Nothing Special   »   [go: up one dir, main page]

WO2024060391A1 - 500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法 - Google Patents

500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法 Download PDF

Info

Publication number
WO2024060391A1
WO2024060391A1 PCT/CN2022/133116 CN2022133116W WO2024060391A1 WO 2024060391 A1 WO2024060391 A1 WO 2024060391A1 CN 2022133116 W CN2022133116 W CN 2022133116W WO 2024060391 A1 WO2024060391 A1 WO 2024060391A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
liquid
cross
linked polyethylene
silo
Prior art date
Application number
PCT/CN2022/133116
Other languages
English (en)
French (fr)
Inventor
侯帅
傅明利
樊灵孟
贾磊
展云鹏
朱闻博
惠宝军
冯宾
张逸凡
Original Assignee
南方电网科学研究院有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南方电网科学研究院有限责任公司 filed Critical 南方电网科学研究院有限责任公司
Publication of WO2024060391A1 publication Critical patent/WO2024060391A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/286Raw material dosing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B13/00Conditioning or physical treatment of the material to be shaped
    • B29B13/10Conditioning or physical treatment of the material to be shaped by grinding, e.g. by triturating; by sieving; by filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/287Raw material pre-treatment while feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/285Feeding the extrusion material to the extruder
    • B29C48/29Feeding the extrusion material to the extruder in liquid form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating

Definitions

  • the invention belongs to the technical field of insulating materials, and specifically relates to a device and method for adding antioxidants to 500kV cross-linked polyethylene insulating materials.
  • Cross-linked polyethylene insulation materials are widely used in high-voltage cable manufacturing.
  • the production of high-voltage cross-linked polyethylene cable insulation materials requires mixing low-density polyethylene resin and functional additives in a molten state in a certain proportion, then re-granulating, and mixing in the cross-linking agent in the subsequent process flow.
  • each component in the material formula is designed with a high degree of redundancy. Even if there is a certain deviation in the added amount, the material performance will not be affected.
  • the content of each component in the material is designed to reach a critical ratio. This requires that the ratio of each additive component of the material must be kept accurate enough during the material manufacturing process. The addition amount of each component must be precisely controlled to ensure that the performance of the final product reaches the design specifications.
  • Antioxidants are additives that must be added to ensure that materials have certain anti-aging properties.
  • a hollow metering screw is used to continuously add a certain amount of antioxidants to the low-density polyethylene resin melt.
  • antioxidants commonly used in cross-linked polyethylene insulation materials are solid powders, which are usually added continuously using hollow screws during the material production process.
  • the present invention provides a device and method for adding antioxidants to 500kV cross-linked polyethylene insulation materials.
  • a 500kV cross-linked polyethylene insulation material antioxidant adding device which includes: a heating hopper module and an insulated pipe module.
  • the heating hopper module includes a feed port, a heating jacket, a silo and a filter; the silo is vertical Place it in the direction, with a feed opening at its starting part, a heating jacket wrapped on the outer wall of the silo, the end of the silo connected to the thermal insulation pipe module, and the filter screen is set in front of the thermal insulation pipe module;
  • the thermal insulation pipe module includes liquid Metering pump, stainless steel liquid pipe, insulation unit and outlet. One end of the liquid metering pump is connected to the horizontal pipe of the silo, and the other end is connected to one end of the stainless steel liquid pipe.
  • the other end of the stainless steel liquid pipe is set to Discharge port, stainless steel liquid pipe is wrapped with an insulation unit; the antioxidant is put into the silo through the feed port, and is heated in the silo to become a liquid antioxidant and filtered through the filter, and then used by the liquid metering pump After weighing, it enters the stainless steel liquid pipe and is finally put into use through the discharge port.
  • a draw-out valve is further provided at the front end of the filter screen.
  • the draw-out valve is constructed to be openable and closable. When the antioxidant has not completely become a liquid phase, the draw-out valve is closed.
  • a sealing ring is provided between the pumping plate valve and the silo.
  • the filter screen is installed on a detachable screen plate.
  • the detachable screen plate is provided with a pull-out handle.
  • the detachable screen plate is installed or disassembled to the silo through a positioning sleeve.
  • the accuracy of the liquid metering pump is 0.01% F.S.
  • the heat preservation unit includes a heat preservation box, a heat preservation coil, a control panel and a mold temperature machine.
  • the mold temperature machine is arranged below the stainless steel liquid pipe, both ends of the insulation coil are connected to the mold temperature machine, and the middle section of the insulation coil is wrapped around the outer peripheral wall of the stainless steel liquid pipe. superior.
  • the insulating box is covered outside the stainless steel liquid pipe and the insulating coil, and the insulating box and the upper surface of the mold temperature machine form a sealed space.
  • control panel is provided on the surface of the mold temperature machine for controlling the mold temperature machine.
  • the mold temperature controller is provided with a pressure gauge.
  • the bin is provided with an observation window.
  • the method of adding antioxidants includes the following steps:
  • Step 1 Put the antioxidant into the silo through the feed port, and heat the silo through the heating jacket to make the antioxidant in a liquid phase;
  • Step 2 After the liquid antioxidant is filtered through the filter, it is transported to the liquid metering pump for measurement;
  • Step 3 Add the measured liquid antioxidant evenly into the twin-screw extruder through the stainless steel liquid pipe and the outlet to mix with the polyethylene resin.
  • the antioxidant is weighed by a loss-in-weight electronic scale before being heated to a liquid phase state, and the measurement accuracy is 0.01% F.S.
  • the working temperatures of the heating jacket, liquid metering pump and heat preservation unit are all above the melting temperature of the antioxidant.
  • the weight ratio of the liquid antioxidant to the polyethylene resin satisfies the following formula:
  • the device and method for adding antioxidants to 500kV cross-linked polyethylene insulation materials of the present invention adopt a liquid phase addition method to fully mix the antioxidant and polyethylene resin, so that the material ratio follows the design formula and avoids the problem of solid materials. Uneven material particles and insulating properties caused by imprecise addition, and high-precision devices such as loss-in-weight electronic scales and high-precision liquid metering pumps are used to measure raw materials, making the ratio of the resulting cross-linked polyethylene material more accurate.
  • the design formula solve the adhesion, blockage and other phenomena caused by the processing technology of antioxidants with lower melting points; expand the flexibility of adding additives in the cross-linked polyethylene insulation material formula design process.
  • Figure 1 is a schematic structural diagram of the antioxidant adding device for 500kV cross-linked polyethylene insulation material of the present invention
  • FIG2 is a structural diagram of the heating hopper module in FIG1 ;
  • Figure 3 is a k-direction view of the detachable mesh panel in Figure 2;
  • FIG4 is a structural diagram of the thermal insulation pipe module in FIG1 ;
  • Figure 5 is a schematic block diagram of the high-precision adding method of 500kV cross-linked polyethylene antioxidant of the present invention.
  • 1-feed port 2-heating jacket; 3-silo; 4-observation window; 5-sealing ring; 6-plate pumping valve; 7-filter; 8-removable mesh plate; 9-positioning sleeve; 10 -Pull handle; 11-Liquid metering pump; 12-Stainless steel liquid pipe; 13-Insulation box; 14-Insulation coil; 15-Control panel; 16-Mold temperature machine; 17-Pressure gauge; 18-Discharge port.
  • Figure 1 is a schematic structural diagram of the antioxidant adding device for 500kV cross-linked polyethylene insulation material of the present invention.
  • the antioxidant adding device for 500kV cross-linked polyethylene insulation material of the present invention includes a heating hopper module and an insulation pipe. module.
  • the heating hopper module includes a feed port 1, a heating jacket 2, a silo 3 and a filter 7.
  • the silo 3 is placed vertically with a feed port 1 at its starting part.
  • the outer peripheral wall of the silo 3 is wrapped with a heating jacket. 2.
  • the end of the silo 3 is connected to the insulation pipe module, and the filter 7 is set in front of the insulation pipe module.
  • the volume of the bin 3 is preferably 5-10L, and the electric power of the heating jacket 2 is preferably 2-3kW.
  • the temperature of the heating jacket 2 is set to be above the melting temperature of the antioxidant to accelerate the antioxidant to a liquid phase state.
  • the temperature of the heating jacket 2 is set to be 20 to 30°C above the melting temperature of the antioxidant, which can satisfy The conditions for rapid melting of antioxidants also reduce energy consumption and loss of antioxidants at high temperatures.
  • the mesh number of the filter screen 7 is determined according to the purification level requirements of the insulating material to ensure that the minimum filter mesh pore size is smaller than the maximum allowable impurity particle size in the insulating material.
  • the filter pore size must be kept within the range of 50 ⁇ m or less, and can be further strictly limited to a smaller size according to the impurity content and size requirements of the insulation material.
  • the insulation pipeline module includes a liquid metering pump 11, a stainless steel liquid pipe 12, an insulation unit and a discharge port 18.
  • One end of the liquid metering pump 11 is connected to the horizontal pipe of the silo 3, and the other end is connected to one end of the stainless steel liquid pipe 12.
  • the other end of the stainless steel liquid pipe 12 is set as a discharge port 18, and the stainless steel liquid pipe 12 is wrapped with a heat preservation unit.
  • the accuracy of the liquid metering pump 11 is 0.01% F.S., and the working temperature of the liquid metering pump 11 is required to be higher than the melting temperature of the antioxidant, so that when weighing the antioxidant, it will not cool and solidify due to too low temperature.
  • the working temperature of the liquid metering pump 11 is 20-30°C above the melting temperature of the antioxidant.
  • the antioxidant is put into the silo 3 through the feed port 1, and is heated in the silo 3 to become a liquid antioxidant and filtered through the filter 7. It is then weighed by the liquid metering pump 11 and then enters the stainless steel liquid pipe 12. It is finally put into use through the discharge port 18.
  • the front end of the filter 7 is also provided with a pumping plate valve 6.
  • the pumping plate valve 6 is configured to open and close. When the antioxidant does not completely become a liquid phase, the pumping plate valve 6 is closed, and the pumping plate valve 6 is opened and closed.
  • a sealing ring 5 is provided between 6 and the bin 3.
  • the pumping plate valve 6 When the antioxidant in the silo 3 has not completely become a liquid phase, the pumping plate valve 6 is closed. When the antioxidant completely becomes a liquid phase, the pumping plate valve 6 is opened to allow the liquid phase antioxidant to pass through the filter. After filtering from the screen 7, it enters the liquid metering pump 11 for weighing.
  • the filter screen 7 is installed on the detachable screen plate 8.
  • the detachable screen plate 8 is provided with a pull handle 10.
  • the detachable screen plate 8 is installed or disassembled on the silo 3 through the positioning sleeve 9.
  • the detachable screen plate 8 is used to pull out the filter screen 7 for repair or replacement when the filter screen 7 is clogged or damaged.
  • An observation window 4 is provided on the silo 3 for observing the melting condition of the antioxidant in the silo 3 through the observation window 4.
  • the heat preservation unit includes a heat preservation box 13, a heat preservation coil 14, a control panel 15 and a mold temperature machine 16.
  • the mold temperature controller 16 is arranged below the stainless steel liquid pipe 12. Both ends of the insulation coil 14 are connected to the mold temperature controller 16, and the middle section of the insulation coil 14 is wrapped around the outer peripheral wall of the stainless steel liquid pipe 12 to maintain the stainless steel. The temperature inside the liquid tube 12.
  • the insulating box 13 covers the outside of the stainless steel liquid pipe 12 and the insulating coil 14, and the insulating box 13 and the upper surface of the mold temperature machine 16 form a sealed space.
  • the thermal insulation box 13 is used to reduce the temperature escape of the thermal insulation coil 14 and the stainless steel liquid pipe 12.
  • the control panel 15 is provided on the surface of the mold temperature controller 16 for controlling the mold temperature controller 16 .
  • the mold temperature controller 16 is provided with a pressure gauge 17 .
  • the pressure gauge 17 is used to monitor the operating status of the mold temperature controller 16.
  • the mold temperature machine 16 controls the temperature of the insulation coil 14 to be higher than the melting temperature of the antioxidant, so that when the antioxidant flows through the stainless steel liquid pipe 12, it will not cool and solidify due to too low temperature.
  • the insulation coil 14 The temperature is 20-30°C above the melting temperature of the antioxidant.
  • the diameter of the stainless steel liquid pipe 12 is preferably 5 to 10 mm.
  • a method for adding an antioxidant using the 500 kV cross-linked polyethylene insulation material antioxidant adding device as described above comprises the following steps:
  • Step 1 Put the antioxidant into the silo 3 through the feed port 1, and heat the silo 3 through the heating jacket 2 to make the antioxidant in a liquid phase;
  • Step 2 After the liquid antioxidant is filtered through the filter 7, it is transported to the liquid metering pump 11 for metering;
  • Step 3 Add the measured liquid antioxidant evenly into the twin-screw extruder through the stainless steel liquid pipe 12 and the outlet 18 to mix with the polyethylene resin.
  • the antioxidant is weighed by a loss-in-weight electronic scale before being heated to a liquid phase, and its measurement accuracy is 0.01% F.S.
  • the polyethylene resin is weighed by a loss-in-weight electronic scale with a measurement accuracy of 0.01% F.S.
  • the weight ratio of liquid antioxidant to polyethylene resin satisfies the following formula:
  • the device and method for adding antioxidants to 500kV cross-linked polyethylene insulation materials of the present invention adopt a liquid phase addition method to fully mix the antioxidant and polyethylene resin, so that the material ratio follows the design formula and avoids the problem of solid materials. Uneven material particles and insulating properties caused by imprecise addition, and high-precision devices such as loss-in-weight electronic scales and high-precision liquid metering pumps are used to measure raw materials, making the ratio of the resulting cross-linked polyethylene material more accurate.
  • the design formula solve the adhesion, blockage and other phenomena caused by the processing technology of antioxidants with lower melting points; expand the flexibility of adding additives in the cross-linked polyethylene insulation material formula design process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其包括:加热料斗模块以及保温管道模块,所述加热料斗模块包括进料口、加热套、料仓以及过滤网;所述保温管道模块包括液体计量泵、不锈钢液体管以及出料口;所述抗氧剂通过进料口投入料仓,并在料仓内通过加热套加热成为液相抗氧剂并通过过滤网进行过滤,再由液体计量泵称量后进入到不锈钢液体管,最终通过出料口投入使用。采用液相添加的方式,使得抗氧剂与聚乙烯树脂充分混合,避免了因固体材料不精确添加所导致的材料颗粒不均匀和绝缘性能不均匀,并利用高精度装置来计量原材料,使得到的交联聚乙烯材料的配比更加遵循设计配方;拓展了交联聚乙烯绝缘材料配方设计过程添加助剂选择的灵活性。

Description

500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法 技术领域
本发明属于绝缘材料技术领域,具体涉及一种500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法。
背景技术
交联聚乙烯绝缘材料被广泛应用于高压电缆制造,高电压等级交联聚乙烯电缆绝缘料生产需要将低密度聚乙烯树脂、功能添加剂按照一定比例在熔融状态下进行混配,之后再重新造粒,并在后续的工艺流程中将交联剂混入。
对于电压等级较低的材料,材料配方中的各成分含量设计了较高的冗余度,即使添加量存在一定偏差也不会影响材料性能。然而,对于500kV及以上电压等级的材料,为了平衡材料的各方面性能,材料中各成分含量设计到了临界比例,这就要求材料各个添加剂组分的配比必须保持足够精确,在材料制造过程中必须精确控制各成分添加量,才能使最终制品性能达到设计指标。
抗氧剂是保证材料具有一定抗老化特性而必须添加的一种添加剂。在工业生产中利用空心计量螺杆,将一定量的抗氧剂连续添加到低密度聚乙烯树脂熔体当中。一般交联聚乙烯绝缘材料中常用的抗氧剂均为固体粉末,在材料生产过程中通常利用空心螺杆连续添加,但是由于一些抗氧剂的熔点较低,(例如:抗氧剂1010的熔点为110~125℃,抗氧剂1035的熔点为63~67℃,抗氧剂1076熔点为50~52℃),当由于长期加热加工导致设备局部或者环境的温度发生变化,加上静电吸附作用的影响,经常会出现一部分抗氧剂粘附或淤堵在料斗、输送螺杆以及混炼设备的进料口处等情况,导致部分抗氧剂无法实际添加到材料体系中,材料配比将因此而出现偏差,偏离设计配方,并导致材料颗粒的不均匀和性能的不均匀。由于以上问题的存在,有些性能较好但熔点较低的抗氧剂无法应用于实际生产。对于220kV及以下较低电压等级的绝缘材料,这种材料配比的偏差通常是可以接受的,抗氧剂的选择也不必严苛要求,但是对 于500kV及以上等级电缆绝缘材料而言,材料的添加剂配方可能更为复杂,需要用到熔点较低的添加剂,且材料的配比均匀性至关重要,因此必须对上述问题予以妥善解决,才能更好地实现500kV及以上电压等级交联聚乙烯绝缘材料的研发。
发明内容
为解决现有技术中存在的不足,本发明提供一种500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法。
本发明采用如下的技术方案:
一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其包括:加热料斗模块以及保温管道模块,所述加热料斗模块包括进料口、加热套、料仓以及过滤网;所述料仓竖向放置,其起始部开设有进料口,料仓的外周壁上包裹有加热套,料仓的末端与保温管道模块连接,过滤网设置在保温管道模块之前;所述保温管道模块包括液体计量泵、不锈钢液体管、保温单元以及出料口,所述液体计量泵的其中一端连接到料仓的水平管道上,另一端与不锈钢液体管的其中一端连接,不锈钢液体管的另一端设置为出料口,不锈钢液体管上包裹有保温单元;所述抗氧剂通过进料口投入料仓,并在料仓内加热成为液相抗氧剂并通过过滤网进行过滤,再由液体计量泵称量后进入到不锈钢液体管,最终通过出料口投入使用。
作为本发明的一种优选实施方式,所述过滤网前端还设置有抽板阀,抽板阀构造为可以开闭的结构,当抗氧剂没有完全成为液相时,抽板阀关闭。
作为本发明的一种优选实施方式,所述抽板阀与料仓之间设置有密封圈。
作为本发明的一种优选实施方式,所述过滤网安装在可拆卸网板上,可拆卸网板上设置有抽拉把手,可拆卸网板通过定位套安装或拆卸到料仓上。
作为本发明的一种优选实施方式,所述液体计量泵的精度为0.01%F.S.。
作为本发明的一种优选实施方式,所述保温单元包括保温箱、保温盘管、控制面板以及模温机。
作为本发明的一种优选实施方式,所述模温机设置在不锈钢液体管的下方,保温盘管的两端均与模温机连接,且保温盘管的中段缠绕在不锈钢液体管 的外周壁上。
作为本发明的一种优选实施方式,保温箱罩在不锈钢液体管以及保温盘管外部,且保温箱与模温机的上表面形成密闭空间。
作为本发明的一种优选实施方式,所述控制面板设置在模温机表面,用于操控模温机。
作为本发明的一种优选实施方式,所述模温机上设置有压力表。
作为本发明的一种优选实施方式,所述料仓上设置有观察窗。
一种使用如上所述的500kV交联聚乙烯绝缘材料抗氧剂添加装置添加抗氧剂的方法,所述添加抗氧剂的方法包括以下步骤:
步骤1,将抗氧剂通过进料口投入料仓,并通过加热套对料仓进行加热,使抗氧剂呈液相状态;
步骤2,液相抗氧剂通过过滤网过滤后,输送到液体计量泵中进行计量;
步骤3,将计量完的液相抗氧剂通过不锈钢液体管及出料口均匀添加到双螺杆挤出机中与聚乙烯树脂混合。
作为本发明的一种优选实施方式,所述抗氧剂在加热成为液相状态之前通过失重式电子秤称量,其测量精度为0.01%F.S.。
作为本发明的一种优选实施方式,所述加热套、液体计量泵以及保温单元的工作温度均在抗氧剂熔融温度以上。
作为本发明的一种优选实施方式,所述液相抗氧剂与聚乙烯树脂的重量比满足以下公式:
Figure PCTCN2022133116-appb-000001
式中:
F v-液相抗氧剂的体积速率;
G-聚乙烯树脂的重量速率;
ρ-液相抗氧剂密度;
n-液相抗氧剂与聚乙烯树脂的重量比。
与现有技术相比,本发明的有益效果在于:
本发明的500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法,采用液相添加的方式,使得抗氧剂与聚乙烯树脂充分混合,使得材料配比遵循设计配方, 也避免了因固体材料不精确添加所导致的材料颗粒不均匀和绝缘性能不均匀,并利用失重式电子秤、高精度液体计量泵等高精度装置来计量原材料,使得到的交联聚乙烯材料的配比更加准确地遵循设计配方;解决了熔点较低的抗氧剂因为加工工艺导致的粘附、淤堵等现象的产生;拓展了交联聚乙烯绝缘材料配方设计过程添加助剂选择的灵活性。
附图说明
图1是本发明的500kV交联聚乙烯绝缘材料抗氧剂添加装置的结构示意图;
图2是图1中的加热料斗模块的结构图;
图3是图2中可拆卸网板的k向视图;
图4是图1中的保温管道模块的结构图;
图5是本发明的500kV交联聚乙烯抗氧剂高精度添加方法的原理框图。
图中:
1-进料口;2-加热套;3-料仓;4-观察窗;5-密封圈;6-抽板阀;7-过滤网;8-可拆卸网板;9-定位套;10-抽拉把手;11-液体计量泵;12-不锈钢液体管;13-保温箱;14-保温盘管;15-控制面板;16-模温机;17-压力表;18-出料口。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明的技术方案进行清楚、完整地描述。本申请所描述的实施例仅仅是本发明一部分的实施例,而不是全部实施例。基于本发明精神,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明的保护范围。
图1是本发明的500kV交联聚乙烯绝缘材料抗氧剂添加装置的结构示意图,如图1所示,本发明的500kV交联聚乙烯绝缘材料抗氧剂添加装置包括加热料斗模块以及保温管道模块。
加热料斗模块包括进料口1、加热套2、料仓3以及过滤网7,料仓3竖向 放置,其起始部开设有进料口1,料仓3的外周壁上包裹有加热套2,料仓3的末端与保温管道模块连接,过滤网7设置在保温管道模块之前。
料仓3的容积优选为5~10L,加热套2的电功率优选为2~3kW。
加热套2的温度设置为抗氧剂熔融温度以上,用于使得加速抗氧剂成为液相状态,优选地,加热套2的温度设置为抗氧剂熔融温度以上20~30℃,既能够满足抗氧剂快速熔融的条件,又减少了能源的损耗和抗氧剂在高温下的损失。
过滤网7的目数根据绝缘材料的净化等级要求来确定,以确保最小滤网孔径小于绝缘材料中允许的最大杂质颗粒尺寸。对于500kV及以上等级交联聚乙烯绝缘材料,滤网孔径必须保持在小于等于50μm范围,可根据绝缘材料的杂质含量和尺寸的要求进一步严格限定为更小尺寸。
保温管道模块包括液体计量泵11、不锈钢液体管12、保温单元以及出料口18,液体计量泵11的其中一端连接到料仓3的水平管道上,另一端与不锈钢液体管12的其中一端连接,不锈钢液体管12的另一端设置为出料口18,不锈钢液体管12上包裹有保温单元。
液体计量泵11的精度为0.01%F.S.,液体计量泵11的工作温度要求高于抗氧剂的熔融温度,使得在称量抗氧剂时,不会因为温度过低而冷却凝固,优选地,液体计量泵11的工作温度为抗氧剂熔融温度以上20-30℃。
抗氧剂通过进料口1投入料仓3,并在料仓3内加热成为液相抗氧剂并通过过滤网7进行过滤,再由液体计量泵11称量后进入到不锈钢液体管12,最终通过出料口18投入使用。
如图2所示,过滤网7前端还设置有抽板阀6,抽板阀6构造为可以开闭的结构,当抗氧剂没有完全成为液相时,抽板阀6关闭,抽板阀6与料仓3之间设置有密封圈5。
在料仓3内的抗氧剂未完全成为液相状态时,将抽板阀6关闭,待抗氧剂完全成为液相状态时,将抽板阀6打开,使得液相抗氧剂通过过滤网7的过滤后进入液体计量泵11中进行称量。
如图3所示,过滤网7安装在可拆卸网板8上,可拆卸网板8上设置有抽拉把手10,可拆卸网板8通过定位套9安装或拆卸到料仓3上。
可拆卸网板8用于当过滤网7堵塞或损坏时,将过滤网7抽出维修或更换。
料仓3上设置有观察窗4,用于通过观察窗4观察料仓3内抗氧剂的熔化情况。
如图4所示,保温单元包括保温箱13、保温盘管14、控制面板15以及模温机16。
模温机16设置在不锈钢液体管12的下方,保温盘管14的两端均与模温机16连接,且保温盘管14的中段缠绕在不锈钢液体管12的外周壁上,用于维持不锈钢液体管12内的温度。
保温箱13罩在不锈钢液体管12以及保温盘管14外部,且保温箱13与模温机16的上表面形成密闭空间。保温箱13用于减少保温盘管14以及不锈钢液体管12的温度逸散。
控制面板15设置在模温机16表面,用于操控模温机16。模温机16上设置有压力表17。压力表17用于监控模温机16的运行状况。
模温机16控制保温盘管14的温度高于抗氧剂的熔融温度,使得在抗氧剂流通不锈钢液体管12时,不会因为温度过低而冷却凝固,优选地,保温盘管14的温度为抗氧剂熔融温度以上20-30℃。
不锈钢液体管12的直径优选为5~10mm。
如图5所示,一种使用如上所述的500kV交联聚乙烯绝缘材料抗氧剂添加装置添加抗氧剂的方法,添加抗氧剂的方法包括以下步骤:
步骤1,将抗氧剂通过进料口1投入料仓3,并通过加热套2对料仓3进行加热,使抗氧剂呈液相状态;
步骤2,液相抗氧剂通过过滤网7过滤后,输送到液体计量泵11中进行计量;
步骤3,将计量完的液相抗氧剂通过不锈钢液体管12及出料口18均匀添加到双螺杆挤出机中与聚乙烯树脂混合。
抗氧剂在加热成为液相状态之前通过失重式电子秤称量,其测量精度为0.01%F.S.。
聚乙烯树脂通过失重式电子秤称量,其测量精度为0.01%F.S.。
液相抗氧剂与聚乙烯树脂的重量比满足以下公式:
Figure PCTCN2022133116-appb-000002
式中:
F v-液相抗氧剂的体积速率;
G-聚乙烯树脂的重量速率;
ρ-液相抗氧剂密度;
n-液相抗氧剂与聚乙烯树脂的重量比。
与现有技术相比,本发明的有益效果在于:
本发明的500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法,采用液相添加的方式,使得抗氧剂与聚乙烯树脂充分混合,使得材料配比遵循设计配方,也避免了因固体材料不精确添加所导致的材料颗粒不均匀和绝缘性能不均匀,并利用失重式电子秤、高精度液体计量泵等高精度装置来计量原材料,使得到的交联聚乙烯材料的配比更加准确地遵循设计配方;解决了熔点较低的抗氧剂因为加工工艺导致的粘附、淤堵等现象的产生;拓展了交联聚乙烯绝缘材料配方设计过程添加助剂选择的灵活性。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求保护范围之内。

Claims (13)

  1. 一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其包括:加热料斗模块以及保温管道模块,其特征在于:
    所述加热料斗模块包括进料口(1)、加热套(2)、料仓(3)以及过滤网(7);所述料仓(3)竖向放置,其起始部开设有进料口(1),料仓(3)的外周壁上包裹有加热套(2),料仓(3)的末端与保温管道模块连接,过滤网(7)设置在保温管道模块之前;
    所述保温管道模块包括液体计量泵(11)、不锈钢液体管(12)、保温单元以及出料口(18),所述液体计量泵(11)的其中一端连接到料仓(3)的水平管道上,另一端与不锈钢液体管(12)的其中一端连接,不锈钢液体管(12)的另一端设置为出料口(18),不锈钢液体管(12)上包裹有保温单元;
    所述抗氧剂通过进料口(1)投入料仓(3),并在料仓(3)内加热成为液相抗氧剂并通过过滤网(7)进行过滤,再由液体计量泵(11)称量后进入到不锈钢液体管(12),最终通过出料口(18)投入使用。
  2. 根据权利要求1所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述过滤网(7)前端还设置有抽板阀(6),抽板阀(6)构造为可以开闭的结构,当抗氧剂没有完全成为液相时,抽板阀(6)关闭;
    所述抽板阀(6)与料仓(3)之间设置有密封圈(5)。
  3. 根据权利要2所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述过滤网(7)安装在可拆卸网板(8)上,可拆卸网板(8)上设置有抽拉把手(10),可拆卸网板(8)通过定位套(9)安装或拆卸到料仓(3)上。
  4. 根据权利要求1所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述液体计量泵(11)的精度为0.01%F.S.。
  5. 根据权利要求1所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述保温单元包括保温箱(13)、保温盘管(14)、控制面板(15)以及模 温机(16)。
  6. 根据权利要求5所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述模温机(16)设置在不锈钢液体管(12)的下方,保温盘管(14)的两端均与模温机(16)连接,且保温盘管(14)的中段缠绕在不锈钢液体管(12)的外周壁上;
    保温箱(13)罩在不锈钢液体管(12)以及保温盘管(14)外部,且保温箱(13)与模温机(16)的上表面形成密闭空间。
  7. 根据权利要求5所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述控制面板(15)设置在模温机(16)表面,用于操控模温机(16)。
  8. 根据权利要求6所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述模温机(16)上设置有压力表(17)。
  9. 根据权利要求1所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加装置,其特征在于:
    所述料仓(3)上设置有观察窗(4)。
  10. 一种使用如权利要求1至9所述的500kV交联聚乙烯绝缘材料抗氧剂添加装置添加抗氧剂的方法,其特征在于:
    所述添加抗氧剂的方法包括以下步骤:
    步骤1,将抗氧剂通过进料口(1)投入料仓(3),并通过加热套(2)对料仓(3)进行加热,使抗氧剂呈液相状态;
    步骤2,液相抗氧剂通过过滤网(7)过滤后,输送到液体计量泵(11)中进行计量;
    步骤3,将计量完的液相抗氧剂通过不锈钢液体管(12)及出料口(18)均匀添加到双螺杆挤出机中与聚乙烯树脂混合。
  11. 根据权利要求10所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加方法,其特征在于:
    所述抗氧剂在加热成为液相状态之前通过失重式电子秤称量,其测量精度 为0.01%F.S.。
  12. 根据权利要求10所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加方法,其特征在于:
    所述加热套(2)、液体计量泵(11)以及保温单元的工作温度均在抗氧剂熔融温度以上。
  13. 根据权利要求10所述的一种500kV交联聚乙烯绝缘材料抗氧剂添加方法,其特征在于:
    所述液相抗氧剂与聚乙烯树脂的重量比满足以下公式:
    Figure PCTCN2022133116-appb-100001
    式中:
    F v-液相抗氧剂的体积速率;
    G-聚乙烯树脂的重量速率;
    ρ-液相抗氧剂密度;
    n-液相抗氧剂与聚乙烯树脂的重量比。
PCT/CN2022/133116 2022-09-23 2022-11-21 500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法 WO2024060391A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211164758.X 2022-09-23
CN202211164758.XA CN116061412A (zh) 2022-09-23 2022-09-23 500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法

Publications (1)

Publication Number Publication Date
WO2024060391A1 true WO2024060391A1 (zh) 2024-03-28

Family

ID=86168848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133116 WO2024060391A1 (zh) 2022-09-23 2022-11-21 500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法

Country Status (2)

Country Link
CN (1) CN116061412A (zh)
WO (1) WO2024060391A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007111A (ja) * 2010-06-25 2012-01-12 Viscas Corp 液状添加剤組成物、及び電力ケーブル若しくは電力ケーブル接続部の製造方法
CN202169691U (zh) * 2011-05-23 2012-03-21 高然生 超净级可交联聚乙烯绝缘料生产装置
CN104200931A (zh) * 2014-08-29 2014-12-10 江苏诚盟装备股份有限公司 10--35kV交联绝缘电缆料动态吸附生产设备
US20190070752A1 (en) * 2016-01-15 2019-03-07 P&M Cable Consulting Sàrl(P&M Cable Consulting Llc) Installation and method for manufacturing cross-linkable polyethylene compounds
CN112280149A (zh) * 2020-11-06 2021-01-29 南京地中缆科技有限公司 高压、超高压电缆绝缘材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938371B2 (ja) * 1995-08-15 1999-08-23 株式会社フジクラ 押出成形機および押出成形方法
CN204431541U (zh) * 2014-12-25 2015-07-01 青岛汉缆股份有限公司 一种用于高压超高压超净绝缘材料交联剂处理方法的装置
CN105773863B (zh) * 2014-12-25 2018-06-26 青岛汉缆股份有限公司 一种用于高压超高压超净绝缘材料交联剂处理方法及装置
CN112045964B (zh) * 2020-07-31 2023-03-31 聊城鲁西聚碳酸酯有限公司 一种聚碳酸酯的助剂添加装置和添加工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012007111A (ja) * 2010-06-25 2012-01-12 Viscas Corp 液状添加剤組成物、及び電力ケーブル若しくは電力ケーブル接続部の製造方法
CN202169691U (zh) * 2011-05-23 2012-03-21 高然生 超净级可交联聚乙烯绝缘料生产装置
CN104200931A (zh) * 2014-08-29 2014-12-10 江苏诚盟装备股份有限公司 10--35kV交联绝缘电缆料动态吸附生产设备
US20190070752A1 (en) * 2016-01-15 2019-03-07 P&M Cable Consulting Sàrl(P&M Cable Consulting Llc) Installation and method for manufacturing cross-linkable polyethylene compounds
CN112280149A (zh) * 2020-11-06 2021-01-29 南京地中缆科技有限公司 高压、超高压电缆绝缘材料的制备方法

Also Published As

Publication number Publication date
CN116061412A (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
CN208878974U (zh) 一种锂离子电池挤压涂布浆料自动输送及过滤系统
CN101436680B (zh) 一种锂离子电池配料设备
CN108218194A (zh) 半导体光伏用石英管自动控制加料生产方法和设备
CN209477214U (zh) 一种覆膜砂混砂机
WO2024060391A1 (zh) 500kV交联聚乙烯绝缘材料抗氧剂添加装置及方法
CN204816331U (zh) 一种数控搅拌装置
WO2020113540A1 (zh) 一种密封胶自动化生产线
CN106393644A (zh) 一种埋地式高压电力电缆保护用pvc‑c套管生产工艺
CN204338059U (zh) 油漆自动配比搅拌机
CN204388581U (zh) 一种改进的干法水泥回转窑生料定量喂料系统
CN106466581A (zh) 一种高温粉体物料自动加料装置及其应用
CN109289733B (zh) 一种脂类聚羧酸减水剂母液生产设备及工艺
CN108277032A (zh) 一种改性沥青生产设备
CN204583110U (zh) 一种用于超硬材料合成用原辅材料的自动配料装置
CN203440733U (zh) 一种沥青混合料外掺剂自动计量添加系统
CN104280102A (zh) 一种铝粉/铝粉膏两用自动计量系统
CN208232125U (zh) 一种热塑性弹性体充油设备
CN205182640U (zh) 一种带杀菌功能的配料装置
CN221819430U (zh) 一种电缆填充材料生产用阻燃剂添加装置
CN109227998A (zh) 用于tlcp聚合造粒的一体化成套设备
CN203767409U (zh) 一种粉状原料的进料装置
CN206088359U (zh) 玻璃微球输送系统
CN106696111A (zh) 一种用于硅酮胶连续生产的流量在线自动调节系统和方法
CN107029579A (zh) 粉末涂料的新型配料系统
CN205575908U (zh) 用石灰改性脱水污泥的石灰投加系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959391

Country of ref document: EP

Kind code of ref document: A1