Nothing Special   »   [go: up one dir, main page]

WO2024024287A1 - ガス処理方法、ガス処理システム - Google Patents

ガス処理方法、ガス処理システム Download PDF

Info

Publication number
WO2024024287A1
WO2024024287A1 PCT/JP2023/021122 JP2023021122W WO2024024287A1 WO 2024024287 A1 WO2024024287 A1 WO 2024024287A1 JP 2023021122 W JP2023021122 W JP 2023021122W WO 2024024287 A1 WO2024024287 A1 WO 2024024287A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing
discharge lamp
clean
treated
Prior art date
Application number
PCT/JP2023/021122
Other languages
English (en)
French (fr)
Inventor
謙吾 西尾
庄一 寺田
敬祐 内藤
Original Assignee
ウシオ電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウシオ電機株式会社 filed Critical ウシオ電機株式会社
Publication of WO2024024287A1 publication Critical patent/WO2024024287A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/16Disinfection, sterilisation or deodorisation of air using physical phenomena
    • A61L9/18Radiation
    • A61L9/20Ultraviolet radiation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • A62D3/176Ultraviolet radiations, i.e. radiation having a wavelength of about 3nm to 400nm

Definitions

  • the present invention relates to a gas processing method and a gas processing system, and particularly to a gas processing method and a gas processing system for processing gas containing VOC (Volatile Organic Compounds).
  • VOC Volatile Organic Compounds
  • Patent Document 1 listed below describes using a low-pressure mercury lamp that emits ultraviolet light with a wavelength of 185 nm or 254 nm to decompose and remove impurities and bacteria in a gas to be treated. More specifically, it is described that ozone (O 3 ) gas is generated using ultraviolet light with a wavelength of 185 nm, and that impurities and malodorous substances are decomposed by this ozone gas.
  • Patent Document 2 discloses a xenon excimer lamp that emits light with a narrow emission band width centered around a wavelength of 172 nm, which is a shorter wavelength than the above-mentioned low-pressure mercury lamp.
  • Excimer lamps such as those disclosed in Patent Document 2 have conventionally been used for the purpose of removing organic substances in the manufacturing process of semiconductors and liquid crystal panels. That is, until now, excimer lamps have typically been used in strictly controlled clean environments.
  • the present inventors are considering a gas processing device that can efficiently generate ozone by using this excimer lamp instead of the low-pressure mercury lamp as described in Patent Document 1.
  • the gas to be treated contains oxygen
  • highly reactive O( 1D ) is generated by irradiation with short wavelength light emitted from an excimer lamp, and when the gas contains water. Since hydroxyl radicals (.OH) are generated, it is expected that the ability to decompose VOCs contained in the gas to be treated will be improved.
  • the inventors of the present invention have conducted extensive research into using excimer lamps to treat gases containing VOCs, and have found that as the treatment continues, contaminants adhere to the surface of the excimer lamp.
  • a new problem was discovered: the illumination intensity of the ultraviolet light emitted from excimer lamps decreases. Such a situation is undesirable because it reduces the ability of the gas treatment device to treat VOCs over time.
  • an object of the present invention is to provide a gas treatment method and a gas treatment system that can recover from a decrease in VOC processing capacity without requiring wiping work or the like by an operator.
  • the gas treatment method of the present invention includes: A gas treatment method for treating a target gas containing VOCs and oxygen, the method comprising: Introducing the gas to be treated into the processing space while lighting a discharge lamp that emits ultraviolet light with a main emission wavelength of 200 nm or less, which is arranged in the processing space that forms part of the flow path.
  • the "main emission wavelength” refers to a wavelength range Z( ⁇ ) of ⁇ 10 nm for a certain wavelength ⁇ , which is defined as a wavelength range Z( ⁇ ) of 40% or more of the total integrated intensity within the emission spectrum. refers to the wavelength ⁇ i in the wavelength range Z( ⁇ i) showing the integrated intensity of .
  • substantially not containing VOC is intended to include not only cases where the VOC concentration is 0 ppm but also cases where the VOC concentration is less than 50 ppm.
  • the VOC concentration is preferably less than 25 ppm, more preferably 10 ppm or less.
  • the contaminants adhering to the surface of the discharge lamp are intermediate products derived from VOCs and mainly generated by irradiation with ultraviolet light in step (A).
  • the intermediate product is a substance produced during the process in which VOCs are decomposed into final products such as water and carbon dioxide, mainly by ozone and radicals.
  • the present inventors created an environment in which the ozone generated in the processing space is more likely to react with the pollutants attached to the surface of the discharge lamp than with the VOCs contained in the gas to be processed, and remove the pollutants as a final product.
  • a discharge lamp with contaminants attached to its surface is turned on while clean gas is introduced, it will not be possible to irradiate ultraviolet light at the desired intensity, but the oxygen contained in the clean gas will be exposed to ultraviolet light. irradiation to produce ozone within the processing space.
  • the clean gas is substantially free of VOCs. Therefore, the ozone easily reacts with contaminants adhering to the surface of the discharge lamp. In other words, the pollutants that have accumulated on the surface of the discharge lamp are gradually decomposed into the final products, water and carbon dioxide, by the ozone generated within the processing space, and are then removed outside the processing space. is discharged to.
  • contaminants attached to the surface of the discharge lamp can be removed simply by switching the gas to be introduced, without requiring wiping work or the like. Then, the amount of ultraviolet light emitted from the discharge lamp is restored so as to approach the state before processing the gas to be processed.
  • step (A) and step (B) do not need to be performed continuously.
  • the discharge lamp is turned off and a predetermined flow rate of clean gas is introduced into the processing space with the discharge lamp turned off, and then the discharge lamp is turned on and step (B) is carried out. It does not matter if a method of implementing this is adopted.
  • a method of carrying out step (B) after passing through a step of lighting a discharge lamp while completely stopping the introduction of gas into the processing space, and a method of carrying out step (B). After that, a method may be adopted in which a step is performed in which the discharge lamp is turned on while the introduction of gas into the processing space is temporarily completely stopped.
  • the gas to be processed introduced into the processing space in step (A) may be a mixed gas in which clean gas is mixed with the gas taken in from the exhaust port of the laboratory etc. and introduced from the duct. I do not care.
  • the step (A) and the step (B) may be performed by lighting an excimer lamp, which is a type of discharge lamp, in which a luminescent gas containing xenon (Xe) gas is sealed in the tube. I do not care.
  • the wavelength range of the optical absorption band of oxygen is mainly within the range of 100 nm or more and 240 nm or less, and ozone is generated by irradiating oxygen molecules with ultraviolet light in this wavelength range.
  • An excimer lamp whose tube body is filled with a luminescent gas containing xenon (Xe) gas is a discharge lamp that emits ultraviolet light with a main emission wavelength of around 172 nm and a narrow emission band width.
  • the step (B) may be a step in which air is introduced into the processing space as the clean gas.
  • air contains oxygen and water.
  • ultraviolet light having a main emission wavelength of 200 nm or less
  • highly reactive O( 1 D) and hydroxyl radicals (.OH) are generated, as described above. That is, by using the above method, in addition to the decomposition treatment effect of ozone, a high decomposition treatment effect of hydroxyl radicals can be obtained for VOCs and pollutants adhering to the surface of the discharge lamp.
  • the above method may include, for example, a step of introducing mist-like water into the processing space using a humidifier or the like in order to obtain a high decomposition treatment effect by hydroxyl radicals.
  • the above gas treatment method is The method may be such that the step (B) is performed after a predetermined period of time has elapsed after starting the step (A).
  • the above gas treatment method is In the step (A), the step (B) may be performed after the total flow rate of the gas to be processed that has passed through the processing space becomes equal to or greater than a predetermined threshold.
  • step (A) If step (A) is continued for a long period of time, there is a possibility that too much contaminant will accumulate on the surface of the discharge lamp, resulting in a state in which almost no ultraviolet light can be emitted. If almost no ultraviolet light is emitted from the discharge lamp, no matter how much clean gas is introduced into the processing space in step (B), ozone will not be generated and the pollutants attached to the surface of the discharge lamp will not be decomposed.
  • contaminants that have not been treated in any way for a long period of time may stick to the surface of the discharge lamp and become hardly decomposed even when exposed to ozone or hydroxyl radicals.
  • step (A) it is possible to finish the implementation of step (A) and perform step (B) before the discharge lamp falls into the above-mentioned state, and the discharge lamp can be more reliably removed.
  • the amount of emitted ultraviolet light can be recovered.
  • the gas treatment system of the present invention includes: a casing in which a processing space is formed in which a processing target gas containing VOCs and oxygen is taken in and processed; a discharge lamp disposed in the processing space that emits ultraviolet light with a wavelength of 200 nm or less; and the processing space contains the gas to be processed, or the processing space contains oxygen and does not substantially contain VOCs.
  • an inlet for taking in the first clean gas an outlet for discharging the gas that has passed through the processing space; It is characterized by comprising a switching unit that selectively switches between introducing the gas to be treated and introducing the first clean gas into the inlet.
  • the "switching part” here is a mechanism that realizes switching between introducing the processing target gas into the processing space and introducing the first clean gas.
  • a three-way valve installed at the connection point between the flow path to be used and the flow path through which the first clean gas flows, a control valve that opens and closes the flow path, and a control valve installed directly at or around the opening of the gas processing device.
  • the switching section may be configured by combining a plurality of these mechanisms.
  • the discharge lamp may be an excimer lamp in which a luminescent gas containing xenon (Xe) gas is enclosed in a tube.
  • the first clean gas may be air.
  • the above gas processing system is The housing is provided with a plurality of processing spaces, the introduction port, and the discharge port, and when the switching unit switches to introduce the gas to be processed into the introduction port, the switching unit switches the processing space to the other gas to be processed. It may be configured to switch so as to introduce the first clean gas into the opening.
  • the above gas processing system is A plurality of gas treatment devices each having the housing, the discharge lamp, the inlet, and the discharge port are provided, and the switching unit is configured to switch the opening of one of the plurality of gas treatment devices. It may be configured such that when the gas to be treated is switched to be introduced into the gas treatment section, the first clean gas may be introduced into the opening of another gas treatment device.
  • the above gas processing system is a control unit that performs switching control of the switching unit; and a timer that measures the time that has elapsed since the control unit controlled the switching unit and started introducing the gas to be processed into the inlet, When the timer detects that a predetermined time has elapsed, the control unit may be configured to perform control to switch the switching unit to guide the first clean gas to the inlet.
  • the above gas processing system is a control unit that performs switching control of the switching unit;
  • the control unit controls the switching unit to start introducing the process target gas into the inlet, and then includes a flow meter that measures the flow rate of the process target gas flowing through the processing space.
  • the control unit guides the first clean gas to the inlet.
  • the switching unit may be configured to execute control for switching the switching unit.
  • a gas treatment method and a gas treatment system are realized that can recover from a decrease in VOC processing capacity without requiring wiping work or the like by an operator.
  • FIG. 1 is a drawing schematically showing an embodiment of a gas processing system.
  • 2 is an enlarged view of the configuration around the gas treatment device in FIG. 1.
  • FIG. FIG. 2 is a side cross-sectional view schematically showing the configuration of a gas processing device. It is a drawing showing a state in which a gas to be treated is introduced into the gas treatment device. It is a drawing showing a state where air is introduced into the gas treatment device. It is a flowchart showing the operation process of the gas treatment device.
  • FIG. 1 is a diagram schematically showing how the illuminance of ultraviolet light emitted from an excimer lamp is measured. It is a graph which shows the time change of the illuminance maintenance rate of each sample.
  • 1 is a diagram schematically showing a state in operation of an embodiment of a gas processing system.
  • 1 is a diagram schematically showing a state in operation of an embodiment of a gas processing system.
  • 1 is a drawing schematically showing an embodiment of a gas processing system.
  • 1 is a diagram schematically showing an embodiment of a gas processing system.
  • 1 is a diagram schematically showing the configuration and operation of an embodiment of a gas processing system.
  • 1 is a diagram schematically showing the configuration and operation of an embodiment of a gas processing system.
  • FIG. 2 is a drawing schematically showing a configuration around a gas processing device in another embodiment of the gas processing system.
  • 7 is a drawing schematically showing the configuration and operation of another embodiment of a gas processing system.
  • 7 is a drawing schematically showing the configuration and operation of another embodiment of a gas processing system.
  • FIG. 3 is a diagram schematically showing a gas treatment device in another embodiment of the gas treatment system.
  • 13B is a drawing of the gas treatment device of FIG. 13A when viewed toward the opening.
  • FIG. 1 is a diagram schematically showing the overall configuration of the gas treatment system 1
  • FIG. 2 is an enlarged diagram of the configuration around the gas treatment apparatus 10 in FIG.
  • the gas processing system 1 of the first embodiment is described as a so-called general ventilation system that processes gas to be processed containing VOCs present in a laboratory 3 of a building 2.
  • building 2 includes facilities that require environmental management regarding VOCs, such as chemical factories, research laboratories and university laboratories, and medical facilities.
  • the gas processing system 1 includes a gas processing device 10, a first flow path 11, a second flow path 12, a third flow path 13, and a switching section 14, as shown in FIGS. 1 and 2.
  • FIG. 1 shows a gas processing system 1 equipped with one of these, in reality, each is required depending on the size and structure of the building 2, the number of laboratories 3, etc. Only a few are installed.
  • the first flow path 11 is connected to a duct opening 4 provided in the laboratory 3, and is a flow path through which the gas to be treated G1 containing oxygen, water, and VOC generated in the laboratory 3 flows. .
  • a fan for blowing air is provided in the duct opening 4 or the first flow path 11 to ensure that the gas G1 to be treated flows in a predetermined direction and to prevent VOCs from flowing back into the laboratory 3 side. It doesn't matter if you stay there.
  • the laboratory 3 may be provided with a ventilation port for taking in as much outside air as the gas taken in through the duct opening 4.
  • the second flow path 12 is connected to an intake port 2a for taking in air G2, which is a clean gas (first clean gas) that contains oxygen and water and does not substantially contain VOCs, from the outside of the building 2, This is a flow path through which air G2 flows.
  • a fan for blowing air may be provided in the intake port 2a or the second flow path 12 so that the air G2 is taken in and flows reliably in a predetermined direction.
  • the third flow path 13 is a flow path connected to the exhaust port 2b for exhausting the treated gas G3 discharged from the gas treatment device 10 to the outside of the building 2.
  • a blowing fan may be provided in the exhaust port 2b or the third flow path 13 so that the treated gas G3 is discharged from the exhaust port 2b.
  • the switching unit 14 is a mechanism that selectively switches between introducing the process target gas G1 and introducing the air G2.
  • the switching unit 14 in the first embodiment is a three-way valve disposed at the connection point between the first flow path 11 and the second flow path 12, but for example, it may be a control valve that opens and closes the flow path, a shutter, a louver,
  • the above mechanism may be implemented using a damper or the like, or a combination thereof.
  • FIG. 3 is a drawing schematically showing the configuration of the gas treatment device 10.
  • the gas treatment apparatus 10 in the first embodiment includes a housing 20, a discharge lamp 21, and a control section 22.
  • FIG. 4A is a drawing showing a state in which the gas to be processed G1 is introduced into the gas processing apparatus 10
  • FIG. 4B is a drawing showing a state in which air G2 is introduced into the gas processing apparatus 10.
  • the housing 20 is provided with an inlet 20a and an outlet 20b on opposing sides, and the inlet 20a and the outlet 20b are connected on the inside, and the gas to be processed G1 or the air G2 is inside.
  • a processing space 20c into which the gas is introduced is formed.
  • a space 20d in which the control unit 22 is housed is formed as a clean space separate from the processing space 20c.
  • the discharge lamp 21 is disposed within a processing space 20c formed within the housing 20, and irradiates ultraviolet light to the gas G1 or air G2 to be processed that flows in from the inlet 20a.
  • the discharge lamp 21 in the first embodiment is an excimer lamp whose tube body is filled with luminescent gas containing xenon (Xe) gas, and when powered and turned on, emits ultraviolet light having a main emission wavelength of 172 nm. It is.
  • the discharge lamp 21 may be any light source that can emit ultraviolet light with a main emission wavelength of 200 nm or less; for example, it may be an excimer lamp in which argon (Ar) gas and fluorine (F) gas are sealed in a tube as luminous gases.
  • a deuterium lamp, an excimer laser, an F2 laser, etc. may be employed as the lamp or another light source.
  • excimer lamps there are shapes called single-tube or double-tube where the electrodes are arranged concentrically, and shapes where the tube has a rectangular cross section and the electrodes are arranged opposite each other through the tube. There is a shape called a flat tube shape in which excimer lamps are arranged, but any shape of excimer lamp may be used.
  • a part of the processing space 20c is configured to be narrow. Since ultraviolet light with a wavelength of 200 nm or less is easily absorbed by oxygen, it can only travel about 10 mm in the processing space 20c. Therefore, the above-mentioned configuration is adopted in order to make it easier for the gas G1 to be treated and the air G2 to flow near the discharge lamp 21.
  • the control section 22 includes an inverter 22a, an introduced gas control section 22b, and a timer 22c.
  • the inverter 22a is an electric circuit that generates power for lighting the discharge lamp 21 from power supplied from an external power source (not shown). Electric power generated by the inverter 22a is supplied to the discharge lamp 21 via a power supply line 22d. In reality, there are two feeder lines 22d, one for the positive electrode and one for the negative electrode, but in FIG. Only the electric wire 22d is shown.
  • the introduced gas control unit 22b outputs a signal d1 that starts the lighting operation of the discharge lamp 21 to the inverter 22a, as shown in FIG. 4A. Further, the introduced gas control section 22b outputs a signal d2 to the switching section 14 to control the introduction of the processing target gas G1 into the processing space 20c. Note that in FIGS. 3 to 4B, communication between the introduced gas control section 22b and the switching section 14 is schematically illustrated, but in the first embodiment, communication between the introduced gas control section 22b and the switching section 14 is shown schematically. is configured to enable wireless communication. Note that the introduced gas control section 22b and the switching section 14 may be configured to be connected by a cable and communicate by wire.
  • the communication between the introduced gas control section 22b and the switching section 14 may be configured to enable two-way communication.
  • the switching section 14 may indicate that the switching of the flow path is completed by controlling the introduced gas. It may be configured to output a signal to notify the section 22b.
  • the timer 22c measures the elapsed time immediately after the predetermined control is executed, and outputs a signal d3 or a signal d5 to the introduced gas control section 22b. Note that if there is no particular need to measure time, such as when a person operates the control unit 22 to control the switching unit 14 at an arbitrary timing, the gas treatment device 10 does not need to include the timer 22c. .
  • FIG. 5 referred to in the description here is a flowchart showing the operation process of the gas treatment apparatus 10.
  • the introduced gas control section 22b outputs a signal d2 to the switching section 14 (step S1).
  • Step S2 When the gas processing system 1 starts operating after step S1, the introduced gas control section 22b outputs the signal d1 to the inverter 22a, and the introduction of the processing target gas G1 into the processing space 20c is started ( Step S2).
  • Step S2 may be executed earlier than Step S1, and furthermore, Step S1 and Step S2 may be executed simultaneously, but the processing target gas G1 introduced immediately after the switching unit 14 is controlled is In order to ensure reliable processing, it is preferable that step S2 be performed several seconds after step S1. In addition, in whichever procedure is carried out, it is realized that the gas G1 to be treated is introduced into the treatment space 20c while the discharge lamp 21 is turned on in step (A).
  • step S3 the timer 22c measures the elapsed time from immediately after completing step S2 (step S3). Note that, as described above, it is assumed that the order of step S1 and step S2 is reversed or that step S1 and step S2 are executed simultaneously, but this timer 22c Measure the elapsed time immediately after all of these are completed.
  • step S4 When the timer 22c detects that a predetermined time has elapsed since step S2 was performed, the timer 22c outputs a signal d3 to the introduced gas control section 22b (step S4).
  • the timing at which the timer 22c outputs the signal d3 in step S4 is determined based on the type of VOC contained in the gas G1 to be treated on the surface of the discharge lamp 21 and the gas G1 to be treated introduced into the gas treatment apparatus 10. It is arbitrarily set depending on the concentration of VOCs, etc. In the first embodiment, the timing is set 100h after step S2 is completed.
  • the introduced gas control unit 22b which has received the signal d3 from the timer 22c in step S4, outputs the signal d4 to the switching unit 14, as shown in FIG. 4B (step S5). By carrying out this step S5, introduction of air G2 into the processing space 20c is started.
  • control unit 22 is configured to temporarily stop the discharge lamp 21 while this step S5 is being carried out, and after the introduction of the air G2 has started, to turn on the discharge lamp 21 again. Good too. In either case, it is possible to introduce air G2 (first clean gas), which is a clean gas, into the processing space 20c while the discharge lamp 21 is lit in step (B). be done.
  • air G2 first clean gas
  • step S5 the timer 22c measures the elapsed time from immediately after completing step S5 (step S6).
  • step S7 When the timer 22c detects that a predetermined time has elapsed immediately after the completion of step S5, the timer 22c outputs a signal d5 to the introduced gas control section 22b (step S7). Note that the timing at which the timer 22c outputs the signal d5 in step S7 is set at an arbitrary time when it is assumed that the contaminants accumulated on the surface of the discharge lamp 21 have been removed to some extent; however, in the first embodiment, was set to 20h.
  • step S7 the introduced gas control section 22b, which has received the signal d5 from the timer 22c, outputs the signal d1 to the switching section 14, as shown in FIG. 4A, and performs the operation of step S2.
  • steps S2 to S7 are repeated until the operation of the gas treatment apparatus 10 is stopped.
  • the timing of stopping the operation of the gas treatment device 10 is arbitrary, but in order to prevent contaminants from sticking to the surface of the discharge lamp 21 before restarting the operation, it is possible to stop the operation of the gas treatment device 10 immediately after step S7 is performed. It is preferable that
  • FIG. 6A is a drawing schematically showing the configuration of an excimer lamp 60 used in this verification as a discharge lamp
  • FIG. 6B is a drawing showing the excimer lamp 60 shown in FIG. 6A viewed from a direction rotated by 90 degrees around the tube axis.
  • FIG. 7 is a diagram schematically showing how the illuminance of ultraviolet light emitted from the excimer lamp 60 is measured.
  • the excimer lamp 60 used in this verification is a so-called flat tube-shaped excimer lamp in which electrodes 62 are arranged to face each other with a tube body 61 interposed therebetween.
  • the excimer lamp 60 has a rectangular cross section when cut along a plane perpendicular to the tube axis 61a.
  • the length of the excimer lamp 60 in the direction of the tube axis 61a is 158 mm, and the length of each side of the electrode 62 is 12 mm x 95 mm.
  • the "illuminance maintenance rate” here refers to the illuminance when the discharge lamp 21 is turned on at a predetermined timing in a state before the treatment target gas G1 is introduced into the treatment space 20c. It is defined as the ratio of illuminance when the light is turned on and measured using the same method.
  • the illuminance of the excimer lamp 60 is obtained by measuring the center portion 61b of the excimer lamp 60 shown in FIG. 6A with an illuminance meter 63 placed at a position 3 mm apart from the excimer lamp 60, as shown in FIG. did.
  • the gas G1 to be treated was adjusted so that the concentration of m-xylene, which is a type of VOC, was 80 ppm. Further, during step S3, the gas G1 to be processed is introduced into the processing space 20c at a flow rate of 0.4 m 3 /min, and during step S6, the gas G1 to be processed is introduced into the processing space 20c at a flow rate of 0.4 m 3 /min. Air G2 was introduced into the chamber.
  • FIG. 8 is a graph showing temporal changes in the illuminance maintenance rate of each sample.
  • the horizontal axis shows the elapsed time when the time when step S6 was started is 0h
  • the vertical axis shows the illuminance maintenance rate.
  • the illuminance maintenance rate increases, that is, the amount of ultraviolet light emitted from the excimer lamp 60 recovers. is confirmed.
  • the illuminance maintenance rate at the time when step S6 is started is higher than that of the other samples. This is presumably because the amount of contaminants adhering to the central portion 61b of the excimer lamp 60 shown in FIG. 6A was relatively small.
  • the pollutants attached to the surface of the discharge lamp 21 can be removed by simply switching the gas introduced into the processing space 20c without requiring wiping work or the like. can do. Then, the amount of ultraviolet light emitted from the discharge lamp 21 is restored so as to approach the state before processing the gas G1 to be processed.
  • the switching of the gas introduced into the gas processing device 10 may be configured to be executed at a predetermined time by a timer 22c included in the gas processing device 10, It may be configured to switch based on ON/OFF of a draft chamber, detection of an increase in VOC concentration by a gas sensor, detection of the presence of a person by a human sensor, etc.
  • the switching of the switching unit 14 may be realized by a person manually operating the switching unit 14 without the gas processing device 10 having the introduced gas control unit 22b and the timer 22c.
  • the configuration may be such that only the following steps are performed.
  • the gas to be treated G1 is introduced into the gas processing apparatus 10, the air G2 may be introduced from the intake port 2a at the same time.
  • the gas to be treated G1 is a gas containing VOCs and oxygen, and is a mixed gas made by mixing the gas containing VOCs generated in the laboratory 3 and fresh air taken in from outside the building 2. However, if the gas contains VOC and oxygen, it corresponds to the gas to be processed G1.
  • FIGS. 9A and 9B are drawings schematically showing the operating state of the second embodiment of the gas processing system 1.
  • a gas processing device 10 is connected to an exhaust port 5a of a draft chamber 5 installed in a laboratory room 3 via a flow path 31. It is described as a so-called local ventilation system.
  • the gas to be treated G1 containing VOC generated in the draft chamber 5 is transferred to the gas treatment device 10 via the flow path 31. be introduced. Then, during late nights, holidays, and the like when experiments are not conducted, the clean air in the laboratory 3 is directly introduced into the gas processing apparatus 10 via the flow path 31.
  • FIGS. 9C and 9D are drawings schematically showing a second embodiment of the gas processing system 1, which has a different configuration from FIGS. 9A and 9B.
  • the gas processing system 1 may be configured as a system that maintains the inside of the laboratory 3 in a clean environment using a draft chamber 5 in which the gas processing device 10 is mounted.
  • the gas processing system 1 is a system in which a gas processing device 10 is placed in the laboratory 3 as an air cleaner in addition to the draft chamber 5, and maintains the laboratory 3 in a clean environment. It does not matter if it is configured as .
  • the gas processing system 1 shown in FIG. 9C contains VOCs generated in the draft chamber 5 during the day when experiments are conducted in the laboratory 3.
  • a gas to be treated G1 is introduced into the gas treatment apparatus 10.
  • clean air G2 within the laboratory 3 is introduced into the gas processing apparatus 10.
  • the gas to be processed G1 and the air G2 are illustrated as being the same gas, but in reality, the experiment is being conducted in the laboratory 3.
  • the gas to be processed is G1, and if the experiment is not being conducted in the laboratory 3, or if the doors and windows are opened for ventilation and the laboratory 3 is a relatively clean space, it is air. It has become G2.
  • the gas treatment apparatus 10 is controlled so that the discharge lamp 21 is lit while the gas to be treated G1 is flowing in and while the clean air G2 is flowing in.
  • the dirt that adheres to the surface of the discharge lamp 21 when processing the target gas G1 is decomposed by ozone and hydroxyl radicals generated from the oxygen and water contained in the air G2, and the discharge lamp 21 is gradually decomposed. removed from the surface of 21. Therefore, the amount of ultraviolet light emitted from the discharge lamp 21 is restored so as to approach the state before processing the gas G1 to be processed.
  • FIGS. 10A and 10B are drawings schematically showing the configuration and operation of the third embodiment of the gas processing system 1.
  • the third embodiment of the gas treatment system 1 includes two gas treatment devices (10a, 10b) connected in series and three three-way valves (14a, 14a, 14a).
  • the switching unit 14 is configured such that the direction in which the gas to be treated G1 is introduced into the gas treatment apparatus (10a, 10b) is alternately switched.
  • the inlet 20a into which the gas to be treated G1 is introduced and the inlet 20a where the gas to be treated G3 is introduced, and the direction in which the treated gas G3 is discharged are changed. This means that the discharge port 20b is replaced with the discharge port 20b.
  • the three-way valves (14a, 14a, 14a) are switched so that the gas G1 to be processed flows through the path as shown in FIG. 10A.
  • the three-way valves (14a, 14a, 14a) may be controlled by a control unit (not shown) provided in any of the gas treatment apparatuses 10 or a separately provided control unit (not shown), It does not matter if the user manually switches the switch.
  • the gas processing device 10b first takes in the gas to be treated G1, processes the gas to be treated G1, and discharges the treated gas G3, which is a clean gas.
  • the oxygen contained in the gas to be treated G1 is not entirely converted into ozone in the gas treatment device 10b, and at least a portion thereof is exhausted as is. Moreover, the ozone generated in the gas processing apparatus 10b reacts with the gas to be processed and is decomposed, and a part of the ozone becomes oxygen. Therefore, the processed gas G3 discharged from the gas processing device 10b is a clean gas containing oxygen.
  • the treated gas G3 which is a clean gas discharged from the gas treatment device 10b, is introduced into the gas treatment device 10a.
  • the contaminants are decomposed and removed. That is, the amount of ultraviolet light emitted from the discharge lamp is recovered.
  • the three-way valves (14a, 14a, 14a) are switched, and as shown in FIG. 10B, the gas treatment device 10a takes in the gas G1 to be treated, and The treated gas G3, which is a clean gas, is discharged.
  • the treated gas G3 which is a clean gas discharged from the gas treatment device 10a, is introduced into the gas treatment device 10b.
  • the VOC-derived contaminants adhering to the surface of the discharge lamp 21 included in the gas treatment device 10b are decomposed and removed. That is, the amount of ultraviolet light emitted from the discharge lamp is recovered.
  • FIG. 11 is a drawing schematically showing the configuration around the gas processing device 10 in another embodiment of the gas processing system 1.
  • the control unit 22 of the gas treatment device 10 does not include a timer 22c, and is configured such that the introduced gas control unit 22b receives the signal d6 output from the flow meter 40 provided on the upstream side. It doesn't matter if it is done.
  • the introduced gas control section 22b may be configured to control the switching section 14 after the total flow rate after starting the introduction of the processing target gas G1 reaches a predetermined threshold value or more.
  • this embodiment additionally includes a storage unit that stores time-series data of the flow rate of the gas to be processed G1 measured by the flow meter 40, and a storage unit that contains the data and can be read by an external device such as a smartphone or a PC. It is also possible to include a communication unit that generates and outputs a wireless signal. Furthermore, with this configuration, it is possible to detect an abnormality in the discharge lamp 21 and predict when it will be replaced.
  • parameters other than the elapsed time since the introduction of the gas G1 to be treated and the total flow rate may be used to control the switching unit 14.
  • the parameters include the concentration of VOC contained in the treated gas G3, the difference between the pressure of the gas flowing through the inlet and the pressure of the gas flowing through the outlet, or based on these.
  • the calculated Cv value etc. can be adopted.
  • FIGS. 12A and 12B are drawings schematically showing the configuration and operation of yet another embodiment of the gas processing system 1.
  • the gas processing system 1 includes two gas processing apparatuses (10a, 10b) connected in parallel and a switching section consisting of four control valves (14b, 14b, 14b, 14b). 14, the gas to be treated G1 and the air G2 are alternately introduced into the respective gas treatment apparatuses 10.
  • the recovery process for the discharge lamp 21 can also be performed without always stopping the process of the process target gas G1 in either of the gas processing apparatuses (10a, 10b).
  • two gas processing devices are installed, but three or more gas processing devices may be installed in order to increase the gas processing capacity.
  • at least one of the plurality of gas treatment devices is a device that can prevent VOCs from being released to the outside only until the recovery treatment of the discharge lamp 21 is completed, for example, activated carbon may be used in the flow path. It may be a filled device or a device that burns VOCs.
  • FIG. 13A is a diagram schematically showing the gas treatment device 10 in yet another embodiment from FIGS. 12A and 12B
  • FIG. 13B is a diagram schematically showing the gas treatment device 10 in FIG. 13A as viewed toward the opening. This is a drawing when Note that in FIG. 13B, the space 20d is omitted for convenience of illustration.
  • the gas processing apparatus 10 includes a plurality of processing spaces (20c, 20c) and an inlet 20a and an outlet 20b corresponding to each of the processing spaces.
  • the gases (G1, G2) introduced into the respective processing spaces (20c, 20c) may be switched by controlling the processing spaces (20c, 20c) to be exchanged.
  • the discharge can be performed without increasing the size of the entire system and without stopping the processing of the gas G1 to be processed in either processing space (20c, 20c).
  • a recovery process for the lamp 21 can also be performed.
  • switching of the gases (G1, G2) introduced into the processing space (20c, 20c) is performed only within the gas processing apparatus 10, so that there are many control valves and shutters. There is no need to construct a complicated gas flow path using, etc.
  • air taken in from outside the building 2 is used as the clean gas introduced into the gas treatment device 10, but the clean gas does not contain oxygen.
  • any gas other than air may be used as long as it does not substantially contain VOC.
  • gas with a high oxygen concentration may be introduced directly from an oxygen cylinder, or air taken from a space within the building 2 where a clean environment is maintained may be introduced.
  • the gas treatment system 1 is equipped with a humidifying means such as a humidifier so that water is included in the clean gas introduced into the gas treatment device 10. It doesn't matter if you are prepared.
  • Gas processing system 2 Building 2a: Intake port 2b: Exhaust port 3: Laboratory 4: Duct port 5: Draft chamber 5a: Exhaust port 10, 10a, 10b: Gas processing device 11: First flow path 12: First flow path Two channels 13: Third channel 14: Switching section 14a: Three-way valve 14b: Control valve 20: Housing 20a: Inlet 20b: Discharge port 20c: Processing space 20d: Space 21: Discharge lamp 22: Control section 22a: Inverter 22b: Introduced gas control unit 22c: Timer 22d: Power supply line 31: Flow path 40: Flowmeter 60: Excimer lamp 61: Tube body 61a: Tube axis 61b: Center portion 62: Electrode 63: Illuminance meter G1: Processing target gas G2: Air G3: Treated gas L1: Ultraviolet light

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Emergency Management (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

作業者による拭き取り作業等を要することなく、VOCの処理能力の低下を回復させることができるガス処理方法及びガス処理システムを提供する。 流路の一部を構成する処理空間内に配置された、主たる発光波長が200nm以下の紫外光を発する放電ランプを点灯させている状態の下で、処理空間内に処理対象ガスを導入する工程(A)と、工程(A)の実施後、放電ランプを点灯させている状態の下で、処理空間内に、酸素を含有し、VOCを実質的に含有しない清浄ガスを導入する工程(B)とを含む。

Description

ガス処理方法、ガス処理システム
 本発明は、ガス処理方法及びガス処理システムに関し、特にVOC(Volatile Organic Compounds:揮発性有機化合物)を含むガスを処理するためのガス処理方法及びガス処理システムに関する。
 従来、低圧水銀ランプを用いて被処理気体を浄化する技術が提案されている。例えば、下記特許文献1には、波長185nmや波長254nmの紫外光を放射する低圧水銀ランプを使用し、被処理ガス中の不純物や細菌類を分解除去することが記載されている。より具体的には、波長185nmの紫外光によりオゾン(O3)ガスを生成し、このオゾンガスにより不純物や悪臭物質を分解することが記載されている。
 ところで、下記特許文献2には、上記低圧水銀ランプよりも短波長である波長172nmを中心とする狭い発光バンド幅の光を放射する、キセノンエキシマランプが開示されている。
特開2006-204683号公報 特開2007-335350号公報
 特許文献2に開示されているようなエキシマランプは、従来、半導体や液晶パネルの製造工程において、有機物の除去目的で用いられていた。すなわち、これまでエキシマランプは、厳密に管理されたクリーンな環境下で利用されることが通常であった。
 本発明者らは、特許文献1に記載されているような低圧水銀ランプに代えて、このエキシマランプを用いることで、オゾンを効率よく生成できるガス処理装置を検討している。
特に、被処理気体に酸素が含まれる場合には、エキシマランプから放射される短波長の光が照射されることで、反応性の高いO(1D)が生成され、さらに水が含まれる場合には、ヒドロキシラジカル(・OH)が生成されるため、被処理気体に含まれるVOCを分解する能力の向上が期待される。
 ところで、本発明者らは、エキシマランプを用いてVOCを含む被処理気体の処理を行うことにつき鋭意研究した結果、処理を継続していくに連れてエキシマランプの表面に汚濁物が付着し、エキシマランプから放射される紫外光の照度が低下するという新たな課題を発見した。このような事態は、時間と共にガス処理装置のVOCを処理する能力を低下させるため好ましくない。
 エキシマランプの表面に汚濁物が付着した場合は、定期的に当該汚濁物を拭き取る作業を行うことで、VOCの処理能力の回復を図ることが考えられる。しがしながら、実験施設や工場の排気ダクト等の途中に設置される全てのガス処理装置について、定期的にエキシマランプの拭き取り作業を実施することは、多大な労力と時間を要するため現実的ではない。
 本発明は、上記課題に鑑み、作業者による拭き取り作業等を要することなく、VOCの処理能力の低下を回復させることができるガス処理方法及びガス処理システムを提供することを目的とする。
 本発明のガス処理方法は、
 VOC及び酸素を含有する処理対象ガスを処理するガス処理方法であって、
 流路の一部を構成する処理空間内に配置された、主たる発光波長が200nm以下の紫外光を発する放電ランプを点灯させている状態の下で、前記処理空間内に前記処理対象ガスを導入する工程(A)と、
 前記工程(A)の実施後、前記放電ランプを点灯させている状態の下で、前記処理空間内に、酸素を含有し、VOCを実質的に含有しない清浄ガスを導入する工程(B)とを含むことを特徴とする。
 本明細書における「主たる発光波長」とは、ある波長λに対して±10nmの波長域Z(λ)を発光スペクトル上で規定した場合において、発光スペクトル内における全積分強度に対して40%以上の積分強度を示す波長域Z(λi)における、波長λiを指す。
 本明細書における「VOCを実質的に含有しない」とは、VOC濃度が0ppmである場合のみならず、VOC濃度が50ppm未満の場合をも含むことを意図している。なお、清浄ガスに関しては、VOC濃度が25ppm未満であることが好ましく、10ppm以下であることがより好ましい。
 放電ランプの表面に付着する汚濁物は、VOC由来の、主に工程(A)において、紫外光が照射されることで生成された中間生成物であると推察される。当該中間生成物は、主にオゾンやラジカルによって、VOCが水や二酸化炭素等の最終生成物にまで分解処理される過程の途中で生成される物質である。
 そこで、本発明者らは、処理空間内で生成されるオゾンが、処理対象ガスに含まれるVOCよりも、放電ランプの表面に付着した汚濁物と反応しやすい環境を作り出し、当該汚濁物を最終生成物にまで分解処理することで、放電ランプの表面を清浄化する方法について鋭意検討を行った。
 清浄ガスを導入している状態の下で表面に汚濁物が付着している放電ランプを点灯させると、所望の照度での紫外光の照射はできないものの、清浄ガスに含まれる酸素に紫外光が照射されて、処理空間内でオゾンが生成される。清浄ガスは、VOCを実質的に含まない。このため、当該オゾンは、放電ランプの表面に付着している汚濁物と反応しやすい。
つまり、放電ランプの表面に蓄積している汚濁物は、このようにして処理空間内に生成されたオゾンによって、徐々に最終生成物である水や二酸化炭素にまで分解処理されて処理空間の外側へと排出される。
 したがって、上記方法とすることで、拭き取り作業等を要することなく、導入するガスを切り替えることのみで、放電ランプの表面に付着した汚濁物を除去することができる。
そして、放電ランプは、処理対象ガスの処理を実施する前の状態に近づくように出射される紫外光の光量が回復する。
 なお、上記方法については、工程(A)と工程(B)とが連続的に実施されなくてもよい。例えば、工程(A)の実施後、放電ランプを消灯して放電ランプを消灯した状態で処理空間に所定の流量の清浄ガスを導入する工程を経た後、放電ランプを点灯させて工程(B)を実施する方法が採用されても構わない。また、工程(A)の実施後、処理空間へのガスの導入を完全に停止した状態で放電ランプを点灯させる工程を経た後、工程(B)を実施する方法や、工程(B)の実施後、一時的に処理空間へのガスの導入を完全に停止した状態で放電ランプを点灯させる工程を実施する方法が採用されても構わない。
 さらに、工程(A)において処理空間内に導入される処理対象ガスは、実験室等の排気口から取り込まれてダクトから導入されるガスに対して、清浄ガスを混ぜた混合ガスであっても構わない。
 上記ガス処理方法において、
 前記工程(A)及び前記工程(B)は、管体内にキセノン(Xe)ガスを含む発光ガスが封入された、放電ランプの一種であるエキシマランプを点灯させて実施される工程であっても構わない。
 酸素の光吸収バンドの波長範囲は、主に100nm以上240nm以下の範囲内であり、当該波長範囲の紫外光が酸素分子に照射されることでオゾンが生成される。そして、管体内にキセノン(Xe)ガスを含む発光ガスが封入されたエキシマランプは、主たる発光波長が172nm付近であり、狭い発光バンド幅を示す紫外光を出射する放電ランプである。
 つまり、当該構成のエキシマランプは、出射する紫外光のほとんどが、酸素と水に吸収されてオゾン生成に利用されるため、無駄になる紫外光が比較的少なく、上記方法に利用する放電ランプとして好適である。
 上記ガス処理方法において、
 前記工程(B)は、前記清浄ガスとして空気が前記処理空間内に導入される工程であっても構わない。
 一般的に空気には、酸素と水とが含まれる。そして、空気に主たる発光波長が200nm以下の紫外光が照射されると、上述したように、反応性の高いO(1D)と、ヒドロキシラジカル(・OH)とが生成される。つまり、上記方法とすることで、VOC及び放電ランプの表面に付着した汚濁物に対し、オゾンによる分解処理効果に加え、ヒドロキシラジカルによる高い分解処理効果が得られる。
 なお、上記方法は、ヒドロキシラジカルによる高い分解処理効果を得るために、例えば、加湿器等を用いて処理空間内にミスト状の水を導入する工程を含んでいても構わない。
 上記ガス処理方法は、
 前記工程(A)を開始して所定の時間が経過した後に、前記工程(B)が実施される方法であっても構わない。
 また、上記ガス処理方法は、
 前記工程(A)において、前記処理空間を通流した前記処理対象ガスの流量の合計値が所定の閾値以上となった後に、前記工程(B)が実施される方法であっても構わない。
 長時間にわたって工程(A)の実施を継続した場合、放電ランプの表面に汚濁物が堆積しすぎて、ほとんど紫外光を出射できない状態となってしまう可能性がある。放電ランプからほとんど紫外光が出射されない場合、工程(B)において、処理空間内にいくら清浄ガスを導入しても、オゾンが生成されず、放電ランプの表面に付着した汚濁物は分解処理されない。
 また、長時間にわたって何らの処理もされなかった汚濁物は、放電ランプの表面に固着してしまい、オゾンやヒドロキシラジカルに曝してもほとんど分解処理されない状態となってしまう可能性がある。
 さらに、短時間の間に多量のVOCが導入されることが想定される場合、放電ランプの表面に、急激に多量の汚濁物が付着してしまい、長時間にわたって工程(A)を継続して実施していないにも関わらず、放電ランプが紫外光を出射できない状態となってしまう可能性がある。
 そこで、上記方法とすることで、放電ランプが上述したような状態に陥る前に、工程(A)の実施を終了して、工程(B)を実施することができ、より確実に放電ランプから出射される紫外光の光量を回復させることができる。
 本発明のガス処理システムは、
 内側にVOC及び酸素を含有する処理対象ガスを取り込んで処理する処理空間が形成された筐体と、
 前記処理空間内に配置された、波長が200nm以下の紫外光を発する放電ランプと、 前記処理空間内に前記処理対象ガス、又は前記処理空間内に酸素を含有し、VOCを実質的に含有しない第一清浄ガスを取り込む導入口と、
 前記処理空間を流通したガスを排出する排出口と、
 前記導入口へ前記処理対象ガスを導入するか、前記第一清浄ガスを導入するかを、選択的に切り替える切替部とを備えることを特徴とする。
 ここでの「切替部」は、処理空間内に処理対象ガスを導入するか、第一清浄ガスを導入するかの切り替えを実現する機構であって、具体例としては、処理対象ガスが通流する流路と、第一清浄ガスが通流する流路との接続点に設けられる三方弁や、流路を開閉する制御弁、ガス処理装置の開口部に直接、又は開口部周辺に設けられるシャッター、ルーバ等に相当する。また、切替部は、これらの機構を複数組み合わせられて構成されていても構わない。
 上記ガス処理システムにおいて、
 前記放電ランプは、キセノン(Xe)ガスを含む発光ガスが管体内に封入されたエキシマランプであっても構わない。
 上記ガス処理システムにおいて、
 前記第一清浄ガスは、空気であっても構わない。
 上記ガス処理システムは、
 前記筐体には、前記処理空間と、前記導入口と、前記排出口とが複数設けられており、前記切替部は、前記導入口へ前記処理対象ガスを導入するように切り替わると、他の開口部へ前記第一清浄ガスを導入するように切り替わるように構成されていても構わない。
 また、上記ガス処理システムは、
 前記筐体と、前記放電ランプと、前記導入口と、前記排出口とを有するガス処理装置を複数備え、前記切替部は、複数の前記ガス処理装置のうちの、一のガス処理装置の開口部へ前記処理対象ガスを導入するように切り替わると、他のガス処理装置の開口部へ前記第一清浄ガスを導入するように切り替わるように構成されていても構わない。
 上記ガス処理システムは、
 前記切替部の切り替え制御を行う制御部と、
 前記制御部が前記切替部を制御して、前記導入口への前記処理対象ガスの導入を開始してから経過した時間を計測するタイマとを備え、
 所定の時間が経過したことを前記タイマが検知すると、前記制御部が前記導入口へ前記第一清浄ガスを導くように前記切替部を切り替える制御を実行するように構成されていても構わない。
 上記ガス処理システムは、
 前記切替部の切り替え制御を行う制御部と、
 前記制御部が前記切替部を制御して、前記導入口への前記処理対象ガスの導入を開始してから、前記処理空間を通流した前記処理対象ガスの流量を計測する流量計とを備え、
 前記処理空間を通流した前記処理対象ガスの流量の合計値が所定の閾値以上となったことを前記流量計が検知すると、前記制御部が前記導入口へ前記第一清浄ガスを導くように前記切替部を切り替える制御を実行するように構成されていても構わない。
 本発明によれば、作業者による拭き取り作業等を要することなく、VOCの処理能力の低下を回復させることができるガス処理方法及びガス処理システムが実現される。
ガス処理システムの一実施形態を模式的に示す図面である。 図1のガス処理装置周辺の構成を拡大した図面である。 ガス処理装置の構成を模式的に示す側面断面図である。 ガス処理装置に処理対象ガスが導入されている状態を示す図面である。 ガス処理装置に空気が導入されている状態を示す図面である。 ガス処理装置の動作過程を示すフローチャートである。 検証実験に用いるエキシマランプの構成を模式的に示す図面である。 図6Aに示すエキシマランプを、管軸を中心として90°回転した方向から見たときの図面である。 エキシマランプから出射される紫外光の照度を測定している様子を模式的に示す図面である。 各サンプルの照度維持率の時間変化を示すグラフである。 ガス処理システムの一実施形態の動作中の状態を模式的に示す図面である。 ガス処理システムの一実施形態の動作中の状態を模式的に示す図面である。 ガス処理システムの一実施形態を模式的に示す図面である。 ガス処理システムの一実施形態を模式的に示す図面である。 ガス処理システムの一実施形態の構成と動作を模式的に示す図面である。 ガス処理システムの一実施形態の構成と動作を模式的に示す図面である。 ガス処理システムの別実施形態におけるガス処理装置周辺の構成を模式的に示す図面である。 ガス処理システムの別実施形態の構成と動作を模式的に示す図面である。 ガス処理システムの別実施形態の構成と動作を模式的に示す図面である。 ガス処理システムの別実施形態における、ガス処理装置の模式的に示す図面である。 図13Aのガス処理装置を、開口部に向かって見たときの図面である。
 以下、本発明のガス処理方法及びガス処理システムについて、図面を参照して説明する。なお、以下の各図面は、いずれも模式的に図示されたものであり、図面上の寸法比や個数は、実際の寸法比や個数と必ずしも一致していない。
 [第一実施形態]
 図1は、ガス処理システム1の全体構成を模式的に示す図面であり、図2は、図1のガス処理装置10周辺の構成を拡大した図面である。図1に示すように、第一実施形態のガス処理システム1は、建造物2の実験室3に存在するVOCを含む処理対象ガスを処理する、いわゆる全体換気システムとして説明される。
 なお、建造物2の具体例としては、化学工場、研究所や大学の実験室、医療施設等、VOCに関する環境管理が求められる施設等が考えられる。
 ガス処理システム1は、図1及び図2に示すように、ガス処理装置10と、第一流路11と、第二流路12と、第三流路13と、切替部14とを備える。なお、図1においては、これらを一つずつ備えたガス処理システム1として図示されているが、実際には、建造物2の大きさや構造、実験室3の数等に応じて、それぞれ必要な数だけ設置される。
 第一流路11は、実験室3に備えられたダクト口4に接続され、内側を実験室3内で発生する酸素、水、及びVOCを含有する処理対象ガスG1が通流する流路である。なお、ダクト口4又は第一流路11内には、処理対象ガスG1が、確実に所定の方向に向かって通流し、VOCが実験室3側に逆流しないように、送風用のファンが設けられていても構わない。また、図1において図示されてはいないが、実験室3には、ダクト口4から吸気されたガスの分だけ外気を取り込むための換気口が設けられていても構わない。
 第二流路12は、建造物2の外側から酸素と水を含有し、VOCを実質的に含有しない清浄ガス(第一清浄ガス)である空気G2を取り込むための吸気口2aに接続され、内側を空気G2が通流する流路である。なお、吸気口2a又は第二流路12内には、空気G2が取り込まれ、確実に所定の方向に向かって通流するように、送風用のファンが設けられていても構わない。
 第三流路13は、ガス処理装置10から排出される処理済みガスG3を建造物2の外側に排気するための排気口2bに接続された流路である。上記と同様に、排気口2b又は第三流路13内には、処理済みガスG3が排気口2bから排出されるように、送風用のファンが設けられていても構わない。
 切替部14は、処理対象ガスG1を導入するか、空気G2を導入するかを、選択的に切り替える機構である。なお、第一実施形態における切替部14は、第一流路11と第二流路12との接続点に配置された三方弁であるが、例えば、流路を開閉する制御弁やシャッター、ルーバ、ダンパー等、又はこれらの組み合わせにより、上記機構を実現しても構わない。
 (ガス処理装置10)
 図3は、ガス処理装置10の構成を模式的に示す図面である。図3に示すように、第一実施形態におけるガス処理装置10は、筐体20と、放電ランプ21と、制御部22とを備える。図4Aは、ガス処理装置10に処理対象ガスG1が導入されている状態を示す図面であって、図4Bは、ガス処理装置10に空気G2が導入されている状態を示す図面である。
 筐体20は、対向する側面において、導入口20aと排出口20bとが設けられており、内側には導入口20aと排出口20bとを連絡し、内側に処理対象ガスG1、又は空気G2が導入される処理空間20cが形成されている。また、第一実施形態の筐体20は、処理空間20cとは区画された別の清浄な空間として、制御部22が収容される空間20dが形成されている。
 放電ランプ21は、筐体20内に形成された処理空間20c内に配置されて、導入口20aから流入する処理対象ガスG1、又は空気G2に対して、紫外光を照射する。第一実施形態における放電ランプ21は、管体内にキセノン(Xe)ガスを含む発光ガスが封入されており、電力が供給されて点灯すると、主たる発光波長が172nmである紫外光を出射するエキシマランプである。
 なお、放電ランプ21は、主たる発光波長が200nm以下の紫外光を出射できる光源であればよく、例えば、アルゴン(Ar)ガスとフッ素(F)ガスとが発光ガスとして管体に封入されたエキシマランプや、更に別の光源として、重水素ランプ、エキシマレーザ、F2レーザ等を採用し得る。また、エキシマランプについては、同心円状に電極が配置された一重管形状や二重管形状と称される形状や、管体の断面が矩形状を呈し、管体を介して対向するように電極が配置された扁平管形状と称される形状等が存在するが、いずれの形状のエキシマランプを採用しても構わない。
 第一実施形態においては、図3に示すように、処理空間20cの一部が狭くなるように構成されている。波長が200nm以下の紫外光は、酸素に吸収されやすいため、処理空間20c中を約10mm程度しか進行できない。このため、処理対象ガスG1、及び空気G2が放電ランプ21の近傍を通流しやすくするために上記構成が採用されている。
 制御部22は、インバータ22aと、導入ガス制御部22bと、タイマ22cとを備える。インバータ22aは、図示しない外部電源から供給される電力から、放電ランプ21を点灯させるための電力を生成する電気回路である。インバータ22aで生成された電力は、給電線22dを介して放電ランプ21に供給される。なお、実際には給電線22dは、正極用と負極用とで二つ存在するが、図3においては、後方に存在する給電線が前方の給電線22dによって隠されているため、一つの給電線22dしか図示されていない。
 導入ガス制御部22bは、図4Aに示すように、放電ランプ21の点灯動作を開始させる信号d1を、インバータ22aに対して出力する。また、導入ガス制御部22bは、処理対象ガスG1を処理空間20cに導入するように制御する信号d2を、切替部14に対して出力する。なお、図3~図4Bにおいては、導入ガス制御部22bと切替部14との間の通信が模式的に図示されているが、第一実施形態においては、導入ガス制御部22bと切替部14とが無線通信ができるように構成されている。なお、導入ガス制御部22bと切替部14とは、ケーブルで接続されて有線で通信を行うように構成されていても構わない。なお、導入ガス制御部22bと切替部14との通信は、双方向通信が可能となるように構成されていてもよく、例えば、切替部14が流路の切り替えが完了したことを導入ガス制御部22bに通知する信号を出力するように構成されていても構わない。
 タイマ22cは、所定の制御が実行された直後からの経過時間を計測し、導入ガス制御部22bに対して、信号d3又は信号d5出力する。なお、人が任意のタイミングで制御部22を操作して切替部14を制御するような、時間の計測が特段必要でない場合は、ガス処理装置10は、タイマ22cを備えていなくても構わない。
 (ガス処理方法)
 次に、上記ガス処理システム1がどのような動作を実施するかについて、図5を参照しながら説明する。なお、ここでの説明において参照する図5は、ガス処理装置10の動作過程を示すフローチャートである。
 図4Aに示すように、導入ガス制御部22bが切替部14に対して信号d2を出力する(ステップS1)。
 ステップS1の実施後、ガス処理システム1の動作が開始すると、導入ガス制御部22bがインバータ22aに対して信号d1を出力され、処理空間20c内への処理対象ガスG1の導入が開始される(ステップS2)。
 ステップS1よりもステップS2を先に実行してもよく、さらに、ステップS1とステップS2とを同時に実行しても構わないが、切替部14が制御された直後に導入される処理対象ガスG1を確実に処理できるように、ステップS1の実施後、数秒経過した後にステップS2が実施されることが好ましい。なお、いずれの手順で実施した場合においても、工程(A)における、放電ランプ21を点灯させている状態の下で、処理空間20c内に処理対象ガスG1を導入することが実現される。
 ステップS2の実施後、タイマ22cがステップS2の実施が完了した直後からの経過時間を計測する(ステップS3)。なお、上述したように、ステップS1とステップS2との順序が逆であった場合や、ステップS1とステップS2が同時に実行される場合も想定されるが、このタイマ22cは、ステップS1及びステップS2のいずれもが完了した直後からの経過時間を計測する。
 ステップS2を実施してから所定の時間が経過したことをタイマ22cが検知すると、タイマ22cが導入ガス制御部22bに対して信号d3を出力する(ステップS4)。なお、このステップS4においてタイマ22cが信号d3を出力するタイミングは、放電ランプ21の表面に、処理対象ガスG1に含まれるVOCの種類や、ガス処理装置10に導入される処理対象ガスG1において想定されるVOCの濃度等に応じて任意に設定される。第一実施形態においては、当該タイミングは、ステップS2が完了してから100h後に設定されている。
 ステップS4により、タイマ22cから信号d3が入力された導入ガス制御部22bは、図4Bに示すように、切替部14に対して信号d4を出力する(ステップS5)。このステップS5が実施されることにより、処理空間20c内への空気G2の導入が開始される。
 なお、このステップS5が実施されている最中において、放電ランプ21を一時的停止し、空気G2の導入が開始した後で、再び放電ランプ21を点灯させるように制御部22が構成されていてもよい。いずれの場合であっても、工程(B)における、放電ランプ21を点灯させている状態の下で、処理空間20c内に清浄ガスである空気G2(第一清浄ガス)を導入することが実現される。
 ステップS5の実施後、タイマ22cがステップS5の実施が完了した直後からの経過時間を計測する(ステップS6)。
 タイマ22cがステップS5の完了直後から所定の時間が経過したことを検知すると、タイマ22cが導入ガス制御部22bに対して信号d5を出力する(ステップS7)。なお、このステップS7においてタイマ22cが信号d5を出力するタイミングは、放電ランプ21の表面に蓄積した汚濁物が、ある程度除去されたと想定される任意の時間に設定されるが、第一実施形態においては、20hに設定した。
 ステップS7により、タイマ22cから信号d5が入力された導入ガス制御部22bは、図4Aに示すように、切替部14に対して信号d1を出力し、ステップS2の動作を実施する。
 以降、図5に示すように、ガス処理装置10の動作が停止されるまで、ステップS2からステップS7までが繰り返される。なお、ガス処理装置10の動作を停止させるタイミングは、任意であるが、再稼働するまでに放電ランプ21の表面に汚濁物が固着してしまうことを抑制するため、ステップS7が実施された直後とすることが好ましい。
 [検証実験]
 ここで、空気G2を流しながら放電ランプを点灯させることで、表面に付着したVOC由来の汚濁物が除去され、放電ランプから出射される紫外光L1の光量が回復するのかどうかについて確認する検証実験を行ったので、当該検証実験の詳細について説明する。
 (条件)
 図6Aは、放電ランプとして本検証に用いるエキシマランプ60の構成を模式的に示す図面であり、図6Bは、図6Aに示すエキシマランプ60を、管軸を中心として90°回転した方向から見たときの図面である。そして、図7は、エキシマランプ60から出射される紫外光の照度を測定している様子を模式的に示す図面である。
 図6A及び図6Bに示すように、本検証に用いるエキシマランプ60は、管体61を介して、電極62が対向するように配置された扁平管形状と称されるエキシマランプである。なお、図示はしていないが、エキシマランプ60は、管軸61aに直交する平面切断した時の断面が、矩形状を呈する。また、エキシマランプ60は、管軸61a方向の長さが、158mmであって、電極62の各辺の長さが、12mm×95mmである。
 そして、本検証は、同じ仕様で作成された4本のエキシマランプを用いて、4つのサンプルデータ(#1~#4)を取得した。
 本検証は、第一実施形態のガス処理装置10を用いて、上述したステップS1からステップS6までを実施し、ステップS6を開始してから20時間ごとの照度維持率を確認することで行われた。なお、ここでの「照度維持率」とは、処理空間20c内に処理対象ガスG1を導入する前の状態における、放電ランプ21を点灯させた時の照度に対する、所定のタイミングにおいて放電ランプ21を点灯させて同様の方法で測定した時の照度の比率として定義される。
 なお、エキシマランプ60の照度は、図6Aに示す、エキシマランプ60の中心部61bについて、図7に示すように、エキシマランプ60から、3mm離間した位置に配置した照度計63によって測定して取得した。
 処理対象ガスG1は、VOCの一種であるm-キシレンの濃度が80ppmとなるように調整した。また、上記ステップS3の間は、0.4m3/minの流量で処理空間20c内に処理対象ガスG1を導入し、上記ステップS6の間は、0.4m3/minの流量で処理空間20c内に空気G2を導入した。
 本検証は、同じ仕様で作成された4本のエキシマランプを用いて、4つのサンプルデータを取得した。
 (結果)
 図8は、各サンプルの照度維持率の時間変化を示すグラフである。図8に示すグラフは、横軸がステップS6を開始した時間を0hとしたときの経過時間を示し、縦軸が照度維持率を示している。図8に示すように、いずれもステップS6を開始した直後から時間が経過するとともに、照度維持率が上昇している、すなわち、エキシマランプ60から出射される紫外光の光量が回復していることが確認される。
 なお、図8におけるサンプル#1に関しては、ステップS6を開始した時点における照度維持率が、他のサンプルに比べて高くなっている。これは、図6Aに示すエキシマランプ60の中心部61bに付着した汚濁物の量が、比較的少なかったためと推察される。
 なお、サンプル数は1ではあるが、同様の条件で、VOCの一種であるトルエンを含む処理対象ガスでも検証実験を行ったところ、エキシマランプ60の表面に汚濁物が付着することと、同様に出射される紫外光の光量が回復することが確認された。
 以上より、上記ガス処理方法及びガス処理システム1によれば、拭き取り作業等を要することなく、処理空間20c内に導入するガスを切り替えることのみで、放電ランプ21の表面に付着した汚濁物を除去することができる。そして、放電ランプ21は、処理対象ガスG1の処理を実施する前の状態に近づくように出射される紫外光の光量が回復する。
 なお、ガス処理装置10に導入されるガスの切り替えは、ガス処理装置10が備えるタイマ22cによって所定の時間で実行されるように構成されていても構わないが、例えば、実験室3の電灯スイッチやドラフトチャンバのON/OFF、ガスセンサによるVOC濃度の上昇の検知、人感センサによる人の存在の検知等に基づいて切り替わるように構成されていても構わない。
 さらに、切替部14の切り替えは、ガス処理装置10が導入ガス制御部22bとタイマ22cを備えず、切替部14を人が手動で操作することで実現しても構わない。
 また、ダクト口4と接続するか、又は吸気口2aと接続するかを切り替えることで、ガス処理装置10に導入するガスを切り替える方法を説明したが、例えば、ダクト口4側の経路の開け閉めのみが行われるように構成されていても構わない。つまり、処理対象ガスG1がガス処理装置10に導入される際に、吸気口2aから空気G2が同時に導入されていても構わない。処理対象ガスG1は、VOC及び酸素を含有するガスであり、実験室3内で発生したVOCを含むガスと、建造物2の外側から取り込まれた新鮮な空気とを混合させた混合ガスであっても、VOC及び酸素を含有するガスであれば、処理対象ガスG1に相当する。
 実験室3内のVOCの濃度が高くなると、作業者の健康に悪影響を及ぼすおそれがあるため、取り込む空気G2の量等は調整しつつも、建造物2外から新鮮な空気を常時取り入れることが好ましい。
 [第二実施形態]
 本発明のガス処理システム1の第二実施形態の構成につき、第一実施形態と異なる箇所を中心に説明する。
 図9A及び図9Bは、ガス処理システム1の第二実施形態の動作中の状態を模式的に示す図面である。図9A及び図9Bに示すように、第二実施形態のガス処理システム1は、ガス処理装置10が、流路31を介して実験室3に設置されたドラフトチャンバ5の排気口5aに接続されている、いわゆる局所換気システムとして説明される。
 より具体的には、例えば、実験室3内で実験が行われている日中は、ドラフトチャンバ5内で発生するVOCを含む処理対象ガスG1が、流路31を介してガス処理装置10に導入される。そして、実験が行われない深夜や休日等は、実験室3内の清浄な空気が、そのまま流路31を介してガス処理装置10に導入される。
 図9C及び図9Dは、図9A及び図9Bとは別構成の、ガス処理システム1の第二実施形態を模式的に示す図面である。図9Cに示すように、ガス処理システム1は、ガス処理装置10が搭載されたドラフトチャンバ5により、実験室3内を清浄な環境で維持するシステムとして構成されていても構わない。
 また、図9Dに示すように、ガス処理システム1は、ドラフトチャンバ5とは別に、ガス処理装置10を空気清浄機として実験室3内に配置し、実験室3を清浄な環境で維持するシステムとして構成されていても構わない。
 図9Cに示すガス処理システム1は、図9A及び図9Bに示すガス処理システム1と同様に、実験室3内で実験が行われている日中は、ドラフトチャンバ5内で発生するVOCを含む処理対象ガスG1が、ガス処理装置10に導入される。そして、実験が行われない深夜や休日等は、実験室3内の清浄な空気G2が、ガス処理装置10に導入される。なお、図9C及び図9Dにおいては、図示の都合上、処理対象ガスG1と空気G2とが同じガスのように図示されているが、実際には、実験室3内で実験が行われている場合は処理対象ガスG1、実験室3内で実験が行われていない場合や、ドアや窓が開放されて換気が行われ、実験室3内が比較的清浄な空間となっている場合は空気G2となっている。
 ガス処理装置10は、処理対象ガスG1が流れ込む間、及び清浄な空気G2が流れ込む間において、放電ランプ21が点灯するように制御される。当該制御により、処理対象ガスG1を処理する際に放電ランプ21の表面に付着した汚れは、空気G2に含まれる酸素や水から生成されるオゾンやヒドロキシラジカルによって分解処理されて、徐々に放電ランプ21の表面から取り除かれる。したがって、放電ランプ21は、処理対象ガスG1の処理を実施する前の状態に近づくように出射される紫外光の光量が回復する。
 [第三実施形態]
 本発明のガス処理システム1の第三実施形態の構成につき、第一実施形態及び第二実施形態と異なる箇所を中心に説明する。
 図10A及び図10Bは、ガス処理システム1の第三実施形態の構成と動作を模式的に示す図面である。図10A及び図10Bに示すように、ガス処理システム1の第三実施形態は、直列に接続された二つのガス処理装置(10a,10b)と、三つの三方弁(14a,14a,14a)からなる切替部14とを備え、ガス処理装置(10a,10b)に対して処理対象ガスG1を導入させる方向が、交互に入れ替わるように構成されている。
そして、処理対象ガスG1を導入させる方向が入れ替わることにより、ガス処理装置10においては、装置の構成上は変化しないが、処理対象ガスG1が導入される導入口20aと、処理済みガスG3が排出される排出口20bとが入れ替わることになる。
 当該構成の動作について詳述する。まず、ガス処理システム1の動作が開始すると、図10Aに示すような経路で処理対象ガスG1が通流するように、三方弁(14a,14a,14a)が切り替わる。なお、三方弁(14a,14a,14a)は、いずれかのガス処理装置10に備えられた制御部(不図示)や、別途設けられた制御部(不図示)によって制御されてもよく、作業者が手動で切り替えても構わない。
 このような状態においては、まず、ガス処理装置10bが処理対象ガスG1を取り込み、当該処理対象ガスG1を処理し、清浄ガスである処理済みガスG3を排出する。
 なお、処理対象ガスG1に含まれる酸素は、ガス処理装置10bで全てオゾンに変換されることなく、少なくとも一部はそのまま排出される。また、ガス処理装置10b内で生成されたオゾンは、処理対象ガスと反応して分解され、一部が酸素となる。このため、ガス処理装置10bから排出される処理済みガスG3は、酸素を含む清浄ガスである。
 そして、ガス処理装置10bから排出された清浄ガスである処理済みガスG3が、ガス処理装置10aに導入される。この時、ガス処理装置10aが備える放電ランプ21の表面に、VOC由来の汚濁物が付着していた場合は、当該汚濁物が分解処理されて取り除かれる。すなわち、当該放電ランプは、出射する紫外光の光量が回復する。
 上記動作が開始されて所定の時間が経過すると、三方弁(14a,14a,14a)が切り替わり、図10Bに示すように、ガス処理装置10aが処理対象ガスG1を取り込み、当該処理対象ガスG1を処理し、清浄ガスである処理済みガスG3を排出する。
 そして、ガス処理装置10aから排出された清浄ガスである処理済みガスG3が、ガス処理装置10bに導入される。今度は、ガス処理装置10bが備える放電ランプ21の表面に付着しているVOC由来の汚濁物が分解処理されて取り除かれる。すなわち、当該放電ランプは、出射する紫外光の光量が回復する。
 以降、ガス処理システム1の動作が停止されるまで、図10Aに示す状態と、図10Bに示す状態とが交互に繰り返されることにより、ガス処理装置(10a,10b)の放電ランプ表面の清浄状態が維持される。
 [別実施形態]
 以下、別実施形態につき説明する。
 〈1〉 図11は、ガス処理システム1の別実施形態におけるガス処理装置10周辺の構成を模式的に示す図面である。図11に示すように、ガス処理装置10の制御部22は、タイマ22cを備えず、導入ガス制御部22bが上流側に設けられた流量計40から出力される信号d6を受信するように構成されていても構わない。そして、導入ガス制御部22bは、処理対象ガスG1の導入を開始してから流量の合計値が所定の閾値以上となった後に、切替部14を制御するように構成されていても構わない。
 当該構成とすることで、一時的に大量の処理対象ガスG1が導入され、短時間で放電ランプ21の表面に多量の汚濁物が付着した場合に、所定の時間の経過を待つことなく、清浄ガスの導入に切り替えることができる。
 なお、本実施形態においては、追加的に、流量計40が測定した処理対象ガスG1の流量の時系列データを格納する記憶部や、当該データを含み、スマートフォンやPC等の外部機器で読み取り可能な無線信号を生成して出力する通信部を備えていても構わない。また、当該構成とすることで、放電ランプ21の異常を検知したり、交換時期を予測したりすることができる。
 また、処理対象ガスG1の導入を開始してからの経過時間や流量の合計値以外のパラメータが、切替部14の制御に用いられても構わない。当該パラメータとしては、具体的には、処理済みガスG3に含まれるVOCの濃度や、導入口を通流するガスの圧力と排出口を通流するガスの圧力との差、又はこれらに基づいて算出されるCv値等を採用し得る。
 〈2〉 図12A及び図12Bは、ガス処理システム1のさらに別の実施形態の構成と動作を模式的に示す図面である。図12A及び図12Bに示すように、ガス処理システム1は、二つのガス処理装置(10a,10b)が並列に接続されて、四つの制御弁(14b,14b,14b,14b)からなる切替部14によって、処理対象ガスG1と空気G2とが、それぞれのガス処理装置10に対して交互に導入されるように構成されている。
 上記構成とすることで、常にいずれかのガス処理装置(10a,10b)において処理対象ガスG1の処理を停止することなく、放電ランプ21の回復処理も実施することができる。なお、ガス処理システム1の本実施形態においては、ガス処理装置が二つ搭載されているが、ガス処理能力を高めるべく、ガス処理装置を三つ以上搭載していても構わない。また、複数のガス処理装置のうちの少なくとも一つは、放電ランプ21の回復処理が完了するまでの間のみVOCを外部に放出しないようにできる装置であれば、例えば、流路内に活性炭が充填された装置や、VOCを燃焼処理する装置であっても構わない。
 図13Aは、図12A及び図12Bとはさらに別の実施形態における、ガス処理装置10の模式的に示す図面であり、図13Bは、図13Aのガス処理装置10を、開口部に向かって見たときの図面である。なお、図13Bにおいては、図示の都合上、空間20dが省略されている。
 図13Aに示すように、ガス処理装置10は、複数の処理空間(20c,20c)と、それぞれに対応した導入口20a及び排出口20bとを備え、図13Bに示すように、筐体20内で処理空間(20c,20c)が入れ替わるように制御することで、それぞれの処理空間(20c,20c)に導入するガス(G1,G2)を切り替えるように構成されていても構わない。
 図13A及び図13Bに示すような構成とすることで、システム全体を大型化することなく、常にいずれかの処理空間で(20c,20c)において処理対象ガスG1の処理を停止することなく、放電ランプ21の回復処理も実施することができる。また、当該構成のガス処理装置10では、処理空間(20c,20c)内に導入されるガス(G1,G2)の切り替えが、ガス処理装置10内だけで行われるため、多数の制御弁やシャッター等を用いた複雑なガス流路を構成する必要がない。
 〈3〉 上述した各実施形態においては、ガス処理装置10に導入する清浄ガスとして、いずれも建造物2の外側から取り込んだ空気を採用しているが、当該清浄ガスとしては、酸素を含有し、VOCを実質的に含まないガスであれば、空気以外を採用しても構わない。例えば、酸素ボンベから酸素濃度が高いガスを直接導入してもよく、建造物2内の清浄な環境が維持されている空間から取り込んだ空気を導入しても構わない。
 また、オゾンよりも高い反応性を示すヒドロキシラジカルを生成するために、ガス処理装置10に導入する清浄ガスに水が含まれるように、ガス処理システム1は、例えば、加湿器等の加湿手段を備えていても構わない。
 〈4〉 上述したガス処理システム1が備える構成は、あくまで一例であり、本発明は、図示された各構成に限定されない。
    1    :  ガス処理システム
    2    :  建造物
    2a   :  吸気口
    2b   :  排気口
    3    :  実験室
    4    :  ダクト口
    5    :  ドラフトチャンバ
    5a   :  排気口
   10,10a,10b   :  ガス処理装置
   11    :  第一流路
   12    :  第二流路
   13    :  第三流路
   14    :  切替部
   14a   :  三方弁
   14b   :  制御弁
   20    :  筐体
   20a   :  導入口
   20b   :  排出口
   20c   :  処理空間
   20d   :  空間
   21    :  放電ランプ
   22    :  制御部
   22a   :  インバータ
   22b   :  導入ガス制御部
   22c   :  タイマ
   22d   :  給電線
   31    :  流路
   40    :  流量計
   60    :  エキシマランプ
   61    :  管体
   61a   :  管軸
   61b   :  中心部
   62    :  電極
   63    :  照度計
    G1   :  処理対象ガス
    G2   :  空気
    G3   :  処理済みガス
    L1   :  紫外光
 
 

Claims (12)

  1.  VOC及び酸素を含有する処理対象ガスを処理するガス処理方法であって、
     流路の一部を構成する処理空間内に配置された、主たる発光波長が200nm以下の紫外光を発する放電ランプを点灯させている状態の下で、前記処理空間内に前記処理対象ガスを導入する工程(A)と、
     前記工程(A)の実施後、前記放電ランプを点灯させている状態の下で、前記処理空間内に、酸素を含有し、VOCを実質的に含有しない清浄ガスを導入する工程(B)とを含むことを特徴とするガス処理方法。
  2.  前記工程(A)及び前記工程(B)は、管体内にキセノン(Xe)ガスを含む発光ガスが封入された、放電ランプの一種であるエキシマランプを点灯させて実施されることを特徴とする請求項1に記載のガス処理方法。
  3.  前記工程(B)は、前記清浄ガスとして空気が前記処理空間内に導入されることを特徴とする請求項1に記載のガス処理方法。
  4.  前記工程(A)を開始して所定の時間が経過した後に、前記工程(B)が実施されることを特徴とする請求項1~3のいずれか一項に記載のガス処理方法。
  5.  前記工程(A)において、前記処理空間を通流した前記処理対象ガスの流量の合計値が所定の閾値以上となった後に、前記工程(B)が実施されることを特徴とする請求項1~3のいずれか一項に記載のガス処理方法。
  6.  内側にVOC及び酸素を含有する処理対象ガスを取り込んで処理する処理空間が形成された筐体と、
     前記処理空間内に配置された、波長が200nm以下の紫外光を発する放電ランプと、 前記処理空間内に前記処理対象ガス、又は前記処理空間内に酸素を含有し、VOCを実質的に含有しない第一清浄ガスを取り込む導入口と、
     前記処理空間を流通したガスを排出する排出口と、
     前記導入口へ前記処理対象ガスを導入するか、前記第一清浄ガスを導入するかを、選択的に切り替える切替部とを備えることを特徴とするガス処理システム。
  7.  前記放電ランプは、キセノン(Xe)ガスを含む発光ガスが管体内に封入されたエキシマランプであることを特徴とする請求項6に記載のガス処理システム。
  8.  前記第一清浄ガスは、空気であることを特徴とする請求項6に記載のガス処理システム。
  9.  前記筐体には、前記処理空間と、前記導入口と、前記排出口とが複数設けられており、前記切替部は、前記導入口へ前記処理対象ガスを導入するように切り替わると、他の開口部へ前記第一清浄ガスを導入するように切り替わることを特徴とする請求項6に記載のガス処理システム。
  10.  前記筐体と、前記放電ランプと、前記導入口と、前記排出口とを有するガス処理装置を複数備え、前記切替部は、複数の前記ガス処理装置のうちの、一のガス処理装置の開口部へ前記処理対象ガスを導入するように切り替わると、他のガス処理装置の開口部へ前記第一清浄ガスを導入するように切り替わることを特徴とする請求項6に記載のガス処理システム。
  11.  前記切替部の切り替え制御を行う制御部と、
     前記制御部が前記切替部を制御して、前記導入口への前記処理対象ガスの導入を開始してから経過した時間を計測するタイマとを備え、
     所定の時間が経過したことを前記タイマが検知すると、前記制御部が前記導入口へ前記第一清浄ガスを導くように前記切替部を切り替える制御を実行することを特徴とする請求項6~10のいずれか一項に記載のガス処理システム。
  12.  前記切替部の切り替え制御を行う制御部と、
     前記制御部が前記切替部を制御して、前記導入口への前記処理対象ガスの導入を開始してから、前記処理空間を通流した前記処理対象ガスの流量を計測する流量計とを備え、
     前記処理空間を通流した前記処理対象ガスの流量の合計値が所定の閾値以上となったことを前記流量計が検知すると、前記制御部が前記導入口へ前記第一清浄ガスを導くように前記切替部を切り替える制御を実行することを特徴とする請求項6~10のいずれか一項に記載のガス処理システム。
     
     
PCT/JP2023/021122 2022-07-25 2023-06-07 ガス処理方法、ガス処理システム WO2024024287A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022118019A JP2024015743A (ja) 2022-07-25 2022-07-25 ガス処理方法、ガス処理システム
JP2022-118019 2022-07-25

Publications (1)

Publication Number Publication Date
WO2024024287A1 true WO2024024287A1 (ja) 2024-02-01

Family

ID=89706140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021122 WO2024024287A1 (ja) 2022-07-25 2023-06-07 ガス処理方法、ガス処理システム

Country Status (2)

Country Link
JP (1) JP2024015743A (ja)
WO (1) WO2024024287A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180861A (ja) * 1993-12-22 1995-07-18 Takasago Thermal Eng Co Ltd 移動する気体中に存在する微生物等の殺菌方法と殺菌装置
JP2008000661A (ja) * 2006-06-21 2008-01-10 Tokki Corp 紫外線照射窓の洗浄装置及び方法
JP2009111208A (ja) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd 紫外線樹脂硬化装置内部の乾式洗浄方法及び乾式洗浄機能付の紫外線樹脂硬化装置
JP2011056191A (ja) * 2009-09-14 2011-03-24 Kyushu Univ 浮遊性有機化合物の分解方法および浮遊性有機化合物分解装置
JP2020185532A (ja) * 2019-05-14 2020-11-19 ウシオ電機株式会社 紫外線照射装置、及びこれを備えた気体処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07180861A (ja) * 1993-12-22 1995-07-18 Takasago Thermal Eng Co Ltd 移動する気体中に存在する微生物等の殺菌方法と殺菌装置
JP2008000661A (ja) * 2006-06-21 2008-01-10 Tokki Corp 紫外線照射窓の洗浄装置及び方法
JP2009111208A (ja) * 2007-10-31 2009-05-21 Toyoda Gosei Co Ltd 紫外線樹脂硬化装置内部の乾式洗浄方法及び乾式洗浄機能付の紫外線樹脂硬化装置
JP2011056191A (ja) * 2009-09-14 2011-03-24 Kyushu Univ 浮遊性有機化合物の分解方法および浮遊性有機化合物分解装置
JP2020185532A (ja) * 2019-05-14 2020-11-19 ウシオ電機株式会社 紫外線照射装置、及びこれを備えた気体処理装置

Also Published As

Publication number Publication date
JP2024015743A (ja) 2024-02-06

Similar Documents

Publication Publication Date Title
KR102160799B1 (ko) 플라즈마를 이용한 출입관리 시스템
CA2486831A1 (en) Air decontamination devices
JP2002276999A (ja) 空気換気浄化装置
KR20050013858A (ko) 공기청정장치 및 공기청정방법
KR20180036517A (ko) 에어컨 공기 정화 시스템
WO2002053196A1 (fr) Dispositif desodorisant
US11964080B2 (en) Air treatment system, and a method of using said air treatment system
WO2024024287A1 (ja) ガス処理方法、ガス処理システム
JP2005052714A (ja) 脱臭装置及びこれを搭載した冷蔵庫
KR20210078379A (ko) 이산화염소를 이용한 악취 제거장치
JP3000056B2 (ja) 空気清浄化装置
JP2001353209A (ja) 脱臭装置
CN102145190B (zh) 高频脉冲光空气净化消毒装置
JP2009513315A (ja) 有害物質を含む廃気を浄化するための装置
JP5391123B2 (ja) 空気浄化装置
KR100930837B1 (ko) 유해물질 분해방법
KR100477485B1 (ko) 휘발성 유기화합물 제거장치
CN204337990U (zh) 一种处理石化污水恶臭的uv光解净化设备
KR101806404B1 (ko) 공기정화 및 악취제거 시스템
US20230233726A1 (en) A portable air treatment system and a method of using said air treatment system
KR101989741B1 (ko) 산화환원반응을 셋트로서 다단계로 구성한 탈취장치
CN210473532U (zh) 空气净化实验仓
JP2004329499A (ja) 空気清浄装置及びこれを使用した空気清浄方法
JP3240291B2 (ja) 排気処理装置を備えた耐候光試験装置
KR102454605B1 (ko) 전기 집진과 오존을 이용한 공기 정화 및 살균 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846023

Country of ref document: EP

Kind code of ref document: A1