Nothing Special   »   [go: up one dir, main page]

WO2024026753A1 - Positioning measurement across frequency hops - Google Patents

Positioning measurement across frequency hops Download PDF

Info

Publication number
WO2024026753A1
WO2024026753A1 PCT/CN2022/110108 CN2022110108W WO2024026753A1 WO 2024026753 A1 WO2024026753 A1 WO 2024026753A1 CN 2022110108 W CN2022110108 W CN 2022110108W WO 2024026753 A1 WO2024026753 A1 WO 2024026753A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
positioning reference
frequency hops
signal frequency
prs
Prior art date
Application number
PCT/CN2022/110108
Other languages
French (fr)
Inventor
Hyun-Su Cha
Ryan Keating
Tao Tao
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2022/110108 priority Critical patent/WO2024026753A1/en
Publication of WO2024026753A1 publication Critical patent/WO2024026753A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management

Definitions

  • Various example embodiments relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium of a positioning measurement across frequency hops.
  • positioning enhancement includes positioning support for reduced capability (RedCap) user equipment (UE) with reduced bandwidth support.
  • a frequency bandwidth resource is a critical factor to positioning accuracy.
  • PRS positioning reference signal
  • PRS processing window PRS measurements on one or more PRS frequency hops within the PPW may not be obtained. Measurements for all PRS frequency hops may have to be repeated.
  • example embodiments of the present disclosure provide a solution of a positioning measurement across PRS frequency hops.
  • a first device comprising at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the first device at least to: receive a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; obtain, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and report the positioning reference signal measurement.
  • a second device comprising at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the second device at least to: generate a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and transmit the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  • a third device comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the third device at least to: receive, from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and position the first device based on the positioning reference signal measurements.
  • a method for communication comprises: receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and reporting the positioning reference signal measurement.
  • a method for communication comprises: generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  • a method for communication comprises: receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and positioning the first device based on the positioning reference signal measurements.
  • an apparatus for communication comprises: means for receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; means for obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for reporting the positioning reference signal measurement.
  • an apparatus for communication comprises: means for generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and means for transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  • an apparatus for communication comprises: means for receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for positioning the first device based on the positioning reference signal measurements.
  • a non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least the method according to any of the fourth to sixth aspects.
  • a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus to perform at least the method according to any of the fourth to sixth aspects.
  • Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented
  • Fig. 2 illustrates a diagram illustrating an example PRS frequency hopping and stitching procedure in which embodiments of the present disclosure may be implemented
  • Fig. 3 illustrates a flowchart illustrating a process of communication for a positioning measurement across frequency hops according to some embodiments of the present disclosure
  • Fig. 4A illustrates a diagram illustrating an example PRS measurement configuration according to some embodiments of the present disclosure
  • Fig. 4B illustrates a diagram illustrating another example PRS measurement configuration according to some embodiments of the present disclosure
  • Fig. 5 illustrates a flowchart of an example method implemented at a first device according to some embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method implemented at a second device according to some embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of an example method implemented at a third device according to some embodiments of the present disclosure
  • Fig. 8 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • Fig. 9 illustrates a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the future sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a new radio (NR) next generation NodeB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • An RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • RedCap UE In Release 17 NR work item, considered maximum bandwidth of RedCap UE was 20 MHz for frequency range 1 (FR1) and the considered maximum bandwidth of RedCap UE will be 5 MHz in Release 18.
  • NR positioning was introduced in Release 16 NR targeting ⁇ 3m positioning accuracy and was enhanced in Release 17 with target accuracy ⁇ 30 cm. Evaluated performance assuming 100 MHz bandwidth for FR1 may be worse in a narrow band system due to a low sampling rate. Furthermore, it is being considered that RedCap UE may be equipped with only a single antenna as a baseline.
  • RedCap UE may support NR positioning functionality, but the core and performance requirements have not been specified for the positioning related measurements performed by RedCap UE, and no evaluation was performed to see how the reduced capabilities of RedCap UE might impact eventual position accuracy.
  • one of main features on reducing latency is supporting UE to measure PRS outside of measurement gap (MG) by introducing a PPW.
  • the UE may receive downlink (DL) data or reference signals while receiving a PRS within the PPW.
  • DL downlink
  • two different UE capabilities were defined and the detailed agreement is given below.
  • ⁇ Capability 1 PRS prioritization over all other DL signals/channels in all symbols inside the window.
  • ⁇ Capability 1A The DL signals/channels from all DL CCs (per UE) are affected.
  • ⁇ Capability 1B Only the DL signals/channels from a certain band/CC are affected.
  • ⁇ Capability 2 PRS prioritization over other DL signals/channels only in the PRS symbols inside the PPW.
  • ⁇ UE may be able to declare a PRS processing capability outside MG.
  • PRS-related conditions are expected to be specified, with the following to be down-selected:
  • the UE determines higher priority for other DL signals/channels over the PRS measurement/processing, the UE is not expected to measure/process DL PRS which is applicable to all of the above capability options.
  • ⁇ Option 1 Based on indication/configuration from a serving network device;
  • Option 2 Other options (e.g., implicit, signaling from location management function (LMF) , etc. ) .
  • LMF location management function
  • UE may indicate support of two priority states.
  • PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
  • PRS is lower priority than all PDCCH/PDSCH/CSI-RS.
  • UE may indicate support of three priority states.
  • PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
  • PRS is lower priority than PDCCH and URLLC PDSCH and higher priority than other PDSCH/CSI-RS.
  • PRS is lower priority than all PDCCH/PDSCH/CSI-RS.
  • UE may indicate support of single priority state.
  • PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
  • PRS measurements on one or more PRS frequency hops within the PPW may not be obtained.
  • One PRS frequency hop may be a part of the bandwidth of a PRS that UE can measure.
  • One PRS frequency hop may be defined in a DL BWP if bandwidth of the DL BWP is less than the bandwidth of the PRS.
  • a potential low priority on PRS measurements within a PPW may cause the UE to fail to measure certain PRS frequency hop (s) among consecutive PRS frequency hops successfully. Measurements for all PRS frequency hops may have to be repeated.
  • embodiments of the present disclosure provide a solution of a PRS measurement across PRS frequency hops.
  • a first device receives, from a second device, a configuration for a PRS measurement across PRS frequency hops. Based on the configuration, the first device performs the PRS measurement across a first number of consecutive PRS frequency hops and reports the PRS measurement to a third device. In this way, sufficient measurements for PRS frequency hopping and stitching may be ensured and RedCap UE positioning performance may be enhanced.
  • Fig. 1 illustrates a schematic diagram of an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 may involve a first device 110 and a second device 120 serving the first device 110.
  • the network 100 may include any suitable number of first and second devices adapted for implementing embodiments of the present disclosure.
  • the first device 110 may be a terminal device
  • the second device 120 may be a network device.
  • the first device 110 is a terminal device and the second device 120 is a network device. It is to be understood that, in other embodiments, the first device 110 may be a network device and the second device 120 may be a terminal device. In other words, the principles and spirit of the present disclosure may be applied to both uplink and downlink transmissions.
  • the first device 110 and the second device 120 may communicate with each other via a wireless communication channel.
  • the communications within the network 100 may conform to any suitable standard including, but not limited to, LTE, LTE-evolution, LTE-advanced (LTE-A) , wideband code division multiple access (WCDMA) , code division multiple access (CDMA) and global system for mobile communications (GSM) and the like.
  • LTE Long Term Evolution
  • WCDMA wideband code division multiple access
  • CDMA code division multiple access
  • GSM global system for mobile communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) or the sixth generation (6G) communication protocols.
  • the network 100 may also comprise a third device 130.
  • the third device 130 may be a device having a positioning function.
  • the third device 130 may be a location server.
  • the third device 130 may be a location management function (LMF) .
  • LMF location management function
  • a frequency bandwidth resource is a critical factor to a positioning accuracy.
  • a typical way is a PRS frequency hopping and stitching procedure.
  • Fig. 2 illustrates a diagram 200 illustrating an example PRS frequency hopping and stitching procedure in which embodiments of the present disclosure may be implemented.
  • PRSs may be periodically transmitted over a wideband H.
  • PPWs 211, 212 and 213 are configured for PRS measurements in different PRS frequency hops.
  • a time gap is configured between two of the PPWs for BWP switching.
  • the PPW 211 is configured for a PRS measurement 221 in DL BWP #1.
  • the PPW 212 is configured for a PRS measurement 222 in DL BWP #2.
  • the PPW 213 is configured for a PRS measurement 223 in DL BWP #3.
  • the DL BWPs #1, #2 and #3 are different parts of the wideband H.
  • the measurements 221, 222 and 223 obtained on multiple measurement occasions are stitched for positioning.
  • a configured priority rule on PRS measurement within a PPW should be followed.
  • the PRS frequency hopping and stitching may not always be guaranteed.
  • PRS stitching may not be possible.
  • measurement operations for all PRS frequency hops may be repeated. It leads to unnecessary latency for positioning.
  • embodiments of the present disclosure provide a solution for a PRS measurement across PRS frequency hops to enable PRS frequency hopping and stitching. More details will be described below in connection with Fig. 3.
  • Fig. 3 illustrates a flowchart illustrating a process 300 of communication for a positioning measurement across frequency hops according to some embodiments of the present disclosure.
  • the process 300 will be described with reference to Fig. 1.
  • the process 300 may involve the first device 110, the second device 120 and the third device 130 as illustrated in Fig. 1.
  • the first device 110 may report 310 its PRS processing capability. In some embodiments, the first device 110 may report 311 its PRS processing capability to the second device 120. In some embodiments, the first device 110 may report 312 its PRS processing capability to the third device 130. It is to be understood that the first device 110 may report its PRS processing capability to both of the second device 120 and the third device 130. In some embodiments, the first device 110 may report information regarding whether the first device 110 is normal UE or RedCap UE. It is to be understood that the first device 110 may report any other suitable information of PRS processing capability.
  • the first device 110 may receive 320 a configuration for a PRS measurement across PRS frequency hops. Based on the PRS processing capability of the first device 110, the second device 120 or the third device 130 may decide to configure the first device 110 to perform a PRS measurement across PRS frequency hops.
  • the second device 120 may transmit 321, to the first device 110, the configuration for the PRS measurement across PRS frequency hops. In some embodiments, the second device 120 may transmit the configuration via a radio resource control (RRC) message. In some embodiments, the second device 120 may transmit the configuration via downlink control information (DCI) . In some embodiments, the second device 120 may transmit the configuration via a medium access control control element (MAC CE) .
  • RRC radio resource control
  • DCI downlink control information
  • MAC CE medium access control control element
  • the third device 130 may transmit 322, to the first device 110, the configuration for the PRS measurement across PRS frequency hops. In some embodiments, the third device 130 may transmit the configuration via a LTE positioning protocol message. It is to be understood that any other suitable ways for transmission of the configuration are also feasible.
  • a first PRS frequency hop in the PRS frequency hops is in a first BWP and a second PRS frequency hop in the PRS frequency hops is in a second BWP different from the first BWP.
  • different PRS frequency hops in the PRS frequency hops may be in different BWPs.
  • two or more of the PRS frequency hops may be in the same BWP. The present disclosure does not limit this aspect.
  • the second device 120 may configure one or more PPWs for the first device 110. In some embodiments, the second device 120 may configure a single PPW for each configured BWP (e.g., DL BWP) of the first device 110.
  • Fig. 4A illustrates a diagram 400A illustrating an example PRS measurement configuration according to some embodiments of the present disclosure. As shown in Fig. 4A, PPWs 411, 412 and 413 are configured for BWPs 421, 422 and 423 respectively. A time gap is configured between two of the PPWs for BWP switching. In the PPW 411, a PRS measurement is performed over a frequency hop 431 in the BWP 421. In the PPW 412, a PRS measurement is performed over a frequency hop 432 in the BWP 422. In the PPW 413, a PRS measurement is performed over a frequency hop 433 in the BWP 423.
  • the second device 120 may configure a single PPW for multiple BWPs of the first device 110.
  • the first device 110 may be configured with N PPWs for M BWPs, where N ⁇ 1 and M ⁇ 1.
  • Fig. 4B illustrates a diagram 400B illustrating another example PRS measurement configuration according to some embodiments of the present disclosure.
  • a single PPW 440 is configured for BWPs 451, 452 and 453.
  • a time gap is configured between two of the PPWs for BWP switching.
  • a PRS measurement is performed over a frequency hop 461 in the BWP 451.
  • a PRS measurement is performed over a frequency hop 462 in the BWP 452.
  • a PRS measurement is performed over a frequency hop 463 in the BWP 453.
  • the second device 120 may configure a priority rule (for convenience, also referred to a first priority rule herein) for a PPW.
  • a priority rule for convenience, also referred to a first priority rule herein
  • the second device 120 may configure a PRS-priority indicator for the PPW.
  • the priority rule of a PPW may indicate that reception of a PRS has a higher priority than reception of a DL signal other than the PRS in the PPW.
  • the DL signal may be a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information-reference signal (CSI-RS) or any other suitable DL signals.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • CSI-RS channel state information-reference signal
  • the priority rule of a PPW may indicate that reception of the PRS has a lower priority than reception of the DL signal other than the PRS in the PPW.
  • a priority on reception of a PRS in one PPW may be different from that in another PPW.
  • the second device 120 may configure another priority rule (for convenience, also referred to a second priority rule herein) for overriding the first priority rule.
  • the second priority rule may assume or indicate that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
  • the second priority rule may assume or indicate that reception of a PRS has a lower priority than reception of a DL signal other than the PRS.
  • the configuration may comprise a desired number (for convenience, also referred to as a first number and denoted as K herein) of consecutive PRS frequency hops for a PRS measurement.
  • the desired number may be a requested number of consecutive PRS frequency hops that the first device 110 should measure and report a combined positioning measurement.
  • the configuration may comprise the minimum number (for convenience, also referred to as a second number and denoted as K’ herein) of PRS frequency hops for a PRS measurement. In some embodiments, 0 ⁇ K’ ⁇ K.
  • the first device 110 may apply the first priority rule configured per PPW.
  • the configuration may comprise any combination of the above information and any other suitable information.
  • the first device 110 may request 330 support of the second device 120 so that the first device 110 performs PRS frequency hopping behavior.
  • the third device 130 may request 330’ the support of the second device 120.
  • the first device 110 may be indicated by the second device 120 to perform BWP switching.
  • a timer for BWP switching may be configured associated with PPW occasions.
  • the third device 130 may transmit 340, to the first device 110, a request for obtaining a PRS measurement across PRS frequency hops.
  • the request may indicate the first device 110 to obtain a PRS measurement across the K consecutive PRS frequency hops.
  • the first number may be associated with a positioning accuracy. In other words, the first number may be determined based on a required accuracy requirement.
  • the first device 110 may obtain 350 the PRS measurement across K consecutive PRS frequency hops based on the configuration.
  • the first device 110 may determine whether a set of PRS measurements (for convenience, also referred to as a first set of PRS measurements herein) over K’ consecutive PRS frequency hops are successfully performed based on the first priority rule.
  • a set of PRS measurements for convenience, also referred to as a first set of PRS measurements herein
  • the first device 110 may determine that the PRS measurement over the PRS frequency hop is successfully performed.
  • the first device 110 may determine that a PRS measurement over the PRS frequency hop is successfully performed.
  • the first device 110 is expected to have received the PRS. In some embodiments, if a PRS measurement is processed without error, the first device 110 may determine that a PRS measurement over the PRS frequency hop is successfully performed. It is to be understood that any other suitable ways are also feasible.
  • the first device 110 may perform another set of PRS measurements (for convenience, also referred to as a second set of PRS measurements herein) over K-K’ (for convenience, also referred to as a third number herein) of consecutive PRS frequency hops based on the second priority rule.
  • the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
  • the first device 110 may be allowed to ignore the first priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops so as to complete PRS frequency hopping.
  • the first device 110 may be allowed to ignore the first priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops so as to complete PRS frequency hopping.
  • the first device 110 may override the first priority rule with the second priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops.
  • the first device 110 may assume that reception of a PRS has a higher priority than other DL signals for the next K-K’ PRS frequency hops or the remaining PRS frequency hops. In this way, the first and second sets of PRS measurements over the K consecutive PRS frequency hops may be obtained.
  • the first device 110 may obtain a single PRS measurement across the K consecutive PRS frequency hops. So far, a PRS frequency hopping and stitching procedure is enabled.
  • the second device 120 may dynamically indicate or control K’to the first device 110 by at least one of DCI or MAC-CE.
  • the second device 120 may configure a PRS as low priority on purpose in case the second device 120 wants to transmit high-priority PDSCH/PDCCH. For example, if the first device 110 has measured 3 PRS frequency hops but needs to drop the 4th PRS frequency hop by following the first priority rule configured per PPW, it may be needed to repeat the whole measurement if the first device 110 needs to measure four consecutive PRS frequency hops and a waste of resources of wireless network may be caused.
  • the first device 120 may apply the second priority rule for a set of PRS frequency hops (i.e., one or more PRS frequency hops) that are configured with a low priority on reception of a PRS based on the first priority rule and are located between two PRS frequency hops configured with a high priority on reception of the PRS based on the first priority rule.
  • the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
  • the first device 120 may put high priority on a certain PRS frequency hop configured with low priority of PRS which is located in between two PRS frequency hops configured with high priority of PRS.
  • the first device 110 may need to determine whether to apply the second priority rule while it is measuring PRS across multiple PPWs. In this way, the first device 110 may obtain K consecutive PRS frequency hopping measurements.
  • the first device 120 may apply the second priority rule for the first K consecutive PRS frequency hops.
  • the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
  • the first device 120 may assume that a PRS has a higher priority than other DL signal reception for the first K PRS frequency hops. That is, a PRS has high priority for the first K consecutive PRS frequency hops. In this way, the first device 110 may also obtain K consecutive PRS frequency hopping measurements.
  • the first device 110 may apply the second priority rule for the remaining PRS frequency hops.
  • the second priority rule assumes that reception of a PRS has a lower priority than reception of a DL signal other than the PRS.
  • the first device 110 may assume that a PRS has a low priority than other DL signals in the remaining PRS frequency hops.
  • the first device 110 may drop PRSs in the remaining PRS frequency hops. In some embodiments, if the PRS measurement is not obtained across the K consecutive PRS frequency hops, the first device 110 may apply the second priority rule for the remaining PRS frequency hops. In these embodiments, the second priority rule assumes that reception of a PRS has a lower priority than reception of a DL signal other than the PRS. In other words, if the first device 110 finds that it is not able to obtain K consecutive PRS frequency hops, the first device 110 may drop PRSs in the remaining PRS frequency hops, or may assume that reception of PRS has a low priority in the remaining PRS frequency hops.
  • the first device 110 may drop PRSs in the remaining PRS frequency hops. In addition, the first device 110 may report a stitching failure to the third device 130 or the second device 120.
  • the first device 110 may report 360, to the third device 130, the PRS measurement across the K consecutive PRS frequency hops. In some embodiments, the first device 110 may also report 370, to the third device 130, information regarding whether a PRS frequency hopping and stitching procedure is performed for K consecutive PRS frequency hops. In some embodiments, the first device 110 may report 371, to the third device 130, information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed.
  • the first device 110 may report 372, to the second device 120, at least one of an identity (ID) of the PRS frequency hop or an ID of a PPW associated with the PRS frequency hop. In some embodiments, the first device 110 may report 373, to the third device 130, at least one of the ID of the PRS frequency hop or the ID of the PPW. In some embodiments where a single PPW is configured per BWP, the first device 110 may report, to at least one of the second device 120 or the third device 130, an ID of a PPW for which no PRS measurements have been successfully performed.
  • the first device 110 may report, to at least one of the second device 120 or the third device 130, an ID of a PRS frequency hop for which no PRS measurements have been successfully performed. It is to be understood that the first device 110 may report any combination of the above information and any other suitable information.
  • the third device 130 may estimate 380 a location of the first device 110.
  • the location estimation may be carried out in any suitable ways and the present disclosure does not limit this aspect.
  • a PRS frequency hopping and stitching may be enabled and RedCap UE positioning measurement may be supported. It is to be noted that the process 300 as shown in Fig. 3 is merely an example, and may have additional or less operations.
  • Fig. 5 illustrates a flowchart of an example method 500 implemented at a first device according to some embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described with reference to Fig. 1.
  • the first device 110 receives a configuration for a PRS measurement across PRS frequency hops.
  • the first device 110 may receive the configuration from at least one of the second device 120 or the third device 130.
  • a first PRS frequency hop in the PRS frequency hops is in a first BWP
  • a second PRS frequency hop in the PRS frequency hops is in a second BWP different from the first BWP.
  • the configuration may comprise at least one of the following: the first number of consecutive PRS frequency hops; a second number of consecutive PRS frequency hops, the second number being less than or equal to the first number; a first priority rule between a PRS and a DL signal other than the PRS for a PPW; or a second priority rule for overriding the first priority rule.
  • the first device 110 may receive the configuration by at least one of the following: a RRC message; DCI; or a LTE positioning protocol message; or a MAC CE.
  • the first device 110 may receive, from the third device 130, a request for obtaining the PRS measurement across PRS frequency hops.
  • the first device 110 obtains, based on the configuration, the PRS measurement across a first number of consecutive PRS frequency hops.
  • the first device 110 may perform a second set of PRS measurements over a third number of consecutive PRS frequency hops based on the second priority rule, the first number being a sum of the second number and the third number. In some embodiments, if the number of remaining PRS frequency hops after the first set of PRS measurements is less than the first number, the first device 110 may perform the second set of PRS measurements. In these embodiments, the second priority rule assumes that reception of the PRS has a higher priority than reception of the downlink signal other than the PRS. Then the first device 110 may obtain the PRS measurement based on the first and second sets of PRS measurements.
  • the first device 110 may determine that the first set of PRS measurements over the second number of consecutive PRS frequency hops are successfully performed based on at least one of the following: quality of a PRS measurement being above threshold quality; no PRS being dropped based on the first priority rule; the first device being expected to have received the PRS; or processed PRS measurement without error.
  • the first device 110 may apply the second priority rule for a set of PRS frequency hops, the set of PRS frequency hops being configured with a low priority on reception of a PRS based on the first priority rule and being located between two PRS frequency hops configured with a high priority on reception of the PRS based on the first priority rule.
  • the first device 110 may apply the second priority rule for the first number of consecutive PRS frequency hops. In these embodiments, the second priority rule assumes that reception of the PRS has a higher priority than reception of the downlink signal other than the PRS.
  • the first device 110 may apply the second priority rule for remaining PRS frequency hops. In some embodiments, if the PRS measurement is not obtained across the first number of consecutive PRS frequency hops, the first device 110 may drop PRSs in remaining PRS frequency hops or apply the second priority rule for the remaining PRS frequency hops. In these embodiments, the second priority rule assumes that reception of the PRS has a lower priority than reception of the downlink signal other than the PRS.
  • the first device 110 reports the PRS measurement.
  • the first device 110 may report the PRS measurement to at least one of the second device 120 or the third device 130.
  • the first device 110 may further report at least one of the following: information regarding whether a PRS frequency hopping and stitching procedure is performed for the first number of consecutive PRS frequency hops; information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed; or at least one of an ID of a PRS frequency hop or an ID of a PPW for which no PRS measurements have been successfully performed.
  • a PRS frequency hopping and stitching may be enabled and a positioning related measurement may be reported.
  • Fig. 6 illustrates a flowchart of an example method 600 implemented at a second device according to some embodiments of the present disclosure. For the purpose of discussion, the method 600 will be described with reference to Fig. 1.
  • the second device 120 generates, at a configuration for a PRS measurement across PRS frequency hops.
  • a first PRS frequency hop in the PRS frequency hops is in a first BWP
  • a second PRS frequency hop in the PRS frequency hops is in a second BWP different from the first BWP.
  • the second device 120 transmits the configuration to the first device 110 for determination of the PRS measurement across a first number of consecutive PRS frequency hops.
  • the configuration may comprise at least one of the following: the first number of consecutive PRS frequency hops; a second number of consecutive PRS frequency hops, the second number being less than or equal to the first number; a first priority rule between a PRS and a DL signal other than the PRS for a PPW; or a second priority rule for overriding the first priority rule.
  • the second device 120 may transmit the configuration by at least one of the following: a RRC message; DCI; a LTE positioning protocol message; or a MAC CE.
  • the second device 120 may receive, from the first device 110, at least one of an ID of a PRS frequency hop or an ID of a PPW for which no PRS measurements have been successfully performed.
  • a PRS measurement across PRS frequency hops may be configured to support a consecutive PRS frequency hopping.
  • Fig. 7 illustrates a flowchart of an example method 700 implemented at a third device according to some embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described with reference to Fig. 1.
  • the third device 130 receives, from the first device 110, a PRS measurement across a first number of consecutive PRS frequency hops.
  • the third device 130 positions the first device 110 based on the PRS measurements.
  • the third device 130 may transmit, to the first device 110, a request for obtaining the PRS measurement across PRS frequency hops.
  • the third device 130 may further receive at least one of the following: information regarding whether a PRS frequency hopping and stitching procedure is performed for the first number of consecutive PRS frequency hops; or information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed.
  • a PRS measurement across a desired number of consecutive PRS frequency hops may be used for positioning, and positioning accuracy may be enhanced.
  • an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises: means for receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; means for obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for reporting the positioning reference signal measurement.
  • the configuration comprises at least one of the following: the first number of consecutive positioning reference signal frequency hops; a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number; a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window; or a second priority rule for overriding the first priority rule.
  • the means for obtaining the positioning reference signal measurement comprises: means for, in accordance with a determination that a first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on the first priority rule, performing a second set of positioning reference signal measurements over a third number of consecutive positioning reference signal frequency hops based on the second priority rule, the first number being a sum of the second number and the third number; and means for obtaining the positioning reference signal measurement based on the first and second sets of positioning reference signal measurements.
  • the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
  • the means for performing the second set of positioning reference signal measurements comprises: means for, in accordance with a determination that the number of remaining positioning reference signal frequency hops is less than the first number, performing the second set of positioning reference signal measurements.
  • the apparatus further comprises: means for determining that the first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on at least one of the following: quality of a positioning reference signal measurement being above threshold quality; no positioning reference signal being dropped based on the first priority rule; the first device being expected to have received the positioning reference signal; or processed positioning reference signal measurement without error.
  • the means for receiving the configuration comprises means for receiving the configuration by at least one of the following: a radio resource control message; downlink control information; a long-term evolution positioning protocol message; or a medium access control control element.
  • the means for obtaining the positioning reference signal measurement comprises: means for applying the second priority rule for a set of positioning reference signal frequency hops, the set of positioning reference signal frequency hops being configured with a low priority on reception of a positioning reference signal based on the first priority rule and being located between two positioning reference signal frequency hops configured with a high priority on reception of the positioning reference signal based on the first priority rule.
  • the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
  • the means for obtaining the positioning reference signal measurement comprises: means for applying the second priority rule for the first number of consecutive positioning reference signal frequency hops.
  • the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
  • the apparatus further comprises: means for, in accordance with a determination that the positioning reference signal measurement is successfully obtained across the first number of consecutive positioning reference signal frequency hops, applying the second priority rule for remaining positioning reference signal frequency hops.
  • the apparatus further comprises: means for, in accordance with a determination that the positioning reference signal measurement is not obtained across the first number of consecutive positioning reference signal frequency hops, dropping positioning reference signals in remaining positioning reference signal frequency hops; or applying the second priority rule for the remaining positioning reference signal frequency hops.
  • the second priority rule assumes that reception of the positioning reference signal has a lower priority than reception of the downlink signal other than the positioning reference signal.
  • the apparatus further comprises: means for receiving a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  • the apparatus further comprises at least one of the following: means for reporting information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; means for reporting information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed; or means for reporting at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  • an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises: means for generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and means for transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  • the configuration comprises at least one of the following: the first number of consecutive positioning reference signal frequency hops; a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number; a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window; or a second priority rule for overriding the first priority rule.
  • the means for transmitting the configuration comprises means for transmitting the configuration by at least one of the following: a radio resource control message; downlink control information; a long-term evolution positioning protocol message; or a medium access control control element.
  • the apparatus further comprises means for receiving, from the first device, at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  • a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
  • an apparatus capable of performing the method 700 may comprise means for performing the respective steps of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises: means for receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for positioning the first device based on the positioning reference signal measurements.
  • the apparatus further comprises: means for transmitting, to the first device, a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  • the apparatus further comprises at least one of the following: means for receiving information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; or means for receiving information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed.
  • Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure.
  • the device 800 may be provided to implement the communication device, for example the first device 110, the second device 120 or the third device 130 as shown in Fig. 1.
  • the device 800 includes one or more processors 810, one or more memories 820 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
  • the communication module 840 is for bidirectional communications.
  • the communication module 840 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 820 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
  • a computer program 830 includes computer executable instructions that are executed by the associated processor 810.
  • the program 830 may be stored in the ROM 820.
  • the processor 810 may perform any suitable actions and processing by loading the program 830 into the RAM 820.
  • the embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 1 to 7.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800.
  • the device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • Fig. 9 shows an example of the computer readable medium 900 in form of CD or DVD.
  • the computer readable medium has the program 830 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the method 500 or 600 or 700 as described above with reference to Figs. 5 to 7.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • non-transitory is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to positioning measurement across frequency hops. According to one aspect of the present disclosure, a first device receives a configuration for a PRS measurement across PRS frequency hops. The first device obtains, based on the configuration, the PRS measurement across a first number of consecutive PRS frequency hops and reports the PRS measurement. In this way, a PRS frequency hopping and stitching procedure may be enabled.

Description

POSITIONING MEASUREMENT ACROSS FREQUENCY HOPS FIELD
Various example embodiments relate to the field of telecommunication and in particular, to a method, device, apparatus and computer readable storage medium of a positioning measurement across frequency hops.
BACKGROUND
Currently, positioning enhancement includes positioning support for reduced capability (RedCap) user equipment (UE) with reduced bandwidth support. A frequency bandwidth resource is a critical factor to positioning accuracy. To overcome performance degradation from a narrow bandwidth resource, a typical way is positioning reference signal (PRS) frequency hopping and stitching so that a narrow PRS bandwidth is measured each time and coherent processing across multiple PRS frequency hops is enabled. However, due to potential low priority on PRS measurements within a PRS processing window (PPW) , PRS measurements on one or more PRS frequency hops within the PPW may not be obtained. Measurements for all PRS frequency hops may have to be repeated.
SUMMARY
In general, example embodiments of the present disclosure provide a solution of a positioning measurement across PRS frequency hops.
In a first aspect, there is provided a first device. The first device comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the first device at least to: receive a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; obtain, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and report the positioning reference signal measurement.
In a second aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the second device at least to: generate a configuration for a positioning reference signal measurement across positioning reference  signal frequency hops; and transmit the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
In a third aspect, there is provided a third device. The third device comprises at least one processor; and at least one memory storing instructions that, when executed by the at least one processor, cause the third device at least to: receive, from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and position the first device based on the positioning reference signal measurements.
In a fourth aspect, there is provided a method for communication. The method comprises: receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and reporting the positioning reference signal measurement.
In a fifth aspect, there is provided a method for communication. The method comprises: generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
In a sixth aspect, there is provided a method for communication. The method comprises: receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and positioning the first device based on the positioning reference signal measurements.
In a seventh aspect, there is provided an apparatus for communication. The apparatus comprises: means for receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; means for obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for reporting the positioning reference signal measurement.
In an eighth aspect, there is provided an apparatus for communication. The apparatus comprises: means for generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and means for transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
In a ninth aspect, there is provided an apparatus for communication. The apparatus comprises: means for receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for positioning the first device based on the positioning reference signal measurements.
In a tenth aspect, there is provided a non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least the method according to any of the fourth to sixth aspects.
In an eleventh aspect, there is provided a computer program comprising instructions, which, when executed by an apparatus, cause the apparatus to perform at least the method according to any of the fourth to sixth aspects.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication network in which embodiments of the present disclosure may be implemented;
Fig. 2 illustrates a diagram illustrating an example PRS frequency hopping and stitching procedure in which embodiments of the present disclosure may be implemented;
Fig. 3 illustrates a flowchart illustrating a process of communication for a positioning measurement across frequency hops according to some embodiments of the  present disclosure;
Fig. 4A illustrates a diagram illustrating an example PRS measurement configuration according to some embodiments of the present disclosure;
Fig. 4B illustrates a diagram illustrating another example PRS measurement configuration according to some embodiments of the present disclosure;
Fig. 5 illustrates a flowchart of an example method implemented at a first device according to some embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method implemented at a second device according to some embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of an example method implemented at a third device according to some embodiments of the present disclosure;
Fig. 8 illustrates a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure; and
Fig. 9 illustrates a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment  includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof. As used herein, “at least one of the following: <a list of two or more elements>” and “at least one of <a list of two or more elements>” and similar wording, where the list of two or more elements are joined by “and” or “or” , mean at least any one of the elements, or at least any two or more of the elements, or at least all the elements.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital  signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , the future sixth generation (6G) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a new radio (NR) next  generation NodeB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. An RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example embodiments, in a fixed and/or a wireless network node, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user  equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
Currently, it has been proposed to study positioning support for RedCap UE considering the following aspects:
· evaluate positioning performance of existing positioning procedures and measurements with RedCap UE; and
· based on the evaluation, assess the necessity of enhancements and, if needed, identify enhancements to help address limitations associated with for RedCap UEs.
In Release 17 NR work item, considered maximum bandwidth of RedCap UE was 20 MHz for frequency range 1 (FR1) and the considered maximum bandwidth of RedCap UE will be 5 MHz in Release 18. NR positioning was introduced in Release 16 NR targeting <3m positioning accuracy and was enhanced in Release 17 with target accuracy <30 cm. Evaluated performance assuming 100 MHz bandwidth for FR1 may be worse in a narrow band system due to a low sampling rate. Furthermore, it is being considered that RedCap UE may be equipped with only a single antenna as a baseline.
It has been agreed that for evaluation of RedCap UE positioning performances, all RAT based positioning methods may be considered, and 20 MHz (5MHz optional) bandwidth for FR1 and 100 MHz bandwidth for frequency range 2 (FR2) may be evaluated.
RedCap UE may support NR positioning functionality, but the core and performance requirements have not been specified for the positioning related measurements performed by RedCap UE, and no evaluation was performed to see how the reduced capabilities of RedCap UE might impact eventual position accuracy.
As known, one of main features on reducing latency is supporting UE to measure PRS outside of measurement gap (MG) by introducing a PPW. By this feature, the UE may receive downlink (DL) data or reference signals while receiving a PRS within the PPW. With respect to this feature, two different UE capabilities were defined and the detailed agreement is given below.
It is assumed to subject to UE capability, support PRS measurement outside the MG, within a PRS processing window, and UE measurement inside an active DL BWP  with a PRS having the same numerology as the active DL BWP. Inside the PRS processing window and subject to the UE determining that DL PRS to be higher priority, it is agreed to support the following UE capabilities:
· Capability 1: PRS prioritization over all other DL signals/channels in all symbols inside the window.
· Capability 1A: The DL signals/channels from all DL CCs (per UE) are affected.
· Capability 1B: Only the DL signals/channels from a certain band/CC are affected.
· Capability 2: PRS prioritization over other DL signals/channels only in the PRS symbols inside the PPW.
· UE may be able to declare a PRS processing capability outside MG.
For the purpose of this feature, PRS-related conditions are expected to be specified, with the following to be down-selected:
· Alternative 1: Applicable to serving cell PRS only;
· Alternative 2: Applicable to all PRS under conditions to PRS of non-serving cell.
Thus, when the UE determines higher priority for other DL signals/channels over the PRS measurement/processing, the UE is not expected to measure/process DL PRS which is applicable to all of the above capability options.
It is to further study details of which other DL signals/channels to be prioritized and how the UE determines DL PRS’s priority based on one or more of the following:
· Option 1: Based on indication/configuration from a serving network device;
· Option 2: Other options (e.g., implicit, signaling from location management function (LMF) , etc. ) .
It is also to study whether UE can do the measurement for both inside MG (if MG is configured) and outside MG in a measurement period and how to do the PRS measurement when the conditions cannot be satisfied, e.g. when BWP switching happens. Further, it is to study prioritization conditions of processing PRS over other DL channels/signals or vice versa.
In addition, a priority indication feature considering priority between PRS, other DL reference signals and DL channels has been introduced. It has been agreed that the  following options are supported subject to UE capability for priority handling of PRS when PRS measurement is outside MG.
· Option 1: UE may indicate support of two priority states.
· State 1: PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
· State 2: PRS is lower priority than all PDCCH/PDSCH/CSI-RS.
· Option 2: UE may indicate support of three priority states.
· State 1: PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
· State 2: PRS is lower priority than PDCCH and URLLC PDSCH and higher priority than other PDSCH/CSI-RS.
· State 3: PRS is lower priority than all PDCCH/PDSCH/CSI-RS.
· Option 3: UE may indicate support of single priority state.
· State 1: PRS is higher priority than all PDCCH/PDSCH/CSI-RS.
As mentioned above, due to potential low priority on PRS measurements within a PPW, PRS measurements on one or more PRS frequency hops within the PPW may not be obtained. One PRS frequency hop may be a part of the bandwidth of a PRS that UE can measure. One PRS frequency hop may be defined in a DL BWP if bandwidth of the DL BWP is less than the bandwidth of the PRS. In case a PPW is configured for each DL BWP, a potential low priority on PRS measurements within a PPW may cause the UE to fail to measure certain PRS frequency hop (s) among consecutive PRS frequency hops successfully. Measurements for all PRS frequency hops may have to be repeated.
In view of this, embodiments of the present disclosure provide a solution of a PRS measurement across PRS frequency hops. In the solution, a first device receives, from a second device, a configuration for a PRS measurement across PRS frequency hops. Based on the configuration, the first device performs the PRS measurement across a first number of consecutive PRS frequency hops and reports the PRS measurement to a third device. In this way, sufficient measurements for PRS frequency hopping and stitching may be ensured and RedCap UE positioning performance may be enhanced.
Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
Fig. 1 illustrates a schematic diagram of an example communication network 100 in which embodiments of the present disclosure can be implemented. As shown in Fig. 1, the communication network 100 may involve a first device 110 and a second device 120 serving the first device 110.
It is to be understood that the number of the first and second devices as shown in Fig. 1 are only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number of first and second devices adapted for implementing embodiments of the present disclosure. In some embodiments, the first device 110 may be a terminal device, and the second device 120 may be a network device.
Merely for illustration purposes and without suggesting any limitations as to the scope of the present disclosure, some embodiments will be described in the context where the first device 110 is a terminal device and the second device 120 is a network device. It is to be understood that, in other embodiments, the first device 110 may be a network device and the second device 120 may be a terminal device. In other words, the principles and spirit of the present disclosure may be applied to both uplink and downlink transmissions.
As shown in Fig. 1, the first device 110 and the second device 120 may communicate with each other via a wireless communication channel. The communications within the network 100 may conform to any suitable standard including, but not limited to, LTE, LTE-evolution, LTE-advanced (LTE-A) , wideband code division multiple access (WCDMA) , code division multiple access (CDMA) and global system for mobile communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) or the sixth generation (6G) communication protocols.
With reference to Fig. 1, the network 100 may also comprise a third device 130. The third device 130 may be a device having a positioning function. In some embodiments, the third device 130 may be a location server. For example, the third device 130 may be a location management function (LMF) .
As known, a frequency bandwidth resource is a critical factor to a positioning  accuracy. To overcome performance degradation from a narrow bandwidth resource, a typical way is a PRS frequency hopping and stitching procedure. Fig. 2 illustrates a diagram 200 illustrating an example PRS frequency hopping and stitching procedure in which embodiments of the present disclosure may be implemented.
As shown in Fig. 2, PRSs may be periodically transmitted over a  wideband H. PPWs  211, 212 and 213 are configured for PRS measurements in different PRS frequency hops. A time gap is configured between two of the PPWs for BWP switching. The PPW 211 is configured for a PRS measurement 221 in DL BWP #1. The PPW 212 is configured for a PRS measurement 222 in DL BWP #2. The PPW 213 is configured for a PRS measurement 223 in DL BWP #3. The DL BWPs #1, #2 and #3 are different parts of the wideband H. The  measurements  221, 222 and 223 obtained on multiple measurement occasions are stitched for positioning.
However, a configured priority rule on PRS measurement within a PPW should be followed. Thus, the PRS frequency hopping and stitching may not always be guaranteed. Generally, it is hard to expect that a PRS has a higher priority than other DL signals and channels within all PPWs. Even if a chance is missed to measure a PRS resource at a certain measurement occasion, it might not be critical as there are multiple measurement occasions and PRS resources to be measured. For example, in case that PRS measurement 222 is missed according to the priority rule, the PRS stitching may not be possible. In general, if a measurement on one of PRS frequency hops is not obtained, measurement operations for all PRS frequency hops may be repeated. It leads to unnecessary latency for positioning.
Thus, embodiments of the present disclosure provide a solution for a PRS measurement across PRS frequency hops to enable PRS frequency hopping and stitching. More details will be described below in connection with Fig. 3.
Fig. 3 illustrates a flowchart illustrating a process 300 of communication for a positioning measurement across frequency hops according to some embodiments of the present disclosure. For the purpose of discussion, the process 300 will be described with reference to Fig. 1. The process 300 may involve the first device 110, the second device 120 and the third device 130 as illustrated in Fig. 1.
As shown in Fig. 3, the first device 110 may report 310 its PRS processing capability. In some embodiments, the first device 110 may report 311 its PRS processing  capability to the second device 120. In some embodiments, the first device 110 may report 312 its PRS processing capability to the third device 130. It is to be understood that the first device 110 may report its PRS processing capability to both of the second device 120 and the third device 130. In some embodiments, the first device 110 may report information regarding whether the first device 110 is normal UE or RedCap UE. It is to be understood that the first device 110 may report any other suitable information of PRS processing capability.
As shown in Fig. 3, the first device 110 may receive 320 a configuration for a PRS measurement across PRS frequency hops. Based on the PRS processing capability of the first device 110, the second device 120 or the third device 130 may decide to configure the first device 110 to perform a PRS measurement across PRS frequency hops.
In some embodiments, the second device 120 may transmit 321, to the first device 110, the configuration for the PRS measurement across PRS frequency hops. In some embodiments, the second device 120 may transmit the configuration via a radio resource control (RRC) message. In some embodiments, the second device 120 may transmit the configuration via downlink control information (DCI) . In some embodiments, the second device 120 may transmit the configuration via a medium access control control element (MAC CE) .
In some embodiments, the third device 130 may transmit 322, to the first device 110, the configuration for the PRS measurement across PRS frequency hops. In some embodiments, the third device 130 may transmit the configuration via a LTE positioning protocol message. It is to be understood that any other suitable ways for transmission of the configuration are also feasible.
In some embodiments, a first PRS frequency hop in the PRS frequency hops is in a first BWP and a second PRS frequency hop in the PRS frequency hops is in a second BWP different from the first BWP. In other words, different PRS frequency hops in the PRS frequency hops may be in different BWPs. In some alternative embodiments, two or more of the PRS frequency hops may be in the same BWP. The present disclosure does not limit this aspect.
In some embodiments, the second device 120 may configure one or more PPWs for the first device 110. In some embodiments, the second device 120 may configure a single PPW for each configured BWP (e.g., DL BWP) of the first device 110. Fig. 4A  illustrates a diagram 400A illustrating an example PRS measurement configuration according to some embodiments of the present disclosure. As shown in Fig. 4A,  PPWs  411, 412 and 413 are configured for  BWPs  421, 422 and 423 respectively. A time gap is configured between two of the PPWs for BWP switching. In the PPW 411, a PRS measurement is performed over a frequency hop 431 in the BWP 421. In the PPW 412, a PRS measurement is performed over a frequency hop 432 in the BWP 422. In the PPW 413, a PRS measurement is performed over a frequency hop 433 in the BWP 423.
In some embodiments, the second device 120 may configure a single PPW for multiple BWPs of the first device 110. In other words, the first device 110 may be configured with N PPWs for M BWPs, where N≥1 and M≥1. Fig. 4B illustrates a diagram 400B illustrating another example PRS measurement configuration according to some embodiments of the present disclosure. As shown in Fig. 4B, a single PPW 440 is configured for  BWPs  451, 452 and 453. A time gap is configured between two of the PPWs for BWP switching. A PRS measurement is performed over a frequency hop 461 in the BWP 451. A PRS measurement is performed over a frequency hop 462 in the BWP 452. A PRS measurement is performed over a frequency hop 463 in the BWP 453.
In some embodiments, the second device 120 may configure a priority rule (for convenience, also referred to a first priority rule herein) for a PPW. For example, the second device 120 may configure a PRS-priority indicator for the PPW. It is to be understood that any other suitable ways are also feasible for configuration of the first priority rule. In some embodiments, the priority rule of a PPW may indicate that reception of a PRS has a higher priority than reception of a DL signal other than the PRS in the PPW. In some embodiments, the DL signal may be a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) , channel state information-reference signal (CSI-RS) or any other suitable DL signals. In some alternative embodiments, the priority rule of a PPW may indicate that reception of the PRS has a lower priority than reception of the DL signal other than the PRS in the PPW. In other words, based on the priority rule configured for a PPW, a priority on reception of a PRS in one PPW may be different from that in another PPW.
In some embodiments, in addition to a priority rule (i.e., the first priority rule) for a PPW, the second device 120 may configure another priority rule (for convenience, also referred to a second priority rule herein) for overriding the first priority rule. In some embodiments, the second priority rule may assume or indicate that reception of a PRS has a  higher priority than reception of a DL signal other than the PRS. In some embodiments, the second priority rule may assume or indicate that reception of a PRS has a lower priority than reception of a DL signal other than the PRS.
In some embodiments, the configuration may comprise a desired number (for convenience, also referred to as a first number and denoted as K herein) of consecutive PRS frequency hops for a PRS measurement. The desired number may be a requested number of consecutive PRS frequency hops that the first device 110 should measure and report a combined positioning measurement. In some embodiments, 1 ≤ K ≤ M, where M denotes the number of BWPs of the first device 110.
In some embodiments, the configuration may comprise the minimum number (for convenience, also referred to as a second number and denoted as K’ herein) of PRS frequency hops for a PRS measurement. In some embodiments, 0 < K’ ≤ K. For the K’ PRS frequency hops, the first device 110 may apply the first priority rule configured per PPW.
It is to be understood that the configuration may comprise any combination of the above information and any other suitable information.
Continue to refer to Fig. 3, the first device 110 may request 330 support of the second device 120 so that the first device 110 performs PRS frequency hopping behavior. Alternatively, the third device 130 may request 330’ the support of the second device 120. In some embodiments, the first device 110 may be indicated by the second device 120 to perform BWP switching. In some embodiments, a timer for BWP switching may be configured associated with PPW occasions.
With reference to Fig. 3, the third device 130 may transmit 340, to the first device 110, a request for obtaining a PRS measurement across PRS frequency hops. In some embodiments, the request may indicate the first device 110 to obtain a PRS measurement across the K consecutive PRS frequency hops. In some embodiments, the first number may be associated with a positioning accuracy. In other words, the first number may be determined based on a required accuracy requirement.
As shown in Fig. 3, the first device 110 may obtain 350 the PRS measurement across K consecutive PRS frequency hops based on the configuration. In some embodiments, the first device 110 may determine whether a set of PRS measurements (for convenience, also referred to as a first set of PRS measurements herein) over K’  consecutive PRS frequency hops are successfully performed based on the first priority rule. In some embodiments, if quality of a PRS measurement over a PRS frequency hop is above threshold quality, the first device 110 may determine that the PRS measurement over the PRS frequency hop is successfully performed. In some embodiments, if no PRS is dropped for a PRS frequency hop based on the first priority rule, the first device 110 may determine that a PRS measurement over the PRS frequency hop is successfully performed. In some embodiments, the first device 110 is expected to have received the PRS. In some embodiments, if a PRS measurement is processed without error, the first device 110 may determine that a PRS measurement over the PRS frequency hop is successfully performed. It is to be understood that any other suitable ways are also feasible.
In some embodiments, if the first set of PRS measurements over K’ consecutive PRS frequency hops are successfully performed based on the first priority rule, the first device 110 may perform another set of PRS measurements (for convenience, also referred to as a second set of PRS measurements herein) over K-K’ (for convenience, also referred to as a third number herein) of consecutive PRS frequency hops based on the second priority rule. In these embodiments, the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
In other words, if the first device 110 successfully performs PRS measurements for K’consecutive PRS frequency hops while the first device 110 follows a priority rule (i.e., the first priority rule) configured per PPW, the first device 110 may be allowed to ignore the first priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops so as to complete PRS frequency hopping.
In some alternative embodiments, after the successful PRS measurements for K’ consecutive PRS frequency hops, if the number of remaining PRS frequency hops is less than K, the first device 110 may be allowed to ignore the first priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops so as to complete PRS frequency hopping.
That is, the first device 110 may override the first priority rule with the second priority rule for the next K-K’ PRS frequency hops or the remaining PRS frequency hops. The first device 110 may assume that reception of a PRS has a higher priority than other DL signals for the next K-K’ PRS frequency hops or the remaining PRS frequency hops. In this way, the first and second sets of PRS measurements over the K consecutive PRS  frequency hops may be obtained.
By stitching the first and second sets of PRS measurements, the first device 110 may obtain a single PRS measurement across the K consecutive PRS frequency hops. So far, a PRS frequency hopping and stitching procedure is enabled.
In some embodiments, the second device 120 may dynamically indicate or control K’to the first device 110 by at least one of DCI or MAC-CE. In some embodiments, the second device 120 may configure a PRS as low priority on purpose in case the second device 120 wants to transmit high-priority PDSCH/PDCCH. For example, if the first device 110 has measured 3 PRS frequency hops but needs to drop the 4th PRS frequency hop by following the first priority rule configured per PPW, it may be needed to repeat the whole measurement if the first device 110 needs to measure four consecutive PRS frequency hops and a waste of resources of wireless network may be caused. The second device 120 may dynamically control or indicate K’ value and the first device 110 may understand that there is urgent data that should not be missed for the first K’ PPWs. For example, if the first device 110 is configured with K’=5, the first device 110 may follow the first priority rule until the first device 110 obtains PRS measurements for 5 hops.
In some embodiments, the first device 120 may apply the second priority rule for a set of PRS frequency hops (i.e., one or more PRS frequency hops) that are configured with a low priority on reception of a PRS based on the first priority rule and are located between two PRS frequency hops configured with a high priority on reception of the PRS based on the first priority rule. In these embodiments, the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS.
In other words, the first device 120 may put high priority on a certain PRS frequency hop configured with low priority of PRS which is located in between two PRS frequency hops configured with high priority of PRS. In case there is no PPW with high priority of PRS, the first device 110 may need to determine whether to apply the second priority rule while it is measuring PRS across multiple PPWs. In this way, the first device 110 may obtain K consecutive PRS frequency hopping measurements.
In some embodiments, the first device 120 may apply the second priority rule for the first K consecutive PRS frequency hops. In these embodiments, the second priority rule assumes that reception of a PRS has a higher priority than reception of a DL signal other than the PRS. In other words, the first device 120 may assume that a PRS has a  higher priority than other DL signal reception for the first K PRS frequency hops. That is, a PRS has high priority for the first K consecutive PRS frequency hops. In this way, the first device 110 may also obtain K consecutive PRS frequency hopping measurements.
In some embodiments, if the PRS measurement is successfully obtained across the K consecutive PRS frequency hops, the first device 110 may apply the second priority rule for the remaining PRS frequency hops. In these embodiments, the second priority rule assumes that reception of a PRS has a lower priority than reception of a DL signal other than the PRS. In other words, if the first device 110 already successfully obtained measurements for the consecutive K PRS frequency hops, the first device 110 may assume that a PRS has a low priority than other DL signals in the remaining PRS frequency hops.
In some embodiments, if the PRS measurement is not obtained across the K consecutive PRS frequency hops, the first device 110 may drop PRSs in the remaining PRS frequency hops. In some embodiments, if the PRS measurement is not obtained across the K consecutive PRS frequency hops, the first device 110 may apply the second priority rule for the remaining PRS frequency hops. In these embodiments, the second priority rule assumes that reception of a PRS has a lower priority than reception of a DL signal other than the PRS. In other words, if the first device 110 finds that it is not able to obtain K consecutive PRS frequency hops, the first device 110 may drop PRSs in the remaining PRS frequency hops, or may assume that reception of PRS has a low priority in the remaining PRS frequency hops.
For example, if 4 PPWs are configured for 4 BWPs, there may be 4 PRS frequency hops. It is assumed that the minimum number of PRS frequency hops is 3 (i.e., K’=3) . If the first device 110 fails to receive PRS in the first two PRS frequency hops, the first device 110 may drop PRSs in the remaining PRS frequency hops. In addition, the first device 110 may report a stitching failure to the third device 130 or the second device 120.
It is to be understood that the above embodiments may be used separately or in any suitable combination to complete a PRS frequency hopping and stitching procedure.
Continue to refer to Fig. 3, the first device 110 may report 360, to the third device 130, the PRS measurement across the K consecutive PRS frequency hops. In some embodiments, the first device 110 may also report 370, to the third device 130, information regarding whether a PRS frequency hopping and stitching procedure is performed for K consecutive PRS frequency hops. In some embodiments, the first device 110 may report  371, to the third device 130, information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed.
In some embodiments, if the first device 110 does not successfully obtain the PRS measurement for a certain PRS frequency hop, the first device 110 may report 372, to the second device 120, at least one of an identity (ID) of the PRS frequency hop or an ID of a PPW associated with the PRS frequency hop. In some embodiments, the first device 110 may report 373, to the third device 130, at least one of the ID of the PRS frequency hop or the ID of the PPW. In some embodiments where a single PPW is configured per BWP, the first device 110 may report, to at least one of the second device 120 or the third device 130, an ID of a PPW for which no PRS measurements have been successfully performed. In some embodiments where a single PPW is configured for multiple BWPs, the first device 110 may report, to at least one of the second device 120 or the third device 130, an ID of a PRS frequency hop for which no PRS measurements have been successfully performed. It is to be understood that the first device 110 may report any combination of the above information and any other suitable information.
Continue to refer to Fig. 3, based on the PRS measurement across the K consecutive PRS frequency hops, the third device 130 may estimate 380 a location of the first device 110. The location estimation may be carried out in any suitable ways and the present disclosure does not limit this aspect.
With the process 300, a PRS frequency hopping and stitching may be enabled and RedCap UE positioning measurement may be supported. It is to be noted that the process 300 as shown in Fig. 3 is merely an example, and may have additional or less operations.
Corresponding to the above process, example embodiments of the present disclosure also provide methods of communication. Fig. 5 illustrates a flowchart of an example method 500 implemented at a first device according to some embodiments of the present disclosure. For the purpose of discussion, the method 500 will be described with reference to Fig. 1.
At block 510, the first device 110 receives a configuration for a PRS measurement across PRS frequency hops. In some embodiments, the first device 110 may receive the configuration from at least one of the second device 120 or the third device 130. In some embodiments, a first PRS frequency hop in the PRS frequency hops is in a first BWP, and a second PRS frequency hop in the PRS frequency hops is in a second BWP different from  the first BWP.
In some embodiments, the configuration may comprise at least one of the following: the first number of consecutive PRS frequency hops; a second number of consecutive PRS frequency hops, the second number being less than or equal to the first number; a first priority rule between a PRS and a DL signal other than the PRS for a PPW; or a second priority rule for overriding the first priority rule.
In some embodiments, the first device 110 may receive the configuration by at least one of the following: a RRC message; DCI; or a LTE positioning protocol message; or a MAC CE.
In some embodiments, the first device 110 may receive, from the third device 130, a request for obtaining the PRS measurement across PRS frequency hops.
At block 520, the first device 110 obtains, based on the configuration, the PRS measurement across a first number of consecutive PRS frequency hops.
In some embodiments, if a first set of PRS measurements over the second number of consecutive PRS frequency hops are successfully performed based on the first priority rule, the first device 110 may perform a second set of PRS measurements over a third number of consecutive PRS frequency hops based on the second priority rule, the first number being a sum of the second number and the third number. In some embodiments, if the number of remaining PRS frequency hops after the first set of PRS measurements is less than the first number, the first device 110 may perform the second set of PRS measurements. In these embodiments, the second priority rule assumes that reception of the PRS has a higher priority than reception of the downlink signal other than the PRS. Then the first device 110 may obtain the PRS measurement based on the first and second sets of PRS measurements.
In some embodiments, the first device 110 may determine that the first set of PRS measurements over the second number of consecutive PRS frequency hops are successfully performed based on at least one of the following: quality of a PRS measurement being above threshold quality; no PRS being dropped based on the first priority rule; the first device being expected to have received the PRS; or processed PRS measurement without error.
In some embodiments, the first device 110 may apply the second priority rule for a set of PRS frequency hops, the set of PRS frequency hops being configured with a low  priority on reception of a PRS based on the first priority rule and being located between two PRS frequency hops configured with a high priority on reception of the PRS based on the first priority rule. In some embodiments, the first device 110 may apply the second priority rule for the first number of consecutive PRS frequency hops. In these embodiments, the second priority rule assumes that reception of the PRS has a higher priority than reception of the downlink signal other than the PRS.
In some embodiments, if the PRS measurement is successfully obtained across the first number of consecutive PRS frequency hops, the first device 110 may apply the second priority rule for remaining PRS frequency hops. In some embodiments, if the PRS measurement is not obtained across the first number of consecutive PRS frequency hops, the first device 110 may drop PRSs in remaining PRS frequency hops or apply the second priority rule for the remaining PRS frequency hops. In these embodiments, the second priority rule assumes that reception of the PRS has a lower priority than reception of the downlink signal other than the PRS.
At block 530, the first device 110 reports the PRS measurement. In some embodiments, the first device 110 may report the PRS measurement to at least one of the second device 120 or the third device 130. In some embodiments, the first device 110 may further report at least one of the following: information regarding whether a PRS frequency hopping and stitching procedure is performed for the first number of consecutive PRS frequency hops; information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed; or at least one of an ID of a PRS frequency hop or an ID of a PPW for which no PRS measurements have been successfully performed.
With the method 500, a PRS frequency hopping and stitching may be enabled and a positioning related measurement may be reported.
Fig. 6 illustrates a flowchart of an example method 600 implemented at a second device according to some embodiments of the present disclosure. For the purpose of discussion, the method 600 will be described with reference to Fig. 1.
At block 610, the second device 120 generates, at a configuration for a PRS measurement across PRS frequency hops. In some embodiments, a first PRS frequency hop in the PRS frequency hops is in a first BWP, and a second PRS frequency hop in the PRS frequency hops is in a second BWP different from the first BWP.
At block 620, the second device 120 transmits the configuration to the first device 110 for determination of the PRS measurement across a first number of consecutive PRS frequency hops.
In some embodiments, the configuration may comprise at least one of the following: the first number of consecutive PRS frequency hops; a second number of consecutive PRS frequency hops, the second number being less than or equal to the first number; a first priority rule between a PRS and a DL signal other than the PRS for a PPW; or a second priority rule for overriding the first priority rule.
In some embodiments, the second device 120 may transmit the configuration by at least one of the following: a RRC message; DCI; a LTE positioning protocol message; or a MAC CE.
In some embodiments, the second device 120 may receive, from the first device 110, at least one of an ID of a PRS frequency hop or an ID of a PPW for which no PRS measurements have been successfully performed.
With the method 600, a PRS measurement across PRS frequency hops may be configured to support a consecutive PRS frequency hopping.
Fig. 7 illustrates a flowchart of an example method 700 implemented at a third device according to some embodiments of the present disclosure. For the purpose of discussion, the method 700 will be described with reference to Fig. 1.
At block 710, the third device 130 receives, from the first device 110, a PRS measurement across a first number of consecutive PRS frequency hops.
At block 720, the third device 130 positions the first device 110 based on the PRS measurements.
In some embodiments, the third device 130 may transmit, to the first device 110, a request for obtaining the PRS measurement across PRS frequency hops.
In some embodiments, the third device 130 may further receive at least one of the following: information regarding whether a PRS frequency hopping and stitching procedure is performed for the first number of consecutive PRS frequency hops; or information regarding the number of PRS frequency hops for which PRS measurements have been successfully performed.
With the method 700, a PRS measurement across a desired number of consecutive  PRS frequency hops may be used for positioning, and positioning accuracy may be enhanced.
It is to be noted that the operations of the methods 500 to 700 correspond to that of the process 300 as described above, and thus other details are not repeated here for conciseness.
Example embodiments of the present disclosure also provide the corresponding apparatus. In some embodiments, an apparatus (for example, the first device 110) capable of performing the method 500 may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus comprises: means for receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; means for obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for reporting the positioning reference signal measurement.
In some embodiments, the configuration comprises at least one of the following: the first number of consecutive positioning reference signal frequency hops; a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number; a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window; or a second priority rule for overriding the first priority rule.
In some embodiments, the means for obtaining the positioning reference signal measurement comprises: means for, in accordance with a determination that a first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on the first priority rule, performing a second set of positioning reference signal measurements over a third number of consecutive positioning reference signal frequency hops based on the second priority rule, the first number being a sum of the second number and the third number; and means for obtaining the positioning reference signal measurement based on the first and second sets of positioning reference signal measurements. In these  embodiments, the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
In some embodiments, the means for performing the second set of positioning reference signal measurements comprises: means for, in accordance with a determination that the number of remaining positioning reference signal frequency hops is less than the first number, performing the second set of positioning reference signal measurements.
In some embodiments, the apparatus further comprises: means for determining that the first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on at least one of the following: quality of a positioning reference signal measurement being above threshold quality; no positioning reference signal being dropped based on the first priority rule; the first device being expected to have received the positioning reference signal; or processed positioning reference signal measurement without error.
In some embodiments, the means for receiving the configuration comprises means for receiving the configuration by at least one of the following: a radio resource control message; downlink control information; a long-term evolution positioning protocol message; or a medium access control control element.
In some embodiments, the means for obtaining the positioning reference signal measurement comprises: means for applying the second priority rule for a set of positioning reference signal frequency hops, the set of positioning reference signal frequency hops being configured with a low priority on reception of a positioning reference signal based on the first priority rule and being located between two positioning reference signal frequency hops configured with a high priority on reception of the positioning reference signal based on the first priority rule. In these embodiments, the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
In some embodiments, the means for obtaining the positioning reference signal measurement comprises: means for applying the second priority rule for the first number of consecutive positioning reference signal frequency hops. In these embodiments, the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
In some embodiments, the apparatus further comprises: means for, in accordance with a determination that the positioning reference signal measurement is successfully obtained across the first number of consecutive positioning reference signal frequency hops, applying the second priority rule for remaining positioning reference signal frequency hops. In some embodiments, the apparatus further comprises: means for, in accordance with a determination that the positioning reference signal measurement is not obtained across the first number of consecutive positioning reference signal frequency hops, dropping positioning reference signals in remaining positioning reference signal frequency hops; or applying the second priority rule for the remaining positioning reference signal frequency hops. In these embodiments, the second priority rule assumes that reception of the positioning reference signal has a lower priority than reception of the downlink signal other than the positioning reference signal.
In some embodiments, the apparatus further comprises: means for receiving a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
In some embodiments, the apparatus further comprises at least one of the following: means for reporting information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; means for reporting information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed; or means for reporting at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
In some embodiments, an apparatus (for example, the second device 120) capable of performing the method 600 may comprise means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus comprises: means for generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and means for transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first  number of consecutive positioning reference signal frequency hops.
In some embodiments, the configuration comprises at least one of the following: the first number of consecutive positioning reference signal frequency hops; a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number; a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window; or a second priority rule for overriding the first priority rule.
In some embodiments, the means for transmitting the configuration comprises means for transmitting the configuration by at least one of the following: a radio resource control message; downlink control information; a long-term evolution positioning protocol message; or a medium access control control element.
In some embodiments, the apparatus further comprises means for receiving, from the first device, at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
In some embodiments, a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
In some embodiments, an apparatus (for example, the third device 130) capable of performing the method 700 may comprise means for performing the respective steps of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus comprises: means for receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and means for positioning the first device based on the positioning reference signal measurements.
In some embodiments, the apparatus further comprises: means for transmitting, to the first device, a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
In some embodiments, the apparatus further comprises at least one of the following: means for receiving information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; or means for receiving information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed.
Fig. 8 is a simplified block diagram of a device 800 that is suitable for implementing embodiments of the present disclosure. The device 800 may be provided to implement the communication device, for example the first device 110, the second device 120 or the third device 130 as shown in Fig. 1. As shown, the device 800 includes one or more processors 810, one or more memories 820 coupled to the processor 810, and one or more communication modules 840 coupled to the processor 810.
The communication module 840 is for bidirectional communications. The communication module 840 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 810 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 800 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 820 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 824, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 822 and other volatile memories that will not last in the power-down duration.
computer program 830 includes computer executable instructions that are executed by the associated processor 810. The program 830 may be stored in the ROM 820. The processor 810 may perform any suitable actions and processing by loading the  program 830 into the RAM 820.
The embodiments of the present disclosure may be implemented by means of the program 830 so that the device 800 may perform any process of the disclosure as discussed with reference to Figs. 1 to 7. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 830 may be tangibly contained in a computer readable medium which may be included in the device 800 (such as in the memory 820) or other storage devices that are accessible by the device 800. The device 800 may load the program 830 from the computer readable medium to the RAM 822 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. Fig. 9 shows an example of the computer readable medium 900 in form of CD or DVD. The computer readable medium has the program 830 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the  method  500 or 600 or 700 as described above with reference to Figs. 5 to 7. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments.  Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. The term “non-transitory, ” as used herein, is a limitation of the medium itself (i.e., tangible, not a signal) as opposed to a limitation on data storage persistency (e.g., RAM vs. ROM) .
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in  the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (50)

  1. A first device comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the first device at least to:
    receive a configuration for a positioning reference signal measurement across positioning reference signal frequency hops;
    obtain, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    report the positioning reference signal measurement.
  2. The first device of claim 1, wherein the configuration comprises at least one of the following:
    the first number of consecutive positioning reference signal frequency hops,
    a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number,
    a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window, or
    a second priority rule for overriding the first priority rule.
  3. The first device of claim 2, wherein the first device is caused to obtain the positioning reference signal measurement by:
    in accordance with a determination that a first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on the first priority rule, performing a second set of positioning reference signal measurements over a third number of consecutive positioning reference signal frequency hops based on the second priority rule, the first number being a sum of the second number and the third number; and
    obtaining the positioning reference signal measurement based on the first and second sets of positioning reference signal measurements.
  4. The first device of claim 3, wherein the first device is caused to perform the second set of positioning reference signal measurements by:
    in accordance with a determination that the number of remaining positioning reference signal frequency hops is less than the first number, performing the second set of positioning reference signal measurements.
  5. The first device of any of claim 2 to 4, wherein the first device is further caused to:
    determine that the first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on at least one of the following:
    quality of a positioning reference signal measurement being above threshold quality;
    no positioning reference signal being dropped based on the first priority rule;
    the first device being expected to have received the positioning reference signal; or
    processed positioning reference signal measurement without error.
  6. The first device of claim 2, wherein the first device is caused to obtain the positioning reference signal measurement by:
    applying the second priority rule for a set of positioning reference signal frequency hops, the set of positioning reference signal frequency hops being configured with a low priority on reception of a positioning reference signal based on the first priority rule and being located between two positioning reference signal frequency hops configured with a high priority on reception of the positioning reference signal based on the first priority rule.
  7. The first device of claim 2, wherein the first device is caused to obtain the positioning reference signal measurement by:
    applying the second priority rule for the first number of consecutive positioning reference signal frequency hops.
  8. The first device of any of claims 3 to 7, wherein the second priority rule assumes that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
  9. The first device of claim 2, wherein the first device is further caused to:
    in accordance with a determination that the positioning reference signal measurement is successfully obtained across the first number of consecutive positioning reference signal frequency hops, apply the second priority rule for remaining positioning reference signal frequency hops.
  10. The first device of claim 2 or 9, wherein the first device is further caused to:
    in accordance with a determination that the positioning reference signal measurement is not obtained across the first number of consecutive positioning reference signal frequency hops,
    drop positioning reference signals in remaining positioning reference signal frequency hops; or
    apply the second priority rule for the remaining positioning reference signal frequency hops.
  11. The first device of claim 9 or 10, wherein the second priority rule assumes that reception of the positioning reference signal has a lower priority than reception of the downlink signal other than the positioning reference signal.
  12. The first device of any of claims 1 to 11, wherein the first device is further caused to:
    receive a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  13. The first device of any of claims 1 to 12, wherein the first device is further caused to at least one of the following:
    report information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops;
    report information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed; or
    report at least one of an identity of a positioning reference signal frequency hop or  an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  14. The first device of any of claims 1 to 13, wherein a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
  15. The first device of any of claims 1 to 14, wherein the first device is caused to receive the configuration by at least one of the following:
    a radio resource control message;
    downlink control information;
    a long-term evolution positioning protocol message; or
    a medium access control control element.
  16. A second device comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the second device at least to:
    generate a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and
    transmit the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  17. The second device of claim 16, wherein the configuration comprises at least one of the following:
    the first number of consecutive positioning reference signal frequency hops,
    a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number,
    a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window, or
    a second priority rule for overriding the first priority rule.
  18. The second device of claim 16 or 17, wherein the second device is caused to transmit the configuration by at least one of the following:
    a radio resource control message;
    downlink control information;
    a long-term evolution positioning protocol message; or
    a medium access control control element.
  19. The second device of any of claims 16 to 18, wherein the second device is further caused to:
    receive, from the first device, at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  20. The first device of any of claims 16 to 19, wherein a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
  21. A third device comprising:
    at least one processor; and
    at least one memory storing instructions that, when executed by the at least one processor, cause the third device at least to:
    receive, from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    position the first device based on the positioning reference signal measurements.
  22. The third device of claim 21, wherein the third device is further caused to:
    transmit, to the first device, a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  23. The third device of claim 21 or 22, wherein the third device is further caused to at least one of the following:
    receive information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; or
    receive information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed.
  24. A method of communication comprising:
    receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops;
    obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    reporting the positioning reference signal measurement.
  25. The method of claim 24, wherein the configuration comprises at least one of the following:
    the first number of consecutive positioning reference signal frequency hops,
    a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number,
    a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window, or
    a second priority rule for overriding the first priority rule.
  26. The method of claim 25, wherein obtaining the positioning reference signal measurement comprises:
    in accordance with a determination that a first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on the first priority rule, performing a second set of positioning reference signal measurements over a third number of consecutive positioning reference signal frequency hops based on the second priority rule, the first number being a sum of the second number and the third number; and
    obtaining the positioning reference signal measurement based on the first and second sets of positioning reference signal measurements.
  27. The method of claim 26, wherein performing the second set of positioning reference signal measurements comprises:
    in accordance with a determination that the number of remaining positioning reference signal frequency hops is less than the first number, performing the second set of positioning reference signal measurements.
  28. The method of any of claims 25 to 27, further comprising:
    determining that the first set of positioning reference signal measurements over the second number of consecutive positioning reference signal frequency hops are successfully performed based on at least one of the following:
    quality of a positioning reference signal measurement being above threshold quality;
    no positioning reference signal being dropped based on the first priority rule;
    the first device being expected to have received the positioning reference signal; or
    processed positioning reference signal measurement without error.
  29. The method of claim 25, wherein obtaining the positioning reference signal measurement comprises:
    applying the second priority rule for a set of positioning reference signal frequency hops, the set of positioning reference signal frequency hops being configured with a low priority on reception of a positioning reference signal based on the first priority rule and being located between two positioning reference signal frequency hops configured with a high priority on reception of the positioning reference signal based on the first priority rule.
  30. The method of claim 25, wherein obtaining the positioning reference signal measurement comprises:
    applying the second priority rule for the first number of consecutive positioning reference signal frequency hops.
  31. The method of any of claims 26 to 30, wherein the second priority rule assumes  that reception of the positioning reference signal has a higher priority than reception of the downlink signal other than the positioning reference signal.
  32. The method of claim 25, further comprising:
    in accordance with a determination that the positioning reference signal measurement is successfully obtained across the first number of consecutive positioning reference signal frequency hops, applying the second priority rule for remaining positioning reference signal frequency hops.
  33. The method of claim 25 or 32, further comprising:
    in accordance with a determination that the positioning reference signal measurement is not obtained across the first number of consecutive positioning reference signal frequency hops,
    dropping positioning reference signals in remaining positioning reference signal frequency hops; or
    applying the second priority rule for the remaining positioning reference signal frequency hops.
  34. The method of claim 32 or 33, wherein the second priority rule assumes that reception of the positioning reference signal has a lower priority than reception of the downlink signal other than the positioning reference signal.
  35. The method of any of claims 24 to 34, further comprising
    receiving a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  36. The method of any of claims 24 to 35, further comprising at least one of the following:
    reporting information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops;
    reporting information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been successfully performed; or
    reporting at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  37. The method of any of claims 24 to 36, wherein a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
  38. The method of any of claims 24 to 37, wherein receiving the configuration comprises receiving the configuration by at least one of the following:
    a radio resource control message;
    downlink control information;
    a long-term evolution positioning protocol message; or
    a medium access control control element.
  39. A method of communication comprising:
    generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and
    transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  40. The method of claim 39, wherein the configuration comprises at least one of the following:
    the first number of consecutive positioning reference signal frequency hops,
    a second number of consecutive positioning reference signal frequency hops, the second number being less than or equal to the first number,
    a first priority rule between a positioning reference signal and a downlink signal other than the positioning reference signal for a positioning reference signal processing window, or
    a second priority rule for overriding the first priority rule.
  41. The method of claim 39 or 40, wherein transmitting the configuration comprises transmitting the configuration by at least one of the following:
    a radio resource control message;
    downlink control information;
    a long-term evolution positioning protocol message; or
    a medium access control control element.
  42. The method of any of claims 39 to 41, further comprising:
    receiving, from the first device, at least one of an identity of a positioning reference signal frequency hop or an identity of a positioning reference signal processing window for which no positioning reference signal measurements have been successfully performed.
  43. The method of any of claims 39 to 42, wherein a first positioning reference signal frequency hop in the positioning reference signal frequency hops is in a first bandwidth part, and a second positioning reference signal frequency hop in the positioning reference signal frequency hops is in a second bandwidth part different from the first bandwidth part.
  44. A method of communication comprising:
    receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    positioning the first device based on the positioning reference signal measurements.
  45. The method of claim 44, further comprising:
    transmitting, to the first device, a request for obtaining the positioning reference signal measurement across positioning reference signal frequency hops.
  46. The method of claim 44 or 45, further comprising at least one of the following:
    receiving information regarding whether a positioning reference signal frequency hopping and stitching procedure is performed for the first number of consecutive positioning reference signal frequency hops; or
    receiving information regarding the number of positioning reference signal frequency hops for which positioning reference signal measurements have been  successfully performed.
  47. An apparatus of communication comprising:
    means for receiving, at a first device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops;
    means for obtaining, based on the configuration, the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    means for reporting the positioning reference signal measurement.
  48. An apparatus of communication comprising:
    means for generating, at a second device, a configuration for a positioning reference signal measurement across positioning reference signal frequency hops; and
    means for transmitting the configuration to a first device for determination of the positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops.
  49. An apparatus of communication comprising:
    means for receiving, at a third device and from a first device, a positioning reference signal measurement across a first number of consecutive positioning reference signal frequency hops; and
    means for positioning the first device based on the positioning reference signal measurements.
  50. A non-transitory computer readable medium comprising program instructions that, when executed by an apparatus, cause the apparatus to perform at least the method according to any of claims 24 to 38 or any of claims 39 to 43 or any of claims 44 to 46.
PCT/CN2022/110108 2022-08-03 2022-08-03 Positioning measurement across frequency hops WO2024026753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110108 WO2024026753A1 (en) 2022-08-03 2022-08-03 Positioning measurement across frequency hops

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/110108 WO2024026753A1 (en) 2022-08-03 2022-08-03 Positioning measurement across frequency hops

Publications (1)

Publication Number Publication Date
WO2024026753A1 true WO2024026753A1 (en) 2024-02-08

Family

ID=89848180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110108 WO2024026753A1 (en) 2022-08-03 2022-08-03 Positioning measurement across frequency hops

Country Status (1)

Country Link
WO (1) WO2024026753A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479255A (en) * 2016-07-15 2019-03-15 高通股份有限公司 For using narrowband location reference signals to carry out the technology of positioning device
CN109923842A (en) * 2016-11-16 2019-06-21 高通股份有限公司 System and method in wireless network for supporting the various configurations of location reference signals
US20220030390A1 (en) * 2020-07-22 2022-01-27 Qualcomm Incorporated Positioning signal frequency hop aggregation
US20220109466A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Determination of capability of user equipment to measure a downlink positioning reference signal across a plurality of frequency hops
WO2022119782A1 (en) * 2020-12-03 2022-06-09 Qualcomm Incorporated Aggregation of positioning signal and supplemental signal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109479255A (en) * 2016-07-15 2019-03-15 高通股份有限公司 For using narrowband location reference signals to carry out the technology of positioning device
CN109923842A (en) * 2016-11-16 2019-06-21 高通股份有限公司 System and method in wireless network for supporting the various configurations of location reference signals
US20220030390A1 (en) * 2020-07-22 2022-01-27 Qualcomm Incorporated Positioning signal frequency hop aggregation
US20220109466A1 (en) * 2020-10-06 2022-04-07 Qualcomm Incorporated Determination of capability of user equipment to measure a downlink positioning reference signal across a plurality of frequency hops
WO2022119782A1 (en) * 2020-12-03 2022-06-09 Qualcomm Incorporated Aggregation of positioning signal and supplemental signal

Similar Documents

Publication Publication Date Title
WO2022073214A1 (en) Harq feedback for nr sidelink communication in unlicensed spectrum
US20230275727A1 (en) Positioning reference signal design for low power tracking
WO2021022555A1 (en) Method, device and computer readable medium for transmitting prs
WO2022241657A1 (en) Enhancements on satellite positioning measurement
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
WO2022016493A1 (en) Radio resource management measurement relaxation and cell reselection
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2021168603A1 (en) Event triggered measurement for channel state information
WO2024026753A1 (en) Positioning measurement across frequency hops
WO2024087122A1 (en) Positioning
WO2023206046A1 (en) Mechanism for single beam reception inside prs processing window
US20230189081A1 (en) Methods for communication, terminal device, and computer readable media
WO2024031561A1 (en) Improved positioning activity
US20230097223A1 (en) Method, device and computer readable medium of communication
WO2023024114A1 (en) Mitigation of performance degradation
WO2024020926A1 (en) Enhancements on multi-transmission and reception point transmission
WO2023283783A1 (en) Positioning
WO2023082274A1 (en) Transmit power determination in radio resource control inactive state
WO2024065577A1 (en) Positioning enhancements
WO2023070463A1 (en) Concurrent measurement gap configuration
WO2023044827A1 (en) Transceiver point beam failure recovery
WO2024183066A1 (en) Positioning management
WO2022151630A1 (en) Uplink skipping
WO2024168931A1 (en) Positioning
WO2023231034A1 (en) Adaptive positioning measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22953563

Country of ref document: EP

Kind code of ref document: A1