Nothing Special   »   [go: up one dir, main page]

WO2024072175A1 - 광발전 모듈 - Google Patents

광발전 모듈 Download PDF

Info

Publication number
WO2024072175A1
WO2024072175A1 PCT/KR2023/015154 KR2023015154W WO2024072175A1 WO 2024072175 A1 WO2024072175 A1 WO 2024072175A1 KR 2023015154 W KR2023015154 W KR 2023015154W WO 2024072175 A1 WO2024072175 A1 WO 2024072175A1
Authority
WO
WIPO (PCT)
Prior art keywords
optimizer
power
output
cell string
photovoltaic
Prior art date
Application number
PCT/KR2023/015154
Other languages
English (en)
French (fr)
Inventor
이승민
정광순
김수홍
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2024072175A1 publication Critical patent/WO2024072175A1/ko

Links

Images

Classifications

    • H01L31/02021
    • H01L31/02
    • H01L31/05
    • H01L31/0504
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1582Buck-boost converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a photovoltaic module, and more specifically, to a photovoltaic module in which an optimizer is individually connected to each photovoltaic cell-string.
  • Solar power generation is an eco-friendly energy generation method that is becoming widely used, replacing existing chemical or nuclear power generation.
  • independent power generation consists of photovoltaic power generation, storage batteries, power conversion devices, etc., and power grid-connected system is connected to a commercial power source. It is configured to allow mutual exchange of power with the load system line.
  • the maximum power point of photovoltaic modules varies depending on the amount of sunlight, temperature, etc.
  • an optimizer or module-level power electronics (MLPE) that performs maximum power point tracking (MPPT) control on a module-by-module basis can be used.
  • MPPT maximum power point tracking
  • a junction box is installed on the photovoltaic module to connect it to an external line.
  • a number of cables and manual labor are required to connect them.
  • a separate device must be installed in the photovoltaic module to prevent electric shock.
  • the technical problem to be solved by the present invention is to provide a photovoltaic module in which an optimizer is individually connected to each photovoltaic cell-string.
  • a photovoltaic module includes a photovoltaic panel including a plurality of cell strings; and a plurality of optimizers that respectively control the output power of each cell string, and each optimizer is located at a position corresponding to an output terminal of each cell string.
  • each optimizer includes two input terminals connected to output terminals at both ends of each cell string; Two output terminals for connection to other optimizers or external sources; And it may include a power conversion unit that converts the output power of each cell string input through the input terminal and outputs it to the output terminal.
  • the output terminal connected to the other optimizer may be connected through a connection part built into the photovoltaic panel.
  • connection part built into the photovoltaic panel may include a bus bar or cable.
  • both output terminals of each cell string may be directly connected to the two input terminals of each optimizer within the optimizer.
  • the output terminal connected to the other optimizer or the outside may be connected through a connection part outside the photovoltaic panel.
  • the power conversion unit may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • each optimizer may include a bypass unit connected in parallel between the two output terminals.
  • each optimizer can control the output power of each cell string using maximum power point tracking control (MPPT).
  • MPPT maximum power point tracking control
  • the plurality of optimizers may be mounted on a surface opposite to the surface on which the photovoltaic module is disposed.
  • the cables for connecting the photovoltaic panel and the optimizer can be reduced and work can be made easier.
  • FIG. 1 is a block diagram of a photovoltaic module according to an embodiment of the present invention.
  • Figure 2 is a diagram for explaining maximum power point tracking control.
  • Figure 3 is a block diagram specifying the relationship between a cell-string and an optimizer according to an embodiment of the present invention.
  • Figure 4 shows the connection relationship between optimizers according to an embodiment of the present invention.
  • Figure 5 shows the location of each optimizer according to an embodiment of the present invention.
  • Figure 6 shows an implementation example of a photovoltaic module according to an embodiment of the present invention.
  • Figure 7 is a block diagram of an optimizer module according to an embodiment of the present invention.
  • Figure 8 shows an implementation example of an optimizer module according to an embodiment of the present invention.
  • Figure 9 is a block diagram of a photovoltaic module according to another embodiment of the present invention.
  • Figure 10 is a perspective view of an optimizer module according to an embodiment of the present invention.
  • Figure 11 shows the inside of the case of the optimizer module according to an embodiment of the present invention.
  • Figure 12 shows the connection relationship of a plurality of optimizer modules according to an embodiment of the present invention.
  • Figure 13 is a block diagram of a photovoltaic module according to another embodiment of the present invention.
  • Figure 14 shows the connection relationship of a plurality of photovoltaic modules according to an embodiment of the present invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in various different forms, and as long as it is within the scope of the technical idea of the present invention, one or more of the components may be optionally used between the embodiments. It can be used by combining or replacing.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and are not limited to the essence, order, or order of the component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, that component is directly 'connected', 'coupled', or 'connected' to that other component. In addition to cases, it may also include cases where the component is 'connected', 'coupled', or 'connected' by another component between that component and that other component.
  • top or bottom means that the two components are directly adjacent to each other. This includes not only the case of contact, but also the case where one or more other components are formed or disposed between the two components.
  • top or bottom when expressed as “top” or “bottom,” the meaning of not only the upward direction but also the downward direction can be included based on one component.
  • Modifications according to this embodiment may include some components of each embodiment and some components of other embodiments. That is, the modified example may include one of the various embodiments, but some components may be omitted and some components of other corresponding embodiments may be included. Or, it could be the other way around.
  • Features, structures, effects, etc. to be described in the embodiments are included in at least one embodiment and are not necessarily limited to only one embodiment.
  • the features, structures, effects, etc. illustrated in each embodiment can be combined or modified and implemented in other embodiments by a person with ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be interpreted as included in the scope of the embodiments.
  • Figure 1 is a block diagram of a photovoltaic module according to an embodiment of the present invention
  • Figure 2 is a diagram for explaining maximum power point tracking control
  • Figure 3 is a diagram of a cell-string and optimizer according to an embodiment of the present invention. It is a block diagram specifying the relationship
  • Figure 4 shows the connection relationship between optimizers according to an embodiment of the present invention
  • Figure 5 shows the location of each optimizer according to an embodiment of the present invention
  • Figure 6 shows an implementation example of a photovoltaic module according to an embodiment of the present invention.
  • the photovoltaic module 100 includes a photovoltaic panel 110 and a plurality of optimizers 121, 122, and 123.
  • the photovoltaic module may be a photovoltaic panel and a module that converts power generated from the photovoltaic panel into power suitable for a load or battery. It can be expressed as a solar module, solar power generation module, etc.
  • Photovoltaic panel 110 includes a plurality of cell strings.
  • a solar cell that performs solar power generation can be expressed as a cell string unit in which a plurality of cells are connected in series.
  • Solar cells are formed using silicon, etc., and may be formed in a wafer form. Solar cells are located in fields that can easily receive sunlight, on the exterior walls of buildings, or on rooftops, and generate electricity using sunlight. At this time, the solar cell may be formed as BIPV (building-integrated photovoltaic power generation) that is formed integrally with the building.
  • BIPV building-integrated photovoltaic power generation
  • a string of solar cells can be the basic unit of generating power.
  • a plurality of optimizers 121, 122, and 123 control the output power of each cell string 111, respectively.
  • the optimizer serves to control the solar cell to operate at the maximum power point (MPP), which is the operating point at which the solar cell has maximum power under each condition.
  • MPP maximum power point
  • the optimizer may include module-level power electronics (MLPE).
  • Maximum Power Point Tracking This is called Maximum Power Point Tracking (MPPT), and the efficiency of solar power generation can be increased by using maximum power point tracking.
  • MPPT Maximum Power Point Tracking
  • the maximum power may not be the maximum voltage, but the power at about 80% of the maximum voltage. Since this maximum power point continues to change depending on the size of the voltage and current generated by the photovoltaic panel, it is necessary to continuously find the point where the maximum power point can be generated. That is, in order to follow the maximum power rather than the maximum voltage, the magnitude of the voltage and current can be varied to achieve the maximum power. In other words, the voltage can be decreased and the current increased in the direction of increasing power, or the voltage can be increased and the current can be decreased.
  • each cell string In order to perform maximum power point tracking for a plurality of cell strings, individual control of each cell string may be required. For example, if foreign matter interferes with light reception or there is a shadow in a specific cell string, the level of power generation may be different from that of other cell strings, so not only the operation mode that converts the power output from the cell string, but also operations other than power conversion It may be necessary. Operations that directly output the power output from the cell string without converting it or bypass the cell string may be necessary. For each situation, a device capable of multiple operating modes is needed that can operate in the most appropriate mode for the power output from each cell string.
  • the optimizer 121 uses multiple modes of power conversion mode (first mode), input/output connection mode (second mode), and bypass mode (third mode). It can operate in mode.
  • first mode power conversion mode
  • second mode input/output connection mode
  • bypass mode third mode
  • other operation modes may be further included depending on the design.
  • Each of the optimizers 121, 122, and 123 may be spaced apart from each other and placed in an area corresponding to each cell string 111, 112, and 113.
  • Each of the plurality of optimizers 121, 122, and 123 is composed of an independent module, and an area of the photovoltaic panel 110 corresponding to each cell string 111, 112, and 113 performs maximum power point tracking. can be placed in At this time, it may be located at a position corresponding to the output terminal of each cell string (111, 112, and 113).
  • a large number of cables are required to connect each cell string and the optimizer, and the work of connecting the cables is necessary.
  • the optimizer includes a plurality of optimizers 121, 122, and 123 that are separately formed to individually control each cell string, and the optimizer 121 is located in a separate location from the cell string 111. In this case, cables are still needed, so the optimizer 121 can be located on the photovoltaic panel area where each cell string is located. Through this, the optimizer 121, which is individually connected and individually controlled, is directly connected to the cell string 111, thereby reducing cable connections and making work easier.
  • the cell string 111 must receive sunlight and is disposed on the first side of the photovoltaic module 100, and each optimizer 121 has individually connected cell strings 111 on the opposite side of the first side. It can be placed on the second side. On the second side of the photovoltaic module 100, the output terminals of both ends of the cell string 111 are output, and the optimizer 121 is located at a position where the output terminals of both ends of the cell string 111 are output, and is directly connected to the input terminal of the optimizer. It can be connected.
  • the optimizer 121 may include input terminals 1211 and 1212, output terminals 1213 and 1214, a power conversion unit 1215, and a bypass unit 1216.
  • the input terminals 1211 and 1212 may include two input terminals connected to output terminals at both ends of each cell string 111.
  • Each cell string 111 may have a plurality of solar cells 1111 to 1113 connected in series, as shown in FIG. 3, and two output terminals at both ends of the cell string 111 connected in series are output to the outside. At this time, both end output terminals may be directed to the second side of the photovoltaic module 100.
  • Both output terminals of each cell string may be directly connected to the two input terminals 1211 and 1212 of each optimizer within the optimizer.
  • the two input terminals 1211 and 1212 are respectively connected to output terminals at both ends of the cell string 111 and can receive power generated by the cell string 111.
  • Output terminals 1213 and 1214 are connected to other optimizers or external sources.
  • the output terminals 1213 and 1214 may also include two output terminals.
  • Optimizers can be connected in series, and when the optimizer is located between other optimizers, the two output terminals 1213 and 1214 are respectively connected to two other neighboring optimizers.
  • the outputs of the plurality of optimizers 121 and 122 may be connected in series to output maximum power to the outside.
  • the external is a component located outside the photovoltaic module and may be a grid, load, or battery. Alternatively, it may be a power conversion device such as an inverter.
  • the outputs of each optimizer are connected in series and output to the outside.
  • the output terminals 1213 and 1214 connected to the other optimizer may be connected through a connection portion 131 built into the photovoltaic panel 110.
  • the optimizer 121 may be connected to another optimizer through the connection portion 131 built into the photovoltaic panel 110.
  • the connection part built into the photovoltaic panel 110 may include a bus bar or cable.
  • the output terminal may be directly connected to the bus bar built into the photovoltaic panel 110, etc.
  • the connection part 131 built into the photovoltaic panel 110 may be extended to the second side of the photovoltaic module 100, like output terminals at both ends of the cell string.
  • connection unit 131 built into the photovoltaic panel 110 may be directly connected to the two output terminals 1213 and 1214 of each optimizer inside the optimizer. At this time, the connection portion 131 built into the photovoltaic panel 110 may not be electrically connected to the cell string and the photovoltaic panel 110, but may be formed insulated from each other. When using the connection part 131 built into the photovoltaic panel 110, the connection location may be limited, but direct connection is possible without a separate cable.
  • the output terminals 1213 and 1214 connected to the other optimizer or the outside may be connected through an external connection part 132 rather than a connection part built into the photovoltaic panel 110.
  • a conductor such as a cable is used, so the connection location or connection type can be freely implemented.
  • the cable may be exposed to the outside, increasing the risk of electric shock.
  • the connection part 131 built into the photovoltaic panel 110 or the connection part 132 outside the photovoltaic panel 110 may be used.
  • the power conversion unit 1215 may convert the output power of each cell string 111 input through the input terminals 1211 and 1212 and output it to the output terminals 1213 and 1214.
  • the power conversion unit 1215 can convert the voltage of the power of the cell string 111 and output it to the output terminals 1213 and 1214.
  • the power conversion unit 1215 may perform maximum power point tracking for each cell string 111. If some of the cell strings among a plurality of cell strings generate lower voltage than other cell strings due to shading, etc., the voltage of the other cell strings is output as power in order to reduce loss and increase efficiency by reducing the voltage difference between each cell string. It is necessary to output it as is without conversion. At this time, the power conversion unit 1215 of each optimizer can adjust power conversion so that the voltage between cell strings is the same.
  • the power conversion unit 1215 may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • the power conversion unit 120 may include a DC-DC converter, and in this case, it may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • the power conversion unit 120 may be implemented as a buck converter that consists of an upper switch, a lower switch, and an inductor to lower the voltage.
  • it can be implemented as a boost converter that increases the voltage by being composed of an inductor, an upper switch, and a lower switch, and is composed of a first upper switch, a first lower switch, an inductor, a second upper switch, and a second lower switch to increase the voltage.
  • It can be implemented as a buck-boost converter to lower or increase .
  • Capacitors may be connected in parallel to the input and output terminals of each converter.
  • the bypass unit 1216 is connected in parallel between the two output terminals 1213 and 1214.
  • the bypass unit 1216 can create a bypass path in the output terminals 1213 and 1214 that bypasses the connection of the input terminals 1211 and 1212 connected to the power conversion unit 120 or the cell string 111. there is.
  • a bypass path can be created to pass power to an external source or to another optimizer without performing power conversion.
  • the bypass unit 1216 provides a bypass path. can be provided.
  • the bypass unit 1216 may provide a bypass path for the output current and reduce the current flowing through the photovoltaic panel to suppress heat generation. Through this, if a current greater than the current that the photovoltaic panel can output is forcibly conducted, the impedance of the photovoltaic panel increases, thereby preventing an increase in heat generation.
  • the power conversion unit 1215 or bypass unit 1216 may be operated by a control unit, and the control unit may transmit a control signal to each component to operate in the most appropriate mode according to information such as input/output voltage, current, and temperature. . Additionally, it can operate in the corresponding mode according to a control signal from an external controller or a user's input.
  • the photovoltaic module may be a smart photovoltaic module (PV module) including a cell string optimizer, and is electrically connected to one or more cell strings 111 consisting of at least one cell and individual cell strings.
  • PV module smart photovoltaic module
  • the output of an optimizer can be connected in series with another optimizer.
  • FIG. 6 it may include a plurality of cell strings and each optimizer, and the plurality of optimizers may be connected through a conductor built into the photovoltaic panel when connected in series (Connection #1).
  • the optimizer when connected in series (Connection #2), it can be connected through an external conductor.
  • the optimizer's generated power can be output to the output terminal.
  • the optimizer can vary at least one parameter related to a cell string to optimize the power generation of the corresponding cell string. It may include at least one power conversion unit for optimizing power generation, and the power conversion unit may be composed of Buck, Boost, and Buck-Boost converters.
  • the optimizer may include a diode connected in parallel to the output terminal to optimize the power generation of the photovoltaic module. To prevent electric shock, the optimizer can block individual cell-string voltages.
  • the photovoltaic module may include a conductor (cable) for connection to other photovoltaic modules.
  • the optimizer may be electrically connected to an array consisting of multiple cell-strings wired in series or parallel, or in series/parallel. In other words, input may be received from multiple cell strings rather than one cell string.
  • Figure 7 is a block diagram of an optimizer module according to an embodiment of the present invention
  • Figure 8 shows an implementation example of the optimizer module according to an embodiment of the present invention
  • Figure 9 is a block diagram of an optimizer module according to another embodiment of the present invention.
  • This is a block diagram of a photovoltaic module.
  • the detailed description of each component in FIGS. 7 to 9 corresponds to the detailed description of the photovoltaic module in FIGS. 1 to 6, and overlapping descriptions will be briefly described below.
  • the optimizer module 200 consists of input terminals 1211 and 1212, a power conversion unit 1215, output terminals 1213 and 1214, and a control unit 1217, and an auxiliary power unit 1218. , may include a bypass unit 1216.
  • Input terminals 1211 and 1212 are connected to the cell string 111. It may include two input terminals to be connected to both ends of the cell string 111, respectively. The output power of the cell string 111 may be input to the input terminals 1211 and 1212. One of the input terminals 1211 and 1212 may be connected to the (+) terminal of the cell string 111, and the other may be connected to the (-) terminal of the cell string 111.
  • the power conversion unit 1215 converts the power input to the input terminal 1211.
  • the power conversion unit 1215 may convert the output power of each cell string 111 input through the input terminals 1211 and 1212 and output it to the output terminals 1213 and 1214.
  • the power conversion unit 1215 can convert the voltage of the power of the cell string 111 and output it to the output terminals 1213 and 1214.
  • the power conversion unit 1215 may perform maximum power point tracking for each cell string 111. If some of the cell strings among a plurality of cell strings generate lower voltage than other cell strings due to shading, etc., the voltage of the other cell strings is output as power in order to reduce loss and increase efficiency by reducing the voltage difference between each cell string. It is necessary to output it as is without conversion. At this time, the power conversion unit 1215 of each optimizer can adjust power conversion so that the voltage between cell strings is the same.
  • the power conversion unit 1215 may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • the power conversion unit 120 may include a DC-DC converter, and in this case, it may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • the power conversion unit 120 may be implemented as a buck converter that consists of an upper switch, a lower switch, and an inductor to lower the voltage.
  • it can be implemented as a boost converter that increases the voltage by being composed of an inductor, an upper switch, and a lower switch, and is composed of a first upper switch, a first lower switch, an inductor, a second upper switch, and a second lower switch to increase the voltage.
  • It can be implemented as a buck-boost converter to lower or increase .
  • Capacitors may be connected in parallel to the input and output terminals of each converter.
  • Output terminals 1213 and 1214 are connected to other optimizer modules or to the outside.
  • the output terminals 1213 and 1214 may also include two output terminals.
  • Optimizer modules may be connected in series, and if the optimizer module is located between other optimizer modules, the two output terminals 1213 and 1214 may be connected to two other neighboring optimizer modules, respectively, and a plurality of optimizer modules may be connected in series.
  • the output of the miser module is connected in series so that maximum power can be output externally.
  • the optimizer module is located in a position corresponding to an output terminal to the outside, one of the two output terminals (1213, 1214) can be connected to another neighboring optimizer module, and the other can be connected to the outside.
  • the external is a component located outside the optimizer module and may be a grid, load, or battery. Alternatively, it may be a power conversion device such as an inverter.
  • the control unit 1217 controls the power conversion unit 1215 according to the power input to the input terminal 1211.
  • the control unit 1217 controls the power conversion unit 1215 to convert the power input to the input terminal 1211.
  • the control unit 1217 can control the power conversion unit 1215.
  • the control unit can transmit control signals to each component to operate in the most appropriate mode according to information such as input/output voltage, current, and temperature. Additionally, it can operate in the corresponding mode according to a control signal from an external controller or a user's input.
  • the control unit 1217 can detect and monitor data on the input terminal side, the output terminal side, and inside the optimizer module, and control the power conversion unit 1215 accordingly. For example, the power of the cell string 111 input to the input terminal 1211, the output power or output current of the power conversion unit 1215, and the current flowing in the output terminal 1213 can be detected. Additionally, the control unit 1217 can control the auxiliary power unit 1218, the bypass unit 1216, etc.
  • the bypass unit 1216 may be connected in parallel between the two output terminals 1213 and 1214.
  • the bypass unit 1216 may create a bypass path between the output terminals 1213 and 1214 that bypasses the connection with the power conversion unit 1215.
  • a bypass path can be created to connect another optimizer module externally or directly to another optimizer module without performing power conversion. For example, when a failure occurs in the photovoltaic module including the cell string or the input terminals 1211 and 1212 are not fastened and there is no or low power input to the power conversion unit 1215, the bypass unit 1216 A bypass path can be provided.
  • the bypass unit 1216 may provide a bypass path for the output current and reduce the current flowing through the photovoltaic panel to suppress heat generation. Through this, when a current greater than the current that the photovoltaic panel can output is forcibly conducted, the impedance of the photovoltaic panel increases, thereby preventing an increase in heat generation.
  • the bypass unit 1216 may be conducted when the first current output from the power conversion unit 1215 is lower than the second current flowing through the output terminal. If the first current converted and output inside the optimizer module 200 is lower than the second current flowing in the output terminal 1213 connected to another optimizer module, the optimizer module 200 is supplied from the other output terminal 1213. ) Current can flow inside. As a result, errors such as failures may occur in the optimizer module 200, or power may be wasted. Therefore, in this case, the current flowing through the output terminal 1213 flows through the bypass unit 1216, thereby bypassing the optimizer module 200.
  • the bypass unit 1216 may include a diode. Diodes only allow current to flow in one direction, so only current in that direction can be bypassed.
  • the auxiliary power unit 1218 can generate auxiliary power using power input to the input terminal 1211.
  • the optimizer module 200 needs auxiliary power to convert power or perform control.
  • the auxiliary power unit 1218 may generate auxiliary power using power input to the input terminal 1211 and provide the generated auxiliary power to the power conversion unit 1215 or the control unit 1217.
  • the auxiliary power unit 1218 may operate in a step-down mode or a step-up mode.
  • the power input to the input terminal 1211 may vary depending on the amount of photovoltaic power generation, but the auxiliary power required for the power conversion unit 1215 or the control unit 1217 to operate may not change. Therefore, if the voltage of the input power is lower than the voltage of the auxiliary power source, the auxiliary power unit 1218 operates in step up mode, and if the voltage of the input power is higher than the voltage of the auxiliary power source, the auxiliary power unit 1218 operates in step up mode. It can operate in step down mode.
  • the optimizer module 200 may be implemented with a circuit diagram as shown in FIG. 8.
  • the optimizer module 200 is a module that optimizes the output power of the cell string and may include a DC-DC converter, which is the power conversion unit 1215, and a controller, which is the control unit 1217.
  • the DC-DC converter receives the power generated from the cell string through the input terminal, converts the power, and outputs it to the output terminal.
  • the controller can detect at least one parameter or control the DC-DC converter according to the detected parameters.
  • the controller controls the DC-DC converter to maximize the power generated from the photovoltaic panel.
  • the bypass unit 1216 may include a bypass diode.
  • the bypass diode is conducted when the second current, I_out current, is higher than the first current, I_DC-DC current, and current flows, thereby bypassing I_out. Additionally, it may include AUX, which is an auxiliary power supply unit 1218.
  • the auxiliary power unit receives the voltage from the cell string and generates the power needed for the controller and DC-DC converter. At this time, the auxiliary power unit may operate in at least one step-down or step-up mode.
  • the DC-DC converter may be composed of at least one Buck, Boost, and Buck-boost converter, and the optimizer module connected to a plurality of cell strings may be connected in series. Through series connection, a voltage higher than the output voltage of an individual cell-string optimizer module can be formed.
  • a photovoltaic module includes a photovoltaic panel 110 including a plurality of cell strings 111, 112, and 113, and a plurality of optimizer modules 200-1 and 200 that respectively control the output power of each cell string. -2, 200-3). At this time, each of the optimizer modules may be spaced apart from each other and placed in an area corresponding to each cell string.
  • the output terminals 1213 and 1214 connected to the other optimizer may be connected through a connection portion 131 built into the photovoltaic panel 110.
  • the optimizer module 200-1 may be connected to another optimizer module 200-2 through the connection portion 131 built into the photovoltaic panel 110.
  • the connection part built into the photovoltaic panel 110 may include a bus bar or cable.
  • the output terminal may be directly connected to the bus bar built into the photovoltaic panel 110, etc.
  • the connection portion 131 built into the photovoltaic panel 110 may be extended to the second side of the photovoltaic module, like output terminals at both ends of the cell string.
  • connection unit 131 built into the photovoltaic panel 110 may be directly connected to the two output terminals 1213 and 1214 of each optimizer inside the optimizer. At this time, the connection portion 131 built into the photovoltaic panel 110 may not be electrically connected to the cell string and the photovoltaic panel 110, but may be formed insulated from each other. When using the connection part 131 built into the photovoltaic panel 110, the connection location may be limited, but direct connection is possible without a separate cable.
  • the output terminals 1213 and 1214 connected to the other optimizer or the outside may be connected through an external connection part 132 rather than a connection part built into the photovoltaic panel 110.
  • a conductor such as a cable is used, so the connection location or connection type can be freely implemented.
  • the cable may be exposed to the outside, increasing the risk of electric shock.
  • the connection part 131 built into the photovoltaic panel 110 or the connection part 132 outside the photovoltaic panel 110 may be used.
  • Figure 10 is a perspective view of an optimizer module according to an embodiment of the present invention
  • Figure 11 shows the inside of a case of the optimizer module according to an embodiment of the present invention
  • Figure 12 is a plurality of diagrams according to an embodiment of the present invention. It shows the connection relationship of the optimizer module
  • Figure 13 is a block diagram of a photovoltaic module according to another embodiment of the present invention
  • Figure 14 shows the connection relationship of a plurality of photovoltaic modules according to an embodiment of the present invention. It is shown.
  • the detailed description of each component in FIGS. 10 to 14 corresponds to the detailed description of the photovoltaic module in FIGS. 1 to 9, and overlapping descriptions will be briefly described below.
  • the optimizer module 300 includes a case and an optimizer 320 disposed inside the case.
  • the optimizer 320 consists of input terminals 331 and 332, a power conversion unit 320, and output terminals 342 and 3434, and may include an auxiliary power unit and a bypass unit.
  • the case 310 includes a case body and a case cover (not shown) covering the case body, and may include an optimizer 320 disposed inside the case body.
  • the optimizer 300 may include two input terminals 321 and 332 and two output terminals 341 and 342.
  • Two input terminals 331 and 332 are connected to output terminals at both ends of the cell string, and the optimizer 320 controls a power conversion unit that converts the output power of the cell string and a power conversion unit according to the output power of the cell string. It may include a control unit that does.
  • the inside of the case 310 main body may be filled with a heat dissipation material. When converting power, heat is generated, and to prevent errors due to heat, the heat can be radiated to the outside.
  • the inner space of the case 310 can be filled with silicone or epoxy material.
  • the inside of the case 310 may be formed into a waterproof structure.
  • the case 310 may be formed on one side of the photovoltaic module, and since it is located outdoors, it may be exposed to rain and may be formed to have a waterproof structure.
  • a waterproof structure can be formed in the optimizer 320 connected to each connection terminal. That is, by forming a waterproof case internal structure inside the case and placing the optimizer 320 inside the waterproof structure, the components placed in the optimizer 320 can be protected.
  • the optimizer 320 may be detachable from the case 310 main body.
  • the optimizer 320 can be attached or detached from the case 310 body by being connected to or disconnected from the input terminals 331 and 332 or the output terminals 341 and 342. At this time, each terminal can be screwed together. If a failure occurs in the optimizer 320, replacement or recovery work can be performed by attaching and detaching only the optimizer 320, not the entire optimizer module 300. Alternatively, it may be placed on the case 310 body in various ways, such as hook coupling or soldering.
  • the input terminals 331 and 332 are connected to the light discharge panel of the photovoltaic module on which the optimizer module 300 is mounted and can receive the output power of the cell string.
  • the cell string 111 connected in series can have two output terminals at both ends exposed to the outside, and the output terminals at both ends can be output to the second side of the photovoltaic module 100. Both output terminals of each cell string may be directly connected to the two input terminals 331 and 332 of each optimizer module 300 inside the case 320.
  • the two input terminals 331 and 332 are respectively connected to output terminals at both ends of the cell string 111 and can receive power generated by the cell string 111.
  • Output terminals 341 and 342 are connected to other optimizer modules or to the outside.
  • the output terminals 341 and 342 may also include two output terminals.
  • Optimizer modules may be connected in series, and when the corresponding optimizer module is located between other optimizer modules, the two output terminals 341 and 342 are respectively connected to two other neighboring optimizer modules.
  • the outputs of a plurality of optimizer modules can be connected in series to output maximum power to the outside.
  • the external is a component located outside the photovoltaic module and may be a grid, load, or battery. Alternatively, it may be a power conversion device such as an inverter.
  • the outputs of each optimizer are connected in series and output to the outside.
  • the output terminals 341 and 342 connected to the other optimizer modules may be connected through a connection portion 131 built into the photovoltaic panel 110.
  • the optimizer module 300-1 may be connected to another optimizer module 300-2 through the connection portion 131 built into the photovoltaic panel 110.
  • the connection part built into the photovoltaic panel 110 may include a bus bar or cable.
  • the output terminal may be directly connected to the bus bar built into the photovoltaic panel 110, etc.
  • the connection part 131 built into the photovoltaic panel 110 may be extended to the second side of the photovoltaic module 100, like output terminals at both ends of the cell string.
  • connection portion 131 built into the photovoltaic panel 110 may be directly connected to the two output terminals 341 and 342 of each optimizer module and the optimizer module case 310. At this time, the connection portion 131 built into the photovoltaic panel 110 may not be electrically connected to the cell string and the photovoltaic panel 110, but may be formed insulated from each other. When using the connection part 131 built into the photovoltaic panel 110, the connection location may be limited, but direct connection is possible without a separate cable.
  • the output terminals 341 and 342 connected to the other optimizer or the outside may be connected through an external connection part 132 rather than a connection part built into the photovoltaic panel 110.
  • a conductor such as a cable is used, so the connection location or connection type can be freely implemented.
  • the cable may be exposed to the outside, increasing the risk of electric shock.
  • the connection part 131 built into the photovoltaic panel 110 or the connection part 132 outside the photovoltaic panel 110 may be used.
  • the output terminals 341 and 342 may be connected to other optimizer modules or the outside, and the output terminals 341 and 342 may be connected in series when connected to other optimizer modules.
  • the output terminals 341 and 342 may be connected to a conductor such as a cable or bus bar that is introduced into the case 310 through a hole formed on the outside of the case 310 through a screw connection.
  • Case 310 may be composed of a case body and a case cover, and case 310 may include a waterproof function. Additionally, the inside of the case 310 can be filled with a material capable of heat transfer. For example, the empty space inside the case 310 can be filled with silicon or epoxy materials that facilitate heat transfer.
  • the optimizer that optimizes the sal string is detachable from the case 310 and can be easily replaced. It can be electrically connected to the optimizer module of a cell-string located in another photovoltaic panel through the output terminal. At this time, to facilitate connection with other photovoltaic panels, the output terminal may be connected to a conductor such as a cable. The output terminal can be connected through a conductor built into the photovoltaic panel, and the conductor built into the photovoltaic panel can be replaced with a cable not built into the photovoltaic panel.
  • the optimizer 320 may be formed with a circuit configuration placed on a substrate inside the case 310.
  • the optimizer 320 is composed of input terminals 331 and 332, a power conversion unit, and output terminals 342 and 3434, and may include an auxiliary power unit and a bypass unit.
  • the power conversion unit converts the power input to the input terminals 331 and 332.
  • the control unit controls the power conversion unit according to the power input to the input terminals 331 and 332.
  • the control unit can control the power conversion unit so that the output power of the cell string is maximized.
  • the power conversion unit may include at least one of a buck converter, a boost converter, and a buck-boost converter.
  • the bypass unit may be connected in parallel between the two output terminals 341 and 342, and may be conductive between the output terminals to form a bypass path.
  • the auxiliary power unit may generate auxiliary power using the output power of the cell string and provide it to the power conversion unit or control unit.
  • a photovoltaic module includes a photovoltaic panel 110 including a plurality of cell strings 111, 112, and 113, and a plurality of optimizer modules 300-1 and 300 that respectively control the output power of each cell string. -2, 300-3). At this time, each of the optimizer modules may be spaced apart from each other and placed in an area corresponding to each cell string.
  • the output terminals 341 and 342 connected to the other optimizer may be connected through a connection portion 131 built into the photovoltaic panel 110.
  • the optimizer module 300-1 may be connected to another optimizer module 300-2 through the connection portion 131 built into the photovoltaic panel 110.
  • the connection portion 131 built into the photovoltaic panel 110 may not be electrically connected to the cell string and the photovoltaic panel 110, but may be formed insulated from each other.
  • the connection location may be limited, but direct connection is possible without a separate cable.
  • the output terminals 341 and 342 connected to the other optimizer or the outside may be connected through an external connection part 132 rather than a connection part built into the photovoltaic panel 110.
  • a conductor such as a cable is used, so the connection location or connection type can be freely implemented.
  • the cable may be exposed to the outside, increasing the risk of electric shock.
  • the connection part 131 built into the photovoltaic panel 110 or the connection part 132 outside the photovoltaic panel 110 may be used.
  • a plurality of photovoltaic modules 410, 420, and 430 may be connected. As shown in FIG. 14, a plurality of photovoltaic modules 410, 420, and 430 may be connected to each other in series through a conductor 441 or connected to the outside through a conductor 442 and 443. Each photovoltaic module 410 may include a photovoltaic panel 411 and the optimizer module 300 described above.
  • the cables for connecting the photovoltaic panel and the optimizer can be reduced and work can be made easier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명의 일 실시예에 따른 광발전 모듈은 복수의 셀 스트링을 포함하는 광발전 패널 및 상기 각 셀 스트링의 출력 전력을 각각 제어하는 복수의 옵티마이저를 포함하고, 상기 각 옵티마이저는 상기 각 셀 스트링의 출력단자에 대응하는 위치에 위치하는 것을 특징으로 한다.

Description

광발전 모듈
본 발명은 광발전 모듈에 관한 것으로, 보다 구체적으로 광발전 셀-스트링 별로 옵티마이저가 개별 연결되는 광발전 모듈에 관한 발명이다.
태양광 발전은 친환경 에너지 발전 방식으로 기존 화학발전이나 원자력 발전을 대체하여 널리 보급되고 있다. 태양광 발전은 컨버터에 배터리가 접속되는 독립형과 전력계통과 연계되는 연계형태가 있고, 일반적으로 독립형 발전은 광발전, 축전지, 전력변환 장치 등으로 구성되고 전력계통 연계형 시스템은 상용 전원과 연결하여 부하계통선과 전력을 상호 교류할 수 있도록 구성된다.
광발전 모듈은 일조량, 온도 등에 따라 최대전력점이 상이해진다. 태양광 셀을 최대 전력 점에서 동작시키기 위해 모듈 단위로 최대전력점 추종(MPPT) 제어를 하는 옵티마이저(Optimizer) 또는 모듈 레벨 파워 일렉트로닉스(Module-Level Power Electronics, MLPE)를 사용할 수 있다.
광발전 모듈에 정션박스(junction box)를 설치하여 외부라인과 연결하는 역할을 하도록 하는데, 광발전 모듈에 옵티마이저를 연결을 위하여, 다수의 케이블 및 이를 연결하는 수작업이 필요하다. 또한, 설치 환경에 따라 광발전 모듈에서 감전 예방을 위해 별도의 장치를 설치해야만 하는 단점이 있다.
본 발명이 해결하고자 하는 기술적 과제는, 광발전 셀-스트링 별로 옵티마이저가 개별 연결되는 광발전 모듈을 제공하는 것이다.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 광발전 모듈은 복수의 셀 스트링을 포함하는 광발전 패널; 및 상기 각 셀 스트링의 출력 전력을 각각 제어하는 복수의 옵티마이저를 포함하고, 상기 각 옵티마이저는 상기 각 셀 스트링의 출력단자에 대응하는 위치에 위치한다.
또한, 상기 각 옵티마이저는, 상기 각 셀 스트링의 양단 출력단자와 연결되는 두 개의 입력단자; 다른 옵티마이저 또는 외부와 연결되는 두 개의 출력단자; 및 상기 입력단자를 통해 입력되는 상기 각 셀스트링의 출력 전력을 변환하여 상기 출력단자로 출력하는 전력변환부를 포함할 수 있다.
또한, 상기 다른 옵티마이저와 연결되는 출력단자는 상기 광발전 패널에 내장된 연결부를 통해 연결될 수 있다.
또한, 상기 광발전 패널에 내장된 연결부는 버스바 또는 케이블을 포함할 수 있다.
또한, 상기 각 셀 스트링의 양단 출력단자는 상기 각 옵티마이저의 상기 두 개의 입력단자와 옵티마이저 내부에서 직접 연결될 수 있다.
또한, 상기 다른 옵티마이저 또는 외부와 연결되는 출력단자는 상기 광발전 패널 외부의 연결부를 통해 연결될 수 있다.
또한, 상기 전력변환부는 벅(Buck) 컨버터, 부스트(Boost) 컨버터, 및 벅-부스트(Buck-Boost) 컨버터 중 적어도 하나를 포함할 수 있다.
또한, 상기 각 옵티마이저는 상기 두 개의 출력단자 사이에 병렬 연결되는 바이패스부를 포함할 수 있다.
또한, 상기 각 옵티마이저는 최대전력점 추종제어(MPPT)로 상기 각 셀 스트링의 출력 전력을 제어할 수 있다.
또한, 상기 복수의 옵티마이저는 상기 광발전 모듈이 배치되는 면의 반대면에 장착될 수 있다.
본 발명의 실시예들에 따르면, 광발전 패널과 옵티마이저 연결을 위한 케이블을 줄이고, 작업이 용이할 수 있도록 할 수 있다.
도 1은 본 발명의 일 실시예에 따른 광발전 모듈의 블록도이다.
도 2는 최대전력점 추종제어를 설명하기 위한 도면이다.
도 3은 본 발명의 실시예에 따른 셀-스트링과 옵티마이저의 연관계를 구체적화하는 블록도이다.
도 4는 본 발명의 실시예에 따른 옵티마이저간 연결관계를 도시한 것이다.
도 5는 본 발명의 실시예에 따른 각 옵티마이저의 위치를 도시한 것이다.
도 6는 본 발명의 실시예에 따른 광발전 모듈의 구현예를 도시한 것이다.
도 7은 본 발명의 실시예에 따른 옵티마이저 모듈의 블록도이다.
도 8은 본 발명의 실시예에 따른 옵티마이저 모듈의 구현예를 도시한 것이다.
도 9는 본 발명의 다른 실시예에 따른 광발전 모듈의 블록도이다.
도 10은 본 발명의 실시예에 따른 옵티마이저 모듈의 사시도이다.
도 11은 본 발명의 실시예에 따른 옵티마이저 모듈의 케이스 내부를 도시한 것이다.
도 12는 본 발명의 실시예에 따른 복수의 옵티마이저 모듈의 연결관계를 도시한 것이다.
도 13은 본 발명의 또 다른 실시예에 따른 광발전 모듈의 블록도이다.
도 14는 본 발명의 실시예에 따른 복수의 광발전 모듈의 연결관계를 도시한 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다.
본 실시예에 따른 변형례는 각 실시예 중 일부 구성과 다른 실시예 중 일부 구성을 함께 포함할 수 있다. 즉, 변형례는 다양한 실시예 중 하나 실시예를 포함하되 일부 구성이 생략되고 대응하는 다른 실시예의 일부 구성을 포함할 수 있다. 또는, 반대일 수 있다. 실시예들에 설명할 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다
도 1은 본 발명의 일 실시예에 따른 광발전 모듈의 블록도이고, 도 2는 최대전력점 추종제어를 설명하기 위한 도면이고, 도 3은 본 발명의 실시예에 따른 셀-스트링과 옵티마이저의 연관계를 구체적화하는 블록도이고, 도 4는 본 발명의 실시예에 따른 옵티마이저간 연결관계를 도시한 것이고, 도 5는 본 발명의 실시예에 따른 각 옵티마이저의 위치를 도시한 것이고, 도 6는 본 발명의 실시예에 따른 광발전 모듈의 구현예를 도시한 것이다.
본 발명의 실시예에 따른 광발전 모듈(100)은 광발전 패널(110) 및 복수의 옵티마이저(121, 122, 123)를 포함한다.
본 발명의 실시예에 따른 광발전 모듈은 광발전 패널 및 광발전 패널에서 생성되는 전력을 부하 또는 배터리에 적합한 전력으로 변환하는 모듈일 수 있다. 태양광 모듈, 태양광 발전 모듈 등으로 표현할 수 있다.
광발전 패널(110)은 복수의 셀 스트링을 포함한다. 태양광 발전을 수행하는 태양광 셀은 복수의 셀이 직렬로 연결되는 셀 스트링 단위로 표현할 수 있다.
셀 스트링은 적어도 하나 이상의 셀을 포함할 수 있고, 복수의 셀을 포함하는 경우, 복수의 셀은 직렬로 연결될 수 있다. 셀 스트링은 태양광 셀을 포함하는 태양광 셀 스트링일 수 있다. 태양광 셀 스트링은 광발전(PV) 패널을 형성할 수 있다. 광발전 패널(110)은 태양광 패널 또는 태양광 발전 패널이라고도 할 수 있다. 태양광 셀은 광전효과를 이용하여 전력을 생성하는 태양광 발전(PV, Photovoltaic)을 한다. 광전효과는 특정 주파수 이상의 빛이 특정 금속 물질에 부딪히면 전자 방출하는 것으로, P형 반도체와 n형 반도체를 이용하여 pn 접합을 형성하고, 광전효과에 의해 발생하는 전자를 이용하여 전류를 생성함으로써 전력을 생성한다. 태양광 셀은 실리콘 등을 이용하여 형성되며, 웨이퍼 형태로 형성될 수 있다. 태양광 셀은 태양광을 잘 받을 수 있는 야지나 건물의 외벽, 옥상 등에 위치하여, 태양광을 이용하여 전력을 생성한다. 이때, 태양광 셀은 건물과 일체형으로 형성되는 BIPV(건물 일체형 태양광 발전)로 형성될 수 있다.
하나의 태양광 셀에서 생성되는 전력의 크기가 부하나 전력계통에서 이용하기에는 부족하기 때문에, 하나의 태양광 셀이 아닌 복수의 태양광 셀을 직렬로 연결하여 태양광 셀 스트링을 형성함으로써 이용하기에 적합한 크기의 전력을 생성할 수 있다. 태양광 셀 스트링은 전력을 생성하는 기본 단위일 수 있다. 기본 단위인 셀 스트링을 복수 개를 패널로 형성하여 광발전 패널을 형성할 수 있다. 태양광 셀은 일조량, 기온 등에 따라 도 2와 같이, 상이한 전압-전류 특성을 가지며, 최대 전력 점(MPP) 또한 변동된다. (발전전력 = 전압 X 전류)
복수의 옵티마이저(121, 122, 123)는 상기 각 셀 스트링(111)의 출력 전력을 각각 제어한다.
본 발명의 실시예에 따른 옵티마이저(Optimizer)는 태양광 셀이 각 조건에서 전력이 최대가 되는 동작점인 최대 전력 점(MPP)에서 태양광 셀이 동작하도록 제어하는 역할을 한다. 여기서, 옵티마이저는 모듈 레벨 파워 일렉트로닉스(Module-Level Power Electronics, MLPE)를 포함할 수 있다.
이를 최대전력점 추종(MPPT, Maximum Power Point Tracking)이라 하고, 최대전력점 추종을 이용하여 태양광 발전의 효율성을 높일 수 있다. 태양광 발전에 있어서 전류와 전압의 관계 및 전압과 전력과의 관계에서의 특성에 따라 최대 전력은 최대 전압이 아닌 최대 전압에서 약 80% 정도일 때의 전력이 될 수 있다. 이와 같은 최대전력점은 광발전 패널에서 생성되는 전압 및 전류의 크기에 따라 계속 변하기 때문에, 최대전력 점을 발생시킬 수 있는 지점을 계속 찾아야 한다. 즉, 최대전압이 아닌 최대전력을 추종하기 위하여, 최대전력이 되도록 전압과 전류의 크기를 가변할 수 있다. 즉, 전력이 커지는 방향으로 전압을 감소시키고 전류를 증가시키거나, 전압을 증가시키고, 전류를 감소시킬 수 있다.
복수의 셀 스트링에 대한 최대전력점 추종을 수행하기 위하여, 각 셀 스트링에 대한 개별 제어가 필요할 수 있다. 예를 들어, 특정 셀 스트링에 이물질이 수광을 방해하거나 그늘이 있는 경우, 다른 셀 스트링과 발전 정도가 달라질 수 있어, 셀 스트링에서 출력되는 전력을 변환하는 동작 모드뿐만 아니라, 전력 변환 이외의 동작이 필요할 수 있다. 셀 스트링에서 출력되는 전력의 변환없이 바로 출력하거나, 해당 셀 스트링을 바이패스하는 동작 들이 필요할 수 있다. 각 상황별로, 각 셀 스트링에서 출력되는 전력에 대해 가장 적합한 모드로 동작할 수 있는 다중 동작 모드가 가능한 장치가 필요하다. 예를 들어, 옵티마이저(121)는 각 상황별로 가장 적합한 모드로 동작하기 위하여, 전력변환 모드(제1 모드), 입출력연결 모드(제2 모드), 및 바이패스 모드(제3 모드)의 다중 모드로 동작할 수 있다. 상기 전력변환 모드, 입출력연결 모드, 및 바이패스 모드 이외에 설계에 따라 다른 동작 모드를 더 포함할 수 있다.
옵티마이저(121, 122, 123) 각각은 서로 이격되어 각 셀 스트링(111, 112, 113)에 대응되는 영역에 배치될 수 있다. 복수의 옵티마이저(121, 122, 123) 각각은 독립된 모듈로 구성되되, 광발전 패널(110)의 영역 중 최대전력점 추종을 수행하는 각각의 셀 스트링(111, 112, 113)에 대응되는 영역에 배치될 수 있다. 이때, 각 셀 스트링(111, 112, 113)의 출력단자에 대응하는 위치에 위치할 수 있다. 각 셀 스트링을 개별 제어하기 위하여, 하나의 옵티마이저를 이용하는 경우, 각 셀 스트링과 옵티마이저를 연결하기 위해 많은 수의 케이블이 필요하고, 케이블을 연결하는 작업이 필요하다. 본 발명의 실시예에 따른 옵티마이저는 각 셀 스트링을 개별 제어하도록 분리형으로 형성되는 복수의 옵티마이저(121, 122, 123)를 포함하되, 옵티마이저(121)는 셀 스트링(111)과 별도 위치에 위치하는 경우, 여전히 케이블이 필요한바, 각 셀 스트링이 위치하는 광발전 패널 영역 상에 옵티마이저(121)가 위치할 수 있다. 이를 통해, 셀 스트링(111)과 개별연결되어 개별제어하는 옵티마이저(121)가 바로 연결됨으로써 케이블 연결을 줄이고, 작업을 용이하게 할 수 있다.
셀 스트링(111)은 태양 빛을 받아야 하는바, 광발전 모듈(100)의 제1면 상에 배치되고, 각 옵티마이저(121)는 개별 연결되는 셀 스트링(111)이 제1면의 반대면인 제2면에 배치될 수 있다. 광발전 모듈(100)의 제2면에는 셀 스트링(111)의 양단 출력단자가 도출되고, 옵티마이저(121)는 셀 스트링(111)의 양단 출력단자가 도출되는 위치에 위치하여 옵티마이저의 입력단자와 바로 연결시킬 수 있다.
옵티마이저(121)는 입력단자(1211, 1212), 출력단자(1213, 1214), 전력변환부(1215), 및 바이패스부(1216)를 포함할 수 있다.
입력단자(1211, 1212)는 각 셀 스트링(111)의 양단 출력단자와 연결되는 두 개의 입력단자를 포함할 수 있다. 각 셀 스트링(111)은 도 3과 같이, 복수의 태양광 셀(1111 내지 1113)이 직렬로 연결될 수 있고, 직렬로 연결되는 셀 스트링(111)은 양단 출력단자 2 개가 외부로 도출된다. 이때, 양단 출력단자는 광발전 모듈(100)의 제2면으로 도출될 수 있다. 상기 각 셀 스트링의 양단 출력단자는 상기 각 옵티마이저의 상기 두 개의 입력단자(1211, 1212)와 옵티마이저 내부에서 직접 연결될 수 있다. 두 개의 입력단자(1211, 1212)는 각각 셀 스트링(111)의 양단 출력단자와 연결되어 셀 스트링(111)에서 생성되는 전력을 수신할 수 있다.
출력단자(1213, 1214)는 다른 옵티마이저 또는 외부와 연결된다. 출력단자(1213, 1214) 역시 두 개의 출력단자를 포함할 수 있다. 옵티마이저간 직렬연결될 수 있고, 해당 옵티마이저가 다른 옵티마이저 사이에 위치하는 경우, 두 개의 출력단자(1213, 1214)는 이웃하는 두 개의 다른 옵티마이저와 각각 연결된다. 복수의 옵티마이저(121, 122)의 출력이 직렬 연결되어 외부로 최대 전력이 출력될 수 있다. 해당 옵티마이저가 외부로의 출력단자에 해당하는 위치에 위치하는 경우, 두 개의 출력단자(1213, 1214) 중 하나는 이웃하는 하나의 다른 옵티마이저와 연결되고, 다른 하나는 외부와 연결된다. 여기서, 외부는 광발전 모듈의 외부에 위치하는 구성으로, 계통(Grid), 부하, 또는 배터리일 수 있다. 또는, 인버터 등 전력변환장치일 수 있다. 각 옵티마이저의 출력들은 직렬 연결되어 상기 외부로 출력된다.
상기 다른 옵티마이저와 연결되는 출력단자(1213, 1214)는 상기 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 도 4와 같이, 옵티마이저(121)는 다른 옵티마이저와 연결시 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부는 버스바 또는 케이블을 포함할 수 있다. 이때, 출력단자는 광발전 패널(110)에 내장된 버스바 등과 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링의 양단 출력단자와 같이 광발전 모듈(100)의 제2면으로 도출될 수 있다. 광발전 패널(110)에 내장된 연결부(131)는 상기 각 옵티마이저의 상기 두 개의 출력단자(1213, 1214)와 옵티마이저 내부에서 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링과 광발전 패널(110) 내부에서는 서로 전기적으로 연결되지 않고, 절연되어 형성될 수 있다. 광발전 패널(110)에 내장된 연결부(131)를 이용하는 경우, 연결 위치가 제한될 수 있으나, 별도의 케이블 없이 바로 연결이 가능하다.
또는, 상기 다른 옵티마이저 또는 외부와 연결되는 출력단자(1213, 1214)는 상기 광발전 패널(110)에 내장된 연결부가 아닌 외부의 연결부(132)를 통해 연결될 수 있다. 광발전 패널(110) 외부의 연결부(132)를 이용하는 경우, 케이블 등의 전도체를 이용하는바, 연결 위치나 연결 형태를 자유롭게 구현할 수 있다. 다만, 케이블이 외부로 노출되어 감전 등의 위험성이 높아질 수 있다. 설치환경이나 작업환경에 따라 광발전 패널(110)에 내장된 연결부(131) 또는 광발전 패널(110) 외부의 연결부(132)를 이용할 수 있다.
전력변환부(1215)는 상기 입력단자(1211, 1212)를 통해 입력되는 상기 각 셀 스트링(111)의 출력 전력을 변환하여 상기 출력단자(1213, 1214)로 출력할 수 있다. 전력변환부(1215)는 셀 스트링(111)의 전력의 전압을 변환하여 출력단자(1213, 1214)로 출력할 수 있다. 이때, 전력변환부(1215)는 각 셀 스트링(111)에 대한 최대전력점 추종을 수행할 수 있다. 복수의 셀 스트링 중 일부의 셀 스트링이 음영 등에 의해 다른 셀 스트링에 비해 낮은 전압을 생성하는 경우, 각 셀 스트링간 전압 차이를 줄여 손실을 줄이고 효율을 높이기 위하여, 다른 셀 스트링의 전압을 출력으로 전력 변환없이 그대로 출력시킬 필요가 있다. 이때, 각 옵티마이저의 전력변환부(1215)는 셀 스트링간 전압이 같아지도록 전력변환을 조절할 수 있다.
전력변환부(1215)는 벅(Buck) 컨버터, 부스트(Boost) 컨버터, 및 벅-부스트(Buck-Boost) 컨버터 중 적어도 하나를 포함할 수 있다. 전력변환부(120)는 DC-DC 컨버터를 포함할 수 있고, 이때, 벅 컨버터, 부스트 컨버터, 및 벅 부스트 컨버터 중 적어도 하나를 포함할 수 있다. 전력변환부(120)는 상측 스위치, 하측 스위치, 및 인덕터로 구성되어 전압을 낮추는 벅 컨버터로 구현될 수 있다. 또한, 인덕터, 상측 스위치, 및 하측 스위치로 구성되어 전압을 높이는 부스트 컨버터로 구현될 수 있고, 제1 상측 스위치, 제1 하측 스위치, 인덕터, 제2 상측 스위치, 및 제2 하측 스위치로 구성되어 전압을 낮추거나 높이는 벅 부스트 컨버터로 구현될 수 있다. 각 컨버터의 입출력단에는 각각 커패시터가 병렬로 연결될 수 있다.
바이패스부(1216)는 상기 두 개의 출력단자(1213, 1214) 사이에 병렬 연결된다.
바이패스부(1216)는 전력변환부(120) 또는 셀 스트링(111)과 연결되는 입력단자(1211, 1212)의 연결을 바이패스하는 바이패스경로를 출력단자(1213, 1214)에 생성할 수 있다. 전력변환을 수행하지 않고 다른 옵티마이저를 외부 또는 또 다른 옵티마이저로 전달하도록 바이패스 경로를 생성할 수 있다. 예를 들어, 셀 스트링을 포함하는 광발전 모듈에 고장이 발생하거나 입력단자(1211, 1212)가 미체결되어 전력변환장치로 입력되는 전력이 없을 때, 바이패스부(1216)는 바이패스 경로를 제공할 수 있다. 또한, 광발전 패널에 핫스팟(hot-spot)이 발생할 때, 바이패스부(1216)는 출력 전류의 우회 경로를 제공하여 광발전 패널에 흐르는 전류값을 낮추어 발열을 억제할 수도 있다. 이를 통해, 광발전 패널이 출력 가능한 전류보다 큰 전류를 강제를 도통시키면, 광발전 패널의 임피던스가 증가하여 발열량이 증가하는 것을 방지할 수 있다.
전력변환부(1215) 또는 바이패스부(1216)는 제어부에 의해 동작할 수 있고, 제어부는 입출력 전압 및 전류, 온도 등의 정보에 따라 가장 적합한 모드로 동작하도록 제어 신호를 각 구성에 전송할 수 있다. 또한, 외부 제어부의 제어신호 또는 사용자의 입력에 따라 해당 모드로 동작할 수 있다.
앞서 설명한 바와 같이, 각 셀 스트링(111)을 개별 제어하는 옵티마이저는 도 5와 같이, 대응하는 셀 스트링(111)의 위치에 위치한다. 본 발명의 실시예에 따른 광발전 모듈은 셀 스트링 옵티마이저를 포함한 스마트 광발전 모듈(PV module)일 수 있고, 적어도 하나의 셀로 구성되는 하나 이상의 셀 스트링(111) 및 개별 셀 스트링에 전기적으로 연결되는 셀 스트링 옵티마이저를 포함할 수 있다. 옵티마이저의 출력은 다른 옵티마이저와 직렬로 연결될 수 있다. 도 6과 같이, 복수의 셀 스트링 및 각각의 옵티마이저를 포함할 수 있고, 복수의 옵티마이저는 직렬 연결 시(Connection #1) 광발전 패널에 내장된 전도체를 통해 연결될 수 있다. 또는, 직렬 연결 시(Connection #2) 외부의 전도체를 통해 연결될 수 있다. 옵티마이저의 발전 전력을 출력단자로 출력할 수 있다. 옵티아미저는 대응되는 셀 스트링의 발전량을 최적화 시키기 위해 셀 스트링에 연관된 적어도 하나 이상의 파라미터를 가변할 수 있다. 발전량 최적화를 위한 적어도 하나의 전력변환부를 포함할 수 있고, 전력변환부는 Buck, Boost, Buck-Boost converter로 구성될 수 있다. 옵티마이저는 광발전 모듈의 발전량을 최적화 시키기 위해 출력 단자에 병렬 연결된 다이오드를 포함할 수 있다. 감전 예방을 위해 옵티마이저는 개별 셀-스트링 전압을 차단해주는 역할을 할 수 있다. 또한, 광발전 모듈은 다른 광발전 모듈과 연결되기 위한 전도체(케이블)을 포함할 수 있다. 또한, 옵티마이저는 직렬 또는 병렬 또는 직·병렬 결선된 다수의 셀-스트링으로 구성된 배열과 전기적으로 연결될 수 있다. 즉, 하나의 셀 스트링이 아닌 복수의 셀 스트링에서 입력 받을 수도 있다.
도 7은 본 발명의 실시예에 따른 옵티마이저 모듈의 블록도이고, 도 8은 본 발명의 실시예에 따른 옵티마이저 모듈의 구현예를 도시한 것이고, 도 9는 본 발명의 다른 실시예에 따른 광발전 모듈의 블록도이다. 도 7 내지 도 9의 각 구성에 대한 상세한 설명은 도 1 내지 도 6의 광발전 모듈에 대한 상세한 설명에 대응되는바, 이하 중복되는 설명은 간략하게 설명하도록 한다.
본 발명의 실시예에 따른 옵티마이저 모듈(200)은 입력단자(1211,1212), 전력변환부(1215), 출력단자(1213,1214), 제어부(1217)로 구성되고, 보조전원부(1218), 바이패스부(1216)를 포함할 수 있다.
입력단자(1211, 1212)는 셀 스트링(111)과 연결된다. 셀 스트링(111)의 양단과 각각 연결되지 위하여 두 개의 입력단자를 포함할 수 있다. 입력단자(1211,1212)로 셀 스트링(111)의 출력전력이 입력될 수 있다. 입력단자(1211, 1212) 중 하나는 셀 스트링(111)의 (+) 단자와 연결되고 다른 하나는 셀 스트링(111)의 (-) 단자와 연결될 수 있다.
전력변환부(1215)는 입력단자(1211)로 입력되는 전력을 변환한다.
전력변환부(1215)는 상기 입력단자(1211, 1212)를 통해 입력되는 상기 각 셀 스트링(111)의 출력 전력을 변환하여 상기 출력단자(1213, 1214)로 출력할 수 있다. 전력변환부(1215)는 셀 스트링(111)의 전력의 전압을 변환하여 출력단자(1213, 1214)로 출력할 수 있다. 이때, 전력변환부(1215)는 각 셀 스트링(111)에 대한 최대전력점 추종을 수행할 수 있다. 복수의 셀 스트링 중 일부의 셀 스트링이 음영 등에 의해 다른 셀 스트링에 비해 낮은 전압을 생성하는 경우, 각 셀 스트링간 전압 차이를 줄여 손실을 줄이고 효율을 높이기 위하여, 다른 셀 스트링의 전압을 출력으로 전력 변환없이 그대로 출력시킬 필요가 있다. 이때, 각 옵티마이저의 전력변환부(1215)는 셀 스트링간 전압이 같아지도록 전력변환을 조절할 수 있다.
전력변환부(1215)는 벅(Buck) 컨버터, 부스트(Boost) 컨버터, 및 벅-부스트(Buck-Boost) 컨버터 중 적어도 하나를 포함할 수 있다. 전력변환부(120)는 DC-DC 컨버터를 포함할 수 있고, 이때, 벅 컨버터, 부스트 컨버터, 및 벅 부스트 컨버터 중 적어도 하나를 포함할 수 있다. 전력변환부(120)는 상측 스위치, 하측 스위치, 및 인덕터로 구성되어 전압을 낮추는 벅 컨버터로 구현될 수 있다. 또한, 인덕터, 상측 스위치, 및 하측 스위치로 구성되어 전압을 높이는 부스트 컨버터로 구현될 수 있고, 제1 상측 스위치, 제1 하측 스위치, 인덕터, 제2 상측 스위치, 및 제2 하측 스위치로 구성되어 전압을 낮추거나 높이는 벅 부스트 컨버터로 구현될 수 있다. 각 컨버터의 입출력단에는 각각 커패시터가 병렬로 연결될 수 있다.
출력단자(1213, 1214)는 다른 옵티마이저 모듈 또는 외부와 연결된다.
출력단자(1213, 1214) 역시 두 개의 출력단자를 포함할 수 있다. 옵티마이저 모듈 간 직렬연결될 수 있고, 해당 옵티마이저 모듈이 다른 옵티마이저 모듈 사이에 위치하는 경우, 두 개의 출력단자(1213, 1214)는 이웃하는 두 개의 다른 옵티마이저 모듈 각각 연결될 수 있고, 복수의 옵티마이저 모듈의 출력이 직렬 연결되어 외부로 최대 전력이 출력될 수 있다. 해당 옵티마이저 모듈이 외부로의 출력단자에 해당하는 위치에 위치하는 경우, 두 개의 출력단자(1213, 1214) 중 하나는 이웃하는 하나의 다른 옵티마이저 모듈과 연결되고, 다른 하나는 외부와 연결될 수 있다. 여기서, 외부는 옵티마이저 모듈의 외부에 위치하는 구성으로, 계통(Grid), 부하, 또는 배터리일 수 있다. 또는, 인버터 등 전력변환장치일 수 있다.
제어부(1217)는 입력단자(1211)로 입력되는 전력에 따라 전력변환부(1215)를 제어한다. 제어부(1217)는 입력단자(1211)로 입력되는 전력을 변환하기 위하여, 전력변환부(1215)를 제어한다. 입력단자(1211)로 입력되는 셀 스트링(111)의 출력 전력이 최대가 되로고 제어부(1217)는 전력변환부(1215)를 제어할 수 있다. 제어부는 입출력 전압 및 전류, 온도 등의 정보에 따라 가장 적합한 모드로 동작하도록 제어 신호를 각 구성에 전송할 수 있다. 또한, 외부 제어부의 제어신호 또는 사용자의 입력에 따라 해당 모드로 동작할 수 있다.
제어부(1217)는 입력단자 측, 출력단자 측 및 옵티마이저 모듈 내부의 데이터를 감지하여 모니터링하고, 그에 따라 전력변환부(1215)를 제어할 수 있다. 예를 들어, 입력단자(1211)로 입력되는 셀 스트링(111)의 전력, 전력변환부(1215)의 출력 전력 또는 출력 전류, 출력단자(1213)에 흐르는 전류를 감지할 수 있다. 또한, 제어부(1217)는 보조전원부(1218), 바이패스부(1216) 등을 제어할 수 있다.
바이패스부(1216)는 두 개의 출력단자(1213,1214) 사이에 병렬 연결될 수 있다.
바이패스부(1216)는 전력변환부(1215)와의 연결을 바이패스하는 바이패스경로를 출력단자(1213, 1214) 사이에 생성할 수 있다. 전력변환을 수행하지 않고 다른 옵티마이저 모듈을 외부 또는 또 다른 옵티마이저 모듈과 바로 연결하도록 바이패스 경로를 생성할 수 있다. 예를 들어, 셀 스트링을 포함하는 광발전 모듈에 고장이 발생하거나 입력단자(1211, 1212)가 미체결되어 전력변환부(1215)로 입력되는 전력이 없거나 낮을 때, 바이패스부(1216)는 바이패스 경로를 제공할 수 있다. 또한, 광발전 패널에 핫스팟(hot-spot)이 발생할 때, 바이패스부(1216)는 출력 전류의 우회 경로를 제공하여 광발전 패널에 흐르는 전류값을 낮추어 발열을 억제할 수도 있다. 이를 통해, 광발전 패널이 출력 가능한 전류보다 큰 전류를 강제를 도통시키면, 광발전 패널의 임피던스가 증가하여 발열량이 증가하는 것을 방지할 수 있다.
바이패스부(1216)는 전력변환부(1215)로부터 출력되는 제1 전류가 출력단자에 흐르는 제2 전류보다 낮으면 도통될 수 있다. 옵티마이저 모듈(200) 내부에서 변환되어 출력되는 제1 전류가 다른 옵티마이저 모듈과 연결되는 출력단자(1213)에 흐르는 제2 전류보다 낮으면 오히려, 다른 출력단자(1213)로부터 옵티마이저 모듈(200) 내부로 전류가 흐를 수 있다. 이로 인해, 옵티마이저 모듈(200)에 고장 등 에러가 발생하거나, 전력이 낭비되는 문제가 발생할 수 있다. 따라서, 이 경우, 출력단자(1213)에 흐르는 전류는 바이패스부(1216)를 통해 흐르게 되어, 옵티마이저 모듈(200)을 우회할 수 있다. 여기서, 바이패스부(1216)는 다이오드를 포함할 수 있다. 다이오드는 일 방향으로만 전류가 흐르는바, 해당 방향으로의 전류만을 바이패스 시킬 수 있다.
보조전원부(1218)는 입력단자(1211)로 입력되는 전력을 이용하여 보조전원을 생성할 수 있다. 옵티마이저 모듈(200)이 전력을 변환하거나 제어를 수행하기 위한 전원인 보조전원이 필요하다. 보조전원부(1218)는 입력단자(1211)로 입력되는 전력을 이용하여 보조전원을 생성하고, 생성된 보조전원을 전력변환부(1215) 또는 제어부(1217)에 제공할 수 있다.
보조전원부(1218)는 강압모드 또는 승압모드로 동작할 수 있다. 입력단자(1211)로 입력되는 전력은 광발전량에 따라 달라질 수 있으나, 전력변환부(1215) 또는 제어부(1217)가 동작하는데 필요한 보조전원은 달라지지 않을 수 있다. 따라서, 입력되는 전력의 전압이 보조전원의 전압보다 낮으면 보조전원부(1218)는 승압모드(step up mode)로 동작하고, 입력되는 전력의 전압이 보조전원의 전압보다 높으면 보조전원부(1218)는 강압모드(step down mode)로 동작할 수 있다.
옵티마이저 모듈(200)은 도 8과 같은 회로도로 구현될 수 있다. 옵티마이저 모듈(200)은 셀 스트링의 출력 전력을 최적화하는 모듈로, 전력변환부(1215)인 DC-DC 컨버터 및 제어부(1217)인 컨트롤러(Controller)를 포함할 수 있다. DC-DC 컨버터는 셀 스트링에서 발생한 전력을 입력단자를 통해 입력 받아, 전력을 변환하고, 출력단자로 출력한다. 컨트롤러는 적어도 한 개 이상의 파라미터를 감지하거나, 감지한 파라미터에 따라 DC-DC 컨버터를 제어할 수 있다. 컨트롤러는 DC-DC컨버터를 제어하여 광발전 패널에서 만들어지는 전력을 최대가 되도록 한다. 또한, 바이패스부(1216)인 바이패스 다이오드(Bypass diode)를 포함할 수 있다. 바이패스 다이오드는 제2 전류인 I_out 전류가 제1 전류인 I_DC-DC 전류 보다 높을 시 도통되어 전류가 흐르고, 이를 통해 I_out을 바이패스시킬 수 있다. 또한, 보조전원부(1218)인 AUX를 포함할 수 있다. 보조전원부는 셀 스트링의 전압을 받아와 컨트롤러 및 DC-DC 컨버터에 필요한 전원을 생성한다. 이때, 보조전원부는 적어도 한 개 이상의 강압 또는 승압 모드로 동작할 수 있다.
여기서, DC-DC 컨버터는 적어도 하나의 Buck, Boost, Buck-boost converter로 구성될 수 있고, 복수의 셀 스트링과 연결되는 옵티마이저 모듈은 직렬 결선도리 수 있다. 직렬 결선을 통해, 개별 셀-스트링 옵티마이저 모듈의 출력전압 보다 높은 전압을 형성할 수 있다.
본 발명의 실시예에 따른 광발전 모듈은 복수의 셀 스트링(111,112,113)을 포함하는 광발전 패널(110) 및 상기 각 셀 스트링의 출력 전력을 각각 제어하는 복수의 옵티마이저 모듈(200-1, 200-2, 200-3)을 포함한다. 이때, 상기 옵티마이저 모듈 각각은 서로 이격되어 각 셀 스트링에 대응되는 영역에 배치될 수 있다.
상기 다른 옵티마이저와 연결되는 출력단자(1213, 1214)는 상기 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 도 9와 같이, 옵티마이저 모듈(200-1)는 다른 옵티마이저 모듈(200-2)와 연결시 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부는 버스바 또는 케이블을 포함할 수 있다. 이때, 출력단자는 광발전 패널(110)에 내장된 버스바 등과 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링의 양단 출력단자와 같이 광발전 모듈의 제2면으로 도출될 수 있다. 광발전 패널(110)에 내장된 연결부(131)는 상기 각 옵티마이저의 상기 두 개의 출력단자(1213, 1214)와 옵티마이저 내부에서 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링과 광발전 패널(110) 내부에서는 서로 전기적으로 연결되지 않고, 절연되어 형성될 수 있다. 광발전 패널(110)에 내장된 연결부(131)를 이용하는 경우, 연결 위치가 제한될 수 있으나, 별도의 케이블 없이 바로 연결이 가능하다.
또는, 상기 다른 옵티마이저 또는 외부와 연결되는 출력단자(1213, 1214)는 상기 광발전 패널(110)에 내장된 연결부가 아닌 외부의 연결부(132)를 통해 연결될 수 있다. 광발전 패널(110) 외부의 연결부(132)를 이용하는 경우, 케이블 등의 전도체를 이용하는바, 연결 위치나 연결 형태를 자유롭게 구현할 수 있다. 다만, 케이블이 외부로 노출되어 감전 등의 위험성이 높아질 수 있다. 설치환경이나 작업환경에 따라 광발전 패널(110)에 내장된 연결부(131) 또는 광발전 패널(110) 외부의 연결부(132)를 이용할 수 있다.
도 10은 본 발명의 실시예에 따른 옵티마이저 모듈의 사시도이고, 도 11은 본 발명의 실시예에 따른 옵티마이저 모듈의 케이스 내부를 도시한 것이고, 도 12는 본 발명의 실시예에 따른 복수의 옵티마이저 모듈의 연결관계를 도시한 것이고, 도 13은 본 발명의 또 다른 실시예에 따른 광발전 모듈의 블록도이고, 도 14는 본 발명의 실시예에 따른 복수의 광발전 모듈의 연결관계를 도시한 것이다. 도 10 내지 도 14의 각 구성에 대한 상세한 설명은 도 1 내지 도 9의 광발전 모듈에 대한 상세한 설명에 대응되는바, 이하 중복되는 설명은 간략하게 설명하도록 한다.
본 발명의 실시예에 따른 옵티마이저 모듈(300)은 케이스 및 케이스 내부에 배치되는 옵티마이저(320)를 포함한다. 옵티마이저(320)는 입력단자(331,332), 전력변환부(320), 출력단자(342,3434)로 구성되고, 보조전원부, 바이패스부를 포함할 수 있다.
케이스(310)는 케이스 본체 및 이를 덮는 케이스 커버(미도시)를 포함하고, 상기 케이스 본체 내부에 배치되는 옵티마이저(320)를 포함할 수 있다. 옵티마이저(300)는 두 개의 입력단자(321, 332) 및 두 개의 출력단자(341, 342)를 포함할 수 있다.
두 개의 입력단자(331,332)는 셀 스트링의 양단의 출력단자와 연결되고, 옵티마이저(320)는 상기 셀 스트링의 출력 전력을 변환하는 전력변환부 및 상기 셀 스트링의 출력 전력에 따라 전력변환부를 제어하는 제어부를 포함할 수 있다.
케이스(310) 본체 내부는 방열물질로 채워질 수 있다. 전력을 변환시 열이 발생하게 되고, 열로 인한 에러를 방지하기 위하여, 열을 외부로 방출시킬 수 있다. 실리콘 또는 에폭시 재질로 케이스(310) 내부 공간을 채울 수 있다.
케이스(310) 내부는 방수구조로 형성될 수 있다. 케이스(310)는 광발전 모듈의 일면에 형성될 수 있고, 실외에 위치하기 때문에, 비를 맞을 수 있어, 방수구조를 가지도록 형성될 수 있다. 도 10과 같이, 각 연결단자와 연결되는 옵티마이저(320)에 방수구조를 형성할 수 있다. 즉, 케이스 내부에 방수구조를 갖는 케이스 내부구조를 형성하고, 옵티마이저(320)를 방수구조 내부에 배치하여, 옵티마이저(320)에 배치되는 구성을 보호할 수 있다.
옵티마이저(320)는 케이스(310) 본체로부터 탈부착이 가능할 수 있다. 옵티마이저(320)는 입력단자(331,332) 또는 출력단자(341,342)와 연결 또는 해제 됨으로써 케이스(310) 본체로부터 탈부착이 가능하다. 이때, 각 단자는 나사결합할 수 있다. 옵티마이저(320)에 고장이 발생하는 경우, 옵티마이저 모듈(300) 전체가 아닌 옵티마이저(320)만 탈부착하여 교체 내지 복구작업이 이루어지도록 할 수 있다. 또는, 또는, 후크결합이나 솔더링 등 다양한 방식으로 케이스(310) 본체에 배치될 수 있다.
입력단자(331, 332)는 옵티마이저 모듈(300)이 장착되는 광발전 모듈의 광방전 패널과 연결되어 셀 스트링의 출력 전력을 입력받을 수 있다. 직렬로 연결되는 셀 스트링(111)은 양단 출력단자 2 개가 외부로 도출될 수 있고, 양단 출력단자는 광발전 모듈(100)의 제2면으로 도출될 수 있다. 상기 각 셀 스트링의 양단 출력단자는 상기 각 옵티마이저 모듈(300)의 상기 두 개의 입력단자(331, 332)와 케이스(320) 내부에서 직접 연결될 수 있다. 두 개의 입력단자(331,332)는 각각 셀 스트링(111)의 양단 출력단자와 연결되어 셀 스트링(111)에서 생성되는 전력을 수신할 수 있다.
출력단자(341,342)는 다른 옵티마이저 모듈 또는 외부와 연결된다. 출력단자(341,342) 역시 두 개의 출력단자를 포함할 수 있다. 옵티마이저 모듈간 직렬연결될 수 있고, 해당 옵티마이저 모듈이 다른 옵티마이저 모듈 사이에 위치하는 경우, 두 개의 출력단자(341,342)는 이웃하는 두 개의 다른 옵티마이저 모듈과 각각 연결된다. 복수의 옵티마이저 모듈의 출력이 직렬 연결되어 외부로 최대 전력이 출력될 수 있다. 해당 옵티마이저 모듈이 외부로의 출력단자에 해당하는 위치에 위치하는 경우, 두 개의 출력단자(341,342) 중 하나는 이웃하는 하나의 다른 옵티마이저 모듈과 연결되고, 다른 하나는 외부와 연결될 수 있다. 여기서, 외부는 광발전 모듈의 외부에 위치하는 구성으로, 계통(Grid), 부하, 또는 배터리일 수 있다. 또는, 인버터 등 전력변환장치일 수 있다. 각 옵티마이저의 출력들은 직렬 연결되어 상기 외부로 출력된다.
상기 다른 옵티마이저 모듈과 연결되는 출력단자(341,342)는 상기 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 도 12 및 도 13과 같이, 옵티마이저 모듈(300-1)는 다른 옵티마이저 모듈(300-2)와 연결시 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부는 버스바 또는 케이블을 포함할 수 있다. 이때, 출력단자는 광발전 패널(110)에 내장된 버스바 등과 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링의 양단 출력단자와 같이 광발전 모듈(100)의 제2면으로 도출될 수 있다. 광발전 패널(110)에 내장된 연결부(131)는 상기 각 옵티마이저 모듈의 상기 두 개의 출력단자(341,342)와 옵티마이저 모듈 케이스(310) 내부에서 직접 연결될 수 있다. 이때, 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링과 광발전 패널(110) 내부에서는 서로 전기적으로 연결되지 않고, 절연되어 형성될 수 있다. 광발전 패널(110)에 내장된 연결부(131)를 이용하는 경우, 연결 위치가 제한될 수 있으나, 별도의 케이블 없이 바로 연결이 가능하다.
또는, 상기 다른 옵티마이저 또는 외부와 연결되는 출력단자(341,342)는 상기 광발전 패널(110)에 내장된 연결부가 아닌 외부의 연결부(132)를 통해 연결될 수 있다. 광발전 패널(110) 외부의 연결부(132)를 이용하는 경우, 케이블 등의 전도체를 이용하는바, 연결 위치나 연결 형태를 자유롭게 구현할 수 있다. 다만, 케이블이 외부로 노출되어 감전 등의 위험성이 높아질 수 있다. 설치환경이나 작업환경에 따라 광발전 패널(110)에 내장된 연결부(131) 또는 광발전 패널(110) 외부의 연결부(132)를 이용할 수 있다.
출력단자(341, 342)는 다른 옵티마이저 모듈 또는 외부와 연결될 수 있고, 출력단자(341, 342)는 다른 옵티마이저 모듈과 연결시 직렬 결선될 수 있다. 출력단자(341,342)는 케이스(310) 외부에 형성되는 홀을 통해 케이스(310) 내부로 인입되는 케이블 또는 버스바 등 전도체와 스크류 결합을 통해 연결될 수 있다.
케이스(310)는 케이스 본체 및 케이스 커버로 구성될 수 있고, 케이스(310)는 방수 기능을 포함할 수 있다. 또한, 케이스(310) 내부는 열전달이 가능한 재질로 채울 수 있다. 예를 들어, 열전달이 용이한 실리콘, 에폭시 재질로 케이스(310) 내부 빈 공간을 채울 수 있다. 샐 스트링을 최적화하는 옵티마이저(Optimizer)는 케이스(310)로부터 탈부착이 가능하여 교체가 용이할 수 있다. 출력 단자를 통해 다른 광발전 패널에 위치하는 셀-스트링의 옵티마이저 모듈과 전기적으로 연결될 수 있다. 이때, 다른 광발전 패널과 연결을 용이하게 하기 위해 출력 단자에는 케이블 등 전도체와 연결될 수 있다. 출력 단자는 광발전 패널에 내장된 전도체를 통해 연결될 수 있고, 광발전 패널에 내장된 전도체는 광발전 패널에 내장되지 않은 케이블로 대체할 수 있다.
옵티마이저(320)는 케이스(310) 내부에 기판상에 배치되는 회로 구성으로 형성될 수 있다. 옵티마이저(320)는 입력단자(331,332), 전력변환부, 출력단자(342,3434)로 구성되고, 보조전원부, 바이패스부를 포함할 수 있다.
전력변환부는 입력단자(331,332)로 입력되는 전력을 변환한다. 이때, 제어부가 입력단자(331,332)로 입력되는 전력에 따라 전력변환부를 제어한다. 제어부는 셀 스트링의 출력 전력이 최대가 되도록 전력변환부를 제어할 수 있다. 전력변환부는 벅(Buck) 컨버터, 부스트(Boost) 컨버터, 및 벅-부스트(Buck-Boost) 컨버터 중 적어도 하나를 포함할 수 있다.
바이패스부는 상기 두 개의 출력단자(341,342) 사이에 병렬 연결될 수 있고, 출력단자 사이에서 도통되어 바이패스 경로를 형성할 수 있다. 보조전원부는 셀 스트링의 출력 전력을 이용하여 보조전원을 생성하여 전력변환부 또는 제어부 등에 제공할 수 있다.
본 발명의 실시예에 따른 광발전 모듈은 복수의 셀 스트링(111,112,113)을 포함하는 광발전 패널(110) 및 상기 각 셀 스트링의 출력 전력을 각각 제어하는 복수의 옵티마이저 모듈(300-1, 300-2, 300-3)을 포함한다. 이때, 상기 옵티마이저 모듈 각각은 서로 이격되어 각 셀 스트링에 대응되는 영역에 배치될 수 있다.
상기 다른 옵티마이저와 연결되는 출력단자(341,342)는 상기 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 도 12 및 도 13과 같이, 옵티마이저 모듈(300-1)는 다른 옵티마이저 모듈(300-2)와 연결시 광발전 패널(110)에 내장된 연결부(131)를 통해 연결될 수 있다. 광발전 패널(110)에 내장된 연결부(131)는 셀 스트링과 광발전 패널(110) 내부에서는 서로 전기적으로 연결되지 않고, 절연되어 형성될 수 있다. 광발전 패널(110)에 내장된 연결부(131)를 이용하는 경우, 연결 위치가 제한될 수 있으나, 별도의 케이블 없이 바로 연결이 가능하다.
또는, 상기 다른 옵티마이저 또는 외부와 연결되는 출력단자(341,342)는 상기 광발전 패널(110)에 내장된 연결부가 아닌 외부의 연결부(132)를 통해 연결될 수 있다. 광발전 패널(110) 외부의 연결부(132)를 이용하는 경우, 케이블 등의 전도체를 이용하는바, 연결 위치나 연결 형태를 자유롭게 구현할 수 있다. 다만, 케이블이 외부로 노출되어 감전 등의 위험성이 높아질 수 있다. 설치환경이나 작업환경에 따라 광발전 패널(110)에 내장된 연결부(131) 또는 광발전 패널(110) 외부의 연결부(132)를 이용할 수 있다.
광발전 모듈(410,420,430)이 복수로 연결될 수 있다. 도 14와 같이, 복수의 광발전 모듈(410,420,430)은 전도체(441)를 통해 서로 직렬로 연결되거나, 전도체(442,443)를 통해 외부와 연결될 수 있다. 각 광발전모듈(410)은 광 발전 패널(411) 및 앞서 설명한 옵티마이저 모듈(300)을 포함할 수 있다.
상기와 같이, 옵티마이저 모듈은 셀 스트링의 출력단자에 대응하는 위치에 위치시킴으로써 광발전 패널과 옵티마이저 연결을 위한 케이블을 줄이고, 작업이 용이할 수 있도록 할 수 있다.
본 실시 예와 관련된 기술 분야에서 통상의 지식을 가진 자는 상기된 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 방법들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 복수의 셀 스트링을 포함하는 광발전 패널; 및
    상기 각 셀 스트링의 출력 전력을 각각 제어하는 복수의 옵티마이저를 포함하고,
    상기 각 옵티마이저는 상기 각 셀 스트링의 출력단자에 대응하는 위치에 위치하는 광발전 모듈.
  2. 제1항에 있어서,
    상기 각 옵티마이저는,
    상기 각 셀 스트링의 양단 출력단자와 연결되는 두 개의 입력단자;
    다른 옵티마이저 또는 외부와 연결되는 두 개의 출력단자; 및
    상기 입력단자를 통해 입력되는 상기 각 셀스트링의 출력 전력을 변환하여 상기 출력단자로 출력하는 전력변환부를 포함하는 광발전 모듈
  3. 제2항에 있어서,
    상기 다른 옵티마이저와 연결되는 출력단자는 상기 광발전 패널에 내장된 연결부를 통해 연결되는 광발전 모듈.
  4. 제3항에 있어서,
    상기 광발전 패널에 내장된 연결부는 버스바 또는 케이블을 포함하는 광발전 모듈.
  5. 제2항에 있어서,
    상기 각 셀 스트링의 양단 출력단자는 상기 각 옵티마이저의 상기 두 개의 입력단자와 옵티마이저 내부에서 직접 연결되는 광발전 모듈.
  6. 제2항에 있어서,
    상기 다른 옵티마이저 또는 외부와 연결되는 출력단자는 상기 광발전 패널 외부의 연결부를 통해 연결되는 광발전 모듈.
  7. 제2항에 있어서,
    상기 전력변환부는 벅(Buck) 컨버터, 부스트(Boost) 컨버터, 및 벅-부스트(Buck-Boost) 컨버터 중 적어도 하나를 포함하는 광발전 모듈.
  8. 제2항에 있어서,
    상기 각 옵티마이저는
    상기 두 개의 출력단자 사이에 병렬 연결되는 바이패스부를 포함하는 광발전 모듈.
  9. 제1항에 있어서,
    상기 각 옵티마이저는 최대전력점 추종제어(MPPT)로 상기 각 셀 스트링의 출력 전력을 제어하는 광발전 모듈.
  10. 제1항에 있어서,
    상기 복수의 옵티마이저는 상기 광발전 모듈이 배치되는 면의 반대면에 장착되는 광발전 모듈.
PCT/KR2023/015154 2022-09-30 2023-09-27 광발전 모듈 WO2024072175A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220125805A KR20240045888A (ko) 2022-09-30 2022-09-30 광발전 모듈
KR10-2022-0125805 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024072175A1 true WO2024072175A1 (ko) 2024-04-04

Family

ID=90478799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/015154 WO2024072175A1 (ko) 2022-09-30 2023-09-27 광발전 모듈

Country Status (2)

Country Link
KR (1) KR20240045888A (ko)
WO (1) WO2024072175A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052185A (ja) * 2001-05-30 2003-02-21 Canon Inc 電力変換器およびそれを用いる光起電力素子モジュール並びに発電装置
KR101132323B1 (ko) * 2011-12-23 2012-04-06 주식회사 케이디파워 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
KR20190132849A (ko) * 2018-05-21 2019-11-29 청주대학교 산학협력단 태양광 패널의 최대 전력 관리 시스템
KR20220074229A (ko) * 2020-11-27 2022-06-03 한화솔루션 주식회사 태양광 발전 시스템
KR102412303B1 (ko) * 2021-07-30 2022-06-23 주식회사 스마트파워 전류값을 이용하여 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101378573B1 (ko) 2013-03-13 2014-04-02 레토 솔라 코포레이션 태양전지모듈용 정션박스 및 그의 구동방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003052185A (ja) * 2001-05-30 2003-02-21 Canon Inc 電力変換器およびそれを用いる光起電力素子モジュール並びに発電装置
KR101132323B1 (ko) * 2011-12-23 2012-04-06 주식회사 케이디파워 단위 그룹별 최대전력점 추종을 수행하는 태양광 발전 시스템
KR20190132849A (ko) * 2018-05-21 2019-11-29 청주대학교 산학협력단 태양광 패널의 최대 전력 관리 시스템
KR20220074229A (ko) * 2020-11-27 2022-06-03 한화솔루션 주식회사 태양광 발전 시스템
KR102412303B1 (ko) * 2021-07-30 2022-06-23 주식회사 스마트파워 전류값을 이용하여 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템

Also Published As

Publication number Publication date
KR20240045888A (ko) 2024-04-08

Similar Documents

Publication Publication Date Title
US20200220494A1 (en) Distributed Power Harvesting Systems Using DC Power Sources
WO2022145907A1 (ko) 스트링 단위로 균등 전압을 추종하는 스트링 옵티마, 및 이를 적용한 태양광 발전 시스템
JP2010521720A (ja) Dc電源を用いた分散型電力ハーベストシステム
WO2011126346A2 (ko) 태양광 발전 장치 및 그 제어방법
WO2022114624A1 (ko) 태양광 발전 시스템
WO2022203475A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2010147420A9 (ko) 직교 섭동 신호를 사용하는 최대 전력 추종기 및 그것의 최대 전력 추종 제어 방법
WO2015163583A1 (ko) 태양광발전 시스템
WO2022203473A1 (ko) Dc-dc 컨버터, 전력변환장치, 및 태양광 발전 시스템
WO2019107891A1 (en) Photovoltaic module and photovoltaic system including the same
WO2024072175A1 (ko) 광발전 모듈
WO2024072174A1 (ko) 광발전 모듈
US10742165B2 (en) Bypass mechanisms for energy generation systems
WO2017191986A1 (ko) 태양광 모듈, 및 이를 구비하는 태양광 시스템
WO2024158204A1 (ko) 광발전 모듈
WO2024128777A1 (ko) 광발전 모듈
WO2024128778A1 (ko) 광발전 모듈
WO2022203474A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203484A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
KR20180023389A (ko) 태양광 모듈, 및 이를 구비하는 태양광 시스템
US20230068438A1 (en) Distributed Power Harvesting Systems Using DC Power Sources
WO2024228575A1 (ko) 배터리 모듈
WO2017191981A1 (ko) 태양광 모듈, 및 이를 구비하는 태양광 시스템
WO2023277653A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2023277672A1 (ko) 멀티레벨 구조를 가지는 전력변환장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23873282

Country of ref document: EP

Kind code of ref document: A1