a repeating unit represented by the following general formula (7) different from the repeating unit represented by the above general formula (6).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(6)中、R61は塩基で分解して、-OH基、又は-COOH基を生成する基を表す。R62は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n6は1~5の整数を表す。n6が2~5の整数である場合、複数のR61は、同一であっても異なっていてもよい。
 一般式(7)中、R71は有機基又はハロゲン原子を表す。R72は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n7は0~5の整数を表す。n7が2~5の整数である場合、複数のR71は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (6), R 61 represents a group that generates an -OH group or a -COOH group upon decomposition by a base. R 62 represents a hydrogen atom, an organic group, or a halogen atom. A 6 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n6 represents an integer of 1 to 5. When n6 is an integer of 2 to 5, multiple R 61 may be the same or different.
In general formula (7), R 71 represents an organic group or a halogen atom. R 72 represents a hydrogen atom, an organic group, or a halogen atom. A 7 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n7 represents an integer of 0 to 5. When n7 is an integer of 2 to 5, multiple R 71 may be the same or different and may be bonded to form a ring.
[12]
 上記一般式(6)中のR61が、下記一般式(8)~(15)のいずれかで表される基である[11]に記載の樹脂の製造方法。
[12]
The method for producing a resin according to [11], wherein R 61 in the above general formula (6) is a group represented by any one of the following general formulas (8) to (15):
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(8)~(15)中、R91、R101、R111、R121、R141、及びR151は、それぞれ独立に、有機基を表し、R81、及びR131は、それぞれ独立に、水素原子又は有機基を表す。*はAとの結合位置を表す。 In formulae (8) to (15), R 91 , R 101 , R 111 , R 121 , R 141 and R 151 each independently represent an organic group, R 81 and R 131 each independently represent a hydrogen atom or an organic group. * represents the bonding position with A 6 .
[13]
 上記一般式(6)中のR61が、上記一般式(8)~(15)のいずれかで表される基である繰り返し単位を少なくとも2種類含む、[12]に記載の樹脂の製造方法。
[14]
 上記一般式(7)中のR71が、酸分解して-OH基、又は-COOH基を生成する基である[11]に記載の樹脂の製造方法。
[13]
The method for producing a resin according to [12], wherein R 61 in the general formula (6) contains at least two kinds of repeating units that are groups represented by any one of the general formulae (8) to (15).
[14]
The method for producing a resin according to [11], wherein R 71 in the general formula (7) is a group that generates an —OH group or a —COOH group upon acid decomposition.
[15]
 上記一般式(7)中のR71が、下記一般式(16)~(17)のいずれかで表される基である[14]に記載の樹脂の製造方法。
[15]
The method for producing a resin according to [14], wherein R 71 in the above general formula (7) is a group represented by any one of the following general formulas (16) to (17):
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(16)中、R161~R163は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R161~R163は互いに連結して環を形成しても良い。
 一般式(17)中、R171、R172は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R173は、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R171~R173は互いに連結して環を形成しても良い。
 *はAとの結合位置を表す。
[16]
 上記一般式(7)で表される繰り返し単位が下記一般式(18)で表される繰り返し単位である[11]に記載の樹脂の製造方法。
In formula (16), R 161 to R 163 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 161 to R 163 may be linked to each other to form a ring.
In formula (17), R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 171 to R 173 may be linked together to form a ring.
* indicates the bonding position with A7 .
[16]
The method for producing a resin according to [11], wherein the repeating unit represented by the above general formula (7) is a repeating unit represented by the following general formula (18):
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(18)中、R184は水素原子、有機基又はハロゲン原子を表す。A18は芳香族炭化水素基、又は芳香族ヘテロ環基を表す。R181~R183は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R181~R183の内の2つは互いに連結して環を形成しても良い。 In general formula (18), R 184 represents a hydrogen atom, an organic group, or a halogen atom. A 18 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. R 181 to R 183 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. Two of R 181 to R 183 may be bonded to each other to form a ring.
[17]
 上記樹脂(P2)が、上記一般式(6)中のAが芳香環炭化水素基である繰り返し単位を少なくとも2種類含む、又は、上記一般式(6)中のAが芳香環炭化水素基である繰り返し単位、及び上記一般式(7)中のAが芳香環炭化水素基である繰り返し単位をそれぞれ少なくとも1種類含む、[11]に記載の樹脂の製造方法。
[17]
The method for producing a resin according to [11], wherein the resin (P2) contains at least two kinds of repeating units in which A6 in the general formula (6) is an aromatic ring hydrocarbon group, or contains at least one kind each of a repeating unit in which A6 in the general formula (6) is an aromatic ring hydrocarbon group and a repeating unit in which A7 in the general formula (7) is an aromatic ring hydrocarbon group.
[18]
 下記一般式(1)で表される繰り返し単位と下記一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂。
[18]
A resin containing at least one type of repeating unit represented by the following general formula (1) and at least one type of repeating unit represented by the following general formula (2):
Figure JPOXMLDOC01-appb-C000018
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
Figure JPOXMLDOC01-appb-C000018
In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
[19]
 上記樹脂中の全繰り返し単位に対する、上記一般式(2)で表される繰り返し単位の含有比率が、30~60mol%である[18]に記載の樹脂。
[20]
 重量平均分子量が4000以上である[18]又は[19]に記載の樹脂。
[19]
The resin according to [18], wherein the content of the repeating unit represented by the general formula (2) is 30 to 60 mol % relative to all repeating units in the resin.
[20]
The resin according to [18] or [19], having a weight average molecular weight of 4,000 or more.
[21]
 上記一般式(1)中のAおよび上記一般式(2)中のAが、芳香環炭化水素基である[18]~[20]のいずれか1項に記載の樹脂。
[22]
 [1]~[4]のいずれか1項に記載の感活性光線性又は感放射性樹脂組成物を用いて形成された感活性光線性又は感放射線性膜。
[21]
The resin according to any one of [18] to [20], wherein A 1 in the general formula (1) and A 2 in the general formula (2) are aromatic ring hydrocarbon groups.
[22]
An actinic ray-sensitive or radiation-sensitive film formed using the actinic ray-sensitive or radiation-sensitive resin composition according to any one of [1] to [4].
[23]
 [1]~[4]のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程と、上記感活性光線性又は感放射線性膜を露光する工程と、上記露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程と、を有する、パターン形成方法。
[24]
 [23]に記載のパターン形成方法を含む電子デバイスの製造方法。
[23]
A pattern forming method comprising the steps of: forming an actinic ray-sensitive or radiation-sensitive film on a substrate from the actinic ray-sensitive or radiation-sensitive resin composition according to any one of items [1] to [4]; exposing the actinic ray-sensitive or radiation-sensitive film; and developing the exposed actinic ray-sensitive or radiation-sensitive film with a developer.
[24]
A method for producing an electronic device, comprising the pattern formation method according to [23].
 本発明により、解像性、及びLWR性能に優れる感活性光線性又は感放射線性樹脂組成物を提供することができる。
 また、本発明により、上記感活性光線性又は感放射線性樹脂組成物を用いた感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び上記感活性光線性又は感放射線性樹脂組成物に用い得る樹脂を提供することができる。
 さらに、本発明により、樹脂の製造方法を提供することができる。
According to the present invention, it is possible to provide an actinic ray-sensitive or radiation-sensitive resin composition having excellent resolution and LWR performance.
Furthermore, the present invention can provide an actinic ray-sensitive or radiation-sensitive film using the actinic ray-sensitive or radiation-sensitive resin composition, a pattern forming method, a method for producing an electronic device, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition.
Furthermore, the present invention can provide a method for producing a resin.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されない。
The present invention will be described in detail below.
The following description of the components may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
 本明細書において、「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme Ultraviolet)、X線、軟X線、及び電子線(EB:Electron Beam)等を意味する。
 本明細書において、「光」とは、活性光線又は放射線を意味する。
 本明細書において、「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線、X線、及びEUV等による露光のみならず、電子線、及びイオンビーム等の粒子線による描画も含む。
 本明細書において、「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
In this specification, "actinic rays" or "radiation" refers to, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV: Extreme Ultraviolet), X-rays, soft X-rays, and electron beams (EB: Electron Beam).
In this specification, "light" means actinic rays or radiation.
In this specification, unless otherwise specified, "exposure" includes not only exposure to the emission line spectrum of a mercury lamp, far ultraviolet light represented by an excimer laser, extreme ultraviolet light, X-rays, EUV, and the like, but also drawing with particle beams such as electron beams and ion beams.
In this specification, the word "to" is used to mean that the numerical values before and after it are included as the lower limit and upper limit.
 本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートの少なくとも1種を表す。また(メタ)アクリル酸はアクリル酸及びメタクリル酸の少なくとも1種を表す。 In this specification, (meth)acrylate refers to at least one of acrylate and methacrylate. Also, (meth)acrylic acid refers to at least one of acrylic acid and methacrylic acid.
 本明細書において、樹脂の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(分子量分布ともいう)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー株式会社製HLC-8120GPC)によるGPC測定(溶剤:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー株式会社製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。 In this specification, the weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (also called molecular weight distribution) (Mw/Mn) of the resin are defined as polystyrene equivalent values measured using a Gel Permeation Chromatography (GPC) device (Tosoh Corporation HLC-8120GPC) (solvent: tetrahydrofuran, flow rate (sample injection amount): 10 μL, column: Tosoh Corporation TSK gel Multipore HXL-M, column temperature: 40°C, flow rate: 1.0 mL/min, detector: refractive index detector).
 本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を含む基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中における「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 置換基としては、特に断らない限り、1価の置換基が好ましい。置換基の例としては水素原子を除く1価の非金属原子団を挙げることができ、例えば、以下の置換基Tから選択できる。
In the present specification, the notation of groups (atomic groups) that does not indicate whether they are substituted or unsubstituted includes groups that have a substituent as well as groups that have no substituent. For example, the term "alkyl group" includes not only alkyl groups that have no substituent (unsubstituted alkyl groups) but also alkyl groups that have a substituent (substituted alkyl groups). In addition, the term "organic group" in the present specification refers to a group that contains at least one carbon atom.
Unless otherwise specified, the substituent is preferably a monovalent substituent. Examples of the substituent include a monovalent nonmetallic atomic group other than a hydrogen atom, and can be selected from the following substituents T.
(置換基T)
 置換基Tとしては、フッ素原子、塩素原子、臭素原子及びヨウ素原子等のハロゲン原子;メトキシ基、エトキシ基及びtert-ブトキシ基等のアルコキシ基;シクロアルキルオキシ基;フェノキシ基及びp-トリルオキシ基等のアリールオキシ基;メトキシカルボニル基及びブトキシカルボニル基等のアルコキシカルボニル基;シクロアルキルオキシカルボニル基;フェノキシカルボニル基等のアリールオキシカルボニル基;アセトキシ基、プロピオニルオキシ基及びベンゾイルオキシ基等のアシルオキシ基;アセチル基、ベンゾイル基、イソブチリル基、アクリロイル基、メタクリロイル基及びメトキサリル基等のアシル基;スルファニル基;メチルスルファニル基及びtert-ブチルスルファニル基等のアルキルスルファニル基;フェニルスルファニル基及びp-トリルスルファニル基等のアリールスルファニル基;アルキル基;アルケニル基;シクロアルキル基;アリール基;芳香族複素環式基;ヒドロキシ基;カルボキシル基;ホルミル基;スルホ基;シアノ基;アルキルアミノカルボニル基;アリールアミノカルボニル基;スルホンアミド基;シリル基;アミノ基;カルバモイル基;等が挙げられる。また、これらの置換基が更に1個以上の置換基を有することができる場合は、その更なる置換基として上記した置換基から選択した置換基を1個以上有する基(例えば、モノアルキルアミノ基、ジアルキルアミノ基、アリールアミノ基、トリフルオロメチル基など)も置換基Tの例に含まれる。
(Substituent T)
Examples of the substituent T include halogen atoms such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom; alkoxy groups such as a methoxy group, an ethoxy group, and a tert-butoxy group; a cycloalkyloxy group; an aryloxy group such as a phenoxy group and a p-tolyloxy group; an alkoxycarbonyl group such as a methoxycarbonyl group and a butoxycarbonyl group; a cycloalkyloxycarbonyl group; an aryloxycarbonyl group such as a phenoxycarbonyl group; an acyloxy group such as an acetoxy group, a propionyloxy group, and a benzoyloxy group; an acetyl group, a benzoyl group, an isobutyryl group, Examples of the substituent T include acyl groups such as acryloyl, methacryloyl, and methoxalyl groups; sulfanyl groups; alkylsulfanyl groups such as methylsulfanyl and tert-butylsulfanyl groups; arylsulfanyl groups such as phenylsulfanyl and p-tolylsulfanyl groups; alkyl groups; alkenyl groups; cycloalkyl groups; aryl groups; aromatic heterocyclic groups; hydroxy groups; carboxyl groups; formyl groups; sulfo groups; cyano groups; alkylaminocarbonyl groups; arylaminocarbonyl groups; sulfonamide groups; silyl groups; amino groups; carbamoyl groups; and the like. In addition, when these substituents can further have one or more substituents, examples of the substituent T also include groups having one or more substituents selected from the above-mentioned substituents as the further substituents (for example, monoalkylamino groups, dialkylamino groups, arylamino groups, trifluoromethyl groups, etc.).
 本明細書において、表記される2価の基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。上記化合物は「X-CO-O-Z」であってもよく、「X-O-CO-Z」であってもよい。 In this specification, the bonding direction of the divalent groups is not limited unless otherwise specified. For example, when Y is -COO- in a compound represented by the formula "X-Y-Z", Y may be -CO-O- or -O-CO-. The above compound may be "X-CO-O-Z" or "X-O-CO-Z".
 本明細書において、酸解離定数(pKa)とは、水溶液中でのpKaを表し、具体的には、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求められる値である。本明細書中に記載したpKaの値は、全て、このソフトウェアパッケージを用いて計算により求めた値を示す。
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。
In this specification, the acid dissociation constant (pKa) refers to the pKa in an aqueous solution, and specifically, it is a value calculated based on a database of Hammett's substituent constants and known literature values using the following software package 1. All pKa values described in this specification are values calculated using this software package.
Software package 1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs).
 また、pKaは、分子軌道計算法によっても求められる。この具体的な方法としては、熱力学サイクルに基づいて、水溶液中におけるH解離自由エネルギーを計算することで算出する手法が挙げられる。H解離自由エネルギーの計算方法については、例えばDFT(密度汎関数法)により計算することができるが、他にも様々な手法が文献等で報告されており、これに制限されるものではない。なお、DFTを実施できるソフトウェアは複数存在するが、例えば、Gaussian16が挙げられる。 In addition, pKa can also be obtained by molecular orbital calculation. A specific example of this method is a method of calculating H + dissociation free energy in an aqueous solution based on a thermodynamic cycle. The H + dissociation free energy can be calculated, for example, by DFT (density functional theory), but various other methods have been reported in literature, and the calculation method is not limited to this. There are several software programs that can perform DFT, and Gaussian16 is an example.
 本明細書において、pKaとは、上述した通り、ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を計算により求められる値を指すが、この手法によりpKaが算出できない場合には、DFT(密度汎関数法)に基づいてGaussian16により得られる値を採用するものとする。
 本明細書において、pKaは、上述した通り「水溶液中でのpKa」を指すが、水溶液中でのpKaが算出できない場合には、「ジメチルスルホキシド(DMSO)溶液中でのpKa」を採用するものとする。
In this specification, pKa refers to a value calculated based on a database of Hammett's substituent constants and known literature values using the software package 1, as described above. However, when pKa cannot be calculated by this method, a value obtained by Gaussian 16 based on DFT (density functional theory) is adopted.
In this specification, pKa refers to "pKa in an aqueous solution" as described above, but when the pKa in an aqueous solution cannot be calculated, "pKa in a dimethyl sulfoxide (DMSO) solution" will be adopted.
 本明細書において、「固形分」とは、感活性光線性又は感放射線性膜を形成する成分を意味し、溶剤は含まれない。また、感活性光線性又は感放射線性膜を形成する成分であれば、その性状が液体状であっても、固形分とみなす。 In this specification, "solids" refers to components that form an actinic ray-sensitive or radiation-sensitive film, and does not include solvents. In addition, any component that forms an actinic ray-sensitive or radiation-sensitive film is considered to be a solid even if it is in liquid form.
[感活性光線性又は感放射線性樹脂組成物]
 本発明の感活性光線性又は感放射線性樹脂組成物(「本発明の組成物」ともいう。)は、下記一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂(A)、活性光線又は放射線の照射により酸を発生する化合物(B)、及び溶剤(S)を含有する。
[Actinic ray-sensitive or radiation-sensitive resin composition]
The actinic ray-sensitive or radiation-sensitive resin composition of the present invention (also referred to as the "composition of the present invention") comprises a repeating unit represented by the following general formula (1) and a repeating unit represented by the following general formula (2): The composition contains a resin (A) containing at least one type of repeating unit, a compound (B) that generates an acid when irradiated with actinic rays or radiation, and a solvent (S).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
 本発明の組成物により、上記した効果が得られるメカニズムは完全には明らかになっていないが、本発明者らは以下のように推定している。
 樹脂(A)は、上記一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位を含む。一般式(2)で表される繰り返し単位は、一般式(2)中のR22に置換基を有する、すなわち、芳香環基が結合する主鎖中の炭素原子が置換基を有するため、樹脂(A)のガラス転移温度(Tg)が高くなる。Tgが高い樹脂を含む感活性光線性又は感放射線性樹脂組成物より得られる感活性光線性又は感放射線性膜においては、露光時に活性光線又は放射線の照射によって酸を発生する化合物(以下、光酸発生剤(B)ともいう)等から発生する酸の拡散が抑制される。また、樹脂(A)は、上述のように芳香環基が結合する主鎖中の炭素原子が置換基を有するため、立体障害が大きくなるため、主鎖同士が接近しにくくなり、主鎖同士の架橋反応が抑制される。したがって、解像性、及びLWR性能が良化したものと推定している。
Although the mechanism by which the composition of the present invention provides the above-mentioned effects has not been fully elucidated, the present inventors presume it as follows.
Resin (A) includes a repeating unit represented by the above general formula (1) and a repeating unit represented by general formula (2). The repeating unit represented by general formula (2) has a substituent at R 22 in general formula (2), that is, the carbon atom in the main chain to which the aromatic ring group is bonded has a substituent, so that the glass transition temperature (Tg) of resin (A) is high. In an actinic ray-sensitive or radiation-sensitive film obtained from an actinic ray-sensitive or radiation-sensitive resin composition containing a resin with a high Tg, the diffusion of an acid generated from a compound that generates an acid upon irradiation with actinic rays or radiation during exposure (hereinafter also referred to as photoacid generator (B)) is suppressed. In addition, as described above, in resin (A), since the carbon atom in the main chain to which the aromatic ring group is bonded has a substituent, steric hindrance becomes large, so that the main chains are less likely to approach each other, and the crosslinking reaction between the main chains is suppressed. Therefore, it is presumed that the resolution and LWR performance are improved.
 本発明の組成物は、典型的にはレジスト組成物であり、ポジ型のレジスト組成物であっても、ネガ型のレジスト組成物であってもよい。本発明の組成物は、アルカリ現像用のレジスト組成物であっても、有機溶剤現像用のレジスト組成物であってもよい。
 本発明の組成物は、化学増幅型のレジスト組成物であっても、非化学増幅型のレジスト組成物であってもよい。本発明の組成物は、典型的には、化学増幅型のレジスト組成物である。
 本発明の組成物を用いて感活性光線性又は感放射線性膜を形成することができる。本発明の組成物を用いて形成された感活性光線性又は感放射線性膜は、典型的にはレジスト膜である。
 以下、まず、本発明の組成物の各種成分について詳述する。
The composition of the present invention is typically a resist composition, and may be a positive resist composition or a negative resist composition. The composition of the present invention may be a resist composition for alkali development or a resist composition for organic solvent development.
The composition of the present invention may be a chemically amplified resist composition or a non-chemically amplified resist composition. The composition of the present invention is typically a chemically amplified resist composition.
The composition of the present invention can be used to form an actinic ray- or radiation-sensitive film. The actinic ray- or radiation-sensitive film formed using the composition of the present invention is typically a resist film.
First, the various components of the composition of the present invention will be described in detail below.
〔樹脂(A)〕
 本発明の組成物に含まれる樹脂(A)は、上記一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む。
[Resin (A)]
The resin (A) contained in the composition of the present invention contains at least one type each of the repeating units represented by the above general formula (1) and the repeating units represented by the general formula (2).
<一般式(1)で表される繰り返し単位> <Repeating unit represented by general formula (1)>
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子、又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。 In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。
 R11が表す有機基としては、特に限定されないが、例えば上記置換基Tとして挙げた基中の有機基が挙げられる。
 有機基としては、例えば、炭素数1~30の有機基が挙げられ、炭素数1~20の有機基が好ましく、炭素数1~10の有機基がより好ましい。
 有機基は、ヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子等)を有していても良い。
 有機基は、後述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、後述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R11が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group.
The organic group represented by R 11 is not particularly limited, but examples thereof include the organic groups exemplified above as the substituent T.
The organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
The organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
The organic group may be an acid-decomposable group described later, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid described later, or is preferably a group represented by any one of the general formulae (16) to (17) described later.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 11 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
 R12が表す有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、又はアルキルカルボニルオキシ基が挙げられる。
 アルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 シクロアルキル基は、単環型であってもよく、多環型であってもよい。このシクロアルキル基の炭素数は、好ましくは3~8である。
 アリール基は、フェニル基等の炭素数6~10のアリール基が好ましい。
 アルキルカルボニルオキシ基におけるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 R12は、水素原子又はアルキル基であることが好ましく、水素原子であることがより好ましい。
Examples of the organic group represented by R 12 include an alkyl group, a cycloalkyl group, an aryl group, and an alkylcarbonyloxy group.
The alkyl group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
The cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
The aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
The alkyl group in the alkylcarbonyloxy group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
R 12 is preferably a hydrogen atom or an alkyl group, and more preferably a hydrogen atom.
 一般式(1)中、Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。
 Aが表す芳香族炭化水素基としては、例えば、炭素数6~15個のアリーレン基を挙げることができ、具体的には、フェニレン基、ナフチレン基、アントリレン基等を好ましい例として挙げることができる。
 Aが表す芳香族ヘテロ環基としては、例えば、炭素数2~15個のヘテロアリーレン基を挙げることができ、5員環~10員環のものを挙げることができ、具体的には、フリル基、チエニル基、チアゾリル基、ピロリル基、オキサゾリル基、ピリジル基、ベンゾフラニル基、ベンゾチエニル基、キノリニル基、カルバゾリル基等から任意の水素原子を1つ除いた基が挙げられる。
In formula (1), A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
The aromatic hydrocarbon group represented by A 1 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
Examples of the aromatic heterocyclic group represented by A1 include heteroarylene groups having 2 to 15 carbon atoms, such as 5- to 10-membered rings. Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
 Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。 A1 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
 一般式(1)中、n1は0~5の整数を表す。n1は1又は2であることが好ましい。 In general formula (1), n1 represents an integer from 0 to 5. It is preferable that n1 is 1 or 2.
 一般式(1)で表される繰り返し単位に対応するモノマーの具体例を以下に示すが、本発明はこれに限定されるものではない。 Specific examples of monomers corresponding to the repeating unit represented by general formula (1) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 樹脂(A)が一般式(1)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (1) in resin (A) may be of one type or of two or more types.
 樹脂(A)中の全繰り返し単位に対する、一般式(1)で表される繰り返し単位の含有比率は、特に限定されないが、例えば40~99mol%とすることができる。好ましくは、40~70mol%、より好ましくは47~60mol%である。 The content ratio of the repeating unit represented by general formula (1) to all repeating units in resin (A) is not particularly limited, but can be, for example, 40 to 99 mol %. It is preferably 40 to 70 mol %, and more preferably 47 to 60 mol %.
<一般式(2)で表される繰り返し単位> <Repeating unit represented by general formula (2)>
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。 In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。
 R21が表す有機基としては、特に限定されないが、例えば上記置換基Tとして挙げた基中の有機基が挙げられる。
 有機基としては、例えば、炭素数1~30の有機基が挙げられ、炭素数1~20の有機基が好ましく、炭素数1~10の有機基がより好ましい。
 有機基は、ヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子等)を有していても良い。
 有機基は、後述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、後述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R21が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group.
The organic group represented by R 21 is not particularly limited, but examples thereof include the organic groups listed above as the substituent T.
The organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
The organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
The organic group may be an acid-decomposable group described later, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid described later, or is preferably a group represented by any one of the general formulae (16) to (17) described later.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 21 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferred.
 一般式(2)中、R22は有機基又はハロゲン原子を表す。 In formula (2), R 22 represents an organic group or a halogen atom.
 R22が表す有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アシル基、又はアルキルカルボニルオキシ基が挙げられる。
 アルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 シクロアルキル基は、単環型であってもよく、多環型であってもよい。このシクロアルキル基の炭素数は、好ましくは3~8である。
 アリール基は、フェニル基等の炭素数6~10のアリール基が好ましい。
 アシル基は、炭素数1~20のアシル基が好ましい。
 アルキルカルボニルオキシ基におけるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
Examples of the organic group represented by R 22 include an alkyl group, a cycloalkyl group, an aryl group, an acyl group, and an alkylcarbonyloxy group.
The alkyl group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
The cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
The aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
The acyl group is preferably an acyl group having 1 to 20 carbon atoms.
The alkyl group in the alkylcarbonyloxy group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
 R22が表すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Examples of the halogen atom represented by R 22 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R22は、アルキル基又はハロゲン原子であることが好ましく、アルキル基であることがより好ましく、メチル基であることがさらに好ましい。 R 22 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
 一般式(2)中、Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。
 Aが表す芳香族炭化水素基としては、例えば、炭素数6~15個のアリーレン基を挙げることができ、具体的には、フェニレン基、ナフチレン基、アントリレン基等を好ましい例として挙げることができる。
 Aが表す芳香族ヘテロ環基としては、例えば、炭素数2~15個のヘテロアリーレン基を挙げることができ、5員環~10員環のものを挙げることができ、具体的には、フリル基、チエニル基、チアゾリル基、ピロリル基、オキサゾリル基、ピリジル基、ベンゾフラニル基、ベンゾチエニル基、キノリニル基、カルバゾリル基等から任意の水素原子を1つ除いた基が挙げられる。
In formula (2), A2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
The aromatic hydrocarbon group represented by A2 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
Examples of the aromatic heterocyclic group represented by A2 include heteroarylene groups having 2 to 15 carbon atoms, such as 5- to 10-membered rings. Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
 Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。 A2 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
 なお、樹脂(A)は、上記一般式(1)中のAおよび一般式(2)中のAが、芳香環炭化水素基であることが好ましい。 In the resin (A), A1 in the above general formula (1) and A2 in the above general formula (2) are preferably aromatic ring hydrocarbon groups.
 一般式(2)中、n2は0~5の整数を表す。n2は1又は2であることが好ましい。 In general formula (2), n2 represents an integer from 0 to 5. It is preferable that n2 is 1 or 2.
 一般式(2)で表される繰り返し単位に対応するモノマーの具体例を以下に示すが、本発明はこれに限定されるものではない。 Specific examples of monomers corresponding to the repeating unit represented by general formula (2) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 樹脂(A)が一般式(2)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (2) in resin (A) may be of one type or of two or more types.
 樹脂(A)中の全繰り返し単位に対する、一般式(2)で表される繰り返し単位の含有比率は、1~60mol%であることが好ましく、30~60mol%であることがより好ましく、40~55mol%であることがより好ましく、より好ましくは40~53mol%である。
 一般式(2)で表される繰り返し単位の含有比率を30mol%以上とすることにより、樹脂(A)のガラス転移温度がより高くなるため、本発明の効果が得られやすい。また、60mol%以下とすることにより、熱分解温度が低く、ガラス転移温度も高くできるためとなるため好ましい。
The content ratio of the repeating unit represented by general formula (2) relative to all repeating units in the resin (A) is preferably 1 to 60 mol%, more preferably 30 to 60 mol%, still more preferably 40 to 55 mol%, and still more preferably 40 to 53 mol%.
By making the content ratio of the repeating unit represented by the general formula (2) 30 mol % or more, the glass transition temperature of the resin (A) becomes higher, so that the effect of the present invention can be easily obtained. On the other hand, by making it 60 mol % or less, the thermal decomposition temperature can be lowered and the glass transition temperature can be increased, so that it is preferable.
<酸分解性基を有する繰り返し単位>
 樹脂(A)は、酸分解性基を有することが好ましい。樹脂(A)は、酸分解性基を有する繰り返し単位を含むことが好ましい。樹脂(A)が酸分解性樹脂であると、本発明の組成物を用いたパターン形成方法において、典型的には、現像液としてアルカリ現像液を採用した場合には、ポジ型パターンが好適に形成され、現像液として有機系現像液を採用した場合には、ネガ型パターンが好適に形成される。
<Repeating Unit Having Acid-Decomposable Group>
The resin (A) preferably has an acid decomposable group. The resin (A) preferably contains a repeating unit having an acid decomposable group. When the resin (A) is an acid decomposable resin, typically, in the pattern forming method using the composition of the present invention, when an alkaline developer is used as the developer, a positive pattern is preferably formed, and when an organic developer is used as the developer, a negative pattern is preferably formed.
 酸分解性基は、酸の作用により分解し極性が増大する基である。
 酸分解性基は、典型的には、酸の作用により分解して極性基を生じる基である。酸分解性基は、酸の作用により脱離する基(脱離基)で極性基が保護された構造を有することが好ましい。典型的には、樹脂(A)は、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する。
 上記極性基としては、アルカリ可溶性基が好ましく、例えば、カルボキシ基、フェノール性水酸基、フッ素化アルコール基、スルホン酸基、リン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及びトリス(アルキルスルホニル)メチレン基等の酸性基、並びにアルコール性水酸基等が挙げられる。
The acid-decomposable group is a group that decomposes under the action of an acid and has an increased polarity.
The acid-decomposable group is typically a group that decomposes under the action of an acid to generate a polar group. The acid-decomposable group preferably has a structure in which a polar group is protected by a group (leaving group) that is eliminated under the action of an acid. Typically, the polarity of the resin (A) increases under the action of an acid, so that the solubility in an alkaline developer increases and the solubility in an organic solvent decreases.
The polar group is preferably an alkali-soluble group, and examples thereof include acidic groups such as a carboxy group, a phenolic hydroxyl group, a fluorinated alcohol group, a sulfonic acid group, a phosphate group, a sulfonamide group, a sulfonylimide group, an (alkylsulfonyl)(alkylcarbonyl)methylene group, an (alkylsulfonyl)(alkylcarbonyl)imide group, a bis(alkylcarbonyl)methylene group, a bis(alkylcarbonyl)imide group, a bis(alkylsulfonyl)methylene group, a bis(alkylsulfonyl)imide group, a tris(alkylcarbonyl)methylene group, and a tris(alkylsulfonyl)methylene group, as well as an alcoholic hydroxyl group.
 酸の作用により脱離する脱離基としては、例えば、式(Y1)~(Y4)で表される基が挙げられる。
 式(Y1):-C(Rx)(Rx)(Rx
 式(Y2):-C(=O)OC(Rx)(Rx)(Rx
 式(Y3):-C(R36)(R37)(OR38
 式(Y4):-C(Rn)(H)(Ar)
Examples of the leaving group which is eliminated by the action of an acid include groups represented by the formulae (Y1) to (Y4).
Formula (Y1): -C(Rx 1 )(Rx 2 )(Rx 3 )
Formula (Y2): -C(=O)OC(Rx 1 )(Rx 2 )(Rx 3 )
Formula (Y3): -C(R 36 )(R 37 )(OR 38 )
Formula (Y4): -C(Rn)(H)(Ar)
 式(Y1)及び式(Y2)中、Rx~Rxは、それぞれ独立に、アルキル基(直鎖状若しくは分岐鎖状)、シクロアルキル基(単環若しくは多環)、アリール基(単環若しくは多環)、アラルキル基(直鎖状若しくは分岐鎖状)、又はアルケニル基(直鎖状若しくは分岐鎖状)を表す。なお、Rx~Rxの全てがアルキル基(直鎖状若しくは分岐鎖状)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 なかでも、Rx~Rxは、それぞれ独立に、直鎖状又は分岐鎖状のアルキル基を表すことが好ましく、Rx~Rxは、それぞれ独立に、直鎖状のアルキル基を表すことがより好ましい。
 Rx~Rxの2つが互いに結合して環(単環及び多環のいずれであってもよい)を形成してもよい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素数1~5のアルキル基が好ましい。
 Rx~Rxのシクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が好ましい。
 Rx~Rxのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及びアントリル基等が挙げられる。
 Rx~Rxのアラルキル基としては、上述したRx~Rxのアルキル基中の1個の水素原子を炭素数6~10のアリール基(好ましくはフェニル基)で置換した基が好ましく、例えば、ベンジル基等が挙げられる。
 Rx~Rxのアルケニル基としては、ビニル基が好ましい。
 Rx~Rxの2つが結合して形成される環としては、シクロアルキル基が好ましい。Rx~Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくは、シクロヘキシル基等の単環のシクロアルキル基、又はノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくは、アダマンチル基等の多環のシクロアルキル基が好ましく、炭素数5~6の単環のシクロアルキル基がより好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、カルボニル基等のヘテロ原子を有する基、又はビニリデン基で置き換わっていてもよい。また、これらのシクロアルキル基は、シクロアルカン環を構成するエチレン基の1つ以上が、ビニレン基で置き換わっていてもよい。
 式(Y1)又は式(Y2)で表される基は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
In formula (Y1) and formula (Y2), Rx 1 to Rx 3 each independently represent an alkyl group (linear or branched), a cycloalkyl group (monocyclic or polycyclic), an aryl group (monocyclic or polycyclic), an aralkyl group (linear or branched), or an alkenyl group (linear or branched). When all of Rx 1 to Rx 3 are alkyl groups (linear or branched), it is preferable that at least two of Rx 1 to Rx 3 are methyl groups.
In particular, it is preferable that Rx 1 to Rx 3 each independently represent a linear or branched alkyl group, and it is more preferable that Rx 1 to Rx 3 each independently represent a linear alkyl group.
Two of Rx 1 to Rx 3 may be bonded to each other to form a ring (which may be either a monocyclic ring or a polycyclic ring).
The alkyl group of Rx 1 to Rx 3 is preferably an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, or a t-butyl group.
The cycloalkyl groups of Rx 1 to Rx 3 are preferably monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group, and polycyclic cycloalkyl groups such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group.
The aryl group of Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, and examples thereof include a phenyl group, a naphthyl group, and an anthryl group.
The aralkyl group of Rx 1 to Rx 3 is preferably a group in which one hydrogen atom in the alkyl group of Rx 1 to Rx 3 described above is substituted with an aryl group having 6 to 10 carbon atoms (preferably a phenyl group), and examples thereof include a benzyl group.
The alkenyl group of Rx 1 to Rx 3 is preferably a vinyl group.
The ring formed by combining two of Rx 1 to Rx 3 is preferably a cycloalkyl group. The cycloalkyl group formed by combining two of Rx 1 to Rx 3 is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group, and more preferably a monocyclic cycloalkyl group having 5 to 6 carbon atoms.
In the cycloalkyl group formed by combining two of Rx1 to Rx3 , for example, one of the methylene groups constituting the ring may be replaced with a heteroatom such as an oxygen atom, a group having a heteroatom such as a carbonyl group, or a vinylidene group. In addition, in these cycloalkyl groups, one or more of the ethylene groups constituting the cycloalkane ring may be replaced with a vinylene group.
In the group represented by formula (Y1) or formula (Y2), for example, it is preferable that Rx1 is a methyl group or an ethyl group, and Rx2 and Rx3 are bonded to form the above-mentioned cycloalkyl group.
 式(Y3)中、R36~R38は、それぞれ独立に、水素原子又は1価の有機基を表す。R37とR38とは、互いに結合して環を形成してもよい。1価の有機基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及びアルケニル基等が挙げられる。R36は水素原子であることも好ましい。
 なお、上記アルキル基、シクロアルキル基、アリール基、及びアラルキル基には、酸素原子等のヘテロ原子及び/又はカルボニル基等のヘテロ原子を有する基が含まれていてもよい。例えば、上記アルキル基、シクロアルキル基、アリール基、及びアラルキル基は、例えば、メチレン基の1つ以上が、酸素原子等のヘテロ原子及び/又はカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
 また、R38は、繰り返し単位の主鎖が有する別の置換基と互いに結合して、環を形成してもよい。R38と繰り返し単位の主鎖が有する別の置換基とが互いに結合して形成する基は、メチレン基等のアルキレン基が好ましい。
In formula (Y3), R 36 to R 38 each independently represent a hydrogen atom or a monovalent organic group. R 37 and R 38 may be bonded to each other to form a ring. Examples of the monovalent organic group include an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, and an alkenyl group. It is also preferable that R 36 is a hydrogen atom.
The alkyl group, cycloalkyl group, aryl group, and aralkyl group may contain a heteroatom such as an oxygen atom and/or a group having a heteroatom such as a carbonyl group. For example, the alkyl group, cycloalkyl group, aryl group, and aralkyl group may have one or more methylene groups replaced with a heteroatom such as an oxygen atom and/or a group having a heteroatom such as a carbonyl group.
In addition, R 38 may be bonded to another substituent in the main chain of the repeating unit to form a ring. The group formed by bonding R 38 to another substituent in the main chain of the repeating unit is preferably an alkylene group such as a methylene group.
 式(Y4)中、Arは、芳香環基を表す。Rnは、アルキル基、シクロアルキル基、又はアリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。Arはより好ましくはアリール基である。 In formula (Y4), Ar represents an aromatic ring group. Rn represents an alkyl group, a cycloalkyl group, or an aryl group. Rn and Ar may be bonded to each other to form a non-aromatic ring. Ar is more preferably an aryl group.
 酸分解性基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、5モル%以上が好ましく、10モル%以上がより好ましく、15モル%以上が更に好ましい。また、酸分解性基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、70モル%以下が好ましく、60モル%以下がより好ましく、50モル%以下が更に好ましい。 The content of repeating units having an acid decomposable group is preferably 5 mol% or more, more preferably 10 mol% or more, and even more preferably 15 mol% or more, based on all repeating units in resin (A). The content of repeating units having an acid decomposable group is preferably 70 mol% or less, more preferably 60 mol% or less, and even more preferably 50 mol% or less, based on all repeating units in resin (A).
 樹脂(A)が含む酸分解性基を有する繰り返し単位は、上述の一般式(1)で表される繰り返し単位であってもよく、一般式(2)で表される繰り返し単位であってもよく、それ以外の繰り返し単位であってもよい。
 樹脂(A)が含む酸分解性基を有する繰り返し単位は、1種でもよいし、2種以上でもよい。樹脂(A)が酸分解性基を有する繰り返し単位を2種以上含む場合は、それらの合計含有量が上記好適含有量の範囲内であるのが好ましい。
The repeating unit having an acid-decomposable group contained in the resin (A) may be a repeating unit represented by the above general formula (1), may be a repeating unit represented by general formula (2), or may be any other repeating unit.
The repeating unit having an acid-decomposable group contained in the resin (A) may be one type or two or more types. When the resin (A) contains two or more types of repeating units having an acid-decomposable group, it is preferable that the total content thereof is within the above-mentioned suitable content range.
 樹脂(A)は、上述の一般式(1)で表される繰り返し単位、一般式(2)で表される繰り返し単位、及び酸分解性基を有する繰り返し単位に加えて、その他の繰り返し単位を含んでもよい。
 その他の繰り返し単位については、国際公開第2022/024928号の[0079]~[0172]の内容を援用する。
The resin (A) may contain other repeating units in addition to the repeating unit represented by the above general formula (1), the repeating unit represented by the general formula (2), and the repeating unit having an acid-decomposable group.
For other repeating units, the contents of [0079] to [0172] of WO 2022/024928 are incorporated by reference.
 樹脂(A)における、上述の一般式(1)で表される繰り返し単位、一般式(2)で表される繰り返し単位の合計での含有量は、特に限定されないが、70モル%以上が好ましく、80モル%以上がより好ましく、90モル%以上が更に好ましい。 The total content of the repeating units represented by the above general formula (1) and the repeating units represented by the general formula (2) in the resin (A) is not particularly limited, but is preferably 70 mol% or more, more preferably 80 mol% or more, and even more preferably 90 mol% or more.
 樹脂(A)の合成方法としては特に限定されないが、例えばラジカル重合によって合成することができる。中でも、一般式(2)で表される繰り返し単位の導入率を高め、高分子量の樹脂を得ることで、樹脂のガラス転移温度を向上させる観点から、後述する本発明の樹脂の製造方法を用いて合成することが好ましい。 The method for synthesizing resin (A) is not particularly limited, but it can be synthesized, for example, by radical polymerization. Among them, from the viewpoint of increasing the introduction rate of the repeating unit represented by general formula (2) and obtaining a resin with a high molecular weight, thereby improving the glass transition temperature of the resin, it is preferable to synthesize it using the method for producing the resin of the present invention described later.
 GPC法によりポリスチレン換算値として、樹脂(A)の重量平均分子量(Mw)は、1000以上であることが好ましく、2000以上であることがより好ましく、4000以上であることがさらに好ましく、5000以上が特に好ましい。また、30000以下が好ましく、15000以下がより好ましい。
 樹脂(A)の分散度(分子量分布、Pd、Mw/Mn)は、1~5が好ましく、1~3がより好ましく、1.0~3.0が更に好ましく、1.1~2.0が特に好ましい。分散度が小さいものほど、解像度、及びレジスト形状がより優れ、更に、レジストパターンの側壁がよりスムーズであり、ラフネス性にもより優れる。
The weight average molecular weight (Mw) of the resin (A), as a polystyrene equivalent value measured by the GPC method, is preferably 1000 or more, more preferably 2000 or more, even more preferably 4000 or more, and particularly preferably 5000 or more. Also, it is preferably 30000 or less, more preferably 15000 or less.
The dispersity (molecular weight distribution, Pd, Mw/Mn) of the resin (A) is preferably from 1 to 5, more preferably from 1 to 3, even more preferably from 1.0 to 3.0, and particularly preferably from 1.1 to 2.0. The smaller the dispersity, the better the resolution and resist shape, and furthermore, the smoother the sidewalls of the resist pattern are, and the better the roughness.
 本発明の組成物において、樹脂(A)の含有量は、本発明の組成物の全固形分に対して、40.0~99.9質量%が好ましく、60.0~90.0質量%がより好ましい。
 樹脂(A)は、1種で使用してもよいし、2種以上使用してもよい。樹脂(A)を2種以上使用する場合は、それらの合計含有量が上記好適含有量の範囲内であるのが好ましい。
In the composition of the present invention, the content of the resin (A) is preferably from 40.0 to 99.9 mass %, more preferably from 60.0 to 90.0 mass %, based on the total solid content of the composition of the present invention.
Resin (A) may be used alone or in combination of two or more. When two or more resins (A) are used, the total content thereof is preferably within the above-mentioned suitable content range.
〔活性光線又は放射線の照射により酸を発生する化合物(B)〕
 本発明の組成物は、活性光線又は放射線の照射により酸を発生する化合物(B)(以下、光酸発生剤(B)ともいう)を含む。光酸発生剤は、低分子化合物の形態であってもよく、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態とを併用してもよい。
 光酸発生剤が、低分子化合物の形態である場合、光酸発生剤の分子量は3000以下が好ましく、2000以下がより好ましく、1000以下が更に好ましい。下限は特に制限されないが、100以上が好ましい。
 光酸発生剤が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
 光酸発生剤は、低分子化合物の形態であることが好ましい。
 光酸発生剤は、活性光線又は放射線の照射により、pKaが-2.0以上の酸を発生する化合物であることが好ましく、pKaが-2.0以上1.0以下の酸を発生する化合物であることが更に好ましい。
[Compound (B) that generates an acid upon exposure to actinic rays or radiation]
The composition of the present invention contains a compound (B) that generates an acid when irradiated with actinic rays or radiation (hereinafter, also referred to as photoacid generator (B)). The photoacid generator may be in the form of a low molecular weight compound, or may be incorporated into a part of a polymer. In addition, the low molecular weight compound and the photoacid generator incorporated into a part of a polymer may be used in combination.
When the photoacid generator is in the form of a low molecular weight compound, the molecular weight of the photoacid generator is preferably 3000 or less, more preferably 2000 or less, and even more preferably 1000 or less. There is no particular lower limit, but a molecular weight of 100 or more is preferable.
When the photoacid generator is in a form in which it is incorporated into a part of a polymer, it may be incorporated into a part of the resin (A) or into a resin different from the resin (A).
The photoacid generator is preferably in the form of a low molecular weight compound.
The photoacid generator is preferably a compound that generates an acid having a pKa of −2.0 or more upon irradiation with actinic rays or radiation, and more preferably a compound that generates an acid having a pKa of −2.0 or more and 1.0 or less.
 光酸発生剤(B)としては、例えば、「M X」で表される化合物(オニウム塩)が挙げられ、露光により有機酸を発生する化合物であることが好ましい。
 上記有機酸として、例えば、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸、及びカンファースルホン酸等)、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸、及びアラルキルカルボン酸等)、カルボニルスルホニルイミド酸、ビス(アルキルスルホニル)イミド酸、及びトリス(アルキルスルホニル)メチド酸が挙げられる。
Examples of the photoacid generator (B) include compounds (onium salts) represented by "M + X - ", and are preferably compounds that generate an organic acid upon exposure to light.
Examples of the organic acid include sulfonic acids (aliphatic sulfonic acids, aromatic sulfonic acids, camphorsulfonic acids, etc.), carboxylic acids (aliphatic carboxylic acids, aromatic carboxylic acids, aralkyl carboxylic acids, etc.), carbonylsulfonylimide acids, bis(alkylsulfonyl)imide acids, and tris(alkylsulfonyl)methide acids.
 「M X」で表される化合物において、Mは、有機カチオンを表す。有機カチオンとしては、式(ZaI)で表されるカチオン(以下「カチオン(ZaI)」ともいう。
)、又は、式(ZaII)で表されるカチオン(以下「カチオン(ZaII)」ともいう。)が好ましい。
In the compound represented by "M + X - ", M + represents an organic cation. The organic cation is a cation represented by formula (ZaI) (hereinafter also referred to as "cation (ZaI)").
), or a cation represented by formula (ZaII) (hereinafter also referred to as "cation (ZaII)") is preferred.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(ZaI)において、R201、R202、及びR203は、それぞれ独立に、有機基を表す。
 R201、R202、及びR203の有機基の炭素数は、1~30が好ましく、1~20がより好ましい。R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、例えば、アルキレン基(例えば、ブチレン基及びペンチレン基)、及び-CH-CH-O-CH-CH-が挙げられる。
In formula (ZaI), R 201 , R 202 and R 203 each independently represent an organic group.
The number of carbon atoms in the organic groups of R 201 , R 202 , and R 203 is preferably 1 to 30, and more preferably 1 to 20. Any two of R 201 to R 203 may be bonded to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group. Examples of groups formed by bonding any two of R 201 to R 203 include alkylene groups (e.g., butylene and pentylene groups) and -CH 2 -CH 2 -O-CH 2 -CH 2 -.
 R201、R202、及びR203の有機基は、アルキル基、シクロアルキル基、アリール基又はヘテロアリール基が好ましい。
 アルキル基としては、直鎖状及び分岐鎖状のいずれであってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~5がより好ましい。アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等が挙げられる。
 シクロアルキル基の炭素数は特に制限されないが、3~20が好ましく、5~15がより好ましい。シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が好ましい。
 アリール基は、炭素数6~20のアリール基であることが好ましく、炭素数6~15のアリール基であることがより好ましく、フェニル基又はナフチル基であることが更に好ましく、フェニル基であることが特に好ましい。
 ヘテロアリール基は、炭素数3~20のヘテロアリール基であることが好ましい。ヘテロアリール基は、酸素原子、硫黄原子及び窒素原子からなる群より選ばれる少なくとも1つのヘテロ原子を含むことが好ましい。ヘテロアリール基としては、例えば、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、ベンゾチオフェン残基等が挙げられる。
The organic group of R 201 , R 202 , and R 203 is preferably an alkyl group, a cycloalkyl group, an aryl group, or a heteroaryl group.
The alkyl group may be either linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 5. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
The number of carbon atoms in the cycloalkyl group is not particularly limited, but is preferably 3 to 20, and more preferably 5 to 15. As the cycloalkyl group, monocyclic cycloalkyl groups such as a cyclopentyl group and a cyclohexyl group, and polycyclic cycloalkyl groups such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group are preferred.
The aryl group is preferably an aryl group having 6 to 20 carbon atoms, more preferably an aryl group having 6 to 15 carbon atoms, further preferably a phenyl group or naphthyl group, and particularly preferably a phenyl group.
The heteroaryl group is preferably a heteroaryl group having 3 to 20 carbon atoms. The heteroaryl group preferably contains at least one heteroatom selected from the group consisting of an oxygen atom, a sulfur atom, and a nitrogen atom. Examples of the heteroaryl group include a pyrrole residue, a furan residue, a thiophene residue, an indole residue, a benzofuran residue, and a benzothiophene residue.
 式(ZaII)中、R204及びR205は、それぞれ独立に、アリール基、アルキル基又はシクロアルキル基を表す。
 R204及びR205のアリール基としては、フェニル基、又はナフチル基が好ましく、フェニル基がより好ましい。R204及びR205のアリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環を有するアリール基であってもよい。ヘテロ環を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、及びベンゾチオフェンが挙げられる。
 R204及びR205のアルキル基及びシクロアルキル基としては、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又はペンチル基)、又は炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、又はノルボルニル基)が好ましい。
In formula (ZaII), R 204 and R 205 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
The aryl group of R 204 and R 205 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group. The aryl group of R 204 and R 205 may be an aryl group having a heterocycle with an oxygen atom, a nitrogen atom, or a sulfur atom. Examples of the skeleton of the aryl group having a heterocycle include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
The alkyl group and cycloalkyl group of R 204 and R 205 are preferably a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (e.g., a methyl group, an ethyl group, a propyl group, a butyl group, or a pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (e.g., a cyclopentyl group, a cyclohexyl group, or a norbornyl group).
 R204及びR205のアリール基、アルキル基、及びシクロアルキル基は、それぞれ独立に、置換基を有していてもよい。R204及びR205のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば、炭素数1~15)、シクロアルキル基(例えば、炭素数3~15)、アリール基(例えば、炭素数6~15)、アルコキシ基(例えば、炭素数1~15)、ハロゲン原子、水酸基、及びフェニルチオ基が挙げられる。また、R204及びR205の置換基は、それぞれ独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。 The aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may each independently have a substituent. Examples of the substituent that the aryl group, alkyl group, and cycloalkyl group of R 204 and R 205 may have include an alkyl group (e.g., having 1 to 15 carbon atoms), a cycloalkyl group (e.g., having 3 to 15 carbon atoms), an aryl group (e.g., having 6 to 15 carbon atoms), an alkoxy group (e.g., having 1 to 15 carbon atoms), a halogen atom, a hydroxyl group, and a phenylthio group. It is also preferable that the substituents of R 204 and R 205 each independently form an acid-decomposable group by any combination of the substituents.
 「M X」で表される化合物において、Xは、有機アニオンを表す。
 有機アニオンとしては、特に制限されず、1又は2価以上の有機アニオンが挙げられる。
 有機アニオンとしては、求核反応を起こす能力が著しく低いアニオンが好ましく、非求核性アニオンがより好ましい。
In the compound represented by "M + X - ", X - represents an organic anion.
The organic anion is not particularly limited, and examples thereof include monovalent or divalent or higher organic anions.
As the organic anion, anions having a significantly low ability to cause a nucleophilic reaction are preferred, and non-nucleophilic anions are more preferred.
 非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、及びカンファースルホン酸アニオン等)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、及びアラルキルカルボン酸アニオン等)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、及びトリス(アルキルスルホニル)メチドアニオンが挙げられる。 Examples of non-nucleophilic anions include sulfonate anions (aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.), carboxylate anions (aliphatic carboxylate anions, aromatic carboxylate anions, aralkyl carboxylate anions, etc.), sulfonylimide anions, bis(alkylsulfonyl)imide anions, and tris(alkylsulfonyl)methide anions.
 脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、直鎖状又は分岐鎖状のアルキル基であっても、シクロアルキル基であってもよく、炭素数1~30の直鎖状又は分岐鎖状のアルキル基、又は、炭素数3~30のシクロアルキル基が好ましい。
 上記アルキル基は、例えば、フルオロアルキル基(フッ素原子以外の置換基を有していてもよい。パーフルオロアルキル基であってもよい)であってもよい。
The aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be a linear or branched alkyl group or a cycloalkyl group, and is preferably a linear or branched alkyl group having 1 to 30 carbon atoms or a cycloalkyl group having 3 to 30 carbon atoms.
The alkyl group may be, for example, a fluoroalkyl group (which may have a substituent other than a fluorine atom, or may be a perfluoroalkyl group).
 芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおけるアリール基としては、炭素数6~14のアリール基が好ましく、例えば、フェニル基、トリル基、及び、ナフチル基が挙げられる。 The aryl group in the aromatic sulfonate anion and aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
 上記で挙げたアルキル基、シクロアルキル基、及び、アリール基は、置換基を有していてもよい。置換基としては特に制限されないが、例えば、ニトロ基、フッ素原子及び塩素原子等のハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(炭素数1~15が好ましい)、アルキル基(炭素数1~10が好ましい)、シクロアルキル基(炭素数3~15が好ましい)、アリール基(炭素数6~14が好ましい)、アルコキシカルボニル基(炭素数2~7が好ましい)、アシル基(炭素数2~12が好ましい)、アルコキシカルボニルオキシ基(炭素数2~7が好ましい)、アルキルチオ基(炭素数1~15が好ましい)、アルキルスルホニル基(炭素数1~15が好ましい)、アルキルイミノスルホニル基(炭素数1~15が好ましい)、及び、アリールオキシスルホニル基(炭素数6~20が好ましい)が挙げられる。 The alkyl group, cycloalkyl group, and aryl group listed above may have a substituent. The substituent is not particularly limited, but examples include a nitro group, a halogen atom such as a fluorine atom or a chlorine atom, a carboxyl group, a hydroxyl group, an amino group, a cyano group, an alkoxy group (preferably having 1 to 15 carbon atoms), an alkyl group (preferably having 1 to 10 carbon atoms), a cycloalkyl group (preferably having 3 to 15 carbon atoms), an aryl group (preferably having 6 to 14 carbon atoms), an alkoxycarbonyl group (preferably having 2 to 7 carbon atoms), an acyl group (preferably having 2 to 12 carbon atoms), an alkoxycarbonyloxy group (preferably having 2 to 7 carbon atoms), an alkylthio group (preferably having 1 to 15 carbon atoms), an alkylsulfonyl group (preferably having 1 to 15 carbon atoms), an alkyliminosulfonyl group (preferably having 1 to 15 carbon atoms), and an aryloxysulfonyl group (preferably having 6 to 20 carbon atoms).
 アラルキルカルボン酸アニオンにおけるアラルキル基としては、炭素数7~14のアラルキル基が好ましい。
 炭素数7~14のアラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、及び、ナフチルブチル基が挙げられる。
The aralkyl group in the aralkyl carboxylate anion is preferably an aralkyl group having 7 to 14 carbon atoms.
Examples of the aralkyl group having 7 to 14 carbon atoms include a benzyl group, a phenethyl group, a naphthylmethyl group, a naphthylethyl group, and a naphthylbutyl group.
 スルホニルイミドアニオンとしては、例えば、サッカリンアニオンが挙げられる。 An example of a sulfonylimide anion is the saccharin anion.
 ビス(アルキルスルホニル)イミドアニオン、及び、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基としては、炭素数1~5のアルキル基が好ましい。これらのアルキル基の置換基としては、ハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、及び、シクロアルキルアリールオキシスルホニル基が挙げられ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
 また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
The alkyl group in the bis(alkylsulfonyl)imide anion and the tris(alkylsulfonyl)methide anion is preferably an alkyl group having 1 to 5 carbon atoms. Examples of the substituent on these alkyl groups include a halogen atom, an alkyl group substituted with a halogen atom, an alkoxy group, an alkylthio group, an alkyloxysulfonyl group, an aryloxysulfonyl group, and a cycloalkylaryloxysulfonyl group, and a fluorine atom or an alkyl group substituted with a fluorine atom is preferred.
In addition, the alkyl groups in the bis(alkylsulfonyl)imide anion may be bonded to each other to form a ring structure, which increases the acid strength.
 その他の非求核性アニオンとしては、例えば、フッ素化燐(例えば、PF )、フッ素化ホウ素(例えば、BF )、及び、フッ素化アンチモン(例えば、SbF )が挙げられる。 Other non-nucleophilic anions include, for example, phosphorus fluorides (eg, PF 6 ), boron fluorides (eg, BF 4 ), and antimony fluorides (eg, SbF 6 ).
 非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子若しくはフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、又は、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。なかでも、パーフルオロ脂肪族スルホン酸アニオン(炭素数4~8が好ましい)、又は、フッ素原子を有するベンゼンスルホン酸アニオンがより好ましく、ノナフルオロブタンスルホン酸アニオン、パーフルオロオクタンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、又は、3,5-ビス(トリフルオロメチル)ベンゼンスルホン酸アニオンが更に好ましい。 Preferred non-nucleophilic anions are aliphatic sulfonate anions in which at least the α-position of the sulfonic acid is substituted with a fluorine atom, aromatic sulfonate anions substituted with a fluorine atom or a group having a fluorine atom, bis(alkylsulfonyl)imide anions in which an alkyl group is substituted with a fluorine atom, or tris(alkylsulfonyl)methide anions in which an alkyl group is substituted with a fluorine atom. Among these, perfluoroaliphatic sulfonate anions (preferably having 4 to 8 carbon atoms) or benzenesulfonate anions having fluorine atoms are more preferable, and nonafluorobutanesulfonate anions, perfluorooctanesulfonate anions, pentafluorobenzenesulfonate anions, or 3,5-bis(trifluoromethyl)benzenesulfonate anions are even more preferable.
 「M X」で表される化合物については、特開2005-2236号の[0114]~[0144]の内容を援用することができる。 For the compound represented by "M + X - ", the contents of paragraphs [0114] to [0144] of JP-A No. 2005-2236 can be cited.
 光酸発生剤(B)は、下記化合物(I)~(II)からなる群から選択される少なくとも1つであってもよい。 The photoacid generator (B) may be at least one selected from the group consisting of the following compounds (I) to (II):
(化合物(I))
 化合物(I)は、1つ以上の下記構造部位X及び1つ以上の下記構造部位Yを有する化合物であって、活性光線又は放射線の照射によって、下記構造部位Xに由来する下記第1の酸性部位と下記構造部位Yに由来する下記第2の酸性部位とを含む酸を発生する化合物である。
  構造部位X:アニオン部位A とカチオン部位M とからなり、かつ活性光線又は放射線の照射によって、HAで表される第1の酸性部位を形成する構造部位
  構造部位Y:アニオン部位A とカチオン部位M とからなり、かつ活性光線又は放射線の照射によって、HAで表される第2の酸性部位を形成する構造部位
 上記化合物(I)は、下記条件Iを満たす。
(Compound (I))
Compound (I) is a compound having one or more structural moieties X and one or more structural moieties Y, which generates an acid containing a first acidic moiety derived from the structural moiety X and a second acidic moiety derived from the structural moiety Y when irradiated with actinic rays or radiation:
Structural moiety X: a structural moiety consisting of an anionic moiety A 1 - and a cationic moiety M 1 + , which forms a first acidic moiety represented by HA 1 when irradiated with actinic rays or radiation. Structural moiety Y: a structural moiety consisting of an anionic moiety A 2 - and a cationic moiety M 2 + , which forms a second acidic moiety represented by HA 2 when irradiated with actinic rays or radiation. The compound (I) satisfies the following condition I.
 条件I:上記化合物(I)において上記構造部位X中の上記カチオン部位M 及び上記構造部位Y中の上記カチオン部位M をHに置き換えてなる化合物PIが、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1と、上記構造部位Y中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a2とを有し、かつ、上記酸解離定数a1よりも上記酸解離定数a2の方が大きい。上記酸解離定数a1のうち少なくとも1つは0未満である。 Condition I: Compound PI, which is obtained by replacing the cationic moiety M 1 + in the structural moiety X and the cationic moiety M 2 + in the structural moiety Y in the compound (I) with H + , has an acid dissociation constant a1 derived from the acidic moiety represented by HA 1 , which is obtained by replacing the cationic moiety M 1 + in the structural moiety X with H + , and an acid dissociation constant a2 derived from the acidic moiety represented by HA 2 , which is obtained by replacing the cationic moiety M 2 + in the structural moiety Y with H + , and the acid dissociation constant a2 is greater than the acid dissociation constant a1. At least one of the acid dissociation constants a1 is less than 0.
 以下において、条件Iをより具体的に説明する。
 化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を1つと、上記構造部位Yに由来する上記第2の酸性部位を1つ有する酸を発生する化合物である場合、化合物PIは「HAとHAとを有する化合物」に該当する。
 化合物PIの酸解離定数a1及び酸解離定数a2とは、より具体的に説明すると、化合物PIの酸解離定数を求めた場合において、化合物PIが「A とHAとを有する化合物」となる際のpKaが酸解離定数a1であり、上記「A とHAとを有する化合物」が「A とA とを有する化合物」となる際のpKaが酸解離定数a2である。
Condition I will be explained in more detail below.
When compound (I) is, for example, a compound that generates an acid having one of the first acidic site derived from the structural moiety X and one of the second acidic site derived from the structural moiety Y, compound PI corresponds to a "compound having HA 1 and HA 2. "
More specifically, the acid dissociation constant a1 and the acid dissociation constant a2 of compound PI are calculated as follows: when compound PI becomes a "compound having A 1 - and HA 2 ", the pKa is the acid dissociation constant a1; and when the "compound having A 1 - and HA 2 " becomes a "compound having A 1 - and A 2 - ", the pKa is the acid dissociation constant a2.
 化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと、上記構造部位Yに由来する上記第2の酸性部位を1つと有する酸を発生する化合物である場合、化合物PIは「2つのHAと1つのHAとを有する化合物」に該当する。
 化合物PIの酸解離定数を求めた場合、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数が、上述の酸解離定数a1に該当する。「2つのA と1つのHAとを有する化合物」が「2つのA とA を有する化合物」となる際の酸解離定数が酸解離定数a2に該当する。つまり、化合物PIの場合、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数を複数有する場合、複数の酸解離定数a1のうち最も大きい値よりも、酸解離定数a2の値の方が大きい。なお、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数をaaとし、「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数をabとしたとき、aa及びabの関係は、aa<abを満たす。
When compound (I) is, for example, a compound that generates an acid having two of the first acidic sites derived from the structural moiety X and one of the second acidic sites derived from the structural moiety Y, compound PI corresponds to a "compound having two HA 1 's and one HA 2. "
When the acid dissociation constant of the compound PI is determined, the acid dissociation constant when the compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " and the acid dissociation constant when the "compound having one A 1 - , one HA 1 and one HA 2 " becomes "a compound having two A 1 - and one HA 2 " correspond to the above-mentioned acid dissociation constant a1. The acid dissociation constant when the "compound having two A 1 - and one HA 2 " becomes "a compound having two A 1 - and A 2 - " corresponds to the acid dissociation constant a2. That is, in the case of the compound PI, when the compound has a plurality of acid dissociation constants derived from the acidic site represented by HA 1 obtained by replacing the cationic site M 1 + in the structural site X with H + , the value of the acid dissociation constant a2 is larger than the largest value of the plurality of acid dissociation constants a1. In addition, when the acid dissociation constant when compound PI becomes "a compound having one A 1 - , one HA 1 , and one HA 2 " is aa, and the acid dissociation constant when "a compound having one A 1 - , one HA 1 , and one HA 2 " becomes "a compound having two A 1 - and one HA 2 " is ab, the relationship between aa and ab satisfies aa < ab.
 酸解離定数a1及び酸解離定数a2は、上述した酸解離定数の測定方法により求められる。
 上記化合物PIとは、化合物(I)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 化合物(I)が2つ以上の構造部位Xを有する場合、構造部位Xは、それぞれ同一であっても異なっていてもよい。また、2つ以上の上記A 、及び2つ以上の上記M は、それぞれ同一であっても異なっていてもよい。
 化合物(I)中、上記A 及び上記A 、並びに、上記M 及び上記M は、それぞれ同一であっても異なっていてもよいが、上記A 及び上記A は、それぞれ異なっていることが好ましい。
The acid dissociation constant a1 and the acid dissociation constant a2 are determined by the above-mentioned method for measuring an acid dissociation constant.
The compound PI corresponds to an acid generated when compound (I) is irradiated with actinic rays or radiation.
When compound (I) has two or more structural moieties X, the structural moieties X may be the same or different from each other. In addition, the two or more A 1 and the two or more M 1 + may be the same or different from each other.
In compound (I), A 1 - and A 2 - , as well as M 1 + and M 2 + may be the same or different, but it is preferable that A 1 - and A 2 - are different.
(化合物(II))
 化合物(II)は、2つ以上の上記構造部位X及び1つ以上の下記構造部位Zを有する化合物であって、活性光線又は放射線の照射によって、上記構造部位Xに由来する上記第1の酸性部位を2つ以上と上記構造部位Zとを含む酸を発生する化合物である。
 構造部位Z:酸を中和可能な非イオン性の部位
(Compound (II))
Compound (II) is a compound having two or more of the above structural moieties X and one or more of the following structural moieties Z, and is a compound that generates an acid containing two or more of the first acidic moieties derived from the structural moiety X and the structural moiety Z when irradiated with actinic rays or radiation.
Structural moiety Z: a non-ionic moiety capable of neutralizing an acid
 化合物(II)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと上記構造部位Zとを有する酸を発生する化合物である場合、化合物PIIは「2つのHAを有する化合物」に該当する。この化合物PIIの酸解離定数を求めた場合、化合物PIIが「1つのA と1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAとを有する化合物」が「2つのA を有する化合物」となる際の酸解離定数が、酸解離定数a1に該当する。 When compound (II) is, for example, a compound that generates an acid having two of the first acidic sites derived from the structural site X and the structural site Z, compound PII corresponds to a "compound having two HA 1s ." When the acid dissociation constant of this compound PII is determined, the acid dissociation constant when compound PII becomes a "compound having one A 1 - and one HA 1 " and the acid dissociation constant when the "compound having one A 1 - and one HA 1 " becomes a "compound having two A 1 -s " correspond to the acid dissociation constant a1.
 酸解離定数a1は、上述した酸解離定数の測定方法により求められる。上記酸解離定数a1のうち少なくとも1つは0未満である。
 上記化合物PIIとは、化合物(II)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 なお、上記2つ以上の構造部位Xは、それぞれ同一であっても異なっていてもよい。2つ以上の上記A 、及び2つ以上の上記M は、それぞれ同一であっても異なっていてもよい。
The acid dissociation constants a1 are determined by the above-mentioned method for measuring an acid dissociation constant. At least one of the acid dissociation constants a1 is less than 0.
The compound PII corresponds to an acid generated when compound (II) is irradiated with actinic rays or radiation.
The two or more structural moieties X may be the same or different, and the two or more A 1 and the two or more M 1 + may be the same or different.
 構造部位Z中の酸を中和可能な非イオン性の部位としては特に制限されず、例えば、プロトンと静電的に相互作用し得る基、又は、電子を有する官能基を含む部位であることが好ましい。
 プロトンと静電的に相互作用し得る基、又は、電子を有する官能基としては、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又は、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基が挙げられる。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
The nonionic moiety capable of neutralizing an acid in the structural moiety Z is not particularly limited, and is preferably, for example, a moiety containing a group capable of electrostatically interacting with a proton, or a functional group having an electron.
Examples of the group capable of electrostatically interacting with a proton or the functional group having electrons include a functional group having a macrocyclic structure such as a cyclic polyether, or a functional group having a nitrogen atom having an unshared electron pair that does not contribute to π-conjugation. The nitrogen atom having an unshared electron pair that does not contribute to π-conjugation is, for example, a nitrogen atom having a partial structure shown in the following formula:
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 プロトンと静電的に相互作用し得る基又は電子を有する官能基の部分構造としては、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1~3級アミン構造、ピリジン構造、イミダゾール構造、及びピラジン構造が挙げられ、なかでも、1~3級アミン構造が好ましい。 Examples of partial structures of functional groups having groups or electrons that can electrostatically interact with protons include crown ether structures, azacrown ether structures, primary to tertiary amine structures, pyridine structures, imidazole structures, and pyrazine structures, with primary to tertiary amine structures being preferred.
 カチオン、化合物(I)及び化合物(II)については、国際公開第2022/024928号の[0207]~[0278]の内容を援用することができる。 For the cation, compound (I) and compound (II), the contents of paragraphs [0207] to [0278] of WO 2022/024928 may be cited.
 本発明の組成物中の光酸発生剤(B)の含有量は、本発明の組成物の全固形分に対して、1.0質量%以上が好ましく、3.0質量%以上がより好ましく、5.0質量%以上が更に好ましい。光酸発生剤(B)の含有量は、本発明の組成物の全固形分に対して、30.0質量%以下が好ましく、25.0質量%以下がより好ましく、20.0質量%以下が更に好ましい。
 光酸発生剤(B)は、1種で使用してもよいし、2種以上使用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
The content of the photoacid generator (B) in the composition of the present invention is preferably 1.0 mass% or more, more preferably 3.0 mass% or more, and even more preferably 5.0 mass% or more, based on the total solid content of the composition of the present invention. The content of the photoacid generator (B) is preferably 30.0 mass% or less, more preferably 25.0 mass% or less, and even more preferably 20.0 mass% or less, based on the total solid content of the composition of the present invention.
The photoacid generator (B) may be used alone or in combination of two or more. When two or more types are used, the total content is preferably within the above-mentioned suitable content range.
〔酸拡散制御剤(C)〕
 酸拡散制御剤(C)は、露光時に、例えば、光酸発生剤(B)等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用する。
 酸拡散制御剤(C)の種類は特に制限されず、例えば、塩基性化合物(CA)、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CB)、及び、活性光線又は放射線の照射により酸拡散制御能が低下又は消失する化合物(CC)が挙げられる。
 化合物(CC)としては、例えば光酸発生剤(B)等から発生する酸に対して相対的に弱酸となる酸のオニウム塩化合物(CD)、及び、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CE)が挙げられる。
 塩基性化合物(CA)の具体例としては、例えば、国際公開第2020/066824号の段落[0132]~[0136]に記載のものが挙げられ、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CE)の具体例としては、国際公開第2020/066824号の段落[0137]~[0155]に記載のもの、及び国際公開第2020/066824号の段落[0164]に記載のものが挙げられ、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CB)の具体例としては、国際公開第2020/066824号の段落[0156]~[0163]に記載のものが挙げられる。
 例えば光酸発生剤(B)等から発生する酸に対して相対的に弱酸となるオニウム塩化合物(CD)の具体例としては、例えば、国際公開第2020/158337号の段落[0305]~[0314]に記載のものが挙げられる。
[Acid Diffusion Controller (C)]
The acid diffusion controller (C) traps the acid generated, for example, from the photoacid generator (B) during exposure, and acts as a quencher that suppresses the reaction of the acid-decomposable resin in unexposed areas caused by excess acid generated.
The type of the acid diffusion controller (C) is not particularly limited, and examples thereof include a basic compound (CA), a low molecular weight compound (CB) having a nitrogen atom and a group that is eliminated by the action of an acid, and a compound (CC) whose acid diffusion control ability is reduced or lost by irradiation with actinic rays or radiation.
Examples of the compound (CC) include an onium salt compound (CD) of an acid that is weaker than the acid generated from the photoacid generator (B) or the like, and a basic compound (CE) whose basicity is reduced or lost by irradiation with actinic rays or radiation.
Specific examples of the basic compound (CA) include those described in paragraphs [0132] to [0136] of WO 2020/066824. Specific examples of the basic compound (CE) whose basicity is reduced or eliminated by irradiation with actinic rays or radiation include those described in paragraphs [0137] to [0155] of WO 2020/066824 and those described in paragraph [0164] of WO 2020/066824. Specific examples of the low molecular weight compound (CB) having a nitrogen atom and a group that is eliminated by the action of an acid include those described in paragraphs [0156] to [0163] of WO 2020/066824.
For example, specific examples of the onium salt compound (CD) that is a relatively weak acid relative to the acid generated from the photoacid generator (B) or the like include those described in paragraphs [0305] to [0314] of WO 2020/158337.
 上記以外にも、例えば、米国特許出願公開2016/0070167A1号の段落[0627]~[0664]、米国特許出願公開2015/0004544A1号の段落[0095]~[0187]、米国特許出願公開2016/0237190A1号の段落[0403]~[0423]、及び米国特許出願公開2016/0274458A1号の段落[0259]~[0328]に開示された公知の化合物を酸拡散制御剤として好適に使用できる。 In addition to the above, for example, known compounds disclosed in U.S. Patent Application Publication No. 2016/0070167A1, paragraphs [0627] to [0664], U.S. Patent Application Publication No. 2015/0004544A1, paragraphs [0095] to [0187], U.S. Patent Application Publication No. 2016/0237190A1, paragraphs [0403] to [0423], and U.S. Patent Application Publication No. 2016/0274458A1, paragraphs [0259] to [0328] can be suitably used as acid diffusion control agents.
 本発明の組成物に酸拡散制御剤が含まれる場合、酸拡散制御剤の含有量(複数種存在する場合はその合計)は、本発明の組成物の全固形分に対して、0.1~15.0質量%が好ましく、1.0~15.0質量%がより好ましい。
 本発明の組成物において、酸拡散制御剤は1種単独で使用してもよいし、2種以上を併用してもよい。
When the composition of the present invention contains an acid diffusion controller, the content of the acid diffusion controller (the total content when a plurality of types are present) is preferably 0.1 to 15.0 mass %, and more preferably 1.0 to 15.0 mass %, based on the total solid content of the composition of the present invention.
In the composition of the present invention, the acid diffusion controller may be used alone or in combination of two or more kinds.
〔疎水性樹脂(樹脂(D))〕
 本発明の組成物は、更に、樹脂(A)とは異なる疎水性樹脂(「樹脂(D)」ともいう。)を含んでいてもよい。
 疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質の均一な混合に寄与しなくてもよい。
[Hydrophobic resin (resin (D))]
The composition of the present invention may further contain a hydrophobic resin (also referred to as "resin (D)") different from resin (A).
The hydrophobic resin is preferably designed to be unevenly distributed on the surface of the resist film, but unlike a surfactant, it does not necessarily have to have a hydrophilic group in the molecule, and does not necessarily have to contribute to uniform mixing of polar and non-polar substances.
 疎水性樹脂は、膜表層への偏在化の点から、フッ素原子、珪素原子、及び、樹脂の側鎖部分に含まれたCH部分構造のいずれか1種以上を有するのが好ましく、2種以上を有することがより好ましい。上記疎水性樹脂は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂としては、国際公開第2020/004306号の段落[0275]~[0279]に記載される化合物が挙げられる。
From the viewpoint of uneven distribution on the surface layer of the film, the hydrophobic resin preferably has at least one of fluorine atoms, silicon atoms, and CH3 partial structures contained in the side chain portion of the resin, more preferably has at least two of them. The hydrophobic resin preferably has a hydrocarbon group having 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain.
Examples of hydrophobic resins include the compounds described in paragraphs [0275] to [0279] of WO 2020/004306.
 本発明の組成物が疎水性樹脂を含む場合、疎水性樹脂の含有量は、本発明の組成物の全固形分に対して、0.01~20.0質量%が好ましく、0.1~15.0質量%がより好ましい。
 疎水性樹脂は、1種で使用してもよいし、2種以上使用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
When the composition of the present invention contains a hydrophobic resin, the content of the hydrophobic resin is preferably from 0.01 to 20.0 mass %, more preferably from 0.1 to 15.0 mass %, based on the total solid content of the composition of the present invention.
The hydrophobic resin may be used alone or in combination of two or more. When two or more types are used, the total content is preferably within the above-mentioned preferred content range.
〔界面活性剤〕
 本発明の組成物は、界面活性剤を含んでいてもよい。界面活性剤を含むと、密着性により優れ、現像欠陥のより少ないパターンを形成することができる。
 界面活性剤は、フッ素系及び/又はシリコン系界面活性剤が好ましい。
 フッ素系及び/又はシリコン系界面活性剤としては、国際公開第2018/193954号の段落[0218]及び[0219]に開示された界面活性剤が挙げられる。
[Surfactant]
The composition of the present invention may contain a surfactant. When the composition contains a surfactant, a pattern having better adhesion and fewer development defects can be formed.
The surfactant is preferably a fluorine-based and/or silicon-based surfactant.
Examples of fluorine-based and/or silicone-based surfactants include the surfactants disclosed in paragraphs [0218] and [0219] of WO 2018/193954.
 本発明の組成物が界面活性剤を含む場合、界面活性剤の含有量は、本発明の組成物の全固形分に対して、0.0001~2.0質量%が好ましく、0.0005~1.0質量%がより好ましく、0.1~1.0質量%が更に好ましい。
 界面活性剤は、1種で使用してもよいし、2種以上使用してもよい。2種以上使用する場合は、その合計含有量が、上記好適含有量の範囲内であるのが好ましい。
When the composition of the present invention contains a surfactant, the content of the surfactant is preferably from 0.0001 to 2.0 mass%, more preferably from 0.0005 to 1.0 mass%, and still more preferably from 0.1 to 1.0 mass%, based on the total solid content of the composition of the present invention.
The surfactant may be used alone or in combination of two or more. When two or more surfactants are used, the total content is preferably within the above-mentioned preferred content range.
〔溶剤(S)〕
 本発明の組成物は、溶剤を含むことが好ましい。
 溶剤は、(M1)プロピレングリコールモノアルキルエーテルカルボキシレート、並びに、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及びアルキレンカーボネートからなる群より選択される少なくとも1つの少なくとも一方を含んでいることが好ましい。なお、上記溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
[Solvent (S)]
The composition of the present invention preferably contains a solvent.
The solvent preferably contains (M1) propylene glycol monoalkyl ether carboxylate and (M2) at least one selected from the group consisting of propylene glycol monoalkyl ether, lactate ester, acetate ester, alkoxypropionate ester, linear ketone, cyclic ketone, lactone, and alkylene carbonate. The solvent may further contain components other than the components (M1) and (M2).
 上述した溶剤と上述した樹脂とを組み合わせると、本発明の組成物の塗布性の向上、及び、パターンの現像欠陥数の低減の観点で好ましい。上述した溶剤は、上述した樹脂の溶解性、沸点及び粘度のバランスが良いため、レジスト膜の膜厚のムラ及びスピンコート中の析出物の発生等を抑制することができる。
 成分(M1)及び成分(M2)の詳細は、国際公開第2020/004306号の段落[0218]~[0226]に記載され、これらの内容は本明細書に組み込まれる。
The combination of the above-mentioned solvent and the above-mentioned resin is preferable from the viewpoint of improving the coatability of the composition of the present invention and reducing the number of development defects of the pattern. The above-mentioned solvent has a good balance of the solubility, boiling point, and viscosity of the above-mentioned resin, so that it is possible to suppress unevenness in the thickness of the resist film and the occurrence of precipitates during spin coating.
Details of the components (M1) and (M2) are described in paragraphs [0218] to [0226] of WO 2020/004306, the contents of which are incorporated herein by reference.
 溶剤が成分(M1)及び(M2)以外の成分を更に含む場合、成分(M1)及び(M2)以外の成分の含有量は、溶剤の全量に対して、5~30質量%が好ましい。 If the solvent further contains components other than components (M1) and (M2), the content of the components other than components (M1) and (M2) is preferably 5 to 30 mass % based on the total amount of the solvent.
 本発明の組成物中の溶剤の含有量は、固形分濃度が0.5~30質量%となるように定めるのが好ましく、1~20質量%となるように定めることがより好ましい。こうすると、本発明の組成物の塗布性を更に向上させられる。 The content of the solvent in the composition of the present invention is preferably determined so that the solids concentration is 0.5 to 30 mass %, and more preferably 1 to 20 mass %. This further improves the applicability of the composition of the present invention.
〔その他の添加剤〕
 本発明の組成物は、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は、現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、又は、カルボキシル基を含んだ脂環族若しくは脂肪族化合物)を更に含んでいてもよい。
[Other additives]
The composition of the present invention may further contain a dissolution inhibiting compound, a dye, a plasticizer, a photosensitizer, a light absorber, and/or a compound that promotes solubility in a developer (for example, a phenol compound having a molecular weight of 1000 or less, or an alicyclic or aliphatic compound containing a carboxyl group).
 上記「溶解阻止化合物」とは、酸の作用により分解して有機系現像液中での溶解度が減少する、分子量3000以下の化合物である。 The above-mentioned "dissolution-blocking compound" is a compound with a molecular weight of 3000 or less that decomposes under the action of acid and reduces its solubility in an organic developer.
[感活性光線性又は感放射線性膜、パターン形成方法]
 本発明は、本発明の組成物により形成された感活性光線性又は感放射線性膜にも関する。本発明の感活性光線性又は感放射線性膜はレジスト膜であることが好ましい。
 本発明はパターン形成方法にも関する。本発明のパターン形成方法は、本発明の組成物により基板上に感活性光線性又は感放射線性膜(典型的にはレジスト膜)を形成する工程と、感活性光線性又は感放射線性膜を露光する工程と、露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程と、を有する、パターン形成方法であることが好ましい。
 本発明の組成物を用いたパターン形成方法の手順は特に制限されないが、以下の工程を有することが好ましい。
 工程1:本発明の組成物により、基板上に感活性光線性又は感放射線性膜を形成する工程
 工程2:感活性光線性又は感放射線性膜を露光する工程
 工程3:露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程
 以下、上記それぞれの工程の手順について詳述する。
[Actinic ray- or radiation-sensitive film, pattern formation method]
The present invention also relates to an actinic ray- or radiation-sensitive film formed from the composition of the present invention. The actinic ray- or radiation-sensitive film of the present invention is preferably a resist film.
The present invention also relates to a pattern forming method. The pattern forming method of the present invention is preferably a pattern forming method comprising the steps of forming an actinic ray-sensitive or radiation-sensitive film (typically a resist film) on a substrate using the composition of the present invention, exposing the actinic ray-sensitive or radiation-sensitive film, and developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer.
The procedure for the pattern formation method using the composition of the present invention is not particularly limited, but it is preferable that the method comprises the following steps.
Step 1: forming an actinic ray-sensitive or radiation-sensitive film on a substrate using the composition of the present invention; Step 2: exposing the actinic ray-sensitive or radiation-sensitive film; Step 3: developing the exposed actinic ray-sensitive or radiation-sensitive film with a developer. The procedure of each of the above steps will be described in detail below.
(工程1:感活性光線性又は感放射線性膜形成工程)
 工程1は、本発明の組成物により、基板上に感活性光線性又は感放射線性膜を形成する工程である。
(Step 1: Actinic ray-sensitive or radiation-sensitive film formation step)
Step 1 is a step of forming an actinic ray- or radiation-sensitive film on a substrate using the composition of the present invention.
 本発明の組成物を用いて基板上に感活性光線性又は感放射線性膜を形成する方法としては、例えば、本発明の組成物を基板上に塗布する方法が挙げられる。
 なお、塗布前に本発明の組成物を必要に応じてフィルター濾過することが好ましい。フィルターのポアサイズは、0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。フィルターは、ポリテトラフルオロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
An example of a method for forming an actinic ray- or radiation-sensitive film on a substrate using the composition of the present invention is a method in which the composition of the present invention is applied onto a substrate.
The composition of the present invention is preferably filtered as necessary before application. The pore size of the filter is preferably 0.1 μm or less, more preferably 0.05 μm or less, and even more preferably 0.03 μm or less. The filter is preferably made of polytetrafluoroethylene, polyethylene, or nylon.
 本発明の組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー又はコーター等の適当な塗布方法により塗布できる。塗布方法は、スピナーを用いたスピン塗布が好ましい。スピナーを用いたスピン塗布をする際の回転数は、1000~3000rpm(rotations per minute)が好ましい。
 本発明の組成物の塗布後、基板を乾燥し、感活性光線性又は感放射線性膜を形成してもよい。なお、必要により、感活性光線性又は感放射線性膜の下層に、各種下地膜(無機膜、有機膜、反射防止膜)を形成してもよい。
The composition of the present invention can be applied by a suitable application method such as a spinner or coater onto a substrate (e.g., silicon, silicon dioxide-coated) such as those used in the manufacture of integrated circuit elements. The application method is preferably spin coating using a spinner. The rotation speed when spin coating using a spinner is preferably 1000 to 3000 rpm (rotations per minute).
After coating the composition of the present invention, the substrate may be dried to form an actinic ray-sensitive or radiation-sensitive film. If necessary, various undercoats (inorganic films, organic films, anti-reflection films) may be formed under the actinic ray-sensitive or radiation-sensitive film.
 乾燥方法としては、例えば、加熱して乾燥する方法が挙げられる。加熱は通常の露光機、及び/又は、現像機に備わっている手段で実施でき、ホットプレート等を用いて実施してもよい。加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。加熱時間は30~1000秒が好ましく、60~800秒がより好ましく、60~600秒が更に好ましい。 The drying method may be, for example, a method of drying by heating. Heating can be performed by a means provided in a normal exposure machine and/or a developing machine, and may also be performed using a hot plate or the like. The heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, and even more preferably 80 to 130°C. The heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, and even more preferably 60 to 600 seconds.
 感活性光線性又は感放射線性膜の膜厚は特に制限されないが、より高精度な微細パターンを形成できる点から、10~120nmが好ましい。なかでも、EUV露光とする場合、感活性光線性又は感放射線性膜の膜厚としては、10~65nmがより好ましく、15~50nmが更に好ましい。ArF液浸露光とする場合、レジスト膜の膜厚としては、10~120nmがより好ましく、15~90nmが更に好ましい。 The thickness of the actinic ray-sensitive or radiation-sensitive film is not particularly limited, but is preferably 10 to 120 nm, since it allows for the formation of fine patterns with higher precision. In particular, when EUV exposure is used, the thickness of the actinic ray-sensitive or radiation-sensitive film is more preferably 10 to 65 nm, and even more preferably 15 to 50 nm. When ArF immersion exposure is used, the thickness of the resist film is more preferably 10 to 120 nm, and even more preferably 15 to 90 nm.
 なお、感活性光線性又は感放射線性膜の上層にトップコート組成物を用いてトップコートを形成してもよい。
 トップコート組成物は、感活性光線性又は感放射線性膜と混合せず、更に感活性光線性又は感放射線性膜上層に均一に塗布できることが好ましい。トップコートは、特に限定されず、従来公知のトップコートを、従来公知の方法によって形成でき、例えば、特開2014-059543号公報の段落[0072]~[0082]の記載に基づいてトップコートを形成できる。
 例えば、特開2013-61648号公報に記載されたような塩基性化合物を含むトップコートを、感活性光線性又は感放射線性膜上に形成することが好ましい。トップコートが含み得る塩基性化合物の具体的な例は、本発明の組成物が含んでいてもよい塩基性化合物が挙げられる。
 トップコートは、エーテル結合、チオエーテル結合、水酸基、チオール基、カルボニル結合、及びエステル結合からなる群より選択される基又は結合を少なくとも1つ含む化合物を含むことも好ましい。
A top coat may be formed on the actinic ray-sensitive or radiation-sensitive film by using a top coat composition.
It is preferable that the top coat composition does not mix with the actinic ray-sensitive or radiation-sensitive film, and can be uniformly applied on the actinic ray-sensitive or radiation-sensitive film. The top coat is not particularly limited, and a conventionally known top coat can be formed by a conventionally known method, for example, a top coat can be formed based on the description in paragraphs [0072] to [0082] of JP2014-059543A.
For example, it is preferable to form a top coat containing a basic compound such as that described in JP 2013-61648 A on an actinic ray-sensitive or radiation-sensitive film. Specific examples of the basic compound that the top coat may contain include the basic compounds that may be contained in the composition of the present invention.
It is also preferred that the top coat contains a compound containing at least one group or bond selected from the group consisting of an ether bond, a thioether bond, a hydroxyl group, a thiol group, a carbonyl bond, and an ester bond.
(工程2:露光工程)
 工程2は、感活性光線性又は感放射線性膜を露光する工程である。
 露光の方法としては、形成した感活性光線性又は感放射線性膜に所定のマスクを通して活性光線又は放射線を照射する方法が挙げられる。
 活性光線又は放射線としては、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び電子線が挙げられ、250nm以下が好ましく、220nm以下がより好ましく、1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、EUV(13.5nm)、X線、及び電子ビームが特に好ましい。
(Step 2: Exposure step)
Step 2 is a step of exposing the actinic ray- or radiation-sensitive film to light.
The exposure method may be a method in which the formed actinic ray-sensitive or radiation-sensitive film is irradiated with actinic rays or radiation through a predetermined mask.
Examples of the actinic ray or radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams, preferably 250 nm or less, more preferably 220 nm or less, and particularly preferably far ultraviolet light having a wavelength of 1 to 200 nm, specifically KrF excimer laser (248 nm), ArF excimer laser (193 nm), F2 excimer laser (157 nm), EUV (13.5 nm), X-rays, and electron beams.
 露光後、現像を行う前にベーク(加熱)を行うことが好ましい。ベークにより露光部の反応が促進され、感度及びパターン形状がより良好となる。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。
 加熱時間は10~1000秒が好ましく、10~180秒がより好ましく、30~120秒が更に好ましい。
 加熱は通常の露光機及び/又は現像機に備わっている手段で実施でき、ホットプレート等を用いて行ってもよい。
 この工程は露光後ベークともいう。
After exposure, it is preferable to perform baking (heating) before development, which promotes the reaction of the exposed area and improves the sensitivity and pattern shape.
The heating temperature is preferably from 80 to 150°C, more preferably from 80 to 140°C, and even more preferably from 80 to 130°C.
The heating time is preferably from 10 to 1,000 seconds, more preferably from 10 to 180 seconds, and even more preferably from 30 to 120 seconds.
Heating can be carried out by a means provided in a normal exposure machine and/or developing machine, and may be carried out using a hot plate or the like.
This step is also called post-exposure bake.
(工程3:現像工程)
 工程3は、現像液を用いて、露光された感活性光線性又は感放射線性膜を現像し、パターンを形成する工程である。
 現像液は、アルカリ現像液であっても、有機溶剤を含有する現像液(以下、有機系現像液ともいう)であってもよい。
(Process 3: Development process)
Step 3 is a step of developing the exposed actinic ray- or radiation-sensitive film with a developer to form a pattern.
The developer may be an alkaline developer or a developer containing an organic solvent (hereinafter, also referred to as an organic developer).
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静置して現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、及び一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)が挙げられる。
 また、現像を行う工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
 現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10~300秒が好ましく、20~120秒がより好ましい。
 現像液の温度は0~50℃が好ましく、15~35℃がより好ましい。
Examples of the developing method include a method of immersing a substrate in a tank filled with a developing solution for a certain period of time (dip method), a method of piling up the developing solution on the substrate surface by surface tension and leaving it to stand for a certain period of time to develop (paddle method), a method of spraying the developing solution on the substrate surface (spray method), and a method of continuously discharging the developing solution while scanning a developing solution discharge nozzle at a constant speed onto a substrate rotating at a constant speed (dynamic dispense method).
After the development step, a step of stopping the development while replacing the solvent with another solvent may be carried out.
The development time is not particularly limited as long as the resin in the unexposed area is sufficiently dissolved, and is preferably from 10 to 300 seconds, more preferably from 20 to 120 seconds.
The temperature of the developer is preferably from 0 to 50°C, and more preferably from 15 to 35°C.
 アルカリ現像液は、アルカリを含むアルカリ水溶液を用いることが好ましい。アルカリ水溶液の種類は特に制限されないが、例えば、テトラメチルアンモニウムヒドロキシドに代表される4級アンモニウム塩、無機アルカリ、1級アミン、2級アミン、3級アミン、アルコールアミン、又は、環状アミン等を含むアルカリ水溶液が挙げられる。中でも、アルカリ現像液は、テトラメチルアンモニウムヒドロキシド(TMAH)に代表される4級アンモニウム塩の水溶液であることが好ましい。アルカリ現像液には、アルコール類、界面活性剤等を適当量添加してもよい。アルカリ現像液のアルカリ濃度は、通常、0.1~20質量%であることが好ましい。アルカリ現像液のpHは、通常、10.0~15.0であることが好ましい。 The alkaline developer is preferably an aqueous alkaline solution containing an alkali. There are no particular limitations on the type of the aqueous alkaline solution, but examples include an aqueous alkaline solution containing a quaternary ammonium salt such as tetramethylammonium hydroxide, an inorganic alkali, a primary amine, a secondary amine, a tertiary amine, an alcohol amine, or a cyclic amine. Of these, the alkaline developer is preferably an aqueous solution of a quaternary ammonium salt such as tetramethylammonium hydroxide (TMAH). Appropriate amounts of alcohols, surfactants, etc. may be added to the alkaline developer. The alkaline concentration of the alkaline developer is preferably 0.1 to 20% by mass. The pH of the alkaline developer is preferably 10.0 to 15.0.
 有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有する現像液であることが好ましい。 The organic developer is preferably a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents.
 上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合してもよい。現像液全体としての含水率は、50質量%未満が好ましく、20質量%未満がより好ましく、10質量%未満が更に好ましく、実質的に水分を含有しないのが特に好ましい。
 有機系現像液に対する有機溶剤の含有量は、現像液の全量に対して、50質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましい。
The above-mentioned solvents may be mixed in combination, or may be mixed with a solvent other than the above or with water. The water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, and particularly preferably substantially free of water.
The content of the organic solvent in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, still more preferably 90% by mass or more and 100% by mass or less, and particularly preferably 95% by mass or more and 100% by mass or less, based on the total amount of the developer.
(他の工程)
 上記パターン形成方法は、工程3の後に、リンス液を用いて洗浄する工程を含むことが好ましい。
(Other processes)
The above pattern formation method preferably includes, after step 3, a step of washing with a rinsing liquid.
 アルカリ現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、例えば、純水が挙げられる。なお、純水には、界面活性剤を適当量添加してもよい。
 リンス液には、界面活性剤を適当量添加してもよい。
The rinse liquid used in the rinse step following the step of developing with an alkaline developer is, for example, pure water, to which an appropriate amount of a surfactant may be added.
A suitable amount of a surfactant may be added to the rinse solution.
 有機系現像液を用いた現像工程の後のリンス工程に用いるリンス液は、パターンを溶解しないものであれば特に制限はなく、一般的な有機溶剤を含む溶液を使用できる。リンス液は、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有するリンス液を用いることが好ましい。 The rinse liquid used in the rinse step following the development step using an organic developer is not particularly limited as long as it does not dissolve the pattern, and a solution containing a general organic solvent can be used. It is preferable to use a rinse liquid containing at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents.
 リンス工程の方法は特に限定されず、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、及び基板表面にリンス液を噴霧する方法(スプレー法)が挙げられる。
 また、パターン形成方法は、リンス工程の後に加熱工程(Post Bake)を含んでいてもよい。本工程により、ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。また、本工程により、レジストパターンがなまされ、パターンの表面荒れが改善される効果もある。リンス工程の後の加熱工程は、通常40~250℃(好ましくは90~200℃)で、通常10秒間~3分間(好ましくは30秒間~120秒間)行う。
The method of the rinsing step is not particularly limited, and examples thereof include a method of continuously discharging a rinsing liquid onto a substrate rotating at a constant speed (spin coating method), a method of immersing a substrate in a tank filled with the rinsing liquid for a certain period of time (dip method), and a method of spraying the rinsing liquid onto the substrate surface (spray method).
The pattern forming method may also include a heating step (Post Bake) after the rinsing step. This step removes the developer and rinsing solution remaining between the patterns and inside the pattern due to baking. This step also has the effect of annealing the resist pattern and improving the surface roughness of the pattern. The heating step after the rinsing step is usually performed at 40 to 250°C (preferably 90 to 200°C) for usually 10 seconds to 3 minutes (preferably 30 seconds to 120 seconds).
 また、形成されたパターンをマスクとして、基板のエッチング処理を実施してもよい。つまり、工程3にて形成されたパターンをマスクとして、基板(又は、下層膜及び基板)を加工して、基板にパターンを形成してもよい。
 基板(又は、下層膜及び基板)の加工方法は特に限定されないが、工程3で形成されたパターンをマスクとして、基板(又は、下層膜及び基板)に対してドライエッチングを行うことにより、基板にパターンを形成する方法が好ましい。ドライエッチングは、酸素プラズマエッチングが好ましい。
Furthermore, the formed pattern may be used as a mask to perform an etching process on the substrate. That is, the pattern formed in step 3 may be used as a mask to process the substrate (or the underlayer film and the substrate) to form a pattern on the substrate.
Although the method for processing the substrate (or the underlayer film and the substrate) is not particularly limited, a method is preferred in which the substrate (or the underlayer film and the substrate) is dry-etched using the pattern formed in step 3 as a mask to form a pattern on the substrate. The dry etching is preferably oxygen plasma etching.
 本発明の組成物、及びパターン形成方法において使用される各種材料(例えば、溶剤、現像液、リンス液、反射防止膜形成用組成物、トップコート形成用組成物等)は、金属等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量は、1質量ppm(parts per million)以下が好ましく、10質量ppb(parts per billion)以下がより好ましく、100質量ppt(parts per trillion)以下が更に好ましく、10質量ppt以下が特に好ましく、1質量ppt以下が最も好ましい。下限は特に制限させず、0質量ppt以上が好ましい。ここで、金属不純物としては、例えば、Na、K、Ca、Fe、Cu、Mg、Al、Li、Cr、Ni、Sn、Ag、As、Au、Ba、Cd、Co、Pb、Ti、V、W、及びZnが挙げられる。 The composition of the present invention and various materials used in the pattern formation method (e.g., solvent, developer, rinse, anti-reflective film forming composition, top coat forming composition, etc.) preferably do not contain impurities such as metals. The content of impurities contained in these materials is preferably 1 mass ppm (parts per million) or less, more preferably 10 mass ppb (parts per billion) or less, even more preferably 100 mass ppt (parts per trillion) or less, particularly preferably 10 mass ppt or less, and most preferably 1 mass ppt or less. There is no particular lower limit, and 0 mass ppt or more is preferable. Here, examples of metal impurities include Na, K, Ca, Fe, Cu, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Pb, Ti, V, W, and Zn.
 各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過が挙げられる。フィルターを用いた濾過の詳細は、国際公開第2020/004306号の段落[0321]に記載される。 An example of a method for removing impurities such as metals from various materials is filtration using a filter. Details of filtration using a filter are described in paragraph [0321] of WO 2020/004306.
 各種材料に含まれる金属等の不純物を低減する方法としては、例えば、各種材料を構成する原料として金属含有量が少ない原料を選択する方法、各種材料を構成する原料に対してフィルター濾過を行う方法、及び装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う方法が挙げられる。 Methods for reducing metal and other impurities contained in various materials include, for example, selecting raw materials with low metal content as the raw materials that make up the various materials, filtering the raw materials that make up the various materials, and performing distillation under conditions that minimize contamination as much as possible, such as lining the inside of the equipment with Teflon (registered trademark).
 フィルター濾過の他、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材とを組み合わせて使用してもよい。吸着材としては、公知の吸着材を使用でき、例えば、シリカゲル及びゼオライト等の無機系吸着材、並びに、活性炭等の有機系吸着材を使用できる。上記各種材料に含まれる金属等の不純物を低減するためには、製造工程における金属不純物の混入を防止する必要がある。製造装置から金属不純物が十分に除去されたかどうかは、製造装置の洗浄に使用された洗浄液中に含まれる金属成分の含有量を測定して確認できる。使用後の洗浄液に含まれる金属成分の含有量は、100質量ppt以下が好ましく、10質量ppt以下がより好ましく、1質量ppt以下が更に好ましい。下限は特に制限させず、0質量ppt以上が好ましい。 In addition to filtration, impurities may be removed using an adsorbent, or a combination of filtration and an adsorbent may be used. As the adsorbent, known adsorbents can be used, for example, inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon. In order to reduce impurities such as metals contained in the various materials described above, it is necessary to prevent the incorporation of metal impurities during the manufacturing process. Whether metal impurities have been sufficiently removed from the manufacturing equipment can be confirmed by measuring the content of metal components contained in the cleaning solution used to clean the manufacturing equipment. The content of metal components contained in the cleaning solution after use is preferably 100 ppt by mass or less, more preferably 10 ppt by mass or less, and even more preferably 1 ppt by mass or less. There is no particular lower limit, and 0 ppt by mass or more is preferable.
 リンス液等の有機系処理液には、静電気の帯電、引き続き生じる静電気放電に伴う、薬液配管及び各種パーツ(フィルター、O-リング、及び、チューブ等)の故障を防止するため、導電性の化合物を添加してもよい。導電性の化合物は特に制限されないが、例えば、メタノールが挙げられる。添加量は特に制限されないが、好ましい現像特性又はリンス特性を維持する点で、10質量%以下が好ましく、5質量%以下がより好ましい。下限は特に制限させず、0.01質量%以上が好ましい。
 薬液配管としては、例えば、SUS(ステンレス鋼)、又は、帯電防止処理の施されたポリエチレン、ポリプロピレン、若しくは、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフルオロアルコキシ樹脂等)で被膜された各種配管を使用できる。フィルター及びO-リングに関しても同様に、帯電防止処理の施されたポリエチレン、ポリプロピレン、又は、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフルオロアルコキシ樹脂等)を使用できる。
An organic processing liquid such as a rinse liquid may contain a conductive compound to prevent breakdown of chemical liquid piping and various parts (filters, O-rings, tubes, etc.) due to static charging and subsequent static discharge. The conductive compound is not particularly limited, but an example thereof is methanol. The amount added is not particularly limited, but from the viewpoint of maintaining favorable development characteristics or rinsing characteristics, it is preferably 10% by mass or less, and more preferably 5% by mass or less. There is no particular lower limit, and 0.01% by mass or more is preferable.
The chemical liquid piping may be made of, for example, stainless steel (SUS), or various piping coated with antistatic polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.). Similarly, the filter and O-ring may be made of antistatic polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.).
[電子デバイスの製造方法]
 本明細書は、上記したパターン形成方法を含む、電子デバイスの製造方法、及びこの製造方法により製造された電子デバイスにも関する。
 本明細書の電子デバイスの好適態様としては、電気電子機器(家電、OA(Office Automation)、メディア関連機器、光学用機器及び通信機器等)に搭載される態様が挙げられる。
[Electronic device manufacturing method]
The present specification also relates to a method for manufacturing an electronic device, including the above-mentioned pattern formation method, and an electronic device manufactured by this manufacturing method.
Preferred embodiments of the electronic device of the present specification include those mounted in electric and electronic equipment (home appliances, OA (Office Automation), media-related equipment, optical equipment, communication equipment, and the like).
[樹脂]
 本発明は、下記一般式(1)で表される繰り返し単位と一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂にも関する。
[resin]
The present invention also relates to a resin containing at least one type of repeating unit represented by the following general formula (1) and at least one type of repeating unit represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
 一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
 本発明の樹脂の詳細については、上述の樹脂(A)についての説明をそのまま援用できる。
 上記樹脂中の全繰り返し単位に対する、上記一般式(2)で表される繰り返し単位の含有比率が、30~60mol%であることが好ましい。
 上記樹脂の重量平均分子量は、4000以上であることが好ましい。
 上記一般式(1)中のAおよび上記一般式(2)中のAが、芳香環炭化水素基であることが好ましい。
For details of the resin of the present invention, the above explanation of the resin (A) can be directly applied.
The content ratio of the repeating unit represented by the above general formula (2) to all repeating units in the above resin is preferably 30 to 60 mol %.
The weight average molecular weight of the resin is preferably 4,000 or more.
It is preferable that A 1 in the above general formula (1) and A 2 in the above general formula (2) are aromatic ring hydrocarbon groups.
[樹脂の製造方法]
 本発明は、少なくとも2種類の単量体を、下記一般式(N)で表されるニトロキシドラジカル、及びラジカル重合開始剤存在下で重合し、下記一般式(3)で表される繰り返し単位を少なくとも2種類含む樹脂(X)を製造する樹脂の製造方法にも関する。
[Method of producing resin]
The present invention also relates to a method for producing a resin by polymerizing at least two types of monomers in the presence of a nitroxide radical represented by the following general formula (N) and a radical polymerization initiator to produce a resin (X) containing at least two types of repeating units represented by the following general formula (3):
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 一般式(N)中、Rは、それぞれ独立に、有機基を表す。2つのRは結合して環を形成してもよい。 In formula (N), R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 一般式(3)中、R31は有機基、ハロゲン原子、又は水酸基を表す。R32は水素原子、有機基又はハロゲン原子を表す。R33は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n3は0~5の整数を表す。n3が2~5の整数である場合、複数のR31は、同一であっても異なっていてもよく、結合して環を形成してもよい。R33とAは結合して環を形成してもよい。
 一般式(3)中の各基については、後述する。
In general formula (3), R 31 represents an organic group, a halogen atom, or a hydroxyl group. R 32 represents a hydrogen atom, an organic group, or a halogen atom. R 33 represents a hydrogen atom or an organic group. A 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
The groups in formula (3) will be described later.
 上述の樹脂(A)の製造方法は特に限定されるものではないが、好適には本発明の樹脂の製造方法により製造され得る。
 なお、本発明の樹脂の製造方法は、樹脂(A)以外の樹脂を製造することもできる。
The method for producing the above-mentioned resin (A) is not particularly limited, but it can be preferably produced by the resin production method of the present invention.
The resin production method of the present invention can also produce resins other than the resin (A).
 以下、かかる樹脂の製造方法における、一般式(3)で表される繰り返し単位を少なくとも2種類含む樹脂(X)を製造する工程(工程(1)ともいう)について説明する。 The following describes the process for producing resin (X) containing at least two types of repeating units represented by general formula (3) (also referred to as process (1)).
〔工程(1)(重合工程)〕
 本発明における工程(1)は、少なくとも2種類の単量体を、上記一般式(N)で表されるニトロキシドラジカル、及びラジカル重合開始剤存在下で重合し、上記一般式(1)で表される繰り返し単位を少なくとも2種類含む樹脂(X)を製造する工程である。
[Step (1) (polymerization step)]
In the step (1) of the present invention, at least two kinds of monomers are polymerized in the presence of a nitroxide radical represented by the above general formula (N) and a radical polymerization initiator to obtain a nitroxide represented by the above general formula (1). This is a step of producing a resin (X) containing at least two kinds of repeating units.
<単量体>
 工程(1)においては、樹脂(X)中の上記一般式(3)で表される繰り返し単位の原料モノマーとして、下記一般式(3m)で表される単量体を少なくとも2種類用いる。
<Monomer>
In the step (1), at least two kinds of monomers represented by the following general formula (3m) are used as raw material monomers for the repeating unit represented by the above general formula (3) in the resin (X).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 一般式(3m)中、R31は有機基、ハロゲン原子、又は水酸基を表す。R32は水素原子、有機基又はハロゲン原子を表す。R33は水素原子又は有機基を表す。
 Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n3は0~5の整数を表す。n3が2~5の整数である場合、複数のR31は、同一であっても異なっていてもよく、結合して環を形成してもよい。R33とAは結合して環を形成してもよい。
In formula (3m), R31 represents an organic group, a halogen atom, or a hydroxyl group, R32 represents a hydrogen atom, an organic group, or a halogen atom, and R33 represents a hydrogen atom or an organic group.
A3 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R31 may be the same or different and may be bonded to form a ring. R33 and A3 may be bonded to form a ring.
 一般式(3m)中、R31、R32、R33、A、及びn3は一般式(3)中のR31、R32、R33、A、及びn3と同義であり、好ましい例も同様である。
 一般式(3)中の各基については、後述する。
In formula (3m), R 31 , R 32 , R 33 , A 3 and n3 have the same meanings as R 31 , R 32 , R 33 , A 3 and n3 in formula (3), and preferred examples thereof are also the same.
The groups in formula (3) will be described later.
 工程(1)においては、所望とする樹脂構造に応じて、上記一般式(3m)で表される単量体以外の単量体を用い得る。 In step (1), a monomer other than the monomer represented by the above general formula (3m) may be used depending on the desired resin structure.
 なお、工程(1)の反応において、単量体は、反応系に一括添加してもよいが、得られる樹脂(X)の分散度や安全性の観点から、分割して添加する多段重合方法であってもよい。 In the reaction of step (1), the monomers may be added to the reaction system all at once, but from the viewpoint of the degree of dispersion of the resulting resin (X) and safety, a multi-stage polymerization method in which the monomers are added in portions may also be used.
<ラジカル重合開始剤>
 上記の工程(1)における反応は、ラジカル重合開始剤を用いる。ラジカル重合開始剤としては、例えば、アゾ系開始剤及びパーオキサイドなどのラジカル開始剤を用いて重合を開始させる。ラジカル開始剤としてはアゾ系開始剤が好ましく、エステル基、シアノ基、カルボキシル基を有するアゾ系開始剤が好ましい。好ましい開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)などが挙げられる。なお、所望により、開始剤を複数回に分けて添加してもよい。
<Radical Polymerization Initiator>
The reaction in the above step (1) uses a radical polymerization initiator. As the radical polymerization initiator, for example, azo-based initiators and peroxides are used to initiate polymerization. As the radical initiator, azo-based initiators are preferred, and azo-based initiators having an ester group, a cyano group, or a carboxyl group are preferred. Preferred initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis(2,4-dimethylvaleronitrile), and dimethyl 2,2'-azobis(2-methylpropionate). If desired, the initiator may be added in multiple batches.
<ニトロキシドラジカル>
 上記の工程(1)における反応は、下記一般式(N)で表されるニトロキシドラジカルの存在下で行う。
 本発明の製造方法において用いるニトロキシドラジカルはフリーラジカルの形で安定に存在する化合物であり、窒素原子に結合する酸素原子上でラジカルになったものである。
<Nitroxide radical>
The reaction in the above step (1) is carried out in the presence of a nitroxide radical represented by the following general formula (N).
The nitroxide radical used in the production method of the present invention is a compound that exists stably in the form of a free radical, and is a radical formed on an oxygen atom bonded to a nitrogen atom.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 一般式(N)中、Rは、それぞれ独立に、有機基を表す。2つのRは結合して環を形成してもよい。 In formula (N), R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
 Rが表す有機基としては、例えば、炭素数1~30の有機基が挙げられ、炭素数1~20の有機基が好ましく、炭素数1~10の有機基がより好ましい。Rが表す有機基としては、特に限定されないが、例えば、アルキル基、アリール基等が挙げられる。 Examples of the organic group represented by R1 include organic groups having 1 to 30 carbon atoms, preferably organic groups having 1 to 20 carbon atoms, and more preferably organic groups having 1 to 10 carbon atoms. The organic group represented by R1 is not particularly limited, and examples thereof include an alkyl group and an aryl group.
 アルキル基としては、炭素数1~6のアルキル基が好ましい。
 アリール基としては、炭素数6~10のフェニル基、ナフチル基が好ましい。
The alkyl group is preferably an alkyl group having 1 to 6 carbon atoms.
The aryl group is preferably a phenyl group or naphthyl group having 6 to 10 carbon atoms.
 Rが表す有機基はさらに置換基を有していてもよい。置換基としては、例えば、アルキル基、アリール基、エステル基、水酸基、カルボニル基、リン酸エステル、カルボキシアルキル基等が挙げられる。 The organic group represented by R 1 may further have a substituent. Examples of the substituent include an alkyl group, an aryl group, an ester group, a hydroxyl group, a carbonyl group, a phosphate ester, and a carboxyalkyl group.
 2つのRは結合して環を形成してもよい。2つのRが結合して形成される環としては、例えば、ピぺリジン環、ピロリジン環等が挙げられる。環を形成するメチレン基が、カルボニル基に置換されていてもよい。
 好ましい一態様として、一般式(N)で表されるニトロキシドラジカルの2つ以上が単結合又は連結基を介して結合していてもよい。
Two R 1 may be bonded to form a ring. Examples of the ring formed by bonding two R 1 include a piperidine ring and a pyrrolidine ring. A methylene group forming the ring may be substituted with a carbonyl group.
In a preferred embodiment, two or more nitroxide radicals represented by formula (N) may be bonded via a single bond or a linking group.
 一般式(N)で表されるニトロキシドラジカルとしては、具体的には、例えば、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル(下記N-1)、2,2,6,6-テトラエチル-1-ピペリジニルオキシラジカル、2,2,6,6-テトラメチル-4-オキソ-1-ピロリジニルオキシラジカル(下記N-2)、2,2,5,5-テトラメチル-1-ピロリジニルオキシラジカル、1,1,3,3-テトラメチル-2-イソインドリニルオキシラジカル、N,N-ジ-t-ブチルアミンオキシラジカルなどがあげられる。本発明で好ましく用いられるのは2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル(下記N-1)である。
 また、後述の化合物N-3~N-9も挙げることができる。
Specific examples of the nitroxide radical represented by the general formula (N) include 2,2,6,6-tetramethyl-1-piperidinyloxy radical (N-1 below), 2,2,6,6-tetraethyl-1-piperidinyloxy radical, 2,2,6,6-tetramethyl-4-oxo-1-pyrrolidinyloxy radical (N-2 below), 2,2,5,5-tetramethyl-1-pyrrolidinyloxy radical, 1,1,3,3-tetramethyl-2-isoindolinyloxy radical, N,N-di-t-butylamineoxy radical, etc. The 2,2,6,6-tetramethyl-1-piperidinyloxy radical (N-1 below) is preferably used in the present invention.
Further examples include compounds N-3 to N-9 described below.
 単量体とニトロキシドラジカルとの割合は単量体1モルに対して、ニトロキシドラジカルを0.001~0.1モルとするのが好ましく、より好ましくは0.01~0.05モルである。両者の割合が上記範囲であると、樹脂の分子量、分子量分布の制御を適切にすることができ、また適切な重合速度にて樹脂を製造することができるため、好ましい。 The ratio of monomer to nitroxide radical is preferably 0.001 to 0.1 moles of nitroxide radical per mole of monomer, and more preferably 0.01 to 0.05 moles. When the ratio of the two is within the above range, the molecular weight and molecular weight distribution of the resin can be appropriately controlled, and the resin can be produced at an appropriate polymerization rate, which is preferable.
 両者の併用割合は特に限定されるものではないが、ニトロキシドラジカル1モルに対して、ラジカル重合開始剤0.1~2モル、好ましくは0.5~1.5モル、さらに好ましくは0.8~1.2モルの範囲から選択できる。
 なお、上記ニトロキシドラジカルは、重合開始剤を兼ねるものではないことが好ましい。具体的には、ニトロキシドラジカルは、重合開始剤と結合して、一体として重合開始剤として機能しないことが好ましい。
The ratio of the two to be used in combination is not particularly limited, but can be selected from the range of 0.1 to 2 moles, preferably 0.5 to 1.5 moles, and more preferably 0.8 to 1.2 moles of the radical polymerization initiator per mole of the nitroxide radical.
It is preferable that the nitroxide radical does not also function as a polymerization initiator. Specifically, it is preferable that the nitroxide radical does not combine with a polymerization initiator and function as a polymerization initiator as a whole.
 スチレン様誘導体とスチレン様誘導体を共重合させて共重合体を得る場合に、従来の重合方法では、ポリマーのラジカル成長末端の停止反応が生じる確率を低く抑えることができなかったため、特定のスチレン様誘導体の導入率を向上させることは難しく、また高分子量体を得ることが難しかった。 When copolymerizing a styrene-like derivative with another styrene-like derivative to obtain a copolymer, conventional polymerization methods were unable to reduce the probability of a termination reaction occurring at the radical growing end of the polymer, making it difficult to increase the incorporation rate of a specific styrene-like derivative and to obtain a high molecular weight substance.
 本発明者らが上記課題を解決すべく検討したところ、ニトロキシドラジカルを介したラジカル重合(NMP:Nitroxide Mediated Polymerization)を行うことによって、特定のスチレン様誘導体の導入率が向上し、高分子量体が得られることが分かった。
 メカニズムの詳細は明らかではないが、NMPで重合することで、ポリマーのラジカル成長末端の停止反応が生じる確率を低く抑えることができるため、特定のスチレン様誘導体の導入率が向上し、高分子量体を得ることが可能になったと推定している。
 したがって、本発明の製造方法によれば、汎用性、適用の範囲が広い共重合体を合成することができる。
As a result of investigations conducted by the present inventors to solve the above problems, it was found that by performing radical polymerization via nitroxide radicals (NMP: Nitroxide Mediated Polymerization), the introduction rate of a specific styrene-like derivative is improved and a high molecular weight substance can be obtained.
Although the details of the mechanism are not clear, it is presumed that polymerization with NMP can reduce the probability of a termination reaction occurring at the radical growing end of the polymer, thereby improving the introduction rate of a specific styrene-like derivative and making it possible to obtain a high molecular weight substance.
Therefore, according to the production method of the present invention, it is possible to synthesize a copolymer that is versatile and has a wide range of applications.
<溶媒>
 上記の工程(1)における反応は、典型的には液相で行う。即ち、上記の反応系は、典型的には、溶媒を更に含んでいる。
 この溶媒としては、各成分を溶解するものである限り特に限定されないが、例えば、アルコール系溶媒、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、環状ラクトン、鎖状又は環状のケトン、アルキレンカーボネート、カルボン酸アルキル、アルコキシ酢酸アルキル、ピルビン酸アルキル、などが挙げられる。その他使用可能な溶媒として、例えば、米国特許出願公開第2008/0248425A1号明細書の[0244]以降に記載されている溶剤などが挙げられる。
<Solvent>
The reaction in the above step (1) is typically carried out in a liquid phase, i.e., the above reaction system typically further contains a solvent.
The solvent is not particularly limited as long as it dissolves each component, and examples thereof include alcohol solvents, alkylene glycol monoalkyl ether carboxylates, alkylene glycol monoalkyl ethers, cyclic lactones, linear or cyclic ketones, alkylene carbonates, alkyl carboxylates, alkyl alkoxyacetates, alkyl pyruvates, etc. Other usable solvents include, for example, the solvents described in U.S. Patent Application Publication No. 2008/0248425 A1, paragraphs [0244] and thereafter.
 アルコール系溶媒としては、-OHを含む溶媒であれば特に限定されないが、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、エチレングリコール、プロピレングリコール、2-メトキシエタノール、1-メトキシ-2-プロパノール、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、ジアセトンアルコール等を挙げることができる。 The alcohol-based solvent is not particularly limited as long as it contains -OH, but examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 1-methoxy-2-propanol, methyl lactate, ethyl lactate, propyl lactate, butyl lactate, diacetone alcohol, etc.
 アルキレングリコールモノアルキルエーテルカルボキシレートとしては、例えば、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートが好ましく挙げられる。 Preferred examples of alkylene glycol monoalkyl ether carboxylates include propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, propylene glycol monomethyl ether propionate, propylene glycol monoethyl ether propionate, ethylene glycol monomethyl ether acetate, and ethylene glycol monoethyl ether acetate.
 アルキレングリコールモノアルキルエーテルとしては、例えば、プロピレングリコールモノメチルエーテル(1-メトキシ-2-プロパノール)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルを好ましく挙げられる。
 なお、アルキレングリコールモノアルキルエーテルは、アルコール系溶媒に包含される。
Preferred examples of the alkylene glycol monoalkyl ether include propylene glycol monomethyl ether (1-methoxy-2-propanol), propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, ethylene glycol monomethyl ether, and ethylene glycol monoethyl ether.
Incidentally, alkylene glycol monoalkyl ethers are included in the alcohol solvents.
 アルコキシプロピオン酸アルキルとしては、例えば、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチル、3-メトキシプロピオン酸エチルを好ましく挙げられる。
 環状ラクトンとしては、例えば、β-プロピオラクトン、β-ブチロラクトン、γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、β-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-カプロラクトン、γ-オクタノイックラクトン、α-ヒドロキシ-γ-ブチロラクトンが好ましく挙げられる。
Preferred examples of the alkyl alkoxypropionate include ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, methyl 3-ethoxypropionate, and ethyl 3-methoxypropionate.
Preferred examples of the cyclic lactone include β-propiolactone, β-butyrolactone, γ-butyrolactone, α-methyl-γ-butyrolactone, β-methyl-γ-butyrolactone, γ-valerolactone, γ-caprolactone, γ-octanoic lactone, and α-hydroxy-γ-butyrolactone.
 鎖状又は環状のケトンとしては、例えば、2-ブタノン(メチルエチルケトン)、3-メチルブタノン、ピナコロン、2-ペンタノン、3-ペンタノン、3-メチル-2-ペンタノン、4-メチル-2-ペンタノン、2-メチル-3-ペンタノン、4,4-ジメチル-2-ペンタノン、2,4-ジメチル-3-ペンタノン、2,2,4,4-テトラメチル-3-ペンタノン、2-ヘキサノン、3-ヘキサノン、5-メチル-3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-メチル-3-ヘプタノン、5-メチル-3-ヘプタノン、2,6-ジメチル-4-ヘプタノン、2-オクタノン、3-オクタノン、2-ノナノン、3-ノナノン、5-ノナノン、2-デカノン、3-デカノン、4-デカノン、5-ヘキセン-2-オン、3-ペンテン-2-オン、シクロペンタノン、2-メチルシクロペンタノン、3-メチルシクロペンタノン、2,2-ジメチルシクロペンタノン、2,4,4-トリメチルシクロペンタノン、シクロヘキサノン、3-メチルシクロヘキサノン、4-メチルシクロヘキサノン、4-エチルシクロヘキサノン、2,2-ジメチルシクロヘキサノン、2,6-ジメチルシクロヘキサノン、2,2,6-トリメチルシクロヘキサノン、シクロヘプタノン、2-メチルシクロヘプタノン、3-メチルシクロヘプタノンが好ましく挙げられる。 Examples of chain or cyclic ketones include 2-butanone (methyl ethyl ketone), 3-methylbutanone, pinacolone, 2-pentanone, 3-pentanone, 3-methyl-2-pentanone, 4-methyl-2-pentanone, 2-methyl-3-pentanone, 4,4-dimethyl-2-pentanone, 2,4-dimethyl-3-pentanone, 2,2,4,4-tetramethyl-3-pentanone, 2-hexanone, 3-hexanone, 5-methyl-3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 2-methyl-3-heptanone, 5-methyl-3-heptanone, 2,6-dimethyl-4-heptanone, 2-octanone, 3-octanone, and 2-nonane. Preferred examples include nonanone, 3-nonanone, 5-nonanone, 2-decanone, 3-decanone, 4-decanone, 5-hexen-2-one, 3-penten-2-one, cyclopentanone, 2-methylcyclopentanone, 3-methylcyclopentanone, 2,2-dimethylcyclopentanone, 2,4,4-trimethylcyclopentanone, cyclohexanone, 3-methylcyclohexanone, 4-methylcyclohexanone, 4-ethylcyclohexanone, 2,2-dimethylcyclohexanone, 2,6-dimethylcyclohexanone, 2,2,6-trimethylcyclohexanone, cycloheptanone, 2-methylcycloheptanone, and 3-methylcycloheptanone.
 アルキレンカーボネートとしては、例えば、プロピレンカーボネート、ビニレンカーボネート、エチレンカーボネート、ブチレンカーボネートが好ましく挙げられる。
 カルボン酸アルキルとしては、例えば、酢酸ブチルが好ましく挙げられる。
Preferred examples of the alkylene carbonate include propylene carbonate, vinylene carbonate, ethylene carbonate, and butylene carbonate.
A preferred example of the alkyl carboxylate is butyl acetate.
 アルコキシ酢酸アルキルとしては、例えば、酢酸-2-メトキシエチル、酢酸-2-エトキシエチル、酢酸-2-(2-エトキシエトキシ)エチル、酢酸-3-メトキシ-3-メチルブチル、酢酸-1-メトキシ-2-プロピルが好ましく挙げられる。
 ピルビン酸アルキルとしては、例えば、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピルが好ましく挙げられる。
Preferred examples of the alkoxy alkyl acetate include 2-methoxyethyl acetate, 2-ethoxyethyl acetate, 2-(2-ethoxyethoxy)ethyl acetate, 3-methoxy-3-methylbutyl acetate, and 1-methoxy-2-propyl acetate.
Preferred examples of the alkyl pyruvate include methyl pyruvate, ethyl pyruvate, and propyl pyruvate.
 これら溶媒は、単独で用いても2種以上を混合して用いてもよい。 These solvents may be used alone or in combination of two or more.
 上記の重合反応は、窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。また、必要に応じて、連鎖移動剤(例えば、アルキルメルカプタンなど)の存在下で重合を行ってもよい。 The above polymerization reaction is preferably carried out in an inert gas atmosphere such as nitrogen or argon. If necessary, the polymerization may be carried out in the presence of a chain transfer agent (e.g., alkyl mercaptan, etc.).
 反応系のモノマー濃度は、好ましくは20~70質量%であり、より好ましくは25~50質量%である。
 反応温度は、通常は10℃~150℃であり、好ましくは30℃~120℃であり、更に好ましくは40~100℃である。
 反応時間は、通常は1~48時間であり、好ましくは1~24時間であり、更に好ましくは1~12時間である。
The monomer concentration in the reaction system is preferably from 20 to 70% by mass, and more preferably from 25 to 50% by mass.
The reaction temperature is usually from 10°C to 150°C, preferably from 30°C to 120°C, and more preferably from 40°C to 100°C.
The reaction time is usually from 1 to 48 hours, preferably from 1 to 24 hours, and more preferably from 1 to 12 hours.
 好ましい一態様として、上記重合工程に溶媒が使用され、上記溶媒の全量を基準とした、アルコール系溶媒の含有量が20質量%以上であることが好ましい。
 上記溶媒の全量を基準とした、アルコール系溶媒の含有量が50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることさらに好ましい。
In a preferred embodiment, a solvent is used in the polymerization step, and the content of the alcohol-based solvent is preferably 20 mass % or more based on the total amount of the solvent.
The content of the alcohol solvent is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more, based on the total amount of the above solvents.
 上記アルコール系溶媒が、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、プロピレングリコール、2-メトキシエタノール、1-メトキシ-2-プロパノール、乳酸メチル、乳酸エチル、及びジアセトンアルコールからなる群より選択される少なくとも一つであることが好ましい。 The alcohol solvent is preferably at least one selected from the group consisting of methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, 2-methoxyethanol, 1-methoxy-2-propanol, methyl lactate, ethyl lactate, and diacetone alcohol.
<樹脂(X)>
 本発明の樹脂の製造方法により製造される樹脂(X)について説明する。樹脂(X)は、下記一般式(3)で表される繰り返し単位を少なくとも2種類含む。
<Resin (X)>
The resin (X) produced by the resin producing method of the present invention will be described below. The resin (X) contains at least two kinds of repeating units represented by the following general formula (3).
(一般式(3)で表される繰り返し単位) (Repeating unit represented by general formula (3))
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 一般式(3)中、R31は有機基、ハロゲン原子、又は水酸基を表す。R32は水素原子、有機基又はハロゲン原子を表す。R33は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n3は0~5の整数を表す。n3が2~5の整数である場合、複数のR31は、同一であっても異なっていてもよく、結合して環を形成してもよい。R33とAは結合して環を形成してもよい。 In general formula (3), R 31 represents an organic group, a halogen atom, or a hydroxyl group. R 32 represents a hydrogen atom, an organic group, or a halogen atom. R 33 represents a hydrogen atom or an organic group. A 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
 一般式(3)中、R31は有機基、ハロゲン原子、又は水酸基を表す。
 R31が表す有機基としては、特に限定されないが、例えば上記置換基Tとして挙げた基中の有機基が挙げられる。
 有機基としては、例えば、炭素数1~30の有機基が挙げられ、炭素数1~20の有機基が好ましく、炭素数1~10の有機基がより好ましい。
 有機基は、ヘテロ原子(例えば、窒素原子、酸素原子、硫黄原子、ケイ素原子等)を有していても良い。
 R31が表す有機基としては、上述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、上述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R31が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられる。
In formula (3), R 31 represents an organic group, a halogen atom, or a hydroxyl group.
The organic group represented by R 31 is not particularly limited, but examples thereof include the organic groups exemplified above as the substituent T.
The organic group may, for example, be an organic group having 1 to 30 carbon atoms, preferably an organic group having 1 to 20 carbon atoms, and more preferably an organic group having 1 to 10 carbon atoms.
The organic group may have a heteroatom (for example, a nitrogen atom, an oxygen atom, a sulfur atom, a silicon atom, etc.).
The organic group represented by R 31 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 31 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 一般式(3)中、R32は水素原子、有機基又はハロゲン原子を表す。 In formula (3), R 32 represents a hydrogen atom, an organic group or a halogen atom.
 R32が表す有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アシル基、又はアルキルカルボニルオキシ基が挙げられる。
 アルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 シクロアルキル基は、単環型であってもよく、多環型であってもよい。このシクロアルキル基の炭素数は、好ましくは3~8である。
 アリール基は、フェニル基等の炭素数6~10のアリール基が好ましい。
 アシル基は、炭素数1~20のアシル基が好ましい。
 アルキルカルボニルオキシ基におけるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
Examples of the organic group represented by R 32 include an alkyl group, a cycloalkyl group, an aryl group, an acyl group, and an alkylcarbonyloxy group.
The alkyl group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
The cycloalkyl group may be either monocyclic or polycyclic, and preferably has 3 to 8 carbon atoms.
The aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group.
The acyl group is preferably an acyl group having 1 to 20 carbon atoms.
The alkyl group in the alkylcarbonyloxy group may be linear or branched. The number of carbon atoms in the alkyl group is not particularly limited, but is preferably 1 to 10, and more preferably 1 to 3.
 R32が表すハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。 Examples of the halogen atom represented by R 32 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 R33は水素原子又は有機基を表す。R33が表す有機基としては、R32としての有機基と同様のものを挙げることができ、好ましい範囲も同様である。 R 33 represents a hydrogen atom or an organic group. Examples of the organic group represented by R 33 include the same organic groups as those represented by R 32 , and the preferred ranges are also the same.
 一般式(3)中、Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。
 Aが表す芳香族炭化水素基としては、例えば、炭素数6~15個のアリーレン基を挙げることができ、具体的には、フェニレン基、ナフチレン基、アントリレン基等を好ましい例として挙げることができる。
 Aが表す芳香族ヘテロ環基としては、例えば、炭素数2~15個のヘテロアリーレン基を挙げることができ、5員環~10員環のものを挙げることができ、具体的には、フリル基、チエニル基、チアゾリル基、ピロリル基、オキサゾリル基、ピリジル基、ベンゾフラニル基、ベンゾチエニル基、キノリニル基、カルバゾリル基等から任意の水素原子を1つ除いた基が挙げられる。
In formula (3), A3 represents an aromatic hydrocarbon group or an aromatic heterocyclic group.
The aromatic hydrocarbon group represented by A3 may be, for example, an arylene group having 6 to 15 carbon atoms, and specific preferred examples thereof include a phenylene group, a naphthylene group, and an anthrylene group.
Examples of the aromatic heterocyclic group represented by A3 include heteroarylene groups having 2 to 15 carbon atoms, and include those having 5 to 10 members. Specific examples include groups in which any one hydrogen atom has been removed from a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, a carbazolyl group, and the like.
 Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。 A3 is preferably an aromatic hydrocarbon group, more preferably a phenylene group.
 一般式(3)中、n3は0~5の整数を表す。n3は1又は2であることが好ましい。 In general formula (3), n3 represents an integer from 0 to 5. It is preferable that n3 is 1 or 2.
<樹脂(X1)>
 本発明の樹脂の製造方法において、上記樹脂(X)が、下記一般式(4)で表される繰り返し単位、及び一般式(5)で表される繰り返し単位をそれぞれ少なくとも1種類含むことが、好ましい態様の1つとして挙げられる。以下、当該樹脂を樹脂(X1)ともいう。
<Resin (X1)>
In one preferred embodiment of the method for producing a resin of the present invention, the resin (X) contains at least one type of repeating unit represented by the following general formula (4) and at least one type of repeating unit represented by the following general formula (5). Hereinafter, this resin is also referred to as resin (X1).
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 一般式(4)中、R41は有機基、ハロゲン原子、又は水酸基を表す。R42は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n4は0~5の整数を表す。n4が2~5の整数である場合、複数のR41は、同一であっても異なっていてもよく、結合して環を形成してもよい。R42とAは結合して環を形成してもよい。
 一般式(5)中、R51は有機基、ハロゲン原子、又は水酸基を表す。R52は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n5は0~5の整数を表す。n5が2~5の整数である場合、複数のR51は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (4), R 41 represents an organic group, a halogen atom, or a hydroxyl group. R 42 represents a hydrogen atom or an organic group. A 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 41 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
In general formula (5), R 51 represents an organic group, a halogen atom, or a hydroxyl group. R 52 represents an organic group or a halogen atom. A 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 51 may be the same or different and may be bonded to form a ring.
 芳香環基が結合する主鎖中の炭素原子が置換基を有するスチレン様誘導体(以下、α位置換スチレン様誘導体ともいう)と、芳香環基が結合する主鎖中の炭素原子が置換基を有しないスチレン様誘導体(以下α位無置換スチレン様誘導体ともいう)とを共重合する場合、通常のラジカル重合では、α位置換スチレン様誘導体の立体障害が大きく、天井温度が低いため、重合性が悪く、α位置換スチレン様誘導体の導入率が低い、また高分子量体が得られにくいという問題があった。
 また、α位置換スチレン様誘導体のホモポリマーは、アニオン重合やカチオン重合を用いて合成することができるが、加熱により主鎖の開裂が起こり、熱安定性に劣るという問題があった。
When a styrene-like derivative in which the carbon atom in the main chain to which an aromatic ring group is bonded has a substituent (hereinafter also referred to as an α-substituted styrene-like derivative) is copolymerized with a styrene-like derivative in which the carbon atom in the main chain to which an aromatic ring group is bonded has no substituent (hereinafter also referred to as an α-unsubstituted styrene-like derivative), problems have arisen in that the steric hindrance of the α-substituted styrene-like derivative is large and the ceiling temperature is low, resulting in poor polymerizability, a low introduction rate of the α-substituted styrene-like derivative, and difficulty in obtaining a high molecular weight substance in ordinary radical polymerization.
Furthermore, homopolymers of α-substituted styrene-like derivatives can be synthesized by anionic polymerization or cationic polymerization, but have the problem of poor thermal stability, since the main chain is cleaved by heating.
 本発明者らが上記課題を解決すべく検討したところ、ニトロキシドラジカルを介したラジカル重合(NMP:Nitroxide Mediated Polymerization)を行うことによって、α位置換スチレン様誘導体の導入率が向上し、高分子量体が得られることが分かった。
 メカニズムの詳細は明らかではないが、NMPで重合することで、ポリマーのラジカル成長末端の停止反応が生じる確率を低く抑えることができ、樹脂(X1)の製造に際して、α位無置換スチレン様誘導体とα位置換スチレン誘導体との交互共重合を進行させることができるため、特に、α位置換スチレン様誘導体の導入率が向上し、高分子量体を得ることが可能になったと推定している。
As a result of investigations conducted by the present inventors to solve the above problems, it was found that by performing radical polymerization via a nitroxide radical (NMP: Nitroxide Mediated Polymerization), the introduction rate of an α-substituted styrene-like derivative can be improved and a high molecular weight product can be obtained.
Although the details of the mechanism are not clear, it is presumed that by carrying out polymerization with NMP, it is possible to suppress the probability of a termination reaction of the radical growing end of the polymer to a low level, and it is possible to proceed with alternating copolymerization of an α-unsubstituted styrene-like derivative and an α-substituted styrene derivative in the production of resin (X1), thereby improving the introduction rate of the α-substituted styrene-like derivative in particular and enabling the production of a high molecular weight substance.
 一般式(4)中、R41は、一般式(3)中のR31と同義である。
 R41が表す有機基としては、上述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、上述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R41が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (4), R 41 has the same meaning as R 31 in formula (3).
The organic group represented by R 41 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 41 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
 一般式(4)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
 すなわち、Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。
A4 in formula (4) has the same meaning as A3 in formula (3), and preferred examples are also the same.
That is, A4 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
 一般式(4)中のn4は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n4 in general formula (4) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
 一般式(4)で表される繰り返し単位に対応するモノマーの具体例としては、上述の一般式(1)で表される繰り返し単位に対応するモノマーの具体例が挙げられる。 Specific examples of monomers corresponding to the repeating unit represented by general formula (4) include specific examples of monomers corresponding to the repeating unit represented by general formula (1) above.
 樹脂(X1)が有する一般式(4)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (4) contained in resin (X1) may be of one type or of two or more types.
 樹脂(X1)中の全繰り返し単位に対する、一般式(4)で表される繰り返し単位の含有比率は、特に限定されないが、例えば40~70mol%とすることができる。 The content ratio of the repeating unit represented by general formula (4) to all repeating units in resin (X1) is not particularly limited, but can be, for example, 40 to 70 mol %.
 一般式(5)中、R51は、一般式(3)中のR31と同義である。
 R51が表す有機基としては、上述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、上述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R51が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (5), R 51 has the same meaning as R 31 in formula (3).
The organic group represented by R 51 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described below.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 51 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
 一般式(5)中のR52としての有機基及びハロゲン原子は、一般式(1)中のR12としての有機基及びハロゲン原子が挙げられ、好ましい範囲も同様である。
 R52はアルキル基又はハロゲン原子であることが好ましく、アルキル基であることがより好ましく、メチル基であることがさらに好ましい。
The organic group and halogen atom as R 52 in the general formula (5) include the organic group and halogen atom as R 12 in the general formula (1), and the preferred ranges are also the same.
R 52 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
 一般式(5)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
 すなわち、Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。
A5 in formula (5) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
That is, A5 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
 なお、樹脂(X1)は、上記一般式(4)中のAおよび一般式(5)中のAが、芳香環炭化水素基であることが好ましい。 In the resin (X1), A4 in the general formula (4) and A5 in the general formula (5) are preferably aromatic ring hydrocarbon groups.
 一般式(5)中のn5は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n5 in general formula (5) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
 一般式(5)で表される繰り返し単位に対応するモノマーの具体例としては、上述の一般式(2)で表される繰り返し単位に対応するモノマーの具体例が挙げられる。 Specific examples of monomers corresponding to the repeating unit represented by general formula (5) include specific examples of monomers corresponding to the repeating unit represented by general formula (2) described above.
 樹脂(X1)が有する一般式(5)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (5) contained in resin (X1) may be of one type or of two or more types.
 樹脂(X1)中の全繰り返し単位に対する、一般式(5)で表される繰り返し単位の含有比率は、30~60mol%であることが好ましく、40~55mol%であることがより好ましく、より好ましくは40~53mol%である。 The content ratio of the repeating unit represented by general formula (5) to all repeating units in resin (X1) is preferably 30 to 60 mol%, more preferably 40 to 55 mol%, and even more preferably 40 to 53 mol%.
 樹脂(X1)は、上述の一般式(4)で表される繰り返し単位、及び一般式(5)で表される繰り返し単位以外の繰り返し単位を有していてもよい。その他の繰り返し単位としては、上述の樹脂(A)において記載した酸分解性基を有する繰り返し単位や、その他の繰り返し単位が挙げられる。 Resin (X1) may have a repeating unit other than the repeating unit represented by the general formula (4) and the repeating unit represented by the general formula (5). Examples of the other repeating units include the repeating units having an acid-decomposable group described in the above resin (A) and other repeating units.
 樹脂(X1)が有するいずれかの繰り返し単位中に酸分解性基を有することにより、すなわち、樹脂(X1)の原料モノマーとして、酸分解性基を有する単量体を用いることにより、上述の樹脂(A)とすることができる。 The above-mentioned resin (A) can be obtained by having an acid-decomposable group in any of the repeating units of the resin (X1), i.e., by using a monomer having an acid-decomposable group as the raw material monomer of the resin (X1).
 本発明の樹脂の製造方法において、上記樹脂(X)は、下記一般式(41)で表される繰り返し単位、及び一般式(51)で表される繰り返し単位をそれぞれ少なくとも1種類含む樹脂(P1)を経由して製造されることが、好ましい別の態様の1つとして挙げられる。
 樹脂(P1)の製造工程は、上述の樹脂(X1)の製造工程である「工程(1)」と同様である。
 樹脂(P1)が後述の(工程(1)の他の)他の工程に供されないのであれば、樹脂(P1)は樹脂(X)である。
In another preferred embodiment of the resin production method of the present invention, the resin (X) is produced via a resin (P1) containing at least one type of repeating unit represented by the following general formula (41) and at least one type of repeating unit represented by the following general formula (51).
The production process of resin (P1) is the same as "step (1)" which is the production process of resin (X1) described above.
If the resin (P1) is not subjected to any other step (other than step (1)) described below, the resin (P1) is the resin (X).
<樹脂(P1)>
 <下記一般式(41)で表される繰り返し単位、及び一般式(51)で表される繰り返し単位をそれぞれ少なくとも1種類含む樹脂(以下、樹脂(P1)ともいう)>
<Resin (P1)>
<Resin containing at least one repeating unit represented by the following general formula (41) and at least one repeating unit represented by the following general formula (51) (hereinafter, also referred to as resin (P1))>
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 一般式(41)中、R411は有機基又はハロゲン原子を表す。R42は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n4は0~5の整数を表す。n4が2~5の整数である場合、複数のR411は、同一であっても異なっていてもよく、結合して環を形成してもよい。R42とAは結合して環を形成してもよい。
 一般式(51)中、R511は有機基又はハロゲン原子を表す。R52は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n5は0~5の整数を表す。n5が2~5の整数である場合、複数のR511は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (41), R 411 represents an organic group or a halogen atom. R 42 represents a hydrogen atom or an organic group. A 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 411 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
In general formula (51), R 511 represents an organic group or a halogen atom. R 52 represents an organic group or a halogen atom. A 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 511 may be the same or different and may be bonded to form a ring.
 一般式(41)中、R411の有機基は、一般式(1)中のR11の有機基と同義である。
 R411が表す有機基としては、上述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、上述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R411が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (41), the organic group of R 411 has the same meaning as the organic group of R 11 in formula (1).
The organic group represented by R 411 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid as described above. It is also preferably a group represented by any one of the general formulae (16) to (17) described later.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 411 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
 一般式(41)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
 すなわち、Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。
A4 in formula (41) has the same meaning as A3 in formula (3), and preferred examples are also the same.
That is, A4 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
 一般式(41)中のn4は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n4 in general formula (41) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
 一般式(41)で表される繰り返し単位に対応するモノマーの具体例としては、上述の一般式(1)で表される繰り返し単位に対応するモノマーの具体例において、一般式(41)で表される繰り返し単位に対応するモノマーの具体例に相当するものが挙げられる。 Specific examples of monomers corresponding to the repeating unit represented by general formula (41) include those corresponding to the specific examples of monomers corresponding to the repeating unit represented by general formula (41) among the specific examples of monomers corresponding to the repeating unit represented by general formula (1) described above.
 樹脂(P1)が有する一般式(41)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (41) contained in resin (P1) may be of one type or of two or more types.
 樹脂(P1)中の全繰り返し単位に対する、一般式(41)で表される繰り返し単位の含有比率は、特に限定されないが、例えば40~70mol%とすることができる。 The content ratio of the repeating unit represented by general formula (41) to all repeating units in resin (P1) is not particularly limited, but can be, for example, 40 to 70 mol %.
 一般式(51)中、R511の有機基は、一般式(2)中のR21の有機基と同義である。
 R511が表す有機基としては、上述の酸分解性基であってもよく、フェノール性水酸基又はカルボキシ基が、上述の酸の作用により脱離する基で保護された構造を有することが好ましい。また、後述の一般式(16)~(17)のいずれかで表される基であることも好ましい。
 また、有機基は、後述のR61としての塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)であってもよい。
 R511が表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
In formula (51), the organic group of R 511 has the same meaning as the organic group of R 21 in formula (2).
The organic group represented by R 511 may be the above-mentioned acid-decomposable group, and preferably has a structure in which a phenolic hydroxyl group or a carboxyl group is protected by a group that is eliminated by the action of an acid. It is also preferably a group represented by any one of the general formulae (16) to (17) described below.
The organic group may also be a group that is decomposed by a base as R 61 described below to generate an --OH group or a --COOH group (also referred to as a "base-decomposable group").
Examples of the halogen atom represented by R 511 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom and a chlorine atom being preferred.
 一般式(51)中のR52としての有機基及びハロゲン原子は、一般式(2)中のR22として有機基及びハロゲン原子が挙げられる。
 R52はアルキル基又はハロゲン原子であることが好ましく、アルキル基であることがより好ましく、メチル基であることがさらに好ましい。
The organic group and halogen atom as R 52 in the general formula (51) include the organic group and halogen atom as R 22 in the general formula (2).
R 52 is preferably an alkyl group or a halogen atom, more preferably an alkyl group, and further preferably a methyl group.
 一般式(51)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
 すなわち、Aは、芳香族炭化水素基であることが好ましく、フェニレン基であることがより好ましい。
A5 in formula (51) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
That is, A5 is preferably an aromatic hydrocarbon group, and more preferably a phenylene group.
 なお、樹脂(P1)は、上記一般式(41)中のAおよび一般式(51)中のAが、芳香環炭化水素基であることが好ましい。 In the resin (P1), A4 in the general formula (41) and A5 in the general formula (51) are preferably aromatic ring hydrocarbon groups.
 一般式(51)中のn5は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n5 in general formula (51) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
 一般式(51)で表される繰り返し単位に対応するモノマーの具体例としては、上述の一般式(2)で表される繰り返し単位に対応するモノマーの具体例において、一般式(51)で表される繰り返し単位に対応するモノマーの具体例に相当するものが挙げられる。 Specific examples of monomers corresponding to the repeating unit represented by general formula (51) include those corresponding to the specific examples of monomers corresponding to the repeating unit represented by general formula (51) among the specific examples of monomers corresponding to the repeating unit represented by general formula (2) described above.
 樹脂(P1)が有する一般式(51)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (51) contained in resin (P1) may be of one type or of two or more types.
 樹脂(P1)中の全繰り返し単位に対する、一般式(51)で表される繰り返し単位の含有比率は、30~60mol%であることが好ましく、40~55mol%であることがより好ましく、より好ましくは40~53mol%である。 The content ratio of the repeating unit represented by general formula (51) to all repeating units in resin (P1) is preferably 30 to 60 mol%, more preferably 40 to 55 mol%, and even more preferably 40 to 53 mol%.
 樹脂(P1)は、上述の一般式(41)で表される繰り返し単位、及び一般式(51)で表される繰り返し単位以外の繰り返し単位を有していてもよい。その他の繰り返し単位としては、上述の樹脂(A)において記載した酸分解性基を有する繰り返し単位や、その他の繰り返し単位が挙げられる。 Resin (P1) may have a repeating unit other than the repeating unit represented by the general formula (41) and the repeating unit represented by the general formula (51). Examples of the other repeating units include the repeating units having an acid-decomposable group described in the above resin (A) and other repeating units.
 樹脂(P1)が有するいずれかの繰り返し単位中に酸分解性基を有することにより、すなわち、樹脂(P1)の原料モノマーとして、酸分解性基を有する単量体を用いることにより、上述の樹脂(A)とすることができる。 The above-mentioned resin (A) can be obtained by having an acid-decomposable group in any of the repeating units of the resin (P1), i.e., by using a monomer having an acid-decomposable group as the raw material monomer of the resin (P1).
<樹脂(P2)>
 また、本発明の樹脂の製造方法において、上記樹脂(X)は、下記一般式(6)で表される繰り返し単位を少なくとも2種類含む、又は、上記一般式(6)で表される繰り返し単位、及び上記一般式(6)で表される繰り返し単位とは異なる下記一般式(7)で表される繰り返し単位をそれぞれ少なくとも1種類含む樹脂(P2)を経由して製造されることが、好ましい別の態様の1つとして挙げられる。以下、当該樹脂を樹脂(P2)ともいう。
<Resin (P2)>
In another preferred embodiment of the resin production method of the present invention, the resin (X) is produced via a resin (P2) that contains at least two kinds of repeating units represented by the following general formula (6), or that contains at least one kind of repeating unit represented by the above general formula (6) and at least one kind of repeating unit represented by the following general formula (7) different from the repeating unit represented by the above general formula (6). Hereinafter, this resin is also referred to as resin (P2).
 樹脂(P2)の製造工程は、上述の樹脂(X1)の製造工程である「工程(1)」と同様である。
 樹脂(P2)が後述の(工程(1)の他の)他の工程に供されないのであれば、樹脂(P2)は樹脂(X)である。
The production process of resin (P2) is the same as "step (1)" which is the production process of resin (X1) described above.
If resin (P2) is not subjected to any other step (other than step (1)) described below, resin (P2) is resin (X).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 一般式(6)中、R61は塩基で分解して、-OH基、又は-COOH基を生成する基(「塩基分解性基」ともいう)を表す。R62は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n6は1~5の整数を表す。n6が2~5の整数である場合、複数のR61は、同一であっても異なっていてもよい。
 一般式(7)中、R71は有機基又はハロゲン原子を表す。R72は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n7は0~5の整数を表す。n7が2~5の整数である場合、複数のR71は、同一であっても異なっていてもよく、結合して環を形成してもよい。
In general formula (6), R 61 represents a group that is decomposed by a base to produce an -OH group or a -COOH group (also referred to as a "base-decomposable group"). R 62 represents a hydrogen atom, an organic group, or a halogen atom. A 6 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n6 represents an integer of 1 to 5. When n6 is an integer of 2 to 5, multiple R 61 may be the same or different.
In general formula (7), R 71 represents an organic group or a halogen atom. R 72 represents a hydrogen atom, an organic group, or a halogen atom. A 7 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n7 represents an integer of 0 to 5. When n7 is an integer of 2 to 5, multiple R 71 may be the same or different and may be bonded to form a ring.
 塩基分解性基を有するモノマーは、リビングアニオン重合では、分解してしまうため重合できない。また、リビングカチオン重合では、ルイス酸触媒として主に金属系化合物が使用されるため、金属混入の懸念から、使用用途が限られてしまうという問題があった。さらに、反応系が酸性となるため、原料モノマーとして酸分解性基を有するモノマーを使用しにくかった。 Monomers with base-decomposable groups cannot be polymerized in living anionic polymerization because they decompose. In addition, living cationic polymerization mainly uses metal compounds as Lewis acid catalysts, which limits the applications due to concerns about metal contamination. Furthermore, because the reaction system is acidic, it is difficult to use monomers with acid-decomposable groups as raw material monomers.
 本発明者らが上記課題を解決すべく検討したところ、ニトロキシドラジカルを介したラジカル重合(NMP)を行うことによって、塩基分解性基を有するモノマーを重合できることが分かった。また、塩基分解性基を有するモノマーと酸分解性基を有するモノマーとを重合できることが分かった。 The inventors conducted research to solve the above problems and found that it is possible to polymerize a monomer having a base-decomposable group by performing radical polymerization (NMP) via a nitroxide radical. It was also found that it is possible to polymerize a monomer having a base-decomposable group and a monomer having an acid-decomposable group.
 一般式(6)中、R61は塩基で分解して、-OH基、又は-COOH基を生成する基を表す。具体的には、R61が、下記一般式(8)~(15)のいずれかで表される基であることが好ましい。 In the general formula (6), R 61 represents a group that is decomposed by a base to generate an —OH group or a —COOH group. Specifically, R 61 is preferably a group represented by any one of the following general formulae (8) to (15).
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 一般式(8)~(15)中、R91、R101、R111、R121、R141、及びR151は、それぞれ独立に、有機基を表し、R81、及びR131は、それぞれ独立に、水素原子又は有機基を表す。*はAとの結合位置を表す。 In formulae (8) to (15), R 91 , R 101 , R 111 , R 121 , R 141 and R 151 each independently represent an organic group, R 81 and R 131 each independently represent a hydrogen atom or an organic group. * represents the bonding position with A 6 .
 R81、R91、R101、R111、R121、R131、R141、及びR151が表す有機基としては、アルキル基、シクロアルキル基、アリール基が挙げられる。
 アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基等の炭素数1~5のアルキル基が好ましい。
 シクロアルキル基としては、シクロペンチル基、及びシクロヘキシル基等の単環のシクロアルキル基、並びにノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及びアダマンチル基等の多環のシクロアルキル基が好ましい。
 アリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基等が挙げられる。
The organic group represented by R81 , R91 , R101 , R111 , R121 , R131 , R141 , and R151 includes an alkyl group, a cycloalkyl group, and an aryl group.
The alkyl group is preferably an alkyl group having 1 to 5 carbon atoms, such as a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, or a t-butyl group.
The cycloalkyl group is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, or a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group.
The aryl group is preferably an aryl group having 6 to 10 carbon atoms, such as a phenyl group or a naphthyl group.
 R81、R91、R101、R111、R121、R131、R141、及びR151が表す有機基はさらに置換基を有していてもよく、置換基としてはフッ素原子等のハロゲン原子が好ましい。 The organic groups represented by R81 , R91 , R101 , R111 , R121 , R131 , R141 and R151 may further have a substituent, and the substituent is preferably a halogen atom such as a fluorine atom.
 R81、R91、R101、R111、R121、R131、R141、及びR151は、炭素数1~3のアルキル基、トリフルオロメチル基、又はフェニル基が好ましい。 R 81 , R 91 , R 101 , R 111 , R 121 , R 131 , R 141 and R 151 are preferably an alkyl group having 1 to 3 carbon atoms, a trifluoromethyl group or a phenyl group.
 R61は、一般式(8)~(11)のいずれかで表される基であることが好ましい。 R 61 is preferably a group represented by any one of general formulas (8) to (11).
 一般式(6)中のR62は、一般式(3)中のR32と同義であり、好ましい例も同様である。
 一般式(6)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
R 62 in formula (6) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
A6 in formula (6) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
 一般式(6)中のn6は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n6 in general formula (6) has the same meaning as n3 in general formula (3), and preferred examples are also the same.
 なお、上記一般式(8)におけるR81は、Aと結合して環を形成せず、上記一般式(12)におけるR121は、Aと結合して環を形成しない。 In addition, R 81 in the above general formula (8) does not bond with A 6 to form a ring, and R 121 in the above general formula (12) does not bond with A 6 to form a ring.
 一般式(6)で表される繰り返し単位に対応するモノマーの具体例を以下に示すが、本発明はこれに限定されるものではない。 Specific examples of monomers corresponding to the repeating unit represented by general formula (6) are shown below, but the present invention is not limited to these.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 樹脂(P2)が有する一般式(6)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 The repeating unit represented by general formula (6) contained in resin (P2) may be of one type or of two or more types.
 樹脂(P2)中の全繰り返し単位に対する、一般式(6)で表される繰り返し単位の含有比率は、特に限定されないが、例えば50~100mol%とすることができる。 The content ratio of the repeating unit represented by general formula (6) to all repeating units in resin (P2) is not particularly limited, but can be, for example, 50 to 100 mol %.
 一般式(7)中、R71は、一般式(3)中のR11と同義である。
 R71は、酸分解して-OH基、又は-COOH基を生成する基であることが好ましく、下記一般式(16)~(17)のいずれかで表される基であることがより好ましい。
In formula (7), R 71 has the same meaning as R 11 in formula (3).
R 71 is preferably a group that generates an --OH group or a --COOH group upon acid decomposition, and is more preferably a group represented by any one of the following general formulas (16) to (17).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 一般式(16)中、R161~R163は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R161~R163は互いに連結して環を形成しても良い。
 一般式(17)中、R171、R172は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R173は、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R171~R173は互いに連結して環を形成しても良い。
 *はAとの結合位置を表す。
In formula (16), R 161 to R 163 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 161 to R 163 may be linked to each other to form a ring.
In formula (17), R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 171 to R 173 may be linked together to form a ring.
* indicates the bonding position with A7 .
 R161~R163が表すアルキル基としては、直鎖状であっても、分岐鎖状であってもよい、炭素数1~8のアルキル基が挙げられ、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~4のアルキル基が好ましい。 The alkyl group represented by R 161 to R 163 may be linear or branched, and may include alkyl groups having 1 to 8 carbon atoms. Preferred are alkyl groups having 1 to 4 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, and a t-butyl group.
 R161~R163が表すシクロアルキル基としては、炭素数3~10の単環又は多環のシクロアルキル基が挙げられ、炭素数4~6の単環のシクロアルキル基が好ましく、シクロペンチル基、又はシクロヘキシル基が好ましい。 The cycloalkyl group represented by R 161 to R 163 may be a monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms, preferably a monocyclic cycloalkyl group having 4 to 6 carbon atoms, and more preferably a cyclopentyl group or cyclohexyl group.
 R161~R163が表すアリール基としては、フェニル基、ナフチル基等の炭素数6~15個のアリール基が挙げられる。 Examples of the aryl group represented by R 161 to R 163 include aryl groups having 6 to 15 carbon atoms, such as a phenyl group and a naphthyl group.
 R161~R163が表すヘテロアリール基としては、フリル基、チエニル基、チアゾリル基、ピロリル基、オキサゾリル基、ピリジル基、ベンゾフラニル基、ベンゾチエニル基、キノリニル基、カルバゾリル基等の炭素数2~15個のヘテロアリール基が挙げられる。 Examples of the heteroaryl group represented by R 161 to R 163 include heteroaryl groups having 2 to 15 carbon atoms, such as a furyl group, a thienyl group, a thiazolyl group, a pyrrolyl group, an oxazolyl group, a pyridyl group, a benzofuranyl group, a benzothienyl group, a quinolinyl group, and a carbazolyl group.
 R161~R163が表すアルケニル基としては、炭素数2~6のアルケニル基が挙げられ、ビニル基、1-メチルビニル基、1-プロぺニル基、アリル基、2-メチル-1-プロぺニル基等の炭素数2~4のアルケニル基が好ましい。 The alkenyl group represented by R 161 to R 163 includes an alkenyl group having 2 to 6 carbon atoms, and is preferably an alkenyl group having 2 to 4 carbon atoms, such as a vinyl group, a 1-methylvinyl group, a 1-propenyl group, an allyl group, or a 2-methyl-1-propenyl group.
 R161~R163が表すアルキニル基としては、炭素数2~6のアルキニル基が挙げられる。 The alkynyl group represented by R 161 to R 163 includes an alkynyl group having 2 to 6 carbon atoms.
 R161~R163が互いに連結して環を形成する場合、R161~R163の2つが結合してシクロアルキル基、又はシクロアルケニル基を形成することが好ましい。 When R 161 to R 163 are linked to each other to form a ring, it is preferable that two of R 161 to R 163 are linked to form a cycloalkyl group or a cycloalkenyl group.
 R161~R163の2つが結合して形成されるシクロアルキル基としては、炭素数3~10の単環又は多環のシクロアルキル基が挙げられ、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基が好ましく、その他にも、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。中でも、炭素数5~6の単環のシクロアルキル基が好ましい。 The cycloalkyl group formed by combining two of R 161 to R 163 includes a monocyclic or polycyclic cycloalkyl group having 3 to 10 carbon atoms, and is preferably a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, and is further preferably a polycyclic cycloalkyl group such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, or an adamantyl group. Of these, a monocyclic cycloalkyl group having 5 to 6 carbon atoms is preferred.
 R161~R163の2つが結合して形成されるシクロアルケニル基としては、炭素数3~10の単環又は多環のシクロアルケニル基が挙げられ、中でも、炭素数5~6の単環のシクロアルケニル基が好ましい。 The cycloalkenyl group formed by combining two of R 161 to R 163 includes monocyclic or polycyclic cycloalkenyl groups having 3 to 10 carbon atoms, and among these, monocyclic cycloalkenyl groups having 5 to 6 carbon atoms are preferred.
 R161~R163が表す置換基はさらに有機基で置換されても良い。上記有機基に含まれるヘテロ原子は0~1個であることが好ましい。
 R161~R163が表す上記置換基の各基が有機基で置換されている場合の有機基としては、例えば、アルキル基(炭素数1~4)、アルコキシ基(炭素数1~4)等が挙げられる。R104~R106が表す上記置換基中のメチレン基の1つがカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
The substituents represented by R 161 to R 163 may be further substituted with an organic group. The organic group preferably contains 0 to 1 heteroatom.
When each group of the above-mentioned substituents represented by R 161 to R 163 is substituted with an organic group, examples of the organic group include an alkyl group (having 1 to 4 carbon atoms), an alkoxy group (having 1 to 4 carbon atoms), etc. One of the methylene groups in the above-mentioned substituents represented by R 104 to R 106 may be replaced with a group having a hetero atom such as a carbonyl group.
 R161~R163の2つが結合して形成されるシクロアルキル基、シクロアルケニル基は、例えば、環を構成するメチレン基の1つが、酸素原子、硫黄原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。 In the cycloalkyl group or cycloalkenyl group formed by combining two of R 161 to R 163 , for example, one of the methylene groups constituting the ring may be replaced by a heteroatom such as an oxygen atom or a sulfur atom, or a group having a heteroatom such as a carbonyl group.
 R161~R163中に含まれるヘテロ原子の総数が0~1個であることがより好ましい。 It is more preferable that the total number of heteroatoms contained in R 161 to R 163 is 0 to 1.
 R161~R163の各基に含まれる炭素原子数は1~7であることが好ましい。 Each of R 161 to R 163 preferably contains 1 to 7 carbon atoms.
 一般式(17)中、R171、R172は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R173は、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R171~R173は互いに連結して環を形成しても良い。 In formula (17), R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 171 to R 173 may be linked together to form a ring.
 R171~R173が表すアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、及びアルキニル基としては、上述の一般式(16)中のR161~R163が表すアルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、及びアルキニル基が挙げられる。 The alkyl group, cycloalkyl group, aryl group, heteroaryl group, alkenyl group, and alkynyl group represented by R 171 to R 173 include the alkyl group, cycloalkyl group, aryl group, heteroaryl group, alkenyl group, and alkynyl group represented by R 161 to R 163 in the above general formula (16).
 R171~R173が表す置換基はさらに有機基で置換されても良い。上記有機基に含まれるヘテロ原子は0~1個であることが好ましい。
 R171~R173が表す上記置換基の各基が有機基で置換されている場合の有機基としては、例えば、アルキル基(炭素数1~4)、アルコキシ基(炭素数1~4)等が挙げられる。R171~R173が表す上記置換基中のメチレン基の1つがカルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
The substituents represented by R 171 to R 173 may be further substituted with an organic group. The organic group preferably contains 0 to 1 heteroatom.
When each group of the above-mentioned substituents represented by R 171 to R 173 is substituted with an organic group, examples of the organic group include an alkyl group (having 1 to 4 carbon atoms), an alkoxy group (having 1 to 4 carbon atoms), etc. One of the methylene groups in the above-mentioned substituents represented by R 171 to R 173 may be replaced with a group having a hetero atom such as a carbonyl group.
 R173は、一般式(7)中のAと結合して環を形成してもよい。形成される環としては5員環又は6員環が好ましく、この場合、R173は単結合、又は-C(=O)-を表すことが好ましい。 R 173 may be bonded to A 7 in general formula (7) to form a ring. The ring formed is preferably a 5-membered or 6-membered ring, and in this case, R 173 preferably represents a single bond or -C(=O)-.
 一般式(7)中のR72は、一般式(3)中のR32と同義であり、好ましい例も同様である。
 一般式(7)中のAは、一般式(3)中のAと同義であり、好ましい例も同様である。
R 72 in formula (7) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
A7 in formula (7) has the same meaning as A3 in formula (3), and preferred examples thereof are also the same.
 一般式(7)中のn7は、一般式(3)中のn3と同義であり、好ましい例も同様である。 n7 in general formula (7) has the same meaning as n3 in general formula (3), and the preferred examples are also the same.
 上記一般式(7)で表される繰り返し単位は下記一般式(18)で表される繰り返し単位であることが好ましい。なお、下記一般式(18)で表される繰り返し単位は、酸分解して-OH基を生成する基を有する繰り返し単位である。 The repeating unit represented by the above general formula (7) is preferably a repeating unit represented by the following general formula (18). The repeating unit represented by the following general formula (18) is a repeating unit having a group that generates an -OH group upon acid decomposition.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
 一般式(18)中、R184は水素原子、有機基又はハロゲン原子を表す。A18は芳香族炭化水素基、又は芳香族ヘテロ環基を表す。R181~R183は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R181~R183の内の2つは互いに連結して環を形成しても良い。 In general formula (18), R 184 represents a hydrogen atom, an organic group, or a halogen atom. A 18 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. R 181 to R 183 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. Two of R 181 to R 183 may be bonded to each other to form a ring.
 一般式(18)中のR184は、一般式(3)中のR32と同義であり、好ましい例も同様である。 R 184 in formula (18) has the same meaning as R 32 in formula (3), and preferred examples are also the same.
 一般式(18)中のA18は、一般式(3)中のAと同義であり、好ましい例も同様である。 A 18 in formula (18) has the same meaning as A 3 in formula (3), and preferred examples are also the same.
 一般式(18)中のR181~R183は、一般式(16)中のR161~R163と同義であり、好ましい例も同様である。 R 181 to R 183 in formula (18) have the same meaning as R 161 to R 163 in formula (16), and preferred examples thereof are also the same.
 一般式(7)で表される繰り返し単位に対応するモノマーとしては、例えば、上述の一般式(1)で表される繰り返し単位に対応するモノマーの具体例、及び一般式(2)で表される繰り返し単位に対応するモノマーの具体例の中で、一般式(7)で表される繰り返し単位に対応するモノマーに相当するものが挙げられる。 Examples of monomers corresponding to the repeating unit represented by general formula (7) include those corresponding to the repeating unit represented by general formula (7) among the specific examples of monomers corresponding to the repeating unit represented by general formula (1) described above and specific examples of monomers corresponding to the repeating unit represented by general formula (2).
 樹脂(P2)が一般式(7)で表される繰り返し単位を有する場合、一般式(7)で表される繰り返し単位は、1種でもよいし、2種以上でもよい。 When resin (P2) has a repeating unit represented by general formula (7), the repeating unit represented by general formula (7) may be of one type or of two or more types.
 樹脂(P2)が一般式(7)で表される繰り返し単位を有する場合、樹脂(P2)中の全繰り返し単位に対する、一般式(7)で表される繰り返し単位の含有比率は、特に限定されないが、例えば10~40mol%とすることができる。 When resin (P2) has a repeating unit represented by general formula (7), the content ratio of the repeating unit represented by general formula (7) to all repeating units in resin (P2) is not particularly limited, but can be, for example, 10 to 40 mol %.
 樹脂(P2)は、上記一般式(6)中のR61が、上記一般式(8)~(15)のいずれかで表される基である繰り返し単位を少なくとも2種類含むことが好ましい。 Resin (P2) preferably contains at least two kinds of repeating units in which R 61 in the above general formula (6) is a group represented by any one of the above general formulas (8) to (15).
 また、樹脂(P2)は、上記一般式(6)中のAが芳香環炭化水素基である繰り返し単位を少なくとも2種類含む、又は、上記一般式(6)中のAが芳香環炭化水素基である繰り返し単位、及び上記一般式(7)中のAが芳香環炭化水素基である繰り返し単位をそれぞれ少なくとも1種類含むことも好ましい。 It is also preferred that the resin (P2) contains at least two types of repeating units in which A6 in the above general formula (6) is an aromatic ring hydrocarbon group, or contains at least one type each of a repeating unit in which A6 in the above general formula (6) is an aromatic ring hydrocarbon group and a repeating unit in which A7 in the above general formula (7) is an aromatic ring hydrocarbon group.
 上記樹脂(X)は、アクリル系単量体に由来する繰り返し単位及びメタクリル系繰り返し単位から選択される少なくとも1つを有していても良い。
 アクリル系単量体に由来する繰り返し単位及びメタクリル系繰り返し単位から選択される少なくとも1つの樹脂(X)中の全繰り返し単位に対する含有量は、特に限定されないが、10mol%以下であることが好ましい。
The resin (X) may have at least one selected from a repeating unit derived from an acrylic monomer and a methacrylic repeating unit.
The content of at least one selected from the repeating units derived from acrylic monomers and the methacrylic repeating units relative to all repeating units in the resin (X) is not particularly limited, but is preferably 10 mol % or less.
 GPC法によりポリスチレン換算値として、樹脂(X)の重量平均分子量(Mw)は、1000以上であることが好ましく、2000以上であることがより好ましく、4000以上であることがさらに好ましく、5000以上が特に好ましい。また、30000以下が好ましく、15000以下がより好ましい。
 樹脂(X)の分散度(分子量分布、Pd、Mw/Mn)は、1~5が好ましく、1~3がより好ましく、1.0~3.0が更に好ましく、1.1~2.0が特に好ましい。
The weight average molecular weight (Mw) of the resin (X), as calculated in terms of polystyrene by the GPC method, is preferably 1000 or more, more preferably 2000 or more, even more preferably 4000 or more, and particularly preferably 5000 or more. Also, it is preferably 30000 or less, more preferably 15000 or less.
The dispersity (molecular weight distribution, Pd, Mw/Mn) of the resin (X) is preferably from 1 to 5, more preferably from 1 to 3, even more preferably from 1.0 to 3.0, and particularly preferably from 1.1 to 2.0.
 本発明の樹脂の製造方法は、上記工程(1)の他に、他の工程を有していてもよい。例えば、樹脂(P1)又は樹脂(P2)が、塩基分解性基又は酸分解性基を有する繰り返し単位を含む場合、これらの基を分解する工程(工程(2)ともいう)を有していてもよい。
 樹脂(P1)と樹脂(P2)を纏めて、樹脂(P)ともいう。
The method for producing a resin of the present invention may include other steps in addition to the step (1) described above. For example, when the resin (P1) or the resin (P2) contains a repeating unit having a base-decomposable group or an acid-decomposable group, the method may include a step of decomposing these groups (also referred to as step (2)).
The resin (P1) and the resin (P2) are collectively referred to as the resin (P).
〔工程(2)(分解工程)〕
 工程(2)は、樹脂(P)が有し得る塩基分解性基又は酸分解性基を分解し、樹脂(P’)を生成する工程である。
[Step (2) (decomposition step)]
The step (2) is a step of decomposing a base-decomposable group or an acid-decomposable group that may be contained in the resin (P) to produce a resin (P').
<塩基分解性基の分解反応>
 例えば、樹脂(P)が上述の樹脂(P2)である場合、工程(2)において、樹脂(P2)中の上記一般式(6)で表される繰り返し単位におけるR61を塩基で分解し、下記一般式(6-1)で表される繰り返し単位又は一般式(6-2)で表される繰り返し単位とすることができる。
<Decomposition reaction of base-decomposable group>
For example, when resin (P) is the above-mentioned resin (P2), in step (2), R 61 in the repeating unit represented by the above general formula (6) in resin (P2) can be decomposed with a base to give a repeating unit represented by the following general formula (6-1) or a repeating unit represented by general formula (6-2).
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
 一般式(6-1)及び一般式(6-2)中のR62、A及びn6は、一般式(6)中のR62、A及びn6と同義であり、好ましい例も同様である。 R 62 , A 6 and n6 in the general formula (6-1) and the general formula (6-2) have the same meanings as R 62 , A 6 and n6 in the general formula (6), and preferred examples are also the same.
(塩基)
 塩基としては、例えば、トリエチルアミン、フッ化テトラ-n-ブチルアンモニウム、ピリジン、ジアザビシクロウンデセン等を用いることができる。
 上記塩基は、樹脂中の塩基分解性基に対して、1~5モル当量とするのが好ましく、より好ましくは1.2~3モル当量である。
(base)
As the base, for example, triethylamine, tetra-n-butylammonium fluoride, pyridine, diazabicycloundecene, etc. can be used.
The amount of the base is preferably 1 to 5 molar equivalents, more preferably 1.2 to 3 molar equivalents, based on the base-decomposable groups in the resin.
(溶媒)
 塩基分解反応は、典型的には液相で行う。即ち、上記の反応系は、典型的には、溶媒を更に含んでいる。
 この溶媒としては、各成分を溶解するものである限り特に限定されないが、例えば、工程(1)で挙げた溶媒や、エーテル系溶媒が挙げられる。
(solvent)
The base decomposition reaction is typically carried out in a liquid phase, i.e., the reaction system described above typically further contains a solvent.
The solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
 これら溶媒は、単独で用いても2種以上を混合して用いてもよい。 These solvents may be used alone or in combination of two or more.
 反応温度は、通常は10℃~100℃であり、好ましくは20℃~80℃であり、更に好ましくは40℃~80℃である。
 反応時間は、通常は3~48時間であり、好ましくは3~24時間であり、更に好ましくは6~12時間である。
The reaction temperature is usually from 10°C to 100°C, preferably from 20°C to 80°C, and more preferably from 40°C to 80°C.
The reaction time is usually 3 to 48 hours, preferably 3 to 24 hours, and more preferably 6 to 12 hours.
 従来、酸基を有する繰り返し単位と酸分解性基を有する繰り返し単位とを有する樹脂を合成する際は、酸分解性基を有する繰り返し単位を一度全て脱保護して酸基とした後に、一部の酸基のみを再び保護する必要があったため、反応性の制御が困難であった。
 一方、本発明の樹脂の製造方法では、例えば、上記工程(1)において、一般式(6)で表される繰り返し単位と、一般式(7)で表される繰り返し単位とを有し、上記一般式(7)で表される繰り返し単位におけるR71が酸分解して-OH基又は-COOH基を生成する基である樹脂を生成し、工程(2)において、一般式(6)で表される繰り返し単位中の塩基分解性基を選択的に脱保護し酸基とすることで、酸基を有する繰り返し単位と酸分解性基を有する繰り返し単位とを有する樹脂を容易に合成することができる。
Conventionally, when synthesizing a resin having a repeating unit having an acid group and a repeating unit having an acid-decomposable group, it was necessary to once deprotect all of the repeating units having the acid-decomposable group to convert them to acid groups, and then to reprotect only some of the acid groups, making it difficult to control the reactivity.
On the other hand, in the method for producing a resin of the present invention, for example, in the above step (1), a resin having a repeating unit represented by general formula (6) and a repeating unit represented by general formula (7), in which R 71 in the repeating unit represented by general formula (7) is a group that generates an —OH group or a —COOH group upon acid decomposition, is produced, and in step (2), a base-decomposable group in the repeating unit represented by general formula (6) is selectively deprotected to convert it to an acid group, thereby easily synthesizing a resin having a repeating unit having an acid group and a repeating unit having an acid-decomposable group.
<酸分解性基の分解反応>
 例えば、樹脂(P)が上述の樹脂(P1)であり、上記一般式(41)で表される繰り返し単位におけるR411が酸分解して-OH基又は-COOH基を生成する基である場合、工程(2)において、R411を酸分解し、下記一般式(2-1)で表される繰り返し単位又は一般式(2-2)で表される繰り返し単位とすることができる。
<Decomposition reaction of acid-decomposable group>
For example, when resin (P) is the above-mentioned resin (P1), and R 411 in the repeating unit represented by general formula (41) is a group that generates an —OH group or a —COOH group upon acid decomposition, in step (2), R 411 can be acid-decomposed to give a repeating unit represented by general formula (2-1) or a repeating unit represented by general formula (2-2) below.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
 一般式(2-1)及び一般式(2-2)中のR42、A及びn4は、一般式(41)中のR42、A及びn4と同義であり、好ましい例も同様である。 R 42 , A 4 and n4 in the general formulae (2-1) and (2-2) have the same meanings as R 42 , A 4 and n4 in the general formula (41), and preferred examples are also the same.
(酸)
 酸としては、例えば、塩酸、p-トルエンスルホン酸、臭化水素酸等を用いることができる。
 上記酸は、樹脂中の酸分解性基に対して、1~5モル当量とするのが好ましく、より好ましくは1.2~3モル当量である。
(acid)
As the acid, for example, hydrochloric acid, p-toluenesulfonic acid, hydrobromic acid, etc. can be used.
The amount of the acid is preferably 1 to 5 molar equivalents, more preferably 1.2 to 3 molar equivalents, based on the acid-decomposable groups in the resin.
(溶媒)
 酸分解反応は、典型的には液相で行う。即ち、上記の反応系は、典型的には、溶媒を更に含んでいる。
 この溶媒としては、各成分を溶解するものである限り特に限定されないが、例えば、工程(1)で挙げた溶媒や、エーテル系溶媒等が挙げられる。
(solvent)
The acidolysis reaction is typically carried out in a liquid phase, i.e., the reaction system typically further comprises a solvent.
The solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
 これら溶媒は、単独で用いても2種以上を混合して用いてもよい。 These solvents may be used alone or in combination of two or more.
 反応温度は、通常は10℃~100℃であり、好ましくは20℃~80℃であり、更に好ましくは40℃~80℃である。
 反応時間は、通常は3~48時間であり、好ましくは3~24時間であり、更に好ましくは6~12時間である。
The reaction temperature is usually from 10°C to 100°C, preferably from 20°C to 80°C, and more preferably from 40°C to 80°C.
The reaction time is usually 3 to 48 hours, preferably 3 to 24 hours, and more preferably 6 to 12 hours.
〔工程(3)(保護工程)〕
 本発明の樹脂の製造方法は、さらに工程(2)で得られた樹脂(P’)が有する繰り返し単位中のフェノール性水酸基やカルボキシ基を保護し、樹脂(P’’)を生成する工程(工程(3)ともいう)を有していてもよい。
[Process (3) (protection process)]
The method for producing a resin of the present invention further includes a step (2) of protecting a phenolic hydroxyl group and a carboxyl group in the repeating unit of the resin (P′) obtained in the step (2) to produce a resin (P″). The method may include a step (3).
 例えば、樹脂(P’)が上記一般式(2-1)で表される繰り返し単位を有する場合、工程(3)において、X-Rcで表されるハロゲン化化合物と反応させることによってフェノール性水酸基を再保護し、下記一般式(2-1c)で表される繰り返し単位とすることができる。 For example, when the resin (P') has a repeating unit represented by the above general formula (2-1), in step (3), the phenolic hydroxyl group can be reprotected by reacting it with a halogenated compound represented by X-Rc to give a repeating unit represented by the following general formula (2-1c).
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 X-Rcで表される化合物におけるXはハロゲン原子を表し、塩素原子が好ましい。Rcは、酸の作用により脱離する基を表す。具体的には上述の脱離基が挙げられる。 In the compound represented by X-Rc, X represents a halogen atom, preferably a chlorine atom. Rc represents a group that is eliminated by the action of an acid. Specific examples include the above-mentioned leaving groups.
 一般式(2-1c)中のR42、A及びn4は、一般式(41)中のR42、A及びn4と同義であり、好ましい例も同様である。 R 42 , A 4 and n4 in formula (2-1c) have the same meanings as R 42 , A 4 and n4 in formula (41), and preferred examples are also the same.
 このように、工程(3)によって、所望の酸分解性基を有する繰り返し単位を樹脂中に導入することができる。 In this way, by step (3), a repeating unit having the desired acid-decomposable group can be introduced into the resin.
 X-Rcで表される化合物の添加量としては、特に限定されず、所望とする樹脂の構造に応じて適宜調整すればよい。 The amount of the compound represented by X-Rc added is not particularly limited and may be adjusted appropriately depending on the desired resin structure.
(塩基)
 上記保護反応は、塩基の存在下で行うことができる。塩基としては、例えば、トリエチルアミン、ピリジン、炭酸カリウム等を用いることができる。
 上記塩基の使用量としては、例えば、X-Rcで表される化合物1モルに対して、1~5モルとすればよい。
(base)
The above protection reaction can be carried out in the presence of a base, such as triethylamine, pyridine, potassium carbonate, etc.
The amount of the base used may be, for example, 1 to 5 moles per mole of the compound represented by X--Rc.
(溶媒)
 上記反応は、典型的には液相で行う。即ち、上記の反応系は、典型的には、溶媒を更に含んでいる。
 この溶媒としては、各成分を溶解するものである限り特に限定されないが、例えば、工程(1)で挙げた溶媒や、エーテル系溶媒等が挙げられる。
(solvent)
The reaction is typically carried out in a liquid phase, i.e., the reaction system typically further comprises a solvent.
The solvent is not particularly limited as long as it dissolves each component, but examples thereof include the solvents listed in step (1) and ether solvents.
 これら溶媒は、単独で用いても2種以上を混合して用いてもよい。 These solvents may be used alone or in combination of two or more.
 反応温度は、通常は-10℃~30℃であり、好ましくは-10℃~20℃であり、更に好ましくは0℃~20℃である。
 反応時間は、通常は1~6時間であり、好ましくは1~4時間であり、更に好ましくは1~2時間である。
The reaction temperature is usually from -10°C to 30°C, preferably from -10°C to 20°C, and more preferably from 0°C to 20°C.
The reaction time is usually from 1 to 6 hours, preferably from 1 to 4 hours, and more preferably from 1 to 2 hours.
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 The present invention will be described in more detail below based on examples. The materials, amounts used, ratios, processing contents, and processing procedures shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the examples shown below.
[樹脂の合成例]
<合成例1:樹脂P-1の合成>
[Resin synthesis example]
Synthesis Example 1: Synthesis of Resin P-1
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
 モノマーとして(A-1)、(AA-1)を用い、各モノマーを(A-1):(AA-1)=50/50のモル比になるように混合し、無水酢酸をモノマー濃度が75質量%の溶液になるように加えてモノマー溶液を調製した。この溶液を質量比30:70に分け取り、それぞれモノマー溶液A、モノマー溶液Bとした。
 モノマー溶液Aには、開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)(I-1)をモノマー総量に対して0.030モル当量と、ニトロキシドラジカル源として2,2,6,6-テトラメチルピペリジン1-オキシル(N-1)をモノマー総量に対して0.042モル当量添加した。窒素雰囲気下、80℃でモノマー溶液Aを反応容器内に1時間かけて滴下した後、さらに1時間80℃で加熱した。該液に130℃に昇温したモノマー溶液Bを3時間かけて滴下した後、130℃で1h反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率75%で樹脂(P-1)を得た。(A-1):(AA-1)=58/42の導入比率で、Mwは5400、Mw/Mnは1.19であった。
A monomer solution was prepared by mixing the monomers (A-1) and (AA-1) in a molar ratio of (A-1):(AA-1) = 50/50, and adding acetic anhydride to the solution so that the monomer concentration became 75% by mass. This solution was divided into two portions in a mass ratio of 30:70, which were designated as Monomer Solution A and Monomer Solution B, respectively.
To the monomer solution A, dimethyl 2,2'-azobis(2-methylpropionate) (I-1) was added as an initiator in an amount of 0.030 molar equivalents relative to the total amount of monomers, and 2,2,6,6-tetramethylpiperidine 1-oxyl (N-1) was added as a nitroxide radical source in an amount of 0.042 molar equivalents relative to the total amount of monomers. In a nitrogen atmosphere, the monomer solution A was dropped into a reaction vessel at 80°C over 1 hour, and then heated at 80°C for another 1 hour. The monomer solution B, which had been heated to 130°C, was dropped into the liquid over 3 hours, and then reacted at 130°C for 1 hour. The obtained resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio), the resin was precipitated, filtered, collected, and then vacuum dried to obtain a resin (P-1) with a yield of 75%. The introduction ratio of (A-1):(AA-1) was 58/42, the Mw was 5,400, and the Mw/Mn was 1.19.
 P-2~P-37、P-1AA、及びP-1BBは、使用するモノマーとその比率、溶媒、モノマー濃度、開始剤、ニトロキシドラジカル源とそのモル等量、モノマー溶液B滴下時間と滴下温度を変更する以外は、上記と同様に合成した。 P-2 to P-37, P-1AA, and P-1BB were synthesized in the same manner as above, except that the monomers and their ratios, solvent, monomer concentration, initiator, nitroxide radical source and its molar equivalent, and monomer solution B dripping time and dripping temperature were changed.
<合成例2:樹脂P’-1の合成>(モノマー液Bを加熱しないで、滴下する方法) <Synthesis Example 2: Synthesis of Resin P'-1> (Method of dripping monomer liquid B without heating)
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 モノマーとして(A-1)、(AA-1)を用い、各モノマーを(A-1):(AA-1)=50/50のモル比になるように混合し、無水酢酸をモノマー濃度が75質量%の溶液になるように加えてモノマー溶液を調製した。この溶液を質量比30:70に分け取り、それぞれモノマー溶液A、モノマー溶液Bとした。
 モノマー溶液Aには、開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)(I-1)をモノマー総量に対して0.030モル当量と、ニトロキシドラジカル源として2,2,6,6-テトラメチルピペリジン1-オキシル(N-1)をモノマー総量に対して0.042モル当量添加した。窒素雰囲気下、80℃でモノマー溶液Aを反応容器内に1時間かけて滴下した後、さらに1時間80℃で加熱した。該液を130℃に昇温させた後(モノマー溶液B滴下前の、モノマー溶液Aの温度)、室温25℃のモノマー溶液Bを3時間かけて滴下した後、130℃で1h反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率75%で樹脂(P-1)を得た。(A-1):(AA-1)=58/42の導入比率で、Mwは5550、Mw/Mnは1.20であった。
A monomer solution was prepared by mixing the monomers (A-1) and (AA-1) in a molar ratio of (A-1):(AA-1) = 50/50, and adding acetic anhydride to the solution so that the monomer concentration became 75% by mass. This solution was divided into two portions in a mass ratio of 30:70, which were designated as Monomer Solution A and Monomer Solution B, respectively.
To the monomer solution A, 0.030 molar equivalents of dimethyl 2,2'-azobis(2-methylpropionate) (I-1) was added as an initiator relative to the total amount of monomers, and 0.042 molar equivalents of 2,2,6,6-tetramethylpiperidine 1-oxyl (N-1) was added as a nitroxide radical source relative to the total amount of monomers. In a nitrogen atmosphere, the monomer solution A was dropped into a reaction vessel at 80°C over 1 hour, and then heated at 80°C for another 1 hour. After the liquid was heated to 130°C (the temperature of the monomer solution A before the drop of the monomer solution B), the monomer solution B at room temperature of 25°C was dropped over 3 hours, and then the reaction was carried out at 130°C for 1 hour. The obtained resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio), the resin was precipitated, filtered, collected, and then vacuum dried to obtain a resin (P-1) with a yield of 75%. The introduction ratio of (A-1):(AA-1) was 58/42, the Mw was 5550, and the Mw/Mn was 1.20.
 P’-2、P’-5、P’-7、P’-8、P’-16、P’-34、及びP’-36は、使用するモノマーとその比率、溶媒、モノマー濃度、開始剤、ニトロキシドラジカル源とそのモル等量、モノマー溶液B滴下時間と滴下温度、モノマー溶液B滴下前の、モノマー溶液Aの温度を変更する以外は、上記と同様に合成した。 P'-2, P'-5, P'-7, P'-8, P'-16, P'-34, and P'-36 were synthesized in the same manner as above, except that the monomers used and their ratios, the solvent, the monomer concentration, the initiator, the nitroxide radical source and its molar equivalent, the time and temperature of monomer solution B dripping, and the temperature of monomer solution A before dripping monomer solution B were changed.
 表1、表2に、P-1~P-37、P-1AA、及びP-1BB、並びに、P’-1、P’-2、P’-5、P’-7、P’-8、P’-16、P’-34、及びP’-36の合成条件、樹脂組成(原料モノマーの種類、モノマーの導入率(モル比))、樹脂の重量平均分子量(Mw)、及び分散度(Mw/Mn))を示す。
 樹脂の重量平均分子量(Mw)及び分散度(Mw/Mn)はGPC(キャリア:テトラヒドロフラン(THF))により測定した(ポリスチレン換算量である)。また、繰り返し単位の含有量は、13C-NMR(nuclear magnetic resonance)により測定した。
Tables 1 and 2 show the synthesis conditions, resin compositions (types of raw material monomers, monomer introduction rates (molar ratios)), resin weight average molecular weights (Mw), and dispersity (Mw/Mn)) for P-1 to P-37, P-1AA, and P-1BB, as well as P'-1, P'-2, P'-5, P'-7, P'-8, P'-16, P'-34, and P'-36.
The weight average molecular weight (Mw) and dispersity (Mw/Mn) of the resin were measured by GPC (carrier: tetrahydrofuran (THF)) (polystyrene equivalent amount). The repeating unit content was measured by 13 C-NMR (nuclear magnetic resonance).
 なお、表1、表2中、Ac2Oは無水酢酸、PGMEAはプロピレングリコールモノメチルエーテルアセテート、DAAはジアセトンアルコールをそれぞれ表す。また、反応溶媒として2種類用いる場合、表中に示す比は、質量比を表す。 In Tables 1 and 2, Ac2O stands for acetic anhydride, PGMEA stands for propylene glycol monomethyl ether acetate, and DAA stands for diacetone alcohol. When two types of reaction solvents are used, the ratios shown in the tables are by mass.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000049
 上記表1中のP-1~P-37、P-1AA、及びP-1BBにおいて、各原料モノマーは、以下の通りである。
 また、上記表2中のP’-1、P’-2、P’-5、P’-7、P’-8、P’-16、P’-34、及びP’-36において、各原料モノマーは、以下の通りである。
In P-1 to P-37, P-1AA, and P-1BB in Table 1 above, the raw material monomers are as follows.
In addition, in P'-1, P'-2, P'-5, P'-7, P'-8, P'-16, P'-34, and P'-36 in Table 2 above, the raw material monomers are as follows.
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 上記表1、表2中の開始剤として使用した化合物は、以下の通りである。 The compounds used as initiators in Tables 1 and 2 above are as follows:
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 上記表1、表2中のニトロキシドラジカル源として使用した化合物は、以下の通りである。 The compounds used as nitroxide radical sources in Tables 1 and 2 above are as follows:
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
<合成例3:樹脂Pa-1の合成> <Synthesis Example 3: Synthesis of Resin Pa-1>
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
 樹脂(P-1)8gに、シクロヘキサノン10.0g、メタノール15.0g、トリエチルアミン10.11g(99.95mmol、塩基分解性保護基ユニット(A-1およびAA-1)の合計モル数に対して、2.1等量)を加え、沸点還流するまで加熱し、24時間反応させた。放冷後、酢酸エチル200g、水80g、酢酸4.8g(79.96mmol、塩基分解性保護基ユニットに対して、1.7等量)を加えて中和した。水層を除去した後、水洗浄(80g)を5回行った。得られた樹脂の溶液を濃縮後、酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率91%で樹脂Pa-1を得た。 10.0 g of cyclohexanone, 15.0 g of methanol, and 10.11 g of triethylamine (99.95 mmol, 2.1 equivalents relative to the total moles of base-decomposable protecting group units (A-1 and AA-1)) were added to 8 g of resin (P-1), and the mixture was heated to reflux at the boiling point and reacted for 24 hours. After cooling, 200 g of ethyl acetate, 80 g of water, and 4.8 g of acetic acid (79.96 mmol, 1.7 equivalents relative to the base-decomposable protecting group units) were added for neutralization. After removing the water layer, the mixture was washed with water (80 g) five times. The resulting resin solution was concentrated and then dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio) to precipitate the resin, which was then filtered, collected, and vacuum dried to obtain resin Pa-1 with a yield of 91%.
<合成例4:樹脂Pb-1の合成> <Synthesis Example 4: Synthesis of Resin Pb-1>
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 樹脂(Pa-1)5.00gに、テトラヒドロフラン(THF)80g、トリエチルアミン8.03g(79.4mmol)を加え、0℃に冷却した。1-クロロ-1-イソプロポキシ-2,2-ジメチルプロパン2.40g(14.6mmol)を滴下し、室温に昇温後、1時間反応させた。得られた反応溶液には、酢酸エチル200g、水80gを加えて分液した。水層を除去した後、水洗浄(80g)をさらに4回行った。得られた樹脂の溶液を濃縮後、酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率95%で樹脂Pb-1を得た。 80 g of tetrahydrofuran (THF) and 8.03 g (79.4 mmol) of triethylamine were added to 5.00 g of resin (Pa-1) and cooled to 0°C. 2.40 g (14.6 mmol) of 1-chloro-1-isopropoxy-2,2-dimethylpropane were added dropwise, and the mixture was allowed to react for 1 hour after being heated to room temperature. 200 g of ethyl acetate and 80 g of water were added to the resulting reaction solution and separated. After removing the water layer, the mixture was washed with water (80 g) four more times. The resulting resin solution was concentrated and then dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio) to precipitate the resin, which was then filtered, collected, and vacuum dried to obtain resin Pb-1 with a yield of 95%.
<合成例5:樹脂Pa-16の合成> <Synthesis Example 5: Synthesis of resin Pa-16>
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 樹脂(P-16)8gに、シクロヘキサノン10.0g、メタノール15.0g、1mol%HClaq 5mlを加え、50℃に加熱し、6時間反応させた。放冷後、酢酸エチル200g、水80gを加えて水洗した。水層を除去した後、さらに、水洗浄(80g)を5回行った。得られた樹脂の溶液を濃縮後、酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率93%で樹脂Pa-16を得た。 8 g of resin (P-16) was mixed with 10.0 g of cyclohexanone, 15.0 g of methanol, and 5 ml of 1 mol% HClaq, and then heated to 50°C and reacted for 6 hours. After cooling, 200 g of ethyl acetate and 80 g of water were added and washed with water. After removing the water layer, water washing (80 g) was performed five times. The resulting resin solution was concentrated and then dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio) to precipitate the resin, which was then filtered, collected, and vacuum dried to obtain resin Pa-16 with a yield of 93%.
<合成例6:樹脂Pb-16の合成> <Synthesis Example 6: Synthesis of resin Pb-16>
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 樹脂(Pa-16)5.00gに、THF80g、トリエチルアミン8.03g(79.4mmol)を加え、0℃に冷却した。(1-クロロ-1-メトキシプロパン-2-イル)シクロヘキサン2.76g(13.5mmol)を滴下し、室温に昇温後、1時間反応させた。得られた反応溶液には、酢酸エチル200g、水80gを加えて分液した。水層を除去した後、水洗浄(80g)をさらに4回行った。得られた樹脂の溶液を濃縮後、酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率94%で樹脂Pb-16を得た。 80 g of THF and 8.03 g (79.4 mmol) of triethylamine were added to 5.00 g of resin (Pa-16) and cooled to 0°C. 2.76 g (13.5 mmol) of (1-chloro-1-methoxypropan-2-yl)cyclohexane were added dropwise, and the mixture was allowed to react for 1 hour after being heated to room temperature. 200 g of ethyl acetate and 80 g of water were added to the resulting reaction solution and separated. After removing the water layer, the mixture was washed with water (80 g) four more times. The resulting resin solution was concentrated and then dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio) to precipitate the resin, which was then filtered, collected, and vacuum dried to obtain resin Pb-16 with a yield of 94%.
<合成例6:樹脂Pa-7の合成> <Synthesis Example 6: Synthesis of Resin Pa-7>
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 樹脂(P-7)8gに、1mol%フッ化テトラ-n-ブチルアンモニウム THF溶液80mlを加え、60℃に加熱し、6時間反応させた。放冷後、酢酸エチル200g、水80gを加えて水洗した。水層を除去した後、さらに、水洗浄(80g)を5回行った。得られた樹脂の溶液を濃縮後、酢酸エチル:n-ヘプタン=1:9(質量比)混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率93%で樹脂Pa-7を得た。 80 ml of 1 mol% tetra-n-butylammonium fluoride THF solution was added to 8 g of resin (P-7), heated to 60°C, and reacted for 6 hours. After cooling, 200 g of ethyl acetate and 80 g of water were added and washed with water. After removing the water layer, water washing (80 g) was performed five times. The resulting resin solution was concentrated and then dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9 (mass ratio) to precipitate the resin, which was then filtered, collected, and vacuum dried to obtain resin Pa-7 with a yield of 93%.
 上記Pa-1、Pb-1、Pa-16、Pa-7と同様の方法で下記Pb-1AA、Pb-1BB、Pa-2、Pa-3、Pa-8、Pa-11、Pa-12、Pa-14、Pa-17、Pa-18、Pa-20、Pa-21、Pa-25、Pa-26、Pa-29、Pa-35、Pa-36、Pa-37、Pb-11、Pb-14、Pa’-1、Pa’-2、Pa’-7、Pa’-8、Pa’-16、Pb’-16、Pa’-36を合成した。  The following Pb-1AA, Pb-1BB, Pa-2, Pa-3, Pa-8, Pa-11, Pa-12, Pa-14, Pa-17, Pa-18, Pa-20, Pa-21, Pa-25, Pa-26, Pa-29, Pa-35, Pa-36, Pa-37, Pb-11, Pb-14, Pa'-1, Pa'-2, Pa'-7, Pa'-8, Pa'-16, Pb'-16, Pa'-36 were synthesized in the same manner as Pa-1, Pb-1, Pa-16, and Pa-7 above.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
<参考合成例1:樹脂P-1Aの合成(ニトロキシド不使用)> <Reference synthesis example 1: Synthesis of resin P-1A (no nitroxide used)>
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 モノマーとして(A-1)、(AA-1)を用い、各モノマーを(A-1):(AA-1)=50/50のモル比になるように混合し、無水酢酸をモノマー濃度が75質量%の溶液になるように加えてモノマー溶液を調製した。開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)を8mol%添加した。窒素雰囲気下0.1質量倍の無水酢酸を130℃に加熱し、開始剤を添加したモノマー溶液を2時間かけて滴下した後、さらに2時間130℃で反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率35%で樹脂(P-1A)を得た。(A-1):(AA-1)=72/28の導入比率で、Mwは3900、Mw/Mnは1.67であった。 (A-1) and (AA-1) were used as monomers, and each monomer was mixed to a molar ratio of (A-1):(AA-1) = 50/50, and acetic anhydride was added to the solution so that the monomer concentration was 75 mass% to prepare a monomer solution. 8 mol% of dimethyl 2,2'-azobis(2-methylpropionate) was added as an initiator. 0.1 mass times of acetic anhydride was heated to 130°C under a nitrogen atmosphere, and the monomer solution to which the initiator was added was dropped over 2 hours, and then reacted at 130°C for another 2 hours. The resulting resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9, and the resin was precipitated. It was filtered, recovered, and then vacuum dried to obtain resin (P-1A) with a yield of 35%. The introduction ratio of (A-1):(AA-1) = 72/28, Mw was 3900, and Mw/Mn was 1.67.
 本発明の製造方法により得られた樹脂P-1に比して、ニトロキシドラジカルを用いずに合成した樹脂P-1Aでは、モノマー(A-1)、(AA-1)の仕込み比は合成例1と同じであるにもかかわらず、モノマー(AA-1)の導入比率が低く、分子量も小さくなった。 Compared to resin P-1 obtained by the manufacturing method of the present invention, resin P-1A synthesized without using nitroxide radicals had a lower introduction ratio of monomer (AA-1) and a smaller molecular weight, even though the charge ratio of monomers (A-1) and (AA-1) was the same as in Synthesis Example 1.
<参考合成例2:樹脂P-1Bの合成(ニトロキシド不使用)>
 モノマーとして(A-1)、(AA-1)を用い、各モノマーを(A-1):(AA-1)=30/70のモル比になるように混合し、無水酢酸をモノマー濃度が75質量%の溶液になるように加えてモノマー溶液を調製した。開始剤としてジメチル2,2‘-アゾビス(2-メチルプロピオネート)を8mol%添加した。窒素雰囲気下0.1質量倍の無水酢酸を130℃に加熱し、開始剤を添加したモノマー溶液を2時間かけて滴下した後、さらに2時間130℃で反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率25%で樹脂(P-1B)を得た。(A-1):(AA-1)=55/45の導入比率で、Mwは2300、Mw/Mnは1.64であった。
<Reference Synthesis Example 2: Synthesis of Resin P-1B (without using nitroxide)>
(A-1) and (AA-1) were used as monomers, and each monomer was mixed to a molar ratio of (A-1):(AA-1)=30/70, and acetic anhydride was added to the solution so that the monomer concentration was 75% by mass to prepare a monomer solution. 8 mol% of dimethyl 2,2'-azobis(2-methylpropionate) was added as an initiator. 0.1 mass times of acetic anhydride was heated to 130°C under a nitrogen atmosphere, and the monomer solution to which the initiator was added was dropped over 2 hours, and then reacted at 130°C for another 2 hours. The resulting resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane=1:9, and the resin was precipitated, filtered, collected, and then vacuum dried to obtain a resin (P-1B) with a yield of 25%. At an introduction ratio of (A-1):(AA-1)=55/45, Mw was 2300, and Mw/Mn was 1.64.
 本発明の製造方法により得られた樹脂P-1に比して、ニトロキシドラジカルを用いずに合成した樹脂P-1Bでは、モノマー(AA-1)の仕込み比を合成例1よりも大幅に大きくしたことにより、モノマー(AA-1)の導入比率は同等となったが、収率が低く、分子量も小さくなった。 Compared to resin P-1 obtained by the manufacturing method of the present invention, resin P-1B was synthesized without using nitroxide radicals. By increasing the monomer (AA-1) feed ratio significantly more than in synthesis example 1, the monomer (AA-1) introduction ratio was the same, but the yield was lower and the molecular weight was smaller.
<参考合成例3:樹脂P-16Aの合成(ニトロキシド不使用)> <Reference synthesis example 3: Synthesis of resin P-16A (without using nitroxide)>
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 モノマーとして(B-1)、(BB-1)を用い、各モノマーを(B-1):(BB-1)=50/50のモル比になるように混合し、無水酢酸をモノマー濃度が75質量%の溶液になるように加えてモノマー溶液を調製した。開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)を8mol%添加した。窒素雰囲気下0.1質量倍の無水酢酸を130℃に加熱し、開始剤を添加したモノマー溶液を2時間かけて滴下した後、さらに2時間130℃で反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率38%で樹脂(P-16A)を得た。(B-1):(BB-1)=69/31の導入比率で、Mwは3800、Mw/Mnは1.60であった。 (B-1) and (BB-1) were used as monomers, and each monomer was mixed to a molar ratio of (B-1):(BB-1) = 50/50, and acetic anhydride was added to the solution so that the monomer concentration became 75 mass% to prepare a monomer solution. 8 mol% of dimethyl 2,2'-azobis(2-methylpropionate) was added as an initiator. 0.1 mass times of acetic anhydride was heated to 130°C under a nitrogen atmosphere, and the monomer solution to which the initiator was added was dropped over 2 hours, and then reacted at 130°C for another 2 hours. The obtained resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9, and the resin was precipitated. After filtering and collecting, it was vacuum dried to obtain resin (P-16A) with a yield of 38%. The introduction ratio of (B-1):(BB-1) = 69/31, Mw was 3800, and Mw/Mn was 1.60.
 本発明の製造方法により得られた樹脂P-16に比して、ニトロキシドラジカルを用いずに合成した樹脂P-16Aでは、モノマー(B-1)、(BB-1)の仕込み比は同じであるにもかかわらず、モノマー(BB-1)の導入比率が低く、分子量も小さくなった。 Compared to resin P-16 obtained by the manufacturing method of the present invention, resin P-16A synthesized without using nitroxide radicals had a lower introduction ratio of monomer (BB-1) and a smaller molecular weight, despite the same feed ratio of monomers (B-1) and (BB-1).
 以下、レジスト組成物の性能評価において使用した比較例樹脂の合成方法を示す。 The synthesis method for the comparative resin used in the performance evaluation of the resist composition is shown below.
<比較合成例1:樹脂PX-1の合成> <Comparative synthesis example 1: Synthesis of resin PX-1>
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 モノマーとして(C-1)、(B-1)を用い、各モノマーを(C-1):(B-1)=66/34のモル比になるように混合し、シクロヘキサノンをモノマー濃度が30質量%の溶液になるように加え、開始剤としてジメチル2,2’-アゾビス(2-メチルプロピオネート)を8mol%添加した。窒素雰囲気下0.1質量倍のシクロヘキサノンを85℃に加熱し、モノマー溶液を2時間かけて滴下した後、さらに2時間85℃で反応させた。得られた樹脂の溶液を酢酸エチル:n-ヘプタン=1:9混合溶媒中に滴下し、樹脂を沈殿させ、ろ過、回収後、真空乾燥し、収率69%で樹脂(PX-1)を得た。 (C-1) and (B-1) were used as monomers, and the monomers were mixed in a molar ratio of (C-1):(B-1) = 66/34. Cyclohexanone was added so that the monomer concentration of the solution was 30% by mass, and 8 mol% of dimethyl 2,2'-azobis(2-methylpropionate) was added as an initiator. 0.1 mass of cyclohexanone was heated to 85°C under a nitrogen atmosphere, and the monomer solution was added dropwise over 2 hours, and then the reaction was continued for another 2 hours at 85°C. The resulting resin solution was dropped into a mixed solvent of ethyl acetate:n-heptane = 1:9, and the resin was precipitated. It was filtered, collected, and then vacuum dried to obtain resin (PX-1) with a yield of 69%.
 以下の樹脂PX-2、PX-3、PX-7、PX-11、PX―14、PX-16、PX-17、PX-20、PX-21、PX-25、PX-26、PX-29についても、樹脂PX-1と同様にして合成した。 The following resins PX-2, PX-3, PX-7, PX-11, PX-14, PX-16, PX-17, PX-20, PX-21, PX-25, PX-26, and PX-29 were also synthesized in the same manner as resin PX-1.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
[レジスト組成物]
 実施例及び比較例のレジスト組成物に用いた各種成分について以下に示す。
[Resist Composition]
The various components used in the resist compositions of the examples and comparative examples are shown below.
<樹脂(A)>
 樹脂(A)として、上記に示す樹脂を用いた。
<Resin (A)>
As the resin (A), the resin shown above was used.
<光酸発生剤(B)>
 光酸発生剤(B)として、BX-1~BX-2を用いた。
<Photoacid Generator (B)>
As the photoacid generator (B), BX-1 to BX-2 were used.
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
<酸拡散制御剤(C)>
 酸拡散制御剤(C)として、C-1~C-14を用いた。
<Acid Diffusion Controller (C)>
As the acid diffusion controller (C), C-1 to C-14 were used.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
<疎水性樹脂>
 疎水性樹脂として、D-1を用いた。繰り返し単位の含有比率(樹脂中の全繰り返し単位に対する含有量)はモル比率である。
<Hydrophobic resin>
D-1 was used as the hydrophobic resin. The content ratio of the repeating unit (content relative to the total repeating units in the resin) is a molar ratio.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
<界面活性剤>
 界面活性剤としては、下記W-1~W-4を用いた。
 W-1:メガファックR08(大日本インキ化学工業(株)製;フッ素及びシリコン系)
 W-2:ポリシロキサンポリマーKP-341(信越化学工業(株)製;シリコン系)
 W-3:トロイゾルS-366(トロイケミカル(株)製;フッ素系)
 W-4:PF6320(OMNOVA社製;フッ素系)
<Surfactant>
As the surfactants, the following W-1 to W-4 were used.
W-1: Megafac R08 (manufactured by Dainippon Ink and Chemicals, Inc.; fluorine and silicone type)
W-2: Polysiloxane polymer KP-341 (manufactured by Shin-Etsu Chemical Co., Ltd.; silicone-based)
W-3: Troysol S-366 (manufactured by Troy Chemical Co., Ltd.; fluorine-based)
W-4: PF6320 (manufactured by OMNOVA; fluorine-based)
<溶剤>
 使用した溶剤を以下に示す。
 S-1:ジアセトンアルコール(DAA)
 S-2:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 S-3:プロピレングリコールモノメチルエーテル(PGME)
 S-4:乳酸エチル(EL)
 S-5:3-エトキシプロピオン酸エチル(EEP)
 S-6:2-ヘプタノン(MAK)
 S-7:3-メトキシプロピオン酸メチル(MMP)
 S-8:酢酸3-メトキシブチル
 S-9:γ‐ブチロラクトン
<Solvent>
The solvents used are shown below.
S-1: Diacetone alcohol (DAA)
S-2: Propylene glycol monomethyl ether acetate (PGMEA)
S-3: Propylene glycol monomethyl ether (PGME)
S-4: Ethyl lactate (EL)
S-5: Ethyl 3-ethoxypropionate (EEP)
S-6: 2-heptanone (MAK)
S-7: methyl 3-methoxypropionate (MMP)
S-8: 3-methoxybutyl acetate S-9: γ-butyrolactone
<レジスト組成物の調製>
 表3に示す溶剤以外の各成分を、表3に示す含有量(質量%)で使用し、表3に示す溶剤と混合して溶液を得た。各成分の含有量は、レジスト組成物の全固形分に対する質量比率である。得られた溶液を0.02μmのポアサイズを有するポリエチレンフィルターでろ過して、レジスト組成物R-1~R-25、RX-1~RX-7を得た。レジスト組成物の固形分濃度は表3に示す濃度に調整した。固形分とは、溶剤以外の全ての成分を意味する。得られたレジスト組成物を、実施例及び比較例で使用した。表3には、使用した溶剤の種類とその質量比率を記載した。
<Preparation of Resist Composition>
Each component other than the solvent shown in Table 3 was used in the content (mass %) shown in Table 3 and mixed with the solvent shown in Table 3 to obtain a solution. The content of each component is the mass ratio to the total solid content of the resist composition. The obtained solution was filtered through a polyethylene filter having a pore size of 0.02 μm to obtain resist compositions R-1 to R-25 and RX-1 to RX-7. The solid content concentration of the resist composition was adjusted to the concentration shown in Table 3. The solid content means all components other than the solvent. The obtained resist composition was used in the examples and comparative examples. Table 3 shows the type of solvent used and its mass ratio.
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000075
Figure JPOXMLDOC01-appb-T000076
Figure JPOXMLDOC01-appb-T000076
<レジスト組成物の塗設>
 調製したレジスト組成物を、予めヘキサメチルジシラザン(HMDS)処理を施した6インチSi(シリコン)ウェハ上に東京エレクトロン製スピンコーターMark8を用いて塗布し、130℃、300秒間ホットプレート上で乾燥して、膜厚100nmのレジスト膜を得た。
 なお、上記Siウェハをクロム基板に変更しても、同様の結果が得られるものである。
<Coating of resist composition>
The prepared resist composition was applied onto a 6-inch Si (silicon) wafer that had been previously treated with hexamethyldisilazane (HMDS) using a spin coater Mark 8 manufactured by Tokyo Electron, and then dried on a hot plate at 130° C. for 300 seconds to obtain a resist film with a thickness of 100 nm.
It should be noted that the same results can be obtained even if the Si wafer is replaced with a chromium substrate.
(実施例1a~25a、比較例1a~7a)
<パターン形成方法(1):EB露光、アルカリ現像(ポジ)>
 上記で得られたレジスト膜が塗布されたウェハを、電子線描画装置((株)アドバンテスト製;F7000S、加速電圧50keV)を用いて、パターン照射を行った。この際、1:1のラインアンドスペースが形成されるように描画を行った。電子線描画後、100℃、60秒ホットプレート上で加熱し、2.38質量%テトラメチルアンモニウムハイドロオキサイド(TMAH)水溶液を用いて60秒間浸漬した後、30秒間、水でリンスして乾燥した。その後、4000rpmの回転数で30秒間ウェハを回転させた後、95℃で60秒間ベークを行い乾燥した。
(Examples 1a to 25a, Comparative Examples 1a to 7a)
<Pattern formation method (1): EB exposure, alkaline development (positive)>
The wafer coated with the resist film obtained above was subjected to pattern irradiation using an electron beam lithography device (Advantest Corporation; F7000S, acceleration voltage 50 keV). At this time, lithography was performed so that a 1:1 line and space was formed. After electron beam lithography, the wafer was heated on a hot plate at 100° C. for 60 seconds, immersed in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds, rinsed with water for 30 seconds, and dried. Thereafter, the wafer was rotated at a rotation speed of 4000 rpm for 30 seconds, baked at 95° C. for 60 seconds, and dried.
〔評価〕
 得られたパターンを下記の方法で、解像性、及びLWR性能について評価した。結果を後掲の表に示す。
〔evaluation〕
The obtained patterns were evaluated for resolution and LWR performance by the following methods, and the results are shown in the table below.
 線幅50nmの1:1ラインアンドスペースパターンを解像する時の照射エネルギーを感度(Eop)とした。 The irradiation energy required to resolve a 1:1 line and space pattern with a line width of 50 nm was defined as the sensitivity (Eop).
<L/S解像性>
 上記感度(Eop)を示す露光量における限界解像力(ラインとスペース(ライン:スペース=1:1)が分離解像する最小の線幅)を解像力(nm)とした。
<L/S resolution>
The limiting resolving power (the minimum line width at which a line and a space (line:space=1:1) are resolved separately) at the exposure dose exhibiting the above sensitivity (Eop) was taken as the resolving power (nm).
<ラインウィズスラフネス(LWR)性能>
 ラインウィズスラフネスは、上記Eopにおいて、線幅50nmのラインアンドスペースパターン(ライン:スペース=1:1)の長手方向0.5μmの任意の50点について、線幅を計測し、その標準偏差を求め、3σ(nm)を算出した。値が小さいほど良好な性能であることを示す。
<Line width roughness (LWR) performance>
The line width roughness was measured at the above Eop by measuring the line width at 50 arbitrary points in the longitudinal direction of 0.5 μm of a line and space pattern (line:space=1:1) with a line width of 50 nm, determining the standard deviation, and calculating 3σ (nm). A smaller value indicates better performance.
 下記表4に使用したレジスト組成物と結果を示す。 The resist compositions used and the results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-T000078
(実施例1b~25b、比較例1b~7b)
<パターン形成方法(2):EUV露光、アルカリ現像(ポジ)>
 電子線描画装置に代えて、EUV露光装置(Exitech社製 Micro Exposure Tool、NA(開口数)0.3、Quadrupole、アウターシグマ0.68、インナーシグマ0.36)を用いた以外は上記パターン形成方法(1)と同じ工程を行った。
 前述したものと同じ方法で、解像性、及びLWR性能の評価を行った。
 下記表5に使用したレジスト組成物と結果を示す。
(Examples 1b to 25b, Comparative Examples 1b to 7b)
<Pattern formation method (2): EUV exposure, alkaline development (positive)>
The same steps as in the above pattern formation method (1) were carried out, except that an EUV exposure apparatus (Micro Exposure Tool manufactured by Exitech, NA (numerical aperture) 0.3, quadrupole, outer sigma 0.68, inner sigma 0.36) was used instead of the electron beam lithography apparatus.
The resolution and LWR performance were evaluated in the same manner as described above.
The resist compositions used and the results are shown in Table 5 below.
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000079
Figure JPOXMLDOC01-appb-T000080
Figure JPOXMLDOC01-appb-T000080
 表4及び表5の結果から、本発明の組成物は、解像性、及びLWR性能に優れることが分かった。 The results in Tables 4 and 5 show that the composition of the present invention has excellent resolution and LWR performance.
 本発明により、解像性、及びLWR性能に優れる感活性光線性又は感放射線性樹脂組成物を提供することができる。
 また、本発明により、上記感活性光線性又は感放射線性樹脂組成物を用いた感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び上記感活性光線性又は感放射線性樹脂組成物に用い得る樹脂を提供することができる。
 さらに、本発明により、樹脂の製造方法を提供することができる。
According to the present invention, it is possible to provide an actinic ray-sensitive or radiation-sensitive resin composition having excellent resolution and LWR performance.
Furthermore, the present invention can provide an actinic ray-sensitive or radiation-sensitive film using the actinic ray-sensitive or radiation-sensitive resin composition, a pattern forming method, a method for producing an electronic device, and a resin that can be used in the actinic ray-sensitive or radiation-sensitive resin composition.
Furthermore, the present invention can provide a method for producing a resin.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 なお、本出願は、2023年2月6日出願の日本特許出願(特願2023-016479)に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application (Patent Application No. 2023-016479) filed on February 6, 2023, the contents of which are incorporated herein by reference.

Claims (24)

  1.  下記一般式(1)で表される繰り返し単位と下記一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂(A)、
     活性光線又は放射線の照射により酸を発生する化合物(B)、及び
     溶剤(S)
    を含有する感活性光線性又は感放射線性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
     一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
    A resin (A) containing at least one kind of repeating unit represented by the following general formula (1) and at least one kind of repeating unit represented by the following general formula (2):
    A compound (B) that generates an acid when exposed to actinic rays or radiation, and a solvent (S).
    An actinic ray-sensitive or radiation-sensitive resin composition comprising:
    Figure JPOXMLDOC01-appb-C000001
    In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
    In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  2.  前記樹脂(A)中の全繰り返し単位に対する、前記一般式(2)で表される繰り返し単位の含有比率が、30~60mol%である請求項1に記載の感活性光線性又は感放射線性樹脂組成物。 The actinic ray-sensitive or radiation-sensitive resin composition according to claim 1, wherein the content ratio of the repeating unit represented by the general formula (2) to the total repeating units in the resin (A) is 30 to 60 mol %.
  3.  前記樹脂(A)の重量平均分子量が4000以上である請求項1に記載の感活性光線性又は感放射線性樹脂組成物。 The actinic ray-sensitive or radiation-sensitive resin composition according to claim 1, wherein the weight average molecular weight of the resin (A) is 4,000 or more.
  4.  前記一般式(1)中のAおよび前記一般式(2)中のAが、芳香環炭化水素基である請求項1に記載の感活性光線性又は感放射線性樹脂組成物。 2. The actinic ray-sensitive or radiation-sensitive resin composition according to claim 1, wherein A1 in the general formula (1) and A2 in the general formula (2) are aromatic ring hydrocarbon groups.
  5.  少なくとも2種類の単量体を、下記一般式(N)で表されるニトロキシドラジカル、及びラジカル重合開始剤存在下で重合し、下記一般式(3)で表される繰り返し単位を少なくとも2種類含む樹脂(X)を製造する樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
     一般式(N)中、Rは、それぞれ独立に、有機基を表す。2つのRは結合して環を形成してもよい。
    Figure JPOXMLDOC01-appb-C000003
     一般式(3)中、R31は有機基、ハロゲン原子、又は水酸基を表す。R32は水素原子、有機基又はハロゲン原子を表す。R33は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n3は0~5の整数を表す。n3が2~5の整数である場合、複数のR31は、同一であっても異なっていてもよく、結合して環を形成してもよい。R33とAは結合して環を形成してもよい。
    A method for producing a resin by polymerizing at least two types of monomers in the presence of a nitroxide radical represented by the following general formula (N) and a radical polymerization initiator to produce a resin (X) containing at least two types of repeating units represented by the following general formula (3):
    Figure JPOXMLDOC01-appb-C000002
    In formula (N), R 1 each independently represents an organic group. Two R 1 may be bonded to form a ring.
    Figure JPOXMLDOC01-appb-C000003
    In general formula (3), R 31 represents an organic group, a halogen atom, or a hydroxyl group. R 32 represents a hydrogen atom, an organic group, or a halogen atom. R 33 represents a hydrogen atom or an organic group. A 3 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n3 represents an integer of 0 to 5. When n3 is an integer of 2 to 5, multiple R 31 may be the same or different and may be bonded to form a ring. R 33 and A 3 may be bonded to form a ring.
  6.  前記樹脂(X)が、下記一般式(4)で表される繰り返し単位、及び一般式(5)で表される繰り返し単位をそれぞれ少なくとも1種類含む請求項5に記載の樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000004
     一般式(4)中、R41は有機基、ハロゲン原子、又は水酸基を表す。R42は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n4は0~5の整数を表す。n4が2~5の整数である場合、複数のR41は、同一であっても異なっていてもよく、結合して環を形成してもよい。R42とAは結合して環を形成してもよい。
     一般式(5)中、R51は有機基、ハロゲン原子、又は水酸基を表す。R52は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n5は0~5の整数を表す。n5が2~5の整数である場合、複数のR51は、同一であっても異なっていてもよく、結合して環を形成してもよい。
    The method for producing a resin according to claim 5 , wherein the resin (X) contains at least one type of repeating unit represented by the following general formula (4) and at least one type of repeating unit represented by the following general formula (5):
    Figure JPOXMLDOC01-appb-C000004
    In general formula (4), R 41 represents an organic group, a halogen atom, or a hydroxyl group. R 42 represents a hydrogen atom or an organic group. A 4 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n4 represents an integer of 0 to 5. When n4 is an integer of 2 to 5, multiple R 41 may be the same or different and may be bonded to form a ring. R 42 and A 4 may be bonded to form a ring.
    In general formula (5), R 51 represents an organic group, a halogen atom, or a hydroxyl group. R 52 represents an organic group or a halogen atom. A 5 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n5 represents an integer of 0 to 5. When n5 is an integer of 2 to 5, multiple R 51 may be the same or different and may be bonded to form a ring.
  7.  前記樹脂(X)中の全繰り返し単位に対する、前記一般式(5)で表される繰り返し単位の含有比率が、30~60mol%である請求項6に記載の樹脂の製造方法。 The method for producing a resin according to claim 6, wherein the content ratio of the repeating unit represented by the general formula (5) to the total repeating units in the resin (X) is 30 to 60 mol %.
  8.  前記樹脂(X)の重量平均分子量が4000以上である請求項6に記載の樹脂の製造方法。 The method for producing a resin according to claim 6, wherein the weight average molecular weight of the resin (X) is 4000 or more.
  9.  前記一般式(4)中のAおよび前記一般式(5)中のAが、芳香環炭化水素基である請求項6に記載の樹脂の製造方法。 The method for producing a resin according to claim 6, wherein A4 in the general formula (4) and A5 in the general formula (5) are aromatic ring hydrocarbon groups.
  10.  前記一般式(5)中のR52がアルキル基である請求項6に記載の樹脂の製造方法。 The method for producing a resin according to claim 6, wherein R 52 in the general formula (5) is an alkyl group.
  11.  前記樹脂(X)が、下記一般式(6)で表される繰り返し単位を少なくとも2種類含む、又は、前記一般式(6)で表される繰り返し単位、及び前記一般式(6)で表される繰り返し単位とは異なる下記一般式(7)で表される繰り返し単位をそれぞれ少なくとも1種類含む樹脂(P2)を経由して製造される、請求項5に記載の樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000005
     一般式(6)中、R61は塩基で分解して、-OH基、又は-COOH基を生成する基を表す。R62は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n6は1~5の整数を表す。n6が2~5の整数である場合、複数のR61は、同一であっても異なっていてもよい。
     一般式(7)中、R71は有機基又はハロゲン原子を表す。R72は水素原子、有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n7は0~5の整数を表す。n7が2~5の整数である場合、複数のR71は、同一であっても異なっていてもよく、結合して環を形成してもよい。
    The method for producing a resin according to claim 5, wherein the resin (X) contains at least two kinds of repeating units represented by the following general formula (6), or is produced via a resin (P2) containing at least one kind each of a repeating unit represented by the general formula (6) and a repeating unit represented by the following general formula (7) different from the repeating unit represented by the general formula (6).
    Figure JPOXMLDOC01-appb-C000005
    In general formula (6), R 61 represents a group that generates an -OH group or a -COOH group upon decomposition by a base. R 62 represents a hydrogen atom, an organic group, or a halogen atom. A 6 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n6 represents an integer of 1 to 5. When n6 is an integer of 2 to 5, multiple R 61 may be the same or different.
    In general formula (7), R 71 represents an organic group or a halogen atom. R 72 represents a hydrogen atom, an organic group, or a halogen atom. A 7 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. n7 represents an integer of 0 to 5. When n7 is an integer of 2 to 5, multiple R 71 may be the same or different and may be bonded to form a ring.
  12.  前記一般式(6)中のR61が、下記一般式(8)~(15)のいずれかで表される基である請求項11に記載の樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000006
     一般式(8)~(15)中、R91、R101、R111、R121、R141、及びR151は、それぞれ独立に、有機基を表し、R81、及びR131は、それぞれ独立に、水素原子又は有機基を表す。*はAとの結合位置を表す。
    The method for producing a resin according to claim 11, wherein R 61 in the general formula (6) is a group represented by any one of the following general formulae (8) to (15):
    Figure JPOXMLDOC01-appb-C000006
    In formulae (8) to (15), R 91 , R 101 , R 111 , R 121 , R 141 and R 151 each independently represent an organic group, R 81 and R 131 each independently represent a hydrogen atom or an organic group. * represents the bonding position with A 6 .
  13.  前記一般式(6)中のR61が、前記一般式(8)~(15)のいずれかで表される基である繰り返し単位を少なくとも2種類含む、請求項12に記載の樹脂の製造方法。 The method for producing a resin according to claim 12, wherein R 61 in the general formula (6) contains at least two kinds of repeating units which are groups represented by any one of the general formulae (8) to (15).
  14.  前記一般式(7)中のR71が、酸分解して-OH基、又は-COOH基を生成する基である請求項11に記載の樹脂の製造方法。 The method for producing a resin according to claim 11, wherein R 71 in the general formula (7) is a group that generates an --OH group or a --COOH group upon acid decomposition.
  15.  前記一般式(7)中のR71が、下記一般式(16)~(17)のいずれかで表される基である請求項14に記載の樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000007
     一般式(16)中、R161~R163は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R161~R163は互いに連結して環を形成しても良い。
     一般式(17)中、R171、R172は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R173は、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R171~R173は互いに連結して環を形成しても良い。
     *はAとの結合位置を表す。
    The method for producing a resin according to claim 14, wherein R 71 in the general formula (7) is a group represented by any one of the following general formulas (16) to (17):
    Figure JPOXMLDOC01-appb-C000007
    In formula (16), R 161 to R 163 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 161 to R 163 may be linked to each other to form a ring.
    In formula (17), R 171 and R 172 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 173 represents an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. R 171 to R 173 may be linked together to form a ring.
    * indicates the bonding position with A7 .
  16.  前記一般式(7)で表される繰り返し単位が下記一般式(18)で表される繰り返し単位である請求項11に記載の樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000008
     一般式(18)中、R184は水素原子、有機基又はハロゲン原子を表す。A18は芳香族炭化水素基、又は芳香族ヘテロ環基を表す。R181~R183は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基、アルケニル基、又はアルキニル基を表す。R181~R183の内の2つは互いに連結して環を形成しても良い。
    The method for producing a resin according to claim 11, wherein the repeating unit represented by the general formula (7) is a repeating unit represented by the following general formula (18):
    Figure JPOXMLDOC01-appb-C000008
    In general formula (18), R 184 represents a hydrogen atom, an organic group, or a halogen atom. A 18 represents an aromatic hydrocarbon group, or an aromatic heterocyclic group. R 181 to R 183 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, a heteroaryl group, an alkenyl group, or an alkynyl group. Two of R 181 to R 183 may be bonded to each other to form a ring.
  17.  前記樹脂(P2)が、前記一般式(6)中のAが芳香環炭化水素基である繰り返し単位を少なくとも2種類含む、又は、前記一般式(6)中のAが芳香環炭化水素基である繰り返し単位、及び前記一般式(7)中のAが芳香環炭化水素基である繰り返し単位をそれぞれ少なくとも1種類含む、請求項11に記載の樹脂の製造方法。 The method for producing a resin according to claim 11, wherein the resin (P2) contains at least two types of repeating units in which A6 in the general formula (6) is an aromatic ring hydrocarbon group, or contains at least one type each of a repeating unit in which A6 in the general formula (6) is an aromatic ring hydrocarbon group and a repeating unit in which A7 in the general formula (7) is an aromatic ring hydrocarbon group.
  18.  下記一般式(1)で表される繰り返し単位と下記一般式(2)で表される繰り返し単位とをそれぞれ少なくとも1種類含む樹脂。
    Figure JPOXMLDOC01-appb-C000009
     一般式(1)中、R11は有機基、ハロゲン原子、又は水酸基を表す。R12は水素原子又は有機基を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n1は0~5の整数を表す。n1が2~5の整数である場合、複数のR11は、同一であっても異なっていてもよく、結合して環を形成してもよい。R12とAは結合して環を形成してもよい。
     一般式(2)中、R21は有機基、ハロゲン原子、又は水酸基を表す。R22は有機基又はハロゲン原子を表す。Aは芳香族炭化水素基、又は芳香族ヘテロ環基を表す。n2は0~5の整数を表す。n2が2~5の整数である場合、複数のR21は、同一であっても異なっていてもよく、結合して環を形成してもよい。
    A resin containing at least one type of repeating unit represented by the following general formula (1) and at least one type of repeating unit represented by the following general formula (2):
    Figure JPOXMLDOC01-appb-C000009
    In general formula (1), R 11 represents an organic group, a halogen atom, or a hydroxyl group. R 12 represents a hydrogen atom or an organic group. A 1 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n1 represents an integer of 0 to 5. When n1 is an integer of 2 to 5, multiple R 11 may be the same or different and may be bonded to form a ring. R 12 and A 1 may be bonded to form a ring.
    In general formula (2), R 21 represents an organic group, a halogen atom, or a hydroxyl group. R 22 represents an organic group or a halogen atom. A 2 represents an aromatic hydrocarbon group or an aromatic heterocyclic group. n2 represents an integer of 0 to 5. When n2 is an integer of 2 to 5, multiple R 21 may be the same or different and may be bonded to form a ring.
  19.  前記樹脂中の全繰り返し単位に対する、前記一般式(2)で表される繰り返し単位の含有比率が、30~60mol%である請求項18に記載の樹脂。 The resin according to claim 18, wherein the content ratio of the repeating unit represented by the general formula (2) to the total repeating units in the resin is 30 to 60 mol %.
  20.  重量平均分子量が4000以上である請求項18に記載の樹脂。 The resin according to claim 18, having a weight average molecular weight of 4000 or more.
  21.  前記一般式(1)中のAおよび前記一般式(2)中のAが、芳香環炭化水素基である請求項18~20のいずれか1項に記載の樹脂。 The resin according to any one of claims 18 to 20, wherein A 1 in the general formula (1) and A 2 in the general formula (2) are aromatic ring hydrocarbon groups.
  22.  請求項1~4のいずれか1項に記載の感活性光線性又は感放射性樹脂組成物を用いて形成された感活性光線性又は感放射線性膜。 An actinic ray-sensitive or radiation-sensitive film formed using the actinic ray-sensitive or radiation-sensitive resin composition according to any one of claims 1 to 4.
  23.  請求項1~4のいずれか1項に記載の感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程と、前記感活性光線性又は感放射線性膜を露光する工程と、前記露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程と、を有する、パターン形成方法。 A pattern forming method comprising the steps of forming an actinic ray-sensitive or radiation-sensitive film on a substrate using the actinic ray-sensitive or radiation-sensitive resin composition according to any one of claims 1 to 4, exposing the actinic ray-sensitive or radiation-sensitive film, and developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer.
  24.  請求項23に記載のパターン形成方法を含む電子デバイスの製造方法。 A method for manufacturing an electronic device comprising the pattern formation method according to claim 23.
PCT/JP2024/003409 2023-02-06 2024-02-02 Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, resin, and resin manufacturing method WO2024166802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023-016479 2023-02-06
JP2023016479 2023-02-06

Publications (1)

Publication Number Publication Date
WO2024166802A1 true WO2024166802A1 (en) 2024-08-15

Family

ID=92262535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/003409 WO2024166802A1 (en) 2023-02-06 2024-02-02 Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, resin, and resin manufacturing method

Country Status (1)

Country Link
WO (1) WO2024166802A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632850A (en) * 1992-07-20 1994-02-08 Shin Etsu Chem Co Ltd P-hydroxystyrene-hydroxy-alpha=methylstyrene block copolymer partially esterified with t-butocarboxyl group and its production
JPH0643653A (en) * 1992-07-27 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> Positive resist material
JPH06199916A (en) * 1992-11-16 1994-07-19 Xerox Corp Free radical polymerization
JPH07311464A (en) * 1994-05-16 1995-11-28 Shin Etsu Chem Co Ltd Pattern forming material
JPH08337616A (en) * 1995-04-12 1996-12-24 Shin Etsu Chem Co Ltd Polymer compound and chemically amplified positive resist material
JPH10288839A (en) * 1997-04-14 1998-10-27 Jsr Corp Radiation sensitive resin composition and manufacture of polymer to be used for same
JPH11352695A (en) * 1998-06-11 1999-12-24 Sumitomo Chem Co Ltd Positive type resist composition using narrowly dispersible polymer
JP2003171422A (en) * 2001-12-06 2003-06-20 Toho Chem Ind Co Ltd Copolymer and method for producing the same
JP2004326092A (en) * 2003-03-28 2004-11-18 Sumitomo Chem Co Ltd Chemically amplified resist composition
JP2006301609A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Positive resist composition and pattern forming method using the same
JP2008090261A (en) * 2006-02-28 2008-04-17 Fujifilm Corp Positive resist composition and pattern forming method using same
JP2009086354A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Positive resist composition and pattern forming method using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632850A (en) * 1992-07-20 1994-02-08 Shin Etsu Chem Co Ltd P-hydroxystyrene-hydroxy-alpha=methylstyrene block copolymer partially esterified with t-butocarboxyl group and its production
JPH0643653A (en) * 1992-07-27 1994-02-18 Nippon Telegr & Teleph Corp <Ntt> Positive resist material
JPH06199916A (en) * 1992-11-16 1994-07-19 Xerox Corp Free radical polymerization
JPH07311464A (en) * 1994-05-16 1995-11-28 Shin Etsu Chem Co Ltd Pattern forming material
JPH08337616A (en) * 1995-04-12 1996-12-24 Shin Etsu Chem Co Ltd Polymer compound and chemically amplified positive resist material
JPH10288839A (en) * 1997-04-14 1998-10-27 Jsr Corp Radiation sensitive resin composition and manufacture of polymer to be used for same
JPH11352695A (en) * 1998-06-11 1999-12-24 Sumitomo Chem Co Ltd Positive type resist composition using narrowly dispersible polymer
JP2003171422A (en) * 2001-12-06 2003-06-20 Toho Chem Ind Co Ltd Copolymer and method for producing the same
JP2004326092A (en) * 2003-03-28 2004-11-18 Sumitomo Chem Co Ltd Chemically amplified resist composition
JP2006301609A (en) * 2005-03-22 2006-11-02 Fuji Photo Film Co Ltd Positive resist composition and pattern forming method using the same
JP2008090261A (en) * 2006-02-28 2008-04-17 Fujifilm Corp Positive resist composition and pattern forming method using same
JP2009086354A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Positive resist composition and pattern forming method using the same

Similar Documents

Publication Publication Date Title
JPWO2018212079A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and electronic device manufacturing method
KR101853714B1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, pattern-forming method, and electronic device production method
WO2019123895A1 (en) Active-light-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, method for manufacturing electronic device, and compound
WO2017057226A1 (en) Pattern forming method and active light sensitive or radiation sensitive resin composition
KR101892553B1 (en) Active light-sensitive or radiation-sensitive resin composition, pattern formation method, and electronic device manufacturing method
JP7041756B2 (en) Actinic cheilitis or radiation-sensitive resin composition, resist film, pattern forming method, manufacturing method of electronic device
TW201723654A (en) Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, method for forming pattern and method for producing electronic device
JP2023016886A (en) Photosensitive resin composition, production method therefor, resist film, pattern formation method, and method for producing electronic device
KR20170031748A (en) Active light sensitive or radiation sensitive resin composition, pattern forming method and method for manufacturing electronic device
JP7220229B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, electronic device manufacturing method
WO2021131655A1 (en) Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method
JPWO2016136596A1 (en) Upper layer film forming composition, pattern forming method using the same, and electronic device manufacturing method
WO2020044771A1 (en) Actinic-ray-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, and electronic device manufacture method
JP7336018B2 (en) Pattern forming method, electronic device manufacturing method, and actinic ray- or radiation-sensitive resin composition
JP7579861B2 (en) Actinic ray-sensitive or radiation-sensitive resin composition, resist film, pattern forming method, and method for manufacturing electronic device
TW201931010A (en) Resist composition, resist film, pattern forming method and method for producing electronic device
JP7125470B2 (en) Actinic ray- or radiation-sensitive resin composition, actinic ray- or radiation-sensitive film, pattern forming method, electronic device manufacturing method
WO2021065549A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, method for forming pattern, and method for producing electronic device
WO2024166802A1 (en) Actinic-ray-sensitive or radiation-sensitive resin composition, actinic-ray-sensitive or radiation-sensitive film, pattern formation method, electronic device manufacturing method, resin, and resin manufacturing method
JP6676657B2 (en) Pattern forming method, electronic device manufacturing method, monomer for manufacturing resin for semiconductor device manufacturing process, resin, resin manufacturing method, actinic ray-sensitive or radiation-sensitive resin composition, and actinic ray-sensitive or radiation-sensitive resin film
JP6967661B2 (en) A method for producing a sensitive light-sensitive or radiation-sensitive resin composition, a sensitive light-sensitive or radiation-sensitive film, a pattern forming method, and an electronic device.
WO2024157709A1 (en) Actinic-ray-sensitive or radiation-sensitive composition, actinic-ray-sensitive or radiation-sensitive film, pattern-forming method, and method for producing electronic device
WO2024084970A1 (en) Active-ray-sensitive or radiation-sensitive resin composition, active-ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method
WO2024111511A1 (en) Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device production method
WO2024171930A1 (en) Actinic-ray-sensitive or radiation-sensitive composition, actinic-ray-sensitive or radiation-sensitive film, pattern-formation method, and electronic device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24753245

Country of ref document: EP

Kind code of ref document: A1