WO2023226668A1 - 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 - Google Patents
高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 Download PDFInfo
- Publication number
- WO2023226668A1 WO2023226668A1 PCT/CN2023/090674 CN2023090674W WO2023226668A1 WO 2023226668 A1 WO2023226668 A1 WO 2023226668A1 CN 2023090674 W CN2023090674 W CN 2023090674W WO 2023226668 A1 WO2023226668 A1 WO 2023226668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hours
- supported catalyst
- pillared clay
- pilc
- resistant zirconium
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 80
- 229910052717 sulfur Inorganic materials 0.000 title claims abstract description 49
- 239000011593 sulfur Substances 0.000 title claims abstract description 49
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 title claims abstract description 44
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 229910052726 zirconium Inorganic materials 0.000 title claims abstract description 39
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 239000004927 clay Substances 0.000 title abstract description 23
- UJVRJBAUJYZFIX-UHFFFAOYSA-N nitric acid;oxozirconium Chemical compound [Zr]=O.O[N+]([O-])=O.O[N+]([O-])=O UJVRJBAUJYZFIX-UHFFFAOYSA-N 0.000 claims abstract description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 53
- 229910000278 bentonite Inorganic materials 0.000 claims abstract description 35
- 239000000440 bentonite Substances 0.000 claims abstract description 35
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims abstract description 35
- 239000003431 cross linking reagent Substances 0.000 claims abstract description 32
- 239000000725 suspension Substances 0.000 claims abstract description 26
- 238000003756 stirring Methods 0.000 claims abstract description 22
- 239000008367 deionised water Substances 0.000 claims abstract description 18
- 229910021641 deionized water Inorganic materials 0.000 claims abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000001354 calcination Methods 0.000 claims abstract description 9
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 34
- 229910052753 mercury Inorganic materials 0.000 claims description 33
- 239000007788 liquid Substances 0.000 claims description 25
- 239000000047 product Substances 0.000 claims description 21
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 19
- 239000003546 flue gas Substances 0.000 claims description 19
- 239000002244 precipitate Substances 0.000 claims description 15
- 238000005470 impregnation Methods 0.000 claims description 3
- JCVYQXYLSQNNDJ-UHFFFAOYSA-N [O-2].[O-2].[Zr+4].[N+](=O)(O)[O-] Chemical compound [O-2].[O-2].[Zr+4].[N+](=O)(O)[O-] JCVYQXYLSQNNDJ-UHFFFAOYSA-N 0.000 claims 1
- 238000001035 drying Methods 0.000 abstract description 9
- 238000000227 grinding Methods 0.000 abstract description 4
- 229910002651 NO3 Inorganic materials 0.000 abstract 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(II) nitrate Inorganic materials [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 abstract 1
- 150000002500 ions Chemical class 0.000 description 12
- 230000002195 synergetic effect Effects 0.000 description 12
- 230000003647 oxidation Effects 0.000 description 11
- 238000007254 oxidation reaction Methods 0.000 description 11
- 239000010410 layer Substances 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 229910052684 Cerium Inorganic materials 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 7
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- 230000003197 catalytic effect Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000011259 mixed solution Substances 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 239000006194 liquid suspension Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 238000011049 filling Methods 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 231100000693 bioaccumulation Toxicity 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000004939 coking Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000000891 luminescent agent Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000036619 pore blockages Effects 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8621—Removing nitrogen compounds
- B01D53/8625—Nitrogen oxides
- B01D53/8628—Processes characterised by a specific catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8665—Removing heavy metals or compounds thereof, e.g. mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/32—Manganese, technetium or rhenium
- B01J23/34—Manganese
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the present disclosure relates to the field of air pollution control, and in particular to a highly sulfur-resistant zirconium-based pillared clay-supported catalyst and its preparation method and application.
- Coal combustion flue gas is considered an important man-made emission source of various atmospheric pollutants.
- Mercury (Hg) pollution has become a global environmental problem due to its persistence, volatility, easy migration and high bioaccumulation.
- Mercury in coal-fired flue gas mostly exists in the form of elemental mercury (Hg 0 ). Due to its volatility and insolubility in water, it is difficult to be removed by existing pollutant control systems in coal-fired power plants.
- the SCR denitrification system can oxidize Hg 0 in coal-fired flue gas to Hg 2+ , and then remove mercury in the flue gas through wet desulfurization devices and dust removal devices to achieve the combination of nitrogen oxides (NO x ) and Hg 0 Remove.
- this disclosure proposes a preparation method for a highly sulfur-resistant zirconium-based pillared clay-supported catalyst, which includes the following steps:
- Mn(NO 3 ) 2 and Ce(NO 3 ) 4 are dissolved in deionized water to obtain a second mixed liquid.
- the carrier Zr-PILC is added to the second mixed liquid, wherein Mn(NO 3 ) 2
- the mass ratio of the total mass of Ce(NO 3 ) 4 to deionized water and carrier Zr-PILC is 2.6 ⁇ 2.8:100:10. Stir and impregnate.
- the preparation method of the zirconyl nitrate cross-linking agent is: aging 0.1 to 0.5 mol/L zirconium oxynitrate in a constant temperature water bath at 75 to 90°C for 3 to 10 hours, and then Leave to cool for 2 to 5 hours.
- step S1 after the zirconyl nitrate cross-linking agent is dropped into the bentonite suspension, the mixture is stirred at room temperature for 3 to 8 hours, and then left to stand for 8 to 16 hours.
- step S1 the precipitate is dried at a constant temperature in a water bath of 75 to 90°C for 8 to 16 hours.
- step S1 the precipitate is calcined at a temperature of 400 to 600°C and for a calcining time of 2 to 5 hours.
- step S2 the soaking time is 8 to 16 hours.
- step S2 the impregnated product is dried in a constant temperature water bath at 75-90°C for 8-16 hours.
- step S2 the impregnated product is calcined at a temperature of 400 to 600°C, for a calcining time of 2 to 5 hours, and after grinding, it is passed through a 40-mesh sieve before use.
- the present disclosure proposes a highly sulfur-resistant zirconium-based pillared clay-supported catalyst prepared by the above-mentioned preparation method.
- the third aspect of the present disclosure proposes the application of the above-mentioned highly sulfur-resistant zirconium-based pillared clay-supported catalyst for collaborative denitrification and mercury removal in flue gas.
- Figure 1 is a comparison chart of the destocking efficiency curves using different high-sulfur-resistant zirconium-based pillared clay-supported catalysts in Examples 1 to 3 of the present disclosure
- Figure 2 is a comparison chart of mercury oxidation efficiency curves using different high-sulfur-resistant zirconium-based pillared clay-supported catalysts in Examples 1 to 3 of the present disclosure
- Figure 3 is a comparative diagram of the influence of SO 2 on the decontamination efficiency of the catalysts used in Examples 1 to 3 and Comparative Example 1 of the present disclosure respectively;
- Figure 4 is a comparative chart of the effects of SO 2 on the mercury oxidation efficiency of the catalysts used in Examples 1 to 3 and Comparative Example 1 of the present disclosure.
- the purpose of this disclosure is to provide a highly sulfur-resistant zirconium-based pillared clay-supported catalyst and its preparation method and application in collaborative denitration and mercury removal.
- the strong catalytic ability of Ce and Mn active materials is used to achieve coal soot burning. Efficient synergistic removal of NO The poisoning effect of chemical agents.
- this disclosure proposes a preparation method for a highly sulfur-resistant zirconium-based pillared clay-supported catalyst, which includes the following steps:
- the preparation method of bentonite suspension is: put 5-20g bentonite into a 1L beaker, add 980-995g deionized water as a solvent, stir at room temperature for 24 hours, and obtain a bentonite suspension with a mass fraction of 0.5-2% liquid.
- the method of preparing zirconyl nitrate cross-linking agent using zirconyl nitrate as the zirconium source is as follows: aging 0.1 mol/L zirconyl nitrate in a constant temperature water bath at 75-90°C for 3 to 10 hours, and then leaving it to cool for 2 to 5 hours. A zirconyl nitrate cross-linking agent with a concentration of 0.1 to 0.5 mol/L is obtained.
- the prepared zirconyl nitrate cross-linking agent drop by drop into the fully dispersed bentonite suspension to obtain a first mixed liquid, ensuring that the concentration of zirconyl nitrate in the first mixed liquid is 10 to 30 mmol /g, stir at room temperature for 3 to 8 hours, and then let stand for 8 to 16 hours to allow sufficient ion exchange between the zirconyl nitrate cross-linking agent and the clay layer ions of the bentonite suspension. Then, the first mixed liquid suspension is centrifuged to obtain a precipitate, which is dried and calcined to obtain the carrier Zr-PILC.
- the method of drying the precipitate is constant temperature drying in a water bath at 75-90°C for 8-16 hours.
- the precipitate is calcined in a muffle furnace at a temperature of 400 to 600°C and a calcining time of 2 to 5 hours.
- step S2 dissolve the precursors Mn(NO 3 ) 2 and Ce(NO 3 ) 4 in deionized water to obtain a second mixed liquid.
- the impregnated product is dried, calcined, and ground to obtain a% MnO 2 -b% CeO 2 /Zr-PILC catalyst, where a and b are MnO 2 and CeO 2 respectively.
- the prepared zirconium pillared clay has a high specific surface area, which is conducive to using the zirconium pillared clay as a carrier to load Ce and Mn active materials, thereby synthesizing a pillared clay supported catalyst. .
- the pillar-supported clay-supported catalyst prepared by the preparation method of the present disclosure takes advantage of the strong catalytic ability of Ce and Mn active materials to achieve efficient and coordinated removal of NO x and Hg 0 in coal-fired flue gas. On the other hand, it fully Taking advantage of the high sulfur resistance properties of Zr-PILC, it can greatly alleviate the poisoning effect of SO 2 in flue gas on the catalyst.
- 10 g of carrier Zr-PILC is added to the second mixed solution.
- the impregnated product is dried in a constant temperature water bath.
- a constant temperature water bath is used for constant temperature water bath drying.
- the constant temperature water bath is widely used for drying, concentration, distillation, and impregnation of chemical reagents, and can also be used for water bath temperature heating and other temperature tests.
- the internal water tank is made of stainless steel, which has excellent corrosion resistance, precise temperature control, and automatic temperature control. Equipped with magnetic stirring, the water temperature can quickly reach a uniform state.
- the impregnated product is dried at a constant temperature in a water bath at 75-90°C for 8-16 hours.
- the impregnated product is calcined at a temperature of 400 to 600°C and for a calcining time of 2 to 5 hours. After grinding, it should be passed through a 40-mesh sieve before use.
- the preparation method of bentonite suspension is as follows: put 10g bentonite into a 1L beaker, add 990g deionized water as a solvent, and stir at room temperature for 24 hours to obtain a bentonite suspension with a mass fraction of 1%.
- the method of preparing zirconium oxynitrate cross-linking agent using zirconyl nitrate as the zirconium source is as follows: Aging 0.1 mol/L zirconium oxynitrate in a constant temperature water bath at 85°C for 5 hours, and then leaving it to cool for 3 hours to obtain a concentration of 0.1 mol/L. L's zirconyl nitrate cross-linking agent.
- the prepared zirconyl nitrate cross-linking agent drop by drop into the fully dispersed bentonite suspension to obtain a first mixed liquid, ensuring that the concentration of zirconyl nitrate in the first mixed liquid is 15 mmol/g , stir at room temperature for 6 hours, and then let stand for 12 hours, so that the ions between the zirconyl nitrate cross-linking agent and the clay layer of the bentonite suspension can be fully ion exchanged. Then, the first mixed liquid suspension is centrifuged to obtain a precipitate, which is dried and calcined to obtain the carrier Zr-PILC.
- the method of drying the precipitate is constant temperature drying in a water bath at 80°C for 12 hours.
- the precipitate was calcined in a muffle furnace at a temperature of 500°C and a calcining time of 3 hours.
- the precursors 0.6366g to 1.9098g of Mn(NO 3 ) 2 and 0.7012g to 2.1035g of Ce(NO 3 ) 4 are dissolved in 100 ml of deionized water to obtain a second mixed liquid.
- the impregnated product is dried in a constant temperature water bath.
- a constant temperature water bath is used for constant temperature water bath drying.
- the constant temperature water bath is widely used for drying, concentration, distillation, and impregnation of chemical reagents, and can also be used for water bath temperature heating and other temperature tests.
- the internal water tank is made of stainless steel, which has excellent corrosion resistance, precise temperature control, and automatic temperature control. Equipped with magnetic stirring, the water temperature can quickly reach a uniform state.
- the impregnated product is dried in a constant temperature water bath at 85°C for 12 hours.
- the impregnated product is calcined at a temperature of 500°C and for a calcining time of 5 hours. After grinding, the product is passed through a 40-mesh sieve before use.
- the present disclosure proposes a highly sulfur-resistant zirconium-based pillared clay-supported catalyst prepared by the above-mentioned preparation method.
- the third aspect of the present disclosure proposes the application of the above-mentioned highly sulfur-resistant zirconium-based pillared clay-supported catalyst for collaborative denitrification and mercury removal in flue gas.
- Pillared clay material i.e. pillared clay PILC
- Pillared clay material is a special material in which the exchangeable ions between clay mineral layers are fully or partially replaced by specific ions or ion groups ("pillars") and fixed in their interlayer domains.
- the layers supported by the "pillars" have two-dimensional channels with a maximum layer spacing of 5.2nm. It is not easy to cause pore blockage after coking and has strong resistance to sulfur, nitrogen and heavy metal pollution. The most mature one at present is bentonite.
- Zirconyl nitrate is commonly used as a reagent for the determination of potassium and fluoride, and is also used in the preparation of luminescent agents and refractory materials. Solid zirconyl nitrate is in white crystalline or powder form, easily soluble in water, and the aqueous solution is acidic and oxidizing. There are no cases of using zirconyl nitrate as a cross-linking agent in the existing public documents, let alone cases of using zirconyl nitrate to dope pillared clay. Pillared clay doped with zirconyl nitrate has high sulfur resistance, which is one of the innovations of the present disclosure.
- pillared clay has a complex surface structure and a large specific surface area, making it an ideal catalyst matrix.
- zirconium (Zr) oxide-doped pillared clay has high sulfur resistance. The present disclosure therefore combines the strong catalytic activity of Ce and Mn oxides with the sulfur-resistant properties of Zr pillared clay.
- zirconyl nitrate as the zirconium source to prepare zirconyl nitrate cross-linking agent: Prepare a 0.1 mol/L zirconyl nitrate solution, age it in a constant temperature water bath at 85°C for 5 hours, and then leave it to cool for 3 hours to obtain a concentration of 0.1 mol/L. L's zirconyl nitrate cross-linking agent.
- the prepared zirconyl nitrate cross-linking agent drop by drop into the fully dispersed bentonite suspension to obtain a first mixed liquid, ensuring that the concentration of zirconyl nitrate in the first mixed liquid is 15 mmol/g , stir at room temperature for 6 hours, and then let stand for 12 hours, so that the ions between the zirconyl nitrate cross-linking agent and the clay layer of the bentonite suspension can be fully ion exchanged. Then, the first mixed liquid suspension is centrifuged to obtain a precipitate, which is dried and calcined to obtain the carrier Zr-PILC.
- bentonite and 6%MnO 2 -6%CeO 2 /Zr-PILC sample were characterized by N 2 adsorption-desorption. Pore structural properties such as specific surface area, pore volume, and average pore diameter of PILC samples.
- the BET specific surface area of bentonite is 70.47m 2 /g
- the BET specific surface area of 6% MnO 2 -6% CeO 2 /Zr-PILC sample is 120.70m 2 /g.
- the catalyst's synergistic denitrification and mercury removal capabilities were verified on a self-made experimental bench.
- the basic components of simulated flue gas include 500ppm NO, 500ppm NH 3 , 5vol% O 2 , 50 ⁇ g/m 3 Hg0, 700ppm SO 2 , 3vol% H 2 O and high-purity N 2 balance gas.
- a mass flow meter was used to accurately control various gas flow rates.
- the total gas flow rate was 850 ml/min.
- the catalyst filling amount in the experiment was 0.5 g.
- the catalytic reaction temperature was controlled at 250 to 400°C, and the space velocity was 50,000 h -1 .
- 6%MnO 2 -6% CeO 2 /Zr-PILC also has high mercury oxidation ability at various temperature points, and has the highest mercury oxidation efficiency of 96.2% at 300°C. . Therefore, 6%MnO 2 -6% CeO 2 /Zr-PILC has excellent synergistic denitrification and mercury removal capabilities.
- zirconyl nitrate as the zirconium source to prepare zirconyl nitrate cross-linking agent: Prepare a 0.1 mol/L zirconyl nitrate solution, age it in a constant temperature water bath at 85°C for 5 hours, and then leave it to cool for 3 hours to obtain a concentration of 0.1 mol/L. L's zirconyl nitrate cross-linking agent.
- the prepared zirconyl nitrate cross-linking agent drop by drop into the fully dispersed bentonite suspension to obtain a first mixed liquid, ensuring that the concentration of zirconyl nitrate in the first mixed liquid is 15 mmol/g , stir at room temperature for 6 hours, and then let stand for 12 hours, so that the ions between the zirconyl nitrate cross-linking agent and the clay layer of the bentonite suspension can be fully ion exchanged. Then, the first mixed liquid suspension is centrifuged to obtain a precipitate, which is dried and calcined to obtain the carrier Zr-PILC.
- the catalyst's synergistic denitrification and mercury removal capabilities were verified on a self-made experimental bench.
- the basic components of simulated flue gas include 500ppm NO, 500ppm NH 3 , 5vol% O 2 , 50 ⁇ g/m 3 Hg0, 700ppm SO 2 , 3vol% H 2 O and high-purity N 2 balance gas.
- a mass flow meter was used to accurately control various gas flow rates.
- the total gas flow rate was 850 ml/min.
- the catalyst filling amount in the experiment was 0.5 g.
- the catalytic reaction temperature was controlled at 250 to 400°C, and the space velocity was 50,000 h -1 .
- zirconyl nitrate as the zirconium source to prepare zirconyl nitrate cross-linking agent: Prepare a 0.1 mol/L zirconyl nitrate solution, age it in a constant temperature water bath at 85°C for 5 hours, and then leave it to cool for 3 hours to obtain a concentration of 0.1 mol/L. L's zirconyl nitrate cross-linking agent.
- the prepared zirconyl nitrate cross-linking agent drop by drop into the fully dispersed bentonite suspension to obtain a first mixed liquid, ensuring that the concentration of zirconyl nitrate in the first mixed liquid is 15 mmol/g , stir at room temperature for 6 hours, and then let stand for 12 hours, so that the ions between the zirconyl nitrate cross-linking agent and the clay layer of the bentonite suspension can be fully ion exchanged. Then, the first mixed liquid suspension is centrifuged to obtain a precipitate, which is dried and calcined to obtain the carrier Zr-PILC.
- the catalyst's synergistic denitrification and mercury removal capabilities were verified on a self-made experimental bench.
- the basic components of simulated flue gas include 500ppm NO, 500ppm NH 3 , 5vol% O 2 , 50 ⁇ g/m 3 Hg0, 700ppm SO 2 , 3vol% H 2 O and high-purity N 2 balance gas.
- a mass flow meter was used to accurately control various gas flow rates.
- the total gas flow rate was 850 ml/min.
- the catalyst filling amount in the experiment was 0.5 g.
- the catalytic reaction temperature was controlled at 250 to 400°C, and the space velocity was 50,000 h -1 .
- the sulfur resistance performance of the 6% MnO 2 -6% CeO 2 oxide catalyst was tested at 300°C. As shown in Figure 3, as the reaction proceeds, after adding 700ppm SO2 after 1 hour of operation, the denitrification efficiency of the 6% MnO2-6 % CeO2 oxide catalyst drops sharply from 77.5% to 65.3%, and SO2 continues to be introduced. , the denitrification efficiency dropped significantly to 56.8% at the 8th hour. As shown in Figure 4, after adding 700 ppm SO 2 after 1 hour of operation, the mercury oxidation efficiency of the 6% MnO 2 -6% CeO 2 oxide catalyst dropped sharply from 80.4% to 70.4%. SO 2 was continuously introduced and denitrification occurred at the 8th hour. The efficiency dropped significantly to 60.7%.
- the prepared zirconium pillared clay has a high specific surface area, which is beneficial to the use of zirconium. Pillared clay is used as a carrier to load Ce and Mn active materials, and then a pillared clay-supported catalyst is synthesized;
- the pillar-supported clay-supported catalyst prepared by the preparation method of the present disclosure takes advantage of the strong catalytic ability of Ce and Mn active materials to achieve efficient and coordinated removal of NO x and Hg 0 in coal-fired flue gas. On the other hand, it fully Taking advantage of the high sulfur resistance properties of Zr-PILC, it can greatly alleviate the poisoning effect of SO 2 in flue gas on the catalyst.
- first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
- “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
- the terms “one embodiment,” “some embodiments,” “example,” “specific examples,” or “some examples” or the like mean that a particular feature, structure, material, or other feature is described in connection with the embodiment or example.
- Features are included in at least one embodiment or example of the disclosure.
- the schematic expressions of the above terms are not necessarily directed to the same embodiment or example.
- the specific features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
- those skilled in the art may combine and combine different embodiments or examples and features of different embodiments or examples described in this specification unless they are inconsistent with each other.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
Abstract
本公开提出一种高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用,通过膨润土悬浊液和硝酸氧锆交联剂制备载体Zr-PILC;Mn(NO3)2和Ce(NO3)4溶解于去离子水中,加入载体Zr-PILC,搅拌、浸渍,将浸渍产物经过干燥、煅烧、研磨,得到高抗硫锆基柱撑黏土负载型催化剂。
Description
相关申请的交叉引用
本申请基于申请号为202210563816.X、申请日为2022年05月23日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本公开涉及大气污染控制领域,尤其涉及一种高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用。
燃煤烟气被认为是多种大气污染物的重要人为排放源。汞(Hg)污染由于其持久性、挥发性、易迁移性以及高度生物富集性,已成为全球性环境问题。燃煤烟气中汞大多以元素汞(Hg0)形态存在,由于其挥发性和难溶于水等特性,很难被燃煤电厂现有污染物控制系统脱除。研究表明,SCR脱硝系统可以将燃煤烟气中Hg0氧化为Hg2+,进而通过湿法脱硫装置和除尘装置脱除烟气中的汞,实现氮氧化物(NOx)和Hg0联合脱除。然而,传统商业催化剂对Hg0氧化性能有限。因此,开发具有高催化氧化性能的催化剂,进行污染物联合脱除具有重要的理论意义和现实意义。目前,Ce、Mn等多种过渡金属氧化物具有较高的催化活性,因此被用来烟气NOx、Hg0的联合脱除研究。但是,燃煤烟气中存在大量SO2,烟气中的SO2会在催化剂表面与过渡金属反应生成硫酸盐,造成催化剂不可逆失活。因此提升催化剂抗硫特性是实现燃煤烟气同步脱硝脱汞的关键。因此需要公开一种催化剂来实现燃煤烟气的协同脱硝脱汞。
发明内容
本公开一方面提出一种高抗硫锆基柱撑黏土负载型催化剂的制备方法,包括如下步骤:
S1,配置质量分数为0.5~2%的膨润土悬浊液和0.1~0.5mol/L的硝酸氧锆交联剂,将所述硝酸氧锆交联剂滴加到所述膨润土悬浊液中,得到第一混合液,搅拌后静置,其中硝酸氧锆在第一混合液中的浓度为10~30mmol/g,将第一混合液离心分离,得到沉淀物,将所述沉淀物经过干燥和煅烧,得到载体Zr-PILC;
S2,Mn(NO3)2和Ce(NO3)4溶解于去离子水中,得到第二混合液,在所述第二混合液中加入所述载体Zr-PILC,其中Mn(NO3)2与Ce(NO3)4的总质量与去离子水、载体Zr-PILC的质量配比为2.6~2.8:100:10,搅拌、浸渍,将浸渍产物经过干燥、煅烧、研磨,得到a%MnO2-b%CeO2/Zr-PILC催化剂,即高抗硫锆基柱撑黏土负载型催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
在一些实施例中,所述步骤S1中,硝酸氧锆交联剂的配置方法为:将0.1~0.5mol/L的硝酸氧锆在75~90℃恒温水浴下进行3~10h老化,然后经2~5h静置冷却。
在一些实施例中,所述步骤S1中,将所述硝酸氧锆交联剂滴加到所述膨润土悬浊液中后,在室温状态下搅拌3~8h,然后静置8~16h。
在一些实施例中,所述步骤S1中,沉淀物干燥的方式为在75~90℃水浴下恒温干燥8~16h。
在一些实施例中,所述步骤S1中,沉淀物煅烧的温度为400~600℃,煅烧时间为2~5h。
在一些实施例中,所述步骤S2中,浸渍时间为8~16h。
在一些实施例中,所述步骤S2中,浸渍产物的干燥方式为75~90℃水浴下恒温干燥8~16h。
在一些实施例中,所述步骤S2中,浸渍产物煅烧的温度为400~600℃,煅烧时间为2~5h,研磨后过40目筛后备用。
本公开另一方面提出一种由上述的制备方法制备出的高抗硫锆基柱撑黏土负载型催化剂,所述高抗硫锆基柱撑黏土负载型催化剂为a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
本公开第三方面提出一种上述的高抗硫锆基柱撑黏土负载型催化剂在烟气中协同脱硝脱汞中的应用。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,
其中:
图1为本公开实施例1~3中采用不同的高抗硫锆基柱撑黏土负载型催化剂的脱销效率曲线的对比图;
图2为本公开实施例1~3中采用不同的高抗硫锆基柱撑黏土负载型催化剂的汞氧化效率曲线的对比图;
图3为SO2分别对本公开实施例1~3与对比例1采用的催化剂的脱销效率的影响对比图;
图4为SO2分别对本公开实施例1~3与对比例1采用的催化剂的汞氧化效率的影响对比图。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开的目的在于提供一种高抗硫锆基柱撑黏土负载型催化剂及其制备方法与在协同脱硝脱汞中的应用,一方面利用Ce、Mn活性物质催化能力强的特点实现燃煤烟气中NOx、Hg0的高效协同脱除,另一方面充分发挥Zr-PILC的高抗硫特性,大幅缓解烟气中SO2对催
化剂的毒化作用。
下面参考附图描述本公开实施例的高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用。
本公开一方面提出一种高抗硫锆基柱撑黏土负载型催化剂的制备方法,包括如下步骤:
S1,配置质量分数为0.5~2%的膨润土悬浊液和浓度为0.1~0.5mol/L的硝酸氧锆交联剂。
其中,膨润土悬浊液的制备方法为:将5~20g膨润土放入1L的烧杯中,加入980~995g去离子水作为溶剂,室温下搅拌24h,得到质量分数为0.5~2%的膨润土悬浊液。
以硝酸氧锆作为锆源制备硝酸氧锆交联剂的方法为:将0.1mol/L的硝酸氧锆在75~90℃恒温水浴下进行3~10h老化,然后经2~5h静置冷却,得到浓度为0.1~0.5mol/L的硝酸氧锆交联剂。
将制备好的硝酸氧锆交联剂逐滴缓慢地滴加到已充分分散好的膨润土悬浊液中,得到第一混合液,保证硝酸氧锆在第一混合液中的浓度为10~30mmol/g,在室温状态下搅拌3~8h,然后静置8~16h,使硝酸氧锆交联剂与膨润土悬浊液的粘土层间离子进行充分的离子交换。然后将第一混合液悬浮液离心分离,得到沉淀物,将沉淀物经过干燥和煅烧,得到载体Zr-PILC。
其中沉淀物干燥的方式为在75~90℃水浴下恒温干燥8~16h。沉淀物的煅烧是在马弗炉中进行,煅烧的温度为400~600℃,煅烧时间为2~5h。
S2,将前驱物Mn(NO3)2和Ce(NO3)4溶解于去离子水中,得到第二混合液。在第二混合液中加入步骤S1得到的载体Zr-PILC,其中Mn(NO3)2与Ce(NO3)4的总质量与去离子水、载体Zr-PILC的质量配比为2.6~2.8:100:10。搅拌均匀,浸渍8~16h,得到浸渍产物,将浸渍产物经过干燥、煅烧、研磨,得到a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
本公开的制备方法中,所制备出的锆柱撑黏土(Zr-PILC)具备高比表面积,利于以锆柱撑黏土为载体来负载Ce、Mn活性物质,进而合成出柱撑黏土负载型催化剂。
通过本公开的制备方法制备出的柱撑黏土负载型催化剂,一方面利用Ce、Mn活性物质催化能力强的特点实现燃煤烟气中NOx、Hg0的高效协同脱除,另一方面充分发挥Zr-PILC的高抗硫特性,大幅缓解烟气中SO2对催化剂的毒化作用。
在一些实施例中,在第二混合液中加入10g载体Zr-PILC。
在一些实施例中,浸渍产物的干燥方式为恒温水浴干燥。
在一些实施例中,采用恒温水浴锅进行恒温水浴干燥,恒温水浴锅广泛用于干燥、浓缩、蒸馏、浸渍化学试剂,也可用于水浴温加热和其他温度试验。其内部的水箱采用不锈钢材质,有优越的抗腐蚀性能,控温精确,自动控温。带有磁力搅拌,可使水温快速达到均匀状态。
在一些实施例中,浸渍产物的干燥方式为75~90℃水浴下恒温干燥8~16h。浸渍产物煅烧的温度为400~600℃,煅烧时间为2~5h,研磨后过40目筛后备用。
作为一种实施方式:
包括如下步骤:
S1,配置质量分数为1%的膨润土悬浊液和浓度为0.1mol/L的硝酸氧锆交联剂。
其中,膨润土悬浊液的制备方法为:将10g膨润土放入1L的烧杯中,加入990g去离子水作为溶剂,室温下搅拌24h,得到质量分数为1%的膨润土悬浊液。
以硝酸氧锆作为锆源制备硝酸氧锆交联剂的方法为:将0.1mol/L的硝酸氧锆在85℃恒温水浴下进行5h老化,然后经3h静置冷却,得到浓度为0.1mol/L的硝酸氧锆交联剂。
将制备好的硝酸氧锆交联剂逐滴缓慢地滴加到已充分分散好的膨润土悬浊液中,得到第一混合液,保证硝酸氧锆在第一混合液中的浓度为15mmol/g,在室温状态下搅拌6h,然后静置12h,使硝酸氧锆交联剂与膨润土悬浊液的粘土层间离子进行充分的离子交换。然后将第一混合液悬浮液离心分离,得到沉淀物,将沉淀物经过干燥和煅烧,得到载体Zr-PILC。
其中沉淀物干燥的方式为在80℃水浴下恒温干燥12h。沉淀物的煅烧是在马弗炉中进行,煅烧的温度为500℃,煅烧时间为3h。
S2,将前驱物Mn(NO3)2和Ce(NO3)4溶解于去离子水中,得到第二混合液。
在一些实施例中,将前驱物0.6366g~1.9098g的Mn(NO3)2和0.7012g~2.1035g的Ce(NO3)4溶解于100ml去离子水中,得到第二混合液。
在第二混合液中加入10g载体Zr-PILC。搅拌均匀,浸渍12h,得到浸渍产物,将浸渍产物经过干燥、煅烧、研磨,得到a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
在一些实施例中,浸渍产物的干燥方式为恒温水浴干燥。
在一些实施例中,采用恒温水浴锅进行恒温水浴干燥,恒温水浴锅广泛用于干燥、浓缩、蒸馏、浸渍化学试剂,也可用于水浴温加热和其他温度试验。其内部的水箱采用不锈钢材质,有优越的抗腐蚀性能,控温精确,自动控温。带有磁力搅拌,可使水温快速达到均匀状态。
在一些实施例中,浸渍产物的干燥方式为85℃水浴下恒温干燥12h。浸渍产物煅烧的温度为500℃,煅烧时间为5h,研磨后过40目筛后备用。
本公开另一方面提出一种由上述的制备方法制备出的高抗硫锆基柱撑黏土负载型催化剂,此高抗硫锆基柱撑黏土负载型催化剂为a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2/的质量分数,a=3~9,b=3~9,且a+b=12。
本公开第三方面提出一种上述的高抗硫锆基柱撑黏土负载型催化剂在烟气中协同脱硝脱汞中的应用。
柱撑黏土材料(即层柱粘土PILC),是一种因粘土矿物层间的可交换离子全部或部分被特定离子或离子团(“柱子”)替代并固定在其层间域的特殊材料。由“柱子”撑开的层具有二维通道,其层间距最大可达5.2nm,结焦后不易引起孔道堵塞,抗硫氮、重金属污染能力强。目前最为成熟的是膨润土。
硝酸氧锆通常用作测定钾和氟化物的试剂,也用于发光剂和耐火材料的制备。固态的硝酸氧锆呈白色结晶状或粉末状,易溶以水,水溶液呈酸性,具有氧化性。现有的公开文件中没有发现利用硝酸氧锆作为交联剂的案例,更没有发现利用硝酸氧锆对柱撑黏土掺杂的案例。利用硝酸氧锆掺杂的柱撑黏土具有较高的抗硫特性,为本公开的创新点之一。
需要指出的是,层柱粘土具有复杂的表面结构和极大的比表面积,是理想的催化剂基体,此外锆(Zr)氧化物掺杂的柱撑黏土具有较高的抗硫特性。因此本公开结合Ce、Mn氧化物的强催化活性和Zr柱撑黏土的抗硫特性。
下面结合实施例进一步介绍本公开内容:
实施例1:
6%MnO2-6%CeO2/Zr-PILC催化剂制备与性能测试。
将10g膨润土放入1L的烧杯中,加入990g去离子水作为溶剂,室温下搅拌24h得到质量分数为1%的膨润土悬浊液。
以硝酸氧锆作为锆源制备硝酸氧锆交联剂:配制0.1mol/L的硝酸氧锆溶液,在85℃恒温水浴下进行5h老化,然后经3h静置冷却后,得到浓度为0.1mol/L的硝酸氧锆交联剂。
将制备好的硝酸氧锆交联剂逐滴缓慢地滴加到已充分分散好的膨润土悬浊液中,得到第一混合液,保证硝酸氧锆在第一混合液中的浓度为15mmol/g,在室温状态下搅拌6h,然后静置12h,使硝酸氧锆交联剂与膨润土悬浊液的粘土层间离子进行充分的离子交换。然后将第一混合液悬浮液离心分离,得到沉淀物,将沉淀物经过干燥和煅烧,得到载体Zr-PILC。
将前驱物1.2732g的Mn(NO3)2和1.4024g的Ce(NO3)4溶解于100ml去离子水,得到第二混合液,然后加入10g载体Zr-PILC,搅拌均匀,浸渍12h,浸渍产物经85℃水浴恒温干燥12h,再经过500℃煅烧5h,研磨过40目筛备用。制得6%MnO2-6%CeO2/Zr-PILC催化剂。
为了探究柱撑过程对载体及6%MnO2-6%CeO2/Zr-PILC催化剂孔隙结构的影响,采用N2吸附-脱附表征了膨润土和6%MnO2-6%CeO2/Zr-PILC样品的比表面积、孔容积以及平均孔径等孔结构性质。膨润土BET比表面积为70.47m2/g,6%MnO2-6%CeO2/Zr-PILC样品BET比表面积为120.70m2/g。膨润土经过Zr柱撑作用后,其比表面积从70.47m2g增加120.70m2/g。而且,柱撑后,相应的总孔容积也有明显的增大。这一结果表明,柱撑黏土材料包含的氧化物柱能够支撑起相邻的黏土层,从而使黏土层间分离,并最终以二维通道的多孔性网状结构存在。比表面积越大,越有利于反应物充分接触催化剂的活性位点,这在一定程度上对催化剂的脱硝脱汞活性是有利的。
在自制实验台上验证催化剂协同脱硝脱汞能力。模拟烟气基本组分包括500ppm NO,500ppm NH3,5vol%O2,50μg/m3Hg0,700ppm SO2,3vol%H2O及高纯N2平衡气。使用质量流量计精确控制各种气体流量,气体总流量为850ml/min,实验中催化剂的装填量为0.5g,催化反应温度控制在250~400℃,空速为50000h-1。6%MnO2-6%CeO2/Zr-PILC样品协同脱硝脱汞性能测试结果如图1、图2所示。图1中可以看出,6%MnO2-6%CeO2/Zr-PILC在各个温度点下具有较高的脱硝活性。在250℃的脱硝率已高达81.3%,在350℃时脱硝效率最高为97.9%。说明本公开催化剂在进行协同脱硝脱汞时具有优异的脱硝能力。图2为汞氧化效率测试结果,6%MnO2-6%CeO2/Zr-PILC在各个温度点下同样具有较高的汞氧化能力,并在300℃条件下具有最高的汞氧化效率96.2%。因此,6%MnO2-6%CeO2/Zr-PILC具有出色的协同脱硝脱汞能力。
进一步在300℃下测试样品抗硫性能。如图3所示,随着反应的进行,在运行1h后加
入700ppm SO2后,6%MnO2-6%CeO2/Zr-PILC脱硝效率从92.9%轻微下降到89.9%,持续通入SO2,在第8h时脱硝效率仅下降到87.5%。如图4所示,在运行1h后加入700ppm SO2后,6%MnO2-6%CeO2/Zr-PILC汞氧化效率从95.2%轻微下降到92.8%,持续通入SO2,在第8h时脱硝效率仅下降到89.1%。说明催化剂在协同脱硝脱汞过程中抗硫能力优异,Zr-PILC作为催化剂载体时具有出色的抗硫能力。
实施例2:
3%MnO2-9%CeO2/Zr-PILC催化剂制备与性能测试。
将10g膨润土放入1L的烧杯中,加入990g去离子水作为溶剂,室温下搅拌24h得到质量分数为1%的膨润土悬浊液。
以硝酸氧锆作为锆源制备硝酸氧锆交联剂:配制0.1mol/L的硝酸氧锆溶液,在85℃恒温水浴下进行5h老化,然后经3h静置冷却后,得到浓度为0.1mol/L的硝酸氧锆交联剂。
将制备好的硝酸氧锆交联剂逐滴缓慢地滴加到已充分分散好的膨润土悬浊液中,得到第一混合液,保证硝酸氧锆在第一混合液中的浓度为15mmol/g,在室温状态下搅拌6h,然后静置12h,使硝酸氧锆交联剂与膨润土悬浊液的粘土层间离子进行充分的离子交换。然后将第一混合液悬浮液离心分离,得到沉淀物,将沉淀物经过干燥和煅烧,得到载体Zr-PILC。
将前驱物0.6366g的Mn(NO3)2和2.1036g的Ce(NO3)4溶解于100ml去离子水,得到第二混合液,然后加入10g载体Zr-PILC,搅拌均匀,浸渍12h,浸渍产物经85℃水浴恒温干燥12h,再经过500℃煅烧5h,研磨过40目筛备用。制得3%MnO2-9%CeO2/Zr-PILC催化剂。
在自制实验台上验证催化剂协同脱硝脱汞能力。模拟烟气基本组分包括500ppm NO,500ppm NH3,5vol%O2,50μg/m3Hg0,700ppm SO2,3vol%H2O及高纯N2平衡气。使用质量流量计精确控制各种气体流量,气体总流量为850ml/min,实验中催化剂的装填量为0.5g,催化反应温度控制在250~400℃,空速为50000h-1。3%MnO2-9%CeO2/Zr-PILC样品协同脱硝脱汞性能测试结果如图1、图2所示。图1中可以看出,3%MnO2-9%CeO2/Zr-PILC在各个温度点下的脱硝效率略低于6%MnO2-6%CeO2/Zr-PILC,但仍属于较高水平,具有良好的协同脱硝脱汞能力。
进一步在300℃下测试样品抗硫性能。如图3所示,随着反应的进行,在运行1h后加入700ppm SO2后,3%MnO2-9%CeO2/Zr-PILC脱硝效率从87.1%轻微下降到84.6%,持续通入SO2,在第8h时脱硝效率仅下降到82.0%。如图4所示,在运行1h后加入700ppm SO2后,3%MnO2-9%CeO2/Zr-PILC汞氧化效率从85.8%轻微下降到81.6%,持续通入SO2,在第8h时脱硝效率仅下降到78.7%。说明催化剂在协同脱硝脱汞过程中抗硫能力优异,Zr-PILC作为催化剂载体时具有出色的抗硫能力。
实施例3:
9%MnO2-3%CeO2/Zr-PILC催化剂制备与性能测试。
将10g膨润土放入1L的烧杯中,加入990g去离子水作为溶剂,室温下搅拌24h得到质量分数为1%的膨润土悬浊液。
以硝酸氧锆作为锆源制备硝酸氧锆交联剂:配制0.1mol/L的硝酸氧锆溶液,在85℃恒温水浴下进行5h老化,然后经3h静置冷却后,得到浓度为0.1mol/L的硝酸氧锆交联剂。
将制备好的硝酸氧锆交联剂逐滴缓慢地滴加到已充分分散好的膨润土悬浊液中,得到第一混合液,保证硝酸氧锆在第一混合液中的浓度为15mmol/g,在室温状态下搅拌6h,然后静置12h,使硝酸氧锆交联剂与膨润土悬浊液的粘土层间离子进行充分的离子交换。然后将第一混合液悬浮液离心分离,得到沉淀物,将沉淀物经过干燥和煅烧,得到载体Zr-PILC。
将前驱物1.9098g的Mn(NO3)2和0.7012g的Ce(NO3)4溶解于100ml去离子水,得到第二混合液,然后加入10g载体Zr-PILC,搅拌均匀,浸渍12h,浸渍产物经85℃水浴恒温干燥12h,再经过500℃煅烧5h,研磨过40目筛备用。制得9%MnO2-3%CeO2/Zr-PILC催化剂。
在自制实验台上验证催化剂协同脱硝脱汞能力。模拟烟气基本组分包括500ppm NO,500ppm NH3,5vol%O2,50μg/m3Hg0,700ppm SO2,3vol%H2O及高纯N2平衡气。使用质量流量计精确控制各种气体流量,气体总流量为850ml/min,实验中催化剂的装填量为0.5g,催化反应温度控制在250~400℃,空速为50000h-1。9%MnO2-3%CeO2/Zr-PILC样品协同脱硝脱汞性能测试结果如图1、图2所示。图1中可以看出,9%MnO2-3%CeO2/Zr-PILC在各个温度点下的脱硝效率略低于6%MnO2-6%CeO2/Zr-PILC,但仍属于较高水平,具有良好的协同脱硝脱汞能力。
进一步在300℃下测试样品抗硫性能。如图3所示,随着反应的进行,在运行1h后加入700ppm SO2后,9%MnO2-3%CeO2/Zr-PILC脱硝效率从90.3%轻微下降到85.3%,持续通入SO2,在第8h时脱硝效率仅下降到83.3%。如图4所示,在运行1h后加入700ppm SO2后9%MnO2-3%CeO2/Zr-PILC汞氧化效率从94.3%轻微下降到89.4%,持续通入SO2,在第8h时脱硝效率仅下降到83.2%。说明催化剂在协同脱硝脱汞过程中抗硫能力优异,Zr-PILC作为催化剂载体时具有出色的抗硫能力。
对比例1:
为对比锆基柱撑黏土负载型催化剂的抗硫能力,制备以常规P25TiO2为载体的Mn、Ce氧化物催化剂,并进行抗硫性能对比测试。
将前驱物1.2732g的Mn(NO3)2和1.4024g的Ce(NO3)4溶解于100ml去离子水,配制成混合溶液,然后加入10g P25TiO2载体搅拌均匀,浸渍12h,浸渍产物经85℃水浴恒温干燥12h,再经过500℃煅烧5h,研磨过40目筛备用。制得6%MnO2-6%CeO2氧化物催化剂。
在300℃下测试6%MnO2-6%CeO2氧化物催化剂抗硫性能。如图3所示,随着反应的进行,在运行1h后加入700ppm SO2后,6%MnO2-6%CeO2氧化物催化剂脱硝效率从77.5%剧烈下降到65.3%,持续通入SO2,在第8h时脱硝效率大幅下降到56.8%。如图4所示,在运行1h后加入700ppm SO2后6%MnO2-6%CeO2氧化物催化剂汞氧化效率从80.4%剧烈下降到70.4%,持续通入SO2,在第8h时脱硝效率大幅下降到60.7%。对比发现,以常规P25为载体的催化剂抗硫性能明显比以Zr-PILC为载体的6%MnO2-6%CeO2/Zr-PILC差,说明由于锆基柱撑黏土负载型催化剂在保证优良协同脱硝脱汞能力的同时,兼有出色的抗硫能力。
本公开的制备方法中,所制备出的锆柱撑黏土(Zr-PILC)具备高比表面积,利于以锆
柱撑黏土为载体来负载Ce、Mn活性物质,进而合成出柱撑黏土负载型催化剂;
通过本公开的制备方法制备出的柱撑黏土负载型催化剂,一方面利用Ce、Mn活性物质催化能力强的特点实现燃煤烟气中NOx、Hg0的高效协同脱除,另一方面充分发挥Zr-PILC的高抗硫特性,大幅缓解烟气中SO2对催化剂的毒化作用。
在本公开中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。
Claims (10)
- 高抗硫锆基柱撑黏土负载型催化剂的制备方法,包括:S1,配置质量分数为0.5~2%的膨润土悬浊液和0.1~0.5mol/L的硝酸氧锆交联剂,将所述硝酸氧锆交联剂滴加到所述膨润土悬浊液中,得到第一混合液,搅拌后静置,其中硝酸氧锆在第一混合液中的浓度为10~30mmol/g,将第一混合液离心分离,得到沉淀物,将所述沉淀物经过干燥和煅烧,得到载体Zr-PILC;S2,Mn(NO3)2和Ce(NO3)4溶解于去离子水中,得到第二混合液,在所述第二混合液中加入所述载体Zr-PILC,其中Mn(NO3)2与Ce(NO3)4的总质量与去离子水、载体Zr-PILC的质量配比为2.6~2.8:100:10,搅拌、浸渍,将浸渍产物经过干燥、煅烧、研磨,得到a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S1中,硝酸氧锆交联剂的配置方法为:将0.1~0.5mol/L的硝酸氧锆在75~90℃恒温水浴下进行3~10h老化,然后经2~5h静置冷却。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S1中,将所述硝酸氧锆交联剂滴加到所述膨润土悬浊液中后,在室温状态下搅拌3~8h,然后静置8~16h。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S1中,沉淀物干燥的方式为在75~90℃水浴下恒温干燥8~16h。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S1中,沉淀物煅烧的温度为400~600℃,煅烧时间为2~5h。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S2中,浸渍时间为8~16h。
- 根据权利要求1所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S2中,浸渍产物的干燥方式为75~90℃水浴下恒温干燥8~16h。
- 根据权利要求1~7任一项所述的高抗硫锆基柱撑黏土负载型催化剂的制备方法,其中,所述步骤S2中,浸渍产物煅烧的温度为400~600℃,煅烧时间为2~5h,研磨后过40目筛后备用。
- 由权利要求1~8任一项所述的制备方法制备出的高抗硫锆基柱撑黏土负载型催化剂,其中,所述高抗硫锆基柱撑黏土负载型催化剂为a%MnO2-b%CeO2/Zr-PILC催化剂,其中a、b分别为MnO2和CeO2的质量分数,a=3~9,b=3~9,且a+b=12。
- 一种权利要求9所述的高抗硫锆基柱撑黏土负载型催化剂在烟气中协同脱硝脱汞中的应用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210563816.XA CN114849682A (zh) | 2022-05-23 | 2022-05-23 | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 |
CN202210563816.X | 2022-05-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023226668A1 true WO2023226668A1 (zh) | 2023-11-30 |
Family
ID=82639176
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/090674 WO2023226668A1 (zh) | 2022-05-23 | 2023-04-25 | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114849682A (zh) |
WO (1) | WO2023226668A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114733510B (zh) * | 2022-04-11 | 2024-04-05 | 苏州西热节能环保技术有限公司 | 一种高强度船用scr催化剂及其制备方法和应用 |
CN114849682A (zh) * | 2022-05-23 | 2022-08-05 | 苏州西热节能环保技术有限公司 | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016175706A1 (en) * | 2015-04-30 | 2016-11-03 | Nanyang Technological University | A pillared clay catalyst |
CN107159191A (zh) * | 2017-05-26 | 2017-09-15 | 四川大学 | 基于柱撑粘土的负载型脱硝催化剂及其制备方法 |
CN109603808A (zh) * | 2018-12-22 | 2019-04-12 | 北京工业大学 | 锆柱撑蒙脱石负载Ce-Nb复合催化剂的制备方法和应用 |
CN114849682A (zh) * | 2022-05-23 | 2022-08-05 | 苏州西热节能环保技术有限公司 | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 |
-
2022
- 2022-05-23 CN CN202210563816.XA patent/CN114849682A/zh active Pending
-
2023
- 2023-04-25 WO PCT/CN2023/090674 patent/WO2023226668A1/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016175706A1 (en) * | 2015-04-30 | 2016-11-03 | Nanyang Technological University | A pillared clay catalyst |
CN107159191A (zh) * | 2017-05-26 | 2017-09-15 | 四川大学 | 基于柱撑粘土的负载型脱硝催化剂及其制备方法 |
CN109603808A (zh) * | 2018-12-22 | 2019-04-12 | 北京工业大学 | 锆柱撑蒙脱石负载Ce-Nb复合催化剂的制备方法和应用 |
CN114849682A (zh) * | 2022-05-23 | 2022-08-05 | 苏州西热节能环保技术有限公司 | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 |
Non-Patent Citations (1)
Title |
---|
"PhD Thesis", 31 December 2015, NANKAI UNIVERSITY, CN, article WANG, YINYIN: "Experimental study on simultaneous denitrification and demercury removal over Mn-Ce-pillared clay catalyst", pages: 1 - 130, XP009550804, DOI: 10.7666/d.Y2996633 * |
Also Published As
Publication number | Publication date |
---|---|
CN114849682A (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023226668A1 (zh) | 高抗硫锆基柱撑黏土负载型催化剂及其制备方法与应用 | |
Zha et al. | Improved NO x reduction in the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts | |
US7879759B2 (en) | Mobile DeNOx catalyst | |
KR920009112B1 (ko) | 빈(貧) 가스 배기계용 삼원 촉매 | |
CN102861595B (zh) | 一种用于低温烟气脱硝的蜂窝状scr脱硝催化剂及其制备方法 | |
CN103752331B (zh) | 用于协同净化生物质锅炉烟气的多效催化剂及其制备方法 | |
CN106622380B (zh) | 一种脱硝催化剂及其制备方法和应用 | |
CN103801288B (zh) | 用于一氧化氮氧化的复合氧化物催化剂及其制备方法 | |
CN108393085B (zh) | 一种凹凸棒石负载铈掺杂MnTiOX三元组分低温脱硝催化剂及制备方法 | |
US11291976B2 (en) | Mixed valent manganese-based NOx adsorber | |
WO2006134787A1 (ja) | 排ガス浄化用触媒 | |
CN102068988A (zh) | 负载型纳米尖晶石复合氧化物催化材料及制备方法 | |
CN101249437B (zh) | 掺杂金属的镁铝复合氧化物的三元催化剂及其制备方法 | |
JP4779461B2 (ja) | 触媒担体及びその製造方法、並びに排ガス浄化触媒 | |
CN113244949B (zh) | 高耐久核壳结构bea分子筛催化剂、制备方法及其应用 | |
CN111558372B (zh) | 一种中低温负载型纳米氧化铜颗粒催化剂及其制备方法和应用 | |
JP6681347B2 (ja) | 排気ガス浄化触媒用担体及び排気ガス浄化触媒 | |
JP4835043B2 (ja) | 排気ガス浄化用触媒 | |
JP4290391B2 (ja) | 窒素酸化物を接触的に除去するための方法とそのための装置 | |
JP3732124B2 (ja) | 窒素酸化物を接触還元する方法とそのための触媒 | |
JP4194805B2 (ja) | 窒素酸化物を接触的に除去する方法とそのための触媒 | |
CN115254142B (zh) | 催化解析功能填料及其制备方法 | |
JP3721112B2 (ja) | 窒素酸化物を接触還元する方法とそのための触媒 | |
CN1319631C (zh) | 硫转移脱氮助燃三效剂及其制备方法和用途 | |
CN101130166A (zh) | 一种铜钾双金属铈基碳烟脱除催化剂及制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23810741 Country of ref document: EP Kind code of ref document: A1 |