WO2024001422A1 - 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 - Google Patents
集成高速续流二极管的沟槽碳化硅mosfet及制备方法 Download PDFInfo
- Publication number
- WO2024001422A1 WO2024001422A1 PCT/CN2023/087960 CN2023087960W WO2024001422A1 WO 2024001422 A1 WO2024001422 A1 WO 2024001422A1 CN 2023087960 W CN2023087960 W CN 2023087960W WO 2024001422 A1 WO2024001422 A1 WO 2024001422A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- type doped
- silicon carbide
- layer
- type
- oxide layer
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 95
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 95
- 238000002360 preparation method Methods 0.000 title abstract description 4
- 239000010410 layer Substances 0.000 claims description 191
- 238000005468 ion implantation Methods 0.000 claims description 38
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 37
- 229920005591 polysilicon Polymers 0.000 claims description 33
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- 239000011229 interlayer Substances 0.000 claims description 22
- 238000000206 photolithography Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- 238000004140 cleaning Methods 0.000 claims description 9
- 238000005530 etching Methods 0.000 claims description 8
- 230000004888 barrier function Effects 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 6
- 230000007423 decrease Effects 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000002513 implantation Methods 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 238000001020 plasma etching Methods 0.000 claims description 3
- 229910021332 silicide Inorganic materials 0.000 claims description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 3
- 230000005684 electric field Effects 0.000 abstract description 8
- 230000000694 effects Effects 0.000 abstract description 4
- 238000011084 recovery Methods 0.000 abstract description 4
- 239000004065 semiconductor Substances 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 230000003313 weakening effect Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 13
- 150000002500 ions Chemical class 0.000 description 7
- 239000000463 material Substances 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003071 parasitic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
Classifications
-
- H01L29/0623—
-
- H01L29/1608—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
- H01L21/0465—Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
-
- H01L29/1095—
-
- H01L29/66068—
-
- H01L29/66734—
-
- H01L29/7804—
-
- H01L29/7805—
-
- H01L29/7813—
-
- H01L29/861—
Definitions
- the invention belongs to the technical field of power semiconductor devices, and specifically relates to a trench silicon carbide MOSFET integrating a high-speed freewheeling diode and a preparation method thereof.
- the wide bandgap semiconductor material SiC is an ideal material for preparing high-voltage power electronic devices. Compared with Si materials, SiC materials have high breakdown electric field strength (4 ⁇ 10 6 V/cm) and high carrier saturation drift velocity (2 ⁇ 10 7 cm/s), high thermal conductivity, and good thermal stability, so it is particularly suitable for use in high-power, high-voltage, high-temperature and radiation-resistant electronic devices.
- SiC VDMOS is a commonly used device among SiC power devices. Compared with bipolar devices, SiC VDMOS has no charge storage effect, so it has better frequency characteristics and lower switching losses. At the same time, the wide band gap of SiC material allows the operating temperature of SiC VDMOS to be as high as 300°C.
- planar SiC VDMOS there are two problems with planar SiC VDMOS.
- One is that the density of the JFET area is relatively large, which introduces a large Miller capacitance and increases the dynamic loss of the device.
- the other is that the parasitic SiC body diode conduction voltage drop is too high. , and it is a bipolar device with a large reverse recovery current.
- the bipolar degradation caused by silicon carbide BPD defects causes the conduction voltage drop of the body diode to continue to increase as the use time increases. Therefore, The body diode of SiC VDMOS cannot be used directly as a freewheeling diode.
- the present invention proposes the trench silicon carbide MOSFET integrated with a high-speed freewheeling diode.
- the MOSFET of the present invention has a trench structure.
- the polysilicon bottom gate oxide layer of the trench MOSFET is thicker.
- a P-type doped buried layer is added to the bottom of the trench, which can significantly reduce the Miller capacitance compared to planar VDMOS. , reduce its switching losses.
- the gate-controlled diode is connected in parallel with the original body diode of the device, which greatly reduces the conduction voltage drop of the body diode, thereby reducing the loss in the reverse freewheeling operating mode.
- the gate-controlled diode is a unipolar device and does not have the minority carrier storage effect, which can completely eliminate the reverse recovery current of the body diode, thereby reducing dynamic losses.
- the technical problem to be solved by the present invention is to solve the problems existing in the existing technology and to meet the high-frequency switching application requirements of silicon carbide power semiconductors. It provides a trench silicon carbide MOSFET with integrated high-speed freewheeling diode and a preparation method thereof.
- a trench silicon carbide MOSFET integrating a high-speed freewheeling diode including a backside ohmic contact alloy 1, an N-type doped silicon carbide substrate 2, an N-type doped silicon carbide epitaxial layer 3, and a first P-type doped buried layer 41 , the second P-type doped buried layer 42, the third P-type doped buried layer 43, the first gate oxide layer 51, the second gate oxide layer 52, the first polysilicon 61, the second polysilicon 62, the A P-type doping well region 71, a second P-type doping well region 72, a third P-type doping well region 73, a first N-type doping source region 81, a second N-type doping source region 82, P Type doped source region 9, interlayer dielectric 10, front ohmic contact alloy 11;
- the N-type doped silicon carbide substrate 2 is located above the backside ohmic contact alloy 1; the N-type doped silicon carbide epitaxial layer 3 is located on the N-type doped silicon carbide epitaxial layer 3.
- the second P-type doped buried layer 42 is located on the upper right side of the N-type doped silicon carbide epitaxial layer 3; the third P-type doped buried layer 43 is located on the N-type doped silicon carbide epitaxial layer 3;
- the first gate oxide layer 51 is located above the second P-type doped buried layer 42;
- the second gate oxide layer 52 is located on the third P-type Above the doped buried layer 43;
- the first polysilicon 61 is located on the upper right side of the first gate oxide layer 51;
- the second polysilicon 62 is located on the upper left side of the second gate oxide layer 52;
- the first N-type doped source region 81 is located on the upper left side of the first gate oxide layer 51;
- the P-type doped source region 9 is located on the left side of the first N-type doped source region 81;
- the second N-type doped source region 82 is located on
- the N-type doped silicon carbide substrate 2 is located above the backside ohmic contact alloy 1; the N-type doped silicon carbide epitaxial layer 3 is located on the N-type doped silicon carbide epitaxial layer 3.
- the first P-type doped buried layer 41 is located on the upper right side of the N-type doped silicon carbide epitaxial layer 3; the second P-type doped buried layer 42 is located on the N-type doped silicon carbide epitaxial layer 3; Type doped silicon carbide epitaxial layer 3 in the upper left corner; the first gate oxide layer 51 is located in the first P-type doped buried layer 41, N-type doped silicon carbide epitaxial layer 3, and the second P-type doped buried layer 3. above layer 42; the first polysilicon 61 is located above the first gate oxide layer 51; the interlayer dielectric 10 is located above the first polysilicon 61; the first front-side ohmic contact alloy 11 located above the interlayer medium 10 .
- the doping concentration range of the N-type doped silicon carbide epitaxial layer 3 is 1E15cm -3 ⁇ 1E17cm -3 ;
- the first P-type doped well region 71 is formed by lateral scattering during Al ion implantation, and its concentration gradually decreases along the negative direction of the x-axis, and the first P-type doped well region 71 is close to the first P-type doped well region 71 .
- the concentration range of a gate oxide layer 51 is 1E14cm -3 ⁇ 1E16cm -3 .
- a method for preparing a trench silicon carbide MOSFET with an integrated high-speed freewheeling diode which is characterized by comprising the following steps:
- Step 1 Deposit an oxide layer on the N-type silicon carbide epitaxial wafer, form a P-well ion implantation mask layer 101 for ion implantation after photolithography, and then perform Al ion implantation at a temperature of 300K ⁇ 1000K to form a second P-type doped layer.
- the second P-type doped well region 72 will be laterally scattered due to Al ion implantation in silicon carbide. Therefore, a P-type doped scattering region with a laterally varying concentration will be formed on the left and right sides of the second P-type doped well region 72, respectively.
- the mask layer is removed after the injection is completed, and surface cleaning is completed;
- Step 2 Deposit the oxide layer, and form an ion implanted N-type source region after photolithography.
- the ion implantation mask layer 102 is then performed at a temperature of 300K to 1000K.
- P ion implantation is performed to form the first N-type doped source region 81. and a second N-type doped source region 82 . After the injection is completed, remove the mask layer and complete surface cleaning;
- Step 3 Deposit the oxide layer, and form an ion implanted P-type source region after photolithography.
- the ion implantation mask layer 103 is then implanted with Al ions at a temperature of 300K ⁇ 1000K to form a P-type doped source region 9. After completion, remove the mask layer and complete surface cleaning;
- Step 4 Deposit the oxide layer, form the trench etching barrier layer 104 after photolithography, and then perform reactive ion etching on the N-type doped silicon carbide epitaxial layer 3 to form trenches;
- Step 5 Perform Al ion implantation at a high temperature of 300K ⁇ 1000K to form the second P-type doped buried layer 42 and the third P-type doped buried layer 43 at the bottom of the trench. After the implantation is completed, remove the trench etching barrier layer 104;
- Step 6 Cover the carbon cap, anneal at a high temperature above 1600°C, activate the injected impurities, and thermally oxidize to form the first gate oxide layer 51 and the second gate oxide layer 52, then deposit polysilicon, and etch to form the third gate oxide layer.
- Step 7 Deposit the oxide layer and form the interlayer dielectric 10 by photolithography
- Step 8 Deposit Ni alloy, anneal to form metal silicide, then deposit Al on the front to form the source metal, sputter the back of the device to form Ni alloy, and anneal to form the back ohmic contact alloy 1.
- the invention adopts a structure of trench plus P-type buried layer, which fully reduces the Miller capacitance of the device, thereby reducing the switching loss of the device.
- the addition of the P-type buried layer weakens the electric field concentration at the bottom and corners of the trench, improving the long-term reliability of the device;
- the present invention monolithically integrates a gate-controlled diode, which has a trench structure, and its trench and the trench of the MOSFET are formed at the same time without requiring additional process steps.
- This gate-controlled diode is a rectifier based on MOSFET diode connection. Compared with the traditional MOSFET body diode, this rectifier has the advantages of reduced conduction voltage and unipolar conduction (no reverse recovery current, no double-click degradation). This rectifier can be used as a freewheeling diode for MOSFET, greatly reducing dynamic losses.
- the addition of gate-controlled diodes also weakens the electric field strength at the bottom and corners of the MOSFET trench, thereby improving the long-term reliability of the device;
- the present invention uses the scattering effect during Al ion implantation to form the channels of the MOSFET and the gate-controlled diode. This method can reduce the doping concentration of the device's channel region while ensuring that the total amount of charge in the P-type well region is sufficient.
- MOSFET we can control the relative position of the trench and the P-type doped well region to control the doping concentration of the channel region, thereby accurately controlling its threshold voltage.
- gated diodes we can control the relative position of the trench and the P-type doped well region to control the doping concentration of the channel region, thereby adjusting the conduction voltage drop of the gated diode.
- SiC MOSFETs In applications such as half-bridge or full-bridge, SiC MOSFETs usually require an anti-parallel SiC Schottky diode for freewheeling.
- the present invention can avoid additional parallel connection of freewheeling diodes.
- Figure 1 is a schematic structural diagram of a trench silicon carbide MOSFET integrated with a high-speed freewheeling diode of the present invention.
- Figure 2 is a schematic diagram of ion implantation in the P-type doped well region in step 1 of Embodiment 2 of the present invention.
- Figure 3 is a schematic diagram of ion implantation into the N-type doped source region in Step 2 of Embodiment 2 of the present invention.
- Figure 4 is a schematic diagram of ion implantation into the P-type doped source region in Step 3 of Embodiment 2 of the present invention.
- Figure 5 is a schematic diagram of trench etching in step 4 of Embodiment 2 of the present invention.
- Figure 6 is a schematic diagram of ion implantation of P-type doped buried layer in step 5 of Embodiment 2 of the present invention.
- Figure 7 is a schematic diagram of gate oxide layer formation and polysilicon filling etching in Step 6 of Embodiment 2 of the present invention.
- Figure 8 is a schematic diagram of the interlayer medium formed by photolithography in Step 7 of Embodiment 2 of the present invention.
- Figure 10 is a schematic equivalent circuit diagram of the trench silicon carbide MOSFET with integrated high-speed freewheeling diode in forward conduction according to Embodiment 1 of the present invention.
- Figure 11 is a schematic equivalent circuit diagram of the trench silicon carbide MOSFET with integrated high-speed freewheeling diode in reverse freewheeling according to Embodiment 1 of the present invention.
- 1 is the backside ohmic contact alloy
- 2 is the N-type doped silicon carbide substrate
- 3 is the N-type doped silicon carbide epitaxial layer
- 41 is the first P-type doped buried layer
- 42 is the second P-type doped buried layer
- 43 is the third P-type doped buried layer
- 51 is the first gate oxide layer
- 52 is the second gate oxide layer
- 61 is the first polysilicon
- 62 is the second polysilicon
- 71 is the first P-type Doping well region
- 72 is the second P-type doping well region
- 73 is the third P-type doping well region
- 81 is the first N-type doping source region
- 82 is the second N-type doping source region
- 9 is the P-type doping source region
- 10 is the interlayer dielectric
- 11 is the front ohmic contact alloy
- 101 is the P-well ion implantation mask layer
- 102 is the N-type source region ion
- this embodiment provides a trench silicon carbide MOSFET with an integrated high-speed freewheeling diode, including a backside ohmic contact alloy 1, an N-type doped silicon carbide substrate 2, and an N-type doped silicon carbide epitaxial layer 3 , the first P-type doped buried layer 41, the second P-type doped buried layer 42, the third P-type doped buried layer 43, the first gate oxide layer 51, the second gate oxide layer 52, the first polysilicon 61.
- the N-type doped silicon carbide substrate 2 is located above the backside ohmic contact alloy 1; the N-type doped silicon carbide epitaxial layer 3 is located on the N-type doped silicon carbide epitaxial layer 3.
- the second P-type doped buried layer 42 is located on the upper right side of the N-type doped silicon carbide epitaxial layer 3; the third P-type doped buried layer 43 is located on the N-type doped silicon carbide epitaxial layer 3;
- the first gate oxide layer 51 is located above the second P-type doped buried layer 42;
- the second gate oxide layer 52 is located on the third P-type Above the doped buried layer 43;
- the first polysilicon 61 is located on the upper right side of the first gate oxide layer 51;
- the second polysilicon 62 is located on the upper left side of the second gate oxide layer 52;
- the first N-type doped source region 81 is located on the upper left side of the first gate oxide layer 51;
- the P-type doped source region 9 is located on the left side of the first N-type doped source region 81;
- the second N-type doped source region 82 is located on
- the N-type doped silicon carbide substrate 2 is located above the backside ohmic contact alloy 1; the N-type doped silicon carbide epitaxial layer 3 is located on the N-type doped silicon carbide epitaxial layer 3.
- the first P-type doped buried layer 41 is located on the upper right side of the N-type doped silicon carbide epitaxial layer 3; the second P-type doped buried layer 42 is located on the N-type doped silicon carbide epitaxial layer 3; Type doped silicon carbide epitaxial layer 3 in the upper left corner; the first gate oxide layer 51 is located in the first P-type doped buried layer 41, N-type doped silicon carbide epitaxial layer 3, and the second P-type doped buried layer 3. above layer 42; the first polysilicon 61 is located above the first gate oxide layer 51; the interlayer dielectric 10 is located above the first polysilicon 61; the first front-side ohmic contact alloy 11 located above the interlayer medium 10 .
- the doping concentration range of the N-type doped silicon carbide epitaxial layer 3 is 1E15cm -3 ⁇ 1E17cm -3 ;
- the first P-type doped well region 71 is formed by lateral scattering during Al ion implantation. Its concentration gradually decreases along the negative direction of the x-axis, and the first P-type doped well region 71 is close to the first gate oxide layer.
- the concentration range at 51 is 1E14cm -3 ⁇ 1E16cm -3 .
- the third P-type doped well region 73 is formed by lateral scattering during Al ion implantation. Its concentration gradually decreases along the positive direction of the x-axis, and the third P-type doped well region 73 is close to the second gate oxide layer.
- the concentration range at 52 is 0 ⁇ 1E15cm -3 .
- Figure 10 is a schematic diagram of the equivalent circuit of the trench silicon carbide MOSFET with integrated high-speed freewheeling diode in forward conduction according to Embodiment 1 of the present invention.
- the positive potential difference from the source to the drain causes the diode area to conduct, forming a current I sd from the source to the drain, as shown in Figure 11, which illustrates the implementation of the present invention.
- Example 1 is a schematic diagram of the equivalent circuit of a trench silicon carbide MOSFET with integrated high-speed freewheeling diode during reverse freewheeling.
- this embodiment provides a method for preparing a trench silicon carbide MOSFET with an integrated high-speed freewheeling diode, which includes the following steps:
- Step 1 Deposit an oxide layer on the N-type silicon carbide epitaxial wafer, form a P-well ion implantation mask layer 101 for ion implantation after photolithography, and then perform Al ion implantation at a temperature of 300K ⁇ 1000K to form a second P-type doped layer.
- the second P-type doped well region 72 will be laterally scattered due to Al ion implantation in silicon carbide. Therefore, a P-type doped scattering region with a laterally varying concentration will be formed on the left and right sides of the second P-type doped well region 72, respectively.
- Step 2 Deposit the oxide layer, and form an ion implanted N-type source region after photolithography.
- the ion implantation mask layer 102 is then performed at a temperature of 300K to 1000K.
- P ion implantation is performed to form the first N-type doped source region 81. and the second N-type doped source region 82 to obtain the structure as shown in Figure 3 .
- Step 3 Deposit the oxide layer, and form an ion implanted P-type source region after photolithography.
- the ion implantation mask layer 103 is then implanted with Al ions at a temperature of 300K ⁇ 1000K to form a P-type doped source region 9.
- Obtain The structure is shown in Figure 4. After the injection is completed, remove the mask layer and complete surface cleaning;
- Step 4 Deposit the oxide layer, form a trench etching barrier layer 104 after photolithography, and then perform reactive ion etching on the N-type doped silicon carbide epitaxial layer 3 to form a trench; the structure as shown in Figure 5 is obtained;
- Step 5 Perform Al ion implantation at a high temperature of 300K ⁇ 1000K to form the second P-type doped buried layer 42 and the third P-type doped buried layer 43 at the bottom of the trench, obtaining the structure as shown in Figure 6. After the implantation is completed, the trench etching barrier layer 104 is removed;
- Step 6 Cover the carbon cap, anneal at a high temperature above 1600°C, activate the injected impurities, and thermally oxidize to form the first gate oxide layer 51 and the second gate oxide layer 52, then deposit polysilicon, and etch to form the third gate oxide layer.
- Step 7 Deposit the oxide layer, and form the interlayer dielectric 10 by photolithography; obtain the structure as shown in Figure 8;
- Step 8 Deposit Ni alloy, anneal to form metal silicide, then deposit Al on the front to form the source metal, sputter the back of the device to form Ni alloy, and anneal to form the back ohmic contact alloy 1.
- the structure shown in Figure 9 is obtained.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
Claims (5)
- 一种集成高速续流二极管的沟槽碳化硅MOSFET,其特征在于:包括背面欧姆接触合金(1),N型掺杂碳化硅衬底(2),N型掺杂碳化硅外延层(3),第一P型掺杂埋层(41),第二P型掺杂埋层(42),第三P型掺杂埋层(43),第一栅氧化层(51),第二栅氧化层(52),第一多晶硅(61),第二多晶硅(62),第一P型掺杂井区(71),第二P型掺杂井区(72),第三P型掺杂井区(73),第一N型掺杂源区(81),第二N型掺杂源区(82),P型掺杂源区(9),层间介质(10),正面欧姆接触合金(11);在x轴和y轴构成的平面上,所述N型掺杂碳化硅衬底(2)位于所述背面欧姆接触合金(1)的上方;所述N型掺杂碳化硅外延层(3)位于所述N型掺杂碳化硅衬底(2)上方;所述第二P型掺杂埋层(42)位于所述N型掺杂碳化硅外延层(3)的右上方;所述第三P型掺杂埋层(43)位于所述N型掺杂碳化硅外延层(3)的左上方;所述第一栅氧化层(51)位于所述第二P型掺杂埋层(42)的上方;所述第二栅氧化层(52)位于所述第三P型掺杂埋层(43)的上方;所述第一多晶硅(61)位于所述第一栅氧化层(51)的右上方;所述第二多晶硅(62)位于所述第二栅氧化层(52)的左上方;所述第一N型掺杂源区(81)位于所述第一栅氧化层(51)的左上方;所述P型掺杂源区(9)位于所述第一N型掺杂源区(81)的左侧;所述第二N型掺杂源区(82)位于所述P型掺杂源区(9)的左侧,并且与第二栅氧化层(52)的右侧相接;所述第一P型掺杂井区(71)位于所述第一N型掺杂源区(81)下方,且位于所述第一栅氧化层(51)的左侧;所述第二P型掺杂井区(72)位于所述第一N型掺杂源区(81)、P型掺杂源区(9)和第二N型掺杂源区(82)的下方,并且位于所述第一P型掺杂井区(71)左侧;所述第三P型掺杂井区(73)位于所述第二N型掺杂源区(82)下方,并且位于所述第二P型掺杂井区(72)左侧;所述层间介质(10)位于所述第一N型掺杂源区(81)、第一栅氧化层(51)、第一多晶硅(61)的上方;所述正面欧姆接触合金(11)位于所述层间介质(10)、第一N型掺杂源区(81)、P型掺杂源区(9)、第二N型掺杂源区(82)、第二栅氧化层(52)、第二多晶硅(62)的上方;在y轴和z轴构成的平面上,所述N型掺杂碳化硅衬底(2)位于所述背面欧姆接触合金(1)的上方;所述N型掺杂碳化硅外延层(3)位于所述N型掺杂碳化硅衬底(2)上方;所述第一P型掺杂埋层(41)位于所述N型掺杂碳化硅外延层(3)内部右上方;所述第二P型掺杂埋层(42)位于所述N型掺杂碳化硅外延层(3)内部左上方;所述第一栅氧化层(51)位于所述第一P型掺杂埋层(41)、N型掺杂碳化硅外延层(3)、第二P型掺杂埋层(42)上方;所述第一多晶硅(61)位于所述第一栅氧化层(51)的上方;所述层间介质(10)位于所述第一多晶硅(61)的上方;所述第正面欧姆接触合金(11)位于所述层间介质(10)的上方。
- 根据权利要求1所述的集成高速续流二极管的沟槽碳化硅MOSFET,其特征在于:所述N型掺杂碳化硅外延层(3)的掺杂浓度范围为1E15cm -3 ~ 1E17cm -3。
- 根据权利要求1所述的集成高速续流二极管的沟槽碳化硅MOSFET,其特征在于:所述第一P型掺杂井区(71)为Al离子注入时横向散射形成的,其浓度延x轴的负方向逐渐降低,且第一P型掺杂井区(71)靠近所述第一栅氧化层(51)处的浓度范围为1E14cm -3 ~ 1E16cm -3。
- 根据权利要求1所述的集成高速续流二极管的沟槽碳化硅MOSFET,其特征在于:所述第三P型掺杂井区(73)为Al离子注入时横向散射形成的,其浓度延x轴的正方向逐渐降低,且第三P型掺杂井区(73)靠近所述第二栅氧化层(52)处的浓度范围为0 ~ 1E15cm -3。
- 一种权利要求1至4任意一项所述的集成高速续流二极管的沟槽碳化硅MOSFET的制备方法,其特征在于包括以下步骤:步骤1:N型碳化硅外延片上淀积氧化层,光刻后形成离子注入的P井离子注入掩膜层(101),接着在300K~1000K 的温度下进行Al离子注入,注入形成第二P型掺杂井区(72),同时由于碳化硅中进行Al离子注入会横向散射,因此在所述第二P型掺杂井区(72)的左右两侧将同时形成浓度横向渐变的P型掺杂散射区域,分别为第一P型掺杂井区(71)和第三P型掺杂井区(73),注入完成后去除掩膜层,并且完成表面清洗;步骤2:淀积氧化层,光刻后形成离子注入的N型源区离子注入掩膜层(102),接着在300K~1000K 的温度下进行P离子注入,注入形成第一N型掺杂源区(81)和第二N型掺杂源区(82),注入完成后去除掩膜层,并且完成表面清洗;步骤3:淀积氧化层,光刻后形成离子注入的P型源区离子注入掩膜层(103),接着在300K~1000K 的温度下进行Al离子注入,注入形成P型掺杂源区(9),注入完成后去除掩膜层,并且完成表面清洗;步骤4:淀积氧化层,光刻后形成沟槽刻蚀阻挡层(104),接着对N型掺杂碳化硅外延层(3)进行反应离子刻蚀形成沟槽;步骤5:在300K~1000K 的高温下进行Al离子注入,在沟槽底部形成第二P型掺杂埋层(42)和第三P型掺杂埋层(43),注入完成后去除沟槽刻蚀阻挡层(104);步骤6:覆盖碳帽,并且在1600℃以上的高温下进行退火,激活注入的杂质,热氧化形成第一栅氧化层(51)和第二栅氧化层(52),接着淀积多晶硅,并刻蚀形成第一多晶硅(61)和第二多晶硅(62);步骤7:淀积氧化层,光刻形成层间介质(10);步骤8:淀积Ni合金,退火形成金属硅化物,接着正面淀积Al形成源极金属,器件的背面溅射形成Ni合金,退火形成背面欧姆接触合金(1)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023571653A JP2024526524A (ja) | 2022-06-30 | 2023-04-13 | 高速フリーホイールダイオードを集積したトレンチ型SiC-MOSFET及びその製造方法 |
US18/580,161 US12087822B2 (en) | 2022-06-30 | 2023-04-13 | Trench SiC MOSFET integrated with high-speed flyback diode and preparation method thereof |
EP23829612.3A EP4354513A1 (en) | 2022-06-30 | 2023-04-13 | Trench silicon carbide mosfet integrated with high-speed freewheeling diode and preparation method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210755222.9 | 2022-06-30 | ||
CN202210755222.9A CN114823911B (zh) | 2022-06-30 | 2022-06-30 | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024001422A1 true WO2024001422A1 (zh) | 2024-01-04 |
Family
ID=82522650
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/087960 WO2024001422A1 (zh) | 2022-06-30 | 2023-04-13 | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12087822B2 (zh) |
EP (1) | EP4354513A1 (zh) |
JP (1) | JP2024526524A (zh) |
CN (1) | CN114823911B (zh) |
WO (1) | WO2024001422A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117686754A (zh) * | 2024-02-01 | 2024-03-12 | 忱芯科技(上海)有限公司 | 一种用于碳化硅功率半导体器件双极性退化测试的电流源 |
CN117995686A (zh) * | 2024-04-02 | 2024-05-07 | 泰科天润半导体科技(北京)有限公司 | 一种沟槽型和jfet集成四沟道的碳化硅器件的制造方法 |
CN118248555A (zh) * | 2024-05-29 | 2024-06-25 | 南京第三代半导体技术创新中心有限公司 | 集成异质结二极管的mosfet功率器件及其制造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114823911B (zh) * | 2022-06-30 | 2022-10-04 | 成都蓉矽半导体有限公司 | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 |
CN117790531A (zh) * | 2022-09-20 | 2024-03-29 | 华润微电子(重庆)有限公司 | 一种功率mosfet及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046470A (en) * | 1995-10-02 | 2000-04-04 | Siliconix Incorporated | Trench-gated MOSFET with integral temperature detection diode |
CN110998861A (zh) * | 2019-10-18 | 2020-04-10 | 香港应用科技研究院有限公司 | 带有沟槽肖特基二极管和异质结栅极的碳化硅屏蔽型mosfet |
CN114122123A (zh) * | 2022-01-26 | 2022-03-01 | 成都蓉矽半导体有限公司 | 集成高速续流二极管的碳化硅分离栅mosfet及制备方法 |
CN114551586A (zh) * | 2022-04-27 | 2022-05-27 | 成都蓉矽半导体有限公司 | 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法 |
CN114823911A (zh) * | 2022-06-30 | 2022-07-29 | 成都蓉矽半导体有限公司 | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002118258A (ja) * | 2000-10-10 | 2002-04-19 | Sanyo Electric Co Ltd | Mosfetおよびそれを用いた保護回路装置 |
US7345342B2 (en) * | 2001-01-30 | 2008-03-18 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US7652326B2 (en) * | 2003-05-20 | 2010-01-26 | Fairchild Semiconductor Corporation | Power semiconductor devices and methods of manufacture |
US9142550B2 (en) * | 2013-06-18 | 2015-09-22 | Infineon Technologies Austria Ag | High-voltage cascaded diode with HEMT and monolithically integrated semiconductor diode |
JP2015072999A (ja) * | 2013-10-02 | 2015-04-16 | 株式会社デンソー | 炭化珪素半導体装置 |
CN108242467B (zh) * | 2016-12-27 | 2020-05-22 | 无锡华润上华科技有限公司 | Ldmos器件及其制作方法 |
CN106847879B (zh) * | 2017-01-19 | 2021-12-03 | 北京世纪金光半导体有限公司 | 一种斜面沟道的SiC MOSFET器件及制备方法 |
SE541402C2 (en) * | 2017-09-15 | 2019-09-17 | Ascatron Ab | Integration of a schottky diode with a mosfet |
JP6977469B2 (ja) * | 2017-10-18 | 2021-12-08 | 富士電機株式会社 | 炭化珪素mosfetインバータ回路 |
CN108447913B (zh) * | 2018-05-21 | 2020-09-29 | 电子科技大学 | 一种集成肖特基二极管的ldmos器件 |
JP7180402B2 (ja) * | 2019-01-21 | 2022-11-30 | 株式会社デンソー | 半導体装置 |
US10777689B1 (en) * | 2019-10-18 | 2020-09-15 | Hong Kong Applied Science and Technology Research Institute Company, Limited | Silicon-carbide shielded-MOSFET embedded with a trench Schottky diode and heterojunction gate |
CN114122139B (zh) * | 2021-11-30 | 2024-01-26 | 电子科技大学 | 具有集成二极管的碳化硅mosfet器件及制造方法 |
CN114551601B (zh) * | 2022-04-26 | 2022-07-15 | 成都蓉矽半导体有限公司 | 高抗浪涌电流能力的集成栅控二极管的碳化硅mosfet |
-
2022
- 2022-06-30 CN CN202210755222.9A patent/CN114823911B/zh active Active
-
2023
- 2023-04-13 WO PCT/CN2023/087960 patent/WO2024001422A1/zh active Application Filing
- 2023-04-13 US US18/580,161 patent/US12087822B2/en active Active
- 2023-04-13 JP JP2023571653A patent/JP2024526524A/ja active Pending
- 2023-04-13 EP EP23829612.3A patent/EP4354513A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6046470A (en) * | 1995-10-02 | 2000-04-04 | Siliconix Incorporated | Trench-gated MOSFET with integral temperature detection diode |
CN110998861A (zh) * | 2019-10-18 | 2020-04-10 | 香港应用科技研究院有限公司 | 带有沟槽肖特基二极管和异质结栅极的碳化硅屏蔽型mosfet |
CN114122123A (zh) * | 2022-01-26 | 2022-03-01 | 成都蓉矽半导体有限公司 | 集成高速续流二极管的碳化硅分离栅mosfet及制备方法 |
CN114551586A (zh) * | 2022-04-27 | 2022-05-27 | 成都蓉矽半导体有限公司 | 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法 |
CN114823911A (zh) * | 2022-06-30 | 2022-07-29 | 成都蓉矽半导体有限公司 | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117686754A (zh) * | 2024-02-01 | 2024-03-12 | 忱芯科技(上海)有限公司 | 一种用于碳化硅功率半导体器件双极性退化测试的电流源 |
CN117686754B (zh) * | 2024-02-01 | 2024-04-26 | 忱芯科技(上海)有限公司 | 一种用于碳化硅功率半导体器件双极性退化测试的电流源 |
CN117995686A (zh) * | 2024-04-02 | 2024-05-07 | 泰科天润半导体科技(北京)有限公司 | 一种沟槽型和jfet集成四沟道的碳化硅器件的制造方法 |
CN118248555A (zh) * | 2024-05-29 | 2024-06-25 | 南京第三代半导体技术创新中心有限公司 | 集成异质结二极管的mosfet功率器件及其制造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP4354513A1 (en) | 2024-04-17 |
CN114823911B (zh) | 2022-10-04 |
JP2024526524A (ja) | 2024-07-19 |
US12087822B2 (en) | 2024-09-10 |
US20240266404A1 (en) | 2024-08-08 |
CN114823911A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024001422A1 (zh) | 集成高速续流二极管的沟槽碳化硅mosfet及制备方法 | |
CN107275407B (zh) | 一种碳化硅vdmos器件及其制作方法 | |
WO2023142393A1 (zh) | 集成高速续流二极管的碳化硅分离栅mosfet及制备方法 | |
CN111668312B (zh) | 一种低导通电阻的沟槽碳化硅功率器件及其制造工艺 | |
CN116632065A (zh) | 集成sbd的碳化硅槽栅mosfet器件及其制造方法 | |
WO2024216880A1 (zh) | 基于异质结的碳化硅槽栅mosfet及其制造方法 | |
CN105789289B (zh) | 一种双向igbt器件及其制造方法 | |
CN117276347B (zh) | 高可靠性双沟槽碳化硅mosfet器件及制造方法 | |
US20230155014A1 (en) | Ultra-Thin Super Junction IGBT Device and Manufacturing Method Thereof | |
CN115579397A (zh) | 双级沟槽栅碳化硅mosfet及其制备方法 | |
WO2024227330A1 (zh) | 非对称碳化硅槽栅mosfet及其制造方法 | |
CN115881797A (zh) | 一种碳化硅器件及其制备方法 | |
CN117080269A (zh) | 一种碳化硅mosfet器件及其制备方法 | |
EP2897159B1 (en) | High-voltage super-junction igbt manufacturing method | |
CN110534576B (zh) | 一种分裂栅4H-SiC VDMOS器件 | |
CN116110796A (zh) | 集成sbd的碳化硅sgt-mosfet及其制备方法 | |
CN114695519A (zh) | 屏蔽层状态自动切换的沟槽型碳化硅igbt器件及制备方法 | |
CN117497600B (zh) | 超结碳化硅晶体管的结构、制造方法及电子设备 | |
CN117317017A (zh) | 一种碳化硅mosfet器件及其制备方法 | |
CN114551586B (zh) | 集成栅控二极管的碳化硅分离栅mosfet元胞及制备方法 | |
CN116936638A (zh) | 具有内嵌沟道二极管的平面分离栅SiC MOSFET | |
CN116230770A (zh) | 肖特基结辅助耗尽镇流电阻的碳化硅mosfet器件及制备方法 | |
CN111564486B (zh) | 具有横向电场夹断结构的功率半导体器件及其制造方法 | |
CN113488540A (zh) | 一种具有垂直场板保护的SiC基槽栅MOSFET结构 | |
CN116072698A (zh) | 一种锥形栅mosfet器件结构及其制作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2023571653 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023829612 Country of ref document: EP Ref document number: 23829612.3 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023829612 Country of ref document: EP Effective date: 20240108 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23829612 Country of ref document: EP Kind code of ref document: A1 |