Nothing Special   »   [go: up one dir, main page]

WO2023082274A1 - Transmit power determination in radio resource control inactive state - Google Patents

Transmit power determination in radio resource control inactive state Download PDF

Info

Publication number
WO2023082274A1
WO2023082274A1 PCT/CN2021/130731 CN2021130731W WO2023082274A1 WO 2023082274 A1 WO2023082274 A1 WO 2023082274A1 CN 2021130731 W CN2021130731 W CN 2021130731W WO 2023082274 A1 WO2023082274 A1 WO 2023082274A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
transmit power
determining
transmitting
configuration information
Prior art date
Application number
PCT/CN2021/130731
Other languages
French (fr)
Inventor
Tao Tao
Hyun-Su Cha
Ryan Keating
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2021/130731 priority Critical patent/WO2023082274A1/en
Priority to CN202180104204.8A priority patent/CN118251935A/en
Publication of WO2023082274A1 publication Critical patent/WO2023082274A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/32TPC of broadcast or control channels
    • H04W52/325Power control of control or pilot channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/287TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission when the channel is in stand-by

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of transmit (Tx) power determination in Radio Resource Control (RRC) inactive state.
  • Tx transmit
  • RRC Radio Resource Control
  • New Radio has introduced a new RRC state called “RRC inactive (RRC_INACTIVE) ” to meet the requirement of 5G services.
  • RRC inactive RRC_INACTIVE
  • the inactive state intends to limit battery consumption for the User Equipment (UE) similarly to the idle state.
  • example embodiments of the present disclosure provide a solution of Tx power determination in RRC inactive state.
  • the method comprises obtaining, at a first device, configuration information associated with a transmit power of a reference signal in a RRC inactive state; and in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
  • a method comprises determining, at a second device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmitting the configuration information to the first device.
  • a method comprises determining, at a third device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmitting the configuration information to the first device.
  • a method comprises determining, at a fourth device, a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device; and transmitting an indication of the received power to a third device.
  • a first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to obtain, at a first device, configuration information associated with a transmit power of a reference signal in a RRC inactive state; and in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determine the transmit power in the inactive state of the first device based on the configuration information.
  • a second device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to determine, at a second device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmit the configuration information to the first device.
  • a third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device at least to determine, at a third device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmit the configuration information to the first device.
  • a fourth device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device at least to determine, at a fourth device, a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device; and transmit an indication of the received power to a third device.
  • an apparatus comprising means for obtaining configuration information associated with a transmit power of a reference signal in a RRC inactive state; and means for in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
  • an apparatus comprising means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
  • an apparatus comprising means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
  • an apparatus comprising means for determining a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device and means for transmitting an indication of the received power to a third device.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect, the second aspect, the third aspect or the fourth aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a signaling chart illustrating a process of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure
  • FIG. 3 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure
  • FIG. 4 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure
  • FIG. 5 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure
  • FIG. 6 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure
  • FIG. 7 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • FIG. 8 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) .
  • UE user equipment
  • SS subscriber station
  • MS mobile station
  • AT access terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as a UE 110 or a first device 110) .
  • the communication network 100 may further comprise a network device 120-1 (hereinafter may also be referred to as a gNB 120-1 or a second device 120-1) .
  • the network device 120-1 can manage a cell 102, which may also be considered as the last serving cell 102 of the terminal device 110.
  • the communication network 100 may further comprise a network device 120-2 (hereinafter may also be referred to as a gNB 120-2 or a fourth device 120-2) .
  • the network device 120-2 can manage a cell 104.
  • the UE 110 Before transitioning into a RRC inactive mode, the UE 110 may serve by the last serving cell 102. With the movement of UE 110, the UE 110 may leave the coverage of the last serving cell 102 and enter the coverage of other cell, for example, the coverage of the cell 104.
  • the cell 102 and the cell 104 are managed by a same gNB.
  • the network device 120-1 and the network device 120-2 can be considered as a same network device.
  • the network device 120-1 and the network device 120-2 may also be referred to as the network device 120 collectively.
  • the communication network 100 may also comprise a Location Management Function (LMF) 130 (hereinafter may also be referred to as a third device 130) , which may communication with the terminal device 110 and network devices 120-1 and 120-2.
  • LMF 130 may be referred to as a positioning management function.
  • the communication network 100 may include any suitable number of network devices and terminal devices.
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for
  • NR positioning enhancements for supporting positioning of UEs in RRC_INACTIVE state have been discussed.
  • the UE fallback behavior for determining transmit power of positioning reference signal such as Sounding Reference Signal (SRS) for positioning in RRC inactive state is still needed to be discussed.
  • SRS Sounding Reference Signal
  • the fallback behavior to determine a path-loss reference signal for an SRS resource set for the RRC-connected UE by using a reference signal resource obtained from the Synchronization Signal and Physical Broadcast Channel block (SSB) of the serving cell that the UE uses to obtain Master Information Block (MIB) .
  • MIB Master Information Block
  • the UE determines that the UE is not able to accurately measure PL b, f, c (q d )
  • the UE calculates PL b, f, c (q d ) using a RS resource obtained from the Synchronization Signal/Physical Broadcast Channel SS/PBCH block of the serving cell that the UE uses to obtain MIB.
  • SSB may refer to SS/PBCH block because Synchronization signal and PBCH channel are packed as a single block that move together.
  • the UE may not maintain the connectivity to the last serving cell.
  • RNA RAN notification area
  • SSB Synchronization Signal Block
  • the convention fallback behavior may not be applicable for RRC-inactive UE because of outdated SSB that the UE uses to obtain MIB and/or a bad accuracy SSB that the UE uses to obtain MIB.
  • the present disclosure proposes a solution of Tx power determination in RRC inactive state.
  • the UE may obtain configuration information associated with a transmit power of a reference signal in a RRC inactive state and determine the Tx power based on the configuration information if a path loss reference signal configured by second device is not available for determining a path loss and/or a further reference signal transmitted from the second device is not available for determining the path loss.
  • fallback behaviors for the reference signal transmission associated with the positioning of the UE in RRC inactive state can be achieved.
  • FIG. 2 shows a signaling chart illustrating a process 200 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure.
  • the process 200 will be described with reference to FIG. 1.
  • the process 200 may involve the UE 110, the gNB 102-1, the gNB 102-2 and the LMF 130 as illustrated in FIG. 1.
  • the UE 110 may obtain configuration information associated with a transmit power of a reference signal when the UE 110 is in a RRC inactive state.
  • the term “reference signal” can be referred to as a reference signal associated with the positioning of the UE 110.
  • the reference signal may comprise SRS for positioning, or other UL reference signals to be transmitted in RRC inactive state.
  • the UE 110 may receive 202 the configuration information from the gNB 120-1. It is also possible that the configuration information may be received 204 from the LMF 130.
  • the configuration information may indicate that the UE 110 may use a prior transmit power used for a previous transmission from the UE 110 when the UE 110 transmit a reference signal associated with the positioning.
  • the previous transmission may mean preceding transmission of a reference signal associated with positioning. Preceding may mean here the transmission that was transmitted right before the current reference signal transmission and/or the last transmission of reference signal associated with the positioning. However, in some examples, the previous transmission may mean a transmission that has happened before the preceding transmission.
  • the configuration information may indicate that a predefined transmit power can be used for the UE 110 to transmit the reference signal associated with the positioning.
  • the predefined transmit power can be a maximum transmit power or a minimum transmit power allowed to be used for a transmission of the UE 110.
  • the configuration information may indicate a set of candidate transmit power values allowed to be used for the UE 110 to transmit the reference signal associated with the positioning.
  • the configuration information may also indicate that a further reference signal transmitted from another cell associated with the UE 110 can be allowed to be used for the UE 110 to determine a path loss.
  • another cell hereinafter can be referred to as a neighbor cell of the last serving cell of the UE 110.
  • the UE 110 may transmit a reference signal associated with the positioning, such as SRS, to the network.
  • a path loss reference signal may be configured for the UE to determine the path loss, which may help UE 110 to the determine a transmit power for transmitting the reference signal.
  • the UE 110 may determine 206 whether a further reference signal, such as SSB (or in other terms SS/PBCH block) , transmitted from a serving cell of the UE 110, for example, the last serving cell of the UE, is available for determining the path loss.
  • a further reference signal such as SSB (or in other terms SS/PBCH block)
  • the UE 110 may determine 208 the Tx power for transmitting the reference signal associated with the positioning in the RRC inactive state based on the obtained configuration information.
  • the UE 110 determines 208 the Tx power for transmitting the reference signal associated with the positioning in the RRC inactive state based on the obtained configuration information when the UE 110 determines that configured path loss reference signal is not available for determining the path loss. For example, if the UE 110 has been moved to other areas far away from the coverage of the last serving cell.
  • the UE 110 may determine the transmit power for transmitting the reference signal associated with the positioning based on a prior transmit power used for a previous transmission from the UE 110.
  • At least one offset may be used by the UE 110 when the UE 110 transmits the reference signal by using the prior transmit power. That is, the transmit power can be equal to the prior transmit power plus the offset.
  • the at least one offset can be determined by the UE 110, for example, based on a difference between a received power level associated with the further reference signal received from the last serving cell and respective prior received power levels associated with at least one prior reference signal.
  • the at least one offset can be configured by the gNB 120-1 or the LMF 130.
  • the UE 110 may determine the transmit power for transmitting the reference signal associated with the positioning based on a predefined transmit power.
  • the predefined transmit power can be a maximum transmit power or a minimum transmit power allowed to be used for a transmission of the UE 110.
  • the UE 110 may also monitor whether an indication of a transmission power reduction or a transmission power increase is received, for example, after the UE 110 transmit the reference signal with the predefined transmit power. If the indication of a transmission power reduction or a transmission power increase is detected, the UE 110 may determine the transmit power based on the indication.
  • the UE 110 may stop transmitting the reference signal associated with the positioning after a predefined, such as N, times of reference signal transmission or an acknowledgement from network.
  • the UE 110 may transmit an indication or a report that the transmission of the reference signal is stopped.
  • this indication or report can be transmitted by the UE 110 via a Small Data Transmission (SDT) .
  • SDT Small Data Transmission
  • the UE 110 may obtain one or more pre-configured Tx power values from the configuration information.
  • the UE 110 may determine the Tx power for transmit the reference signal based on the one or more pre-configured Tx power values, for example, by selecting one of the one or more pre-configured Tx power values.
  • the UE 110 may determine whether a further reference signal transmitted from another cell, such as a neighbour cell, is detected. If the further reference signal transmitted from another cell is detected, the UE 110 may use the further reference signal for determining the path loss and therefore determining the Tx power for transmitting the reference signal.
  • a strongest, most recently, received reference signal can be used by the UE 110 to determine the path loss. For example, if received power level of a received reference signal exceeds a threshold level and/or if a time interval from the time point of a reception of this reference signal to a reference time point, such as current time, is less than a threshold time interval, the received reference signal can be used by the UE 110 to determine the path loss.
  • the threshold level and the threshold time interval can be configured or pre-configured by network.
  • the UE 110 may transmit 210 an indication of the fallback event to the LMF 130.
  • the indication may indicate that the transmit power of the reference signal is determined based on the configuration information.
  • the indication of the fallback event can be transmitted via a Long-Term Evolution Positioning Protocol (LPP) .
  • LPP Long-Term Evolution Positioning Protocol
  • the UE 110 may transmit 212 the reference signal associated with the positioning based on the determined Tx power. As shown in FIG. 2, the UE 110 may transmit the reference signal to gNB 120-2, which can be considered as a transceiver point. As mentioned above, the gNB 120-2 can be a same gNB with the gNB 120-1, for example, when the UE 110 is still served by the cells of the gNB 120-1.
  • the gNB 120-2 may determine a received power of the reference signal and transmit 214 an indication of the received power to the LMF 130.
  • the indication of the received power can be transmitted via new radio positioning protocol signaling A (NRPPa) Protocol.
  • NRPPa new radio positioning protocol signaling A
  • the LMF may determine 216 whether the current Tx power of the UE 110 is suitable. If not, the reconfiguration for the reference signal transmission of the UE 110 can be triggered by the LMF 130.
  • the LMF 130 may provide 218 the information for reconfiguration to the UE 110, which may comprise an update pathloss reference and/or a new configured fallback Tx power.
  • fallback behaviors for the reference signal transmission associated with the positioning of the UE in RRC inactive state can be achieved, which may increase a flexibility of the transmission and therefore improve the system performance.
  • FIG. 3 shows a flowchart of an example method 300 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure.
  • the method 300 can be implemented at the first device 110 as shown in FIG. 1. For the purpose of discussion, the method 300 will be described with reference to FIG. 1.
  • the first device obtains, configuration information associated with a transmit power of a reference signal in a RRC inactive state.
  • the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  • the first device determines that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, the first device determines the transmit power in the inactive state of the first device based on the configuration information.
  • the first device may determine the transmit power at least based on the prior transmit power.
  • the first device may determine at least one offset associated with the prior transmit power; and determine the transmit power based on the prior transmit power and the at least one offset.
  • the first device may determine the at least one offset based on a received power level associated with the further reference signal and respective prior received power levels associated with at least one prior reference signal; or obtain the at least one offset from a third device.
  • the first device may determine the transmit power at least based on the predefined transmit power.
  • the first device may obtain an indication of a transmission power reduction or a transmission power increase from the second device; and determine the transmit power based on the predefined transmit power and the transmission power reduction or the transmission power increase.
  • the first device may stop transmitting the reference signal if the first device determines that an indication of a transmission power reduction fails to be received from the second device.
  • the first device may transmit, to the second device, an indication of stopping transmitting the reference signal from the first device.
  • the first device may determine the transmit power based on a candidate transmit power value from the set of candidate transmit power values.
  • the first device may determine the transmit power based on the further reference signal.
  • the first device may determine determining that the further reference signal transmitted from the neighbour cell is available for determining the path loss, if a received power level of the further reference signal exceeds a threshold level and/or a time interval from the time point of a reception of the further reference signal to a reference time point is less than a threshold time interval.
  • the first device may transmit, to a fourth device, the reference signal based on the determined transmit power.
  • the first device may transmit, to a third device, an indication that the transmit power of the reference signal is determined based on the configuration information.
  • the first device may transmit the indication via a LPP.
  • the reference signal comprises a reference signal associated with a positioning of the first device.
  • the further reference signal comprises a SSB.
  • FIG. 4 shows a flowchart of an example method 400 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure.
  • the method 400 can be implemented at the second device 120-1 as shown in FIG. 1. For the purpose of discussion, the method 400 will be described with reference to FIG. 1.
  • the second device determines configuration information associated with a transmit power of a reference signal in an inactive state of the first device.
  • the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  • the second device transmits the configuration information to the first device.
  • the second device may transmit an indication of a transmission power reduction or a transmission power increase to the first device.
  • the second device may receive, from the first device, an indication of stopping transmitting the reference signal from the first device.
  • FIG. 5 shows a flowchart of an example method 500 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure.
  • the method 500 can be implemented at the third device 130 as shown in FIG. 1. For the purpose of discussion, the method 500 will be described with reference to FIG. 1.
  • the third device determines configuration information associated with a transmit power of a reference signal in an inactive state of the first device.
  • the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  • the third device transmits the configuration information to the first device.
  • the third device may configure at least one offset associated with the reference transmit power used for a previous transmission from the first device.
  • the third device may receive, from the first device, an indication that the transmit power of the reference signal is determined based on the configuration information.
  • the third device may receive the indication via a LPP.
  • the third device may receive, from a fourth device, an indication of a received power associated with the reference signal transmitted from the first device.
  • the third device may receive the indication via a NRPPa Protocol.
  • the third device may determine a trigger of a reconfiguration for the first device to transmit the reference signal if an indication that the transmit power of the reference signal is determined based on the configuration information is received from the first device, and/or an indication of a received power associated with the reference signal transmitted from the first device is received from a fourth device, is received.
  • the reconfiguration comprises an updated path loss reference, and/or a reference transmit power in a case where the further reference signal transmitted from the second device is not available for determining the path loss.
  • FIG. 6 shows a flowchart of an example method 600 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure.
  • the method 600 can be implemented at the fourth device 120-2 as shown in FIG. 1. For the purpose of discussion, the method 600 will be described with reference to FIG. 1.
  • the fourth device determines a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device.
  • the fourth device transmits an indication of the received power to a third device.
  • the fourth device may transmit the indication via a NRPPa Protocol.
  • an apparatus capable of performing the method 300 may comprise means for performing the respective steps of the method 300.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for obtaining configuration information associated with a transmit power of a reference signal in a RRC inactive state; and means for in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
  • an apparatus capable of performing the method 400 may comprise means for performing the respective steps of the method 400.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
  • an apparatus capable of performing the method 500 may comprise means for performing the respective steps of the method 500.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
  • an apparatus capable of performing the method 600 may comprise means for performing the respective steps of the method 600.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device and means for transmitting an indication of the received power to a third device.
  • FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure.
  • the device 700 may be provided to implement the communication device, for example the UE 110, the gNB 120 and the LMF 130 as shown in FIG. 1.
  • the device 700 includes one or more processors 710, one or more memories 740 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
  • the communication module 740 is for bidirectional communications.
  • the communication module 740 has one or more communication interfaces to facilitate communication with one or more other modules or devices.
  • the communication interfaces may represent any interface that is necessary for communication with other network elements.
  • the communication module 740 may include at least one antenna.
  • the processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 720 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
  • a computer program 730 includes computer executable instructions that are executed by the associated processor 710.
  • the program 730 may be stored in the ROM 724.
  • the processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
  • the embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700.
  • the device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 8 shows an example of the computer readable medium 800 in form of CD or DVD.
  • the computer readable medium has the program 730 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 300-600 as described above with reference to FIGs. 3-6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to devices, methods, apparatuses and computer readable storage media of Tx power determination in RRC inactive state. The method comprises receiving, at a first device, configuration information associated with a transmit power of a reference signal in a RRC inactive state; and in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information. In this way, a fallback behavior for the reference signal transmission associated with the positioning of the UE in RRC inactive state can be achieved.

Description

TRANSMIT POWER DETERMINATION IN RADIO RESOURCE CONTROL INACTIVE STATE FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular to devices, methods, apparatuses and computer readable storage media of transmit (Tx) power determination in Radio Resource Control (RRC) inactive state.
BACKGROUND
New Radio (NR) has introduced a new RRC state called “RRC inactive (RRC_INACTIVE) ” to meet the requirement of 5G services. The inactive state intends to limit battery consumption for the User Equipment (UE) similarly to the idle state.
In release 17, it has been discussed that some specific methods, measurements, signalling and procedures may support positioning for UEs in RRC inactive state for the topic of the positioning enhancements.
SUMMARY
In general, example embodiments of the present disclosure provide a solution of Tx power determination in RRC inactive state.
In a first aspect, there is a method. The method comprises obtaining, at a first device, configuration information associated with a transmit power of a reference signal in a RRC inactive state; and in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
In a second aspect, there is provided a method. The method comprises determining, at a second device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmitting the configuration information to the first device.
In a third aspect, there is provided a method. The method comprises determining,  at a third device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmitting the configuration information to the first device.
In a fourth aspect, there is provided a method. The method comprises determining, at a fourth device, a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device; and transmitting an indication of the received power to a third device.
In a fifth device, there is provided a first device. The first device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to obtain, at a first device, configuration information associated with a transmit power of a reference signal in a RRC inactive state; and in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determine the transmit power in the inactive state of the first device based on the configuration information.
In a sixth aspect, there is provided a second device. The second device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the second device at least to determine, at a second device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmit the configuration information to the first device.
In a seventh aspect, there is provided a third device. The third device comprises at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the third device at least to determine, at a third device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and transmit the configuration information to the first device.
In an eighth aspect, there is provided a fourth device. The fourth device comprises  at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the fourth device at least to determine, at a fourth device, a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device; and transmit an indication of the received power to a third device.
In a ninth aspect, there is provided an apparatus comprising means for obtaining configuration information associated with a transmit power of a reference signal in a RRC inactive state; and means for in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
In a tenth aspect, there is provided an apparatus comprising means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
In an eleventh aspect, there is provided an apparatus comprising means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
In a twelfth aspect, there is provided an apparatus comprising means for determining a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device and means for transmitting an indication of the received power to a third device.
In a thirteenth there is provided a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the first aspect, the second aspect, the third  aspect or the fourth aspect.
Other features and advantages of the embodiments of the present disclosure will also be apparent from the following description of specific embodiments when read in conjunction with the accompanying drawings, which illustrate, by way of example, the principles of embodiments of the disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the disclosure are presented in the sense of examples and their advantages are explained in greater detail below, with reference to the accompanying drawings, where
FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented;
FIG. 2 shows a signaling chart illustrating a process of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure;
FIG. 3 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure;
FIG. 4 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure;
FIG. 5 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure;
FIG. 6 shows a flowchart of an example method of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure;
FIG. 7 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure; and
FIG. 8 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish functionalities of various elements. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be  embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a subscriber station (SS) , a portable subscriber station, a mobile station (MS) , or an access terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Although functionalities described herein can be performed, in various example  embodiments, in a fixed and/or a wireless network node, in other example embodiments, functionalities may be implemented in a user equipment apparatus (such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device) . This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate. The user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may comprise a terminal device 110 (hereinafter may also be referred to as a UE 110 or a first device 110) . The communication network 100 may further comprise a network device 120-1 (hereinafter may also be referred to as a gNB 120-1 or a second device 120-1) . The network device 120-1 can manage a cell 102, which may also be considered as the last serving cell 102 of the terminal device 110.
Furthermore, the communication network 100 may further comprise a network device 120-2 (hereinafter may also be referred to as a gNB 120-2 or a fourth device 120-2) . The network device 120-2 can manage a cell 104.
Before transitioning into a RRC inactive mode, the UE 110 may serve by the last serving cell 102. With the movement of UE 110, the UE 110 may leave the coverage of the last serving cell 102 and enter the coverage of other cell, for example, the coverage of the cell 104.
It is also possible that the cell 102 and the cell 104 are managed by a same gNB. In this case, the network device 120-1 and the network device 120-2 can be considered as a same network device. In some scenario, the network device 120-1 and the network device 120-2 may also be referred to as the network device 120 collectively.
The communication network 100 may also comprise a Location Management Function (LMF) 130 (hereinafter may also be referred to as a third device 130) , which may  communication with the terminal device 110 and network devices 120-1 and 120-2. The LMF 130 may be referred to as a positioning management function.
It is to be understood that the number of network devices and terminal devices shown in FIG. 1 is given for the purpose of illustration without suggesting any limitations. The communication network 100 may include any suitable number of network devices and terminal devices.
Depending on the communication technologies, the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others. Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. For clarity, certain aspects of the techniques are described below for LTE, and LTE terminology is used in much of the description below.
As described above, NR positioning enhancements for supporting positioning of UEs in RRC_INACTIVE state have been discussed. In a case where it is not able to accurate measure pathloss using configured pathloss source, the UE fallback behavior for determining transmit power of positioning reference signal, such as Sounding Reference Signal (SRS) for positioning in RRC inactive state is still needed to be discussed.
It has been agreed that the fallback behavior to determine a path-loss reference signal for an SRS resource set for the RRC-connected UE by using a reference signal resource obtained from the Synchronization Signal and Physical Broadcast Channel block  (SSB) of the serving cell that the UE uses to obtain Master Information Block (MIB) . For example, if the UE determines that the UE is not able to accurately measure PL b, f, c (q d) , the UE calculates PL b, f, c (q d) using a RS resource obtained from the Synchronization Signal/Physical Broadcast Channel SS/PBCH block of the serving cell that the UE uses to obtain MIB. It is noted that SSB may refer to SS/PBCH block because Synchronization signal and PBCH channel are packed as a single block that move together.
However, for RRC-inactive UE, the UE may not maintain the connectivity to the last serving cell. When the UE is moving within RAN notification area (RNA) , it may select a best Synchronization Signal Block (SSB) for synchronization, which may be transmitted from the last serving cell or other cell. Hence, when the UE moves away from the last serving cell, it will not continuously update “SSB to obtain MIB” from the last serving cell.
Therefore, the convention fallback behavior may not be applicable for RRC-inactive UE because of outdated SSB that the UE uses to obtain MIB and/or a bad accuracy SSB that the UE uses to obtain MIB.
The present disclosure proposes a solution of Tx power determination in RRC inactive state. In this solution, the UE may obtain configuration information associated with a transmit power of a reference signal in a RRC inactive state and determine the Tx power based on the configuration information if a path loss reference signal configured by second device is not available for determining a path loss and/or a further reference signal transmitted from the second device is not available for determining the path loss. In this way, fallback behaviors for the reference signal transmission associated with the positioning of the UE in RRC inactive state can be achieved.
Principle and implementations of the present disclosure will be described in detail below with reference to FIG. 2, which shows a signaling chart illustrating a process 200 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIG. 1. The process 200 may involve the UE 110, the gNB 102-1, the gNB 102-2 and the LMF 130 as illustrated in FIG. 1.
The UE 110 may obtain configuration information associated with a transmit power of a reference signal when the UE 110 is in a RRC inactive state. Hereinafter the term “reference signal” can be referred to as a reference signal associated with the  positioning of the UE 110. For example, the reference signal may comprise SRS for positioning, or other UL reference signals to be transmitted in RRC inactive state.
In some example embodiments, as shown in FIG. 2, the UE 110 may receive 202 the configuration information from the gNB 120-1. It is also possible that the configuration information may be received 204 from the LMF 130.
For example, the configuration information may indicate that the UE 110 may use a prior transmit power used for a previous transmission from the UE 110 when the UE 110 transmit a reference signal associated with the positioning. For example, the previous transmission may mean preceding transmission of a reference signal associated with positioning. Preceding may mean here the transmission that was transmitted right before the current reference signal transmission and/or the last transmission of reference signal associated with the positioning. However, in some examples, the previous transmission may mean a transmission that has happened before the preceding transmission.
As another option, the configuration information may indicate that a predefined transmit power can be used for the UE 110 to transmit the reference signal associated with the positioning. For example, the predefined transmit power can be a maximum transmit power or a minimum transmit power allowed to be used for a transmission of the UE 110.
Alternative, the configuration information may indicate a set of candidate transmit power values allowed to be used for the UE 110 to transmit the reference signal associated with the positioning.
It is also possible that the configuration information may also indicate that a further reference signal transmitted from another cell associated with the UE 110 can be allowed to be used for the UE 110 to determine a path loss. For example, another cell hereinafter can be referred to as a neighbor cell of the last serving cell of the UE 110.
For the positioning of the UE 110, the UE 110 may transmit a reference signal associated with the positioning, such as SRS, to the network. As described above, a path loss reference signal may be configured for the UE to determine the path loss, which may help UE 110 to the determine a transmit power for transmitting the reference signal.
If the UE 110 determines that the configured path loss reference signal is not available for determining the path loss, as an option, the UE 110 may determine 206 whether a further reference signal, such as SSB (or in other terms SS/PBCH block) , transmitted from a serving cell of the UE 110, for example, the last serving cell of the UE,  is available for determining the path loss.
For example, if the UE 110 determines that the further reference signal transmitted from the last serving cell is unavailable for determining the path loss either, the UE 110 may determine 208 the Tx power for transmitting the reference signal associated with the positioning in the RRC inactive state based on the obtained configuration information.
In some example embodiments, it is also possible that the UE 110 determines 208 the Tx power for transmitting the reference signal associated with the positioning in the RRC inactive state based on the obtained configuration information when the UE 110 determines that configured path loss reference signal is not available for determining the path loss. For example, if the UE 110 has been moved to other areas far away from the coverage of the last serving cell.
With the configuration information, for example, the UE 110 may determine the transmit power for transmitting the reference signal associated with the positioning based on a prior transmit power used for a previous transmission from the UE 110.
In some example embodiments, at least one offset may be used by the UE 110 when the UE 110 transmits the reference signal by using the prior transmit power. That is, the transmit power can be equal to the prior transmit power plus the offset.
In some example embodiments, the at least one offset can be determined by the UE 110, for example, based on a difference between a received power level associated with the further reference signal received from the last serving cell and respective prior received power levels associated with at least one prior reference signal.
In some example embodiments, the at least one offset can be configured by the gNB 120-1 or the LMF 130.
In some example embodiments, with the configuration information, the UE 110 may determine the transmit power for transmitting the reference signal associated with the positioning based on a predefined transmit power. As described above, the predefined transmit power can be a maximum transmit power or a minimum transmit power allowed to be used for a transmission of the UE 110.
In this scenario, the UE 110 may also monitor whether an indication of a transmission power reduction or a transmission power increase is received, for example, after the UE 110 transmit the reference signal with the predefined transmit power. If the  indication of a transmission power reduction or a transmission power increase is detected, the UE 110 may determine the transmit power based on the indication.
Otherwise, the UE 110 may stop transmitting the reference signal associated with the positioning after a predefined, such as N, times of reference signal transmission or an acknowledgement from network. In this case, the UE 110 may transmit an indication or a report that the transmission of the reference signal is stopped. In some example embodiments, this indication or report can be transmitted by the UE 110 via a Small Data Transmission (SDT) .
In some example embodiments, the UE 110 may obtain one or more pre-configured Tx power values from the configuration information. The UE 110 may determine the Tx power for transmit the reference signal based on the one or more pre-configured Tx power values, for example, by selecting one of the one or more pre-configured Tx power values.
In some example embodiments, based on the configuration information, the UE 110 may determine whether a further reference signal transmitted from another cell, such as a neighbour cell, is detected. If the further reference signal transmitted from another cell is detected, the UE 110 may use the further reference signal for determining the path loss and therefore determining the Tx power for transmitting the reference signal.
In some example embodiments, a strongest, most recently, received reference signal can be used by the UE 110 to determine the path loss. For example, if received power level of a received reference signal exceeds a threshold level and/or if a time interval from the time point of a reception of this reference signal to a reference time point, such as current time, is less than a threshold time interval, the received reference signal can be used by the UE 110 to determine the path loss. The threshold level and the threshold time interval can be configured or pre-configured by network.
In some example embodiments, when the UE determines that the configured path loss reference signal is not available for determining the path loss and/or the further reference signal transmitted from the last serving cell is unavailable for determining the path loss, that is, a fallback event occurs and the UE 110 have to determine the Tx power based on the fallback solutions indicated in the configuration information, the UE 110 may transmit 210 an indication of the fallback event to the LMF 130. For example, the indication may indicate that the transmit power of the reference signal is determined based  on the configuration information.
For example, the indication of the fallback event can be transmitted via a Long-Term Evolution Positioning Protocol (LPP) .
After determining the Tx power, the UE 110 may transmit 212 the reference signal associated with the positioning based on the determined Tx power. As shown in FIG. 2, the UE 110 may transmit the reference signal to gNB 120-2, which can be considered as a transceiver point. As mentioned above, the gNB 120-2 can be a same gNB with the gNB 120-1, for example, when the UE 110 is still served by the cells of the gNB 120-1.
After receiving the reference signal, the gNB 120-2 may determine a received power of the reference signal and transmit 214 an indication of the received power to the LMF 130. For example, the indication of the received power can be transmitted via new radio positioning protocol signaling A (NRPPa) Protocol.
Based on the fallback event indication transmitted from the UE 110 and/or the indication of the received power transmitted from the gNB 120-2, the LMF may determine 216 whether the current Tx power of the UE 110 is suitable. If not, the reconfiguration for the reference signal transmission of the UE 110 can be triggered by the LMF 130. The LMF 130 may provide 218 the information for reconfiguration to the UE 110, which may comprise an update pathloss reference and/or a new configured fallback Tx power.
With the solution of the present disclosure, fallback behaviors for the reference signal transmission associated with the positioning of the UE in RRC inactive state can be achieved, which may increase a flexibility of the transmission and therefore improve the system performance.
FIG. 3 shows a flowchart of an example method 300 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure. The method 300 can be implemented at the first device 110 as shown in FIG. 1. For the purpose of discussion, the method 300 will be described with reference to FIG. 1.
At 310, the first device obtains, configuration information associated with a transmit power of a reference signal in a RRC inactive state.
In some example embodiments, the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for  transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
At 320, if the first device determines that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, the first device determines the transmit power in the inactive state of the first device based on the configuration information.
In some example embodiments, the first device may determine the transmit power at least based on the prior transmit power.
In some example embodiments, the first device may determine at least one offset associated with the prior transmit power; and determine the transmit power based on the prior transmit power and the at least one offset.
In some example embodiments, the first device may determine the at least one offset based on a received power level associated with the further reference signal and respective prior received power levels associated with at least one prior reference signal; or obtain the at least one offset from a third device.
In some example embodiments, the first device may determine the transmit power at least based on the predefined transmit power.
In some example embodiments, the first device may obtain an indication of a transmission power reduction or a transmission power increase from the second device; and determine the transmit power based on the predefined transmit power and the transmission power reduction or the transmission power increase.
In some example embodiments, if the first device determines that an indication of a transmission power reduction fails to be received from the second device, the first device may stop transmitting the reference signal.
In some example embodiments, the first device may transmit, to the second device, an indication of stopping transmitting the reference signal from the first device.
In some example embodiments, the first device may determine the transmit power based on a candidate transmit power value from the set of candidate transmit power values.
In some example embodiments, if the first device determines that a further  reference signal transmitted from another cell associated with the first device is detected, the first device may determine the transmit power based on the further reference signal.
In some example embodiments, the first device may determine determining that the further reference signal transmitted from the neighbour cell is available for determining the path loss, if a received power level of the further reference signal exceeds a threshold level and/or a time interval from the time point of a reception of the further reference signal to a reference time point is less than a threshold time interval.
In some example embodiments, the first device may transmit, to a fourth device, the reference signal based on the determined transmit power.
In some example embodiments, the first device may transmit, to a third device, an indication that the transmit power of the reference signal is determined based on the configuration information.
In some example embodiments, the first device may transmit the indication via a LPP.
In some example embodiments, the reference signal comprises a reference signal associated with a positioning of the first device.
In some example embodiments, the further reference signal comprises a SSB.
FIG. 4 shows a flowchart of an example method 400 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure. The method 400 can be implemented at the second device 120-1 as shown in FIG. 1. For the purpose of discussion, the method 400 will be described with reference to FIG. 1.
At 410, the second device determines configuration information associated with a transmit power of a reference signal in an inactive state of the first device.
In some example embodiments, the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
At 420, the second device transmits the configuration information to the first device.
In some example embodiments, the second device may transmit an indication of a transmission power reduction or a transmission power increase to the first device.
In some example embodiments, the second device may receive, from the first device, an indication of stopping transmitting the reference signal from the first device.
FIG. 5 shows a flowchart of an example method 500 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure. The method 500 can be implemented at the third device 130 as shown in FIG. 1. For the purpose of discussion, the method 500 will be described with reference to FIG. 1.
At 510, the third device determines configuration information associated with a transmit power of a reference signal in an inactive state of the first device.
In some example embodiments, the configuration information may indicate a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal, a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal, a set of candidate transmit power values, and/or the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
At 520, the third device transmits the configuration information to the first device.
In some example embodiments, the third device may configure at least one offset associated with the reference transmit power used for a previous transmission from the first device.
In some example embodiments, the third device may receive, from the first device, an indication that the transmit power of the reference signal is determined based on the configuration information.
In some example embodiments, the third device may receive the indication via a LPP.
In some example embodiments, the third device may receive, from a fourth device, an indication of a received power associated with the reference signal transmitted from the first device.
In some example embodiments, the third device may receive the indication via a NRPPa Protocol.
In some example embodiments, the third device may determine a trigger of a  reconfiguration for the first device to transmit the reference signal if an indication that the transmit power of the reference signal is determined based on the configuration information is received from the first device, and/or an indication of a received power associated with the reference signal transmitted from the first device is received from a fourth device, is received.
In some example embodiments, the reconfiguration comprises an updated path loss reference, and/or a reference transmit power in a case where the further reference signal transmitted from the second device is not available for determining the path loss.
FIG. 6 shows a flowchart of an example method 600 of Tx power determination in RRC inactive state according to some example embodiments of the present disclosure. The method 600 can be implemented at the fourth device 120-2 as shown in FIG. 1. For the purpose of discussion, the method 600 will be described with reference to FIG. 1.
At 610, the fourth device determines a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device.
At 620, the fourth device transmits an indication of the received power to a third device.
In some example embodiments, the fourth device may transmit the indication via a NRPPa Protocol.
In some example embodiments, an apparatus capable of performing the method 300 (for example, implemented at the UE 110) may comprise means for performing the respective steps of the method 300. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for obtaining configuration information associated with a transmit power of a reference signal in a RRC inactive state; and means for in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
In some example embodiments, an apparatus capable of performing the method 400 (for example, implemented at the gNB 120-1) may comprise means for performing the respective steps of the method 400. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
In some example embodiments, an apparatus capable of performing the method 500 (for example, implemented at the LMF 130) may comprise means for performing the respective steps of the method 500. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and means for transmitting the configuration information to the first device.
In some example embodiments, an apparatus capable of performing the method 600 (for example, implemented at the gNB 120-2) may comprise means for performing the respective steps of the method 600. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some example embodiments, the apparatus comprises means for determining a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device and means for transmitting an indication of the received power to a third device.
FIG. 7 is a simplified block diagram of a device 700 that is suitable for implementing embodiments of the present disclosure. The device 700 may be provided to implement the communication device, for example the UE 110, the gNB 120 and the LMF 130 as shown in FIG. 1. As shown, the device 700 includes one or more processors 710, one or more memories 740 coupled to the processor 710, and one or more communication modules 740 coupled to the processor 710.
The communication module 740 is for bidirectional communications. The communication module 740 has one or more communication interfaces to facilitate communication with one or more other modules or devices. The communication interfaces may represent any interface that is necessary for communication with other network elements. In some example embodiments, the communication module 740 may include at least one antenna.
The processor 710 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 720 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 724, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 722 and other volatile memories that will not last in the power-down duration.
computer program 730 includes computer executable instructions that are executed by the associated processor 710. The program 730 may be stored in the ROM 724. The processor 710 may perform any suitable actions and processing by loading the program 730 into the RAM 722.
The embodiments of the present disclosure may be implemented by means of the program 730 so that the device 700 may perform any process of the disclosure as discussed with reference to FIGs. 2 to 6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 730 may be tangibly contained in a computer readable medium which may be included in the device 700 (such as in the memory 720) or other storage devices that are accessible by the device 700. The device 700 may load the program 730 from the computer readable medium to the RAM 722 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as  ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 8 shows an example of the computer readable medium 800 in form of CD or DVD. The computer readable medium has the program 730 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 300-600 as described above with reference to FIGs. 3-6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (41)

  1. A method comprising:
    obtaining, at a first device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and
    in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
  2. The method of claim 1, wherein the configuration information indicating at least one of:
    a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal,
    a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal,
    a set of candidate transmit power values, or
    the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  3. The method of claim 2, wherein determining the transmit power comprises:
    determining the transmit power at least based on the prior transmit power.
  4. The method of claim 3, wherein determining the transmit power at least based on the reference transmit power comprises:
    determining at least one offset associated with the prior transmit power; and
    determining the transmit power based on the prior transmit power and the at least one offset.
  5. The method of claim 4, wherein determining the at least one offset comprises at least one of:
    determining the at least one offset based on a received power level associated with the further reference signal and respective prior received power levels associated with at  least one prior reference signal; or
    obtaining the at least one offset from a third device or a second device.
  6. The method of claim 2, wherein determining the transmit power comprises:
    determining the transmit power at least based on the predefined transmit power.
  7. The method of claim 6, wherein determining the transmit power at least based on the reference transmit power comprises:
    obtaining an indication of a transmission power reduction or a transmission power increase from the second device; and
    determining the transmit power based on the predefined transmit power and the transmission power reduction or the transmission power increase.
  8. The method of claim 6, further comprising:
    in accordance with a determination that an indication of a transmission power reduction fails to be received from the second device, stopping transmitting the reference signal.
  9. The method of claim 8, further comprising:
    transmitting, to the second device, an indication of stopping transmitting the reference signal from the first device.
  10. The method of claim 2, wherein determining the transmit power comprises:
    determining the transmit power based on a candidate transmit power value from the set of candidate transmit power values.
  11. The method of claim 2, wherein determining the transmit power comprises:
    in accordance with a determination that a further reference signal transmitted from another cell associated with the first device is detected, determining the transmit power based on the further reference signal.
  12. The method of claim 11, further comprising:
    determining that the further reference signal transmitted from the neighbour cell is available for determining the path loss, in accordance with a determination of at least one  of:
    a received power level of the further reference signal exceeds a threshold level;
    a time interval from the time point of a reception of the further reference signal to a reference time point is less than a threshold time interval.
  13. The method of claim 1, further comprising:
    transmitting, to a fourth device, the reference signal based on the determined transmit power.
  14. The method of claim 1, further comprising:
    transmitting, to a third device, an indication that the transmit power of the reference signal is determined based on the configuration information.
  15. The method of claim 14, wherein transmitting the indication comprises:
    transmitting the indication via a Long-Term Evolution Positioning Protocol, LPP.
  16. The method of claim 1, wherein the reference signal comprises a reference signal associated with a positioning of the first device.
  17. The method of claim 1, wherein the further reference signal comprises a Synchronization Signal and Physical Broadcast Channel, SS/PBCH, block.
  18. A method comprising:
    determining, at a second device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and
    transmitting the configuration information to the first device.
  19. The method of claim 18 further comprising:
    transmitting an indication of a transmission power reduction or a transmission power increase to the first device.
  20. The method of claim 18 further comprising:
    receiving, from the first device, an indication of stopping transmitting the reference  signal from the first device.
  21. The method of claim 18, wherein the configuration information indicating at least one of:
    a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal,
    a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal,
    a set of candidate transmit power values, or
    the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  22. A method comprising:
    determining, at a third device, configuration information associated with a transmit power of a reference signal in an inactive state of the first device; and
    transmitting the configuration information to the first device.
  23. The method of claim 22, wherein the configuration information indicating at least one of:
    a prior transmit power used for a previous transmission from the first device is available for transmitting the reference signal,
    a predefined transmit power, allowed to be used for transmitting the reference signal, is available for transmitting the reference signal,
    a set of candidate transmit power values, or
    the path loss is allowed to be determined based on a further reference signal transmitted from another cell associated with the first device.
  24. The method of claim 23, further comprising:
    configuring at least one offset associated with the reference transmit power used for a previous transmission from the first device.
  25. The method of claim 22, further comprising:
    receiving, from the first device, an indication that the transmit power of the reference signal is determined based on the configuration information.
  26. The method of claim 25, wherein receiving the indication comprises:
    receiving the indication via a Long-Term Evolution Positioning, LPP, Protocol.
  27. The method of claim 22, further comprising:
    receiving, from a fourth device, an indication of a received power associated with the reference signal transmitted from the first device.
  28. The method of claim 27, wherein receiving the indication comprises:
    receiving the indication via new radio positioning protocol signaling A, NRPPa, Protocol.
  29. The method of claim 22, further comprising:
    in accordance with a determination that at least one of
    an indication that the transmit power of the reference signal is determined based on the configuration information is received from the first device, or
    an indication of a received power associated with the reference signal transmitted from the first device is received from a fourth device, is received, determining a trigger of a reconfiguration for the first device to transmit the reference signal.
  30. The method of claim 29, wherein the reconfiguration comprises at least one of:
    an updated path loss reference, or
    a reference transmit power in a case where the further reference signal transmitted from the second device is not available for determining the path loss.
  31. A method comprising:
    determining, at a fourth device, a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information associated with the transmit power of the reference signal in the inactive state of the first device; and
    transmitting an indication of the received power to a third device.
  32. The method of claim 31, wherein transmitting the indication comprises:
    transmitting the indication via new radio positioning protocol signaling A, NRPPa, Protocol.
  33. A device comprising:
    at least one processor; and
    at least one memory including computer program codes;
    the at least one memory and the computer program codes are configured to, with the at least one processor, cause the device at least to perform the method of any of claims 1-17, the method of any of claims 18-21, the method of any of claims 22-30 or the method of any of claims 31-32.
  34. An apparatus comprising:
    means for obtaining configuration information associated with a transmit power of a reference signal in a RRC inactive state; and
    means for in accordance with a determination that at least one of a path loss reference signal configured by second device is not available for determining a path loss or a further reference signal transmitted from the second device is not available for determining the path loss, determining the transmit power in the inactive state of the first device based on the configuration information.
  35. An apparatus comprising:
    means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and
    means for transmitting the configuration information to the first device.
  36. An apparatus comprising:
    means for determining configuration information associated with a transmit power of a reference signal in an inactive state of the first device and
    means for transmitting the configuration information to the first device.
  37. An apparatus comprising:
    means for determining a received power of a reference signal associated with the reference signal transmitted from the first device in an inactive state of the first device with a transmit power, the transmit power being determined based on configuration information  associated with the transmit power of the reference signal in the inactive state of the first device and
    means for transmitting an indication of the received power to a third device.
  38. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 1-17.
  39. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 18-21.
  40. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 22-30.
  41. A computer readable medium comprising program instructions for causing an apparatus to perform at least the method of any of claims 31-32.
PCT/CN2021/130731 2021-11-15 2021-11-15 Transmit power determination in radio resource control inactive state WO2023082274A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/130731 WO2023082274A1 (en) 2021-11-15 2021-11-15 Transmit power determination in radio resource control inactive state
CN202180104204.8A CN118251935A (en) 2021-11-15 2021-11-15 Transmit power determination in radio resource control inactive state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/130731 WO2023082274A1 (en) 2021-11-15 2021-11-15 Transmit power determination in radio resource control inactive state

Publications (1)

Publication Number Publication Date
WO2023082274A1 true WO2023082274A1 (en) 2023-05-19

Family

ID=86335019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/130731 WO2023082274A1 (en) 2021-11-15 2021-11-15 Transmit power determination in radio resource control inactive state

Country Status (2)

Country Link
CN (1) CN118251935A (en)
WO (1) WO2023082274A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168573A1 (en) * 2019-02-22 2020-08-27 Nokia Shanghai Bell Co., Ltd. Uplink positioning for idle or inactive terminal device
WO2021119127A1 (en) * 2019-12-12 2021-06-17 Qualcomm Incorporated Ue positioning signal transmission during unconnected or inactive state
CN113170466A (en) * 2019-08-12 2021-07-23 Oppo广东移动通信有限公司 Method and apparatus for determining transmit power

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020168573A1 (en) * 2019-02-22 2020-08-27 Nokia Shanghai Bell Co., Ltd. Uplink positioning for idle or inactive terminal device
CN113170466A (en) * 2019-08-12 2021-07-23 Oppo广东移动通信有限公司 Method and apparatus for determining transmit power
WO2021119127A1 (en) * 2019-12-12 2021-06-17 Qualcomm Incorporated Ue positioning signal transmission during unconnected or inactive state

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Views on potential positioning enhancements", 3GPP DRAFT; R1-2008301, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Shanghai, 16 October 2020 (2020-10-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051939529 *

Also Published As

Publication number Publication date
CN118251935A (en) 2024-06-25

Similar Documents

Publication Publication Date Title
WO2022155958A1 (en) Wake up procedure for hibernating cell
WO2022027186A1 (en) Positioning reference signal design for low power tracking
WO2022061617A1 (en) Positioning reference signal transmission triggered by sounding reference signal
WO2022178837A1 (en) Positioning assistance data delivery for ue positioning in radio resource control inactive state
US20240089774A1 (en) Measuring a Reference Signal with Associated Synchronization Signal
WO2021168603A1 (en) Event triggered measurement for channel state information
WO2022021313A1 (en) Transmission detection skipping mechanism for power saving
WO2021159498A1 (en) Power control of positioning reference signal
WO2023133892A1 (en) Enhanced user equipment report
WO2023082274A1 (en) Transmit power determination in radio resource control inactive state
WO2022109864A1 (en) Transmission of periodic data in inactive state
US20230269682A1 (en) Handling of csi-rs measurement
WO2023108377A1 (en) Antenna configuration for positioning
WO2024168931A1 (en) Positioning
WO2024082149A1 (en) Positioning
WO2024031457A1 (en) Resource reservation for a positioning reference signal
WO2023070463A1 (en) Concurrent measurement gap configuration
WO2023283783A1 (en) Positioning
WO2024026753A1 (en) Positioning measurement across frequency hops
US20230107338A1 (en) Dynamic signaling for measurement gap
WO2024065577A1 (en) Positioning enhancements
WO2023155119A1 (en) Procedure selection for small data transmission
WO2024159542A1 (en) System information acquisition
WO2024065331A1 (en) Conditional measurement reporting
US20240121854A1 (en) Indication of cell status

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21963720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180104204.8

Country of ref document: CN