Nothing Special   »   [go: up one dir, main page]

WO2023204643A1 - 도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극 - Google Patents

도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극 Download PDF

Info

Publication number
WO2023204643A1
WO2023204643A1 PCT/KR2023/005409 KR2023005409W WO2023204643A1 WO 2023204643 A1 WO2023204643 A1 WO 2023204643A1 KR 2023005409 W KR2023005409 W KR 2023005409W WO 2023204643 A1 WO2023204643 A1 WO 2023204643A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
conductive material
binder
mixture
present
Prior art date
Application number
PCT/KR2023/005409
Other languages
English (en)
French (fr)
Inventor
강성욱
한재성
곽상민
윤경환
신동오
이기석
유광호
이남정
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2024513247A priority Critical patent/JP2024532391A/ja
Priority to US18/690,925 priority patent/US20240266542A1/en
Priority to CN202380013396.0A priority patent/CN117981123A/zh
Publication of WO2023204643A1 publication Critical patent/WO2023204643A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/16Homopolymers or copolymers of vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/18Homopolymers or copolymers of tetrafluoroethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2203Oxides; Hydroxides of metals of lithium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a conductive material masterbatch for use in a dry electrode, a method of manufacturing the same, and an electrode manufactured using the same.
  • the representative lithium secondary battery among these secondary batteries is not only an energy source for mobile devices, but also recently, electric vehicles and hybrid electric vehicles that can replace vehicles that use fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution. Its use as a power source for automobiles is being realized, and its use area is also expanding to use as an auxiliary power source through the grid.
  • the manufacturing process of these lithium secondary batteries is largely divided into three stages: electrode process, assembly process, and chemical conversion process.
  • the electrode process is further divided into an active material mixing process, electrode coating process, drying process, rolling process, slitting process, winding process, etc.
  • the active material mixing process is a process of mixing coating materials to form an electrode active layer in which the actual electrochemical reaction occurs in the electrode.
  • the mixing process between the electrode active material, which is an essential element of the electrode, and other additives, such as conductive materials, fillers, and powder is used. It is prepared in the form of a fluid slurry by mixing a binder for binding and adhesion to the current collector, and a solvent for imparting viscosity and dispersing the powder.
  • the composition mixed to form the electrode active layer is also referred to as an electrode mixture in a broad sense.
  • an electrode coating process of applying the electrode mixture onto an electrically conductive current collector and a drying process to remove the solvent contained in the electrode mixture are performed, and the electrode is additionally rolled to a predetermined thickness.
  • the dry electrode is generally manufactured by laminating a free-standing film in the form of a film containing an active material, a binder, a conductive material, etc., on a current collector.
  • a technology has been developed to manufacture a powder mixture through mixing, kneading, and grinding processes of activated carbon conductive materials, active materials, and binders, which are raw materials for dry electrodes. Because it was difficult to uniformly disperse the conductive material, the content of the conductive material increased compared to the wet electrode, and a problem was discovered in which carbon nanotubes (CNTs) with a large BET specific surface area could not be used efficiently.
  • CNTs carbon nanotubes
  • the problem to be solved by the present invention is to provide a conductive material masterbatch that can be used in the manufacture of dry electrodes and a method of manufacturing the same.
  • the present invention seeks to provide an electrode manufactured using a conductive material masterbatch with improved dispersibility of the conductive material as a conductive material, and a method for manufacturing the same.
  • the present invention seeks to provide a conductive material masterbatch with improved dispersibility of a conductive material with a large BET specific surface area and a method for manufacturing the same.
  • the present invention seeks to provide a conductive material masterbatch that stably contains a high content of a conductive material and a method for manufacturing the same.
  • the present invention is an electrode and a method of manufacturing the same that reduce the content of the conductive material and improve the electrode resistance characteristics by using a conductive material masterbatch that improves the dispersibility of the conductive material with a large BET specific surface area as a conductive material.
  • the present invention seeks to provide an electrode and a method of manufacturing the same with improved electrode resistance characteristics while maintaining excellent mechanical properties such as tensile strength.
  • the present invention seeks to provide a method of manufacturing an electrode with improved flexibility and mechanical properties by minimizing micronization of the active material and maximizing fiberization of the binder.
  • conductive material master batches of the following embodiments are provided.
  • a conductive material Comprising a conductive material, a PVDF-based binder, and a PTFE binder, wherein the conductive material has a BET specific surface area of 80 m 2 /g or more, and the crystallinity of the PVDF-based binder and the PTFE binder is each independently 30% or less.
  • a conductive material masterbatch is provided.
  • the conductive material may be carbon nanotubes alone, or the conductive material may include carbon nanotubes and a point-shaped conductive material.
  • the point-shaped conductive material is carbon black, activated carbon, graphite, or a mixture of two or more of these.
  • the weight ratio of the carbon nanotubes and the point-shaped conductive material may be 100:0 to 10:90.
  • the carbon nanotubes may be dispersed in the form of nanofibers.
  • the diameter of the carbon nanotubes may be 0.1 to 50 nm.
  • the PVDF-based binder may include PVDF, PVDF-HFP, or a mixture thereof.
  • It may include 20 to 70 parts by weight of the conductive material, 5 to 60 parts by weight of the PVDF-based binder, and 0.1 to 50 parts by weight of the PTFE binder.
  • electrodes of the following embodiments are provided.
  • the electrode according to the ninth embodiment is,
  • the electrode active material layer includes an electrode active material, an electrode conductive material, and an electrode binder, and the electrode binder is fiberized to bind the electrode active material and the electrode conductive material. and has an electrode resistance of 55 ohm ⁇ cm or less.
  • the content of the electrode conductive material may be 1% by weight or less based on the total weight of the electrode active material layer.
  • the crystallinity of the electrode binder may be 15% or less.
  • the content of the electrode active material may be 95% by weight or more based on the total weight of the electrode active material layer.
  • the electrode conductive material may include a carbon material having a BET specific surface area of 80 m 2 /g or more.
  • the electrode conductive material may be carbon nanotubes alone, or the conductive material may include carbon nanotubes and a point-shaped conductive material.
  • the electrode conductive material includes carbon nanotubes and a dot-shaped conductive material
  • the dot-shaped conductive material may be carbon black, activated carbon, graphite, or a mixture of two or more thereof.
  • the weight ratio of the carbon nanotubes and the point-shaped conductive material may be 100:0 to 10:90.
  • the electrode conductive material and the electrode binder may include those derived from the conductive material masterbatch according to any one of the first to eighth embodiments.
  • the method for producing a conductive material masterbatch according to the 18th embodiment is,
  • It includes the steps of mixing a conductive material, a PVDF-based binder, and a PTFE binder to obtain a mixture, kneading and extruding the mixture to obtain an extrudate, and pulverizing the extrudate, wherein the conductive material is 80 m 2 / It has a BET specific surface area of more than g, and the crystallinity of the PVDF-based binder and PTFE binder in the produced conductive material master batch is each independently 30% or less.
  • the step of obtaining the mixture may be mixing at 200 rpm to 1,700 rpm for 1 minute to 30 minutes.
  • the step of obtaining the extrudate may be to input the mixture into a twin screw extruder, melt-knead it at an extrusion temperature of 100°C to 300°C and a screw speed of 50 rpm to 600 rpm, and extrude it through a die. there is.
  • the grinding may be performed at 500 rpm to 20,000 rpm for 5 seconds to 10 minutes.
  • the method for manufacturing an electrode according to the 22nd embodiment is:
  • the step of forming the electrode active material layer includes mixing an electrode active material, the conductive material master batch, and a second binder to obtain a mixture; kneading the obtained mixture at high temperature and low shear rate to obtain a mixture mass; pulverizing the mixture lump with high shear to obtain mixed powder for an electrode; Obtaining a mixture film by calendering the mixed powder for electrodes; And it may include placing the mixture film on at least one side of the current collector and laminating it.
  • the crystallinity of the first binder may be 30% or less.
  • the tensile strength of the mixture film may be 0.2 MPa or more.
  • the manufactured electrode may have an electrode resistance of 55 ohm ⁇ cm or less.
  • electrochemical devices of the following embodiments are provided.
  • It includes an anode, a cathode, and a separation layer interposed between the anode and the cathode, and at least one of the anode and the cathode may be an electrode according to any one of the ninth to seventeenth embodiments.
  • the conductive material masterbatch that uses a conductive material with a large BET specific surface area and has excellent adhesion to an active material during electrode manufacturing. Additionally, the conductive material masterbatch according to one aspect of the present invention can have the effect of significantly improving the dispersibility of a conductive material with a large BET specific surface area.
  • an electrode with reduced electrode resistance particularly an electrode with reduced electrode resistance
  • the electrode according to one aspect of the present invention is an electrode that does not use a solvent during manufacture, a so-called dry electrode, and is a dry electrode in which the content of the conductive material is lowered compared to the conventional dry electrode and the content of the electrode active material is increased accordingly. can be provided.
  • the resistance of the electrode is improved and the strength of the electrode film is improved, which can have the effect of providing a dry electrode with excellent electrical performance and improved stability and an electrochemical device using the same.
  • micronization of the electrode active material is minimized, fiberization of the binder is maximized, and cutting of the fiberized binder is minimized.
  • a dry electrode can be provided.
  • Figure 2 is an SEM image of Examples 1 to 3 and Comparative Examples 1 and 2 described herein.
  • Figure 3 is a schematic diagram of a process for manufacturing a mixture film according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of an electrode lamination process according to an embodiment of the present invention.
  • the present invention relates to a conductive material masterbatch for use in a dry electrode manufactured by pressing mixed powder for electrodes, an electrode manufactured using the same, and a method of manufacturing each of the conductive material masterbatch and electrode.
  • the dry electrode can be used as an electrode for an electrochemical device such as a lithium ion secondary battery, but the use of the present invention is not limited thereto.
  • BET specific surface area refers to the specific surface area measured by the BET method, and the BET specific surface area is the nitrogen gas adsorption amount under liquid nitrogen temperature (77 K) using a Micromeritics TriStar II 3020 device. Indicates the value calculated from .
  • melting point refers to a value measured by a conventional method of measuring the melting point (Tm) of a polymer.
  • Tm melting point
  • DSC differential scanning calorimeter
  • crystallity is a measure for predicting the degree of kneading and fiberization of a polymer and may be measured using, for example, differential scanning calorimetry (DSC).
  • diameter (D 50 ) refers to the diameter at 50% of the cumulative distribution of particle volume according to diameter, and the diameter may be measured using a laser diffraction method. there is. Specifically, after dispersing the material to be measured in a dispersion medium, it is introduced into a commercially available laser diffraction particle size measuring device (for example, Microtrac S3500) to measure the difference in diffraction patterns according to the diameter size when the particles pass through the laser beam, thereby distributing the diameter. Calculate . The D 50 diameter can be measured by calculating the diameter at a point that is 50% of the particle volume cumulative distribution according to diameter in the measuring device.
  • a laser diffraction particle size measuring device for example, Microtrac S3500
  • CNT dispersibility refers to the property of CNTs being dispersed in the form of nanofibers rather than agglomerating into a bundle.
  • the CNT dispersibility may be evaluated by SEM shape analysis.
  • a conductive material master batch for applying a conductive material with a large BET specific surface area to a dry electrode.
  • the conductive material masterbatch according to one aspect of the present invention includes a conductive material, a PVDF-based binder, and a PTFE binder, wherein the conductive material has a BET specific surface area of 80 m 2 /g or more, and the PVDF-based binder and the PTFE binder The crystallinity of each is independently 30% or less.
  • the conductive material has a BET specific surface area of 80 m 2 /g or more.
  • the function of increasing the capacity of the dry electrode can be achieved by lowering the content of the conductive material and increasing the content of the active material.
  • the function of the conductive material is only limited to the above function. It is not limited.
  • the conductive material has a BET specific surface area of 80 m 2 /g or more and can be used without particular restrictions as long as it has conductivity without causing chemical changes in the battery.
  • the conductive material includes, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as fluorinated carbon, aluminum, and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used. More specifically, in order to uniformly mix the conductive material and improve conductivity, the conductive material may be carbon nanotubes, activated carbon, graphite, carbon black, or a mixture thereof.
  • the conductive material may contain carbon nanotubes alone.
  • the conductive material may include carbon nanotubes and a point-shaped conductive material.
  • the point-shaped conductive material may be carbon black, activated carbon, graphite, or a mixture of two or more thereof.
  • the conductive material may include carbon nanotubes and a dot-shaped conductive material in a weight ratio of 100:0 to 10:90.
  • the weight ratio of the carbon nanotubes and the point-shaped conductive material is 100:0, it means that the conductive material solely contains carbon nanotubes.
  • the conductive material includes carbon nanotubes and a dot-shaped conductive material, and the weight ratio of the carbon nanotubes and the dot-shaped conductive material may be 99:1 to 50:50.
  • the carbon nanotubes when the conductive material includes carbon nanotubes, may be dispersed in the form of nanofibers by a PVDF-based binder and a PTFE binder within the conductive material master batch.
  • the BET specific surface area of the conductive material may be specifically 80 m 2 /g or more and 2,000 m 2 /g or less. More specifically, the BET specific surface area of the conductive material is, for example, 100 m 2 /g or more, 150 m 2 /g or more, 160 m 2 /g or more, 500 m 2 /g or more, 1,000 m 2 /g or more, 2,000 m 2 /g or more. It may be m 2 /g or less, 1,500 m 2 /g or less, 1400 m 2 /g or less, 300 m 2 /g or less, 250 m 2 /g or less, 210 m 2 /g or less.
  • the conductive material is a carbon nanotube having a BET specific surface area of 80 m 2 /g or more and 300 m 2 /g or less and a point-type conductive material having a BET specific surface area of 100 m 2 /g or more and 2,000 m 2 /g or less. May include ashes.
  • BET specific surface area of the conductive material is within the above-mentioned range, there may be an advantageous effect in terms of dispersion stability of the conductive material within the conductive material master batch, but the present invention is not limited thereto.
  • the diameter of the carbon nanotubes is, for example, 0.1 to 50 nm, 1 to 30 nm, 5 to 25 nm, 10 to 20 nm, or It may be 10 to 15 nm.
  • the diameter of the carbon nanotube refers to a value measured by the diameter of the cross section in the direction perpendicular to the longitudinal direction of the carbon nanotube, and the diameter is measured by electron microscopy such as a scanning electron microscope (SEM). It may be measured through .
  • SEM scanning electron microscope
  • the conductive material masterbatch according to one aspect of the present invention includes a PVDF-based binder and a PTFE binder along with the conductive material.
  • the conductive material master batch includes a PVDF-based binder as a binder, so that it can exhibit an advantageous effect in terms of improving the binding force with the conductive material described above.
  • This can have the effect of lowering the content of the binder in the conductive material master batch and increasing the content of the conductive material, but the function of the PVDF-based binder is not limited to this.
  • the conductive material master batch can be used in a dry electrode that forms an electrode film by fiberizing a binder, as described later.
  • the conductive material master batch includes a PTFE binder as a binder, which may have an advantageous effect in terms of forming an electrode film by the fiberization method of the binder, but the function of the PTFE binder is not limited to this.
  • the conductive material masterbatch includes a PVDF-based binder and a PTFE binder as a binder, thereby exhibiting the effect of excellent binding force with the conductive material and improving the dispersibility of the conductive material with a high specific surface area. You can. Furthermore, this can be used to stably form an electrode film when forming an electrode film by the fiberization method of the binder, thereby showing an advantageous effect in realizing an electrode with low electrode resistance.
  • the mechanism of the present invention is not limited to this. no.
  • the PVDF-based binder may include a PVDF-based binder having a melting point of 200° C. or lower.
  • a PVDF-based binder with a melting point of 200°C or lower the function of improving the dispersibility and dispersion stability of the conductive material in the molten state and enabling the production of a masterbatch can be achieved, but the PVDF-based binder The function is not limited to the above functions.
  • the PVDF-based binder can be used without particular limitations as long as it has a melting point of 200°C or lower and is a polymer containing at least one repeating unit of PVDF (polyvinylidene fluoride) in the repeating unit of the polymer.
  • the PVDF-based binder may include, for example, PVDF, PVDF-HFP (polyvinylidene fluoride-co-hexafluoropropylene), or a mixture thereof.
  • the melting point of the PVDF-based binder may be specifically 100°C or higher and 200°C or lower, for example, 100°C or higher, 120°C or higher, 140°C or higher, 150°C or higher, 160°C or higher, It may be 200°C or lower, 190°C or lower, 185°C or lower, and 180°C or lower. Alternatively, it may be 100°C or higher, 110°C or higher, 120°C or higher, 200°C or lower, 190°C or lower, 180°C or lower, 170°C or lower, 160°C or lower, 150°C or lower, and 140°C or lower.
  • the PTFE binder may include a PTFE binder having a melting point of 300°C to 380°C.
  • a PTFE binder with a melting point of 300°C to 380°C the dispersibility and dispersion stability of the conductive material in the molten state can be improved, and the function of enabling the production of a masterbatch can be achieved.
  • the function of the PTFE binder is It is not limited to the above functions.
  • the PTFE binder has a melting point of 300°C to 380°C and can be used without particular limitation as long as it is a polymer that includes one or more repeating units of PTFE (polytetrafluoroethylene) in the repeating units of the polymer.
  • the PTFE binder may include polytetrafluoroethylene (PTFE).
  • the melting point of the PTFE binder is specifically 300°C or higher, 310°C or higher, 320°C or higher, 330°C or higher, 335°C or higher, 380°C or lower, 370°C or lower, 360°C or lower, 355°C or higher. It may be below °C.
  • the crystallinity of the PVDF-based binder and the PTFE binder contained in the conductive material master batch may each independently be 30% or less.
  • the crystallinity of the binder may be a value measured using differential scanning calorimetry (DSC). Specifically, 5 to 12 mg of sample was placed in a differential scanning calorimeter (DSC), the melting point and heat of fusion ( ⁇ Hm) were measured while the temperature was raised at a rate of 10°C/min in the temperature range of 25 to 360°C in a nitrogen atmosphere, and the binder type was measured. Crystallinity can be measured according to the following formula based on the heat of crystal fusion ( ⁇ Hm°).
  • the heat of 100% crystal fusion ( ⁇ Hm°) of the PVDF binder is 105 J/g
  • the heat of 100% crystal fusion of the PVDF-HFP binder is 105 J/g
  • ( ⁇ Hm°) is 80 J/g
  • the heat of fusion ( ⁇ Hm°) of 100% crystal fusion of PTFE binder can refer to the value of 85.4 J/g, or the crystallinity of each binder can be calculated by referring to values known in other literature. can be measured.
  • the crystallinity of PVDF in the conductive material master batch is more specifically 30% or less, 28% or less, 27% or less, 26.5% or less, It may be 26% or less, or 25% or less, or 0%.
  • the crystallinity of PVDF-HFP in the conductive material master batch is more specifically 30% or less, 20% or less, and 15%. It may be 10% or less, 8% or less, 6% or less, or 0%.
  • the crystallinity of the PTFE binder may be more specifically 30% or less, 25% or less, 20% or less, 15% or less, 10% or less, 5% or less, or 0%.
  • the crystallinity degree of the PVDF-based binder may be 30% or less, and the crystallinity degree of the PTFE binder may be 30% or less.
  • the crystallinity degree of the PVDF-based binder may be 30% or less, and the crystallinity degree of the PTFE binder may be 20% or less.
  • the crystallinity of the PVDF-based binder when the crystallinity of the PVDF-based binder satisfies the above range, it can exhibit an advantageous effect in terms of improving the dispersibility and dispersion stability of a conductive material with a large specific surface area, especially CNTs.
  • the invention is not limited to this.
  • the crystallinity of the PTFE binder if the crystallinity of the PTFE binder satisfies the above range, it may exhibit a beneficial effect in terms of improving the physical properties of the electrode manufactured using the conductive material master batch, but the present invention is limited to this. It doesn't work.
  • the conductive material master batch includes 20 to 70 parts by weight of the conductive material, 5 to 60 parts by weight of a PVDF-based binder, and more than 0 to 50 parts by weight of a PTFE binder.
  • the conductive material master batch may include 20 to 70 parts by weight of the conductive material, 5 to 60 parts by weight of the PVDF-based binder, and 0.1 to 50 parts by weight or less of the PTFE binder.
  • it may include 40 to 70 parts by weight of the conductive material, 40 to 50 parts by weight of the PVDF-based binder, and 5 to 30 parts by weight of the PTFE binder.
  • the conductive material master batch may include 50 to 60 parts by weight of the conductive material. , may include 30 to 40 parts by weight of a PVDF-based binder and 10 to 20 parts by weight of a PTFE binder.
  • the content ratio of the conductive material, PVDF-based binder, and PTFE binder in the conductive material master batch satisfies the above range, so that the dispersibility of the conductive material is excellent when mixing the conductive material master batch and the active material. improved, the ratio of the active material to the conductive material may be improved, and the adhesion between the conductive material and the active material may be excellent, but the present invention is not limited thereto.
  • the conductive material master batch may further include a polyolefin binder in addition to the PVDF-based binder and PTFE binder.
  • the conductive material master batch may further include an active material in addition to the above-mentioned components within a range that does not impair the purpose of the present invention.
  • An electrode according to another aspect of the present invention includes a current collector and an electrode active material layer formed on at least one surface of the current collector, the electrode active material layer includes an electrode active material, an electrode conductive material, and an electrode binder, and the electrode binder is fiberized to bind the electrode active material and the electrode conductive material, and has an electrode resistance of 55 55 ohm ⁇ cm or less.
  • the electrode according to another aspect of the present invention may be manufactured using the above-described conductive material master batch.
  • the electrode may include a fibrous electrode binder as a means for binding the electrode active material and the electrode conductive material.
  • This fibrous electrode binder is less likely to break than a conventional non-fibrous binder and has excellent stretchability in the longitudinal direction, thereby improving the flexibility of the electrode active material layer and the electrode itself including it.
  • the fiberization process of the electrode binder will be discussed in detail in the electrode manufacturing method described later.
  • the electrode active material layer may be derived from a self-supporting electrode film.
  • the electrode may include a current collector and an electrode active material layer derived from an electrode film disposed on at least one surface of the current collector.
  • the electrode film and the current collector may be formed by joining them through a lamination process or the like.
  • the electrode active material layer is an electrode film, and is in the form of a free-standing type single sheet using an electrode material including an electrode active material, an electrode conductive material, and an electrode binder without solvent intervention. It may be manufactured with .
  • the term 'self-supporting' means that it can maintain its independent form without relying on other members and can be moved or handled by itself.
  • the electrode active material layer may be formed by compressing mixed powder for electrodes, as described later.
  • the electrode active material layer may have a layered structure formed by accumulating the electrode mixed powder by compression.
  • the mixed powder for electrodes is a powdery electrode material containing an electrode active material, an electrode conductive material, and an electrode binder.
  • a mixture lump containing an electrode active material, an electrode conductive material, and an electrode binder is pulverized and obtained. It may be.
  • the resistance of the electrode is 55 ohm ⁇ cm or less.
  • the resistance of the electrode represents the measured value as follows. Prepare the electrode for resistance measurement with a size of 50 x 50 mm 2 . Place the prepared electrode sample in the Multi-probe Tester (HIOKI, RM2610), and measure the potential difference between each probe (45 pieces) under the conditions of anode current 100 ⁇ A, cathode 10 mA, and voltage 0.5V, and display it as the electrode resistance value. .
  • the electrode active material layer has improved dispersibility of a conductive material with a large BET specific surface area, thereby providing a dry electrode with improved electrical properties by significantly lowering the electrode resistance value while containing a small amount of the conductive material.
  • the mechanism of the present invention is not limited to this.
  • the content of the electrode conductive material may be, for example, 1% by weight or less based on the total weight of the electrode active material layer. Specifically, the content of the electrode conductive material may be 0.1% by weight or more and 1% by weight or less, or 0.1% by weight or more and 0.8% by weight or less, based on the total weight of the electrode active material layer.
  • the content of the electrode active material in the electrode active material layer can be increased.
  • the content of the electrode active material is 95% by weight or more, 96% by weight or more, 97% by weight to 99% by weight, 97% by weight to 98% by weight, or It may be 97% by weight to 97.5% by weight.
  • the electrode resistance value can be improved while the content of the electrode conductive material in the electrode active material layer is low.
  • the electrode may include 0.8% by weight or less of a conductive material based on the total weight of the electrode active material layer, and may have an electrode resistance value of 55 ohm ⁇ cm or less.
  • the electrode may have a resistance value of 45 ohm ⁇ cm or less when the content of the conductive material included in the electrode active material layer is converted to 1% by weight according to Equation 1 below.
  • Equation 1 Rt represents the electrode resistance value converted based on 1% by weight of the conductive material, Cw is the content of the conductive material based on the total weight of the electrode active material layer in the target electrode, and Rw is the electrode resistance value of the target electrode. represents.
  • the conductive material and binder included in the electrode may be derived from the above-described conductive material master batch.
  • the ‘electrode conductive material’ may be the ‘conductive material’ described above in the conductive material master batch. Accordingly, the description of the conductive material described in the conductive material master batch will be used for the 'electrode conductive material' of the electrode.
  • the ‘electrode binder’ may include the ‘binder’ described above in the conductive material master batch. Accordingly, the description of the binder described in the conductive material master batch will be used for the 'electrode binder' of the electrode.
  • the electrode conductive material may have a BET specific surface area of 80 m 2 /g or more.
  • the electrode conductive material may include carbon nanotubes alone or may include carbon nanotubes and a point-shaped conductive material. At this time, the above-described information will be used regarding the type of the point-shaped conductive material and the weight ratio of the carbon nanotube and the point-type conductive material.
  • the electrode according to another aspect of the present invention includes an electrode active material layer prepared using the above-described conductive material masterbatch, thereby improving the dispersibility of the conductive material with a large BET specific surface area, and thus the BET ratio in the formation of the electrode active material layer. It allows conductive materials with a large surface area to be included stably. Accordingly, the resistance characteristics of the electrode may be improved by reducing the content of the conductive material in the electrode active material layer and increasing the content of the active material.
  • the electrode binder may include a PVDF-based binder and a PTFE-based binder derived from the conductive material master batch.
  • the electrode binder is not limited to a specific one as long as it can be fibrillated in the manufacturing method described later, especially in the process of manufacturing the mixture lump.
  • the fiberization refers to a treatment in which a high molecular weight polymer is refined and divided, and may be performed using, for example, mechanical shear force. The surface of the polymer fiber fiberized in this way is unraveled and a large number of fine fibers (fibrils) are generated.
  • the electrode binder may include, as a non-limiting example, polytetrafluoroethylene (PTFE), polyolefin, or a mixture thereof, and specifically, polytetrafluoroethylene (PTFE). It may include ethylene (Polytetrafluoroethylene, PTFE), and more specifically, it may be polytetrafluoroethylene (PTFE). Specifically, polytetrafluoroethylene (PTFE) may be included in an amount of 60% by weight or more based on the total weight of the entire binder polymer.
  • PTFE polytetrafluoroethylene
  • PTFE polytetrafluoroethylene
  • the binder material may additionally include one or more of PEO (polyethylene oxide), PVdF (polyvinylidene fluoride), PVdF-HMP (polyvinylidene fluoride-cohexafluoropropylene), and polyolefin polymer.
  • PEO polyethylene oxide
  • PVdF polyvinylidene fluoride
  • PVdF-HMP polyvinylidene fluoride-cohexafluoropropylene
  • polyolefin polymer polyolefin polymer
  • the binder polymer contained in the electrode active material layer may be a second binder added for the production of mixed powder for electrodes, as described later in the electrode manufacturing method, and may be a conductive conductive material. It may be added for the production of a re-masterbatch, that is, the first binder, or may be added in each step.
  • the crystallinity of the electrode binder may be, for example, 15% or less, specifically 10% or less.
  • the electrode binder may include one derived from the conductive material master batch.
  • the conductive material master batch may include a PVDF-based binder polymer and a PTFE binder polymer, each of which may independently have a crystallinity of 30% or less. That is, the crystallinity of the binder included in the conductive material masterbatch may be 30% or less, and when the mixed powder for electrodes is manufactured using this, the binder is further fiberized through the kneading step, and the crystallinity increases to a level of 15% or less. May include reduced
  • the crystallinity of the PTFE binder if the crystallinity of the PTFE binder satisfies the above range, it may exhibit a beneficial effect in terms of improving the physical properties of the electrode manufactured using the conductive material master batch, but the present invention is limited to this. It doesn't work.
  • the content of the electrode binder is, for example, 0.1% by weight to 5% by weight, 0.1% by weight to 4% by weight, 0.1% by weight to 3% by weight, or It may be 0.1 to 2.5% by weight, but the present invention is not limited thereto.
  • the electrode active material layer may include a positive electrode active material or a negative electrode active material depending on the polarity of the battery.
  • Non-limiting examples of the positive electrode active material include, for example, lithium transition metal oxide; lithium metal iron phosphate; lithium nickel-manganese-cobalt oxide; An oxide in which lithium nickel-manganese-cobalt oxide is partially replaced with another transition metal; Or, it may include two or more of these, but is not limited thereto.
  • Non-limiting examples of the negative electrode active material include, for example, carbon such as non-graphitizable carbon and graphitic carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1 ), Li x WO 2 (0 ⁇ x ⁇ 1 ) , Sn : Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogen; metal complex oxides such as 0 ⁇ x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloy; tin-based alloy; Silicon-based oxides such as SiO, SiO/C, and SiO 2 ; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 , GeO, GeO 2 , Bi 2 O 3 , Bi 2 O 4 and metal oxides such as Bi 2 O 5 ; Conductive polymers such as polyacetylene; Li-Co
  • the current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, fired carbon, copper.
  • the surface of aluminum or stainless steel may be treated with carbon, nickel, titanium, silver, etc.
  • the current collector can also increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and can be in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics.
  • the current collector may be entirely or partially coated with a conductive primer to lower surface resistance and improve adhesion.
  • the conductive primer may include a conductive material and a binder, and the conductive material is not limited as long as it is a conductive material, but may be, for example, a carbon-based material.
  • the binder may include a fluorine-based binder (including PVDF and PVDF copolymer), an acrylic-based binder, and an aqueous binder that are soluble in solvents.
  • a method for producing the above-described conductive material master batch is provided.
  • a method for producing a conductive material masterbatch according to another aspect of the present invention includes the steps of mixing a conductive material, a PVDF-based binder, and a PTFE binder to obtain a mixture, kneading and extruding the mixture to obtain an extrudate, and the extrusion. It includes the step of pulverizing water, wherein the conductive material has a BET specific surface area of 80 m 2 /g or more, and the crystallinity of the PVDF-based binder and PTFE binder in the produced conductive material master batch is each independently 30% or less. .
  • the conductive material, PVDF-based binder, and PTFE binder are used as described in the conductive material masterbatch.
  • mixing to obtain a mixture of the conductive material, PVDF-based binder, and PTFE binder is performed so that the conductive material, PVDF-based binder, and PTFE binder are uniformly distributed, and these compositions Since the ingredients are mixed in powder form, they are not limited and can be mixed by various methods as long as they enable simple mixing.
  • the conductive material master batch can be performed by dry mixing, or by adding the materials to a device such as a blender or supermixer.
  • the step of obtaining the mixture may be mixing in a supermixer at 200 rpm to 1,700 rpm for 1 minute to 30 minutes. Specifically, it may be mixed in a mixer at 1,000 rpm to 1,500 rpm for 2 to 7 minutes.
  • the method for producing the conductive material masterbatch includes kneading and extruding the binder in the mixture into fiber to obtain an extrudate from the mixture.
  • the step of obtaining the extrudate can be performed using, for example, a twin screw extruder.
  • a twin screw extruder By obtaining the extrudate through a twin-screw extruder, the effect of realizing the crystallinity of each of the PVDF-based binder and PTFE-based binder in the manufactured conductive material master batch to 30% or less can be achieved.
  • each screw in the twin screw extruder has a diameter ( ⁇ ) of, for example, 10 to 40, 15 to 35, 20 to 30, specifically 25, and a length (L) / diameter (D) ) ratio (L/D) of 40 to 60, 45 to 55, for example, 48 can be used.
  • the step of obtaining the extrudate is specifically performed by putting the mixture into the twin-screw extruder and melt-kneading it at an extrusion temperature of 100°C to 300°C and a screw speed of 50 rpm to 600 rpm. This can be done by extruding through a die.
  • the extrusion temperature may be, for example, 130°C to 230°C or 140°C to 220°C.
  • the extrusion temperature when the extrusion temperature is too lower than the above range, the fiberization of the binder and agglomeration of the mixture by kneading are not easily achieved, so that the extrudate may be compressed into a powder form, and the extrusion temperature is lower than the above range. If it is too high than the above range, the crystallinity of the binder may drop sharply and thermal decomposition may occur, which may be undesirable, but the present invention is not limited thereto.
  • the screw speed in the twin-screw extruder may be, for example, 150 rpm to 450 rpm, 300 rpm to 450 rpm, 350 rpm to 450 rpm, or 400 rpm.
  • the shape of the die during extrusion may be rectangular or circular, but the present invention is not limited thereto.
  • the pulverizing step is to cut the conductive material master batch to facilitate mixing with the powdered active material during the subsequent manufacture of the electrode, and the extrudate is conventionally cut to have an appropriate size and shape. It is pulverized by a method, and the method is not particularly limited.
  • the grinding may be performed by putting the extrudate into a blender and performing the extrudate at, for example, 5,000 rpm to 20,000 rpm for 10 seconds to 10 minutes. Specifically, the grinding may be performed at 8,000 rpm to 15,000 rpm or 10,000 rpm for 20 seconds to 1 minute, or 30 seconds.
  • the conductive material masterbatch prepared as described above has the characteristic of having the conductive material uniformly dispersed, and the crystallinity of each of the added PVDF-based binder and PTFE binder can be 30% or less.
  • the conductive material masterbatch prepared as described above can be used to manufacture electrodes, especially dry electrodes, but the use of the conductive material masterbatch is not limited thereto.
  • a method for manufacturing an electrode according to another aspect of the present invention includes mixing a conductive material and a first binder to obtain a mixture; kneading and extruding the mixture to obtain an extrudate; pulverizing the extrudate to obtain a conductive material master batch; and forming an electrode active material layer on at least one surface of the current collector from a mixture containing an electrode active material, the conductive material master batch, and a second binder.
  • the conductive material may be as described above in the conductive material master batch.
  • each of the first binder and the second binder may be used as described above in the electrode.
  • each of the first binder and the second binder may be independently of a common type used in the manufacture of an electrode, and may not be particularly limited in type.
  • the first binder may be a binder used in the conductive material master batch, and may specifically include a PVDF-based binder, a PTFE-based binder, or a mixture thereof.
  • the second binder may be a common binder used in the manufacture of electrodes, and may include, for example, a PVDF-based binder, a PTFE-based binder, a polyolefin binder, or a mixture of two or more of these. You can.
  • a method of manufacturing an electrode according to another aspect of the present invention may include forming an electrode active material layer using the above-described conductive material master batch. That is, the method of manufacturing the electrode can be largely divided into a process for manufacturing a conductive material masterbatch and a process for manufacturing an electrode using the manufactured conductive material masterbatch as a conductive material.
  • the first binder may be a binder used in the manufacturing process of the conducting material master batch
  • the second binder may be an electrode binder used in the manufacturing process of the electrode using the conducting material master batch.
  • the steps of obtaining the mixture, kneading the mixture, and pulverizing the mixture included in the manufacturing process of the conductive material master batch may each be referred to as a first mixing step, a first kneading step, and a first pulverizing step.
  • each of the steps of obtaining a mixture, kneading, and pulverizing can be referred to as a second mixing step, a second kneading step, and a second pulverizing step. .
  • the method of manufacturing the electrode includes a process of obtaining the above-described conductive material master batch, and a process of forming an electrode active material layer.
  • the process of manufacturing an electrode using the conductive material master batch includes an electrode active material, the conductive material master batch, and a second binder polymer on at least one surface of a current collector. It includes forming a layer.
  • the step of forming the electrode active material layer includes manufacturing a mixed powder for an electrode from the electrode active material, the conductive material master batch, and a binder polymer (second binder), and then forming the electrode active material layer on at least one surface of the current collector. It may include a process of laminating a self-supporting electrode film obtained from the mixed powder for electrodes.
  • mixing a conductive material and a first binder to obtain a mixture (first mixing step); kneading and extruding the mixture to obtain an extrudate (first kneading step); Grinding the extrudate to obtain a conductive material master batch (first grinding step); Obtaining a mixture by mixing an electrode active material, the conductive material master batch, and a second binder (second mixing step); kneading the mixture obtained from the second mixing step at a high temperature and low shear rate to obtain a mixture lump (second kneading step); Grinding the mixture lump with high shear to obtain mixed powder for electrodes (second grinding step); Obtaining a mixture film by calendering the mixed powder for electrodes; and placing the mixture film on at least one side of a current collector and laminating it to obtain an electrode.
  • the second mixing step, second kneading step, and second grinding step are processes for producing mixed powder for electrodes.
  • the mixed powder for electrodes is a powdery electrode material containing an electrode active material, a conductive material, and a binder.
  • it may be obtained by pulverizing a mixture containing an electrode active material, an electrode conductive material, and an electrode binder, as described later. there is.
  • the mixed powder refers to an aggregate of two or more electrode material particles.
  • Each electrode material particle constituting the mixed powder includes an electrode active material, a conductive material, and a binder.
  • the mixed powder for electrodes can be obtained by the following manufacturing method.
  • an electrode material mixture containing an electrode active material, the conductive material master batch prepared above, and a binder polymer (second binder).
  • Mixing to prepare the mixture is performed so that electrode materials such as the electrode active material, conductive material master batch, and electrode binder have a uniform dispersed phase in the mixture.
  • the electrode according to one embodiment of the present invention is manufactured as a dry electrode without using a solvent, the mixing is performed in powder form without adding a solvent. Accordingly, there is no limitation as long as simple mixing of the electrode materials is possible, and mixing can be performed by various methods. For example, it can be performed by adding the electrode materials to a known device such as a mixer or blender and stirring it.
  • a fiberizing process to fiberize the electrode binder is performed on the electrode material mixture obtained above (second kneading step).
  • the binder represents at least one of the first binder included in the conductive material masterbatch and the second binder additionally added when manufacturing the mixed powder for electrodes.
  • the fiberization process may include mixing using shear stress, for example, mechanical milling or kneading.
  • a low-shear kneading method may be applied to the fiberization process, and may be performed, for example, through a kneader such as a kneader. Due to this mixing, the electrode binder becomes fiberized and the electrode materials, such as the electrode active material that was introduced in powder form, may be combined or connected to form a mixture lump. Since the kneading does not involve the addition of a solvent, the mixture mass may have a solid content of 100%.
  • the kneading may be controlled at a speed of 10 rpm to 100 rpm.
  • the kneading may be controlled at a speed of 40 rpm or more or 70 rpm or less within the above range.
  • the kneading may be performed for 1 to 10 minutes. For example, within the above range, it may be performed for 3 to 7 minutes at a speed of 40 rpm to 70 rpm.
  • the kneading may be performed within 5 minutes or within 3 minutes.
  • the tap compression ratio decreases at the beginning of kneading, but there is little change after a certain point.
  • the kneading time is within the above-mentioned range, it may be desirable in terms of the appropriate degree of fiberization and the tensile strength of the fiberized binder polymer, but the present invention is not limited thereto.
  • the kneading may be controlled at a shear rate in the range of 10/s to 500/s.
  • the kneading may be performed for 1 to 30 minutes and the shear rate may be controlled in the range of 30/s to 100/s.
  • this kneading step may be performed under high temperature and pressure conditions higher than normal pressure, and more specifically, may be performed under pressure conditions higher than normal pressure. More specifically, the kneading may be performed in the range of 50°C to 230°C, specifically, 90°C to 200°C. When kneading is performed in the above-mentioned range, it may be preferable in terms of the degree of fiberization of the binder polymer, agglomeration of the input materials, easy filmization of the electrode film, and tensile strength of the electrode film, but the present invention is limited thereto. That is not the case.
  • normal pressure specifically, under a pressure of 1 atm to 60 atm, or under a pressure of 1 atm to 30 atm, or under a pressure of 1 atm to 10 atm, under a pressure of 1 atm to 10 atm, under a pressure of 1.1 atm to 10 atm, under a pressure of 1.1 atm to 6 atm. It may be performed under a pressure of atm or under a pressure of 1.1 atm to 3 atm.
  • kneading is performed in the above-described range, it may be preferable in terms of the degree of crystallization of the fibers and the density of the mixture mass.
  • the effect of the present invention can be preferably achieved, but the present invention It is not limited to this.
  • the mixture lump prepared through the kneading step (second kneading step) is pulverized to obtain a powder-like mixed powder for electrodes (second pulverization step).
  • the mixture mass obtained through the kneading process may be directly pressed and molded into a sheet (calendering process), but in this case, strong pressure and high temperature need to be applied to mold to the target thickness, and thus, the dry electrode film Problems may arise where the density of the film becomes too high or a uniform film cannot be obtained. Accordingly, the mixture obtained as above is pulverized to prepare mixed powder for electrodes.
  • the grinding is not limited, but may be performed with a device such as a blender or grinder.
  • the grinding may be specifically performed in a grinder at a speed of 5,000 rpm to 20,000 rpm, or 10,000 rpm to 18,000 rpm. Meanwhile, the grinding process may be performed for 30 seconds to 10 minutes, specifically 30 seconds to 1 minute.
  • pulverization is performed in the above-mentioned range, it may be desirable in terms of controlling the particle size and generation of fine powder of the mixed powder for electrodes, but the present invention is not limited thereto.
  • the step of pulverizing the mixture lump and then classifying the pulverized mixed powder for electrodes may be further included. This may be calendaring the classified mixed powder for electrodes.
  • the pulverized electrode powder can be obtained by filtering the electrode powder of a certain size or larger using a mesh having pores of a certain size or less.
  • the dry electrode film includes the step of obtaining a mixture film by pressing and molding the mixed powder for electrodes.
  • the process of manufacturing a sheet-shaped dry electrode film by compressing the mixed powder for electrodes is described as a calendering process.
  • the dry electrode film can be prepared in the form of a sheet having a predetermined thickness.
  • the dry electrode film may have a strip shape with an aspect ratio exceeding 1.
  • the dry electrode film may have a thickness of 50 ⁇ m to 300 ⁇ m.
  • the calendering process may be performed by a calendering method in which the mixed powder for electrodes is supplied to a calendering device and thermally compressed using roll press(s) included in the calendering device. Additionally, the calendering process may be performed by a roll-to-roll continuous process.
  • the calendar device may include a roll press unit in which two rollers are arranged to face each other, and the mixed powder for electrodes may pass through the roll press unit and be pressed into a sheet shape. Since a plurality of roll press units are successively arranged, the dry electrode film can be pressed multiple times. The number of roll press units can be appropriately adjusted considering the thickness or rolling rate of the dry electrode film.
  • Figure 1 schematically shows the calendering process 100.
  • the mixed powder for electrodes 120 is pressed multiple times by a calendar device including a plurality of calendaring rollers 110 to produce the mixture film 130 for electrodes. Since the electrode mixture film is manufactured without using a solvent, it can also be called a dry electrode film.
  • the rotation speed ratio of the two rollers of each roll press unit can be independently controlled appropriately within the range of 1:1 to 1:10.
  • the rotational speed ratio of two rollers in one or more roll press units is controlled at a ratio of 1:1 to 1:3.
  • the temperature of the rollers of each roll press unit can be independently controlled in the range of room temperature (25°C) to 250°C. A mixture film can be manufactured through this calendaring process.
  • the mixture film may have a porosity of 20 vol% to 50 vol%, and may preferably be controlled to a value of 40 vol% or less or 35 vol% or less within the above range. .
  • the porosity can be obtained by measuring the apparent density of the mixture film and using the actual density calculated based on the actual density and composition of each component, using the following [Equation 2] there is.
  • the mixture film may have a tensile strength of 0.2 MPa or more. In one embodiment of the present invention, the tensile strength of the mixture film may be 0.2 MPa or more, 0.3 MPa or more, or 0.50 MPa or more.
  • the tensile strength may represent a value measured according to the following method.
  • Lamination is performed to form the mixture film obtained after calendaring on at least one side of the current collector.
  • the lamination may be a step of rolling and attaching the mixture film to a predetermined thickness on a current collector.
  • the lamination may also be performed using a lamination roll, and in this case, the lamination roll may be maintained at a temperature of room temperature (25°C) to 200°C, but is not limited thereto.
  • FIG. 2 schematically shows a lamination process 200 according to an embodiment of the present invention.
  • the electrode mixture film 230 is bonded to the current collector 220 to manufacture the dry electrode 240, and the lamination process is performed by pressure using the lamination roller 210.
  • the electrode mixture film attached to the current collector through lamination may be referred to as an electrode active material layer.
  • the electrode mixture film, that is, the electrode active material layer is derived from the mixed powder for electrodes, and the content ratio of the materials in the electrode active material layer may have the same range as that of the mixed powder.
  • the electrode described above can be manufactured according to the above method.
  • the electrode manufactured according to this may have an electrode resistance of 55 ohm ⁇ cm or less.
  • an electrochemical device including the above-described electrode is provided.
  • the electrochemical device includes an anode, a cathode, and a separation layer interposed between the anode and the cathode, and at least one of the anode and the cathode is the electrode described above.
  • the separation layer may be a general separation membrane used in electrochemical devices, a solid electrolyte membrane, or a composition including both, and may be specially designed to prevent direct contact between the anode and the cathode. Not limited.
  • the electrochemical device includes all devices that undergo an electrochemical reaction.
  • Specific examples include all types of primary and secondary cells, fuel cells, solar cells, or capacitors such as supercapacitor devices.
  • the secondary batteries lithium secondary batteries including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, or lithium ion polymer secondary batteries are preferred.
  • the secondary battery according to the present invention may be included as a unit cell in an energy storage device, but the use of the present invention is not limited thereto.
  • a conductive material masterbatch was prepared according to the method below.
  • PVDF-HFP (melting point 118°C) 40 wt%, PTFE (melting point 348°C) 10 wt% and CNT (diameter (D 50 ) 12 nm, BET specific surface area 185 m 2 /g) 50 wt% were mixed with a super mixer (Heesung Co., Ltd.) A mixture was prepared by adding it to a 20L Super Mixer (Techwin) and mixing for 3 minutes at 1,200 rpm.
  • the obtained mixture is supplied to a twin-screw extruder (diameter ⁇ 25, L/D 48) at 2 ⁇ 3kg/hr through a quantitative feeder, and is melt-kneaded at a screw speed of 400rpm in the extruder heater #1 ⁇ 9 zone temperature 130 ⁇ 200°C and passed through a die. Extruded.
  • the obtained extrudate was put into a blender (Shinil Disperser Co., Ltd.) and pulverized at 10,000 rpm for 30 seconds to obtain a conductive material master batch.
  • the obtained mixture is supplied to a twin-screw extruder (diameter ⁇ 25, L/D 48) at 2 ⁇ 3kg/hr through a quantitative feeder, and melt-kneaded at the extruder heater #1 ⁇ 9 zone temperature of 140 ⁇ 220°C and screw speed of 400rpm to form a die. It was extruded through.
  • the obtained extrudate was put into a blender and pulverized at 10,000 rpm for 30 seconds to obtain a conductive material master batch.
  • Example 2 In addition to using 30 wt% of PVDF (melting point 174°C), 10 wt% of PTFE (melting point 348°C), and 60 wt% of CNT (diameter (D 50 ) 12 nm, BET specific surface area 185 m 2 /g), Example 2 and A conductive material masterbatch was obtained according to the same method.
  • a conductive material master batch was prepared according to the same method as Example 1.
  • the temperature of the rotor mixer (LM Tech, PBV-0.1) was stabilized at 160°C, and the mixture obtained above was placed in the rotor mixer and then melt-kneaded for 10 minutes at a speed of 50 rpm to obtain a conductive material masterbatch.
  • PVDF-HFP (melting point 118°C) 35 wt%
  • PTFE melting point 347°C) 35 wt%
  • CNT diameter (D 50 ) 12 nm, BET specific surface area 185 m 2 /g) 30 wt%
  • the temperature of the rotor mixer was stabilized at 160°C, and the mixture obtained above was placed in the rotor mixer and then melt-kneaded at a speed of 50 rpm for 10 minutes to obtain a mixture lump.
  • the obtained mixture lump was put into a blender (Shinil Disperser Co., Ltd.) and pulverized at 10,000 rpm for 30 seconds to obtain a conductive material master batch.
  • Evaluation Example 1 Evaluation of physical properties of conductive material masterbatch
  • FIG. 1 A photograph of the conductive material master batch prepared above is shown in FIG. 1, and an SEM (Hitachi Co., Ltd., S4800) image is shown in FIG. 2.
  • Figure 2 shows an SEM image of the CNT raw material used to manufacture the conductive material master batch for reference.
  • the 100% crystal heat of fusion ( ⁇ Hm°) of the PVDF binder is 105 J/g
  • the 100% crystal heat of fusion ( ⁇ Hm°) of the PVDF-HFP binder is 80 J/g
  • the 100% crystal heat of fusion of the PTFE binder ( ⁇ Hm) °) was measured by referring to the value of 85.4 J/g.
  • dispersibility was evaluated by measuring the CNT bundle diameter and nanofiber diameter in the SEM image.
  • Comparative Example 1 which did not use a PTFE binder, could not be used as the desired conductive material masterbatch because the powdery raw materials did not agglomerate. Confirmed.
  • Comparative Examples 1 and 2 which were manufactured by kneading using a rotor mixer, the CNTs were not uniformly dispersed and were bundled. ) was confirmed to be clustered in the form.
  • An electrode was manufactured according to the following method using the conductive material master batch prepared above.
  • lithium nickel cobalt manganese aluminum oxide (NCMA, Li[Ni 0.73 Co 0.05 Mn 0.15 Al 0.02 ]O 2 )
  • the conductive material master batch prepared in Example 1 the conductive material master batch prepared in Example 1
  • polytetrafluoroethylene PTFE
  • a mixture was prepared by adding it to a blender at a ratio of 97:1.6:1.4 and mixing for 1 minute at 10,000 rpm.
  • the temperature of the kneader was stabilized at 180°C, the mixture was placed in the kneader, and kneaded at a speed of 40 rpm under a pressure of 4 atm to obtain a mixture lump.
  • the mixture mass was put into a blender, pulverized for 30 seconds at 10,000 rpm, and classified through a sieve with 1 mm pores to obtain mixed powder for electrodes.
  • the crystallinity of PVDF-HFP in the prepared mixed powder for electrodes was 0%, and the crystallinity of PTFE was 6.8%.
  • the mixed powder for electrodes was put into a lap calendar (roll diameter: 200 mm, roll temperature: 100°C, roll speed ratio 1.5) and compressed to prepare an electrode mixture film.
  • the obtained electrode mixture film was placed on both sides of an aluminum thin film (13 ⁇ m) and laminated through a roll press at a roll temperature of 30°C to obtain an electrode.
  • lithium nickel cobalt manganese aluminum oxide (NCMA, Li[Ni 0.73 Co 0.05 Mn 0.15 Al 0.02 ]O 2 )
  • the conductive material master batch of Example 4 and polytetrafluoroethylene (PTFE) were used in a weight ratio of 97:
  • NCMA lithium nickel cobalt manganese aluminum oxide
  • PTFE polytetrafluoroethylene
  • the crystallinity of PVDF-HFP in the prepared mixed powder for electrodes was 0%, and the crystallinity of PTFE was 10.6%.
  • An electrode was obtained in the same manner as in Example 5, except that the conductive material master batch of Comparative Example 3 was used as the conductive material master batch.
  • the crystallinity of PVDF-HFP in the prepared mixed powder for electrodes was 0%, and the crystallinity of PTFE was 15.6%.
  • the positive electrode active material is lithium nickel cobalt manganese aluminum oxide (NCMA, Li[Ni 0.73 Co 0.05 Mn 0.15 Al 0.02 ]O 2 ) 96.3 wt%, PTFE (melting point 348°C) 2.2 wt%, and carbon black (BET specific surface area 65 m 2 / g) 1.5 wt% was added to a super mixer (Heesung Techwin Co., Ltd., 20L Super Mixer) and mixed at 1,200 rpm for 3 minutes to prepare a mixture.
  • NCMA lithium nickel cobalt manganese aluminum oxide
  • PTFE melting point 348°C
  • carbon black BET specific surface area 65 m 2 / g 1.5 wt%
  • the temperature of the kneader was stabilized at 180°C, the mixture was placed in the kneader, and kneaded for 7 minutes at a speed of 40 rpm under a pressure of 4 atm to obtain a mixture lump.
  • composition of the mixed powder for electrodes used to manufacture the electrodes of Examples 5, 6, Comparative Examples 3, and 4 is summarized in Table 2 below.
  • the crystallinity of the binder was measured according to the following method.
  • the crystallinity of the binder was measured in the same manner as Evaluation Example 1.
  • the tensile strength of the electrode mixture films prepared in Example 1, Example 2, Comparative Example 1, and Comparative Example 2 and the resistance value of the electrode are shown in Table 3 below, respectively.
  • Table 3 shows the electrode resistance value converted based on 1% by weight content of the conductive material as the electrode resistance value.
  • a specimen was prepared by cutting the manufactured film into a size of 1 cm x 10 cm.
  • ASTM American Society for Testing and Materials
  • D 638 standard both ends of the prepared specimen were pulled using UTM (ZwichRoell) equipment under the conditions of a pre-load of 0.01 kg/cm and a test speed of 5 mm/min.
  • the tensile strength was measured by dividing the force applied to the specimen at the time of fracture by the initial cross-sectional area of the specimen. Measurements were made three times and expressed as the average value.
  • the Multi-probe Tester (HIOKI, RM2610), measure the potential difference between each probe (45 pieces) under the conditions of anode current 100 ⁇ A, cathode 10 mA, and voltage 0.5V, and express it as the electrode resistance value. It was.
  • the electrode resistance value measured according to Equation 1 below was converted to 1% by weight of the conductive material.
  • Rt represents the electrode resistance value converted based on 1% by weight of the conductive material
  • Cw represents the content of the conductive material based on the total weight of the electrode active material layer in the target electrode
  • Rw represents the electrode resistance value of the target electrode.
  • Examples 5 and 6 showed an electrode resistance value of 55 ohm.cm or less even though the conductive material was included in an amount of less than 1% by weight.
  • the electrode resistance of Examples 5 and 6 was converted to a content of 1% by weight of the conductive material, it was confirmed that the electrode resistance values were significantly improved compared to Comparative Examples 3 and 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극에 사용하기 위한 도전재 마스터 배치 및 이를 이용하여 제조된 전극에 관한 것으로서, 본 발명의 일 측면에 따른 도전재 마스터 배치를 이용하여 제조되는 전극은 55 ohm·cm 이하의 전극 저항을 갖는 것을 특징으로 할 수 있다.

Description

도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극
본 발명은 건식 전극에 사용하기 위한 도전재 마스터 배치, 이의 제조방법, 이를 이용하여 제조된 전극에 관한 것이다.
본 출원은 2022년 4월 20일에 한국 특허청에 출원된 한국 특허출원 제2022-0049191호 및 제2022-0049192호 각각에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.
화석 연료 사용의 급격한 증가로 인하여 대체 에너지, 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다.
현재 이러한 전기 화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다.
이러한 이차전지 중 대표적인 리튬 이차전지는 모바일 기기의 에너지원뿐 아니라, 최근에는, 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석 연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차의 동력원으로서의 사용이 실현화되고 있으며, 그리드(Grid)화를 통한 전력 보조전원 등의 용도로도 사용영역이 확대되고 있다.
이러한 리튬 이차전지의 제조 공정은 크게 전극 공정, 조립 공정, 화성 공정의 3단계로 구분된다. 상기 전극 공정은 다시 활물질 혼합 공정, 전극코팅 공정, 건조 공정, 압연 공정, 슬리팅 공정, 권취 공정 등으로 구분된다.
이 중, 활물질 혼합 공정은, 전극에서 실제 전기화학 반응이 일어나는 전극 활성층 형성을 위한 코팅 물질을 배합하는 공정으로서, 상세하게는 전극의 필수 요소인 전극 활물질과 기타 첨가제인 도전재와 충진재, 분체간 결착과 집전체에 대한 접착을 위한 바인더, 및 점도 부여와 분체 분산을 위한 용매 등을 혼합하여 유동성을 가지는 슬러리의 형태로 제조하는 것이다. 이와 같이 전극 활성층을 형성을 위해 혼합된 조성물을 넓은 의미에서 전극 합제(electrode mixture)라고 지칭하기도 한다.
이후, 전극 합제를 전기 전도성이 있는 집전체 상에 도포하는 전극코팅 공정과, 전극 합제에 함유되어 있던 용매를 제거하기 위한 건조 공정이 수행되고, 추가적으로 전극이 압연되어 소정의 두께로 제조된다.
한편, 상기 건조 과정에서 전극 합제에 함유되어 있던 용매가 증발함에 따라 기 형성된 전극 활성층에 핀홀이나 크랙과 같은 결함이 유발될 수 있다. 또한, 활성층의 내, 외부가 균일하게 건조되는 것은 아니어서, 용매 증발 속도 차이에 의한 분체 부유 현상, 즉, 먼저 건조되는 부위의 분체들이 떠오르면서 상대적으로 나중에 건조되는 부위와 간극을 형성하여 전극 품질이 저하될 수도 있다. 따라서, 최근에는 용매를 사용하지 않는 건식 전극을 제조하는 연구가 활발히 이루어지고 있다.
상기 건식 전극은 일반적으로 집전체 상에, 활물질, 바인더, 도전재 등을 포함하고 필름 형태로 제조된 프리 스탠딩 필름을 라미네이션함으로써 제조된다. 건식 전극의 작업성을 향상시키기 위해 건식 전극용 원재료인 활성카본 도전재, 활물질, 바인더 등을 믹싱, 니딩, 분쇄 공정을 통해 분체 혼합물을 제조하는 기술이 개발되었는데, 이때 도전재의 BET 비표면적이 클수록 도전재를 균일하게 분산하기 어려워서 습식 전극 대비 도전재의 함량이 증가하게 되고, BET 비표면적이 큰 카본나노튜브(CNT)를 효율적으로 사용하지 못하는 문제가 발견되었다.
이에 따라, 도전재의 분산성을 향상시킬 뿐만 아니라, 이를 이용하여 제조되는 건식 전극의 성능을 향상시키기 위한 연구 개발이 계속되고 있는 실정이다.
따라서 본 발명이 해결하고자 하는 과제는, 건식 전극의 제조에 이용할 수 있는 도전재 마스터 배치 및 이의 제조방법을 제공하고자 하는 것이다.
또한, 도전재의 분산성이 향상된 도전재 마스터 배치를 도전재로 이용하여 제조된 전극 및 이의 제조방법을 제공하고자 한다.
본 발명의 일 측면에 따르면, 본 발명은 BET 비표면적이 큰 도전재의 분산성을 향상시킨 도전재 마스터 배치 및 이의 제조방법을 제공하고자 한다. 또한, 본 발명은 높은 함량의 도전재가 안정적으로 포함되는 도전재 마스터 배치 및 이의 제조방법을 제공하고자 한다.
본 발명의 다른 측면에 따르면, 본 발명은 BET 비표면적이 큰 도전재의 분산성을 향상시킨 도전재 마스터 배치를 도전재로 이용하여 도전재의 함량을 낮추고 전극 저항의 특성을 향상시킨 전극 및 이의 제조방법을 제공하고자 한다. 또한, 본 발명은 인장 강도 등의 기계적 물성을 우수하게 유지하면서도 전극 저항의 특성이 향상된 전극 및 이의 제조방법을 제공하고자 한다.
본 발명의 또 다른 측면에 따르면, 본 발명은 전극의 제조방법으로서, 활물질의 미분화를 최소화하고, 바인더의 섬유화를 극대화하여서 유연성과 기계적 물성이 향상된 전극의 제조방법을 제공하고자 한다.
상기 과제를 해결하기 위하여,
본 발명의 일 측면에 따르면, 하기 구현예들의 도전재 마스터 배치가 제공된다.
제1 구현예에 따르면,
도전재, PVDF계 바인더 및 PTFE 바인더를 포함하고, 상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고, 상기 PVDF계 바인더 및 상기 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것을 특징으로 하는 도전재 마스터 배치가 제공된다.
제2 구현예에 따르면, 제1 구현예에 있어서,
상기 도전재는 카본나노튜브 단독, 또는 상기 도전재는 카본나노튜브 및 점형 도전재를 포함하는 것일 수 있다.
제3 구현예에 따르면, 제2 구현예에 있어서,
상기 점형 도전재는 카본블랙, 활성카본, 흑연 또는 이들 중 2 이상의 혼합물인 것
제4 구현예에 따르면, 제2 구현예 내지 제3 구현예 중 어느 한 구현예에 있어서,
상기 카본나노튜브 및 상기 점형 도전재의 중량비는 100:0 내지 10:90인 것일 수 있다.
제5 구현예에 따르면, 제2 구현예 내지 제4 구현예 중 어느 한 구현예에 있어서,
상기 카본나노튜브는 나노 파이버 형태로 분산되어 있는 형태인 것일 수 있다.
제6 구현예에 따르면, 제2 구현예 내지 제5 구현예 중 어느 한 구현예에 있어서,
상기 카본나노튜브의 직경은 0.1 내지 50 nm인 것일 수 있다.
제7 구현예에 따르면, 제1 구현예 내지 제6 구현예 중 어느 한 구현예에 있어서,
상기 PVDF계 바인더가 PVDF, PVDF-HFP 또는 이들의 혼합물을 포함하는 것일 수 있다.
제8 구현예에 따르면, 제1 구현예 내지 제7 구현예 중 어느 한 구현예에 있어서,
상기 도전재 20 내지 70 중량부, 상기 PVDF계 바인더 5 내지 60 중량부 및 상기 PTFE 바인더 0.1 내지 50 중량부를 포함하는 것일 수 있다.
본 발명의 다른 측면에 따르면, 하기 구현예들의 전극이 제공된다.
제9 구현예에 따른 전극은,
집전체; 및 상기 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하고, 상기 전극 활물질층은 전극 활물질, 전극 도전재 및 전극 바인더를 포함하고, 상기 전극 바인더가 섬유화되어 상기 전극 활물질 및 전극 도전재를 결착하고 있으며, 55 ohm·cm 이하의 전극 저항을 갖는다.
본 발명의 제10 구현예에 따르면, 제9 구현예에 있어서,
상기 전극 도전재의 함량은 상기 전극 활물질층 전체 중량을 기준으로 1 중량% 이하일 수 있다.
본 발명의 제11 구현예에 따르면, 제9 구현예 또는 제10 구현예에 있어서,
상기 전극 바인더의 결정화도가 15% 이하인 것일 수 있다.
본 발명의 제12 구현예에 따르면, 제9 구현예 내지 제11 구현예 중 어느 한 구현예에 있어서,
상기 전극 활물질의 함량은 상기 전극 활물질층 전체 중량을 기준으로 95 중량% 이상인 것일 수 있다.
본 발명의 제13 구현예에 따르면, 제9 구현예 내지 제12 구현예 중 어느 한 구현예에 있어서,
상기 전극 도전재는 BET 비표면적이 80 m2/g 이상인 탄소 재료를 포함할 수 있다.
본 발명의 제14 구현예에 따르면, 제9 구현예 내지 제13 구현예 중 어느 한 구현예에 있어서,
상기 전극 도전재는 카본나노튜브 단독, 또는 상기 도전재는 카본나노튜브 및 점형 도전재를 포함할 수 있다.
본 발명의 제15 구현예에 따르면, 제9 구현예 내지 제14 구현예 중 어느 한 구현예에 있어서,
상기 전극 도전재는 카본나노튜브 및 점형 도전재를 포함하고,
상기 점형 도전재는 카본블랙, 활성카본, 흑연 또는 이들 중 2 이상의 혼합물인 것일 수 있다.
본 발명의 제16 구현예에 따르면, 제9 구현예 내지 제15 구현예 중 어느 한 구현예에 있어서,
상기 카본나노튜브 및 상기 점형 도전재의 중량비는 100:0 내지 10:90일 수 있다.
본 발명의 제17 구현예에 따르면, 제9 구현예 내지 제16 구현예 중 어느 한 구현예에 있어서,
상기 전극 도전재 및 상기 전극 바인더는 상기 제1 구현예 내지 제8 구현예 중 어느 한 구현예에 따른 도전재 마스터 배치로부터 유래된 것을 포함하는 것일 수 있다.
본 발명의 또 다른 측면에 따르면, 하기 구현예들의 도전재 마스터 배치의 제조방법이 제공된다.
제18 구현예에 따른 도전재 마스터 배치의 제조방법은,
도전재, PVDF계 바인더 및 PTFE 바인더를 혼합하여 혼합물을 수득하는 단계, 상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계 및 상기 압출물을 분쇄하는 단계를 포함하고, 상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고, 제조되는 도전재 마스터 배치 내 상기 PVDF계 바인더 및 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것으로 한다.
제19 구현예에 따르면, 제18 구현예에 있어서,
상기 혼합물을 수득하는 단계는 200 rpm 내지 1,700 rpm으로 1분 내지 30분 동안 혼합하는 것일 수 있다.
제20 구현예에 따르면, 제18 구현예 또는 제19 구현예에 있어서,
상기 압출물을 수득하는 단계는, 상기 혼합물을 이축압출기(twin screw extruder)에 투입하고 100℃ 내지 300℃의 압출 온도 및 50 rpm 내지 600 rpm의 스크류 속도로 용융 혼련하여 다이를 통해 압출하는 것일 수 있다.
제21 구현예에 따르면, 제18 구현예 내지 제20 구현예 중 어느 한 구현예에 있어서,
상기 분쇄는, 500 rpm 내지 20,000 rpm으로 5초 내지 10분 동안 수행하는 것일 수 있다.
본 발명의 또 다른 측면에 따르면, 하기 구현예들의 전극의 제조방법이 제공된다.
제22 구현예에 따른 전극의 제조방법은,
도전재 및 제1 바인더를 혼합하여 혼합물을 수득하는 단계; 상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계; 상기 압출물을 분쇄하여 도전재 마스터 배치를 수득하는 단계; 및 전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더를 포함하는 혼합물로부터 집전체의 적어도 일면 상에 전극 활물질층을 형성하는 단계;를 포함한다.
제23 구현예에 따르면, 제22 구현예에 있어서,
상기 전극 활물질층을 형성하는 단계가, 전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더를 혼합하여 혼합물을 수득하는 단계; 상기 수득되는 혼합물을 고온 저전단율로 혼련하여 혼합물 덩어리를 수득하는 단계; 상기 혼합물 덩어리를 고전단으로 분쇄하여 전극용 혼합 분체를 수득하는 단계; 상기 전극용 혼합 분체를 캘린더링하여 합제 필름을 수득하는 단계; 및 상기 합제 필름을 집전체의 적어도 일면에 위치시키고 라미네이션하는 단계를 포함할 수 있다.
제24 구현예에 따르면, 제22 구현예 또는 제23 구현예에 있어서,
상기 제1 바인더의 결정화도가 30% 이하인 것일 수 있다.
제25 구현예에 따르면, 제22 구현예 내지 제24 구현예 중 어느 한 구현예에 있어서,
상기 합제 필름의 인장강도가 0.2 MPa 이상일 수 있다.
제26 구현예에 따르면, 제22 구현예 내지 제25 구현예 중 어느 한 구현예에 있어서,
제조되는 전극은 55 ohm·cm 이하의 전극 저항을 갖는 것일 수 있다.
본 발명의 또 다른 구현예에 따르면, 하기 구현예들의 전기화학소자가 제공된다.
본 발명의 제27 구현예에 따른 전기화학소자는,
양극, 음극 및 상기 양극과 음극 사이에 개재된 분리층을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상은 제9 구현예 내지 제17 구현예 중 어느 한 구현예에 따른 전극일 수 있다.
본 발명의 일 측면에 따르면, BET 비표면적이 큰 도전재를 이용하고, 전극 제조 시 활물질과의 부착력이 우수한 도전재 마스터 배치를 제공할 수 있다. 또한, 본 발명의 일 측면에 따른 도전재 마스터 배치는 BET 비표면적이 큰 도전재의 분산성을 크게 향상시킨 효과를 나타낼 수 있다.
본 발명의 다른 측면에 따르면, 전극 저항이 감소된 전극, 특히 전극 저항이 감소된 전극을 제공할 수 있다. 구체적으로, 본 발명의 일 측면에 따른 전극은 제조 시에 용매를 사용하지 않는 전극, 이른바 건식전극으로서, 종래의 건식 전극 대비 도전재의 함량을 낮추고, 이에 따라 전극 활물질의 함량이 증대된 건식 전극을 제공할 수 있다.
본 발명의 다른 측면에 따르면, 전극의 저항이 향상되고, 전극 필름의 강도가 향상되어, 전기적 성능이 우수하고 안정성이 향상된 건식 전극 및 이를 이용하는 전기화학소자를 제공하는 효과를 나타낼 수 있다.
본 발명의 또 다른 측면에 따르면, 고전단 믹싱 공정 대신, 고온 저전단 혼련 공정 후 분쇄하는 공정을 도입함으로써, 전극 활물질의 미분화가 최소화되고, 바인더의 섬유화가 최대화되고, 섬유화된 바인더의 절단이 최소화된 건식 전극을 제공할 수 있다.
더 나아가, 고전단의 젯-밀링 공정을 통하지 않고, 혼련기를 통한 혼련, 및 분쇄단계를 거침으로 구성성분들의 뭉침으로 유로가 막히는 문제가 없어 전극의 대량 생산에도 유리한 제조방법을 제공할 수 있다.
본 명세서에 첨부되는 다음의 도면은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 명세서에 기재된 실시예 1 내지 3, 비교예 1 및 2의 사진이다.
도 2는 본 명세서에 기재된 실시예 1 내지 3, 비교예1 및 2의 SEM 이미지이다.
도 3은 본 발명의 일 구현예에 따라서 합제 필름을 제조하는 공정의 모식도이다.
도 4는 본 발명의 일 구현예에 따른 전극 라미네이션 공정의 모식도이다.
이하, 본 발명에 대하여 상세히 설명한다.
본 발명은 전극용 혼합 분체를 가압하는 방식으로 제조된 건식 전극에 사용하기 위한 도전재 마스터 배치, 이를 이용하여 제조되는 전극 및 도전재 마스터 배치 및 전극 각각을 제조하는 방법에 관한 것이다.
본 발명에 있어서, 상기 건식 전극은 리튬 이온 이차 전지 등 전기화학소자의 전극으로 사용될 수 있으나, 본 발명의 용도가 이에 한정되는 것은 아니다.
본 명세서에 있어서, 용어 "BET 비표면적"은 BET 법에 의해 측정한 비표면적을 나타내는 것으로서, 상기 BET 비표면적은 Micromeritics 社 TriStar Ⅱ 3020 장치를 이용하여 액체 질소 온도(77 K) 하에서의 질소 가스 흡착량으로부터 산출되는 값을 나타낸다.
본 명세서에 있어서, 용어 "융점"은 고분자의 융점(Tm)을 측정하는 통상적인 방법에 의해 측정된 값을 나타낸다. 예컨대, 상기 융점은 시차주사열량계(Differential Scanning Calorimeter, DSC)를 이용하여 측정한 것일 수 있다.
본 명세서에 있어서, 용어 "결정화도"는 고분자의 혼련성 및 섬유화 정도를 예측하기 위한 척도로서, 예컨대, 시차주사열량분석기(DSC)를 이용하여 측정한 것일 수 있다.
본 명세서에 사용된 "직경(D50)"은 직경에 따른 입자 부피 누적 분포의 50% 지점에서의 직경을 의미하며, 상기 직경은 레이절 회절법(laser diffraction method)을 이용하여 측정된 것일 수 있다. 구체적으로, 측정 대상 물질을 분산매 중에 분산시킨 후, 시판되는 레이저 회절 입도 측정 장치(예를 들어 Microtrac S3500)에 도입하여 입자들이 레이저빔을 통과할 때 직경 크기에 따른 회절패턴 차이를 측정하여 직경 분포를 산출한다. 측정 장치에 있어서의 직경에 따른 입자 부피 누적 분포의 50%가 되는 지점에서의 직경을 산출함으로써, D50 직경을 측정할 수 있다.
본 명세서에 있어서, 용어 "CNT 분산성"은 CNT가 번들(bundle) 형태로 뭉치지 않고 나노 섬유 형태로 분산되는 성질을 나타낸다. 예컨대, 상기 CNT 분산성은 SEM 형상 분석의 방법으로 평가된 것일 수 있다.
도전재 마스터 배치
본 발명의 일 측면에 따르면, BET 비표면적이 큰 도전재를 건식 전극에 적용하기 위한 도전재 마스터 배치를 제공하고자 한다.
본 발명의 일 측면에 따른 도전재 마스터 배치는, 도전재, PVDF계 바인더 및 PTFE 바인더를 포함하고, 상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고, 상기 PVDF계 바인더 및 상기 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것으로 한다.
본 발명에 있어서, 상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이다. 상기 도전재로서 BET 비표면적이 80 m2/g 이상인 것을 이용함으로써 도전재 함량을 낮추고, 활물질의 함량을 증가시켜 건식 전극의 용량을 높이는 기능을 달성할 수 있으나, 상기 도전재의 기능이 상기 기능에만 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 도전재는 BET 비표면적이 80 m2/g 이상이고, 전지에 화학적 변화를 유발하지 않으면서 도전성을 가지는 것이라면 특별히 제한되지 않고 사용될 수 있다. 상기 도전재는 예를 들어 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분체 등의 금속 분체; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다. 보다 구체적으로, 도전재의 균일한 혼합과, 전도성의 향상을 위해, 상기 도전재는 카본나노튜브, 활성카본, 흑연, 카본블랙, 또는 이들의 혼합물일 수 있다.
본 발명의 일 구현예에 있어서, 상기 도전재는 카본나노튜브를 단독으로 포함하는 것일 수 있다.
본 발명의 다른 구현예에 있어서, 상기 도전재는 카본나노튜브 및 점형 도전재를 포함하는 것일 수 있다. 본 발명의 일 구현예에 있어서, 상기 점형 도전재는 카본블랙, 활성카본, 흑연 또는 이들 중 2 이상의 혼합물일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 도전재는 카본나노튜브와 점형 도전재를 100:0 내지 10:90의 중량비로 포함하는 것일 수 있다. 여기서, 상기 카본나노튜브와 점형 도전재의 중량비가 100:0인 경우, 상기 도전재가 카본나노튜브를 단독으로 포함하는 것을 의미한다.
본 발명의 또 다른 구현예에 있어서, 상기 도전재는 카본나노튜브 및 점형 도전재를 포함하고, 상기 카본나노튜브와 점형 도전재의 중량비는 99:1 내지 50:50일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 도전재가 카본나노튜브를 포함하는 경우, 상기 도전재 마스터 배치 내에서 상기 카본나노튜브는 PVDF계 바인더 및 PTFE 바인더에 의해 나노 파이버 형태로 분산될 수 있다.
본 발명의 일 구현예에 있어서, 상기 도전재의 BET 비표면적은 구체적으로 80 m2/g 이상 2,000 m2/g 이하일 수 있다. 보다 구체적으로, 상기 도전재의 BET 비표면적은 예를 들어 100 m2/g 이상, 150 m2/g 이상, 160 m2/g 이상, 500 m2/g 이상, 1,000 m2/g 이상, 2,000 m2/g 이하, 1,500 m2/g 이하, 1400 m2/g 이하, 300 m2/g 이하, 250 m2/g 이하, 210 m2/g 이하일 수 있다. 본 발명의 다른 구현예에 있어서, 상기 도전재는 BET 비표면적이 80 m2/g 이상 300 m2/g 이하인 카본나노튜브 및 BET 비표면적이 100 m2/g 이상 2,000 m2/g 이하인 점형 도전재을 포함할 수 있다. 상기 도전재의 BET 비표면적이 상술한 범위인 경우 도전재 마스터 배치 내 도전재의 분산 안정성의 측면에서 유리한 효과가 있을 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 다른 구현예에 있어서, 상기 도전재가 카본나노튜브를 포함하는 경우, 상기 카본나노튜브의 직경은 예를 들어 0.1 내지 50 nm, 1 내지 30 nm, 5 내지 25 nm, 10 내지 20 nm 또는 10 내지 15 nm일 수 있다. 본 명세서에 있어서, 상기 카본나노튜브의 직경은 카본나노튜브의 길이 방향에 직교하는 방향의 단면의 직경을 측정한 값을 나타내며, 상기 직경은 예를 들어 주사전자현미경(SEM)과 같은 전자 현미경 관찰을 통해 측정한 것일 수 있다. 상기 카본나노튜브의 직경이 상기한 범위인 경우 CNT 분산성의 측면에서 유리한 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 측면에 따른 도전재 마스터 배치는 상기 도전재와 함께 PVDF계 바인더 및 PTFE 바인더를 포함한다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치는 바인더로서 PVDF계 바인더를 포함함으로써 상술한 도전재와의 결착력 향상의 측면에서 유리한 효과를 나타낼 수 있다. 이로써, 상기 도전재 마스터 배치 내 바인더의 함량을 낮추고 도전재의 함량을 높이는 효과를 나타낼 수 있으나, 상기 PVDF계 바인더의 기능이 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치는 후술하는 바와 같이 바인더의 섬유화 방식에 의해 전극 필름을 형성하는 건식 전극에 이용될 수 있다. 이때, 상기 도전재 마스터 배치가 바인더로서 PTFE 바인더를 포함함으로써 바인더의 섬유화 방식에 의한 전극 필름의 형성하는 측면에서 유리한 효과를 나타낼 수 있으나, 상기 PTFE 바인더의 기능이 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치는 바인더로서 PVDF계 바인더 및 PTFE 바인더를 포함함으로써, 도전재와의 결착력이 우수하고, 고 비표면적의 도전재의 분산성을 향상시키는 효과를 나타낼 수 있다. 나아가, 이를 이용하여 바인더의 섬유화 방식에 의한 전극 필름의 형성 시 안정적으로 전극 필름을 형성하고, 이로써 낮은 전극 저항을 갖는 전극을 구현하는데 유리한 효과를 나타낼 수 있으나, 본 발명의 기전이 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 PVDF계 바인더는 융점이 200 ℃ 이하인 PVDF계 바인더를 포함할 수 있다. 상기 PVDF계 바인더로서 융점이 200 ℃ 이하인 PVDF계 바인더를 이용함으로써 용융 상태에서 도전재의 분산성 및 분산 안정성을 향상시키며, 마스터 배치의 제조를 가능하게 하는 기능을 달성할 수 있으나, 상기 PVDF계 바인더의 기능이 상기 기능에만 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 PVDF계 바인더는 융점이 200℃ 이하이고, 고분자의 반복 단위 내에 PVDF(polyvinylidene fluoride)의 반복 단위가 하나 이상 포함되는 고분자라면 특별히 제한되지 않고 사용될 수 있다. 상기 PVDF계 바인더는 예를 들어 PVDF, PVDF-HFP(polyvinylidene fluoride-co-hexafluoropropylene) 또는 이들의 혼합물을 포함하는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 PVDF계 바인더의 융점은 구체적으로 100℃ 이상 200℃ 이하일 수 있고, 예를 들어 100℃ 이상, 120℃ 이상, 140℃ 이상, 150℃ 이상, 160℃ 이상, 200℃ 이하, 190℃ 이하, 185℃ 이하, 180℃ 이하일 수 있다. 또는, 100℃ 이상, 110℃ 이상, 120℃ 이상, 200℃ 이하, 190℃ 이하, 180℃ 이하, 170℃ 이하, 160℃ 이하, 150℃ 이하, 140℃ 이하일 수 있다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더는 융점이 300 ℃ 내지 380 ℃인 PTFE 바인더를 포함할 수 있다. 상기 PTFE 바인더로서 융점이 300 ℃ 내지 380 ℃인 것을 이용함으로써 용융 상태에서 도전재의 분산성 및 분산 안정성을 향상시키며, 마스터 배치의 제조를 가능하게 하는 기능을 달성할 수 있으나, 상기 PTFE 바인더의 기능이 상기 기능에만 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더는 융점이 300℃ 내지 380℃이고, 고분자의 반복 단위 내에 PTFE(polytetrafluoroethylene)의 반복 단위가 하나 이상 포함되는 고분자라면 특별히 제한되지 않고 사용될 수 있다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더는 폴리테트라플루오로에틸렌(PTFE) 을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더의 융점은 구체적으로 300℃ 이상, 310℃ 이상, 320℃ 이상, 330℃ 이상, 335℃ 이상, 380℃ 이하, 370℃ 이하, 360℃ 이하, 355℃이하일 수 있다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치 내에 포함되는 상기 PVDF계 바인더 및 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하일 수 있다.
본 명세서에 있어서, 상기 바인더의 결정화도는 시차주사열량분석기(DSC)를 이용하여 측정한 값일 수 있다. 구체적으로, 시차주사열량분석기(DSC)에 샘플 5~12 mg을 넣고, 질소 분위기 25~360℃ 온도범위에서 10℃/min 속도로 승온하면서 융점, 용융열(△Hm)을 측정하고, 바인더 종류에 따른 결정 융해열(△Hm°)을 기준으로 하기 식에 따라 결정화도를 측정할 수 있다.
바인더의 결정화도(Xc) = △Hm/△Hm° X 100 (%)
본 발명의 일 구현예에 있어서, 상기 바인더의 결정 융해열(△Hm°)에 관하여, PVDF 바인더의 100% 결정 융해열(△Hm°)은 105 J/g이며, PVDF-HFP 바인더의 100% 결정 융해열(△Hm°)은 80 J/g이며, PTFE 바인더의 100% 결정 융해열(△Hm°)은 85.4 J/g의 값을 참고할 수 있으며, 또는 다른 문헌들에 알려진 값을 참고하여 각 바인더의 결정화도를 측정할 수 있다.
본 발명의 다른 구현예에 있어서, 상기 PVDF계 바인더가 PVDF를 포함하는 경우, 상기 도전재 마스터 배치 내에서 PVDF의 결정화도는 보다 구체적으로 30% 이하, 28% 이하, 27% 이하, 26.5% 이하, 26% 이하 또는 25% 이하, 또는 0%일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 PVDF계 바인더가 PVDF-HFP를 포함하는 경우, 상기 상기 도전재 마스터 배치 내에서 PVDF-HFP의 결정화도는 보다 구체적으로 30% 이하, 20% 이하, 15% 이하, 10% 이하, 8% 이하 또는 6% 이하 또는 0%일 수 있다.
본 발명의 다른 구현예에 있어서, 상기 PTFE 바인더의 결정화도는 보다 구체적으로 30% 이하, 25% 이하, 20% 이하, 15% 이하, 10% 이하, 5% 이하 또는 0%일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 PVDF계 바인더의 결정화도가 30% 이하이고, PTFE 바인더의 결정화도가 30% 이하일 수 있다.
본 발명의 또 다른 구현예에 있어서, 상기 PVDF계 바인더의 결정화도가 30% 이하이고, PTFE 바인더의 결정화도가 20% 이하일 수 있다.
본 발명의 일 구현예에 있어서, 상기 PVDF계 바인더의 결정화도가 상기 범위를 만족하는 경우 비표면적이 큰 도전재, 특히 CNT의 분산성 및 분산 안정성을 향상시키는 측면에서 유리한 효과를 나타낼 수 있으나, 본 발명 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더의 결정화도가 상기 범위를 만족하는 경우 도전재 마스터 배치를 이용하여 제조되는 전극의 물성을 향상시키는 측면에서 유리한 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 측면에 있어서, 상기 도전재 마스터 배치는 상기 도전재 20 내지 70 중량부, PVDF계 바인더 5 내지 60 중량부 및 PTFE 바인더 0 초과 내지 50 이하의 중량부를 포함한다. 구체적으로, 상기 도전재 마스터 배치는 상기 도전재 20 내지 70 중량부, PVDF계 바인더 5 내지 60 중량부 및 PTFE 바인더 0.1 내지 50 이하의 중량부를 포함할 수 있다. 예를 들어 상기 도전재 40 내지 70 중량부, PVDF계 바인더 40 내지 50 중량부 및 PTFE 바인더 5 내지 30 중량부를 포함할 수 있고, 보다 구체적으로 상기 도전재 마스터 배치는 상기 도전재 50 내지 60 중량부, PVDF계 바인더 30 내지 40 중량부 및 PTFE 바인더 10 내지 20 중량부를 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치 내 도전재, PVDF계 바인더 및 PTFE 바인더의 함량비가 상기 범위를 만족함으로써, 도전재 마스터 배치와 활물질을 혼합할 때 도전재의 분산성이 우수하게 향상되고, 도전재 대비 활물질의 비율이 향상될 수 있으며, 도전재와 활물질과의 부착력이 우수한 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치는 상기 PVDF계 바인더 및 PTFE 바인더 이외에 폴리올레핀 바인더를 추가로 더 포함할 수 있다.
본 발명의 다른 구현예에 있어서, 상기 도전재 마스터 배치는 상술한 성분 이외에 본 발명의 목적을 저해하지 않는 범위 내에서 활물질을 더 포함할 수 있다.
전극
본 발명의 다른 측면에 따른 전극은, 집전체, 및 상기 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하고, 상기 전극 활물질층은 전극 활물질, 전극 도전재 및 전극 바인더를 포함하고, 상기 전극 바인더가 섬유화되어 상기 전극 활물질 및 전극 도전재를 결착하고 있으며, 55 55 ohm·cm 이하의 전극 저항을 갖는다.
본 발명의 다른 측면에 따른 전극은 상술한 도전재 마스터 배치를 이용하여 제조되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 전극은 전극 활물질 및 전극 도전재를 결착하는 수단으로서 섬유화된 전극 바인더를 포함할 수 있다. 이러한 섬유화된 전극 바인더는 끊김 현상이 종래의 비섬유화된 바인더에 비하여 덜하고, 길이 방향으로 연신성이 우수하여, 전극 활물질층층 및 이를 포함하는 전극 자체의 유연성을 향상시킬 수 있다. 상기 전극 바인더의 섬유화 공정에 대해서는 후술하는 전극의 제조방법에서 구체적으로 살펴보겠다.
본 발명의 일 구현예에 있어서, 상기 전극 활물질층은 자립형의 전극 필름에서 유래되는 것일 수 있다. 예를 들어 상기 전극은 집전체 및 상기 집전체의 적어도 일면 상에 전극 필름에서 유래된 전극 활물질층이 배치되는 것일 수 있다. 그리고, 상기 전극 필름과 상기 집전체는 라미네이션 공정 등에 의해서 접합되어 형성된 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 전극 활물질층은 전극 필름으로서, 용매가 개입되지 않고 전극 활물질, 전극 도전재 및 전극 바인더를 포함하는 전극 재료를 이용하여 자립형(free standing type)의 단독 시트 형태로 제조된 것일 수 있다. 본 명세서에서 상기 용어 '자립형'은 다른 부재에 의존하지 않고 단독의 형태를 유지할 수 있으며 그 자체로 이동이나 취급이 가능한 것을 의미한다.
상기 전극 활물질층은, 후술하는 바와 같이, 전극용 혼합 분체가 압착되어 형성된 것일 수 있다. 예를 들어, 상기 전극 활물질층은 상기 전극용 혼합 분체가 압착에 의해서 집적되어 층상구조를 이룬 모양을 가질 수 있다. 상기 전극용 혼합 분체는 전극 활물질, 전극 도전재 및 전극 바인더를 포함하는 분말상의 전극 재료인 것으로서 예를 들어 후술하는 바와 같이 전극 활물질, 전극 도전재 및 전극 바인더를 포함하는 혼합물 덩어리가 분쇄되어 수득되는 것일 수 있다.
본 발명에 있어서, 상기 전극의 저항은 55 ohm·cm 이하를 나타낸다.
본 명세서에 있어서, 상기 전극의 저항은 다음과 같이 측정된 값을 나타낸다. 저항 측정 대상의 전극을 50 x 50 mm2의 크기로 준비한다. Multi-probe Tester(HIOKI, RM2610)에 준비된 전극 시료를 넣고, 전류 양극 100 μA, 음극 10 mA, 전압 0.5V 조건에서 각각의 Probe(45개) 사이에서 측정되는 전위차를 측정하여 전극 저항 값으로 나타낸다.
종래 건식 전극의 제조 시 용매를 이용하지 않으므로, 도전재의 분산성이 불량한 문제가 있다. 특히, BET 비표면적이 큰 도전재는 안정적으로 분산되지 않으므로 건식 전극의 제조에 이용하기에 부적합한 문제가 있었다. 이에 따라, BET 비표면적인 작은 도전재를 이용하되, 도전재의 함량을 증대시켜서 전극의 전기적 특성을 향상시키고자 하는 시도가 있어왔다. 그러나, 도전재의 함량을 증대시키는 경우 활물질의 함량이 줄어들어 전극 용량이 저하될 수 있고, 바인더의 함량도 줄어들어 집전체와의 집전성 및 활물질 간의 결착력이 저하되어 전극 저항이 상승될 수 있는 문제들이 있다.
본 발명의 일 측면에 따르면, 상기 전극 활물질층은 BET 비표면적이 큰 도전재의 분산성이 개선됨으로써, 도전재를 적은 함량으로 포함하면서도, 전극 저항 값을 크게 낮추어 전기적 특성이 향상된 건식 전극을 제공할 수 있는 효과가 있다. 다만, 본 발명의 기전이 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 전극 도전재의 함량은 전극 활물질층 전체 중량을 기준으로 예를 들어 1 중량% 이하일 수 있다. 구체적으로, 상기 전극 도전재의 함량은 전극 활물질층 전체 중량을 기준으로 0.1 중량% 이상 1 중량% 이하 또는 0.1 중량% 이상 0.8 중량% 이하일 수 있다.
그리고 이에 따라서, 본 발명의 일 구현예에 따르면, 상기 전극 활물질층 내 전극 활물질의 함량을 증대시킬 수 있다. 본 발명의 일 구현예에 있어서, 상기 전극 활물질의 함량은 상기 전극 활물질층 전체 중량을 기준으로 95 중량% 이상, 96 중량% 이상, 97 중량% 내지 99 중량%, 97 중량% 내지 98 중량% 또는 97 중량% 내지 97.5 중량%일 수 있다.
이와 같이, 본 발명의 일 구현예에 따르면, 전극 활물질층에는 전극 도전재의 함량이 낮으면서도 전극 저항 값이 개선되는 효과를 나타낼 수 있다. 상기 전극은 예를 들어 상기 전극 활물질층 전체 중량을 기준으로 도전재 0.8 중량% 이하를 포함하면서, 전극 저항 값이 55 ohm·cm 이하를 나타낼 수 있다.
특히, 상기 전극은 하기 식 1에 따라서 전극 활물질층에 포함되는 도전재의 함량을 1 중량%로 환산하였을 때의 저항 값이 45 ohm·cm 이하를 나타내는 것일 수 있다.
[식 1]
Rt = Cw X Rw
상기 식 1에서, Rt는 도전재 1 중량%를 기준으로 환산한 전극 저항 값을 나타내며, Cw는 대상 전극에 있어서 전극 활물질층 전체 중량을 기준으로 하는 도전재의 함량, Rw는 대상 전극의 전극 저항 값을 나타낸다.
상술한 바와 같이, 본 발명의 다른 측면에 따르면, 상기 전극에 포함되는 도전재 및 바인더는 상술한 도전재 마스터 배치로부터 유래되는 것일 수 있다.
즉, 상기 '전극 도전재'는 도전재 마스터 배치에서 상술한 '도전재'일 수 있다. 이에 따라, 상기 도전재 마스터 배치에서 서술한 도전재에 대한 설명을 상기 전극의 '전극 도전재'에 대해 원용하기로 한다.
또한, 상기 '전극 바인더'는 도전재 마스터 배치에서 상술한 '바인더'를 포함할 수 있다. 이에 따라, 상기 도전재 마스터 배치에서 서술한 바인더에 대한 설명을 상기 전극의 '전극 바인더'에 대해 원용하기로 한다.
예를 들어, 상기 전극 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것일 수 있다.
또한, 상기 전극 도전재는 카본나노튜브를 단독으로, 또는 카본나노튜브 및 점형 도전재를 포함하는 것일 수 있다. 이때 상기 점형 도전재의 종류, 및 상기 카본나노튜브 및 점형 도전재의 중량비 등에 관해서는 상술한 바를 원용하기로 한다.
본 발명의 다른 측면에 따른 전극은, 상술한 도전재 마스터 배치를 이용하여 구비된 전극 활물질층을 포함함으로써 BET 비표면적이 큰 도전재의 분산성을 향상시키고, 이에 따라 전극 활물질층의 형성에 BET 비표면적이 큰 도전재가 안정적으로 포함될 수 있게 한다. 이에 따라, 전극 활물질층 내 도전재의 함량을 줄이고, 활물질의 함량을 증대시킴으로써 전극의 저항 특성이 향상된 것일 수 있다.
또한, 상기 전극 바인더는 상기 도전재 마스터 배치로부터 유래되는 PVDF계 바인더 및 PTFE계 바인더를 포함할 수 있다.
이외에도, 상기 전극 바인더는 후술하는 제조 방법, 특히 상기 혼합물 덩어리를 제조하는 공정에서 섬유화(fibrillation) 가능한 것이면 특정한 것으로 한정되는 것은 아니다. 상기 섬유화는 고분자 중합체가 세화 분할되는 처리를 말하며, 예를 들어 기계적인 전단력 등을 사용하여 수행될 수 있다. 이렇게 섬유화된 중합체 섬유는, 그 표면이 풀어져서 미세 섬유(피브릴)가 다수 발생한다.
본 발명의 일 구현예에 따르면, 상기 전극 바인더는 비제한적인 예로서, 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene, PTFE), 폴리올레핀, 또는 이들의 혼합물을 포함할 수 있고, 상세하게는, 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함할 수 있으며, 더욱 상세하게는, 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene, PTFE)일 수 있다. 구체적으로, 상기 폴리테트라플루오로에틸렌 (Polytetrafluoroethylene, PTFE)은, 전체 바인더 고분자 전체 중량을 기준으로 60중량% 이상으로 포함될 수 있다. 한편, 이때, 상기 바인더 재료에는 PEO(polyethylene oxide), PVdF(polyvinylidene fluoride), PVdF-HMP(polyvinylidene fluoride-cohexafluoropropylene), 및 폴리올레핀계 고분자 중 1종 이상이 추가로 포함될 수 있음은 물론이다.
본 발명의 일 구현예에 있어서, 상기 전극 활물질층에 포함되는 바인더 고분자는, 전극의 제조방법에서 후술하는 바와 같이, 전극용 혼합 분체의 제조를 위해 투입된 것, 즉 제2 바인더일 수도 있고, 도전재 마스터 배치의 제조를 위해 투입된 것, 즉 제1 바인더일 수도 있으며, 양 단계에서 각각 투입된 것일 수도 있다.
본 발명의 일 구현예에 있어서, 상기 전극 바인더의 결정화도는 예를 들어 15% 이하, 구체적으로 10% 이하인 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 전극 바인더는 상기 도전재 마스터 배치로부터 유래한 것을 포함할 수 있다. 예를 들어, 상기 도전재 마스터 배치는 PVDF계 바인더 고분자 및 PTFE 바인더 고분자를 포함할 수 있고, 이들 각각은 독립적으로 결정화도가 30% 이하인 것일 수 있다. 즉, 상기 도전재 마스터 배치에 포함되는 바인더의 결정화도가 30% 이하일 수 있고, 이를 이용하여 전극용 혼합 분체를 제조할 때 혼련 단계에 의해 바인더가 추가로 섬유화되면서 그 결정화도가 15% 이하의 수준까지 감소된 것을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 PTFE 바인더의 결정화도가 상기 범위를 만족하는 경우 도전재 마스터 배치를 이용하여 제조되는 전극의 물성을 향상시키는 측면에서 유리한 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 전극 바인더의 함량은 전극 활물질층 전체 중량을 기준으로 예를 들어 0.1 중량% 내지 5 중량%, 0.1 중량% 내지 4 중량%, 0.1 중량% 내지 3 중량% 또는 0.1 내지 2.5 중량% 일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 전극 활물질층은 전지의 극성에 따라서 양극 활물질 또는 음극 활물질을 포함할 수 있다.
상기 양극 활물질의 비제한적인 예로는, 예를 들어 리튬 전이금속 산화물; 리튬 금속 철인산화물; 리튬 니켈-망간-코발트 산화물; 리튬 니켈-망간-코발트 산화물에 일부가 다른 전이금속으로 치환된 산화물; 또는 이들 중 2 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구체적으로, 상기 양극 활물질은 예를 들어 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiV3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.3 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 리튬 금속 인산화물 LiMPO4 (여기서, M은 M = Fe, CO, Ni, 또는 Mn임); 리튬 니켈-망간-코발트 산화물 Li1+x(NiaCobMnc)1-xO2(x = 0 ~ 0.03, a = 0.3 ~ 0.95, b = 0.01 ~ 0.35, c = 0.01 ~ 0.5, a+b+c=1); 리튬 니켈-망간-코발트 산화물에 일부가 알루미늄으로 치환된 산화물 Lia[NibCocMndAle]1-fM1fO2 (M1은 Zr, B, W, Mg, Ce, Hf, Ta, La, Ti, Sr, Ba, F, P 및 S로 이루어진 군으로부터 선택되는 1종 이상이고, 0.8≤a≤1.2, 0.5≤b≤0.99, 0<c<0.5, 0<d<0.5, 0.01≤e≤0.1, 0≤f≤0.1); 리튬 니켈-망간-코발트 산화물에 일부가 다른 전이금속으로 치환된 산화물 Li1+x(NiaCobMncMd)1-xO2(x = 0 ~ 0.03, a = 0.3 ~ 0.95, b = 0.01 ~ 0.35, c = 0.01 ~ 0.5, d = 0.001 ~ 0.03, a+b+c+d=1, M은 Fe, V, Cr, Ti, W, Ta, Mg 및 Mo로 이루어진 군으로부터 선택된 어느 하나임), 디설파이드 화합물; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
상기 음극 활물질의 비제한적인 예로는, 예를 들어 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x ≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0≤x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SiO, SiO/C, SiO2 등의 실리콘계 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
본 발명의 일 구현예에 있어서, 상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 또한 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
본 발명의 일 구현예에 있어서, 상기 집전체는 표면에서 저항을 낮추고 접착력을 향상시키기 위한 전도성 프라이머를 전체적으로 또는 부분적으로 코팅한 것이 사용될 수 있다. 여기서, 상기 전도성 프라이머는 전도성 물질과 바인더를 포함할 수 있고, 상기 전도성 물질은 전도성을 띄는 물질이라면 한정되지 아니하나, 예를 들어, 탄소계 물질일 수 있다. 상기 바인더는, 용제에 녹을 수 있는 불소계(PVDF 및 PVDF 공중합체 포함), 아크릴계 바인더 및 수계 바인더 등을 포함할 수 있다.
도전재 마스터 배치의 제조방법
본 발명의 또 다른 측면에 따르면, 상술한 도전재 마스터 배치를 제조하는 방법이 제공된다.
본 발명의 다른 측면에 따른 도전재 마스터 배치의 제조방법은, 도전재, PVDF계 바인더 및 PTFE 바인더를 혼합하여 혼합물을 수득하는 단계, 상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계 및 상기 압출물을 분쇄하는 단계를 포함하고, 상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고, 제조되는 도전재 마스터 배치 내 상기 PVDF계 바인더 및 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것으로 한다.
본 발명의 도전재 마스터 배치의 제조방법에 있어서, 상기 도전재, PVDF계 바인더 및 PTFE 바인더는 상기 도전재 마스터 배치에서 설명한 바를 원용한다.
본 발명의 일 구현예에 있어서, 상기 도전재, PVDF계 바인더 및 PTFE 바인더의 혼합물을 수득하기 위한 혼합은 상기 도전재, PVDF계 바인더 및 PTFE 바인더가 균일하게 분포할 수 있도록 수행하는 것이며, 이들 구성 성분은 분말 형태로 혼합되는 것이므로 이들의 단순한 혼합을 가능하게 하는 것이라면 한정되지 않고 다양한 방법에 의해 혼합될 수 있다. 상기 도전재 마스터 배치는 건식 혼합으로 수행될 수 있고, 블렌더 또는 슈퍼믹서와 같은 기기에 상기 물질들을 투입하여 수행될 수 있다.
본 발명의 일 구현예에 있어서, 상기 혼합물을 수득하는 단계는 슈퍼믹서 혼합기에서 200 rpm 내지 1,700 rpm으로 1분 내지 30분 동안 혼합하는 것일 수 있다. 구체적으로, 혼합기에서 1,000 rpm 내지 1,500 rpm으로 2분 내지 7분 동안 혼합하는 것일 수 있다.
상기 도전재 마스터 배치의 제조방법은 상기 혼합물로부터 압출물을 수득하기 위해, 상기 혼합물 내 바인더를 섬유화하기 위해 혼련하고 압출하는 단계를 포함한다.
본 발명의 일 구현예에 있어서, 상기 압출물을 수득하는 단계는 예를 들어 이축압출기(twin screw extruder)를 이용하여 수행할 수 있다. 상기 압출물을 이축압출기를 통해 수득함으로써 제조되는 도전재 마스터 배치 내 상기 PVDF계 바인더 및 PTFE계 바인더 각각의 결정화도를 30% 이하로 구현하는 효과를 나타낼 수 있다.
본 발명의 일 구현예에 있어서, 상기 이축압출기 내 각각의 스크류는 예를 들어 직경(Φ)이 10 내지 40, 15 내지 35, 20 내지 30, 구체적으로 25이고, 길이(L)/직경(D)의 비율(L/D)이 40 내지 60, 45 내지 55, 예를 들어 48인 것을 이용할 수 있다.
본 발명의 일 구현예에 있어서, 상기 압출물을 수득하는 단계는 구체적으로 상기 혼합물을 상기 이축압출기에 투입하고, 100℃ 내지 300℃의 압출 온도 및 50 rpm 내지 600 rpm의 스크류 속도로 용융 혼련하여 다이를 통해 압출하여 수행할 수 있다.
본 발명의 일 구현예에 있어서, 상기 압출 온도는 예를 들어 130℃ 내지 230℃ 또는 140℃ 내지 220℃일 수 있다. 본 발명의 일 구현예에 있어서, 상기 압출 온도가 상기한 범위보다 너무 낮은 경우 바인더의 섬유화 및 혼련에 의한 혼합물의 덩어리화가 잘 이루어지지 않아 압출물이 분말 형태로 압축될 수 있고, 상기 압출 온도가 상기한 범위보다 너무 높은 경우 바인더의 결정화도가 급격히 떨어지고 열분해가 발생할 수 있는 문제가 있는바 바람직하지 않을 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 이축압출기 내 스크류 속도는 예를 들어 150 rpm 내지 450 rpm, 300 rpm 내지 450 rpm, 350 rpm 내지 450 rpm 또는 400 rpm일 수 있다.
본 발명의 일 구현예에 있어서, 상기 압출 시 다이의 형태는 직사각형 또는 원형일 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 분쇄하는 단계는 도전재 마스터 배치를 이후 전극의 제조 시에 분말 상의 활물질과의 혼합이 용이하도록 절단하는 것으로서, 상기 압출물이 적절한 크기 및 형상을 갖도록 통상의 방법에 의해 분쇄하는 것이고, 그 방법에 특별히 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 분쇄는 상기 압출물을 블렌더에 투입하고 예를 들어 5,000 rpm 내지 20,000 rpm으로 10초 내지 10분 동안 수행할 수 있다. 구체적으로, 상기 분쇄는 8,000 rpm 내지 15,000 rpm 또는 10,000 rpm으로 20초 내지 1분, 또는 30초 동안 수행할 수 있다.
이상과 같이 제조되는 도전재 마스터 배치는 도전재가 균일하게 분산된 형태를 나타내며, 투입된 PVDF계 바인더 및 PTFE 바인더 각각의 결정화도가 30% 이하를 나타낼 수 있는 특징이 있다.
이상과 같이 제조되는 도전재 마스터 배치는 전극, 특히 건식 전극의 제조에 이용될 수 있으나, 상기 도전재 마스터 배치의 용도가 이에 제한되는 것은 아니다.
전극의 제조방법
본 발명의 또 다른 측면에 따르면, 상술한 전극을 제조하는 방법이 제공되다.
본 발명의 또 다른 측면에 따른 전극의 제조방법은, 도전재 및 제1 바인더를 혼합하여 혼합물을 수득하는 단계; 상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계; 상기 압출물을 분쇄하여 도전재 마스터 배치를 수득하는 단계; 및 전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더를 포함하는 혼합물로부터 집전체의 적어도 일면 상에 전극 활물질층을 형성하는 단계;를 포함한다.
본 발명의 일 구현예에 따르면, 상기 도전재는 상기 도전재 마스터 배치에서 상술한 바를 원용할 수 있다.
본 발명의 일 구현예에 따르면, 상기 제1 바인더 및 제2 바인더 각각은 상기 전극에서 상술한 바를 원용할 수 있다. 예를 들어, 상기 제1 바인더 및 제2 바인더 각각은 서로 독립적으로 전극의 제조에 이용되는 통상의 종류가 이용될 수 있으며, 그 종류에 특별히 제한되지 않을 수 있다.
본 발명의 일 구현예에 따르면, 상기 제1 바인더는 상기 도전재 마스터 배치에 이용되는 바인더일 수 있으며, 구체적으로 PVDF계 바인더, PTFE계 바인더 또는 이들의 혼합물을 포함하는 것일 수 있다.
본 발명의 일 구현예에 따르면, 상기 제2 바인더는 전극의 제조에 이용되는 통상의 바인더일 수 있으며, 예를 들어 PVDF계 바인더, PTFE계 바인더, 폴리올레핀 바인더 또는 이들 중 2 이상의 혼합물을 포함하는 것일 수 있다.
본 발명의 또 다른 측면에 따른 전극의 제조방법은, 상술한 도전재 마스터 배치를 이용하여 전극 활물질층을 형성하는 단계를 포함하는 것일 수 있다. 즉, 상기 전극의 제조방법은 크게 도전재 마스터 배치를 제조하기 위한 공정과, 제조된 도전재 마스터 배치를 도전재로서 이용하여 전극을 제조하는 공정으로 구분될 수 있다.
이러한 측면에서, 상기 제1 바인더는 도전재 마스터 배치의 제조 공정에 이용되는 바인더일 수 있으며, 상기 제2 바인더는 상기 도전재 마스터 배치를 이용하여 전극을 제조하는 공정에서 이용되는 전극 바인더일 수 있다.
또한, 상기 도전재 마스터 배치의 제조 공정에 포함되는 혼합물을 수득하는 단계, 혼련하는 단계, 및 분쇄하는 단계 각각을 제1 혼합 단계, 제1 혼련 단계 및 제1 분쇄 단계라고 할 수 있다. 그리고, 상기 도전재 마스터 배치를 이용하여 전극을 제조하는 공정에서 혼합물을 수득하는 단계, 혼련하는 단계, 및 분쇄하는 단계 각각을 제2 혼합 단계, 제2 혼련 단계 및 제2 분쇄 단계라고 할 수 있다.
본 발명의 일 구현예에 따르면, 상기 전극의 제조방법은, 상술한 도전재 마스터 배치를 수득하는 공정, 및 전극 활물질층을 형성하는 공정을 포함한다.
본 발명의 일 구현예에 있어서, 상기 도전재 마스터 배치를 이용하여 전극을 제조하는 공정은, 집전체의 적어도 일면 상에 전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더 고분자를 포함하는 전극 활물질층을 형성하는 단계를 포함한다.
본 발명의 일 구현예에 있어서, 상기 전극 활물질층을 형성하는 단계는, 전극 활물질, 상기 도전재 마스터 배치 및 바인더 고분자(제2 바인더)로부터 전극용 혼합 분체를 제조한 후, 집전체의 적어도 일면 상에 상기 전극용 혼합 분체로부터 얻어지는 자립형 전극 필름을 라미네이션하는 공정을 포함할 수 있다.
본 발명의 또 다른 측면에 따르면, 도전재 및 제1 바인더를 혼합하여 혼합물을 수득하는 단계(제1 혼합 단계); 상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계(제1 혼련 단계); 상기 압출물을 분쇄하여 도전재 마스터 배치를 수득하는 단계(제1 분쇄 단계); 전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더를 혼합하여 혼합물을 수득하는 단계(제2 혼합 단계); 상기 제2 혼합 단계로부터 수득되는 혼합물을 고온 저전단율로 혼련하여 혼합물 덩어리를 수득하는 단계(제2 혼련 단계); 상기 혼합물 덩어리를 고전단으로 분쇄하여 전극용 혼합 분체를 수득하는 단계(제2 분쇄 단계); 상기 전극용 혼합 분체를 캘린더링하여 합제 필름을 수득하는 단계; 및 상기 합제 필름을 집전체의 적어도 일면에 위치시키고 라미네이션하여 전극을 수득하는 단계;를 포함하는 전극의 제조방법이 제공된다.
상기 도전재 마스터 배치를 수득하는 단계(제1 분쇄 단계)까지는 상술한 바를 원용한다.
상기 제2 혼합 단계, 제2 혼련 단계 및 제2 분쇄 단계는 전극용 혼합 분체를 제조하기 위한 공정이다.
상기 전극용 혼합 분체는 전극 활물질, 도전재 및 바인더를 포함하는 분말상의 전극 재료인 것으로서 예를 들어 후술하는 바와 같이 전극 활물질, 전극 도전재 및 전극 바인더를 포함하는 혼합물 덩어리가 분쇄되어 수득되는 것일 수 있다. 본 명세서에서 상기 혼합 분체는 둘 이상의 전극 재료 입자가 모여 있는 집합물을 의미한다. 상기 혼합 분체를 이루는 개개의 전극 재료 입자는 전극 활물질, 도전재 및 바인더를 포함한다.
상기 전극용 혼합 분체는 아래와 같은 제조 방법에 의해서 수득될 수 있다.
우선, 전극 활물질, 상기에서 준비된 도전재 마스터 배치 및 바인더 고분자(제2 바인더)를 포함하는 전극 재료 혼합물을 준비한다. 상기 혼합물을 제조하기 위한 혼합은 상기 혼합물 내에서 상기 전극 활물질, 도전재 마스터 배치 및 전극 바인더 등 전극 재료가 균일한 분산상을 가질 수 있도록 수행되는 것이다. 본 발명의 일 구현예에 따른 전극은 용매를 사용하지 않는 건식 전극으로 제조되므로, 상기 혼합은 용매가 투입되지 않고 분말상으로 혼합되는 것이다. 따라서, 상기 전극 재료들의 단순한 혼합을 가능하게 하는 것이라면 한정되지 아니하고, 다양한 방법에 의해 혼합이 수행될 수 있다. 예를 들어 공지의 믹서나 블렌더와 같은 기기에 상기 전극 재료들을 투입하고 교반하는 등의 방법에 의해서 수행될 수 있다.
다음으로, 상기에서 수득된 전극 재료 혼합물에 대해서 전극 바인더를 섬유화시키기 위한 섬유화 공정이 수행된다(제2 혼련 단계). 이때, 상기 바인더는 도전재 마스터 배치에 포함되는 제1 바인더 및 전극용 혼합 분체의 제조 시 추가로 투입된 제2 바인더 중 적어도 하나를 나타내는 것이다. 상기 섬유화 공정으로는 전단 응력에 의한 믹싱, 예를 들어 기계적 밀링의 방법이나 니딩(kneading)의 방법이 적용될 수 있다.
본 발명의 일 구현예에 있어서, 바람직하게는 상기 섬유화 공정으로 저전단의 혼련(니딩, kneading)의 방법이 적용될 수 있으며 예를 들어, 니더(kneader)와 같은 반죽기를 통해 수행될 수 있다. 이러한 혼련에 의해서 전극 바인더가 섬유화되면서 분말상으로 투입되었던 전극 활물질 등 전극 재료 들이 결합 또는 연결되어 혼합물 덩어리가 형성될 수 있다. 상기 혼련은 용매의 투입이 수반되지 않으므로 상기 혼합물 덩어리는 고형분 100%인 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 혼련은 10rpm 내지 100rpm의 속도로 제어될 수 있다. 예를 들어 상기 혼련은 상기 범위 내에서 40rpm 이상 또는 70rpm이하의 속도로 제어될 수 있다. 상기 혼련은 1분 내지 10분동안 수행될 수 있다. 예를 들어 상기 범위 내에서 40rpm 내지 70rpm의 속도로 3분 내지 7분동안 수행될 수 있다.
더욱 바람직하게는 상기 혼련은 5분 이내 또는 3분 이내로 수행될 수 있다. 수득된 전극용 혼합 분체에서 탭압축율이 낮을수록 분체를 이용한 전극 필름 제조 공정성이 개선되는 효과가 있는데 상기 탭 압축율은 혼련 초기에 감소하다가 일정 시점 이후에는 변화가 거의 없다. 상기 혼련 시간이 상술한 범위일 때 적절한 섬유화 정도 및 섬유화된 바인더 고분자의 인장 강도의 측면에서 바람직할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
한편, 상기 제2 혼련 단계에서 상기 혼련은 전단율이 10/s 내지 500/s의 범위로 제어될 수 있다. 본 발명의 구체적인 일 구현예에 있어서 상기 혼련은 1분 내지 30분동안 수행될 수 있으며 전단율은 30/s 내지 100/s의 범위로 제어될 수 있다.
또한, 이러한 혼련 단계는, 고온 및 상압 이상의 압력 조건에서 수행될 수 있고, 더욱 상세하게는, 상압보다 높은 압력 조건에서 수행될 수 있다. 더욱 구체적으로, 상기 혼련은 50℃ 내지 230℃의 범위, 상세하게는, 90℃ 내지 200℃에서 수행될 수 있다. 상술한 범위에서 혼련이 수행될 때, 바인더 고분자의 섬유화 정도 및 투입된 재료들의 덩어리화, 전극 필름의 용이한 필름화, 및 전극 필름의 인장 강도의 측면에서 바람직할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
또한, 상압 이상, 상세하게는 1atm 내지 60atm의 압력 하, 또는 1atm 내지 30atm의 압력 하, 또는 1atm 내지 10atm의 압력 하, 1atm 내지 10atm의 압력 하, 1.1atm 내지 10atm의 압력 하, 1.1 atm 내지 6 atm의 압력 하 또는 1.1 atm 내지 3 atm의 압력 하에서 수행될 수 있다. 상술한 범위에서 혼련이 수행될 때, 섬유의 결정화 정도 및 혼합물 덩어리의 밀도의 측면에서 바람직할 수 있다. 본 발명의 일 구현예에 따르면, 고전단 믹싱 대신 고온 및 상압 이상의 압력 조건에서의 저전단 믹싱 공정을 수행할 때, 본 발명이 의도한 효과를 바람직하게 달성하는 효과를 나타낼 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
다음으로, 상기 혼련의 단계(제2 혼련 단계)를 통해 제조된 혼합물 덩어리를 분쇄하여 분말상의 전극용 혼합 분체를 수득한다(제2 분쇄 단계).
상기 혼련 공정을 통해 수득된 혼합물 덩어리를 바로 가압하여 시트상 성형(캘린더링 공정)할 수도 있으나, 이 경우, 타겟 두께로 성형하기 위해서 강한 압력과 고온이 인가될 필요가 있고 이에 따라, 건식 전극 필름의 밀도가 너무 높아지거나 균일한 필름을 얻을 수 없는 문제가 발생할 수 있다. 이에 상기와 같이 수득된 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 만든다.
이때, 상기 분쇄는 한정되지 아니하나 블렌더 또는 그라인더 등과 같은 기기로 수행될 수 있다. 본 발명의 일 구현예에 있어서, 상기 분쇄는 구체적으로 그라인더에서 5,000rpm 내지 20,000rpm, 또는 10,000rpm 내지 18,000rpm의 속도로 수행될 수 있다. 한편, 상기 분쇄 공정은 30 초 내지 10분, 상세하게는 30초 내지 1분동안 수행될 수 있다. 상술한 범위에서 분쇄가 수행될 때, 전극용 혼합 분체의 입자 크기의 측면과 미분 발생을 제어하는 측면에서 바람직할 수 있으나, 본 발명이 이에 제한되는 것은 아니다.
본 발명의 일 구현예에 있어서, 상기 혼합물 덩어리를 분쇄한 후 분쇄된 전극용 혼합 분체를 분급하는 단계를 더 포함할 수 있다. 이로써 분급된 전극용 혼합 분체를 캘린더링하는 것일 수 있다. 상기 분급하는 단계에서는 상기 분쇄된 전극용 분체를 일정 크기 이하의 공극을 갖는 메쉬(mesh)를 이용하여 일정 크기 이상의 전극용 분체를 걸러서 수득할 수 있다.
다음으로, 상기 전극용 혼합 분체를 압착 성형하는 방법으로 합제 필름을 수득하는 단계를 포함한다. 본 명세서에서 상기 전극용 혼합 분체를 압착하여 시트상의 건식 전극 필름을 제조하는 공정을 캘린더링 공정이라고 설명한다. 상기 캘린더링 공정에 의해서 상기 건식 전극 필름은 소정 두께를 갖는 시트(sheet)의 형태로 준비될 수 있다. 예를 들어, 상기 건식 전극 필름은 종횡비가 1을 초과하는 스트립(strip)의 형태를 갖는 것일 수 있다. 본 발명의 일 실시양태에 있어서, 상기 건식 전극 필름은 두께가 50㎛ 내지 300㎛일 수 있다.
예를 들어 상기 캘린더링 공정은 상기 전극용 혼합 분체를 캘린더 장치에 공급하고 캘린더 장치에 포함된 롤 프레스(들)을 이용해서 열압착하는 캘린더링 방법으로 수행될 수 있다. 또한, 상기 캘린더링 공정은 롤투롤 연속 공정에 의해서 수행될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 캘린더 장치는 두 개의 롤러가 마주보도록 배치되어 있는 롤 프레스부를 포함할 수 있으며, 전극용 혼합 분체가 상기 롤 프레스부를 통과하여 시트 형상으로 압착될 수 있다. 상기 롤 프레스부는 연속적으로 복수 개 배치되어 있어 건식 전극 필름의 압착이 복수 회 수행될 수 있다. 롤 프레스부의 개수는 건식 전극 필름의 두께나 압연율을 고려하여 적절하게 조절될 수 있다.
도 1은 상기 캘린더링 공정(100)을 개략적으로 도식화하여 나타낸 것이다. 이를 참조하면, 복수의 캘린더링용 롤러(110)가 포함된 캘린더 장치에 의해서 전극용 혼합 분체(120)의 가압이 복수회 수행되어 전극용 합제 필름(130)이 제조된다. 상기 전극용 합제 필름은 용매를 사용하지 않고 제조되었으므로 건식 전극 필름이라고도 할 수 있다.
한편, 상기 각 롤 프레스부는 각각 독립적으로 두 롤러의 회전 속도비가 1:1 내지 1:10의 범위 내에서 적절하게 제어될 수 있다. 예를 들어서 어느 하나 이상의 롤 프레스부에서 두 롤러의 회전 속도비가 1:1 내지 1:3의 비율로 제어되는 것이다. 또한, 각각 독립적으로 각 롤 프레스부의 롤러의 온도는 상온(25℃) 내지 250℃의 범위로 제어될 수 있다. 이와 같은 캘린더링 공정에 의해서 합제 필름이 제조될 수 있다.
본 발명의 일 구현예에 있어서, 상기 합제 필름은 기공도가 20vol% 내지 50vol%일 수 있으며 상기 범위 내에서 바람직하게는 상기 범위 내에서 40vol% 이하 또는 35 vol% 이하의 값으로 제어될 수 있다. 기공도가 상기 범위를 만족하는 경우, 다양한 효과 측면에서 바람직하다. 본 발명의 일 구현예에 있어서, 상기 기공도는 합제 필름의 겉보기 밀도를 측정하고, 각 구성 성분의 실제 밀도와 조성을 기준으로 계산한 실제 밀도를 이용하여 하기와 같은 [식 2]에 의해 구할 수 있다.
[식 2]
기공도(%) = {1 - (겉보기 밀도/실제 밀도)} x 100
본 발명의 일 구현예에 있어서, 상기 합제 필름은 인장 강도가 0.2 MPa 이상일 수 있다. 본 발명의 일 구현예에 있어서, 상기 합제 필름의 인장 강도는 0.2 MPa 이상, 0.3 MPa 이상 또는 0.50 MPa 이상일 수 있다.
상기 인장 강도는 다음과 같은 방법에 따라 측정한 값을 나타낼 수 있다.
제조된 필름을 가로x세로 1 cm X 10 cm 크기로 절단하여 시편을 준비한다. ASTM(American Society for Testing and Materials) D 638 표준 기준에 따르고, UTM (ZwichRoell 社) 장비를 이용하여 pre-load 0.01 kg/cm, test speed 5 mm/min 조건으로 준비된 시편의 양 끝단을 잡아당긴다. 이때, 파단 시 시편에 가해진 힘을 시편의 초기 단면적으로 나누어 인장 강도를 측정한다. 3회 측정하여 평균값으로 나타낸다.
캘린더링 이후 수득되는 합제 필름을 집전체의 적어도 일면에 형성시키기 위한 라미네이션을 수행한다.
본 발명의 일 구현예에 있어서, 상기 라미네이션은, 상기 합제 필름을 집전체 상에 소정의 두께로 압연, 부착시키는 단계일 수 있다. 상기 라미네이션 또한 라미네이션 롤에 의해 수행될 수 있고, 이때, 라미네이션 롤은 상온(25℃) 내지 200℃의 온도로 유지될 수 있으나, 이에 한정되는 것은 아니다.
도 2는 본 발명의 일 구현예에 따른 라미네이션 공정(200)을 개략적으로 도식화하여 나타낸 것이다. 이를 참조하면 전극 합제 필름(230)이 집전체(220)과 접합되어 건식 전극(240)이 제조되며 상기 라미네이션 공정은 라미네이션 롤러(210)에 의한 가압에 의해서 수행된다. 한편, 본 발명에 있어서, 라미네이션을 통해 집전체에 부착된 전극 합제 필름을 전극 활물질층으로 지칭할 수 있다. 또한, 본 발명에 있어서, 상기 전극 합제 필름, 즉 전극 활물질층은 상기 전극용 혼합 분체에서 유래된 것으로서, 상기 전극 활물질층에서 상기 재료들의 함량비는 상기 혼합 분체와 같은 범위를 가질 수 있다.
이상의 방법에 따라서 상술한 전극이 제조될 수 있다.
이에 따라 제조되는 전극은, 55 ohm·cm 이하의 전극 저항을 갖는 것일 수 있다.
전기화학소자
본 발명의 또 다른 측면에 따르면 상술한 전극을 포함하는 전기화학소자가 제공된다.
상기 전기화학소자는, 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리층을 포함하며, 상기 양극 및 음극 중 적어도 하나 이상이 상술한 전극인 것으로 한다.
본 발명의 일 구현예에 있어서, 상기 분리층은 전기화학소자에 사용되는 통상의 분리막, 고체 전해질막 또는 이들 모두를 포함하는 구성일 수 있으며, 양극과 음극의 직접적인 접촉을 방지하기 위한 구성이라면 특별히 제한되지 않는다.
본 발명의 일 구현예에 있어서, 상기 전기화학소자는 전기 화학 반응을 하는 모든 소자를 포함한다. 구체적인 예를 들면, 모든 종류의 1차, 이차 전지, 연료 전지, 태양 전지 또는 수퍼 캐패시터 소자와 같은 캐퍼시터(capacitor) 등이 있다. 특히, 상기 2차 전지 중 리튬 금속 이차 전지, 리튬 이온 이차 전지, 리튬 폴리머 이차 전지 또는 리튬 이온 폴리머 이차 전지 등을 포함하는 리튬 이차전지가 바람직하다.
상기 이차전지의 구체적인 구조 등은 종래에 알려진 바와 같으므로, 본 명세서에는 설명을 생략한다.
본 발명에 따른 이차 전지는 에너지 저장 장치 내 단위전지로서 포함될 수 있으나, 본 발명의 용도가 이에 제한되는 것은 아니다.
상기 에너지 저장 장치의 구체적인 구조 등은 종래에 알려진 바와 같으므로, 본 명세서에는 설명을 생략한다.
이하, 실시예를 통해 본 발명을 더욱 상술하지만, 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범주가 이들만으로 한정되는 것은 아니다.
제조예 1. 도전재 마스터 배치의 제조
하기의 방법에 따라서 도전재 마스터 배치를 제조하였다.
실시예 1
PVDF-HFP (융점 118℃) 40 wt%, PTFE (융점 348℃) 10 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 50 wt%를 슈퍼 믹서(㈜ 희성테크윈, 20L Super Mixer)에 투입하고, 1,200rpm에서 3분 동안 혼합하여 혼합물을 제조하였다.
얻어진 혼합물은 정량 피더를 통해 2~3kg/hr로 이축압출기(직경 Φ25, L/D 48 )에 공급하고, 압출기 히터 #1~9존 온도 130~200℃ 스크류 속도 400rpm으로 용융 혼련하여 다이를 통해 압출하였다.
얻어진 압출물을 블렌더(㈜ 신일분산기)에 투입하고 10,000rpm에서 30초 동안 분쇄하여 도전재 마스터 배치를 수득하였다.
실시예 2
PVDF (융점 174℃) 40 wt%, PTFE (융점 347℃) 10 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 50 wt%를 슈퍼 믹서(㈜ 희성테크윈, 20L Super Mixer)에 투입하고, 1,200rpm에서 3분 동안 혼합하여 혼합물을 제조하였다.
얻어진 혼합물은 정량 피더를 통해 2~3kg/hr로 이축압출기(직경 Φ25, L/D 48)에 공급하고, 압출기 히터 #1~9존 온도 140~220℃, 스크류 속도 400rpm으로 용융 혼련하여 다이를 통해 압출하였다.
얻어진 압출물을 블렌더에 투입하고 10,000rpm에서 30초 동안 분쇄하여 도전재 마스터 배치를 수득하였다.
실시예 3
PVDF (융점 174℃) 30 wt%, PTFE (융점 348℃) 10 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 60 wt%를 이용한 것 외에 실시예 2와 동일한 방법에 따라서 도전재 마스터 배치를 수득하였다.
실시예 4
PVDF-HFP (융점 118℃) 20 wt%, PTFE (융점 348℃) 20 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 60 wt%를 투입한 것 외에 실시예 1과 동일한 방법에 따라 도전재 마스터 배치를 제조하였다.
비교예 1
PVDF-HFP (융점 118℃) 70 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 30 wt%를 블렌더(㈜ 신일분산기)에 투입하고, 10,000 rpm에서 1분 동안 혼합하여 혼합물을 수득하였다.
로터 믹서(엘엠테크社, PBV-0.1)의 온도를 160℃로 안정화시키고, 상기에서 얻어진 혼합물을 로터 믹서에 넣은 다음 50rpm의 속도로 10분 동안 용융 혼련하여 도전재 마스터 배치를 수득하였다.
비교예 2
PVDF-HFP (융점 118℃) 35 wt%, PTFE (융점 347℃) 35 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 30 wt%를 블렌더(엘엠테크社, PBV-0.1)에 투입하고, 10,000 rpm에서 1분 동안 혼합하여 혼합물을 수득하였다.
로터 믹서의 온도를 160℃로 안정화시키고, 상기에서 얻어진 혼합물을 로터 믹서에 넣은 다음 50 rpm의 속도로 10분 동안 용융 혼련하여 혼합물 덩어리를 수득하였다.
수득된 혼합물 덩어리를 블렌더((주)신일분산기)에 투입하고 10,000 rpm에서 30초 동안 분쇄하여 도전재 마스터 배치를 수득하였다.
비교예 3
PVDF-HFP (융점 118℃) 40 wt%, PTFE (융점 348℃) 10 wt% 및 CNT (직경(D50) 12 nm, BET 비표면적 185 m2/g) 50 wt%를 이용한 것 외에 비교예 2와 동일한 방법에 따라서 도전재 마스터 배치를 수득하였다.
평가예 1. 도전재 마스터 배치의 물성 평가
상기에서 제조한 도전재 마스터 배치의 사진을 도 1에 도시하고, SEM (㈜ 히타치, S4800) 이미지를 도 2에 도시하였다. 도 2에는 참고를 위해 도전재 마스터 배치의 제조에 이용한 CNT 원재료의 SEM 이미지를 함께 도시하였다.
또한, DSC (TA Instrument, DSC 25) 열분석을 통해 도전재 마스터 배치 내 각각의 바인더의 결정화도를 측정한 결과를 표 1에 도시하였다.
결정화도 측정 방법
시차주사열량분석기(DSC)에 샘플 5~12 mg을 넣고, 질소 분위기 25~360℃ 온도범위에서 10℃/min 속도로 승온하면서 융점, 용융열(△Hm)을 측정하고, 바인더 종류에 따른 결정 융해열(△Hm°)을 기준으로 하기 식에 따라 결정화도를 측정하였다.
바인더의 결정화도(Xc) = △Hm/△Hm° X 100 (%)
PVDF 바인더의 100% 결정 융해열(△Hm°)은 105 J/g이며, PVDF-HFP 바인더의 100% 결정 융해열(△Hm°)은 80 J/g이며, PTFE 바인더의 100% 결정 융해열(△Hm°)은 85.4 J/g의 값을 참고하여 측정하였다.
CTN 분산성 평가 방법
도 2와 같이 SEM 이미지 내 CNT 번들 직경 및 나노 섬유의 직경을 측정함으로써 분산성을 평가하였다.
구분 원재료 함량 (중량부) CNT
BET 비표면적
(m2/g)
용융 혼련 CNT 분산성
평가 결과
결정화도 (%)
PVDF-HFP PVDF PTFE CNT PVDF-HFP PVDF PTFE
실시예 1 40 - 10 50 185 이축압출기 nano fiber 6 - 0
실시예 2 - 40 10 50 185 이축압출기 nano fiber - 26 14
실시예 3 - 30 10 60 185 이축압출기 nano fiber - 25 9
비교예 1 70 - - 30 185 로터믹서 100 ㎛ 이상 bundle 덩어리 - - -
비교예 2 35 - 35 30 185 로터믹서 50-100 ㎛ bundle 덩어리 19 - 81
비교예 3 40 - 10 50 185 로터믹서 50-100 ㎛ bundle 덩어리 및 nano fiber 10 - 32
도 1에 도시된 실시예 1 내지 3, 비교예 1 내지 3의 사진을 참고하면, PTFE 바인더를 이용하지 않은 비교예 1은 분말 상의 원재료들이 뭉쳐지지 않아서 목적하는 도전재 마스터 배치로 이용할 수 없음을 확인하였다.
도 2에 도시된 실시예 1 내지 3, 비교예 1 내지 3의 SEM 이미지를 참고하면, 로터믹서를 이용하여 혼련하여 제조한 비교예 1 및 비교예 2는 CNT가 균일하게 분산되지 않고 다발(bundle) 형태로 뭉쳐져 있는 것을 확인하였다.
표 1의 결과에 따르면, 비교예 1 내지 3의 경우 이축압출기를 이용하지 않고 용융 혼련하는 경우 혼련 및 압출이 불안정하여 PTFE의 결정화도가 30%를 초과하도록 구현된 결과, 목적하는 도전재 마스터 배치로 이용할 수 없음을 확인하였다.
제조예 2. 전극의 제조
상기에서 제조한 도전재 마스터 배치를 이용하여 하기의 방법에 따라서 전극을 제조하였다.
실시예 5
양극 활물질로 리튬 니켈코발트망간알루미늄 옥사이드(NCMA, Li[Ni0.73Co0.05Mn0.15Al0.02]O2), 상기 실시예 1에서 제조한 도전재 마스터 배치 및 폴리테트라플루오로에틸렌(PTFE)를 중량비로 97:1.6:1.4의 비율로 블렌더에 투입하고 10,000 rpm에서 1분 동안 믹싱하여 혼합물을 제조하였다. 니더의 온도를 180℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 4 기압 하에서 40rpm의 속도로 혼련하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10,000rpm 조건 하에서 30초 동안 분쇄하여 1mm 기공을 갖는 체로 분급하여 전극용 혼합 분체를 수득하였다. 이때 제조된 전극용 혼합 분체 내 PVDF-HFP의 결정화도가 0%이고, PTFE의 결정화도가 6.8%이었다.
다음으로 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.5)에 투입하여 압착하여 전극 합제 필름을 제조하였다. 다음으로 상기 수득된 전극 합제 필름을 알루미늄 박막(13㎛)의 양면에 위치시키고 30℃ 롤 온도의 롤 프레스를 통해 라미네이션하여 전극을 수득하였다.
실시예 6
양극 활물질로 리튬 니켈코발트망간알루미늄 옥사이드(NCMA, Li[Ni0.73Co0.05Mn0.15Al0.02]O2), 상기 실시예 4의 도전재 마스터 배치 및 폴리테트라플루오로에틸렌(PTFE)를 중량비로 97:1.34:1.66의 비율로 이용한 것을 제외하고 실시예 5와 동일한 방법으로 전극을 수득하였다.
이때 제조된 전극용 혼합 분체 내 PVDF-HFP의 결정화도가 0%이고, PTFE의 결정화도가 10.6%이었다.
비교예 3
도전재 마스터 배치로서 비교예 3의 도전재 마스터 배치를 이용한 것을 제외하고 실시예 5와 동일한 방법으로 전극을 수득하였다.
이때 제조된 전극용 혼합 분체 내 PVDF-HFP의 결정화도가 0%이고, PTFE의 결정화도가 15.6%이었다.
비교예 4
양극 활물질로 리튬 니켈코발트망간알루미늄 옥사이드(NCMA, Li[Ni0.73Co0.05Mn0.15Al0.02]O2) 96.3 wt%, PTFE (융점 348℃) 2.2 wt% 및 카본 블랙 (BET 비표면적 65 m2/g) 1.5 wt%를 슈퍼 믹서(㈜ 희성테크윈, 20L Super Mixer)에 투입하고, 1,200rpm에서 3분 동안 혼합하여 혼합물을 제조하였다.
니더의 온도를 180℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 4 기압 하에서 40rpm의 속도로 7분 동안 혼련하여 혼합물 덩어리를 수득하였다.
이후 실시예 5와 동일한 방법에 따라 전극을 수득하였다.
평가예 2. 전극용 혼합 분체의 조성 및 전극 바인더의 결정화도 평가
상기 실시예 5, 실시예 6, 비교예 3 및 비교예 4의 전극 제조에 이용된 전극용 혼합 분체의 조성을 하기 표 2에 요약하여 나타내었다.
또한, 제조된 전극용 혼합 분체 내에 포함된 전극 바인더의 결정화도를 측정하여 그 결과를 하기 표 2에 함께 나타내었다.
바인더의 결정화도는 다음과 같은 방법에 따라 측정하였다. 바인더의 결정화도는 평가예 1과 동일한 방법으로 측정하였다.
구분 전극용 혼합 분체의 조성 전극 바인더의
결정화도(%)
도전재 구분 BET
(m2/g)
활물질 함량(wt%) 도전재 함량(wt%) 제1 바인더 고분자 함량(wt%) 제2 바인더 고분자 함량(wt%) PVDF-HFP PTFE
실시예 5 CNT 도전재 마스터 배치 CNT, 185 97 0.8 0.8 1.4 0 6.8
실시예 6 CNT, 185 97 0.8 0.54 1.66 0 10.6
비교예 3 CNT, 185 97 0.8 0.8 1.4 0 15.6
비교예 4 카본 블랙 카본 블랙, 65 96.3 1.5 - 2.2 - 5.1
상기 표 2를 통해, CNT 도전재 마스터 배치를 이용하면 전극용 혼합 분체 내 도전재의 함량을 낮추고, 활물질의 함량을 향상시킬 수 있음을 확인하였다.
또한, CNT 도전재 마스터 배치를 이용할 때 용융 혼련 단계에서 로터 믹서를 이용하는 비교예 3 대비 이축 압출기를 이용한 실시예 5, 6의 경우 전극용 혼합 분체 내 전극 바인더의 결정화도가 15% 이하를 나타내는 것을 확인하였다.
평가예 3. 전극의 물성 평가
상기 실시예 1, 실시예 2, 비교예 1 및 비교예 2에서 제조한 전극 합제 필름의 인장 강도와, 전극의 저항 값을 각각 하기 표 3에 나타내었다.
또한, 하기 표 3에는 전극 저항 값으로서 도전재 1 중량% 함량 기준으로 변환한 전극 저항 값을 함께 나타내었다.
전극 합제 필름의 인장 강도 측정
제조된 필름을 가로x세로 1 cm X 10 cm 크기로 절단하여 시편을 준비하였다. ASTM(American Society for Testing and Materials) D 638 표준 기준에 따르고, UTM (ZwichRoell 社) 장비를 이용하여 pre-load 0.01 kg/cm, test speed 5 mm/min 조건으로 준비된 시편의 양 끝단을 잡아당겼다.
이때, 파단 시 시편에 가해진 힘을 시편의 초기 단면적으로 나누어 인장 강도를 측정하였다. 3회 측정하여 평균값으로 나타내었다.
전극의 저항 측정
Multi-probe Tester(HIOKI, RM2610)에 준비된 전극 시료를 넣고, 전류 양극 100 μA, 음극 10 mA, 전압 0.5V 조건에서 각각의 Probe(45개) 사이에서 측정되는 전위차를 측정하여 전극 저항 값으로 나타내었다.
전극 저항 값의 환산
하기 식 1에 따라서 측정된 전극 저항 값을 도전재 1 중량% 기준으로 환산하였다.
[식 1]
Rt = Cw X Rw
상기 식에서, Rt는 도전재 1 중량%를 기준으로 환산한 전극 저항 값을 나타내며, Cw는 대상 전극에 있어서 전극 활물질층 전체 중량을 기준으로 하는 도전재의 함량, Rw는 대상 전극의 전극 저항 값을 나타낸다.
구분 전극 합제 필름의 물성 전극의 물성 전극의 물성
인장 강도(MPa) 측정 저항 값(ohm.cm) 환산 저항 값(ohm.cm)
실시예 5 0.54 53.98 43.18
실시예 6 0.56 52.49 41.99
비교예 3 0.68 144.85 115.88
비교예 4 0.84 57.56 86.34
상기 표 3에 따르면, 전극용 합제 필름의 제조 시 CNT 도전재 마스터 배치를 이용한 실시예 5 및 실시예 6의 경우 인장 강도를 0.2 MPa 이상으로 우수하게 유지하면서도, 전극 저항 값이 크게 향상되는 것으로 확인되었다.
특히, 실시예 5 및 실시예 6은 도전재를 1 중량% 미만의 함량으로 포함하면서도 전극 저항 값을 55 ohm.cm 이하를 나타내었다. 실시예 5 및 실시예 6의 전극 저항을 도전재의 함량 1 중량%를 기준을 환산하였을 때 비교예 3 및 비교예 4 대비 전극 저항 값이 현저히 개선된 것으로 확인되었다.
이처럼, 실시예 5, 실시예 6의 경우 전극 저항 값이 크게 개선되는 것으로 확인되었으며, 이는 전극용 혼합 분체 및 전극용 합제 필름의 제조에 CNT 도전재 마스터 배치를 이용함으로써 BET 비표면적이 큰 도전재의 분산성이 향상된 점, 전극용 혼합 분체 내 바인더의 결정화도가 낮아진 점, 활물질의 함량을 증대시킨 점으로부터 유래한 특성으로 확인되었다.
이상 본 발명의 실시예 및 도면을 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.
[부호의 설명]
100: 캘린더링 공정
110: 캘린더링용 롤러
120: 전극용 혼합 분체
130: 전극용 합제 필름
200: 라미네이션 공정
210: 라미네이션 롤러
220: 집전체
230: 전극 합제 필름
240: 건식 전극

Claims (27)

  1. 도전재, PVDF계 바인더 및 PTFE 바인더를 포함하고,
    상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고,
    상기 PVDF계 바인더 및 상기 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것을 특징으로 하는 도전재 마스터 배치.
  2. 청구항 1에 있어서,
    상기 도전재는 카본나노튜브 단독, 또는 상기 도전재는 카본나노튜브 및 점형 도전재를 포함하는 것을 특징으로 하는 도전재 마스터 배치.
  3. 청구항 2에 있어서,
    상기 도전재는 카본나노튜브 및 점형 도전재를 포함하고,
    상기 점형 도전재는 카본블랙, 활성카본, 흑연 또는 이들 중 2 이상의 혼합물인 것을 특징으로 하는 도전재 마스터 배치.
  4. 청구항 2에 있어서,
    상기 카본나노튜브 및 상기 점형 도전재의 중량비는 100:0 내지 10:90인 것을 특징으로 하는 도전재 마스터 배치.
  5. 청구항 2에 있어서,
    상기 카본나노튜브는 나노 파이버 형태로 분산되어 있는 형태인 것을 특징으로 하는 도전재 마스터 배치.
  6. 청구항 2에 있어서,
    상기 카본나노튜브의 직경은 0.1 내지 50 nm인 것을 특징으로 하는 도전재 마스터 배치.
  7. 청구항 1에 있어서,
    상기 PVDF계 바인더가 PVDF, PVDF-HFP 또는 이들의 혼합물을 포함하는 것을 특징으로 하는 도전재 마스터 배치.
  8. 청구항 1에 있어서,
    상기 도전재 20 내지 70 중량부, 상기 PVDF계 바인더 5 내지 60 중량부 및 상기 PTFE 바인더 0.1 내지 50 중량부를 포함하는 것을 특징으로 하는 도전재 마스터 배치.
  9. 집전체; 및 상기 집전체의 적어도 일면에 형성된 전극 활물질층을 포함하고,
    상기 전극 활물질층은 전극 활물질, 전극 도전재 및 전극 바인더를 포함하고,
    상기 전극 바인더가 섬유화되어 상기 전극 활물질 및 전극 도전재를 결착하고 있으며,
    55 ohm·cm 이하의 전극 저항을 갖는 것을 특징으로 하는 전극.
  10. 청구항 9에 있어서,
    상기 전극 도전재의 함량은 상기 전극 활물질층 전체 중량을 기준으로 1 중량% 이하인 것을 특징으로 하는 전극.
  11. 청구항 9에 있어서,
    상기 전극 바인더의 결정화도가 15% 이하인 것을 특징으로 하는 전극.
  12. 청구항 9에 있어서,
    상기 전극 활물질의 함량은 상기 전극 활물질층 전체 중량을 기준으로 95 중량% 이상인 것을 특징으로 하는 전극.
  13. 청구항 9에 있어서,
    상기 전극 도전재는 BET 비표면적이 80 m2/g 이상인 탄소 재료를 포함하는 것을 특징으로 하는 전극.
  14. 청구항 9에 있어서,
    상기 전극 도전재는 카본나노튜브 단독, 또는 상기 도전재는 카본나노튜브 및 점형 도전재를 포함하는 것을 특징으로 하는 전극.
  15. 청구항 14에 있어서,
    상기 전극 도전재는 카본나노튜브 및 점형 도전재를 포함하고,
    상기 점형 도전재는 카본블랙, 활성카본, 흑연 또는 이들 중 2 이상의 혼합물인 것을 특징으로 하는 전극.
  16. 청구항 14에 있어서,
    상기 카본나노튜브 및 상기 점형 도전재의 중량비는 100:0 내지 10:90인 것을 특징으로 하는 전극.
  17. 청구항 9에 있어서,
    상기 전극 도전재 및 상기 전극 바인더는 청구항 1 내지 청구항 8 중 어느 한 항에 따른 도전재 마스터 배치로부터 유래된 것을 포함하는 것을 특징으로 하는 전극.
  18. 도전재, PVDF계 바인더 및 PTFE 바인더를 혼합하여 혼합물을 수득하는 단계;
    상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계; 및
    상기 압출물을 분쇄하는 단계;를 포함하고,
    상기 도전재는 80 m2/g 이상의 BET 비표면적을 갖는 것이고,
    제조되는 도전재 마스터 배치 내 상기 PVDF계 바인더 및 PTFE 바인더의 결정화도는 각각 독립적으로 30% 이하인 것을 특징으로 하는 도전재 마스터 배치의 제조방법.
  19. 청구항 18에 있어서,
    상기 혼합물을 수득하는 단계는, 혼합기에서 200 rpm 내지 1,700 rpm으로 1분 내지 30분 동안 혼합하는 것을 특징으로 하는 도전재 마스터 배치의 제조방법.
  20. 청구항 18에 있어서,
    상기 압출물을 수득하는 단계는, 상기 혼합물을 이축압출기(twin screw extruder)에 투입하고 100℃ 내지 300℃의 압출 온도 및 50 rpm 내지 600 rpm의 스크류 속도로 용융 혼련하여 다이를 통해 압출하는 것을 특징으로 하는 도전재 마스터 배치의 제조방법.
  21. 청구항 18에 있어서,
    상기 분쇄는, 500 rpm 내지 20,000 rpm으로 5초 내지 10분 동안 수행하는 것을 특징으로 하는 도전재 마스터 배치의 제조방법.
  22. 도전재 및 제1 바인더를 혼합하여 혼합물을 수득하는 단계;
    상기 혼합물을 혼련하고 압출하여 압출물을 수득하는 단계;
    상기 압출물을 분쇄하여 도전재 마스터 배치를 수득하는 단계; 및
    전극 활물질, 상기 도전재 마스터 배치, 및 제2 바인더를 포함하는 혼합물로부터 집전체의 적어도 일면 상에 전극 활물질층을 형성하는 단계;를 포함하는 것을 특징으로 하는 전극의 제조방법.
  23. 청구항 22에 있어서,
    상기 전극 활물질층을 형성하는 단계는,
    상기 전극 활물질, 상기 도전재 마스터 배치, 및 상기 제2 바인더를 혼합하여 혼합물을 수득하는 단계;
    상기 수득되는 혼합물을 고온 저전단율로 혼련하여 혼합물 덩어리를 수득하는 단계;
    상기 혼합물 덩어리를 고전단으로 분쇄하여 전극용 혼합 분체를 수득하는 단계;
    상기 전극용 혼합 분체를 캘린더링하여 합제 필름을 수득하는 단계; 및
    상기 합제 필름을 상기 집전체의 적어도 일면에 위치시키고 라미네이션하는 단계;를 포함하는 것을 특징으로 하는 전극의 제조방법.
  24. 청구항 22에 있어서,
    상기 제1 바인더의 결정화도가 30% 이하인 것을 특징으로 하는 전극의 제조방법.
  25. 청구항 23에 있어서,
    상기 합제 필름의 인장강도가 0.2 MPa 이상인 것을 특징으로 하는 전극의 제조방법.
  26. 청구항 22에 있어서,
    제조되는 전극은 55 ohm·cm 이하의 전극 저항을 갖는 것을 특징으로 하는 전극의 제조방법.
  27. 양극, 음극 및 상기 양극과 음극 사이에 개재된 분리층을 포함하며,
    상기 양극 및 음극 중 적어도 하나 이상은 청구항 9 내지 청구항 17 중 어느 한 청구항에 따른 전극인 것을 특징으로 하는 전기화학소자.
PCT/KR2023/005409 2022-04-20 2023-04-20 도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극 WO2023204643A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2024513247A JP2024532391A (ja) 2022-04-20 2023-04-20 導電材マスターバッチ及びこれを用いて製造された乾式電極
US18/690,925 US20240266542A1 (en) 2022-04-20 2023-04-20 Conductive Material Master Batch and Dry Electrode Obtained By Using the Same
CN202380013396.0A CN117981123A (zh) 2022-04-20 2023-04-20 导电材料母料和使用该母料获得的干电极

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0049192 2022-04-20
KR20220049192 2022-04-20
KR20220049191 2022-04-20
KR10-2022-0049191 2022-04-20

Publications (1)

Publication Number Publication Date
WO2023204643A1 true WO2023204643A1 (ko) 2023-10-26

Family

ID=88420205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/005409 WO2023204643A1 (ko) 2022-04-20 2023-04-20 도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극

Country Status (4)

Country Link
US (1) US20240266542A1 (ko)
JP (1) JP2024532391A (ko)
KR (2) KR102700484B1 (ko)
WO (1) WO2023204643A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123874A (ja) * 1998-10-16 2000-04-28 Matsushita Electric Ind Co Ltd 固体電解質成型体、電極成型体および電気化学素子
KR20030034427A (ko) * 2001-10-23 2003-05-09 삼성에스디아이 주식회사 극판, 이를 채용한 리튬전지 및 극판 제조방법
KR20100006396A (ko) * 2008-07-09 2010-01-19 주식회사 엘지화학 도전성이 개선된 이차전지의 전극 활물질층 형성방법 및이로부터 제조된 이차전지의 전극
KR20160146580A (ko) * 2015-06-12 2016-12-21 주식회사 엘지화학 양극 합제 및 이를 포함하는 이차전지
KR20210006899A (ko) * 2018-05-14 2021-01-19 맥스웰 테크놀러지스 인코포레이티드 감소된 바인더 함량을 갖는 건식 전극 필름용 조성물 및 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6898731B2 (ja) * 2016-12-27 2021-07-07 三井金属鉱業株式会社 リチウム二次電池用正極電極
KR102261501B1 (ko) * 2017-09-29 2021-06-07 주식회사 엘지에너지솔루션 전극 합제의 제조 방법 및 전극 합제

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123874A (ja) * 1998-10-16 2000-04-28 Matsushita Electric Ind Co Ltd 固体電解質成型体、電極成型体および電気化学素子
KR20030034427A (ko) * 2001-10-23 2003-05-09 삼성에스디아이 주식회사 극판, 이를 채용한 리튬전지 및 극판 제조방법
KR20100006396A (ko) * 2008-07-09 2010-01-19 주식회사 엘지화학 도전성이 개선된 이차전지의 전극 활물질층 형성방법 및이로부터 제조된 이차전지의 전극
KR20160146580A (ko) * 2015-06-12 2016-12-21 주식회사 엘지화학 양극 합제 및 이를 포함하는 이차전지
KR20210006899A (ko) * 2018-05-14 2021-01-19 맥스웰 테크놀러지스 인코포레이티드 감소된 바인더 함량을 갖는 건식 전극 필름용 조성물 및 방법

Also Published As

Publication number Publication date
KR20240128657A (ko) 2024-08-26
KR20230149759A (ko) 2023-10-27
JP2024532391A (ja) 2024-09-05
KR102700484B1 (ko) 2024-08-30
US20240266542A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
WO2021066458A1 (ko) 복합 음극 활물질, 이의 제조방법, 및 이를 포함하는 음극
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2021141376A1 (ko) 선분산제 조성물, 이를 포함하는 전극 및 이차전지
WO2022086247A1 (ko) 이차전지용 건식 전극을 제조하기 위한 전극용 분체, 이의 제조방법, 이를 사용한 건식 전극의 제조방법, 건식 전극, 이를 포함하는 이차전지, 에너지 저장장치, 및 건식 전극 제조장치
WO2017074124A1 (ko) 도전재 분산액 및 이를 이용하여 제조한 리튬 이차전지
WO2017099481A1 (ko) 이차전지용 양극 및 이를 포함하는 이차전지
WO2023282684A1 (ko) 리튬 이차 전지용 음극, 리튬 이차 전지용 음극의 제조 방법 및 음극을 포함하는 리튬 이차 전지
WO2017209561A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이를 포함하는 리튬 이차전지
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2022260412A1 (ko) 전극, 이를 포함하는 리튬전지 및 이의 제조방법
WO2023204643A1 (ko) 도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극
WO2024128775A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 이의 제조방법
WO2024111906A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2023204636A1 (ko) 이차전지용 건식 전극의 제조방법
WO2023204644A1 (ko) 전기화학소자용 전극
WO2022139116A1 (ko) 폐-양극 활물질을 이용한 리튬 이차전지용 양극 활물질의 제조 방법
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2023204646A1 (ko) 전극조립체, 및 이를 포함하는 이차전지
WO2023059039A1 (ko) 전극, 이를 포함하는 이차전지, 및 이의 제조 방법
WO2022139385A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2022139289A1 (ko) 양극 활물질 및 이를 포함하는 리튬 이차 전지
WO2023204650A1 (ko) 건식 전극용 혼합 분체 및 이를 포함하는 전기화학소자용 건식 전극
WO2023014127A1 (ko) 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법
WO2015111801A1 (ko) 폴리아닐린 나노페이스트 및 이의 제조방법
WO2024029906A1 (ko) 전극 및 이를 포함하는 전기화학소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23792217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024513247

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202380013396.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18690925

Country of ref document: US