WO2024062560A1 - プローブカード用プローブ - Google Patents
プローブカード用プローブ Download PDFInfo
- Publication number
- WO2024062560A1 WO2024062560A1 PCT/JP2022/035189 JP2022035189W WO2024062560A1 WO 2024062560 A1 WO2024062560 A1 WO 2024062560A1 JP 2022035189 W JP2022035189 W JP 2022035189W WO 2024062560 A1 WO2024062560 A1 WO 2024062560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- probe
- probe card
- stress dispersion
- card according
- metal layer
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06711—Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
- G01R1/06733—Geometry aspects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06711—Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
- G01R1/06755—Material aspects
- G01R1/06761—Material aspects related to layers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
- G01R1/07307—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
- G01R1/07314—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
Definitions
- This application relates to a probe for a probe card.
- a probe card is an electrical connection device used to supply power, input/output signals, and ground the individual semiconductor devices formed on a wafer by contacting probes with the electrode pads of the semiconductor devices in order to test their operation.
- the probes are provided on the surface of the probe card, and are configured so that their tips can be pressed against the electrode pads of the semiconductor device with a predetermined pressure.
- the electrode pads of semiconductor devices are designed to be small, and the distance (pitch) between the electrode pads is designed to be small.
- probes need to be made smaller.
- the mechanical strength of the probe becomes weaker.
- Patent Document 1 proposes a configuration in which a multilayer metal sheet is used for the probe.
- US Pat. No. 5,020,001 describes at least one multilayer structure comprising a superposition of a core and a first inner coating layer, and an outer coating made of a material with a higher hardness than the core, completely covering the multilayer structure.
- a probe having layers is disclosed. As shown in Patent Document 1, in order to achieve good electrical contact and mechanical contact, a configuration in which multiple layers of different materials are stacked is preferable, but the cross-sectional thickness of the probe is reduced. There were limits to meeting this demand, and further breakthroughs were needed.
- the probe card In an inspection process using a probe card, in order to ensure contact with the electrode pads of the semiconductor device, after the probes have made contact with the electrode pads, the probe card is brought even closer to the semiconductor wafer (overdrive) to press the probes against the electrode pads of the semiconductor device. For this reason, the probe must have a strength that will not mechanically break even if a contact pressure of a certain value or more is applied. In order to prevent the probe from breaking, it is necessary to prevent localized stress concentration on the probe. In order to prevent this stress concentration, a probe with a surface as smooth and free of scratches as possible is required.
- An object of the present invention is to provide a probe for a probe card with strength.
- the probe for the probe card of the present application has a structure that does not prevent stress concentration from occurring, but intentionally disperses the locations where stress concentration occurs, thereby increasing the mechanical strength to withstand large stress. This is a probe for expensive probe cards.
- the probe for a probe card disclosed in the present application is The probe is provided with a plurality of stress dispersion chambers embedded inside the probe, each of which has a three-dimensional shape with ridges and vertices defined by inner wall surfaces.
- the probe for a probe card disclosed in the present application, even if the plate thickness is reduced, by dispersing the locations where stress concentration occurs, it is possible to provide a probe for a probe card with high mechanical strength.
- FIG. 2 is a diagram schematically showing a state in which an electronic circuit is tested using the probe card according to the first embodiment.
- 1 is a perspective view of a probe according to Embodiment 1.
- FIG. FIG. 3 is a plan view showing the shape of three metal layers constituting the probe according to the first embodiment. 3 is a sectional view taken along the line AA in FIG. 2, taken perpendicularly to the longitudinal direction Z of the probe.
- FIG. FIG. 3 is a perspective view of a probe according to a second embodiment.
- 7 is a plan view showing the shape of three metal layers constituting a probe according to a second embodiment.
- FIG. This is a cross-sectional view taken along line B-B of FIG. 5.
- FIG. 7 is a cross-sectional view of the probe according to Embodiment 3 taken perpendicularly to the longitudinal direction Z.
- FIG. FIG. 4 is a perspective view of a probe according to Embodiment 4.
- FIG. 7 is a plan view showing the shape of three metal layers constituting a probe according to Embodiment 4;
- FIG. 5 is a perspective view of a probe according to Embodiment 5.
- 12 is a sectional view taken along the line CC in FIG. 11.
- FIG. 9 is a sectional view showing a modification of the probe according to Embodiment 5;
- FIG. 1 is a diagram schematically showing a test state of an electronic circuit using a probe card 100.
- the upper side of the page in FIG. 1 will be referred to as "top” and the lower side of the page will be referred to as "bottom.” That is, when viewed from the probe card 100, the side to be inspected is the "lower" side.
- the left-right direction in the paper of FIG. 1 is defined as a buckling direction X
- the direction from the front to the back of the paper and the opposite direction thereof is defined as a direction Y perpendicular to the buckling direction X.
- the longitudinal direction of the probe 20 (vertical direction on the paper surface of FIG. 1) is defined as a longitudinal direction Z.
- the probe card 100 is a device used to test the electrical characteristics of an electronic circuit formed on a semiconductor wafer W.
- the probe card 100 includes a large number of probes 20 that are brought into contact with electrodes C on the electronic circuit, respectively.
- To test the characteristics of an electronic circuit bring the semiconductor wafer W close to the probe card 100, bring the tip of the probe 20 into contact with the electrode C on the electronic circuit, and test the tester connection electrode TC of the wiring board 14 of the probe card 100 and the probe 20. This is done by connecting the electrode C to a tester device (not shown).
- the probe card 100 includes a hollow frame 1, an upper guide 11 attached to the upper end of the frame 1, a lower guide 12 attached to the lower end of the frame 1, a fixing plate 13 for fixing the upper guide 11, and a wiring board 14. Equipped with. An intermediate guide may be further provided between the upper guide 11 and the lower guide 12.
- the upper guide 11 has a plurality of guide holes 11H that penetrate in the vertical direction.
- the lower guide 12 provided below the upper guide 11 has a plurality of guide holes 12H that penetrate in the vertical direction.
- Above the group of guide holes 11H provided in the upper guide 11 is an opening 13H provided in the fixed plate 13.
- a wiring board 14 is arranged on the upper surface of the fixed plate 13.
- the wiring board 14 includes, on its lower surface, a plurality of probe connection pads 14P that come into contact with the terminal portions 20t at the upper ends of the probes 20.
- the probe 20 is a vertical probe arranged perpendicularly to the object to be inspected (electronic circuit formed on the semiconductor wafer W).
- the left-right direction in FIG. 1 is the buckling direction X of the probe 20, that is, the direction in which the probe 20 is elastically deformed when the probe card 100 is overdriven.
- the probe 20 has an elongated rectangular prism shape.
- the probe 20 extends linearly in the vertical direction.
- a contact portion 20c is provided at the lower end (one end) of the probe 20.
- a terminal portion 20t is formed at the upper end (other end).
- FIG. 2 is a perspective view of the probe 20.
- FIG. 3 is a plan view showing the shape of three metal layers constituting the probe 20.
- the probe 20 is made of conductive metal.
- the first metal layer 20L1 to the third metal layer 20L3 of the probe 20 are each a thin layer of the same metal.
- the first metal layer 20L1 and the third metal layer 20L3 are formed into a flat plate shape.
- a plurality of hexagonal prism-shaped holes 20H are formed at intervals in the longitudinal direction Z of the probe 20. They are arranged to penetrate through the metal layers of the probe 20 in the stacking direction R.
- the first metal layer 20L1, the second metal layer 20L2, and the third metal layer 20L3 are integrated by stacking them in order and welding the metal layers.
- the buckling direction X and the lamination direction R of the three metal layers are the same, but the buckling direction may be a direction Y orthogonal to the lamination direction R of each metal layer.
- FIG. 4 is a sectional view taken along line AA in FIG. 2, and is a sectional view taken perpendicularly to the longitudinal direction Z of the probe 20.
- the buckling direction X is the left-right direction on the paper surface of FIG.
- a cross section perpendicular to the longitudinal direction Z of the probe 20 is as shown in FIG. This becomes a cavity 20K1 (stress dispersion chamber) whose periphery is closed by the three-metal layer 20L3. In this way, the cavity 20K1 is formed inside the probe 20.
- the relationship between the stylus pressure and the overdrive amount is better in the probe 20 in which the cavity 20K1 is provided. , stylus pressure is low.
- the first metal layer 20L1 to the third metal layer 20L3 of the probe 20 are manufactured using a so-called MEMS (Micro Electro Mechanical Systems) technology (probe intermediate formation step).
- MEMS technology is a technology for creating fine three-dimensional structures using photolithography technology and sacrificial layer etching technology.
- Photolithography technology is a fine pattern processing technology using photoresist used in semiconductor manufacturing processes.
- sacrificial layer etching technology creates a three-dimensional structure by forming a lower layer called a sacrificial layer, forming the layers that make up the structure on top of it, and then removing only the sacrificial layer by etching. It's technology.
- a well-known plating technique can be used for forming the first metal layer 20L1 to the third metal layer 20L3.
- metal ions in the electrolyte can be attached to the substrate surface by immersing a substrate as a cathode and a metal piece as an anode in an electrolyte and applying a voltage between the two electrodes.
- electroplating process is a wet process in which the substrate is immersed in an electrolytic solution. Therefore, after the plating process, a drying process is performed to form each of the first metal layer 20L1 to third metal layer 20L3. get. After this drying process, the first metal layer 20L1 to the third metal layer 20L3 are stacked and welded. A portion that will become the lower tip is polished by a polishing process (polishing process) to form a contact portion 20c.
- polishing process polishing process
- the stress generated inside the probe 20 during inspection can be dispersed to each vertex 10B and each ridgeline 10 of the cavity 20K1, thereby maintaining mechanical strength and reducing stylus pressure. It is possible to achieve both.
- FIG. 5 is a perspective view of the probe 20.
- FIG. 6 is a plan view showing the shape of three metal layers constituting the probe 20.
- FIG. 7 is a sectional view taken along line BB in FIG.
- the probe 20 has been described in which a plurality of independent hexagonal column-shaped cavities 20K1 are lined up in the longitudinal direction Z and embedded inside a metal column made of three metal layers.
- the plurality of cavities 20K1 of the probe 20 are interconnected by a narrow cavity 20K2.
- the cavity 20K2 communicates with the outside of the probe 20 at several locations.
- the cavity 20K1 and the cavity 20K2 are initially formed as sacrificial layers and removed by etching in the process of manufacturing the probe 20. That is, in the first embodiment, in order to form the cavity 20K1, it was necessary to separately manufacture the first metal layer 20L1 to the third metal layer 20L3 and then weld them. In the second embodiment, all the holes 20H in the second metal layer 20L2 are connected by the groove 20M1. Furthermore, by forming at least two grooves 20M2 that communicate with several holes 20H and open to the outside of the probe 20, there is an advantage that the probe 20 can be manufactured in a series of steps.
- the manufacturing process of the probe 20 is generally as follows. First, a first metal layer 20L1 is formed. Next, portions of the second metal layer 20L2 other than those that will become the holes 20H and the grooves 20M1 and 20M2 are formed. Next, a sacrificial layer is formed in the hole 20H, the groove 20M1, and the groove 20M2. Next, a third metal layer 20L3 is formed. Finally, the sacrificial layer is melted to form a plurality of cavities 20K1 and 20K2 inside the probe 20.
- FIG. 8 is a cross-sectional view of the probe 20 taken perpendicularly to the longitudinal direction Z.
- the cavity 20K1 is sealed with a material different from that of the probe 20 body.
- a material softer than the surrounding probe 20 main body is housed in the cavity 20K1 described in the first embodiment.
- the substance to be accommodated include metals such as Au, resins, and the like.
- a layer of Au is formed in the cavity 20K1 after forming the second metal layer 20L2 described in Embodiment 2, and then a third metal layer 20L3 is formed and sealed. The same applies to resin.
- the same effects as in the first embodiment can be achieved while improving the conductivity of the probe.
- resin is contained, the flexibility of the probe 20 during buckling deformation can be increased.
- FIG. 9 is a perspective view of the probe 20.
- FIG. 10 is a plan view showing the shape of three metal layers constituting the probe 20.
- Probe 20 according to this embodiment and probe 20 according to Embodiment 1 differ in the configuration of second metal layer 20L2. On both surfaces of the second metal layer 20L2 in the direction Y perpendicular to the buckling direction X, notches 20CT recessed toward the inside of the probe 20 are provided alternately in the longitudinal direction Z of the probe 20.
- the manufacturing process of the probe 20 is generally as follows. First, a first metal layer 20L1 is formed. Next, a portion of the second metal layer 20L2 other than the portion that will become the cutout portion 20CT is formed on the first metal layer 20L1. Next, a sacrificial layer is formed in the cutout portion 20CT. Next, a third metal layer 20L3 is formed on the second metal layer 20L2. Finally, the sacrificial layer is melted to form a plurality of cavities 20K3 inside the probe 20. This cavity 20K3 is open to the outside of the probe 20.
- the cavity 20K3 may be sealed by housing a resin or a metal that is softer and has lower electrical resistance than the probe 20 main body. In this case, the same effects as in the third embodiment are achieved.
- FIG. 11 is a perspective view of the probe 20.
- FIG. 12A is a cross-sectional view taken along line CC of FIG.
- FIG. 12B is a cross-sectional view showing a modified example of the probe 20.
- the probe 20 is composed of two types of metals with different electrical resistivities.
- One is an inner metal constituting the low resistance portion L made of a metal with low resistivity such as copper, gold, or silver (Cu, Au, Ag).
- the low resistance portion L has high conductivity and functions to improve current resistance performance.
- the other is an outer metal constituting the high resistance portion H, such as a palladium cobalt (PdCo) alloy, which has a higher resistivity and lower conductivity than the low resistance portion L, but has high mechanical strength and springiness.
- the high resistance portion H functions to maintain the mechanical strength of the probe 20.
- the high resistance part H of the probe 20 surrounds the low resistance part L. Focusing only on the high-resistance portion H, a plurality of quadrangular prism-shaped depressions 20R are formed on the inner walls on both sides of the high-resistance portion H in the buckling direction X, respectively.
- the depressions 20R stress distribution chambers are formed at regular intervals along the longitudinal direction Z of the probe 20.
- multiple rows of small depressions 20R may be arranged along the longitudinal direction Z of the probe 20.
- the inside of the depression 20R is a low resistance portion L. Therefore, focusing only on the low resistance portion L, the low resistance portion L includes a plurality of protrusions LT that protrude in the buckling direction X from both surfaces in the buckling direction X, respectively.
- the stress acting inside the probe 20 is concentrated at each vertex 10B and each ridgeline 10 formed within the probe 20. Therefore, by providing a plurality of depressions 20R evenly inside the high-resistance portion H that has high mechanical strength and spring properties, it is possible to evenly distribute the stress that acts inside the probe 20 during buckling deformation. .
- 100 probe card 1 frame, 10 ridgeline, 10B vertex, 11 upper guide, 11H guide hole, 12 lower guide, 12H guide hole, 13 fixing plate, 13H opening, 14 wiring board, 14P probe connection pad, 20 probe, 20c Contact part, 20H hole, 20K1, 20K2, 20K3 cavity part, 20M1, 20M2 groove, 20R depression, 20t terminal part, C electrode, H high resistance part, 20CT notch part, L low resistance part, H high resistance part, 20L1 First metal layer, 20L2 Second metal layer, 20L3 Third metal layer, LT protrusion, R stacking direction, TC tester connection electrode, W semiconductor wafer, X buckling direction, Y direction perpendicular to buckling direction X, Z Longitudinal direction.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Geometry (AREA)
- Measuring Leads Or Probes (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
Description
プローブは、プローブカードの表面に設けられ、所定の押圧力で先端が半導体デバイスの電極パッドに押し付けられるように構成されている。
半導体デバイスの微小化に応じて、プローブを微細にする必要がある。しかし、プローブを微細にすると、プローブの機械的強度が弱くなるという問題がある。
特許文献1に示されているように、良好な電気的接触および機械的接触を果たすためには、材質の異なる複数の層を重ね合わせた構成が好ましいが、プローブの断面の厚さを薄くするという要求に応えるには限界があり、さらなるブレークスルーが必要であった。
このため、プローブには、所定値以上の接触圧を加えても機械的に破壊されない強度が必要とされる。プローブが破壊されないために、プローブに局部的な応力集中が生じないようにする必要がある。そして、この応力集中が生じないようにするためには、できるだけ、表面が滑らかで、傷の無いプローブが求められていた。
前記プローブの内部に埋め込まれた、内壁面による稜線と頂点とを有する立体形状の応力分散室を複数個備えるものである。
以下、実施の形態1によるプローブカード用プローブを、図を用いて説明する。
図1は、プローブカード100による電子回路の検査状態を概略的に示す図である。
本明細書においては、図1の紙面上方を「上」、同紙面下方を「下」として説明する。すなわち、プローブカード100から見て、検査対象側を「下」とする。また、図1の紙面左右方向を、座屈方向Xとし、紙面手前から奥に向かう方向およびその逆方向を、座屈方向Xに垂直な方向Yとする。また、プローブ20の長手方向(図1の紙面の上下方向)を長手方向Zとする。
図3は、プローブ20を構成する3層の金属層の形状を示す平面図である。
プローブ20は、導電性を有する金属によって構成されている。プローブ20の第一金属層20L1~第三金属層20L3は、それぞれ同じ金属の薄い層である。第一金属層20L1と第三金属層20L3とは、平板状に形成されている。そして、第一金属層20L1と第三金属層20L3との間に挟まれた第二金属層20L2には、プローブ20の長手方向Zに間隔を開けて、複数の六角柱形状の穴20Hが、プローブ20の金属層の積層方向Rに貫通して並んでいる。第一金属層20L1、第二金属層20L2、第三金属層20L3は、順に積み上げて各金属層間を溶着することによって一体化されている。
以下、実施の形態2によるプローブカード用プローブを、実施の形態1と異なる部分を中心に説明する。
図5は、プローブ20の斜視図である。
図6は、プローブ20を構成する3層の金属層の形状を示す平面図である。
図7は、図5のB-B断面図である。
実施の形態1では、3つの金属層からなる金属柱の内部に、独立した六角柱形状の複数の空洞部20K1を、長手方向Zに並べて埋め込んだプローブ20について説明した。本実施の形態2では、プローブ20の複数の空洞部20K1が、細い空洞部20K2によって相互に繋がっている。そして空洞部20K2は、プローブ20の外部に数カ所で連通している。
以下、実施の形態3によるプローブカード用プローブを、実施の形態1と異なる部分を中心に説明する。
図8は、プローブ20を長手方向Zに対して垂直に切断した断面図である。
本実施の形態では、空洞部20K1をプローブ20本体とは異なる物質で封止する例を説明する。図4に示すように、実施の形態1で説明した空洞部20K1であった部分に、周囲のプローブ20本体部よりも柔らかい物質を収容する。収容する物質としては、例えば、Au等の金属、又は樹脂などが挙げられる。Au等を収容する場合は、実施の形態2で説明した第二金属層20L2を形成した後に空洞部20K1にAuの層を形成し、その後、第三金属層20L3を形成して封止する。樹脂の場合も同様である。
以下、実施の形態4によるプローブカード用プローブを、実施の形態1と異なる部分を中心に説明する。
図9は、プローブ20の斜視図である。
図10は、プローブ20を構成する3層の金属層の形状を示す平面図である。
以下、実施の形態5によるプローブカード用プローブを、実施の形態1と異なる部分を中心に説明する。
図11は、プローブ20の斜視図である。
図12Aは、図11のC-C断面図である。
図12Bは、プローブ20の変形例を示す断面図である。
図11に示すように、プローブ20は、電気的な抵抗率の異なる2種類の金属によって構成されている。1つは、銅、金、銀(Cu、Au、Ag)等の抵抗率が低い金属からなる低抵抗部Lを構成する内側の金属である。低抵抗部Lは、導電性が高く耐電流性能の向上のために機能する。もう1つは、パラジウムコバルト(PdCo)合金等の、低抵抗部Lよりも抵抗率が高く、導電性が低いが、機械的強度が高くバネ性のある高抵抗部Hを構成する外側の金属である。高抵抗部Hは、プローブ20の機械的強度を維持するために機能する。
従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Claims (9)
- プローブカード用プローブであって、
前記プローブは、前記プローブの内部に埋め込まれた、内壁面による稜線と頂点とを有する立体形状の応力分散室を複数個備えるプローブカード用プローブ。 - 前記プローブの長手方向に間隔を開けて並ぶ複数個の前記応力分散室を複数列備える請求項1に記載のプローブカード用プローブ。
- 前記プローブは、電気的に低抵抗である金属層からなる低抵抗部と、
前記低抵抗部の外側に、前記低抵抗部よりも電気的に高抵抗であり、バネ性を有する高抵抗部とを備え、
前記応力分散室は、前記高抵抗部に形成されている請求項1に記載のプローブカード用プローブ。 - 前記応力分散室は、前記プローブの外側面に開口している請求項1に記載のプローブカード用プローブ。
- 前記応力分散室には、周囲の金属よりも電気的に低抵抗である金属が収容されている請求項1に記載のプローブカード用プローブ。
- 前記応力分散室には、樹脂が収容されている請求項1に記載のプローブカード用プローブ。
- 前記応力分散室には、前記低抵抗部と同じ金属が収容されている請求項3に記載のプローブカード用プローブ。
- 前記応力分散室は、空洞である請求項1に記載のプローブカード用プローブ。
- 全ての前記応力分散室は、前記プローブの外部に連通している請求項8に記載のプローブカード用プローブ。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035189 WO2024062560A1 (ja) | 2022-09-21 | 2022-09-21 | プローブカード用プローブ |
CN202280100280.6A CN119923567A (zh) | 2022-09-21 | 2022-09-21 | 探针卡用探针 |
JP2024547997A JPWO2024062560A1 (ja) | 2022-09-21 | 2022-09-21 | |
KR1020257008795A KR20250048368A (ko) | 2022-09-21 | 2022-09-21 | 프로브 카드용 프로브 |
TW112134919A TWI866465B (zh) | 2022-09-21 | 2023-09-13 | 用於探針卡之探針 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/035189 WO2024062560A1 (ja) | 2022-09-21 | 2022-09-21 | プローブカード用プローブ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024062560A1 true WO2024062560A1 (ja) | 2024-03-28 |
Family
ID=90454009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/035189 WO2024062560A1 (ja) | 2022-09-21 | 2022-09-21 | プローブカード用プローブ |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2024062560A1 (ja) |
KR (1) | KR20250048368A (ja) |
CN (1) | CN119923567A (ja) |
TW (1) | TWI866465B (ja) |
WO (1) | WO2024062560A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029791A1 (ja) * | 2005-09-09 | 2007-03-15 | Nhk Spring Co., Ltd. | 導電性接触子および導電性接触子の製造方法 |
US20090315578A1 (en) * | 2008-06-18 | 2009-12-24 | Star Technologies Inc. | Probe and probe card for integrated circuit devices using the same |
JP2014510283A (ja) * | 2011-03-21 | 2014-04-24 | フォームファクター, インコーポレイテッド | 非線形垂直板バネ |
US20150015287A1 (en) * | 2013-07-11 | 2015-01-15 | Johnstech International Corporation | Testing apparatus and method for microcircuit and wafer level ic testing |
JP2018515752A (ja) * | 2015-03-31 | 2018-06-14 | テクノプローベ エス.ピー.エー. | 高周波適用のためのバーチカル接触プローブ、及びバーチカル接触プローブをもつ試験ヘッド |
US20190064215A1 (en) * | 2017-08-23 | 2019-02-28 | Leeno Industrial Inc. | Mems probe and test device using the same |
WO2022196399A1 (ja) * | 2021-03-16 | 2022-09-22 | 日本電子材料株式会社 | プローブカード用プローブおよびその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3768305B2 (ja) * | 1996-10-22 | 2006-04-19 | 株式会社日本マイクロニクス | 平板状被検査体検査用プローブユニット |
EP1610131A1 (en) * | 2004-06-21 | 2005-12-28 | Capres A/S | Flexible probe |
JP2006284292A (ja) * | 2005-03-31 | 2006-10-19 | Kanai Hiroaki | コンタクトプローブ構造体 |
US7384277B1 (en) * | 2006-12-17 | 2008-06-10 | Formfactor, Inc. | Reinforced contact elements |
JP2014013184A (ja) * | 2012-07-04 | 2014-01-23 | Micronics Japan Co Ltd | カンチレバー型プローブ集合体とそれを備えるプローブカード又はプローブユニット |
IT202000030194A1 (it) * | 2020-12-09 | 2022-06-09 | Technoprobe Spa | Sonda di contatto per teste di misura di dispositivi elettronici e relativa testa di misura |
-
2022
- 2022-09-21 KR KR1020257008795A patent/KR20250048368A/ko active Pending
- 2022-09-21 CN CN202280100280.6A patent/CN119923567A/zh active Pending
- 2022-09-21 JP JP2024547997A patent/JPWO2024062560A1/ja active Pending
- 2022-09-21 WO PCT/JP2022/035189 patent/WO2024062560A1/ja active Application Filing
-
2023
- 2023-09-13 TW TW112134919A patent/TWI866465B/zh active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007029791A1 (ja) * | 2005-09-09 | 2007-03-15 | Nhk Spring Co., Ltd. | 導電性接触子および導電性接触子の製造方法 |
US20090315578A1 (en) * | 2008-06-18 | 2009-12-24 | Star Technologies Inc. | Probe and probe card for integrated circuit devices using the same |
JP2014510283A (ja) * | 2011-03-21 | 2014-04-24 | フォームファクター, インコーポレイテッド | 非線形垂直板バネ |
US20150015287A1 (en) * | 2013-07-11 | 2015-01-15 | Johnstech International Corporation | Testing apparatus and method for microcircuit and wafer level ic testing |
JP2018515752A (ja) * | 2015-03-31 | 2018-06-14 | テクノプローベ エス.ピー.エー. | 高周波適用のためのバーチカル接触プローブ、及びバーチカル接触プローブをもつ試験ヘッド |
US20190064215A1 (en) * | 2017-08-23 | 2019-02-28 | Leeno Industrial Inc. | Mems probe and test device using the same |
WO2022196399A1 (ja) * | 2021-03-16 | 2022-09-22 | 日本電子材料株式会社 | プローブカード用プローブおよびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20250048368A (ko) | 2025-04-08 |
TW202429090A (zh) | 2024-07-16 |
TWI866465B (zh) | 2024-12-11 |
JPWO2024062560A1 (ja) | 2024-03-28 |
CN119923567A (zh) | 2025-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103959577B (zh) | 具有高密度导电单元的测试插座以及用于制造该测试插座的方法 | |
JP4823617B2 (ja) | 導電性接触子および導電性接触子の製造方法 | |
JP5103566B2 (ja) | 電気接触子およびそれを備える検査冶具 | |
TW201443441A (zh) | 電性接觸子 | |
JP2019200143A (ja) | プローブ、検査治具、検査装置、及びプローブの製造方法 | |
KR20180057520A (ko) | 검사장치용 프로브 | |
JP3737683B2 (ja) | コンタクトシート | |
US20060035485A1 (en) | Interconnect assembly for a probe card | |
WO2024062560A1 (ja) | プローブカード用プローブ | |
TWI870956B (zh) | 探測針及探測卡 | |
WO2024062561A1 (ja) | プローブカード用プローブ | |
WO2024062559A1 (ja) | プローブカード用カンチレバー型プローブ | |
TWI880346B (zh) | 用於探針卡之探針 | |
TWI871764B (zh) | 用於探針卡之懸臂型探針及探針卡 | |
WO2025115082A1 (ja) | プローブおよびプローブカード | |
JP7439338B1 (ja) | プローブ、プローブカード、およびプローブの製造方法 | |
JP4631621B2 (ja) | 回路基板の検査装置および回路基板の検査方法 | |
KR20240009100A (ko) | 전기 전도성 접촉핀 및 이를 구비하는 검사장치 | |
JP2008218185A (ja) | 異方性導電部材およびこれを用いたデバイス接続構造 | |
JP2009300079A (ja) | コンタクトプローブ及びプローブカード | |
JP2002158052A (ja) | 圧接挟持型コネクタ及びその接続構造 | |
JP2009216553A (ja) | コンタクトプローブ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22959524 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024547997 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20257008795 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020257008795 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020257008795 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11202501026U Country of ref document: SG |
|
WWP | Wipo information: published in national office |
Ref document number: 11202501026U Country of ref document: SG |