Nothing Special   »   [go: up one dir, main page]

WO2024070489A1 - 無方向性電磁鋼板および無方向性電磁鋼板の製造方法 - Google Patents

無方向性電磁鋼板および無方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2024070489A1
WO2024070489A1 PCT/JP2023/031954 JP2023031954W WO2024070489A1 WO 2024070489 A1 WO2024070489 A1 WO 2024070489A1 JP 2023031954 W JP2023031954 W JP 2023031954W WO 2024070489 A1 WO2024070489 A1 WO 2024070489A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
sheet
hot
rolled
Prior art date
Application number
PCT/JP2023/031954
Other languages
English (en)
French (fr)
Inventor
宣郷 森重
毅 市江
裕也 藤井
雄也 中辻
哲也 佐々木
史展 村上
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2024537846A priority Critical patent/JPWO2024070489A1/ja
Publication of WO2024070489A1 publication Critical patent/WO2024070489A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present invention relates to a non-oriented electrical steel sheet and a method for producing a non-oriented electrical steel sheet.
  • High-grade non-oriented electrical steel sheets contain about 2% to 5% by mass of Si. At this time, the crystal axis orientation of each crystal is arranged as randomly as possible so that the magnetic properties of the steel sheet are not biased towards a specific direction. Because this type of non-oriented electrical steel sheet has excellent magnetic properties, it is used, for example, as the iron core material for the stators and rotors of rotating machines.
  • Iron loss is made up of eddy current loss and hysteresis loss. To reduce eddy current loss, it is effective to add elements such as Si, Al, and Mn to the steel components to increase the specific resistance.
  • non-oriented electromagnetic steel sheets when used in rotating machines, they are punched into the shape of a stator and rotor, and then laminated. That is, many non-oriented electromagnetic steel sheets are laminated when manufacturing stators and rotors, and because this laminate is used as a rotating machine, it is important that the dimensional accuracy of the steel sheets after punching is excellent and that each steel sheet is aligned to the specified shape.
  • Patent Document 1 discloses a technique for controlling the deviation of uniform elongation in each of the rolling, width, and 45-degree directions by controlling the tension and cooling rate in the cooling process of finish annealing.
  • Patent Document 2 discloses a technique for improving punching dimensional accuracy by controlling the relationship between yield stress and plate thickness and the balance of alloy amounts.
  • Patent Document 3 discloses a technique for controlling the average crystal grain size, the thickness of the internal oxide layer, and the Young's modulus in the rolling direction and/or the width direction, and for performing skin pass and stress relief annealing after finish annealing.
  • High alloying improves the strength of the steel plate, which is expected to increase the rotation speed of the motor.
  • high alloying makes the dimensions after the steel plate is punched into a motor shape (punching dimensions) more likely to vary.
  • Patent Document 1 discloses a non-oriented electrical steel sheet that can improve the roundness during punching by controlling the tension and cooling rate in the cooling process of finish annealing and reducing the anisotropy of uniform elongation.
  • Patent Document 2 discloses a thin electrical steel sheet for high-efficiency motors that has excellent punching dimensional accuracy and high-frequency magnetic properties by controlling the alloy addition conditions and the relationship between the yield stress and sheet thickness of the steel sheet.
  • Patent Document 3 discloses a non-oriented electrical steel sheet suitable for a split-type stator having high dimensional accuracy by controlling the average crystal grain size, the internal oxidation layer, and the anisotropy of the Young's modulus of the steel sheet.
  • the present invention was made in consideration of the above problems, and aims to provide a non-oriented electrical steel sheet that has low iron loss and excellent punching dimensional accuracy, and a manufacturing method thereof.
  • a non-oriented electrical steel sheet according to one embodiment of the present invention has a chemical composition, in mass%, C: 0.005% or less, Si: 2.00% or more and 4.50% or less, Mn: 0.01% or more and 5.00% or less, Al: 0.03% or more and 5.00% or less, S, Se and Te, total SE of one or more: more than 0% and 0.005% or less; N: more than 0% and not more than 0.005%; P: more than 0% and not more than 1.000%; Cu: 0% or more and 1.0% or less, Sn: 0% or more and 1.0% or less, Ni: 0% or more and 1.0% or less, Cr: 0% or more and 1.0% or less, Sb: 0% or more and 1.0% or less; the balance being Fe and impurities, and satisfying formula (1) and formula (2); the standard deviation of the ratio L RD /L TD of the rolling direction length L RD to the width direction length L TD of the circular hole
  • the non-oriented electrical steel sheet according to the above [1] further comprises, in mass%, Ti: 0% or more and 0.0030% or less, Nb: 0% or more and 0.0030% or less, V: 0% or more and 0.0030% or less, Zr: One or more selected from the group consisting of 0% or more and 0.0030% or less may be contained.
  • a method for producing a non-oriented electrical steel sheet according to one aspect of the present invention includes a hot rolling step of heating a slab having the chemical composition described in the above [1] or [2] and hot rolling the slab to obtain a hot-rolled steel sheet; A cold rolling process of cold rolling the hot rolled steel sheet to obtain a cold rolled steel sheet; A finish annealing process in which the cold-rolled steel sheet is subjected to finish annealing to obtain a finish annealed sheet; and an insulating coating step of applying an insulating coating to the finish annealed sheet to form an insulating coating on the finish annealed sheet to obtain an insulating coating-coated steel sheet.
  • the finish annealing step when the average heating rate of the steel sheet in the temperature range of 300° C. to 700° C. is Vh (° C./sec), the soaking temperature of the steel sheet is Tf (° C.), the soaking time of the steel sheet is tf (sec), and the average cooling rate of the steel sheet in the temperature range of 700° C. to 300° C. is Vc (° C./sec), Tf is 750 to 1100° C., tf is 10 to 300 seconds, and formula (3) is satisfied,
  • the drying temperature Tc (°C) when applying the insulating coating is 250 to 500°C, and the steel sheet tension is 0.5 to 5.0 kgf/ mm2 .
  • the method for producing a non-oriented electrical steel sheet according to the above [3] may include a hot-rolled sheet annealing step of subjecting the hot-rolled steel sheet to hot-rolled sheet annealing to obtain a hot-rolled annealed sheet prior to the cold rolling step.
  • the above aspect of the present invention makes it possible to provide a non-oriented electrical steel sheet with low iron loss and excellent punching dimensional accuracy, as well as a manufacturing method thereof.
  • the inventors conducted extensive research, particularly into the finish annealing conditions, to improve the accuracy of punching dimensions for non-oriented electrical steel sheets, and discovered the following:
  • Non-oriented electrical steel sheet The non-oriented electrical steel sheet according to this embodiment will be specifically described below.
  • C 0.005% or less
  • C is an element that may cause magnetic aging in the final non-oriented electrical steel sheet, so it is not preferable to contain a large amount of C. Therefore, the C content is 0.005% or less, preferably 0.004% or less.
  • the lower the C content the better, but considering the cost, the lower limit may be 0.0005% or more.
  • Si 2.00% or more and 4.50% or less Si increases the electrical resistance of the non-oriented electrical steel sheet, thereby reducing eddy current loss, which is one of the causes of iron loss. If the Si content is less than 2.00%, it is difficult to sufficiently suppress the eddy current loss of the final non-oriented electrical steel sheet, which is not preferable. If the Si content exceeds 4.50%, it is not preferable because the workability decreases. Therefore, the lower limit of the Si content is 2.00% or more, preferably 2.40% or more, more preferably 3.20% or more, and even more preferably 3.30% or more. The upper limit of the Si content is 4.50% or less, preferably 4.30% or less, and more preferably 4.10% or less.
  • Mn 0.01% or more and 5.00% or less Mn has the effect of increasing electrical resistance like Si, and reduces eddy current loss, which is one of the causes of iron loss. If the Mn content is less than 0.01%, the effect of reducing eddy current loss is insufficient, which is undesirable. If the Mn content exceeds 5.00%, the workability decreases, which is undesirable. Therefore, the lower limit of the Mn content is 0.01% or more, preferably 0.05% or more, and more preferably 0.30% or more.
  • the upper limit of the Mn content is 5.00% or less, preferably 4.00% or less, and more preferably 3.50% or less. The upper limit of the Mn content may be 3.00% or less, and further 2.50% or less.
  • Al 0.03% or more and 5.00% or less Al has the effect of increasing electrical resistance like Si, and reduces eddy current loss, which is one of the causes of iron loss. If the content of Al is less than 0.03%, the effect of reducing eddy current loss is insufficient, which is not preferable. If the content of Al is more than 5.00%, the workability is reduced, which is not preferable. Therefore, the lower limit of the Al content is 0.03% or more, preferably 0.15% or more, and more preferably 0.90% or more, and the upper limit of the Al content is 5.00% or less, preferably 4.00% or less, and more preferably 3.50% or less. The upper limit of the Al content may be 3.00% or less, and further 2.00% or less.
  • Total SE of one or more of S, Se and Te more than 0% and 0.0050% or less S, Se and Te form precipitates together with the above-mentioned Mn to deteriorate hysteresis loss. If the total SE of the contents of S, Se and Te exceeds 0.0050%, the amount of precipitation of MnS, MnSe and MnTe becomes too large, which is not preferable because it deteriorates hysteresis loss. Therefore, the upper limit of the total SE of the contents of one or more of S, Se and Te is 0.0050% or less, preferably 0.0040% or less, and more preferably 0.0030% or less in total. The lower limit of the total SE of the contents of one or more of S, Se and Te may be more than 0% because it is better to be lower, but it may be 0.0001% or more from the viewpoint of cost and hysteresis loss reduction effect.
  • N more than 0% and not more than 0.0050%; N forms AlN together with the above-mentioned Al, deteriorating the hysteresis loss. If the content of N exceeds 0.0050, the amount of AlN precipitated becomes too large, which is undesirable as it deteriorates the hysteresis loss. Therefore, the upper limit of the N content is 0.0050% or less.
  • the lower limit of the N content may be more than 0% because it is better to have a lower content, but it may be 0.0001% or more from the viewpoints of cost and hysteresis loss reduction effect.
  • P more than 0% and 1.000% or less P has the effect of increasing strength without decreasing magnetic flux density.
  • excessive P content impairs the toughness of the steel, making the steel sheet more susceptible to fracture. Therefore, the upper limit of the P content is 1.000% or less, preferably 0.150% or less, and more preferably 0.120% or less.
  • the lower limit of the P content is not particularly limited, but may be set to 0.001% or more, taking into consideration the production cost.
  • each content is 0% or more and 1.0% or less.
  • one or more selected from the group consisting of Cu, Sn, Ni, Cr, and Sb, which are elements that improve the texture and increase the magnetic flux density may be contained as an A group element.
  • the upper limit of the content of each of the above elements is 1.0% or less, preferably 0.3% or less. Since the inclusion of an A group element is optional, the lower limit of the content of each of the above elements is 0% or more, but may be preferably 0.0005% or more.
  • each content is 0% or more and 0.0030% or less.
  • the B group element one or more selected from the group consisting of Ti, Nb, V, and Zr, which are elements that form precipitates in steel and deteriorate hysteresis loss, may be contained.
  • the content of each of the above elements may be 0% or more and 0.0030% or less.
  • the upper limit of the content of each of the above elements may be set to 0.0030% or less for the B group elements.
  • the lower limit of the content of each of the B group elements is 0% because it is better to have a lower content, but it may be set to 0.0001% from the viewpoint of cost and hysteresis loss reduction effect.
  • Si, Mn, and Al have the effect of increasing electrical resistance, and reduce eddy current loss, which is one of the causes of deterioration of iron loss. Since each of Si, Mn, and Al has the effect of increasing electrical resistance, and even when added in combination, they have the effect, the total content of Si, Mn, and Al is effective in increasing electrical resistance.
  • the lower limit of the total content of Si, Mn, and Al is 4.50% or more, preferably 4.80% or more, and more preferably 5.00% or more.
  • the upper limit of the total content of Si, Mn, and Al may be preferably less than 10.00%, and more preferably 9.70% or less.
  • Al/3 ⁇ Mn When Al/3 is larger than the Mn content, the punching dimensional accuracy may vary. Therefore, it is effective for the chemical composition to satisfy the relationship Al/3 ⁇ Mn.
  • the detailed mechanism by which the dimensional accuracy after punching can be improved by satisfying this relationship is unclear, but it is presumed as follows. Since Al has a greater effect of increasing the strength of the steel sheet than Mn, it is more susceptible to the stress in the finish annealing and insulating coating.
  • the above chemical composition is the composition of the silicon steel sheet that is the base material for the non-oriented electrical steel sheet according to this embodiment.
  • the non-oriented electrical steel sheet to be measured has an insulating coating on its surface, this is removed before measurement.
  • a non-oriented electrical steel sheet with an insulating coating is immersed in an aqueous solution of sodium hydroxide, an aqueous solution of sulfuric acid, and an aqueous solution of nitric acid, in that order, and then washed. Finally, it is dried with hot air. This produces a silicon steel sheet with the insulating coating removed, as described below.
  • the above-mentioned chemical compositions can be measured by common analytical methods. For example, they can be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). C and S can be measured using the combustion-infrared absorption method, and N can be measured using the inert gas fusion-thermal conductivity method.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the standard deviation of the ratio L RD /L TD of the length L RD in the rolling direction to the length L TD in the width direction of each circular hole is not more than 0.010.
  • the motor core is manufactured by punching non-oriented electromagnetic steel sheets using a die and stacking the non-oriented electromagnetic steel sheets in the shape of the punched core. If the punching dimensions vary, the end face shape of the motor core after stacking becomes non-uniform, which is undesirable as it reduces the motor efficiency.
  • the standard deviation of the ratio L RD /L TD of the rolling direction length L RD of the circular hole after punching using a substantially circular die to the width direction length L TD is set to 0.010 or less.
  • the handling of the numerical values in the calculation result of the standard deviation may conform to JIS Z9041-1:1999.
  • the die used for punching may be substantially circular.
  • the same die is used to punch five points in the coil width direction, and the ratio L RD /L TD of the rolling direction length L RD of each circular hole to the width direction length L TD is measured, and the standard deviation is calculated, making it possible to evaluate the punching dimensional accuracy.
  • the punching positions in the coil width direction may be selected at five locations approximately evenly spaced in the coil width direction for the non-oriented electrical steel sheet or the sample cut out from the non-oriented electrical steel sheet.
  • the punching positions may be selected such that the obtained sample is divided into five equal parts in the coil width direction and the vicinity of the center of each area substantially coincides with the center of the punching die.
  • the five punching points do not need to be aligned in a straight line in the coil width direction, and the punching positions may be changed in the rolling direction in each punching area.
  • the size of the die used for punching is preferably about 1/10 of the length of the obtained sample in the coil width direction, but it can be larger or smaller as long as it can punch five points in the coil width direction.
  • the method of measuring the rolling direction length L RD and width direction length L TD of the circular hole after punching is not particularly limited.
  • a vernier caliper may be used, a commercially available shape measuring instrument may be used, or the shape may be recorded with a scanner and then a commercially available image analysis software may be used.
  • the rolling direction length L RD and width direction length L TD of the circular hole are preferably measured using a digital vernier caliper.
  • the rolling direction length L RD of the circular hole means the maximum diameter among the diameters parallel to the rolling direction
  • the width direction length L TD of the circular hole means the maximum diameter among the diameters parallel to the coil width direction.
  • the "rolling direction” may be determined from the rolling pattern on the surface of the non-oriented electrical steel sheet.
  • the rolling pattern may be confirmed using an optical microscope or a scanning electron microscope after removing the insulating coating formed on the surface of the non-oriented electrical steel sheet with an alkaline solution or the like.
  • the "coil width direction” is the direction that forms an angle of 90 degrees with the rolling direction determined from the rolling pattern within the steel sheet plane.
  • the non-oriented electrical steel sheet according to this embodiment has excellent magnetic properties.
  • the non-oriented electrical steel sheet according to this embodiment has an iron loss W15/50 of 2.50 W/kg or less when magnetized at 50 Hz with a magnetic flux density of 1.5 T.
  • the iron loss W15/50 is 2.40 W/kg or less.
  • the magnetic properties of the non-oriented electrical steel sheet may be measured based on the Single Sheet Tester (SST) defined in JIS C 2556: 2015.
  • SST Single Sheet Tester
  • a method for manufacturing the non-oriented electrical steel sheet will be described.
  • a slab having the above-mentioned chemical composition is manufactured.
  • the slab is formed by casting molten steel adjusted to have the above-mentioned chemical composition.
  • the method for casting the slab is not particularly limited. In research and development, even if a steel ingot is formed in a vacuum melting furnace or the like, the same effect as when a slab is formed can be confirmed for the above-mentioned chemical composition.
  • the slab heating temperature is not particularly limited, and the upper limit of the slab heating temperature is not particularly determined.
  • compounds such as sulfur compounds (S compounds) and nitrogen compounds (N compounds) that are redissolved during slab heating may then precipitate finely, causing deterioration of magnetic properties.
  • the slab heating temperature may be 1250°C or less, preferably 1200°C or less.
  • the lower limit of the slab heating temperature is not particularly set, but may be 1000°C or more from the viewpoint of reducing the load on the equipment in hot rolling.
  • the finishing temperature in hot rolling is preferably 700°C or more and 1000°C or less.
  • the coiling temperature is preferably 500°C or more and 900°C or less.
  • the thickness of the hot-rolled steel sheet after hot rolling is preferably, for example, 1.5 mm or more and 3.5 mm or less. If the thickness of the hot-rolled steel sheet is less than 1.5 mm, the shape of the steel sheet after hot rolling may be inferior. If the thickness of the hot-rolled steel sheet is more than 3.5 mm, the rolling load in the cold rolling process may be large. Note that after the hot rolling process (before the cold rolling process), a hot-rolled sheet annealing process may be included as necessary in which the hot-rolled steel sheet is annealed to obtain a hot-rolled annealed sheet.
  • the hot-rolled steel sheet after hot rolling may be subjected to pickling.
  • the pickling solution is not particularly limited, and sulfuric acid or hydrochloric acid may be used.
  • the pickling solution may contain a pickling promoter or inhibitor.
  • crack defects may be introduced into the surface of the hot-rolled steel sheet by shot blasting or the like before pickling.
  • the hot-rolled steel sheet is subjected to one cold rolling or multiple cold rolling with intermediate annealing to obtain a cold-rolled steel sheet.
  • multiple cold rolling with intermediate annealing the hot-rolled sheet annealing in the previous stage can be omitted.
  • the steel sheet shape becomes better, so the possibility of the steel sheet breaking during cold rolling can be reduced.
  • pickling it is preferable to perform the above-mentioned pickling in order to remove scale and the like attached to the surface of the steel sheet.
  • pickling in order to control the precipitates in the sheet thickness direction, it is sufficient to perform at least one pickling after hot rolling and before finish annealing.
  • the thickness of the cold-rolled steel sheet after the final cold rolling is not particularly limited, but from the viewpoint of reducing iron loss, it may be preferably 0.35 mm or less, more preferably 0.30 mm or less.
  • the lower limit of the thickness of the cold rolled steel sheet is not particularly limited, but may be, for example, 0.10 mm or more.
  • the steel sheet may be heat-treated at about 300°C or less between passes of cold rolling, between rolling roll stands, or during rolling. In such a case, the magnetic properties of the finally obtained non-oriented electrical steel sheet can be improved.
  • the hot-rolled steel sheet may be rolled by three or more cold rolling passes. However, since multiple cold rolling passes increase the manufacturing cost, it is preferable that the hot-rolled steel sheet is rolled by one or two cold rolling passes.
  • the cold rolling may be performed in a tandem mill or by reverse rolling such as a Sendzimir mill. When cold rolling is performed by reverse rolling, the number of passes in each cold rolling pass is not particularly limited, but from the viewpoint of manufacturing costs, it is preferable that the number of passes is nine or less.
  • the cold-rolled steel sheet is subjected to finish annealing to obtain a cold-rolled steel sheet.
  • finish annealing the punching dimensions in the coil rolling direction and the coil width direction vary depending on the heat pattern and the insulating coating conditions of the finish annealing.
  • the atmospheric gas composition in the finish annealing is not particularly limited.
  • the average heating rate of the cold-rolled steel sheet in the temperature range of 300°C to 700°C is Vh (°C/s)
  • the soaking temperature of the cold-rolled steel sheet in the soaking process is Tf (°C) and the soaking time is tf (s)
  • the average cooling rate of the cold-rolled steel sheet in the temperature range of 700°C to 300°C in the cooling process is Vc (°C/s).
  • Tf is 750 to 1100°C
  • tf is 10 to 300 seconds, and the following formula (3) is satisfied.
  • heating rate Vc does not satisfy formula (3), there is a risk that punching dimensional accuracy will not be obtained when manufacturing non-oriented electrical steel sheet.
  • Finish annealing is usually performed in a series of steps, including heating, soaking, and cooling, and the tension of the steel plate, which is controlled in the rolling direction, is the same in each step.
  • the steel plate is fed in the rolling direction by hearth rolls according to the plate threading speed, but the tension of the steel plate in the width direction is not controlled.
  • the steel plate undergoes thermal deformation in the coil width direction, expanding in the width direction due to thermal expansion during the heating process and shrinking in the width direction due to thermal contraction during the cooling process.
  • the deformation of the steel plate in the width direction due to thermal stress is restrained by the tension of the steel plate in the rolling direction and friction with the hearth rolls. At this time, if the conditions of finish annealing are not properly controlled, it is thought that the deformation of the steel plate in the coil width direction will become uneven.
  • the difference between the heating rate Vh and the cooling rate Vc in the final annealing is too large, that is, if formula (3) is not satisfied, the difference in the thermal deformation rate in the coil width direction becomes excessive, and the introduced strain becomes non-uniform depending on the position in the coil width direction.
  • the heating rate Vh and the cooling rate Vc are properly controlled, that is, if formula (3) is satisfied, the difference in the thermal deformation rate in the coil width direction is kept within an appropriate range, and the introduced strain is suppressed within a certain range depending on the position in the coil width direction.
  • the soaking temperature Tf of the cold-rolled steel sheet during the soaking process of final annealing has a significant effect on iron loss through the grain growth of the cold-rolled steel sheet. If Tf is less than 750°C, the grain size of the cold-rolled steel sheet is small, which may result in inferior hysteresis loss. If Tf is more than 1100°C, the iron loss reduction effect may saturate and the equipment load may increase.
  • the lower limit of the soaking temperature Tf is 750°C or higher, preferably 800°C or higher, and the upper limit of the soaking temperature Tf is 1100°C or lower, preferably 1075°C or lower.
  • the soaking time tf of the cold-rolled steel sheet in the soaking process of the final annealing also has a significant effect on iron loss through the grain growth of the cold-rolled steel sheet. If the soaking time tf is less than 10 seconds, the grain size of the cold-rolled steel sheet is small, which may result in inferior hysteresis loss. If the soaking time tf exceeds 300 seconds, the annealing time is long and productivity deteriorates.
  • the lower limit of the soaking time tf is 10 seconds or more, preferably 20 seconds or more.
  • the upper limit of the soaking time tf is 300 seconds or less, preferably 250 seconds or less.
  • the coil width during finish annealing is not particularly limited, but may be, for example, 80 mm or more.
  • the coil width may be 200 mm or more, 500 mm or more, or 800 mm or more.
  • the larger the coil width the more likely it is that variation in punching dimensional accuracy will occur.
  • electrical steel sheets are provided by slitting the coil to a specified width. With the non-oriented electrical steel sheet of this embodiment, it is possible to suppress variation in punching dimensional accuracy even in the electrical steel sheet after slitting, regardless of the widthwise position of the coil.
  • an insulating coating is applied to the surface of the finish-annealed sheet after the finish annealing to provide an insulating film.
  • the drying temperature Tc (°C) of the insulating coating is in the range of 250°C to 500°C, and the steel sheet tension is in the range of 0.5 kgf/ mm2 to 5.0 kgf/ mm2 . If the drying temperature Tc and the steel sheet tension are out of the above ranges, punching dimensional accuracy may not be obtained when manufacturing the non-oriented electrical steel sheet.
  • an insulating coating is applied to at least one surface of the finish annealed sheet, and then the sheet is dried to form an insulating film.
  • the finish annealed sheet is flat in the coil width direction when the finish annealed sheet passes through a drying furnace after the insulating coating is applied, and therefore tension is applied to the finish annealed sheet in the rolling direction in the insulating film coating process. If the steel sheet tension in the rolling direction at this time exceeds 5.0 kgf/ mm2 , the finish annealed sheet may deform non-uniformly in the coil width direction, and the punching dimensional accuracy may deteriorate.
  • the steel sheet tension in the rolling direction is less than 0.5 kgf/ mm2 , the steel sheet shape in the coil width direction may not be flat, and the punching dimensional accuracy may deteriorate. Therefore, the lower limit of the steel sheet tension in the insulating coating process is 0.5 kgf/ mm2 or more, preferably 0.7 kgf /mm2 or more, and the upper limit of the steel sheet tension is 5.0 kgf/ mm2 or less, preferably 4.0 kgf/mm2 or less.
  • the steel sheet is often wound into a coil and shipped.
  • the drying process of the insulating coating is often the final process performed before the coil is shipped.
  • the drying temperature Tc of the insulating coating exceeds 500°C, uneven distortion in the coil width direction may occur, resulting in deterioration of punching dimensional accuracy.
  • the drying temperature Tc is less than 250°C, the drying of the insulating coating may be insufficient.
  • the lower limit of the drying temperature Tc is 250°C or more, preferably 275°C or more, and the upper limit of the drying temperature Tc is 500°C or less, preferably 475°C or less. It is presumed that these effects become more pronounced when the steel sheet components are high alloys, since the hardness of the steel sheet increases.
  • the insulating coating may be either an organic coating or an inorganic coating.
  • organic coatings include polyamine resins; acrylic resins; acrylic styrene resins; alkyd resins; polyester resins; silicone resins; fluororesins; polyolefin resins; styrene resins; vinyl acetate resins; epoxy resins; phenolic resins; urethane resins; melamine resins, etc.
  • Inorganic coatings include, for example, phosphate coatings and aluminum phosphate coatings. Further examples include organic-inorganic composite coatings that contain the above-mentioned resins.
  • the average thickness of the insulating coating is not particularly limited, but it is preferable that the average thickness per side is 0.1 ⁇ m to 10.0 ⁇ m.
  • the magnetic properties of the magnetic steel sheet can be measured by a known method.
  • the magnetic properties of the magnetic steel sheet can be measured by using a method based on the Epstein test defined in JIS C2550:2011, or the Single Sheet Tester (SST) defined in JIS C2556:2015.
  • SST Single Sheet Tester
  • a test piece having a width of 55 mm and a length of 55 mm may be taken and a measurement in accordance with the Single Sheet Magnetic Property Test Method may be performed.
  • a correction coefficient may be multiplied to the measurement result in accordance with the Single Sheet Magnetic Property Test Method so that a measurement value equivalent to that of the method based on the Epstein test is obtained.
  • the measurement is performed by a measurement method in accordance with the Single Sheet Magnetic Property Test Method.
  • adhesives or other materials may be applied to the surface of the non-oriented electrical steel sheet manufactured by the above process.
  • the above steps allow the final non-oriented electrical steel sheet to be manufactured.
  • the manufacturing method according to this embodiment allows the manufacture of non-oriented electrical steel sheet with excellent magnetic properties.
  • non-oriented electrical steel sheet and its manufacturing method according to one embodiment of the present invention will be described in more detail, with reference to examples. Note that the examples shown below are merely examples of the non-oriented electrical steel sheet and its manufacturing method according to this embodiment, and the non-oriented electrical steel sheet and its manufacturing method according to this embodiment are not limited to the examples shown below.
  • the present invention may employ various conditions as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.
  • alloys (steels No. A1 to A29 and a1 to a12) having the chemical compositions shown in Table 1 were produced.
  • Table 1 the contents of Cu, Sn, Ni, Cr, and Sb are shown in the "A group elements” column.
  • the contents of Ti, Nb, V, and Zr are shown in the "B group elements” column.
  • underlines indicate compositions outside the scope of the present invention, and blank spaces indicate that the corresponding element content is 0% in significant figures (numbers to the lowest digits) specified in the embodiment, or is less than the lower limit of the component analysis.
  • underlines indicate conditions outside the scope of the present invention, unfavorable manufacturing conditions, or unfavorable characteristic values.
  • the above obtained alloy was hot rolled to a thickness of 2.0 mm, then hot-rolled and annealed as described in Table 2, and pickled to obtain a pickled sheet.
  • the pickled sheet was then cold-rolled to a thickness of 0.3 mm.
  • the cold-rolled sheet was then finish-annealed and insulated to obtain a non-oriented electrical steel sheet with a width of 80 mm.
  • the width of the threaded coil during finish-annealing was 80 mm.
  • a test piece 55 mm long in the rolling direction and 55 mm long in the width direction was cut out from the non-oriented electrical steel sheet after the finish annealing by shearing, and the magnetic properties were measured according to the single sheet magnetic property test method of JIS C 2556:2015.
  • the magnetic measurement value was the average value in the rolling direction and the direction perpendicular to the rolling direction.
  • a steel sheet was deemed to have passed if its iron loss W 15/50 (iron loss when the steel sheet was magnetized at 50 Hz to a magnetic flux density of 1.5 T) was 2.50 W/kg or less.
  • the obtained non-oriented electrical steel sheet was punched with a circular die having a diameter of 8 mm at five equally spaced points (distance between the centers of the punching die: approximately 16 mm) along the width direction, and the rolling direction length and width direction length of the circular holes after punching were measured with precision calipers to derive the standard deviation.
  • Example 2 In a laboratory, alloys (steel Nos. A26 and A27) having the chemical compositions shown in Table 1 were produced. The obtained alloys were hot-rolled to a thickness of 2.0 mm, and then hot-rolled annealing and pickling were performed according to the description in Table 2 to obtain pickled sheets (manufacturing methods Nos. B1 to B12 and b1 to b8). The pickled sheets were then cold-rolled to a thickness of 0.3 mm. The obtained cold-rolled sheets were then finish-annealed and insulating-coated to obtain non-oriented electrical steel sheets with a width of 80 mm. The width of the threaded coil in the finish-annealing was 80 mm.
  • a test piece 55 mm long in the rolling direction and 55 mm long in the width direction was cut out from the non-oriented electrical steel sheet after the finish annealing by shearing, and the magnetic properties were measured according to the single sheet magnetic property test method of JIS C 2556:2015.
  • the magnetic measurement value was the average value in the rolling direction and the direction perpendicular to the rolling direction.
  • examples with an iron loss W 15/50 of 2.50 W/kg or less were considered to be acceptable.
  • the obtained non-oriented electrical steel sheet was punched with a circular die having a diameter of 8 mm at five equally spaced points (distance between the centers of the punching die: approximately 16 mm) along the width direction, and the rolling direction length and width direction length of the circular holes after punching were measured with precision calipers to derive the standard deviation.
  • Example 3 First, a slab containing, by mass%, C: 0.003%, Si: 3.3%, Mn: 0.61%, Al: 1.22%, S: 0.0020%, N: 0.0020%, P: 0.010%, with the balance being Fe and impurities was prepared, and hot rolling was performed to obtain a hot-rolled steel sheet having a thickness of 2.0 mm. Thereafter, the hot-rolled steel sheet was subjected to hot-rolled sheet annealing, pickling and cold rolling according to the conditions B12, b4 and b8 described in Table 2 to obtain a cold-rolled sheet having a thickness of 0.3 mm.
  • the obtained cold-rolled sheet was then subjected to finish annealing and insulating coating to obtain a non-oriented electrical steel sheet having a width of 1000 mm.
  • the hot-rolled sheet annealing was performed at 900 ° C. for 1 minute in an atmosphere of 100% nitrogen.
  • pickling was performed by immersing the sheet in a pickling solution containing 0.07% polyamine and formic acid added to 85 ° C. hydrochloric acid (7.5%) for 30 seconds.
  • the dew point temperature of the finish annealing was set to -40 ° C.
  • the width of the sheet coil in the finish annealing was set to 1000 mm.
  • Test pieces were taken from the non-oriented electrical steel sheets after the final annealing by the method specified in JIS C 2552: 2014, and the magnetic properties were measured by the method specified in JIS C 2550: 2011.
  • examples in which the iron loss W15 /50 was 2.50 W/kg or less were deemed to have passed.
  • the obtained non-oriented electrical steel sheet was punched with a circular die having a diameter of 100 mm at five equally spaced points (distance between the centers of the punching die: approximately 200 mm) along the width direction, and the rolling direction length and width direction length of the circular holes after punching were measured with digital calipers to derive the standard deviation.
  • the non-oriented electrical steel sheet obtained under the conditions of manufacturing method No. B12 which is an example of the present invention, had excellent magnetic properties and the punching accuracy also met the specified range.
  • the composition of the base steel sheet after finish annealing was equivalent to the chemical composition of the slab.
  • the non-oriented electrical steel sheet of the example of the present invention can suppress variations in punching accuracy over the entire width of the steel sheet.
  • the punching dimensional accuracy was poor, and it was not possible to obtain the desired non-oriented electrical steel sheets.
  • the above aspect of the present invention makes it possible to provide a non-oriented electrical steel sheet with excellent magnetic properties and punching dimensional accuracy, and therefore has high industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この無方向性電磁鋼板は、質量%で、C:0.005%以下、Si:2.00%以上4.50%以下、Mn:0.01%以上5.00%以下、Al:0.03%以上5.00%以下、S、SeおよびTeのうち1種または2種以上の合計SE:0%超0.005%以下、N:0%超0.005%以下、P:0%超1.000%以下、を含有し、残部がFeおよび不純物からなり、かつ、式(1)および式(2)を満足し、略円形の金型を用いて打ち抜いた後の円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDの標準偏差が、0.010以下であり、鉄損W15/50が2.50W/kg以下である。(Si+Mn+Al)≧4.5%・・・式(1)Al/3≦Mn・・・式(2)。

Description

無方向性電磁鋼板および無方向性電磁鋼板の製造方法
 本発明は、無方向性電磁鋼板および無方向性電磁鋼板の製造方法に関する。
 本願は、2022年09月30日に、日本に出願された特願2022-157415号に基づき優先権を主張し、その内容をここに援用する。
 無方向性電磁鋼板は、高級グレードの場合、Siが2質量%~5質量%程度含有される。この時、鋼板の特定方位に偏った磁気特性を示さないように、各結晶の結晶軸方位をできるかぎりランダムに配置させる。このような無方向性電磁鋼板は磁気特性に優れるため、例えば、回転機のステーターおよびローターの鉄心材料などとして利用される。
 また、このような無方向性電磁鋼板に関し、さらに磁気特性を向上させるために、種々の開発がなされている。特に、近年の省エネルギー化の要請に伴って、さらなる低鉄損化が求められている。鉄損は、渦電流損とヒステリシス損とから構成されている。渦電流損の低減に対しては、鋼成分として、SiやAl、Mnなどの元素を添加して固有抵抗を増加させることが有効である。
 また、無方向性電磁鋼板が回転機として使用される場合、無方向性電磁鋼板をステーターおよびローターの形状に打ち抜いた後に、無方向性電磁鋼板が積層される。すなわち、ステーターおよびローターの製造時には多数枚の無方向性電磁鋼板が積層され、かつ、その積層体が回転機として使用されるため、打ち抜いた後の鋼板の寸法精度に優れ、各鋼板が所定の形状に揃うことが重要である。
 しかしながら、鋼成分としてSiやAl、Mnなどの元素を添加すると、鋼板の強度が増加し、打ち抜いた後の鋼板の寸法がばらつく場合があるとの課題があった。
 特許文献1には、仕上焼鈍の冷却過程における張力および冷却速度を制御することで、圧延、幅、および45度の各方向の一様伸びの偏差を制御する技術が開示されている。
 また、特許文献2には、降伏応力と板厚の関係および合金量バランスを制御することで打ち抜き寸法精度を向上する技術が開示されている。
 さらに、特許文献3には、平均結晶粒径、内部酸化層の厚さ、ならびに圧延方向および/または幅方向のヤング率を制御するとともに、仕上焼鈍後にスキンパスおよび歪取り焼鈍を施す技術が開示されている。
日本国特許第6685491号公報 日本国特開2004-152791号公報 国際公開第2020/149405号
 近年の地球環境問題の高まりから、電気機器においては小型化、高出力、高エネルギー効率が要求され、モーター類の鉄心材料である無方向性電磁鋼板にも、さらなる鉄損の低減が求められている。
 さらなる鉄損の低減には、Si、MnやAlの成分量を増加する高合金化が有効である。高合金化すると、鋼板の強度が向上して、モーター回転速度の向上が期待される。一方、高合金化すると、鋼板をモーター形状等に打ち抜いた後の寸法(打ち抜き寸法)が、ばらつきやすいことが判明した。
 上記の特許文献1には、仕上焼鈍の冷却過程における張力および冷却速度を制御し、一様伸びの異方性を軽減することで、打ち抜き時の真円度を向上させることが可能な無方向性電磁鋼板が開示されている。
 特許文献2には、合金添加条件および鋼板の降伏応力と板厚との関係を制御することで、打ち抜き寸法精度および高周波磁気特性に優れる高効率モーター用薄手電磁鋼板が開示されている。
 特許文献3には、鋼板の平均結晶粒径、内部酸化層およびヤング率の異方性を制御することで、高い寸法精度を有する分割型固定子に好適な無方向性電磁鋼板が開示されている。
 しかしながら、特許文献1~3を含め、従来技術においては、合金添加量と仕上焼鈍条件の制御に着目し、コイル圧延方向とコイル幅方向の打ち抜き寸法のばらつきを軽減する手法については、開示されていない。また、従来技術では、1回毎の打ち抜き寸法精度がある程度良好であっても、多数回打ち抜く場合には、打ち抜き寸法精度がばらつく場合がある。さらに、先行技術を活用しても、コイル幅方向の打ち抜き寸法精度がばらつく場合がある。つまり、従来技術や先行技術の打ち抜き方法では、コイルの全長および全幅にわたって打ち抜き寸法精度を厳密に制御することが困難な場合があると推定される。特にコイル幅が大きい場合(例えば、幅80mm以上)は打ち抜き寸法精度のばらつきが生じやすくなり、従来技術では、コイル幅方向の打ち抜き寸法精度のばらつきを完全には抑制できていなかったと推定される。
 本発明は、上記課題等を鑑みてなされたものであり、本発明は、低鉄損であり打ち抜き寸法の精度に優れる無方向性電磁鋼板、およびその製造方法を提供することを目的とする。
 本発明の要旨は以下の通りである。
[1]本発明の一態様にかかる無方向性電磁鋼板は、化学成分が、質量%で、
C:0.005%以下、
Si:2.00%以上4.50%以下、
Mn:0.01%以上5.00%以下、
Al:0.03%以上5.00%以下、
S、SeおよびTeのうち1種または2種以上の合計SE:0%超0.005%以下、
N:0%超0.005%以下、
P:0%超1.000%以下、
Cu:0%以上1.0%以下、
Sn:0%以上1.0%以下、
Ni:0%以上1.0%以下、
Cr:0%以上1.0%以下、
Sb:0%以上1.0%以下、を含有し、
残部がFeおよび不純物からなり、かつ、式(1)および式(2)を満足し、
 略円形の金型を用いて打ち抜いた後の円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDの標準偏差が、0.010以下であり、
 鉄損W15/50が2.50W/kg以下である。
 (Si+Mn+Al)≧4.5% ・・・ 式(1)
 Al/3≦Mn ・・・ 式(2)
[2]上記[1]に記載の無方向性電磁鋼板は、更に、質量%で、
 Ti:0%以上0.0030%以下、
 Nb:0%以上0.0030%以下、
 V:0%以上0.0030%以下、
 Zr:0%以上0.0030%以下
からなる群のうち1種または2種以上を含有してもよい。
[3]本発明の一態様にかかる無方向性電磁鋼板の製造方法は、上記[1]または[2]に記載の化学成分を有するスラブを加熱して、熱間圧延を施して熱延鋼板とする熱間圧延工程と、
 前記熱延鋼板に冷間圧延を施して冷延鋼板を得る冷間圧延工程と、
 前記冷延鋼板に仕上焼鈍を施して仕上焼鈍板を得る仕上焼鈍工程と、
 前記仕上焼鈍板に絶縁コーティングを施して、前記仕上焼鈍板上に絶縁被膜を形成して絶縁被膜被覆鋼板を得る絶縁被膜被覆工程と
を含み、
 前記仕上焼鈍工程において、300℃から700℃の温度範囲の鋼板の平均昇温速度をVh(℃/秒)、鋼板の均熱温度をTf(℃)、鋼板の均熱時間をtf(秒)、700℃から300℃の温度範囲の鋼板の平均冷却速度をVc(℃/秒)とするとき、Tfが750~1100℃であり、tfが10~300秒であり、かつ、式(3)を満足し、
 前記絶縁被膜被覆工程において、前記絶縁コーティングを施す際の乾燥温度Tc(℃)が250~500℃、鋼板張力が0.5~5.0kgf/mmである。
 Vh/4 ≦ Vc ≦ 4Vh ・・・ 式(3)
[4]上記[3]に記載の無方向性電磁鋼板の製造方法は、前記冷間圧延工程の前に、前記熱延鋼板に熱延板焼鈍を施して熱延焼鈍版を得る熱延板焼鈍工程を有してもよい。
 本発明の上記態様によれば、低鉄損であり打ち抜き寸法の精度に優れる無方向性電磁鋼板、およびその製造方法を提供することができる。
 本発明者らは、無方向性電磁鋼板において、打ち抜き寸法の精度に向上するために、特に仕上焼鈍条件について鋭意検討を行った結果、以下の知見を見出した。
 仕上焼鈍工程における鋼板の平均昇温速度、鋼板の均熱温度および均熱時間、鋼板の平均冷却速度を制御し、かつ、絶縁被膜被覆工程における絶縁コーティングの乾燥温度および鋼板張力を制御することで、打ち抜き寸法精度に優れる無方向性電磁鋼板を製造することが可能となる。
 以下に本発明の好適な実施の形態について詳細に説明する。
 なお、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲において、特に断らない限り、数値a及びbについての「a~b」という表記は「a以上b以下」を意味するものとする。かかる表記において数値bのみに単位を付した場合には、当該単位が数値aにも適用されるものとする。また、「未満」または「超」と示す数値には、その値は数値範囲に含まれない。
<無方向性電磁鋼板>
 以下、本実施形態に係る無方向性電磁鋼板について具体的に説明する。
[化学成分]
 まず、本実施形態に係る無方向性電磁鋼板の母材の化学成分について説明する。
なお、以下では特に断りのない限り、「%」との表記は「質量%」を表わすものとする。
 また、以下で説明する元素以外の残部は、Feおよび不純物である。ここで、不純物とは、原材料に含まれる成分、または製造の過程で混入する成分であって、意図的に母材鋼板に含有させたものではない成分を指す。また、無方向性電磁鋼板の素材であるスラブの化学成分は基本的には無方向性電磁鋼板の化学成分に準じたものになる。
 C:0.005%以下
 Cは、最終的な無方向性電磁鋼板において磁気時効を引き起こす可能性がある元素であるため、多量に含有させることは好ましくない。したがって、Cの含有量は、0.005%以下であり、好ましくは、0.004%以下である。また、Cの含有量は、低いほど好ましいが、コストを考慮すると、下限は0.0005%以上としてもよい。
 Si:2.00%以上4.50%以下
 Siは、無方向性電磁鋼板の電気抵抗を高めることで、鉄損の原因の一つである渦電流損失を低減する。Siの含有量が2.00%未満である場合、最終的な無方向性電磁鋼板の渦電流損失を十分に抑制することが困難になるため好ましくない。Siの含有量が4.50%超である場合、加工性が低下するため好ましくない。したがって、Si含有量の下限は、2.00%以上、好ましくは2.40%%以上、より好ましくは3.20%以上、更に好ましくは3.30%以上である。Si含有量の上限は、4.50%以下、好ましくは4.30%以下、より好ましくは4.10%以下である。
 Mn:0.01%以上5.00%以下
 MnはSiと同様に電気抵抗を増加させる作用を有しており、鉄損の原因の一つである渦電流損失を低減する。Mnの含有量が0.01%未満である場合、渦電流損失の低減効果が十分でないため好ましくない。Mnの含有量が5.00%超である場合、加工性が低下するため好ましくない。したがって、Mn含有量の下限は、0.01%以上、好ましくは0.05%以上、更に好ましくは0.30%以上である。Mn含有量の上限は5.00%以下、好ましくは、4.00%以下、更に好ましくは3.50%以下である。Mn含有量の上限は、3.00%以下、更に2.50%以下としてもよい。
 Al:0.03%以上5.00%以下
 Alは、Siと同様に電気抵抗を増加させる作用を有しており、鉄損の原因の一つである渦電流損失を低減する。Alの含有量が0.03%未満である場合、渦電流損失の低減効果が十分でないため好ましくない。Alの含有量が5.00%超である場合、加工性が低下するため好ましくない。したがって、Al含有量の下限は、0.03%以上、好ましくは0.15%以上、更に好ましくは0.90%以上、Al含有量の上限は、5.00%以下、好ましくは4.00%以下、更に好ましくは3.50%以下である。Al含有量の上限は、3.00%以下、更に2.00%以下としてもよい。
 S、SeおよびTeのうち1種または2種以上の合計SE:0%超0.0050%以下
 S、SeおよびTeは、上述したMnと共に析出物を形成してヒステリシス損を劣化させる。S、SeおよびTeの含有量の合計SEが0.0050%超である場合、MnS、MnSeおよびMnTeの析出量が多くなり過ぎて、ヒステリシス損が劣化するため好ましくない。したがって、S、SeおよびTeのうち1種または2種以上の含有量の合計SEの上限は、合計で0.0050%以下、好ましくは0.0040%以下、更に好ましくは0.0030%以下である。S、SeおよびTeのうち1種または2種以上の含有量の合計SEの下限は、低い方がよいため0%超であってもよいが、コストとヒステリシス損失低減効果の観点より、0.0001%以上としてもよい。
 N:0%超0.0050%以下、
 Nは、上述のAlと共にAlNを形成してヒステリシス損を劣化させる。Nの含有量が0.0050超の場合、AlN析出量が多くなり過ぎて、ヒステリシス損が劣化するため好ましくない。したがって、N含有量の上限は、0.0050%以下である。Nの含有量の下限は、低い方がよいため0%超であってもよいが、コストとヒステリシス損失低減効果の観点より、0.0001%以上としてもよい。
 P:0%超1.000%以下
 Pは磁束密度を低下させることなく強度を高める作用がある。しかし、Pを過剰に含有させると鋼の靱性を損ない、鋼板に破断が生じやすくなる。そのため、P含有量の上限は1.000%以下、好ましくは0.150%以下、更に好ましくは0.120%以下である。
 P含有量の下限は特に限定しないが、製造コストも考慮すると0.001%以上としてもよい。
 Cu、Sn、Ni、Cr、またはSbのいずれか1種または2種以上:各々の含有量で0%以上1.0%以下
 上述の元素の他に、更にA群元素として集合組織を改善して磁束密度を向上させる元素であるCu、Sn、Ni、Cr、またはSbからなる群から選択される1種または2種以上を含有させてもよい。A群元素を含有させる場合、上記元素各々の含有量の上限を、1.0%以下、好ましくは0.3%以下とする。A群元素を含有させることは任意であるため、上記元素各々の含有量の下限は0%以上であるが、好ましくは0.0005%以上としてもよい。
 Ti、Nb、V、またはZrのいずれか1種または2種以上:各々の含有量で0%以上0.0030%以下
 また、B群元素として更に、鋼中にて析出物を形成してヒステリシス損を劣化させる元素であるTi、Nb、V、またはZrからなる群から選択される1種または2種以上を含有させてもよい。B群元素を含有させる場合、上記元素の各々の含有量で0%以上0.0030%以下含有してもよい。B群元素について、各々の含有量を0.0030%以下とすることで、製造される無方向性電磁鋼板の粒成長性をさらに向上してヒステリシス損をさらに低減することが可能となる。したがって、B群元素について、上記元素各々の含有量の上限を、0.0030%以下としてもよい。B群元素の各含有量の下限は、低い方がよいため0%であるが、コストとヒステリシス損失低減効果の観点より、0.0001%としてもよい。
 (Si+Mn+Al)≧4.5%
 Si、Mn、Alは、電気抵抗を増加させる作用を有しており、鉄損の劣化原因の一つである渦電流損失を低減する。Si、Mn、Alそれぞれが電気抵抗を増加させる作用を有しており、複合添加されても効果を有することから、Si、MnおよびAlの合計含有量が電気抵抗の増大を図る上で有効である。電気抵抗を増加させて十分な渦電流損低減効果を得るために、Si、MnおよびAlの合計含有量の下限は、4.50%以上、好ましくは4.80%以上、さらに好ましくは5.00%以上とする。一方、Si、MnおよびAlの合計含有量が過度に多すぎると、加工性が低下するため好ましくない。したがって、Si、MnおよびAlの合計含有量の上限は、好ましくは10.00%未満、さらに好ましくは9.70%以下としてもよい。
 Al/3≦Mn
 Mn含有量に対してAl/3の方が大きい場合、打ち抜き寸法精度がばらつく場合がある。そのため、化学組成はAl/3≦Mnの関係を満足させることが効果的である。当該関係を満足させることで打ち抜き後の寸法精度を向上させ得る詳細なメカニズムは不明であるが、次のように推察される。Alは、Mnよりも鋼板強度を増加させる効果が大きいため、仕上焼鈍および絶縁コーティングにおける応力の影響を受けやすい。そのため、Mn含有量に対してAl/3の方が大きい場合、例えば、熱変形に伴う板幅方向の応力によってコイル幅方向(板幅方向、すなわち圧延方向および板厚方向に垂直な方向)に歪が不均一に残留しやすいと推察される。
 上記化学組成は、本実施形態に係る無方向性電磁鋼板の母材となる珪素鋼板の組成である。つまり、測定試料となる無方向性電磁鋼板が、表面に絶縁被膜を有している場合は、これを除去した後に測定する。
 無方向性電磁鋼板の絶縁被膜を除去する方法としては、例えば、次の方法が挙げられる。
 まず、絶縁被膜を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液、硫酸水溶液、硝酸水溶液に順に浸漬後、洗浄する。最後に、温風で乾燥させる。これにより、後述の絶縁被膜が除去された珪素鋼板を得ることができる。
 上述した化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。
[打ち抜き寸法精度]
 略円形の金型を用いて無方向性電磁鋼板に対し打ち抜いた後の各円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDの標準偏差は、0.010以下である。
 モーターコアは、金型を用いて無方向性電磁鋼板を打ち抜き、打ち抜かれたコア形状の無方向性電磁鋼板を積層して製造される。打ち抜き寸法がばらつくと、積層後のモーターコアの端面形状が不均一となり、モーター効率が低下するので好ましくない。したがって、略円形の金型を用いて打ち抜いた後の円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDの標準偏差を0.010以下とする。標準偏差の計算結果における数値の取り扱いは、JIS Z9041-1:1999に準じてもよい。
 打ち抜きに用いる金型は、略円形であればよい。同じ金型を用いてコイル幅方向に5点打ち抜き、各円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDを測定し、標準偏差を計算することで、打ち抜き寸法精度を評価することが可能となる。
 コイル幅方向に打ち抜く箇所は、無方向性電磁鋼板もしくは無方向性電磁鋼板から切り出したサンプルに対して、コイル幅方向におよそ均等に5箇所を選択してもよい。打ち抜く箇所は、例えば、得られたサンプルをコイル幅方向に5等分して、それぞれの領域の中心付近と打ち抜き金型の中心がほぼ一致するように選択してもよい。打ち抜く5点は、コイル幅方向に直線上に並ぶ必要はなく、それぞれの打ち抜き領域において圧延方向に打ち抜き位置を変更してもよい。
 打ち抜きに用いる金型の大きさは、得られたサンプルのコイル幅方向長さの1/10程度が好ましいが、コイル幅方向に5点を打ち抜けるのであれば、さらに大きくとも構わないし、小さくともよい。
 打ち抜いた後の円孔の圧延方向長さLRDと幅方向長さLTDの測定方法は、特に限定されない。ノギスを用いてもよいし、市販の形状測定器を用いてもよいし、スキャナで形状を記録した後、市販の画像解析ソフトを用いてもよい。円孔の圧延方向長さLRDと幅方向長さLTDは、好ましくは、デジタルノギスを用いて測定する。円孔の圧延方向長さLRDとは圧延方向に平行な径のうち最大径を意味し、円孔の幅方向長さLTDとはコイル幅方向に平行な径のうち最大径を意味する。
 ここで、本明細書において「圧延方向」は、無方向性電磁鋼板の表面の圧延模様より判定してもよい。圧延模様は、無方向性電磁鋼板の表面に形成された絶縁被膜をアルカリ液などで除去した後、光学顕微鏡や走査型電子顕微鏡などを用いて確認してもよい。また、本明細書において「コイル幅方向」とは、圧延模様から判定された圧延方向と、鋼板面内において90度の角度をなす方向である。
<無方向性電磁鋼板の磁気特性>
 本実施形態に係る無方向性電磁鋼板は優れた磁気特性を有する。
 本実施形態に係る無方向性電磁鋼板は、50Hzで磁束密度1.5Tに磁化した時の鉄損W15/50が2.50W/kg以下である。好ましくは、2.40W/kg以下である。
 無方向性電磁鋼板の磁気特性は、JIS C 2556:2015に規定されている単板磁気特性試験法(Single Sheet Tester:SST)に基づいて測定すればよい。0°および90°方向であれば、例えば、圧延方向に対して55mm角の試料を切断して採取し、圧延方向と圧延直角方向の各方向について、50Hzで磁束密度1.5Tに磁化した時の鉄損W15/50を求めればよい。
<無方向性電磁鋼板の製造方法>
 次に、無方向性電磁鋼板の製造方法について説明する。
 まず、上述した化学組成を有するスラブを製造する。具体的には、上記で説明した化学組成になるように調整された溶鋼を鋳造することで、スラブが形成される。なお、スラブの鋳造方法は、特に限定されない。また、研究開発において、真空溶解炉などで鋼塊が形成されても、上記化学組成について、スラブが形成された場合と同様の効果が確認できる。
[熱間圧延工程]
 次に、スラブを加熱して熱間圧延を施すことで熱延鋼板を得る。
 スラブ加熱温度は、特に限定されない。スラブの加熱温度の上限値は、特に定めない。
一方、スラブ加熱時に再固溶した硫黄化合物(S化合物)、窒素化合物(N化合物)等の化合物が、その後微細に析出し、磁気特性を劣化させる場合がある。このような磁気特性の劣化を回避するために、スラブ加熱温度は1250℃以下としてもよく、好ましくは1200℃以下としてもよい。スラブ加熱温度の下限は、特に定めないが、熱間圧延における設備負荷軽減の観点から、1000℃以上としてもよい。
 熱間圧延における仕上温度は、700℃以上1000℃以下とするのが好ましい。巻取温度は、500℃以上900℃以下とするのが好ましい。熱間圧延後の熱延鋼板の板厚は、例えば、1.5mm以上3.5mm以下が好ましい。熱延鋼板の板厚が1.5mm未満である場合、熱間圧延後の鋼板形状が劣位となる場合がある。熱延鋼板の板厚が3.5mm超である場合、冷間圧延の工程での圧延負荷が大きくなる場合がある。なお、熱間圧延工程の後(冷間圧延工程の前)に、必要に応じて熱延鋼板に熱延板焼鈍を施して、熱延焼鈍板を得る熱延板焼鈍工程を有してもよい。
[酸洗工程]
 熱間圧延後の熱延鋼板に酸洗を施してもよい。酸洗工程を実施する場合、酸洗液は、特に限定されず、硫酸や塩酸を用いてもよい。酸洗液に酸洗促進材や抑制剤を含んでもよい。また、熱延鋼板の表面に形成された酸化層の除去を促進させることを目的として、酸洗の前に、ショットブラスト処理などによって熱延鋼板の表面にひび割れの欠陥を導入しても構わない。
[冷間圧延工程]
 熱延鋼板に、1回の冷間圧延、または中間焼鈍を挟んだ複数回の冷間圧延を施し、冷延鋼板を得る。なお、中間焼鈍を挟んだ複数回の冷間圧延を施す場合、前段の熱延板焼鈍を省略することも可能である。ただし、熱延板焼鈍を施す場合、鋼板形状がより良好になるため、冷間圧延にて鋼板が破断する可能性を軽減することができる。なお、冷間圧延に供する前に、鋼板の表面に付着したスケール等を除去するために、上述の酸洗を行なうことが好ましい。酸洗を行う場合は、板厚方向の析出物制御のためには、熱間圧延以降、仕上焼鈍前までの間に、少なくとも一回施されればよい。複数回の冷間圧延を施す場合、冷間圧延におけるロール摩耗を軽減する観点からは、各冷間圧延の前に、酸洗処理が施されることが好ましい。なお、最終冷延後の冷延鋼板の板厚は、特に限定されないが、鉄損低減の観点から、0.35mm以下が好ましく、さらに好ましくは0.30mm以下であってもよい。冷延鋼板の板厚の下限は特に限定しないが、例えば、0.10mm以上としてよい。
 また、冷間圧延のパス間、圧延ロールスタンド間、または圧延中に、鋼板は、300℃程度以下で加熱処理されてもよい。このような場合、最終的に得られる無方向性電磁鋼板の磁気特性を向上させることができる。なお、上記の通り、熱延鋼板は、3回以上の冷間圧延によって圧延されてもよい。ただし、多数回の冷間圧延は、製造コストを増大させるため、熱延鋼板は、1回または2回の冷間圧延によって圧延されることが好ましい。冷間圧延はタンデムミルで行われてもよいし、ゼンジミアミルなどのリバース圧延で行われてもよい。冷間圧延をリバース圧延で行う場合、それぞれの冷間圧延におけるパス回数は、特に限定されないが、製造コストの観点から、9回以下が好ましい。
[仕上焼鈍工程]
 次いで、冷延鋼板に仕上焼鈍を施して冷延鋼板を得る。
 ここで、本発明者らは、仕上焼鈍のヒートパターンおよび絶縁コーティング条件によって、コイル圧延方向およびコイル幅方向の打ち抜き寸法が異なることを見出した。なお、仕上焼鈍における雰囲気ガス組成は、特に限定されない。
 仕上焼鈍工程の昇温過程において、300℃から700℃の温度範囲の冷延鋼板の平均昇温速度をVh(℃/s)、均熱過程における冷延鋼板の均熱温度をTf(℃)および均熱時間をtf(s)、冷却過程における700℃から300℃の温度範囲の冷延鋼板の平均冷却速度をVc(℃/s)とするとき、Tfは750~1100℃、tfは10~300秒とし、かつ下記式(3)を満足させる。
Vh/4 ≦ Vc ≦ 4Vh・・・ 式(3)
 昇温速度Vcが式(3)を満足しない場合、無方向性電磁鋼板を製造する際に、打ち抜き寸法精度が得られないおそれがある。
 仕上焼鈍工程のヒートパターンが、打ち抜き寸法精度に影響をおよぼす詳細なメカニズムは明らかではないが、以下のように推察される。
 仕上焼鈍は、通常、昇温、均熱および冷却の各過程が一連の工程で実施され、圧延方向に制御される鋼板の張力は各過程で同一である。また、鋼板は、通板速度に応じてハースロールで圧延方向に送られるが、鋼板の幅方向の張力制御は施されない。しかし、鋼板はコイル幅方向に熱変形し、昇温過程では熱膨張により幅方向に拡がり、冷却過程では熱収縮により幅方向に縮む。ここで、熱応力による鋼板の幅方向の変形は、圧延方向の鋼板張力およびハースロールとの摩擦により拘束される。この際、仕上焼鈍の諸条件が適正に制御されない場合、コイル幅方向における鋼板の変形が不均一になると考えられる。
 すなわち、仕上焼鈍における昇温速度Vhと冷却速度Vcの差が大きすぎる場合、つまり、式(3)を満足しない場合、コイル幅方向の熱変形速度の差が過大となり、導入される歪が、コイル幅方向の位置によって不均一となる。一方、昇温速度Vhと冷却速度Vcが適正に制御された場合、つまり、式(3)を満足する場合、コイル幅方向の熱変形速度の差は適正な範囲に保たれるため、導入される歪が、コイル幅方向の位置によって一定範囲内に抑制される。高温における変形や拘束による歪の一部は、冷却後も冷延鋼板内部に残存し、残留応力を発生させることから、打ち抜き後の寸法精度に影響をおよぼすと推察される。したがって、仕上焼鈍における冷延鋼板の平均昇温速度Vhと平均冷却速度Vcの関係は、式(3)の範囲を満足することが効果的である。
 また、仕上焼鈍の均熱過程における冷延鋼板の均熱温度Tfは、冷延鋼板の粒成長を介して鉄損に大きな影響をおよぼす。Tfが750℃未満である場合、冷延鋼板の粒径が小さいためヒステリシス損失が劣位となる場合がある。Tfが1100℃超である場合、鉄損低減効果が飽和するとともに設備負荷が大きくなる場合がある。均熱温度Tfの下限は、750℃以上、好ましくは800℃以上であり、均熱温度Tfの上限は1100℃以下、好ましくは1075℃以下である。
 さらに、仕上焼鈍の均熱過程における冷延鋼板の均熱時間tfも、冷延鋼板の粒成長を介して鉄損に大きな影響をおよぼす。均熱時間tfが10秒未満である場合、冷延鋼板の粒径が小さいためヒステリシス損失が劣位となる場合がある。均熱時間tfが300秒超である場合、焼鈍時間が長く生産性が劣化する。均熱時間tfの下限は、10秒以上、好ましくは20秒以上である。均熱時間tfの上限は300秒以下、好ましくは250秒以下である。
 以上説明したように、仕上焼鈍のヒートパターンは、打ち抜き寸法精度および鉄損に影響すると推察される。なお、鋼板成分が高合金の場合、鋼板の硬さが増すので、これらの影響が顕著になると推察される。
 なお、仕上焼鈍時のコイル幅は特に限定されないが、例えば80mm以上とすればよい。コイル幅は、200mm以上としてもよく、500mm以上、または、800mm以上としてもよい。通常は、コイル幅が大きくなるほど打ち抜き寸法精度のばらつきが生じやすくなるが、本実施形態の無方向性電磁鋼板によれば、コイル幅が大きくてもコイル全幅にわたって打ち抜き寸法精度のばらつきを抑制することができる。なお、通常、電磁鋼板は、コイルを所定幅にスリットして提供される。本実施形態の無方向性電磁鋼板によれば、スリット後の電磁鋼板においても、コイルの幅方向位置によらず打ち抜き寸法精度のばらつきを抑制することができる。
[絶縁被膜被覆工程]
 次いで、仕上焼鈍後の仕上焼鈍板表面に絶縁コーティングを塗布し、絶縁被膜を設ける。絶縁被膜被覆工程においては、絶縁コーティングの乾燥温度Tc(℃)が250℃以上500℃以下、鋼板張力が0.5kgf/mm以上5.0kgf/mmの範囲を満足することが有効である。乾燥温度Tcおよび鋼板張力それぞれが上記範囲を外れると、無方向性電磁鋼板を製造する際に、打ち抜き寸法精度が得られない場合がある。
 絶縁被膜被覆工程の各条件が、打ち抜き寸法精度に影響をおよぼす詳細なメカニズムは明らかではないが、以下のように推察される。
 絶縁被膜被覆工程では、仕上焼鈍板の少なくとも一方の表面に絶縁コーティングを塗布し、その後、乾燥することで絶縁被膜が形成される。ここで、打ち抜き寸法精度を維持するためには、絶縁コーティングを塗布した後、仕上焼鈍板が乾燥炉を通過する際に、仕上焼鈍板はコイル幅方向に平坦であることが好ましいことから、絶縁被膜被覆工程における仕上焼鈍板には圧延方向に張力が付与される。このときの圧延方向の鋼板張力が5.0kgf/mm超である場合、コイル幅方向において仕上焼鈍板が不均一に変形し、打ち抜き寸法精度が劣化する場合がある。一方、圧延方向の鋼板張力が0.5kgf/mm未満の場合、コイル幅方向の鋼板形状が平坦でなくなり、打ち抜き寸法精度が劣化する場合がある。したがって、絶縁被膜被覆工程における鋼板張力の下限は、0.5kgf/mm以上、好ましくは0.7kgf/mm以上であり、鋼板張力の上限は、5.0kgf/mm以下、好ましくは4.0kgf/mm以下である。
 また、仕上焼鈍板上に絶縁被膜を形成して絶縁被膜被覆鋼板を製造した後、当該鋼板はコイル状巻き取られて出荷されることが多い。すなわち、絶縁コーティングの乾燥工程が、コイル出荷前に施される最終工程となる場合が多い。ここで、絶縁コーティングの乾燥温度Tcが500℃超である場合、コイル幅方向に不均一な歪が発生して打ち抜き寸法精度が劣化する場合がある。一方、乾燥温度Tcが250℃未満である場合、絶縁コーティングの乾燥が不十分となる場合がある。したがって、乾燥温度Tcの下限は、250℃以上、好ましくは275℃以上であり、乾燥温度Tcの上限は、500℃以下、好ましくは475℃以下である。なお、鋼板成分が高合金の場合、鋼板の硬さが増すので、これらの影響が顕著になると推察される。
 絶縁被膜の成分は、特に限定されない。例えば、絶縁被膜は、有機系被膜、または無機系被膜のいずれであってもよい。有機系被膜としては、例えばポリアミン系樹脂;アクリル樹脂;アクリルスチレン樹脂;アルキッド樹脂;ポリエステル樹脂;シリコーン樹脂;フッ素樹脂;ポリオレフィン樹脂;スチレン樹脂;酢酸ビニル樹脂;エポキシ樹脂;フェノール樹脂;ウレタン樹脂;メラミン樹脂等が挙げられる。
 また、無機系被膜としては、例えば、リン酸塩系被膜;リン酸アルミニウム系被膜等が挙げられる。さらに、前記の樹脂を含む有機-無機複合系被膜等が挙げられる。
 上記絶縁被膜の平均厚みは、特に限定されないが、片面当たりの平均膜厚として0.1μm~10.0μmであることが好ましい。
[磁気特性評価]
 なお、鉄損などの電磁鋼板の磁気特性は、公知の方法により測定することができる。例えば、電磁鋼板の磁気特性は、JIS C2550:2011に規定されるエプスタイン試験に基づく方法、またはJIS C2556:2015に規定される単板磁気特性試験法(Single Sheet Tester:SST)などを用いることにより測定することができる。なお、研究開発において、真空溶解炉などで鋼塊が形成された場合では、実機製造と同等サイズの試験片を採取することが困難となる。この場合、例えば、幅55mm×長さ55mmとなるように試験片を採取して、単板磁気特性試験法に準拠した測定を行っても構わない。さらに、エプスタイン試験に基づく方法と同等の測定値が得られるように、単板磁気特性試験法に準拠した測定結果に補正係数を掛けても構わない。本実施形態では、単板磁気特性試験法に準拠した測定法により測定する。
 以上の工程により製造された無方向性電磁鋼板に、必要に応じて、接着剤などを表面に塗布しても構わない。
 以上の工程により、最終的な無方向性電磁鋼板を製造することができる。本実施形態に係る製造方法によれば、磁気特性に優れた無方向性電磁鋼板を製造することができる。
 以下に、実施例を示しながら、本発明の一実施形態に係る無方向性電磁鋼板およびその製造方法について、より具体的に説明する。なお、以下に示す実施例は、本実施形態に係る無方向性電磁鋼板およびその製造方法のあくまでも一例に過ぎず、本実施形態に係る無方向性電磁鋼板およびその製造方法が以下に示す実施例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得る。
 実験室にて、表1に記載の化学成分を有する合金(鋼No.A1~A29及びa1~a12)を溶製した。なお、表1において、Cu、Sn、Ni、Cr、及びSbの各含有量は「A群元素」の欄に記載した。同様に、Ti、Nb、V、及びZrの各含有量は、「B群元素」の欄に記載した。なお表1における下線は、本発明の範囲外の組成であることを示し、空欄は、対応する元素含有量が、実施形態に規定の有効数字(最小桁までの数値)において、0%であること、または成分分析の下限値未満であることを意味する。また、表1~表4中の下線は、本発明の範囲から外れた条件であること、製造条件が好ましくないこと、または特性値が好ましくないことを示している。
 得られた上記の合金を厚さ2.0mmまで熱間圧延した後、表2の記載にしたがって熱延板焼鈍を施し、酸洗を施して酸洗板を得た。その後、厚さ0.3mmとなるように酸洗板に冷間圧延を施した。次いで、得られた冷延板に仕上焼鈍および絶縁コーティングを施して幅80mmの無方向性電磁鋼板を得た。なお、仕上焼鈍における通板コイルの幅は、80mmとした。
 仕上焼鈍後の無方向性電磁鋼板からせん断によって圧延方向に55mm、幅方向に55mm長さの試験片を切り出し、JIS C 2556:2015の単板磁気特性試験法に従って磁気特性を測定した。ここで、磁気測定値は、圧延方向、および、圧延方向と直角方向の平均値とした。ここでは、鉄損W15/50(鋼板を50Hzで磁束密度1.5Tに磁化した時の鉄損)が2.50W/kg以下である場合を合格とした。
 さらに、得られた無方向性電磁鋼板の幅方向に沿って、等間隔(打ち抜き金型の中心の間隔:約16mm)に5点、φ8mmの円形の金型で打ち抜き、打ち抜いた後の円孔の圧延方向長さおよび幅方向長さを精密ノギスで測定し、標準偏差を導出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 このとき、表3に示すように、本発明例である鋼No.A1~A29と本発明例である製法Nо.B11及びB12の組み合わせは、磁気特性に優れ、打ち抜き寸法精度も規定の範囲を満たしていた。なお、仕上焼鈍後の母鋼板の成分は、表1に記載の化学成分と同等であった。
 一方、比較例である鋼No.a1~a12と本発明例である製法Nо.B11及びB12の組み合わせは、磁気特性もしくは打ち抜き寸法精度が劣り、所望の無方向性電磁鋼板を得ることは出来なかった。また、符号c3、c5、c7、及びc10は冷延破断を起こした。
Figure JPOXMLDOC01-appb-T000003
<実施例2>
 実験室にて、表1に記載の化学成分を有する合金(鋼No.A26、及びA27)を溶製した。得られた上記の合金を厚さが2.0mmまで熱間圧延した後、表2の記載にしたがって熱延板焼鈍を施し、酸洗を施して酸洗板を得た(製法Nо.B1~B12、及びb1~b8)。その後、厚さ0.3mmとなるように酸洗板に冷間圧延を施した。次いで、得られた冷延板に仕上焼鈍および絶縁コーティングを施して幅80mmの無方向性電磁鋼板を得た。なお、仕上焼鈍における通板コイルの幅は、80mmとした。
 仕上焼鈍後の無方向性電磁鋼板からせん断によって圧延方向に55mm、幅方向に55mm長さの試験片を切り出し、JIS C 2556:2015の単板磁気特性試験法に従って磁気特性を測定した。ここで、磁気測定値は、圧延方向、および、圧延方向と直角方向の平均値とした。ここでは、鉄損W15/50が2.50W/kg以下である例を合格とした。
 さらに、得られた無方向性電磁鋼板の幅方向に沿って、等間隔(打ち抜き金型の中心の間隔:約16mm)に5点、φ8mmの円形の金型で打ち抜き、打ち抜いた後の円孔の圧延方向長さおよび幅方向長さを精密ノギスで測定し、標準偏差を導出した。
 表4に示すように、本発明例である鋼No.A26、及びA27と本発明例である製法Nо.B1~B12の組み合わせは、磁気特性に優れ、打ち抜き寸法精度も規定の範囲を満たしていた。なお、仕上焼鈍後の母鋼板の成分は、表1に記載の化学成分と同等であった。
 一方、本発明例である鋼No.A27と比較例である製法Nо.b1~8の組み合わせは、磁気特性および打ち抜き寸法精度の少なくとも一方が劣り、所望の無方向性電磁鋼板を得ることは出来なかった。なお、鋼No.A27と製法No.b5の組み合わせである比較例d5は、絶縁被膜形成不良となり、磁気特性が測定できなかったことから、打ち抜き精度も測定できなかった。
Figure JPOXMLDOC01-appb-T000004
<実施例3>
 まず、質量%で、C:0.003%、Si:3.3%、Mn:0.61%、Al:1.22%、S:0.0020%、N:0.0020%、P:0.010%を含有し、残部がFeおよび不純物からなるスラブを作製し、熱間圧延を施すことで、板厚2.0mmの熱延鋼板を得た。
 その後、表2に記載のB12、b4およびb8条件にしたがって、熱延鋼板に熱延板焼鈍、酸洗および冷間圧延を施して、厚さ0.3mmの冷間圧延板を得た。次いで、得られた冷間圧延板に仕上焼鈍および絶縁コーティングを施して幅1000mmの無方向性電磁鋼板を得た。ここで、熱延板焼鈍は900℃×1分間、かつ窒素100%の雰囲気で行った。また、酸洗は、85℃の塩酸(7.5%)にポリアミンおよび蟻酸を0.07%添加した酸洗液に30秒間浸漬して実施した。また、仕上焼鈍の露点温度は-40℃とした。仕上焼鈍における通板コイルの幅は、1000mmとした。
 仕上焼鈍後の無方向性電磁鋼板から、JIS C 2552:2014に規定される方法で試験片を採取し、JIS C 2550:2011に規定される方法で磁気特性を測定した。ここでは、鉄損W15/50が2.50W/kg以下である例を合格とした。
 さらに、得られた無方向性電磁鋼板の幅方向に沿って、等間隔(打ち抜き金型の中心の間隔:約200mm)に5点、φ100mmの円形の金型で打ち抜き、打ち抜いた後の円孔の圧延方向長さおよび幅方向長さをデジタルノギスで測定し、標準偏差を導出した。
 表5に示すように、本発明例である製法Nо.B12の条件で得られた無方向性電磁鋼板は、磁気特性に優れ、打ち抜き精度も規定の範囲を満たしていた。なお、仕上焼鈍後の母鋼板の成分は、スラブの化学成分と同等であった。このように、本発明例では、従来では打ち抜き精度のばらつきが生じやすいとされた幅が大きい(例えば、幅1000mm)サイズであっても、本発明例の無方向性電磁鋼板の場合では、鋼板の全幅にわたって打ち抜き精度のばらつきを抑制することができる。
 一方、比較例である製法Nо.b4およびb8の条件で得られた符号d1およびd2の場合は、打ち抜き寸法精度が劣り、所望の無方向性電磁鋼板を得ることは出来なかった。
Figure JPOXMLDOC01-appb-T000005
 本発明の上記態様によれば、磁気特性および打ち抜き寸法精度が優れた無方向性電磁鋼板の提供が可能となるので、産業上の利用可能性が高い。

Claims (4)

  1.  化学成分が、質量%で、
    C:0.005%以下、
    Si:2.00%以上4.50%以下、
    Mn:0.01%以上5.00%以下、
    Al:0.03%以上5.00%以下、
    S、SeおよびTeのうち1種または2種以上の合計SE:0%超0.005%以下、
    N:0%超0.005%以下、
    P:0%超1.000%以下、
    Cu:0%以上1.0%以下、
    Sn:0%以上1.0%以下、
    Ni:0%以上1.0%以下、
    Cr:0%以上1.0%以下、
    Sb:0%以上1.0%以下、を含有し、
    残部がFeおよび不純物からなり、かつ、式(1)および式(2)を満足し、
     略円形の金型を用いて打ち抜いた後の円孔の圧延方向長さLRDと幅方向長さLTDの比LRD/LTDの標準偏差が、0.010以下であり、
     鉄損W15/50が2.50W/kg以下であることを特徴とする無方向性電磁鋼板。
     (Si+Mn+Al)≧4.5% ・・・ 式(1)
     Al/3≦Mn ・・・ 式(2)
  2.  前記化学組成が、更に、質量%で、
     Ti:0%以上0.0030%以下、
     Nb:0%以上0.0030%以下、
     V:0%以上0.0030%以下、
     Zr:0%以上0.0030%以下
    からなる群のうち1種または2種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  請求項1または2に記載の化学成分を有するスラブを加熱して、熱間圧延を施して熱延鋼板とする熱間圧延工程と、
     前記熱延鋼板に冷間圧延を施して冷延鋼板を得る冷間圧延工程と、
     前記冷延鋼板に仕上焼鈍を施して仕上焼鈍板を得る仕上焼鈍工程と、
     前記仕上焼鈍板に絶縁コーティングを施して、前記仕上焼鈍板上に絶縁被膜を形成して絶縁被膜被覆鋼板を得る絶縁被膜被覆工程と
    を含み、
     前記仕上焼鈍工程において、300℃から700℃の温度範囲の鋼板の平均昇温速度をVh(℃/秒)、鋼板の均熱温度をTf(℃)、鋼板の均熱時間をtf(秒)、700℃から300℃の温度範囲の鋼板の平均冷却速度をVc(℃/秒)とするとき、Tfが750~1100℃であり、tfが10~300秒であり、かつ、式(3)を満足し、
     前記絶縁被膜被覆工程において、前記絶縁コーティングを施す際の乾燥温度Tc(℃)が250~500℃、鋼板張力が0.5~5.0kgf/mmであることを特徴とする無方向性電磁鋼板の製造方法。
     Vh/4 ≦ Vc ≦ 4Vh ・・・ 式(3)
  4.  前記冷間圧延工程の前に、前記熱延鋼板に熱延板焼鈍を施して熱延焼鈍版を得る熱延板焼鈍工程を有することを特徴とする請求項3に記載の無方向性電磁鋼板の製造方法。
PCT/JP2023/031954 2022-09-30 2023-08-31 無方向性電磁鋼板および無方向性電磁鋼板の製造方法 WO2024070489A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024537846A JPWO2024070489A1 (ja) 2022-09-30 2023-08-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-157415 2022-09-30
JP2022157415 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024070489A1 true WO2024070489A1 (ja) 2024-04-04

Family

ID=90477291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031954 WO2024070489A1 (ja) 2022-09-30 2023-08-31 無方向性電磁鋼板および無方向性電磁鋼板の製造方法

Country Status (2)

Country Link
JP (1) JPWO2024070489A1 (ja)
WO (1) WO2024070489A1 (ja)

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248398A (ja) * 1993-02-25 1994-09-06 Sumitomo Metal Ind Ltd 鉄損の小さい大型回転機用無方向性電磁鋼板
JPH0841603A (ja) * 1994-08-01 1996-02-13 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH1024333A (ja) * 1996-07-10 1998-01-27 Nippon Steel Corp 無方向性電磁鋼板の打抜き方法
JPH11310857A (ja) * 1998-02-26 1999-11-09 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP2001303213A (ja) * 2000-04-21 2001-10-31 Kawasaki Steel Corp 高効率モータ用の無方向性電磁鋼板
JP2002030397A (ja) * 2000-07-13 2002-01-31 Sumitomo Metal Ind Ltd 無方向性電磁鋼板とその製造方法
JP2003055746A (ja) * 2001-08-09 2003-02-26 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2003113451A (ja) * 2001-10-05 2003-04-18 Kawasaki Steel Corp 電動パワーステアリングモータ用の無方向性電磁鋼板およびその製造方法
JP2006045613A (ja) * 2004-08-04 2006-02-16 Nippon Steel Corp 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
WO2010146821A1 (ja) * 2009-06-17 2010-12-23 新日本製鐵株式会社 絶縁被膜を有する電磁鋼板及びその製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2014168136A1 (ja) * 2013-04-09 2014-10-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017066469A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 無方向性電磁鋼板、及びその製造方法
JP2018165383A (ja) * 2017-03-28 2018-10-25 新日鐵住金株式会社 無方向性電磁鋼板
JP2019508574A (ja) * 2015-12-23 2019-03-28 ポスコPosco 無方向性電磁鋼板及びその製造方法
WO2019182022A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
JP2021509442A (ja) * 2017-12-26 2021-03-25 ポスコPosco 無方向性電磁鋼板およびその製造方法
JP2022509677A (ja) * 2018-11-30 2022-01-21 ポスコ 無方向性電磁鋼板およびその製造方法
JP2022030684A (ja) * 2020-08-07 2022-02-18 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248398A (ja) * 1993-02-25 1994-09-06 Sumitomo Metal Ind Ltd 鉄損の小さい大型回転機用無方向性電磁鋼板
JPH0841603A (ja) * 1994-08-01 1996-02-13 Kawasaki Steel Corp 磁気特性の優れた無方向性電磁鋼板およびその製造方法
JPH1024333A (ja) * 1996-07-10 1998-01-27 Nippon Steel Corp 無方向性電磁鋼板の打抜き方法
JPH11310857A (ja) * 1998-02-26 1999-11-09 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2001192788A (ja) * 2000-01-12 2001-07-17 Sumitomo Metal Ind Ltd 加工性の優れた無方向性電磁鋼板とその製造方法
JP2001303213A (ja) * 2000-04-21 2001-10-31 Kawasaki Steel Corp 高効率モータ用の無方向性電磁鋼板
JP2002030397A (ja) * 2000-07-13 2002-01-31 Sumitomo Metal Ind Ltd 無方向性電磁鋼板とその製造方法
JP2003055746A (ja) * 2001-08-09 2003-02-26 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2003113451A (ja) * 2001-10-05 2003-04-18 Kawasaki Steel Corp 電動パワーステアリングモータ用の無方向性電磁鋼板およびその製造方法
JP2006045613A (ja) * 2004-08-04 2006-02-16 Nippon Steel Corp 圧延方向から45°方向の磁気特性が優れた無方向性電磁鋼板およびその製造方法
WO2010146821A1 (ja) * 2009-06-17 2010-12-23 新日本製鐵株式会社 絶縁被膜を有する電磁鋼板及びその製造方法
JP2013010982A (ja) * 2011-06-28 2013-01-17 Jfe Steel Corp 無方向性電磁鋼板の製造方法
WO2014168136A1 (ja) * 2013-04-09 2014-10-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017066469A (ja) * 2015-09-29 2017-04-06 新日鐵住金株式会社 無方向性電磁鋼板、及びその製造方法
JP2019508574A (ja) * 2015-12-23 2019-03-28 ポスコPosco 無方向性電磁鋼板及びその製造方法
JP2018165383A (ja) * 2017-03-28 2018-10-25 新日鐵住金株式会社 無方向性電磁鋼板
JP2021509442A (ja) * 2017-12-26 2021-03-25 ポスコPosco 無方向性電磁鋼板およびその製造方法
WO2019182022A1 (ja) * 2018-03-23 2019-09-26 日本製鉄株式会社 無方向性電磁鋼板
JP2022509677A (ja) * 2018-11-30 2022-01-21 ポスコ 無方向性電磁鋼板およびその製造方法
JP2022030684A (ja) * 2020-08-07 2022-02-18 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Also Published As

Publication number Publication date
TW202415780A (zh) 2024-04-16
JPWO2024070489A1 (ja) 2024-04-04

Similar Documents

Publication Publication Date Title
EP3859032A1 (en) Non-oriented electromagnetic steel sheet and method for manufacturing same, and motor core and method for manufacturing same
JP7530006B2 (ja) 無方向性電磁鋼板、コア、冷間圧延鋼板、無方向性電磁鋼板の製造方法および冷間圧延鋼板の製造方法
JP2011084761A (ja) 回転子用無方向性電磁鋼板およびその製造方法
US20220359108A1 (en) Non-oriented electrical steel sheet, method for producing the same, and motor core
TWI814327B (zh) 無方向性電磁鋼板及無方向性電磁鋼板的製造方法
JP4855225B2 (ja) 異方性の小さい無方向性電磁鋼板
JP6855894B2 (ja) 無方向性電磁鋼板及びその製造方法
JP7401729B2 (ja) 無方向性電磁鋼板
WO2022210998A1 (ja) 無方向性電磁鋼板
US11952641B2 (en) Non oriented electrical steel sheet
US20190360065A1 (en) METHOD FOR PRODUCING A STRIP FROM A CoFe ALLOY AND A SEMI-FINISHED PRODUCT CONTAINING THIS STRIP
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP6034002B2 (ja) 高Si含有の方向性電磁鋼板の冷間圧延方法
WO2024070489A1 (ja) 無方向性電磁鋼板および無方向性電磁鋼板の製造方法
JP4855221B2 (ja) 分割コア用無方向性電磁鋼板
JP2023058067A (ja) 無方向性電磁鋼板
TWI829403B (zh) 無方向性電磁鋼板及其製造方法
JP7235187B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
KR102670258B1 (ko) 무방향성 전자 강판, 모터 코어, 무방향성 전자 강판의 제조 방법 및 모터 코어의 제조 방법
JP7231133B1 (ja) 無方向性電磁鋼板およびその製造方法、ならびにモータコア
JP7231134B1 (ja) 無方向性電磁鋼板およびその製造方法
WO2024080140A1 (ja) 無方向性電磁鋼板とその製造方法
WO2024172095A1 (ja) 無方向性電磁鋼板及びその製造方法
WO2024210210A1 (ja) 無方向性電磁鋼板、コア、及び回転電機
WO2024150731A1 (ja) 無方向性電磁鋼板、無方向性電磁鋼板の原板、コア、冷間圧延鋼板、無方向性電磁鋼板の製造方法、無方向性電磁鋼板の原板の製造方法、および冷間圧延鋼板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871729

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024537846

Country of ref document: JP

Kind code of ref document: A