Nothing Special   »   [go: up one dir, main page]

WO2024152268A1 - 显示基板和显示装置 - Google Patents

显示基板和显示装置 Download PDF

Info

Publication number
WO2024152268A1
WO2024152268A1 PCT/CN2023/072971 CN2023072971W WO2024152268A1 WO 2024152268 A1 WO2024152268 A1 WO 2024152268A1 CN 2023072971 W CN2023072971 W CN 2023072971W WO 2024152268 A1 WO2024152268 A1 WO 2024152268A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
defining
display substrate
substrate according
Prior art date
Application number
PCT/CN2023/072971
Other languages
English (en)
French (fr)
Inventor
彭锐
许名宏
胡月
Original Assignee
京东方科技集团股份有限公司
合肥京东方卓印科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方卓印科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2023/072971 priority Critical patent/WO2024152268A1/zh
Priority to CN202380008146.8A priority patent/CN118679866A/zh
Publication of WO2024152268A1 publication Critical patent/WO2024152268A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • Embodiments of the present disclosure relate to a display substrate and a display device.
  • OLED Organic light emitting diode
  • Embodiments of the present disclosure provide a display substrate and a display device to improve brightness uniformity.
  • an embodiment of the present disclosure provides a display substrate, comprising: a pixel defining layer, wherein the pixel defining layer comprises a pixel defining structure and a plurality of grooves, the plurality of grooves are arranged along a first direction, the grooves extend along a second direction, the second direction intersects with the first direction, the pixel defining structure comprises a plurality of first defining portions located in the grooves and arranged along the second direction, the first defining portions extend along the first direction, and two adjacent first defining portions in the same groove are configured to define a sub-pixel group, the sub-pixel group comprises a plurality of sub-pixels.
  • the short side of the sub-pixel corresponds to the long side of the sub-pixel group.
  • the plurality of sub-pixels are arranged in sequence along an extension direction of a long side of the sub-pixel group.
  • the extension direction of the long side of the sub-pixel is the same as the extension direction of the short side of the sub-pixel group
  • the extension direction of the short side of the sub-pixel is the same as the extension direction of the long side of the sub-pixel group.
  • the pixel defining structure further includes a second defining portion located between two adjacent first defining portions, the second defining portion extends along the first direction, and the second defining portion is configured to separate two adjacent sub-pixels in the same sub-pixel group.
  • a plurality of second limiting portions are provided, and the plurality of second limiting portions are arranged along the second direction.
  • the display substrate further includes a base substrate, the pixel defining layer is located on the base substrate, and a size of the first defining portion in a direction perpendicular to the base substrate is greater than or equal to a size of the second defining portion in a direction perpendicular to the base substrate.
  • the pixel definition structure further includes a plurality of main definition parts, two of the plurality of main definition parts The groove is between adjacent main defining portions, and the size of the main defining portion in a direction perpendicular to the base substrate is greater than the size of the first defining portion in a direction perpendicular to the base substrate.
  • a dimension of the first defining portion along the second direction is greater than or equal to a dimension of the second defining portion along the second direction.
  • the display substrate further includes a lens layer, the lens layer includes a plurality of lens units, the extension direction of the lens units is the same as the extension direction of the long sides of the sub-pixels, and the lens units cover at least one sub-pixel.
  • the pixel defining layer further includes a plurality of openings penetrating the pixel defining structure, the openings being configured to define a light emitting area of one sub-pixel, and the sub-pixel group has more than one opening.
  • an extending direction of the groove is the same as an extending direction of a short side of the sub-pixel.
  • the cross-sectional shape of the lens unit includes a columnar shape, a triangular shape, or a semicircular shape.
  • different sub-pixel groups correspond to different structures of lens units.
  • an orthographic projection of the lens unit on the base substrate overlaps with an orthographic projection of the first defining portion on the base substrate.
  • each of the sub-pixels included in the sub-pixel group is driven by an independent pixel circuit.
  • an embodiment of the present disclosure provides a display substrate, comprising: a pixel defining layer, wherein the pixel defining layer comprises a pixel defining structure and a plurality of openings penetrating the pixel defining structure, the pixel defining structure comprises a plurality of main defining portions, the plurality of main defining portions are arranged along a first direction, the main defining portions extend along a second direction, the second direction intersects with the first direction, the pixel defining structure further comprises a plurality of first defining portions located between two adjacent main defining portions and arranged along the second direction, the first defining portions extend along the first direction, the pixel defining structure further comprises a second defining portion located between two adjacent first defining portions, the second defining portion extends along the first direction, wherein two adjacent main defining portions and two adjacent first defining portions located therebetween are configured to define a sub-pixel group, the sub-pixel group comprises a plurality of sub-pixels.
  • the short side of the sub-pixel corresponds to the long side of the sub-pixel group.
  • the plurality of sub-pixels are arranged in sequence along the extension direction of the long side of the sub-pixel group.
  • the extension direction of the long side of the sub-pixel is the same as the extension direction of the short side of the sub-pixel group, and the extension direction of the short side of the sub-pixel is the same as the extension direction of the long side of the sub-pixel group.
  • the display substrate also includes a base substrate, the pixel defining layer is located on the base substrate, and the size of the first defining portion in a direction perpendicular to the base substrate is greater than or equal to the size of the second defining portion in a direction perpendicular to the base substrate.
  • the size of the main defining portion in the direction perpendicular to the base substrate is larger than the size of the first defining portion in the direction perpendicular to the base substrate.
  • a size of the first defining portion along the second direction is greater than a size of the second defining portion along the second direction.
  • the display substrate also includes a light-emitting element, the light-emitting element has a first electrode, a second electrode and a light-emitting functional layer located between the first electrode and the second electrode, and the opening is configured to expose a portion of the first electrode.
  • an extension direction of the main limiting portion is the same as an extension direction of the short side of the sub-pixel.
  • the cross-sectional shape of the lens unit includes a columnar shape, a triangle shape, or a semicircular shape.
  • different sub-pixel groups correspond to different structures of lens units.
  • the orthographic projection of the lens unit on the base substrate overlaps with the orthographic projection of the first limiting portion on the base substrate.
  • each of the sub-pixels included in the sub-pixel group is driven by an independent pixel circuit.
  • an embodiment of the present disclosure further provides a display device, comprising any of the above-mentioned display substrates.
  • FIG. 1 is a schematic diagram of a display substrate.
  • FIG. 2 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 3 is a cross-sectional view taken along line A1 - A2 of FIG. 2 .
  • FIG. 4 is a cross-sectional view taken along line A3 - A4 of FIG. 2 .
  • FIG. 5 is a cross-sectional view taken along line A5 - A6 of FIG. 2 .
  • FIG. 6 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a display substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another display substrate provided in an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 14 is a cross-sectional view taken along line B1 - B2 of FIG. 13 .
  • FIG15 is a cross-sectional view taken along line B3 - B4 of FIG13 .
  • FIG. 16 is a schematic diagram showing the uniformity of film thickness along the long sides of sub-pixels of the display substrate shown in FIG. 1 .
  • FIG. 17 is a schematic diagram showing the uniformity of film thickness on the short sides of sub-pixels of the display substrate shown in FIG. 1 .
  • FIG. 18 is a schematic diagram showing the uniformity of film thickness along the long sides of the sub-pixel of the display substrate shown in FIG. 2 .
  • FIG. 19 is a schematic diagram showing the uniformity of film thickness on the short sides of the sub-pixel of the display substrate shown in FIG. 2 .
  • Inkjet printing is a process for preparing organic light-emitting diodes (OLEDs) based on solution-based inks. Due to the climbing, pinning, and "coffee ring" effects of solution-based inks, the short-side film thickness uniformity is poor, which leads to This results in poor brightness uniformity.
  • OLEDs organic light-emitting diodes
  • FIG. 1 is a schematic diagram of a display substrate.
  • the display substrate includes a pixel defining layer PDL.
  • the pixel defining layer PDL includes a pixel defining structure K and a plurality of openings OPN.
  • the pixel defining structure K includes a main defining portion MP, a plurality of main defining portions MP are arranged along a first direction X, the main defining portion MP extends along a second direction Y, a groove K0 is provided between two adjacent main defining portions MP, a plurality of grooves K0 are arranged along a first direction X, the grooves K0 extend along a second direction Y, and the second direction Y intersects with the first direction X.
  • the pixel defining structure K also includes a plurality of defining portions P1 located in the groove K0 and arranged along the second direction Y, and the defining portion P1 extends along the first direction X.
  • the area between two adjacent defining portions P1 in the same groove K0 is an opening OPN.
  • the opening OPN corresponds to a sub-pixel 100.
  • FIG. 1 shows sub-pixels 101, 102, and 103.
  • the light-emitting functional layer of the light-emitting element is made by the inkjet printing process, the color of the ink in the same groove K0 is the same.
  • the sub-pixels 100 in the same groove K0 emit light of the same color.
  • FIG. 1 is described by taking the example that the sub-pixel 101 is a blue sub-pixel, the sub-pixel 102 is a green sub-pixel, and the sub-pixel 103 is a red sub-pixel.
  • FIG. 1 shows four main limiting portions MP arranged in sequence along the first direction X.
  • FIG. 1 shows three grooves K0.
  • the same groove K0 is used to hold the same type of ink.
  • the sub-pixels 100 located in the same groove K0 emit light of the same color.
  • FIG. 1 shows four limiting portions P1 located in the same groove K0 and spaced and arranged in sequence along the second direction Y.
  • the number of main limiting portions MP and the number of limiting portions P1 in the display substrate can be determined as required.
  • the sub-pixel 100 has a long side W1 and a short side W2.
  • the length of the long side W1 is greater than the length of the short side W2. Due to the climbing, pinning, and "coffee ring" effects of the solution-based ink, the uniformity of the film thickness of the short side is poor, which in turn leads to the problem of poor brightness uniformity.
  • an embodiment of the present disclosure provides a display substrate.
  • Fig. 2 is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Fig. 3 is a cross-sectional view along line A1-A2 of Fig. 2.
  • Fig. 4 is a cross-sectional view along line A3-A4 of Fig. 2.
  • Fig. 5 is a cross-sectional view along line A5-A6 of Fig. 2.
  • the display substrate includes: a pixel defining layer PDL, the pixel defining layer PDL includes a pixel defining structure K, the pixel defining structure K has a plurality of grooves K0, the plurality of grooves K0 are arranged along a first direction X, the grooves K0 extend along a second direction Y, the second direction Y intersects the first direction X, the pixel defining structure K also includes a plurality of first grooves K0 located in the grooves K0 and arranged along the second direction Y.
  • the defining portions P1 extend along the first direction X.
  • Two adjacent first defining portions P1 in the same groove K0 are configured to define a sub-pixel group 200 .
  • the sub-pixel group 200 includes a plurality of sub-pixels 100 .
  • a sub-pixel group 200 is provided between two adjacent first limiting portions P1, and the sub-pixel group 200 includes a plurality of sub-pixels 100. Compared with the case where the sub-pixel group 200 has one sub-pixel 100, the problem of poor brightness uniformity caused by poor uniformity of the film thickness of the short side of the sub-pixel can be alleviated.
  • the display substrate provided by the embodiment of the present disclosure has optimized uniformity of film thickness and has good brightness uniformity.
  • the display substrate provided by the embodiment of the present disclosure includes: a pixel defining layer PDL, the pixel defining layer PDL includes a pixel defining structure K and a plurality of openings OPN penetrating the pixel defining structure K, the pixel defining structure K includes a plurality of main defining portions MP, the plurality of main defining portions MP are arranged along a first direction X, the main defining portions MP extend along a second direction Y, the second direction Y intersects with the first direction X, the pixel defining structure K also includes a plurality of first defining portions P1 located between two adjacent main defining portions MP and arranged along the second direction Y, the first defining portions P1 extend along the first direction X, the pixel defining structure K also includes a second defining portion P2 located between two adjacent first defining portions P1, the second defining portion P2 extends along the first direction X, the two adjacent main defining portions MP and the two adjacent first defining portions P1 located therebetween
  • two adjacent main defining portions MP and two adjacent first defining portions P1 located therebetween are configured to define a sub-pixel group 200, and the sub-pixel group 200 includes a plurality of sub-pixels 100.
  • the problem of poor brightness uniformity caused by poor uniformity of the short side film thickness of the sub-pixel can be alleviated.
  • the display substrate provided by the embodiment of the present disclosure has optimized uniformity of film thickness and has good brightness uniformity.
  • the sub-pixel group 200 includes a plurality of sub-pixels 100, which is beneficial to increase the number of pixels per inch (Pixels Per Inch, PPI).
  • a groove K0 is disposed between two adjacent main defining portions MP, a plurality of grooves K0 are arranged along a first direction X, and the grooves K0 extend along a second direction Y. As shown in FIG. 2 , as shown in FIG. 2 , a groove K0 is disposed between two adjacent main defining portions MP, a plurality of grooves K0 are arranged along a first direction X, and the grooves K0 extend along a second direction Y. As shown in FIG.
  • the sub-pixel group 200 has a long side W1 and a short side W2 , and the length of the long side W1 is greater than the length of the short side W2 .
  • the sub-pixel 100 has a long side L1 and a short side L2 , and the length of the long side L1 is greater than the length of the short side L2 .
  • the short side L2 of the sub-pixel 100 corresponds to the long side W1 of the sub-pixel group 200.
  • the sub-pixel 100 extends along the extension direction of the short side W2 of the sub-pixel group 200, and the plurality of sub-pixels 100 are arranged along the extension direction of the long side W1 of the sub-pixel group 200.
  • a plurality of sub-pixels 100 are sequentially arranged along the extension direction of the long side of the sub-pixel group 200 .
  • the extension direction of the long side of the sub-pixel 100 is the same as the extension direction of the short side of the sub-pixel group 200
  • the extension direction of the short side of the sub-pixel 100 is the same as the extension direction of the long side of the sub-pixel group 200 .
  • FIG2 is illustrated by taking the sub-pixel group 200 having four sub-pixels 100 as an example.
  • the sub-pixel group 200 has 4-15 sub-pixels 100.
  • the sub-pixel group 200 has 8-15 sub-pixels 100.
  • the embodiments of the present disclosure do not limit the number of sub-pixels 100 included in the sub-pixel group 200.
  • the sub-pixel 100 is the smallest light-emitting unit, and the sub-pixel 100 can be controlled independently. For example, each sub-pixel 100 is driven by a different pixel circuit.
  • the display substrate further includes a second limiting portion P2 located between two adjacent first limiting portions P1. As shown in Figure 2, the second limiting portion P2 extends along the first direction X.
  • a plurality of second defining portions P2 are provided. As shown in FIG. 2 , a plurality of second defining portions P2 are arranged along the second direction Y. FIGS. 2 and 3 show three second defining portions P2 that are spaced between two adjacent first defining portions P1 and are arranged in sequence. The second defining portion P2 is configured to separate two adjacent sub-pixels 100 in the same sub-pixel group 200.
  • FIG. 2 shows four main limiting portions MP arranged in sequence along the first direction X.
  • FIG. 2 shows three grooves K0. During inkjet printing, the same groove K0 is used to hold the same type of ink. The sub-pixels 100 located in the same groove K0 emit light of the same color.
  • FIG. 2 shows four first limiting portions P1 located in the same groove K0 and arranged in sequence along the second direction Y at intervals.
  • FIG. 2 also shows three second limiting portions P2 located between two adjacent first limiting portions P1.
  • the number of the fixed parts MP, the number of the first limiting parts P1, and the number of the second limiting parts P2 can be determined according to needs.
  • the display substrate further includes a base substrate BS, and the pixel defining layer PDL is located on the base substrate BS.
  • the dimension h1 of the first defining portion P1 in a direction perpendicular to the base substrate BS is greater than the dimension h2 of the second defining portion P2 in a direction perpendicular to the base substrate BS.
  • the first defining portion P1 includes a first defining sublayer P11 and a second defining sublayer P12, and the first defining sublayer P11 is closer to the base substrate BS than the second defining sublayer P12.
  • the first defining sublayer P11 is made of a hydrophilic material
  • the second defining sublayer P12 is made of a hydrophobic material, but is not limited thereto.
  • the first defining portion P1 may also adopt a single-layer structure, or include more than two defining sublayers.
  • the pixel defining structure K also includes a plurality of main defining parts MP.
  • main defining parts MP there is a groove K0 between two adjacent main defining parts MP.
  • the dimension h0 of the main defining part MP in the direction perpendicular to the base substrate BS is greater than the dimension h1 of the first defining part P1 in the direction perpendicular to the base substrate BS.
  • Figure 5 takes the example that the first defining part P1 includes a first defining sublayer P11 and a second defining sublayer P12, and the main defining part MP and the first defining part P1 are made separately.
  • the main defining part MP can be formed by the same film layer and the same patterning process as one of the first defining sublayer P11 and the second defining sublayer P12.
  • the dimension h0 of the main defining portion MP in the direction perpendicular to the base substrate BS is equal to the dimension of the groove K0 in the direction perpendicular to the base substrate BS.
  • the dimension of the groove K0 in the direction perpendicular to the base substrate BS is greater than the dimension h1 of the first defining portion P1 in the direction perpendicular to the base substrate BS
  • the dimension h1 of the first defining portion P1 in the direction perpendicular to the base substrate BS is greater than the dimension h2 of the second defining portion P2 in the direction perpendicular to the base substrate BS.
  • the pixel defining layer PDL further includes a plurality of openings OPN penetrating the pixel defining structure K, the openings OPN being configured to define the light emitting area of one sub-pixel 100, and the sub-pixel group 200 having more than one opening OPN.
  • FIG2 and FIG3 illustrate the sub-pixel group 200 having four openings OPN as an example. Of course, the number of the four openings OPNs of the sub-pixel group 200 can be determined as required.
  • a dimension W11 of the first defining portion P1 along the second direction Y is greater than a dimension W22 of the second defining portion P2 along the second direction Y.
  • a pixel PX includes a plurality of sub-pixel groups 200.
  • the sub-pixel group 200 is used as an example for explanation.
  • FIG. 2 shows a sub-pixel group 201, a sub-pixel group 202, and a sub-pixel group 203.
  • the multiple sub-pixel groups 200 are configured to emit light of different colors, and the multiple sub-pixels 100 in the same sub-pixel group 200 are configured to emit light of the same color.
  • FIG. 2 is illustrated by taking the sub-pixel 101 as a blue sub-pixel, the sub-pixel 102 as a green sub-pixel, and the sub-pixel 103 as a red sub-pixel as an example.
  • the sub-pixel 101 in the sub-pixel group 201 is a blue sub-pixel
  • the sub-pixel 102 in the sub-pixel group 202 is a green sub-pixel
  • the sub-pixel 103 in the sub-pixel group 203 is a red sub-pixel.
  • the luminous color of the sub-pixel is not limited to the above description and can be determined as needed.
  • FIG. 6 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 7 is a cross-sectional view of a display substrate provided in an embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of another display substrate provided in an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of another display substrate provided in an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view of another display substrate provided in an embodiment of the present disclosure.
  • the display substrate further includes a lens layer 300, and the lens layer 300 includes a plurality of lens units 301.
  • the extension direction of the lens unit 301 is the same as the extension direction of the long side L1 of the sub-pixel 100.
  • the display substrate is provided with the lens layer 300 for 3D display.
  • the extension direction of the lens unit 301 is the same as the extension direction of the long side L1 of the sub-pixel 100, which is conducive to achieving a high PPI 3D display effect.
  • only one lens unit 301 is shown on the right side of FIG. 6 .
  • one lens unit 301 covers a plurality of sub-pixels 100 of different colors.
  • Sub-pixels in the same column are sub-pixels of the same color.
  • the lens units 301 on the pixels PX of different rows may be arranged differently.
  • the structures of the lens units 301 corresponding to different sub-pixel groups 200 are different.
  • different lens units 301 may be arranged differently.
  • the lens units 301 may have different sizes, such as different widths.
  • the lens units 301 may have different heights.
  • the lens units 301 may have different arrangement densities or different compactness.
  • the different structures of the lens units 301 include at least one of the different sizes, different heights, different arrangement densities, and different compactness described above.
  • the lens layer 300 is a transparent lens layer.
  • the extending direction of the long side of the lens unit 301 is the same as the extending direction of the long side of the sub-pixel 100 .
  • the lens unit 301 covers at least one sub-pixel 100 .
  • the lens unit 301 covers one sub-pixel group 200 . That is, the lens unit 301 covers a plurality of sub-pixels 100 in one sub-pixel group 200 .
  • the lens unit 301 covers one sub-pixel 100 .
  • the display substrate includes a light-emitting functional layer FL.
  • the light-emitting functional layer FL includes multiple film layers, for example, a light-emitting layer (light-emitting material layer), and the light-emitting functional layer may also include at least one of a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer.
  • the organic light-emitting functional layer may be selected as required.
  • At least one film layer in the light-emitting functional layer may be manufactured by an inkjet printing process.
  • the cross section of the lens unit 301 is cylindrical.
  • the cross section of the lens unit 301 is triangular.
  • the cross section of the lens unit 301 is semicircular.
  • the lens layer 300 is located between the base substrate BS and the base substrate 400 .
  • the protruding direction of the lens unit 301 can be away from the substrate BS, or toward the substrate BS.
  • Figures 7 to 9 are described by taking the protruding direction of the lens unit 301 away from the substrate BS as an example.
  • Figure 10 is described by taking the protruding direction of the lens unit 301 toward the substrate BS as an example. Whether the protruding direction of the lens unit 301 is away from the substrate or toward the substrate, the 3D display function can be achieved.
  • the protrusion direction of the lens unit 301 When the protrusion direction of the lens unit 301 is away from the base substrate BS, the light extraction efficiency is effectively improved, and the pixel crosstalk problem is improved, the product performance is improved, and the product competitiveness is enhanced.
  • the protrusion direction of the lens unit 301 When the protrusion direction of the lens unit 301 is away from the base substrate BS, it can prevent moiré, that is, it plays a role in atomization.
  • the lens layer 300 can be formed on another base substrate (base substrate 400), and then the two base substrates are bonded together.
  • the lens layer 300 and the light emitting element EM can be separately disposed on different base substrates, so that the lens layer 300 is easier to manufacture and the production efficiency is improved.
  • the lens layer 300 is located above the sub-pixel 100.
  • the lens layer 300 is located above the light emitting element EM.
  • the orthographic projection of the lens layer 300 or the lens unit 301 on the base substrate BS overlaps with the orthographic projection of the second defining portion P2 on the base substrate BS.
  • the lens layer 300 or the lens unit 301 is formed on the substrate BS.
  • the projection overlaps with the orthographic projection of the first defining portion P1 on the base substrate BS.
  • the orthographic projection of the lens layer 300 or the lens unit 301 on the base substrate BS overlaps with the orthographic projection of the main defining portion MP on the base substrate BS.
  • the display substrate further includes a second electrode E2 , and the second electrode E2 is located on the light emitting functional layer FL.
  • the display substrate further includes a packaging structure layer 601.
  • the material of the packaging structure layer 601 includes inorganic materials such as silicon nitride and silicon oxynitride.
  • the display substrate further includes an organic encapsulation filling layer 602.
  • the material of the organic encapsulation filling layer 602 includes an organic material, such as polyimide, but is not limited thereto and can be determined according to needs.
  • the display substrate further includes a cover plate 603.
  • the cover plate 603 is made of glass, but is not limited thereto.
  • the display substrate further includes a gap layer 605.
  • a gap layer 605. For example, nitrogen may be filled in the gap layer 605.
  • FIG10 also shows a barrier dam 600.
  • the structure between the base substrate BS and the pixel defining layer PDL is omitted in FIGS. 7 to 10 .
  • Fig. 11 is a schematic diagram of a display substrate provided in an embodiment of the present disclosure.
  • Fig. 12 is a schematic diagram of another display substrate provided in an embodiment of the present disclosure.
  • the display substrate further includes a light emitting element EM, the light emitting element EM includes a first electrode E1, a second electrode E2, and a light emitting function layer FL located between the first electrode E1 and the second electrode E2, and the opening OPN is configured to expose a portion of the first electrode E1.
  • One sub-pixel 100 has one first electrode E1.
  • the plurality of first electrodes E1 are spaced apart from each other to be configured to input signals respectively.
  • the first electrode E1 is connected to the pixel circuit PXC.
  • the pixel circuit PXC may include a transistor (T) and a storage capacitor (C), but is not limited thereto.
  • the pixel circuit PXC includes a 3T1C, 5T1C, or 5T2C pixel circuit, but is not limited thereto.
  • the number of transistors and the number of storage capacitors included in the pixel circuit PXC may be determined as required.
  • 11 and 12 also show an insulating layer ISL1 and an insulating layer ISL2.
  • the first electrode E1 is located on the insulating layer ISL1 and is connected to the pixel circuit PXC through a via hole penetrating the insulating layer ISL1.
  • the pixel circuit PXC is schematically shown in the figures, and the specific structure of the pixel circuit PXC can be determined according to needs.
  • the light-emitting functional layer FL includes a first type of light-emitting functional layer FL1 and a second type of light-emitting functional layer FL2.
  • the first type of light-emitting functional layer FL1 can be manufactured by inkjet printing process.
  • the second type of light-emitting functional layer FL2 is a common layer and can be manufactured by evaporation method.
  • the first type of light-emitting functional layer FL1 includes at least one of a hole injection layer, a hole transport layer, and a light-emitting layer, but is not limited thereto.
  • the second type of light-emitting functional layer FL2 includes an electron injection layer, but is not limited thereto.
  • the structure of the light-emitting functional layer FL is not limited to that shown in the figure, and can be determined according to needs.
  • one of the first electrode E1 and the second electrode E2 is an anode
  • the other of the first electrode E1 and the second electrode E2 is a cathode
  • the material of the first electrode E1 of the light-emitting element includes a conductive material, for example, at least one of silver (Ag) or indium tin oxide (ITO), but not limited thereto.
  • the first electrode E1 of the light-emitting element is a three-layer stacked structure of ITO/Ag/ITO, but not limited thereto.
  • the material of the first electrode E1 of the light-emitting element includes aluminum (Al) and tungsten oxide (WOx), for example, the first electrode E1 includes a stack of an aluminum layer and a tungsten oxide layer, and the aluminum layer is closer to the substrate than the tungsten oxide layer.
  • the material of the second electrode E2 of the light emitting element includes a conductive material, for example, silver (Ag), but is not limited thereto.
  • the sub-pixels 100 can be independently controlled to display images of different grayscales to achieve high PPI display.
  • Fig. 13 is a schematic diagram of a display substrate provided by an embodiment of the present disclosure.
  • Fig. 14 is a cross-sectional view along line B1-B2 of Fig. 13.
  • Fig. 15 is a cross-sectional view along line B3-B4 of Fig. 13.
  • the dimension W11 of the first defining portion P1 along the second direction Y is equal to the dimension W22 of the second defining portion P2 along the second direction Y.
  • the dimension W11 is equal to the dimension W22 of the second defining portion P2 along the second direction Y.
  • the absolute value of the difference between the dimension W11 of the first defining portion P1 along the second direction Y and the dimension W22 of the second defining portion P2 along the second direction Y is less than 5% of the ratio of the dimension W11 of the first defining portion P1 along the second direction Y or the dimension W22 of the second defining portion P2 along the second direction Y.
  • the first limiting portion P1 is perpendicular to the substrate BS.
  • the dimension h1 is equal to a dimension h2 of the second defining portion P2 in a direction perpendicular to the base substrate BS.
  • a dimension h0 of the main defining portion MP in a direction perpendicular to the base substrate BS is greater than a dimension h1 of the first defining portion P1 in a direction perpendicular to the base substrate BS.
  • a dimension (height) h0 of the main definition portion MP in a direction perpendicular to the base substrate BS is about 1-2 ⁇ m.
  • a dimension h1 of the first defining portion P1 in a direction perpendicular to the base substrate BS is about 0.5-0.9 ⁇ m.
  • a dimension h2 of the second defining portion P2 in a direction perpendicular to the base substrate BS is about 0.5-0.9 ⁇ m.
  • first limiting portion P1 and the second limiting portion P2 have the same width and height, it is beneficial to improve the uniformity of the flow of printing ink and the uniformity of the film thickness of the long side and the short side of the sub-pixel.
  • the dimension (height) h0 of the main defining portion MP in a direction perpendicular to the base substrate BS is approximately 1.3 ⁇ m
  • the dimension h1 of the first defining portion P1 in a direction perpendicular to the base substrate BS is approximately 0.6 ⁇ m
  • the dimension h2 of the second defining portion P2 in a direction perpendicular to the base substrate BS is approximately 0.6 ⁇ m.
  • the main defining portion MP can be made of a hydrophobic material
  • the first defining portion P1 and the second defining portion P2 can be made of a hydrophilic material.
  • the first defining portion P1 and the second defining portion P2 can be made of the same film layer using the same patterning process.
  • the extension direction of the sub-pixel group 200 is the same as the extension direction of the groove K0 . That is, the sub-pixel group 200 extends along the second direction Y, and the groove K0 extends along the second direction Y.
  • the extension direction of the sub-pixel group 200 may refer to the extension direction of the long side of the sub-pixel group 200 .
  • the extension direction of the sub-pixel 100 intersects with the extension direction of the groove K0.
  • the extension direction of the sub-pixel 100 is perpendicular to the extension direction of the groove K0. That is, the sub-pixel 100 extends along the first direction X, and the groove K0 extends along the second direction Y.
  • the direction may refer to an extending direction of a long side of the sub-pixel 100 .
  • the extension direction of the sub-pixel 100 is made to intersect with the extension direction of the groove K0 rather than being parallel to the extension direction of the groove K0 , which is beneficial to improving the uniformity of the film thickness.
  • the extending direction of the groove K0 is the same as the extending direction of the main defining portion MP.
  • the extending direction of the groove K0 in the above description can also be replaced by the extending direction of the main defining portion MP.
  • the extension direction of the sub-pixel group 200 is the same as the extension direction of the main defining portion MP. That is, the sub-pixel group 200 extends along the second direction Y, and the main defining portion MP extends along the second direction Y.
  • the extension direction of the sub-pixel group 200 may refer to the extension direction of the long side of the sub-pixel group 200.
  • the extension direction of the sub-pixel 100 intersects with the extension direction of the main defining portion MP.
  • the extension direction of the sub-pixel 100 is perpendicular to the extension direction of the main defining portion MP. That is, the sub-pixel 100 extends along the first direction X, and the main defining portion MP extends along the second direction Y.
  • the extension direction of the sub-pixel 100 may refer to the extension direction of the long side of the sub-pixel 100.
  • making the extension direction of the sub-pixel 100 intersect with the extension direction of the main limiting portion MP instead of making the extension direction of the sub-pixel 100 parallel to the extension direction of the main limiting portion MP is beneficial to improving the uniformity of film thickness.
  • the description may also be made by using the relationship between the extension direction of the short side of the sub-pixel 100 and the extension direction of the main limiting portion MP or the groove K0.
  • the extension direction of the short side of the sub-pixel 100 is the same as the extension direction of the main defining portion MP or the groove K0. That is, the short side of the sub-pixel 100 extends along the second direction Y, and the main defining portion MP extends along the second direction Y.
  • the extension direction of the sub-pixel 100 may refer to the extension direction of the long side of the sub-pixel 100.
  • making the extension direction of the short side of the sub-pixel 100 the same as the extension direction of the main limiting portion MP or the groove K0, rather than the extension direction of the short side of the sub-pixel 100 intersecting with the extension direction of the main limiting portion MP, is beneficial to improving the uniformity of film thickness.
  • Fig. 16 is a schematic diagram showing the uniformity of the film thickness of the long side of the sub-pixel of the display substrate shown in Fig. 1.
  • Fig. 17 is a schematic diagram showing the uniformity of the film thickness of the short side of the sub-pixel of the display substrate shown in Fig. 1.
  • Fig. 18 is a schematic diagram showing the uniformity of the film thickness of the long side of the sub-pixel of the display substrate shown in Fig. 2.
  • Fig. 19 is a schematic diagram showing the uniformity of the film thickness of the short side of the sub-pixel of the display substrate shown in Fig. 2.
  • the inner curves in Figures 16 to 19 are the morphology curves of the sub-pixels, and the outer curves are the basic curves.
  • the length of the horizontal axis corresponding to the overlap area of the morphology curve and the basic curve is the same as the length of the horizontal axis corresponding to the basic curve.
  • the ratio of the lengths of the two sides is the uniformity of the film thickness.
  • the area uniformity is the multiplication of the uniformity of the long side's film thickness and the uniformity of the short side's film thickness.
  • the film thickness uniformity of the long side and the short side of the display substrate shown in FIG. 1 is 90% and 50% respectively, and the area uniformity is 45%.
  • the film thickness uniformity of the long side and the short side of the display substrate shown in FIG. 2 provided by the embodiment of the present disclosure is 80% and 85% respectively, the area uniformity can reach 68%, and the pixel uniformity is significantly improved.
  • the length W1 of the sub-pixel group 200 may be 5-200 ⁇ m, and the width W2 of the sub-pixel group 200 may be 5-100 ⁇ m.
  • the length W1 of the sub-pixel group 200 may be 100-200 ⁇ m, and the width W2 of the sub-pixel group 200 may be 10-50 ⁇ m.
  • the length L1 of the sub-pixel 100 may be 2.5-100 ⁇ m, and the width L2 of the sub-pixel 100 may be 5-50 ⁇ m.
  • the length L1 of the sub-pixel 100 may be 10-50 ⁇ m, and the width L2 of the sub-pixel 100 may be 10-50 ⁇ m.
  • the width of the sub-pixel group 200 is equal to the length of the sub-pixel 100 .
  • the length of the sub-pixel group 200 is at least twice greater than the width of the sub-pixel 100.
  • the length of the sub-pixel group 200 may refer to a distance between two adjacent first defining portions P1.
  • the plan view shows a first direction X and a second direction Y
  • the cross-sectional view shows a third direction Z.
  • the first direction X and the second direction Y are both directions parallel to the main surface of the substrate substrate BS.
  • the third direction Z is a direction perpendicular to the main surface of the substrate substrate BS.
  • the first direction X and the second direction Y intersect.
  • the embodiments of the present disclosure are described by taking the first direction X and the second direction Y as an example of being perpendicular.
  • the main surface of the substrate substrate BS is the surface of the substrate substrate BS used to make various components.
  • the upper surface of the substrate substrate BS in the cross-sectional view is the main surface of the substrate substrate BS.
  • the substrate BS, the insulating layer ISL1, the insulating layer ISL2, and the pixel defining layer PDL are all made of insulating materials.
  • the substrate BS includes a flexible material such as polyimide or a rigid material such as glass, but is not limited thereto.
  • At least one of the insulating layer ISL1, the insulating layer ISL2, and the pixel defining layer PDL is made of an inorganic insulating material or an organic insulating material.
  • an inorganic insulating The insulating material includes silicon oxide, silicon nitride, silicon oxynitride, etc., and the organic insulating material includes resin, but is not limited thereto.
  • the pixel defining layer PDL and the insulating layer ISL1 can be made of organic materials, for example, the organic material includes resin, but is not limited thereto.
  • At least one film layer in the light-emitting functional layer is manufactured by inkjet printing process, and the printing ink is sprayed into the corresponding groove K0 by inkjet printing process, and then vacuum drying, baking and other operations are performed to form at least one film layer in the light-emitting functional layer.
  • the light-emitting layer, the hole transport layer and the electron transport layer in the light-emitting functional layer can all be manufactured by inkjet printing process.
  • the extension direction of a component refers to the extension of the component along its length direction.
  • At least one embodiment of the present disclosure provides a display device, comprising any of the above display substrates.
  • the display device may be a large-size display device, and at least one film layer in the light-emitting functional layer is manufactured by inkjet printing technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示基板和显示装置。该显示基板包括:像素限定层,其中,像素限定层包括像素限定结构和多个凹槽,多个凹槽沿第一方向排列,凹槽沿第二方向延伸,第二方向与第一方向相交,像素限定结构包括位于凹槽中且沿第二方向排列的多个第一限定部,第一限定部沿第一方向延伸,在同一凹槽中的两个相邻的第一限定部被配置为限定一个子像素组,子像素组包括多个子像素。

Description

显示基板和显示装置 技术领域
本公开的实施例涉及一种显示基板和显示装置。
背景技术
随着科技的飞速发展,显示媒介成为人们生活的重要组成部分。有机发光二极管显示器(organic light emitting diode,OLED)显示媒介由于其自发光性使其拥有卓越的颜色和画质。
发明内容
本公开实施例提供一种显示基板和显示装置,以提升亮度均一性。
一方面,本公开实施例提供一种显示基板,包括:像素限定层,其中,所述像素限定层包括像素限定结构和多个凹槽,所述多个凹槽沿第一方向排列,所述凹槽沿第二方向延伸,所述第二方向与所述第一方向相交,所述像素限定结构包括位于所述凹槽中且沿所述第二方向排列的多个第一限定部,所述第一限定部沿所述第一方向延伸,在同一凹槽中的两个相邻的第一限定部被配置为限定一个子像素组,所述子像素组包括多个子像素。
例如,所述子像素的短边对应所述子像素组的长边。
例如,所述多个子像素沿所述子像素组的长边的延伸方向依次排布。
例如,所述子像素的长边的延伸方向与所述子像素组的短边的延伸方向相同,所述子像素的短边的延伸方向与所述子像素组的长边的延伸方向相同。
例如,所述像素限定结构还包括位于两个相邻的第一限定部之间的第二限定部,所述第二限定部沿所述第一方向延伸,所述第二限定部被配置为分隔同一子像素组中的两个相邻的子像素。
例如,所述第二限定部设置为多个,多个第二限定部沿所述第二方向排列。
例如,显示基板还包括衬底基板,所述像素限定层位于所述衬底基板上,所述第一限定部在垂直于所述衬底基板的方向上的尺寸大于或等于所述第二限定部在垂直于所述衬底基板的方向上的尺寸。
例如,所述像素限定结构还包括多个主限定部,所述多个主限定部的两个 相邻主限定部之间为所述凹槽,所述主限定部在垂直于所述衬底基板的方向上的尺寸大于所述第一限定部在垂直于所述衬底基板的方向上的尺寸。
例如,所述第一限定部沿所述第二方向的尺寸大于或等于所述第二限定部沿所述第二方向的尺寸。
例如,显示基板还包括透镜层,所述透镜层包括多个透镜单元,所述透镜单元的延伸方向与所述子像素的长边的延伸方向相同,所述透镜单元覆盖至少一个子像素。
例如,所述像素限定层还包括贯穿所述像素限定结构的多个开口,所述开口被配置为限定一个子像素的发光区,所述子像素组具有大于一个的开口。
例如,所述凹槽的延伸方向与所述子像素的短边的延伸方向相同。
例如,所述透镜单元的截面形状包括柱状、三角形、或半圆形。
例如,不同的子像素组对应的透镜单元的结构不同。
例如,所述透镜单元在衬底基板上的正投影与所述第一限定部在所述衬底基板上的正投影交叠。
例如,所述子像素组包含的子像素各自有独立的像素电路驱动。
另一方面,本公开实施例提供一种显示基板,包括:像素限定层,其中,所述像素限定层包括像素限定结构和贯穿所述像素限定结构的多个开口,所述像素限定结构包括多个主限定部,所述多个主限定部沿第一方向排列,所述主限定部沿第二方向延伸,所述第二方向与所述第一方向相交,所述像素限定结构还包括位于两个相邻的主限定部之间且沿所述第二方向排列的多个第一限定部,所述第一限定部沿所述第一方向延伸,所述像素限定结构还包括位于两个相邻的第一限定部之间的第二限定部,所述第二限定部沿所述第一方向延伸,其中,两个相邻的主限定部和位于其间的两个相邻的第一限定部被配置为限定一个子像素组,所述子像素组包括多个子像素。
根据本公开实施例提供的显示基板,所述子像素的短边对应所述子像素组的长边。
根据本公开实施例提供的显示基板,所述多个子像素沿所述子像素组的长边的延伸方向依次排布。
根据本公开实施例提供的显示基板,所述子像素的长边的延伸方向与所述子像素组的短边的延伸方向相同,所述子像素的短边的延伸方向与所述子像素组的长边的延伸方向相同。
根据本公开实施例提供的显示基板,显示基板还包括衬底基板,所述像素限定层位于所述衬底基板上,所述第一限定部在垂直于所述衬底基板的方向上的尺寸大于或等于所述第二限定部在垂直于所述衬底基板的方向上的尺寸。
根据本公开实施例提供的显示基板,所述主限定部在垂直于所述衬底基板的方向上的尺寸大于所述第一限定部在垂直于所述衬底基板的方向上的尺寸。
根据本公开实施例提供的显示基板,所述第一限定部沿所述第二方向的尺寸大于所述第二限定部沿所述第二方向的尺寸。
根据本公开实施例提供的显示基板,显示基板还包括发光元件,所述发光元件具有第一电极、第二电极以及位于所述第一电极和所述第二电极之间的发光功能层,所述开口被配置为暴露所述第一电极的一部分。
根据本公开实施例提供的显示基板,所述主限定部的延伸方向与所述子像素的短边的延伸方向相同。
根据本公开实施例提供的显示基板,所述透镜单元的截面形状包括柱状、三角形、或半圆形。
根据本公开实施例提供的显示基板,不同的子像素组对应的透镜单元的结构不同。
根据本公开实施例提供的显示基板,所述透镜单元在衬底基板上的正投影与所述第一限定部在所述衬底基板上的正投影交叠。
根据本公开实施例提供的显示基板,所述子像素组包含的子像素各自有独立的像素电路驱动。
再一方面,本公开实施例还提供一种显示装置,包括上述任一显示基板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为一种显示基板的示意图。
图2为本公开的实施例提供的一种显示基板的示意图。
图3是图2的沿线A1-A2的剖视图。
图4是图2的沿线A3-A4的剖视图。
图5是图2的沿线A5-A6的剖视图。
图6为本公开的实施例提供的一种显示基板的示意图。
图7为本公开的实施例提供的一种显示基板的截面图。
图8为本公开的实施例提供的另一种显示基板的截面图。
图9为本公开的实施例提供的另一种显示基板的截面图。
图10为本公开的实施例提供的另一种显示基板的截面图。
图11为本公开的实施例提供的一种显示基板的示意图。
图12为本公开的实施例提供的另一种显示基板的示意图。
图13为本公开的实施例提供的一种显示基板的示意图。
图14是图13的沿线B1-B2的剖视图。
图15是图13的沿线B3-B4的剖视图。
图16为图1所示的显示基板的子像素的长边的膜厚均一性的示意图。
图17为图1所示的显示基板的子像素的短边的膜厚均一性的示意图。
图18为图2所示的显示基板的子像素的长边的膜厚均一性的示意图。
图19为图2所示的显示基板的子像素的短边的膜厚均一性的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
喷墨打印作为溶液型制备有机发光二极管(OLED)的一种工艺方法,由于溶液型墨水的攀爬、钉扎、“咖啡环”效应,出现短边膜厚均一性差,进而 导致亮度均一性差的问题。
图1为一种显示基板的示意图。如图1所示,显示基板包括像素限定层PDL。如图1所示,像素限定层PDL包括像素限定结构K和多个开口OPN,像素限定结构K包括主限定部MP,多个主限定部MP沿第一方向X排列,主限定部MP沿第二方向Y延伸,两个相邻的主限定部MP之间设有凹槽K0,多个凹槽K0沿第一方向X排列,凹槽K0沿第二方向Y延伸,第二方向Y与第一方向X相交,像素限定结构K还包括位于凹槽K0中且沿第二方向Y排列的多个限定部P1,限定部P1沿第一方向X延伸。如图1所示,在同一凹槽K0中的两个相邻限定部P1之间的区域为开口OPN。如图1所示,开口OPN对应一个子像素100。图1示出了子像素101、子像素102、以及子像素103。喷墨打印工艺制作发光元件的发光功能层时,同一凹槽K0中的墨水的颜色相同。同一凹槽K0中的子像素100发同一颜色的光。图1以子像素101为蓝色子像素,子像素102为绿色子像素,子像素103为红色子像素为例进行说明。
图1示出了沿第一方向X依次排布的四个主限定部MP。图1示出了三个凹槽K0。在喷墨打印时,同一凹槽K0用于盛放同一类型的墨水。位于同一凹槽K0中的子像素100发同一颜色的光。图1示出了位于同一凹槽K0中且沿第二方向Y间隔且顺次排布的四个限定部P1。当然,显示基板中的主限定部MP的个数、限定部P1的个数可根据需要而定。
如图1所示,子像素100具有长边W1和短边W2。长边W1的长度大于短边W2的长度。由于溶液型墨水的攀爬、钉扎、“咖啡环”效应,出现短边膜厚的均一性差,进而导致亮度均一性差的问题。
为了解决因短边膜厚的均一性差导致亮度均一性差的问题,本公开的实施例提供一种显示基板。
图2为本公开的实施例提供的一种显示基板的示意图。图3是图2的沿线A1-A2的剖视图。图4是图2的沿线A3-A4的剖视图。图5是图2的沿线A5-A6的剖视图。
如图2至图5所示,显示基板包括:像素限定层PDL,像素限定层PDL包括像素限定结构K,像素限定结构K具有多个凹槽K0,多个凹槽K0沿第一方向X排列,凹槽K0沿第二方向Y延伸,第二方向Y与第一方向X相交,像素限定结构K还包括位于凹槽K0中且沿第二方向Y排列的多个第一 限定部P1,第一限定部P1沿第一方向X延伸,在同一凹槽K0中的两个相邻的第一限定部P1被配置为限定一个子像素组200,子像素组200包括多个子像素100。
本公开的实施例提供的显示基板,两个相邻的第一限定部P1之间设有一个子像素组200,子像素组200包括多个子像素100,与子像素组200具有一个子像素100的情况相比,可以减轻子像素的短边膜厚的均一性差而导致的亮度均一性差的问题。本公开的实施例提供的显示基板膜厚均一性得到优化,具有较好的亮度均一性。
以上以同一凹槽K0中的两个相邻的第一限定部P1被配置为限定一个子像素组200的角度来描述,当然,也可以采用其他描述方式,以下从两个相邻的主限定部MP和位于其间的两个相邻的第一限定部P1被配置为限定一个子像素组200的角度来描述。
如图2所示,本公开的实施例提供的显示基板包括:像素限定层PDL,像素限定层PDL包括像素限定结构K和贯穿像素限定结构K的多个开口OPN,像素限定结构K包括多个主限定部MP,多个主限定部MP沿第一方向X排列,主限定部MP沿第二方向Y延伸,第二方向Y与第一方向X相交,像素限定结构K还包括位于两个相邻的主限定部MP之间且沿第二方向Y排列的多个第一限定部P1,第一限定部P1沿第一方向X延伸,像素限定结构K还包括位于两个相邻的第一限定部P1之间的第二限定部P2,第二限定部P2沿第一方向X延伸,两个相邻的主限定部MP和位于其间的两个相邻的第一限定部P1被配置为限定一个子像素组200,子像素组200包括多个子像素100。
本公开的实施例提供的显示基板,两个相邻的主限定部MP和位于其间的两个相邻的第一限定部P1被配置为限定一个子像素组200,子像素组200包括多个子像素100,与子像素组200具有一个子像素100的情况相比,可以减轻子像素的短边膜厚的均一性差而导致的亮度均一性差的问题。本公开的实施例提供的显示基板膜厚均一性得到优化,具有较好的亮度均一性。
本公开的实施例提供的显示基板,子像素组200包括多个子像素100,利于提高每英寸所拥有的像素数量(Pixels Per Inch,PPI)。
在一些实施例中,如图2所示,两个相邻的主限定部MP之间设有凹槽K0,多个凹槽K0沿第一方向X排列,凹槽K0沿第二方向Y延伸。
如图2所示,子像素组200具有长边W1和短边W2,长边W1的长度大于短边W2的长度。
如图2所示,子像素100具有长边L1和短边L2,长边L1的长度大于短边L2的长度。
例如,如图2所示,子像素100的短边L2对应子像素组200的长边W1。如图2所示,子像素100沿子像素组200的短边W2的延伸方向延伸,多个子像素100沿子像素组200的长边W1的延伸方向排列。
在一些实施例中,如图2所示,多个子像素100沿子像素组200的长边的延伸方向依次排布。
在一些实施例中,如图2所示,子像素100的长边的延伸方向与子像素组200的短边的延伸方向相同,子像素100的短边的延伸方向与子像素组200的长边的延伸方向相同。
图2以子像素组200具有四个子像素100为例进行说明。例如,子像素组200具有4-15个子像素100。进一步例如,为了更好的提升亮度均一性,子像素组200具有8-15个子像素100。当然,本公开的实施例对子像素组200包括的子像素100的个数不做限定。
在本公开的实施例中,子像素100是最小的发光单元,子像素100可以被独立控制。例如,各个子像素100由不同的像素电路驱动。
例如,如图2和图3所示,因墨水具有导电性,为了避免子像素100漏电,利于子像素100的独立控制,显示基板还包括位于两个相邻的第一限定部P1之间的第二限定部P2。如图2所示,第二限定部P2沿第一方向X延伸。
例如,如图2和图3所示,第二限定部P2设置为多个。如图2所示,多个第二限定部P2沿第二方向Y排列。图2和图3示出了位于两个相邻的第一限定部P1之间的间隔且顺次排布的三个第二限定部P2。第二限定部P2被配置为分隔同一个子像素组200中的两个相邻的子像素100。
图2示出了沿第一方向X依次排布的四个主限定部MP。图2示出了三个凹槽K0。在喷墨打印时,同一凹槽K0用于盛放同一类型的墨水。位于同一凹槽K0中的子像素100发同一颜色的光。图2示出了位于同一凹槽K0中且沿第二方向Y间隔且顺次排布的四个第一限定部P1。图2还示出了位于两个相邻的第一限定部P1之间的三个第二限定部P2。当然,显示基板中的主限 定部MP的个数、第一限定部P1的个数、第二限定部P2的个数可根据需要而定。
例如,如图3至图5所示,显示基板还包括衬底基板BS,像素限定层PDL位于衬底基板BS上。如图3所示,第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1大于第二限定部P2在垂直于衬底基板BS的方向上的尺寸h2。
如图3和图5所示,第一限定部P1包括第一限定子层P11和第二限定子层P12,第一限定子层P11比第二限定子层P12更靠近衬底基板BS。例如,第一限定子层P11采用亲水材料制作,第二限定子层P12采用疏水材料制作,但不限于此。当然,第一限定部P1也可以采用单层结构,或者包括两个以上的限定子层。
例如,如图2、图4和图5所示,像素限定结构K还包括多个主限定部MP。如图2所示,两个相邻主限定部MP之间为凹槽K0。如图5所示,主限定部MP在垂直于衬底基板BS的方向上的尺寸h0大于第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1。图5以第一限定部P1包括第一限定子层P11和第二限定子层P12,主限定部MP和第一限定部P1分别制作为例,在其他的实施例中,主限定部MP可以与第一限定子层P11和第二限定子层P12之一由同一膜层采用同一构图工艺形成。
如图4和图5所示,主限定部MP在垂直于衬底基板BS的方向上的尺寸h0等于凹槽K0在垂直于衬底基板BS的方向上的尺寸。从而,凹槽K0在垂直于衬底基板BS的方向上的尺寸大于第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1,并且第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1大于第二限定部P2在垂直于衬底基板BS的方向上的尺寸h2。
例如,如图2所示,像素限定层PDL还包括贯穿像素限定结构K的多个开口OPN,开口OPN被配置为限定一个子像素100的发光区,子像素组200具有大于一个的开口OPN。图2和图3以子像素组200具有四个开口OPN为例进行说明。当然,子像素组200具有的四个开口OPN的个数可根据需要而定。
例如,如图2所示,第一限定部P1沿第二方向Y的尺寸W11大于第二限定部P2沿第二方向Y的尺寸W22。
如图2所示,像素PX包括多个子像素组200,图2以像素PX包括三个 子像素组200为例进行说明。图2示出了子像素组201、子像素组202、以及子像素组203。如图2所示,像素PX包括的多个子像素组200中,多个子像素组200被配置为发不同颜色光,且同一子像素组200中的多个子像素100被配置为发相同颜色光。图2以子像素101为蓝色子像素,子像素102为绿色子像素,子像素103为红色子像素为例进行说明。从而,子像素组201中的子像素101为蓝色子像素,子像素组202中的子像素102为绿色子像素,子像素组203中的子像素103为红色子像素。子像素的发光颜色不限于上述描述,可根据需要而定。
图6为本公开的实施例提供的一种显示基板的示意图。图7为本公开的实施例提供的一种显示基板的截面图。图8为本公开的实施例提供的另一种显示基板的截面图。图9为本公开的实施例提供的另一种显示基板的截面图。图10为本公开的实施例提供的另一种显示基板的截面图。
例如,如图6至图8所示,显示基板还包括透镜层300,透镜层300包括多个透镜单元301,示例性地,透镜单元301的延伸方向与子像素100的长边L1的延伸方向相同。显示基板设置透镜层300以进行3D显示。透镜单元301的延伸方向与子像素100的长边L1的延伸方向相同,利于实现高PPI的3D显示效果。为了图示清晰,图6右侧仅示出了一个透镜单元301。
例如,如图6所示,一个透镜单元301覆盖不同颜色的多个子像素100。
图6以第一方向X为行方向,第二方向Y为列方向为例进行说明。同一列子像素为同一颜色子像素。
例如,不同行的像素PX上的透镜单元301可以差异化设置。例如,不同的子像素组200对应的透镜单元301的结构不同。例如,不同的透镜单元301可以差异化设置。例如,透镜单元301可以具有不同的尺寸,例如不同的宽度。例如,透镜单元301可以具有不同的高度。例如,在不同位置处,透镜单元301可以具有不同的排列密度或不同的紧密度。例如,透镜单元301的结构不同包括上述描述的尺寸不同、高度不同、排列密度不同、紧密度不同中至少之一。
例如,透镜层300为透明透镜层。
例如,如图6所示,透镜单元301的长边的延伸方向与子像素100的长边的延伸方向相同。
例如,如图7至图10所示,透镜单元301覆盖至少一个子像素100。
如图7和图8所示,透镜单元301覆盖一个子像素组200。即,透镜单元301覆盖一个子像素组200中的多个子像素100。
如图9至图10所示,透镜单元301覆盖一个子像素100。
如图3至图5、图7至图10所示,显示基板包括发光功能层FL。发光功能层FL包括多个膜层,例如包括发光层(发光材料层),发光功能层还可以包括空穴注入层、空穴传输层、电子传输层、电子注入层等至少之一。有机发光功能层可根据需要进行选择。发光功能层中的至少一个膜层可采用喷墨打印工艺制作。
如图7所示,透镜单元301的截面呈柱状。
如图8所示,透镜单元301的截面呈三角形。
如图9和图10所示,透镜单元301的截面呈半圆形。
如图10所示,透镜层300位于衬底基板BS和衬底基板400之间。
例如,透镜单元301的凸起方向可以背离衬底基板BS,或朝向衬底基板BS。图7至图9以透镜单元301的凸起方向背离衬底基板BS为例进行说明。图10以透镜单元301的凸起方向朝向衬底基板BS为例进行说明。不论是透镜单元301的凸起方向背离基板还是朝向基板均可以起到3D显示的作用。
透镜单元301的凸起方向背离衬底基板BS的情况下,有效提升光取出效率,同时改善像素串扰问题,提高产品性能,增强产品竞争力。透镜单元301的凸起方向背离衬底基板BS的情况下,可以起到防止摩尔纹的作用,即,起到雾化的作用。
透镜单元301的凸起方向朝向衬底基板BS的情况下,可将透镜层300形成在另一衬底基板(衬底基板400)上,再将两个衬底基板粘结在一起。
即,该情况可以将透镜层300和发光元件EM分设在不同的衬底基板上,使得透镜层300更易于制作,提高生产效率。
如图6至图10所示,透镜层300位于子像素100的上方。透镜层300位于发光元件EM的上方。
如图6至图10所示,透镜层300或透镜单元301在衬底基板BS上的正投影与第二限定部P2在衬底基板BS上的正投影交叠。
如图6至图10所示,透镜层300或透镜单元301在衬底基板BS上的正 投影与第一限定部P1在衬底基板BS上的正投影交叠。
如图6至图10所示,透镜层300或透镜单元301在衬底基板BS上的正投影与主限定部MP在衬底基板BS上的正投影交叠。
如图7至图10所示,显示基板还包括第二电极E2,第二电极E2位于发光功能层FL上。
如图7至图10所示,显示基板还包括封装结构层601。例如,封装结构层601的材料包括氮化硅、氮氧化硅等无机材料。
如图7至图10所示,显示基板还包括有机封装填充层602。例如,有机封装填充层602的材料包括有机材料,例如,包括聚酰亚胺,但不限于此,可根据需要而定。
如图7至图10所示,显示基板还包括盖板603。例如,盖板603采用玻璃材质,但不限于此。
如图10所示,显示基板还包括间隙层605。例如,间隙层605内可填充氮气。图10还示出了阻挡坝600。
为了清晰起见,图7至图10省略了衬底基板BS和像素限定层PDL之间的结构。
图11为本公开的实施例提供的一种显示基板的示意图。图12为本公开的实施例提供的另一种显示基板的示意图。
如图11和图12所示,显示基板还包括发光元件EM,发光元件EM包括第一电极E1、第二电极E2、以及位于第一电极E1和第二电极E2之间的发光功能层FL,开口OPN被配置为暴露第一电极E1的一部分。一个子像素100具有一个第一电极E1。
如图11和图12所示,多个第一电极E1彼此分隔,以被配置为分别输入信号。
如图11和图12所示,第一电极E1与像素电路PXC相连。像素电路PXC可包括晶体管(T)和存储电容(C),但不限于此。例如,像素电路PXC包括3T1C、5T1C、5T2C的像素电路,但不限于此。像素电路PXC包括的晶体管的个数和存储电容的个数可根据需要而定。
图11和图12还示出了绝缘层ISL1和绝缘层ISL2。第一电极E1位于绝缘层ISL1上,并通过贯穿绝缘层ISL1的过孔与像素电路PXC相连。
如图11和图12所示,像素电路PXC在图中示意性的示出,像素电路PXC的具体结构可根据需要而定。
如图12所示,发光功能层FL包括第一类型的发光功能层FL1和第二类型的发光功能层FL2。第一类型的发光功能层FL1可采用喷墨打印工艺制作。第二类型的发光功能层FL2为共通层,可采用蒸镀方法制作。例如,第一类型的发光功能层FL1包括空穴注入层、空穴传输层、发光层中至少之一,但不限于此。例如,第二类型的发光功能层FL2包括电子注入层,但不限于此。当然,发光功能层FL的结构不限于图中所示,可根据需要而定。
例如,第一电极E1和第二电极E2中之一为阳极,第一电极E1和第二电极E2中之另一为阴极。
例如,发光元件的第一电极E1的材料包括导电材料,例如,包括银(Ag)或氧化铟锡(ITO)至少之一,但不限于此。例如,发光元件的第一电极E1为ITO/Ag/ITO三层叠加的结构,但不限于此。在另一些实施例中,发光元件的第一电极E1的材料包括铝(Al)和钨的氧化物(WOx),例如,第一电极E1包括铝层和钨的氧化物层的叠层,且铝层比钨的氧化物层更靠近衬底基板。
例如,发光元件的第二电极E2的材料包括导电材料,例如,包括银(Ag),但不限于此。
为了清晰起见,本公开的实施例提供的一些附图未示出第一电极E1、像素电路PXC等结构。
在本公开的实施例中,如图11和图12所示,子像素100可独立控制,以显示不同灰阶图像,实现高PPI显示。
图13为本公开的实施例提供的一种显示基板的示意图。图14是图13的沿线B1-B2的剖视图。图15是图13的沿线B3-B4的剖视图。
如图13所示,第一限定部P1沿第二方向Y的尺寸W11等于第二限定部P2沿第二方向Y的尺寸W22。例如,在本公开的实施例中,等于可以有5%以内的误差范围。例如,第一限定部P1沿第二方向Y的尺寸W11和第二限定部P2沿第二方向Y的尺寸W22的差值的绝对值与第一限定部P1沿第二方向Y的尺寸W11或第二限定部P2沿第二方向Y的尺寸W22的比值小于5%。
如图13至图15所示,第一限定部P1在垂直于衬底基板BS的方向上的 尺寸h1等于第二限定部P2在垂直于衬底基板BS的方向上的尺寸h2。
如图15所示,主限定部MP在垂直于衬底基板BS的方向上的尺寸h0大于第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1。
例如,主限定部MP在垂直于衬底基板BS的方向上的尺寸(高度)h0约为1-2μm。
例如,第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1约为0.5-0.9μm。
例如,第二限定部P2在垂直于衬底基板BS的方向上的尺寸h2约为0.5-0.9μm。
在相邻主限定部MP之间不设置任何第一限定部P1且不设置任何第二限定部P2的情况下,打印墨水容易出现流淌不均的现象,与相邻主限定部MP之间不设置任何第一限定部P1且不设置任何第二限定部P2的情况相比,在相邻主限定部MP之间设置第一限定部P1和第二限定部P2,利于打印墨水在每个子像素组内均匀流淌,提升打印墨水流淌均一性,利于提升子像素的长边和短边的膜厚均一性。
在第一限定部P1和第二限定部P2的宽度一样且高度一样的情况下,利于提升打印墨水流淌均一性,利于提升子像素的长边和短边的膜厚均一性。
在本公开的一些实施例中,主限定部MP在垂直于衬底基板BS的方向上的尺寸(高度)h0约为1.3μm,第一限定部P1在垂直于衬底基板BS的方向上的尺寸h1约为0.6μm,第二限定部P2在垂直于衬底基板BS的方向上的尺寸h2约为0.6μm。
如图13至图15所示,主限定部MP可采用疏水材料制作,第一限定部P1和第二限定部P2可采用亲水材料制作。第一限定部P1和第二限定部P2可由同一膜层采用同一构图工艺制作。
如图2和图13所示,子像素组200的延伸方向与凹槽K0的延伸方向相同。即,子像素组200沿第二方向Y延伸,凹槽K0沿第二方向Y延伸。子像素组200的延伸方向可指子像素组200的长边的延伸方向。
如图2和图13所示,子像素100的延伸方向与凹槽K0的延伸方向相交,进一步例如,子像素100的延伸方向与凹槽K0的延伸方向垂直。即,子像素100沿第一方向X延伸,凹槽K0沿第二方向Y延伸。子像素100的延伸方 向可指子像素100的长边的延伸方向。
例如,使得子像素100的延伸方向与凹槽K0的延伸方向相交,而不是子像素100的延伸方向与凹槽K0的延伸方向平行,利于提升膜厚均一性。
如图2和图13所示,凹槽K0的延伸方向与主限定部MP的延伸方向相同。上述描述中的凹槽K0的延伸方向也可替换为主限定部MP的延伸方向。
如图2和图13所示,子像素组200的延伸方向与主限定部MP的延伸方向相同。即,子像素组200沿第二方向Y延伸,主限定部MP沿第二方向Y延伸。子像素组200的延伸方向可指子像素组200的长边的延伸方向。
如图2和图13所示,子像素100的延伸方向与主限定部MP的延伸方向相交,进一步例如,子像素100的延伸方向与主限定部MP的延伸方向垂直。即,子像素100沿第一方向X延伸,主限定部MP沿第二方向Y延伸。子像素100的延伸方向可指子像素100的长边的延伸方向。
例如,使得子像素100的延伸方向与主限定部MP的延伸方向相交,而不是子像素100的延伸方向与主限定部MP的延伸方向平行,利于提升膜厚均一性。
当然,也可以采用子像素100的短边的延伸方向与主限定部MP或凹槽K0的延伸方向的关系来进行描述。
如图2和图13所示,子像素100的短边的延伸方向与主限定部MP或凹槽K0的延伸方向相同。即,子像素100的短边沿第二方向Y延伸,主限定部MP沿第二方向Y延伸。子像素100的延伸方向可指子像素100的长边的延伸方向。
例如,使得子像素100的短边的延伸方向与主限定部MP或凹槽K0的延伸方向相同,而不是子像素100的短边的延伸方向与主限定部MP的延伸方向相交,利于提升膜厚均一性。
图16为图1所示的显示基板的子像素的长边的膜厚均一性的示意图。图17为图1所示的显示基板的子像素的短边的膜厚均一性的示意图。图18为图2所示的显示基板的子像素的长边的膜厚均一性的示意图。图19为图2所示的显示基板的子像素的短边的膜厚均一性的示意图。
图16至图19中的内部曲线为子像素的形貌曲线,外部曲线为基础曲线。形貌曲线和基础曲线重合区域对应的横轴的长度与基础曲线对应的横轴的长 度的比值即为膜厚均一性。面积均一性为长边的膜厚均一性乘以短边的膜厚均一性。
如图16和图17所示,图1所示的显示基板的长边和短边的膜厚均一性分别为90%和50%,面积均一性为45%。
如图18和图19所示,本公开的实施例提供的图2所示的显示基板的长边和短边的膜厚均一性分别为80%和85%,面积均一性可达68%,像素均一性得到明显提升。
例如,如图2所示,在本公开的实施例中,子像素组200的长度W1可为5-200μm,子像素组200的宽度W2可为5-100μm。
进一步例如,子像素组200的长度W1可为100-200μm,子像素组200的宽度W2可为10-50μm。
例如,如图2所示,在本公开的实施例中,子像素100的长度L1可为2.5-100μm,子像素100的宽度L2可为5-50μm。
进一步例如,子像素100的长度L1可为10-50μm,子像素100的宽度L2可为10-50μm。
例如,如图2和图13所示,子像素组200的宽度等于子像素100的长度。
例如,如图2和图13所示,子像素组200的长度大于子像素100的宽度的至少两倍。子像素组200的长度可指两个相邻第一限定部P1之间的距离。
在本公开的实施例的一些附图中,平面图示出了第一方向X和第二方向Y,截面图示出了第三方向Z。第一方向X和第二方向Y均为平行于衬底基板BS的主表面的方向。第三方向Z为垂直于衬底基板BS的主表面的方向。例如,第一方向X和第二方向Y相交。本公开的实施例以第一方向X和第二方向Y垂直为例进行说明。例如,衬底基板BS的主表面为衬底基板BS的用于制作各个元件的表面。截面图中衬底基板BS的上表面为衬底基板BS的主表面。
例如,在本公开的实施例中,衬底基板BS、绝缘层ISL1、绝缘层ISL2、像素限定层PDL均采用绝缘材料制作。例如,衬底基板BS包括聚酰亚胺等柔性材料或玻璃等刚性材料,但不限于此。绝缘层ISL1、绝缘层ISL2、像素限定层PDL至少之一采用无机绝缘材料或有机绝缘材料制作。例如,无机绝 缘材料包括氧化硅、氮化硅、氮氧化硅等,有机绝缘材料包括树脂,但不限于此。例如,像素限定层PDL、绝缘层ISL1可采用有机材料制作,例如,有机材料包括树脂,但不限于此。
例如,在本公开的实施例中,在衬底基板上形成像素限定层PDL之后,采用喷墨打印工艺制作发光功能层中的至少一个膜层,将打印墨水采用喷墨打印工艺喷至对应的凹槽K0中,再经过真空干燥、烘烤等操作,形成发光功能层中的至少一个膜层。例如,发光功能层中的发光层、空穴传输层、电子传输层均可以采用喷墨打印工艺制作。
在本公开的实施例中,一个部件的延伸方向是指该部件沿其长度方向延伸。
本公开至少一实施例提供一种显示装置,包括上述任一项显示基板。显示装置可为大尺寸的显示装置,采用喷墨打印工艺制作发光功能层中的至少一个膜层。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种显示基板,包括:像素限定层,其中,所述像素限定层包括像素限定结构和多个凹槽,所述多个凹槽沿第一方向排列,所述凹槽沿第二方向延伸,所述第二方向与所述第一方向相交,
    所述像素限定结构包括位于所述凹槽中且沿所述第二方向排列的多个第一限定部,所述第一限定部沿所述第一方向延伸,
    在同一凹槽中的两个相邻的第一限定部被配置为限定一个子像素组,所述子像素组包括多个子像素。
  2. 一种显示基板,包括:像素限定层,
    其中,所述像素限定层包括像素限定结构和贯穿所述像素限定结构的多个开口,
    所述像素限定结构包括多个主限定部,所述多个主限定部沿第一方向排列,所述主限定部沿第二方向延伸,所述第二方向与所述第一方向相交,
    所述像素限定结构还包括位于两个相邻的主限定部之间且沿所述第二方向排列的多个第一限定部,所述第一限定部沿所述第一方向延伸,
    所述像素限定结构还包括位于两个相邻的第一限定部之间的第二限定部,所述第二限定部沿所述第一方向延伸,
    其中,两个相邻的主限定部和位于其间的两个相邻的第一限定部被配置为限定一个子像素组,所述子像素组包括多个子像素。
  3. 根据权利要求1或2所述的显示基板,其中,所述子像素的短边对应所述子像素组的长边。
  4. 根据权利要求1-3任一项所述的显示基板,其中,所述多个子像素沿所述子像素组的长边的延伸方向依次排布。
  5. 根据权利要求1-4任一项所述的显示基板,其中,所述子像素的长边的延伸方向与所述子像素组的短边的延伸方向相同,所述子像素的短边的延伸方向与所述子像素组的长边的延伸方向相同。
  6. 根据权利要求1、3-5任一项所述的显示基板,其中,所述像素限定结构还包括位于两个相邻的第一限定部之间的第二限定部,所述第二限定部沿所述第一方向延伸,所述第二限定部被配置为分隔同一子像素组中的两个相邻的子像素。
  7. 根据权利要求2或6所述的显示基板,其中,所述第二限定部设置为 多个,多个第二限定部沿所述第二方向排列。
  8. 根据权利要求2、6或7所述的显示基板,还包括衬底基板,其中,所述像素限定层位于所述衬底基板上,所述第一限定部在垂直于所述衬底基板的方向上的尺寸大于或等于所述第二限定部在垂直于所述衬底基板的方向上的尺寸。
  9. 根据权利要求1所述的显示基板,还包括衬底基板,其中,所述像素限定层位于所述衬底基板上,所述像素限定结构还包括多个主限定部,所述多个主限定部的两个相邻主限定部之间为所述凹槽,所述主限定部在垂直于所述衬底基板的方向上的尺寸大于所述第一限定部在垂直于所述衬底基板的方向上的尺寸。
  10. 根据权利要求2、6-8任一项所述的显示基板,其中,所述第一限定部沿所述第二方向的尺寸大于或等于所述第二限定部沿所述第二方向的尺寸。
  11. 根据权利要求9所述的显示基板,其中,所述主限定部在垂直于所述衬底基板的方向上的尺寸大于所述第一限定部在垂直于所述衬底基板的方向上的尺寸。
  12. 根据权利要求2、6-8或10所述的显示基板,其中,所述第一限定部沿所述第二方向的尺寸大于所述第二限定部沿所述第二方向的尺寸。
  13. 根据权利要求2所述的显示基板,还包括发光元件,其中,所述发光元件具有第一电极、第二电极以及位于所述第一电极和所述第二电极之间的发光功能层,所述开口被配置为暴露所述第一电极的一部分。
  14. 根据权利要求2、9或11所述的显示基板,其中,所述主限定部的延伸方向与所述子像素的短边的延伸方向相同。
  15. 根据权利要求1或9所述的显示基板,其中,所述凹槽的延伸方向与所述子像素的短边的延伸方向相同。
  16. 根据权利要求1-15任一项所述的显示基板,还包括透镜层,其中,所述透镜层包括多个透镜单元,所述透镜单元的延伸方向与所述子像素的长边的延伸方向相同,所述透镜单元覆盖至少一个子像素。
  17. 根据权利要求16所述的显示基板,其中,所述透镜单元的截面形状包括柱状、三角形、或半圆形。
  18. 根据权利要求16或17所述的显示基板,其中,不同的子像素组对应的透镜单元的结构不同。
  19. 根据权利要求16-18任一项所述的显示基板,其中,所述透镜单元在衬底基板上的正投影与所述第一限定部在所述衬底基板上的正投影交叠。
  20. 根据权利要求1-19任一项所述的显示基板,其中,所述子像素组包含的子像素各自有独立的像素电路驱动。
  21. 一种显示装置,包括根据权利要求1-20任一项所述的显示基板。
PCT/CN2023/072971 2023-01-18 2023-01-18 显示基板和显示装置 WO2024152268A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2023/072971 WO2024152268A1 (zh) 2023-01-18 2023-01-18 显示基板和显示装置
CN202380008146.8A CN118679866A (zh) 2023-01-18 2023-01-18 显示基板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2023/072971 WO2024152268A1 (zh) 2023-01-18 2023-01-18 显示基板和显示装置

Publications (1)

Publication Number Publication Date
WO2024152268A1 true WO2024152268A1 (zh) 2024-07-25

Family

ID=91955128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072971 WO2024152268A1 (zh) 2023-01-18 2023-01-18 显示基板和显示装置

Country Status (2)

Country Link
CN (1) CN118679866A (zh)
WO (1) WO2024152268A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223904A (zh) * 2019-12-20 2020-06-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其控制方法
CN111463256A (zh) * 2020-05-22 2020-07-28 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板及显示装置
CN113937144A (zh) * 2021-10-18 2022-01-14 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN113990903A (zh) * 2021-10-25 2022-01-28 合肥京东方卓印科技有限公司 一种显示基板、显示面板
US20220262879A1 (en) * 2020-05-29 2022-08-18 Boe Technology Group Co., Ltd. Array substrate, preparation method, display panel, and display device
US20220376007A1 (en) * 2020-05-28 2022-11-24 Boe Technology Group Co., Ltd. Display substrate, method for forming the same and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111223904A (zh) * 2019-12-20 2020-06-02 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置及其控制方法
CN111463256A (zh) * 2020-05-22 2020-07-28 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示面板及显示装置
US20220376007A1 (en) * 2020-05-28 2022-11-24 Boe Technology Group Co., Ltd. Display substrate, method for forming the same and display device
US20220262879A1 (en) * 2020-05-29 2022-08-18 Boe Technology Group Co., Ltd. Array substrate, preparation method, display panel, and display device
CN113937144A (zh) * 2021-10-18 2022-01-14 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN113990903A (zh) * 2021-10-25 2022-01-28 合肥京东方卓印科技有限公司 一种显示基板、显示面板

Also Published As

Publication number Publication date
CN118679866A (zh) 2024-09-20

Similar Documents

Publication Publication Date Title
CN109216413B (zh) Oled显示设备及其制造方法
KR101325577B1 (ko) 유기전계 발광소자 및 그 제조방법
US9768382B2 (en) Display substrate, its manufacturing method and display device
JP5175837B2 (ja) 光電子ディスプレイ及びその製造方法
CN108258012B (zh) 电致发光显示装置
WO2021249158A1 (zh) 显示基板、其制作方法及显示装置
JP2018110118A (ja) 電界発光表示装置
CN108807457A (zh) 阵列基板以及制作方法、oled器件及其制作方法、显示装置
CN111293152B (zh) 显示用基板及其制备方法、电致发光显示装置
CN105118846B (zh) 一种印刷型发光二极管显示器件及其制作方法
JP2009533810A5 (zh)
CN111477663B (zh) 显示面板及显示面板的制备方法
JP6539848B2 (ja) 表示パネルの製造方法
CN114361222A (zh) 显示基板及其制备方法、显示装置
WO2021227153A1 (zh) 显示面板
WO2023173473A1 (zh) 显示面板和电子装置
WO2024149123A1 (zh) 一种显示面板、其制作方法及显示装置
WO2024152268A1 (zh) 显示基板和显示装置
US20220310774A1 (en) Self-luminous display panel and self-luminous display panel manufacturing method
US20220384543A1 (en) Light emitting device
US11610951B2 (en) Display panel and method for manufacturing same
US11289554B2 (en) Organic light emitting device and fabricating method thereof
KR20130046302A (ko) 유기전계 발광 표시장치 및 그 제조방법
CN111710696A (zh) 显示面板及其制作方法
WO2024187377A1 (zh) 显示面板及其制造方法、显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380008146.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23916752

Country of ref document: EP

Kind code of ref document: A1