Nothing Special   »   [go: up one dir, main page]

WO2023282154A1 - Polyamide composition - Google Patents

Polyamide composition Download PDF

Info

Publication number
WO2023282154A1
WO2023282154A1 PCT/JP2022/026067 JP2022026067W WO2023282154A1 WO 2023282154 A1 WO2023282154 A1 WO 2023282154A1 JP 2022026067 W JP2022026067 W JP 2022026067W WO 2023282154 A1 WO2023282154 A1 WO 2023282154A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
polyolefin
polyamide composition
acid
copper
Prior art date
Application number
PCT/JP2022/026067
Other languages
French (fr)
Japanese (ja)
Inventor
健治 關口
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN202280038893.1A priority Critical patent/CN117396559A/en
Priority to JP2023533566A priority patent/JPWO2023282154A1/ja
Publication of WO2023282154A1 publication Critical patent/WO2023282154A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a polyamide composition that has excellent heat resistance and is also excellent in flexibility, impact resistance, processing stability, and whitening resistance.
  • Polyamide resin has excellent strength, heat resistance, chemical resistance, etc., and has been used for automobile mechanical parts such as fuel pipes and fuel pipe joints (connectors).
  • polyamide resin compositions are also used in tubes for circulating long-life coolants used for cooling automobile engines and refrigerants for cooling air conditioners.
  • Aliphatic polyamides such as polyamide 12, polyamide 11, and polyamide 6 are widely used for the tube from the viewpoint of ease of extrusion molding and flexibility.
  • problems such as insufficient chemical resistance and insufficient heat resistance have been pointed out for these aliphatic polyamides.
  • the use of resin for cooling water, high-temperature gas, and oil-flowing tubes has been actively studied. is desired.
  • Patent Document 1 discloses that a tube made of a semi-aromatic polyamide and a modified elastomer and having a specific phase separation structure exhibits excellent surface smoothness and flexibility. Moreover, it is said that the functional group concentration of the elastomer used for the tube is preferably within a specific range.
  • Patent Document 2 discloses a composition containing a semi-aromatic polyamide, a specific polyolefin and a plasticizer, and is shown to be excellent in flexibility, heat aging resistance, and impact resistance.
  • the present invention provides a polyamide composition that has excellent heat resistance and is also excellent in flexibility, impact resistance, processing stability, and whitening resistance, a method for producing the same, use of the above polyamide composition, and the above polyamide composition
  • An object of the present invention is to provide a molded body using an object.
  • the present inventors found that by melt-kneading a polyamide, a specific polyolefin, and a copper-based stabilizer, flexibility, impact resistance, processing stability, and whitening resistance can be achieved while maintaining excellent heat resistance.
  • the present inventors have found that a polyamide composition having excellent properties can be obtained.
  • a composition comprising a polyamide, a polyolefin and a copper-based stabilizer,
  • the polyolefin contains at least one polyolefin (A) containing a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated epoxide, and at least one polyolefin (B) containing an unsaturated dicarboxylic acid anhydride, and
  • the mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1 to 2.9
  • a polyamide composition having a value Z of 33 to 200 calculated from the following formula (1).
  • the [EPO] is the concentration (mmol/kg) of unsaturated epoxide derived from the polyolefin per unit mass of the composition.
  • the [ANH] is the concentration (mmol/kg) of the unsaturated dicarboxylic anhydride derived from the polyolefin per unit mass of the composition.
  • the above X is the polyolefin content (% by mass) in the composition.
  • the polyamide contains 60 mol% or more of aliphatic diamine units having 4 to 13 carbon atoms or meta-xylylenediamine units based on all diamine units. of the polyamide composition.
  • the aliphatic diamine units are 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,
  • the polydispersity index of the polyamide measured by gel permeation chromatography is 3.7 or more, the content of terminal amino groups in the polyamide is 10 to 70 ⁇ eq/g, and the content of terminal carboxyl groups in the polyamide is 10.
  • the copper-based stabilizer comprises at least one copper compound selected from the group consisting of copper iodide, copper bromide, and copper acetate, and at least one selected from the group consisting of potassium iodide and potassium bromide.
  • [12] Selected from the group consisting of polymers other than the polyamide and the polyolefin, antioxidants, fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, flame retardants, and flame retardant aids
  • a method for producing a polyamide composition according to any one of [1] to [12] A method for producing a polyamide composition, wherein the polyamide, the polyolefin, and the copper-based stabilizer are top-fed to a twin-screw extruder and melt-kneaded.
  • the molded article according to the above [15] which is an extruded article, a co-extruded article or a blow molded article.
  • a polyamide composition having excellent heat resistance, flexibility, impact resistance, processing stability, and whitening resistance a method for producing the same, use of the above polyamide composition, and the above polyamide A molded article using the composition can be provided.
  • XX to YY means “XX or more and YY or less”.
  • - unit (where "-" indicates a monomer) means "a structural unit derived from”.
  • a "dicarboxylic acid unit” means a "structural unit derived from a dicarboxylic acid”.
  • a "diamine unit” means a "structural unit derived from a diamine”.
  • (meth)acrylate means “acrylate” and “methacrylate” corresponding thereto.
  • tube means a cylindrical structure such as a pipe or hose.
  • the polyamide composition of this embodiment comprises at least one polyamide.
  • the above polyamide contains at least one repeating unit consisting of polycondensation of dicarboxylic acid units and diamine units.
  • Dicarboxylic acid units include terephthalic acid units, naphthalenedicarboxylic acid units, isophthalic acid units, 1,4-phenylenedioxydiacetic acid units, 1,3-phenylenedioxydiacetic acid units, diphenic acid units, and diphenylmethane-4,4.
  • Aromatic dicarboxylic acid units such as '-dicarboxylic acid units, diphenylsulfone-4,4'-dicarboxylic acid units and 4,4'-biphenyldicarboxylic acid units are included.
  • naphthalenedicarboxylic acid unit examples include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid unit is preferred.
  • Dicarboxylic acid units include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, dimethylmalonic acid, and 2,2-diethyl.
  • Aliphatic dicarboxylic acids such as succinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladipic acid, dimer acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4 - units derived from alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid and cyclodecanedicarboxylic acid. Only one kind of units derived from these dicarboxylic acids may be contained, or two or more kinds thereof may be contained.
  • the polyamide used in the present invention preferably contains 50 mol% or more of at least one selected from terephthalic acid units and naphthalenedicarboxylic acid units based on all dicarboxylic acid units. Further, from the viewpoint of becoming a polyamide having good chemical resistance and heat resistance, the polyamide used in the present invention contains 75 mol% or more of at least one selected from terephthalic acid units and naphthalene dicarboxylic acid units with respect to all dicarboxylic acid units. More preferably, it contains 90 mol % or more.
  • Diamine units include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1 ,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine and other linear aliphatic diamines;2 -methyl-1,3-propanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4 ,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine and other branched aliphatic diamines; cyclohexanediamine, methylcyclohexanediamine, is
  • the polyamide used in the present invention preferably contains 60 mol % or more of aliphatic diamine units having 4 to 13 carbon atoms or meta-xylylenediamine units based on all diamine units.
  • a polyamide containing aliphatic diamine units having 4 to 13 carbon atoms in the above ratio a polyamide composition having excellent toughness, heat resistance, chemical resistance and lightness can be obtained.
  • the polyamide used in the present invention preferably contains 75 mol% or more, more preferably 90 mol% or more, of at least one selected from aliphatic diamine units having 4 to 13 carbon atoms with respect to all diamine units. .
  • the aliphatic diamine units having 4 to 13 carbon atoms are 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octane Units derived from at least one aliphatic diamine selected from the group consisting of diamines and 1,10-decanediamine are more preferred.
  • the aliphatic diamine units having 4 to 13 carbon atoms are 1,9-nonanediamine and 2-methyl-1,8- Units derived from at least one aliphatic diamine selected from octanediamine are more preferred, and 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units are more preferred.
  • the polyamide used in the present invention may contain aminocarboxylic acid units and/or lactam units.
  • the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like. Two or more aminocarboxylic acid units may be included.
  • the content of aminocarboxylic acid units in the polyamide is preferably 50 mol% or less, more preferably 20 mol% or less, and 10 mol% or less with respect to 100 mol% of the total monomer units constituting the polyamide. is more preferable.
  • lactam unit examples include units derived from ⁇ -caprolactam, enantholactam, undecanelactam, lauryllactam, ⁇ -pyrrolidone, ⁇ -piperidone, etc. Two or more types of lactam units are included. good too.
  • the content of the lactam unit in the polyamide is preferably 50 mol% or less, more preferably 20 mol% or less, and 10 mol% or less with respect to 100 mol% of the total monomer units constituting the polyamide. is more preferred.
  • the polyamide is a semi-aromatic polyamide containing dicarboxylic acid units mainly composed of aromatic dicarboxylic acid units and diamine units mainly composed of aliphatic diamine units having 4 to 13 carbon atoms. is preferred.
  • the term "mainly composed” means to constitute 50 to 100 mol%, preferably 60 to 100 mol%, more preferably 80 to 100 mol% of the total units.
  • Typical semi-aromatic polyamides include polytetramethylene terephthalamide (polyamide 4T), polypentamethylene terephthalamide (polyamide 5T), polyhexamethylene terephthalamide (polyamide 6T), polynonamethylene terephthalamide (polyamide 9T), poly(2-methyloctamethylene)terephthalamide (nylon M8T), polynonamethyleneterephthalamide/poly(2-methyloctamethylene)terephthalamide copolymer (polyamide 9T/M8T), polynonamethylenenaphthalene dicarboxamide (polyamide 9N), Polynonamethylene naphthalene dicarboxamide/poly(2-methyloctamethylene) naphthalene dicarboxamide copolymer (polyamide 9N/M8N), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), polyamide 6I and polyamide 6
  • a semi-aromatic polyamide containing dicarboxylic acid units mainly composed of aliphatic dicarboxylic acid units and diamine units mainly composed of aromatic diamine units can be used.
  • the aliphatic dicarboxylic acid unit include units derived from the aforementioned aliphatic dicarboxylic acids, and one or more of these may be included.
  • the aromatic diamine unit may include units derived from the aromatic diamine described above, and one or more of these may be included. Also, other units may be included within the range that does not impair the effects of the present invention.
  • Typical semi-aromatic polyamides containing dicarboxylic acid units mainly composed of aliphatic dicarboxylic acid units and diamine units mainly composed of aromatic diamine units include polymetaxylylene adipamide (MXD6), poly paraxylylene sebacamide (PXD10) and the like.
  • Aliphatic polyamide can also be used as polyamide.
  • Aliphatic polyamides include polycaproamide (polyamide 6), polyundecaneamide (polyamide 11), polydodecanamide (polyamide 12), polytetramethylene adipamide (polyamide 46), polyhexamethylene adipamide (polyamide 66 ), polynonamethylene oxide (polyamide 92), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polynonamethylene sebacamide (polyamide 910), polynonamethylene dodecamide (polyamide 912), polydecamethylene sebacamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012), polydodecamethylene sebacamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), and the like.
  • polyamide used in the present invention 10 mol% or more of all the terminal groups of the molecular chains are preferably blocked with a terminal blocking agent.
  • a polyamide having a terminal capping rate of 10 mol % or more is used, a polyamide composition having better physical properties such as melt stability and hot water resistance can be obtained.
  • a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used as the terminal blocking agent.
  • Specific examples include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols, and monoamines. From the viewpoint of reactivity and stability of the terminal to be blocked, monocarboxylic acid is preferable as the terminal blocking agent for the terminal amino group, and monoamine is preferable as the terminal blocking agent for the terminal carboxyl group. From the standpoint of ease of handling, etc., monocarboxylic acids are more preferable as terminal blocking agents.
  • the monocarboxylic acid used as the terminal blocking agent is not particularly limited as long as it has reactivity with amino groups.
  • monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
  • cyclopentanecarboxylic acid cyclohexanecarboxylic acid and other alicyclic monocarboxylic acids
  • benzoic acid toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid and other aromatic monocarboxylic acids and any mixture thereof.
  • acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, and stearic acid are preferred in terms of reactivity, stability of blocked ends, and price.
  • benzoic acid are preferred.
  • the monoamine used as the terminal blocking agent is not particularly limited as long as it has reactivity with the carboxyl group.
  • monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine; alicyclic monoamines; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; arbitrary mixtures thereof; Among these, at least one selected from butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline is preferable from the viewpoints of reactivity, high boiling point, stability of capped ends, price, and the like.
  • the polyamide used in the present invention preferably has an intrinsic viscosity [ ⁇ inh ] of 0.6 dl/g or more, measured at a concentration of 0.2 g/dl and a temperature of 30° C. using concentrated sulfuric acid as a solvent, and preferably 0.8 dl/g. It is more preferably 1.0 dl/g or more, more preferably 1.0 dl/g or more.
  • the intrinsic viscosity is preferably 2.0 dl/g or less, more preferably 1.8 dl/g or less, and even more preferably 1.6 dl/g or less.
  • the polyamide used in the present invention preferably has a terminal amino group content (hereinafter also referred to as “terminal amino group content”) ([NH 2 ]) of 10 to 70 ⁇ eq/g, more preferably 10 to 65 ⁇ eq/g. more preferably 10 to 60 ⁇ eq/g. If the terminal amino group content ([NH 2 ]) is 10 ⁇ eq/g or more, the compatibility between the polyamide and the later-described polyolefin is good.
  • terminal amino group content hereinafter also referred to as “terminal amino group content”
  • terminal amino group content is 70 ⁇ eq/g or less
  • a modified polyolefin described later is used as the polyolefin, it is possible to avoid the progress of gelation due to excessive reaction between the terminal amino group and the modified portion of the polyolefin.
  • the terminal amino group content ([NH 2 ]) as used herein refers to the amount of terminal amino groups contained in 1 g of the polyamide (unit: ⁇ eq), and can be determined by a neutralization titration method using an indicator. .
  • the polyamide used in the present invention preferably has a terminal carboxyl group content (hereinafter also referred to as "terminal carboxyl group content") ([COOH]) of 10 to 70 ⁇ eq/g, and 12 to 65 ⁇ eq/g. is more preferable, and 14 to 60 ⁇ eq/g is even more preferable. If the terminal carboxyl group content ([COOH]) is 10 ⁇ eq/g or more, the compatibility between the polyamide and the later-described polyolefin is good.
  • terminal carboxyl group content is 70 ⁇ eq/g or less
  • a modified polyolefin described later is used as the polyolefin, it is possible to avoid the progress of gelation due to excessive reaction between the terminal carboxyl group and the modified portion of the polyolefin.
  • the terminal carboxyl group content ([COOH]) as used herein refers to the amount of terminal carboxyl groups contained in 1 g of the polyamide (unit: ⁇ eq), and can be determined by a neutralization titration method using an indicator.
  • a polyamide containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) and a terminal carboxyl group content ([COOH]) within the ranges described above can be produced, for example, as follows. First, a dicarboxylic acid, a diamine, and optionally an aminocarboxylic acid, a lactam, a catalyst and a terminal blocking agent are mixed to produce a nylon salt.
  • the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the above reaction raw materials are calculated by the following formula (Q) -0.5 ⁇ [(YX) / Y] ⁇ 100 ⁇ 2.0 Formula (Q) is satisfied, it is easy to produce a polyamide having a terminal amino group content ([NH 2 ]) and a terminal carboxyl group content ([COOH]) of 10 to 70 ⁇ eq/g, which is preferable.
  • the produced nylon salt is heated to a temperature of 200 to 250° C. to obtain a prepolymer having an intrinsic viscosity [ ⁇ inh ] of 0.10 to 0.60 dl/g at 30° C.
  • the step of increasing the degree of polymerization is performed by a solid phase polymerization method, it is preferably performed under reduced pressure or under an inert gas flow. and can effectively suppress coloring and gelation.
  • the polymerization temperature is preferably 370 ° C. or less, and when polymerization is performed under such conditions, there is almost no decomposition of the polyamide, and a polyamide with little deterioration can be obtained. .
  • the content of the polyamide contained in the polyamide composition of the present embodiment is preferably 60 to 86% by mass with respect to 100% by mass of the polyamide composition, more preferably 65 to 86% by mass, 70 to It is more preferably 86% by mass, and even more preferably 70 to 80% by mass.
  • the content of the polyamide is within the above range, it is possible to obtain a polyamide composition which is more excellent in heat resistance, processing stability during melt-kneading, flexibility, and impact resistance.
  • the polydispersity index Mw/Mn (Mw is the weight average molecular weight, Mn is the number average molecular weight) of the polyamide contained in the polyamide composition of the present embodiment is preferably 3.7 or more, and preferably 4.0 or more. may If the polydispersity index is 3.7 or more, a composition having excellent melt tension during extrusion molding can be obtained. Moreover, the polydispersity index Mw/Mn of the polyamide is preferably 8.0 or less. If the polydispersity index is 8.0 or less, a composition having excellent fluidity during extrusion molding can be obtained. Polydispersity index of polyamide can be measured by gel permeation chromatography, more specifically, it is a value measured by the method described in Examples.
  • Catalysts that can be used in producing polyamides include, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, or salts or esters thereof.
  • Examples of the above salts or esters include phosphoric acid, phosphorous acid, or hypophosphorous acid and potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony, and the like.
  • the amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 1.0% by mass or less with respect to 100% by mass of the total mass of the raw materials. and more preferably 0.5% by mass or less.
  • the amount of the catalyst used is at least the above lower limit, the polymerization proceeds satisfactorily. If the content is not more than the above upper limit, catalyst-derived impurities are less likely to occur, and for example, problems due to the above impurities can be prevented when the polyamide composition is extruded.
  • the polyamide composition of this embodiment comprises a polyamide and a polyolefin, the polyolefin being present as a dispersed phase in the matrix polyamide.
  • the polyolefin contains at least one polyolefin (A) containing a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated epoxide, and at least one polyolefin (B) containing an unsaturated dicarboxylic acid anhydride.
  • the total content of polyolefin (A) and polyolefin (B) contained in polyolefin is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and substantially 100% by mass. good too.
  • Polyolefin (A) includes a copolymer of ethylene, alkyl (meth)acrylate and unsaturated epoxide. Moreover, from the viewpoint of avoiding gelation due to intramolecular reaction, it is desirable that the polyolefin (A) does not contain an unsaturated dicarboxylic acid anhydride.
  • the unsaturated epoxides include aliphatic glycidyl ethers and esters such as allyl glycidyl ether, vinyl glycidyl ether, glycidyl maleate and itaconate, glycidyl acrylate and methacrylate; 5-dicarboxylate, glycidylcyclohexene-4-carboxylate, glycidyl 5-norbornene-2-methyl-2-carboxylate and diglycidyl endo-cis-bicyclo[2.2.1]hept-5-ene-2, epoxides such as cycloaliphatic glycidyl ethers and esters such as 3-dicarboxylate;
  • the alkyl (meth)acrylate preferably contains 2 to 10 carbon atoms.
  • Alkyl (meth)acrylates include methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
  • polyolefin (A) examples include copolymers of ethylene, methyl acrylate and glycidyl methacrylate, and copolymers of ethylene, butyl acrylate and glycidyl methacrylate.
  • Commercially available products can also be used as the polyolefin (A). For example, Lotader AX8900, Lotader AX8750, and Lotader AX8390 sold by SK global chemical can be used.
  • Polyolefin (B) is a polymer containing an unsaturated dicarboxylic acid anhydride.
  • the unsaturated dicarboxylic anhydride has been introduced into the polymer either by grafting or copolymerization.
  • unsaturated dicarboxylic anhydrides include in particular maleic anhydride, itaconic anhydride, citraconic anhydride and tetrahydrophthalic anhydride.
  • polyolefin (B) examples include ⁇ -olefin copolymers, (ethylene and/or propylene)/( ⁇ , ⁇ -unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymers, ionomers, Alternatively, a modified polyolefin obtained by modifying an aromatic vinyl compound/conjugated diene compound block copolymer (hereinafter sometimes referred to as "copolymer, etc.") with an unsaturated dicarboxylic acid anhydride can be used.
  • copolymer, etc. an aromatic vinyl compound/conjugated diene compound block copolymer
  • the above copolymers and the like can be used singly or in combination of two or more.
  • Examples of the ⁇ -olefin copolymers include copolymers of ethylene and ⁇ -olefins having 3 or more carbon atoms and copolymers of propylene and ⁇ -olefins having 4 or more carbon atoms.
  • Examples of ⁇ -olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene.
  • These can use 1 type(s) or 2 or more types.
  • the (ethylene and/or propylene)/( ⁇ , ⁇ -unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymer is composed of ethylene and/or propylene and ⁇ , ⁇ -unsaturated carboxylic acid and/or It is a polymer obtained by copolymerizing an unsaturated carboxylic acid ester.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid include acrylic acid and methacrylic acid.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid esters include methyl esters, ethyl esters, propyl esters, butyl esters, pentyl esters, hexyl esters, heptyl esters, octyl esters, nonyl esters and decyl esters of the above unsaturated carboxylic acids. etc. These can use 1 type(s) or 2 or more types.
  • the ionomer is a copolymer of an olefin and an ⁇ , ⁇ -unsaturated carboxylic acid in which at least part of the carboxyl groups are ionized by neutralization with metal ions.
  • Ethylene is preferably used as the olefin, and acrylic acid and methacrylic acid are preferably used as the ⁇ , ⁇ -unsaturated carboxylic acid, but they are not limited to those exemplified here.
  • the copolymer of the olefin and the ⁇ , ⁇ -unsaturated carboxylic acid may be further copolymerized with an unsaturated carboxylic acid ester as a monomer.
  • metal ions include Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc., in addition to alkali metals such as Li, Na, K, Mg, Ca, Sr, and Ba, and alkaline earth metals. is mentioned. These can use 1 type(s) or 2 or more types.
  • the above-mentioned aromatic vinyl compound/conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block.
  • a block copolymer having one and at least one conjugated diene polymer block is used.
  • the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
  • the aromatic vinyl compound-based polymer block is a polymer block mainly composed of structural units derived from aromatic vinyl compounds.
  • aromatic vinyl compounds in that case include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene and the like can be mentioned, and one or more of these can be used.
  • the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer.
  • the conjugated diene-based polymer block includes conjugated butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, and the like. It is a polymer block formed from one or more diene compounds. In the hydrogenated aromatic vinyl compound/conjugated diene compound block copolymer, part or all of the unsaturated bond portions in the conjugated diene polymer block are hydrogenated.
  • the molecular structure of the aromatic vinyl compound/conjugated diene compound block copolymer and its hydrogenated product may be linear, branched, radial, or any combination thereof.
  • the aromatic vinyl compound/conjugated diene compound block copolymer and/or its hydrogenated product one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear A diblock copolymer in which three polymer blocks are linked linearly in the order of aromatic vinyl compound polymer block - conjugated diene polymer block - aromatic vinyl compound polymer block.
  • One or more of triblock copolymers and hydrogenated products thereof are preferably used.
  • Aromatic vinyl compound/conjugated diene compound block copolymers and hydrogenated products thereof include, for example, unhydrogenated or hydrogenated styrene/butadiene block copolymers, unhydrogenated or hydrogenated styrene/isoprene block copolymers, Unhydrogenated or hydrogenated styrene/isoprene/styrene block copolymer, Unhydrogenated or hydrogenated styrene/butadiene/styrene block copolymer, Unhydrogenated or hydrogenated styrene/isoprene/butadiene/styrene block copolymer, etc. is mentioned.
  • Polyolefin (B) is preferably a copolymer of ethylene, alkyl (meth)acrylate and unsaturated dicarboxylic acid anhydride.
  • Alkyl (meth)acrylates preferably contain from 2 to 10 carbon atoms.
  • Alkyl (meth)acrylates include methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
  • polyolefins (B) more preferable examples include copolymers of ethylene, ethyl acrylate and maleic anhydride, and copolymers of ethylene, butyl acrylate and maleic anhydride.
  • Commercially available products can also be used as the polyolefin (B). For example, Lotader 4700 and Lotader 3410 sold by SK global chemical can be used.
  • Mass ratio [B]/[A]> The mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1 to 2.9, preferably 0.2 to 2. .9, more preferably 0.4 to 2.9, more preferably 0.5 to 2.9. If the mass ratio [B]/[A] is less than 0.1, the melt viscosity tends to increase and the moldability tends to deteriorate. If the mass ratio [B]/[A] exceeds 2.9, it tends to be difficult to achieve both stability during melt kneading and excellent elongation properties.
  • the content of the polyolefin contained in the polyamide composition of the present embodiment is preferably 14 to 40% by mass with respect to 100% by mass of the polyamide composition, more preferably 15 to 40% by mass, 15 to It is more preferably 35% by mass, and even more preferably 15 to 30% by mass.
  • the polyolefin content is within the above range, a polyamide composition having excellent processing stability, flexibility and impact resistance during melt-kneading can be obtained.
  • the polyolefin content is measured under the conditions of 23° C. and 50% RH according to ISO 178 (4th edition, 2001).
  • the bending elastic modulus of the molded body of the polyamide composition is preferably adjusted to 2.0 GPa or less, more preferably 1.7 GPa or less, and adjusted to 1.5 GPa or less. more preferably.
  • the polyamide composition of this embodiment has a value Z calculated from the following formula (1) of 33-200, preferably 33-150.
  • the value of Z may be 35-130. If the value of Z is less than 33, the affinity between the polyamide and the polyolefin may be insufficient, and the stability during melt kneading may be lowered. If the value of Z exceeds 200, the melt viscosity increases, which may make molding difficult, or the flexibility and impact resistance may be insufficient.
  • the "functional group” in the “functional group concentration” refers to the epoxy group possessed by the polyolefin-derived unsaturated epoxide, and the polyolefin-derived unsaturated dicarboxylic acid anhydride possessed by the carboxyl group and acid means an anhydride group.
  • “functional group concentration” means the following [EPO] and [ANH].
  • the unsaturated epoxide concentration [EPO] and the unsaturated dicarboxylic acid concentration [ANH] in the above formula (1) are calculated according to the following formula (2).
  • formula (2) [EPO] or [ANH] 100 x N x W/M
  • M, W and N are as follows.
  • W % by mass of unsaturated epoxide or unsaturated dicarboxylic acid anhydride contained in polyolefin (A) or polyolefin (B). W can be measured by a method common to those skilled in the art, such as NMR.
  • N Mass % of polyolefin (A) or polyolefin (B) per unit mass of polyamide composition.
  • the above value of Z predicts the melt stability of the resulting polyamide composition when melt-kneading the polyamide, the polyolefin having an unsaturated epoxide, and the polyolefin having an unsaturated dicarboxylic acid anhydride. It is useful for obtaining a polyamide composition which is excellent in stability, flexibility and impact resistance. Unsaturated epoxides and unsaturated dicarboxylic acid anhydrides each react with polyamide to exhibit a compatibilizing effect, but since the above functional groups can react with each other, the remaining amount of functional groups available for reaction with polyamide is The difference between the two (
  • the two do not react completely, and the unsaturated epoxide is highly reactive in that it can react with both the terminal amino group and the terminal carboxyl group of the polyamide.
  • the meaning numerator term is weighted by the unsaturated epoxide concentration.
  • the melt stability of the polyamide composition generally tends to decrease as the blending amount of polyolefin increases, the polyolefin content X is placed in the denominator.
  • the unsaturated epoxide concentration and the unsaturated dicarboxylic anhydride concentration in the polyamide composition are such that the terminal amino group, carboxyl group, unsaturated epoxide and unsaturated dicarboxylic anhydride of the polyamide react with each other during the melt-kneading process. difficult to identify. Therefore, the value of Z is calculated based on the amount of each component used in the polyamide composition.
  • the polyamide composition of this embodiment contains at least one copper-based stabilizer to improve heat aging resistance.
  • the content of the copper-based stabilizer is preferably 0.01 to 2% by mass, more preferably 0.1 to 1.5% by mass, and 0.5 to 1.2% by mass with respect to 100% by mass of the polyamide composition. is even more preferred.
  • the content of the copper-based stabilizer is within the above range, it is possible to obtain a polyamide composition which is excellent in heat aging resistance and which generates a small amount of gas during extrusion molding.
  • a copper-based stabilizer can be used as a mixture of a copper compound and a metal halide.
  • the ratio of the total molar amount of halogen atoms to the total molar amount of copper atoms (halogen/copper) is 2/1 to 50/1,
  • the polyamide composition contains a copper compound and a metal halide.
  • the ratio (halogen/copper) is preferably 3/1 or more, more preferably 4/1 or more, and still more preferably 5/1 or more.
  • the ratio (halogen/copper) is preferably 45/1 or less, more preferably 40/1 or less, and even more preferably 30/1 or less.
  • the ratio (halogen/copper) is at least the above lower limit, copper deposition and metal corrosion during molding can be more effectively suppressed.
  • the ratio (halogen/copper) is equal to or less than the above upper limit, it is possible to more effectively suppress corrosion of screws of molding machines without impairing mechanical properties such as tensile properties of the resulting polyamide composition. .
  • Examples of copper compounds include copper halides, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, copper stearate, ethylenediamine and ethylenediaminetetraacetic acid. and a copper complex coordinated with a chelating agent.
  • Examples of the copper halide include copper iodide; copper bromides such as cuprous bromide and cupric bromide; copper chlorides such as cuprous chloride.
  • at least one selected from the group consisting of copper halides and copper acetates is preferable from the viewpoint of excellent heat aging resistance and ability to suppress metal corrosion of screw and cylinder parts during extrusion.
  • At least one selected from the group consisting of copper iodide, copper bromide, copper chloride, and copper acetate is more preferred, and at least one selected from the group consisting of copper iodide, copper bromide, and copper acetate is more preferred.
  • a copper compound may be used individually by 1 type, and may use 2 or more types together.
  • metal halide a metal halide that does not correspond to a copper compound can be used, and a salt of a Group 1 or Group 2 metal element of the periodic table and a halogen is preferable.
  • metal halides include potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium chloride and the like.
  • Preferred is potassium iodide.
  • a metal halide may be used individually by 1 type, and may use 2 or more types together.
  • the copper-based stabilizer is at least one copper compound selected from the group consisting of copper iodide, copper bromide, and copper acetate, and the group consisting of potassium iodide and potassium bromide. It preferably contains at least one metal halide selected from the above.
  • a dispersant may be used to enhance the dispersibility of the copper compound and metal halide in the polyamide.
  • the dispersant include higher fatty acids such as lauric acid, palmitic acid, stearic acid, behenic acid and montanic acid; higher fatty acid metal salts composed of higher fatty acids and metals such as aluminum; higher fatty acids such as ethylenebisstearylamide.
  • amides waxes such as polyethylene wax; organic compounds having at least one amide group;
  • the polyamide composition of this embodiment may optionally contain other additives in addition to the polyamide, polyolefin and copper-based stabilizer described above.
  • additives include polymers other than the above polyamides and polyolefins, antioxidants, fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, flame retardants, flame retardant aids, and the like. be done. These other additives may be used singly or in combination of two or more.
  • polyether resins such as polyacetal and polyphenylene oxide
  • polysulfone resins such as polysulfone and polyethersulfone
  • polythioether resins such as polyphenylene sulfide and polythioethersulfone
  • polyetheretherketone and polyaryletherketone examples include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether resins such as polyphenylene sulfide and polythioethersulfone; polyetheretherketone and polyaryletherketone.
  • polyketone-based resins such as; polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylonitrile-butadiene-styrene copolymer and other polynitrile-based resins; polymethyl methacrylate , polymethacrylate resins such as polyethyl methacrylate; polyvinyl ester resins such as polyvinyl acetate; polyvinylidene chloride, polyvinyl chloride, vinyl chloride-vinylidene chloride copolymer, vinylidene chloride-methyl acrylate copolymer Vinyl chloride resin; cellulose resin such as cellulose acetate and cellulose butyrate; polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-ch
  • the antioxidant is not particularly limited, and may be selected from among amine-based antioxidants, hindered phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, etc., or a combination of two or more thereof. may Among these, an amine-based antioxidant is preferable as a combination with the copper-based stabilizer.
  • fillers include fibrous fillers such as glass fiber, powdery fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide.
  • flake fillers such as hydrotalcite, glass flakes, mica, clay, montmorillonite and kaolin;
  • the crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide.
  • Crystal nucleating agents include, for example, talc, calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, magnesium oxide, and any mixture thereof. Among these, talc is preferable because it has a large effect of increasing the crystallization rate of polyamide.
  • the crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent, or the like for the purpose of improving compatibility with polyamide.
  • the coloring agent is not particularly limited, and can be appropriately selected from inorganic or organic pigments and dyes depending on the application of the polyamide composition.
  • black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, and titanium black are preferred. mentioned.
  • the antistatic agent is not particularly limited, and may be organic or inorganic.
  • organic antistatic agents include ionic compounds such as lithium ion salts, quaternary ammonium salts, and ionic liquids; and electronic conductive polymer compounds such as polythiophene, polyaniline, polypyrrole, and polyacetylene.
  • inorganic antistatic agents include metal oxide conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide and zinc oxide; and carbon conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, inorganic antistatic agents are preferred. Carbon black, which is a coloring agent, may also function as an antistatic agent.
  • the plasticizer is not particularly limited as long as it is commonly used as a plasticizer for polyamide.
  • plasticizers include benzenesulfonic acid alkylamide compounds, toluenesulfonic acid alkylamide compounds, hydroxybenzoic acid alkylester compounds, and hydroxybenzoic acid alkylamide compounds.
  • the lubricant is not particularly limited as long as it is generally used as a polyamide lubricant.
  • Lubricants include, for example, higher fatty acid compounds, oxyfatty acid compounds, fatty acid amide compounds, alkylenebis fatty acid amide compounds, fatty acid lower alcohol ester compounds, metal soap compounds, and polyolefin waxes.
  • Fatty acid amide compounds for example, various stearates such as calcium stearate, stearic acid amide, palmitic acid amide, methylene bis stearyl amide, ethylene bis stearyl amide and the like are preferable because of their excellent external lubricating effect.
  • These lubricants may be added internally or externally to the composition. In particular, when a stearate is externally added, there is an effect of reducing the motor load of the extruder.
  • the content of other additives in the polyamide composition is preferably 50% by mass or less, more preferably 20% by mass or less, and even more preferably 5% by mass or less, relative to 100% by mass of the polyamide composition.
  • the polyamide composition of this embodiment can be produced, for example, by top-feeding the polyamide, the polyolefin, and the copper-based stabilizer to a twin-screw extruder and melt-kneading them.
  • the method for producing a polyamide composition of the present embodiment includes the step of melt-kneading the mixture containing polyamide, polyolefin, and copper-based stabilizer, so that the end groups of the polyamide and the modified portion of the polyolefin are They react with each other and the resulting composition has excellent flexibility and impact resistance.
  • composition having excellent heat resistance can be obtained by reacting a part of the modified site of the polyolefin (A) and a part of the modified site of the polyolefin (B) with each other. Also, by appropriately adjusting the concentration and blending ratio of the modified sites of the polyolefin, it is possible to obtain a composition having excellent melt-kneadability.
  • the temperature and time during melt kneading can be appropriately adjusted according to the melting point of the polyamide used, but from the viewpoint of suppressing deterioration of polyolefin, the melt kneading temperature is preferably 380 ° C. or less, and 370 ° C. or less. and more preferably 360° C. or lower.
  • the melt-kneading time is preferably about 1 to 5 minutes.
  • the method of melt-kneading is not particularly limited, and a method capable of uniformly mixing the polyamide, polyolefin, copper-based stabilizer, and other optional additives can be preferably employed.
  • melt-kneader a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, etc. are preferable, and a twin-screw extruder is more preferable from the viewpoint of good dispersibility of the polyolefin and the copper-based stabilizer and industrial productivity. .
  • the polyamide composition of the present embodiment can be obtained by reacting the polyamide, polyolefin (A), and polyolefin (B) with each other during melt kneading. It is preferable to reserve time. Specifically, when using a twin-screw extruder as a melt-kneading device, the polyamide, polyolefin, copper-based stabilizer and other additives added as necessary are added to the first feed port at the base of the twin-screw extruder. It is preferable to feed from the top (top feed).
  • Molded articles made of the polyamide composition of the present embodiment can be produced by injection molding, blow molding, extrusion molding, co-extrusion molding, coating molding, compression molding, stretch molding, vacuum molding, using the polyamide composition. It can be obtained by molding by various molding methods such as a molding method, a foam molding method, a rotational molding method, an impregnation method, a laser sintering method, and a hot melt lamination method. Furthermore, the polyamide composition of the present embodiment and other polymers can be composite-molded to obtain molded articles.
  • the polyamide composition of the present embodiment has excellent extrusion moldability, coextrusion moldability, blow moldability, and coating moldability due to its characteristics, and in order to obtain a molded article, these moldability is utilized.
  • a molding method can be preferably used.
  • the molded article of this embodiment contains a polyamide composition as a main component, it exhibits excellent mechanical properties. Furthermore, since the polyamide composition contains a specific polyolefin and a copper-based stabilizer, it is also excellent in heat resistance, flexibility and impact resistance. Therefore, it can be used for automobile parts, internal combustion engine applications, crude oil drilling and transportation applications, electrical and electronic parts, medical care, food products, household and office supplies, building material related parts, and the like.
  • feed tubes return tubes, evaporative tubes, fuel filler tubes, ORVR tubes, reserve tubes, vent tubes, and other fuel tubes
  • engine coolant coolant
  • Cooling water tubes such as tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes
  • Air suspension tubes and petroleum transportation tubes road heating tubes, floor heating tubes, infrastructure supply tubes, fire extinguisher and fire extinguishing equipment tubes, medical cooling equipment tubes, ink and paint spraying tubes, and other chemical liquid tubes.
  • fuel tubes, engine coolant tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes, urea solution delivery tubes, air conditioner coolant tubes, blow-by tubes, brake booster tubes, brake tubes, oil cooling tubes, turbo It can be used as a duct pipe, air suspension tube, and petroleum transportation tube, and is particularly suitable as a cooling water tube, urea water tube, fuel tube, blow-by tube, oil cooling tube, and brake booster tube.
  • a covering molding it can be suitably used as an electric wire covering, a bus bar covering, and a wire covering.
  • the polyamide composition of this embodiment can be used to make a single layer structure and can also be used to make at least one layer of a multi-layer structure. For example, in a tube having a single-layer structure or a multi-layer structure, the polyamide composition of the present embodiment can be suitably used for at least one of the constituent layers.
  • the molded product of this embodiment When the molded product of this embodiment is used as a tube, it can be used after bending, terminal processing, and fastening with various connectors.
  • the process of bending is implemented by the following flows. - Preheating process: The tube is preheated and softened so that the tube does not collapse at the required bending dimension. Bending process: The tube is attached to a jig or deformed by guide rollers to process the tube into a desired shape.
  • ⁇ Heat treatment process The stress generated in the tube is relaxed and the shape is fixed. The heat treatment temperature must be between the glass transition temperature and the melting point of the material forming the tube, and the higher the temperature, the shorter the heat treatment time required to fix the shape.
  • the heat treatment temperature Tf is preferably in the range of Tm-80°C ⁇ Tf ⁇ Tm-10°C, and Tm-60°C ⁇ Tm, where Tm is the melting point of the material with the lowest melting point among the materials constituting the tube. More preferably, Tf ⁇ Tm-15°C.
  • Various methods such as press fitting, spin welding, and laser welding can be used to fasten the connector.
  • a welding method such as a spin welding method or a laser welding method from the viewpoint of reliability.
  • the tube material and the connector material have high chemical affinity. With the tube placed inside the connector, it is desirable to irradiate the laser from the top of the connector in the circumferential direction of the tube.
  • ⁇ inh [ln(t 1 /t 0 )]/c
  • ⁇ inh represents the intrinsic viscosity (dl / g)
  • t 0 represents the flow time (seconds) of the solvent (concentrated sulfuric acid)
  • t 1 represents the flow time (seconds) of the sample solution
  • c represents the concentration (g/dl) of the sample in the sample solution (ie 0.2 g/dl).
  • the melting point of the semi-aromatic polyamide (sample) obtained in Production Examples was measured using a differential scanning calorimeter "DSC7020" manufactured by Hitachi High-Tech Science Corporation. The melting point was measured according to ISO11357-3 (2nd edition, 2011). Specifically, in a nitrogen atmosphere, the sample was heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min, held at 340 ° C. for 5 minutes to completely melt the sample, and then heated at 10 ° C./min. Cooled to 50°C at speed and held at 50°C for 5 minutes.
  • the peak temperature of the melting peak that appears when the temperature is again raised to 340°C at a rate of 10°C/min is the melting point (°C), and if there are multiple melting peaks, the peak temperature of the highest melting peak is the melting point (°C). bottom.
  • Terminal Amino Groups 1 g of the semi-aromatic polyamide obtained in Production Example was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therein to prepare a sample solution. Using thymol blue as an indicator, titration was performed using a 0.01N hydrochloric acid aqueous solution to measure the terminal amino group content ([NH 2 ], unit: ⁇ eq/g) of the semi-aromatic polyamide.
  • Polydispersity index Mw/Mn
  • HLC-8320GPC manufactured by Tosoh Corporation
  • column TSK-gel SuperHM-N manufactured by Tosoh Corporation
  • 10 mM trifluoroacetic acid hexafluoro-2-propanol was measured at a temperature of 40° C. and calculated in terms of polymethyl methacrylate.
  • [Evaluation items of polyamide composition] • Functional Group Concentration
  • Z was calculated from the following formula (1) based on the amount of each component used.
  • formula (1) Z 1000 ⁇ (
  • [EPO], [ANH] and X are as follows.
  • [ANH] Concentration of unsaturated dicarboxylic acid anhydride derived from polyolefin per unit mass of polyamide composition (mmol/kg).
  • X Polyolefin content (% by mass) in the polyamide composition.
  • the unsaturated epoxide concentration [EPO] and the unsaturated dicarboxylic acid concentration [ANH] in the above formula (1) were calculated according to the following formula (2).
  • [EPO] or [ANH] 100 x N x W/M
  • M, W and N are as follows.
  • M Molecular weight of unsaturated epoxide or unsaturated dicarboxylic acid anhydride.
  • W % by mass of unsaturated epoxide or unsaturated dicarboxylic acid anhydride contained in polyolefin (A) or polyolefin (B).
  • W is a catalog value.
  • B' The strand is stable, but the viscosity of the composition is high and the pressure of the twin-screw extruder is very high. In addition, a large amount of deposits were present near the die after compounding. Epoxide is considered to be a phenomenon that occurs due to its high reactivity with polyamide.
  • C Strand breaks occur frequently, and it is difficult to obtain pellets. In addition, in the composition in which strand breakage of C occurs frequently, the domain size of the polyolefin in the matrix of the polyamide is enlarged, and the affinity of the polyolefin for the polyamide is low. Melt viscosity, tensile test, and impact resistance test were not performed on the polyamide composition of "C" because pellets could not be obtained.
  • melt viscosity The melt viscosity of the polyamide compositions obtained in Examples and Comparative Examples was measured using a capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 300 ° C. and a shear rate of 121.6 sec -1 (capillary: inner diameter 1
  • the melt viscosity (Pa ⁇ s) was measured under the conditions of (0 mm ⁇ 10 mm length, extrusion speed 10 mm/min) and used as an index of fluidity.
  • test piece (4 mm thick, total length 80 mm, width 10 mm, notched) is prepared by cutting from the multi-purpose test piece type A1 (4 mm thickness) prepared by the above method, ISO179-1 (2010 second Version), using an impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), notched Charpy impact values at 23° C. and ⁇ 40° C. were measured to evaluate impact resistance (kJ/m 2 ).
  • a tube molding device in which a straight die (die inner diameter: ⁇ 21.0 mm, mandrel outer diameter: ⁇ 14.9 mm) is connected to a single-screw extruder (screw diameter: ⁇ 50 mm, L/D 28) manufactured by IKK Co., Ltd. was used to discharge the polyamide compositions obtained in Examples and Comparative Examples under conditions of a cylinder temperature of 280°C, a die temperature of 280°C, and a screw rotation speed of 30 rpm. Subsequently, dimensional control and cooling were carried out in a vacuum sizing tank, and a tube having an outer diameter of 8.0 mm and an inner diameter of 6.0 mm was produced at a take-up speed of 10 m/min.
  • the pressure inside the autoclave increased to 2 MPa.
  • the temperature was raised to 230° C., and then the temperature was kept at 230° C. for 2 hours, and the reaction was carried out while the pressure was maintained at 2 MPa by gradually removing water vapor.
  • the pressure was lowered to 1 MPa over 30 minutes, and the reaction was continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [ ⁇ ] of 0.2 dl/g. This was pulverized to a particle size of 2 mm or less using a Hosokawa Micron flake crusher, dried at 100° C. under reduced pressure for 12 hours, and then solid-phase polymerized at 230° C.
  • Production Example 2 [Production of Polyamide PA-2] 9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.90 mol), benzoin 142.9 g (1.17 mol) of acid, 9.8 g of sodium hypophosphite monohydrate (0.05% by mass based on the total mass of raw materials) and 5 liters of distilled water were placed in an autoclave having an internal volume of 40 liters. and replaced with nitrogen. Thereafter, polymerization was carried out in the same manner as in Production Example 1 to obtain a white polyamide resin (polyamide PA-2).
  • Polyamide PA-2 has a melting point of 265° C., an intrinsic viscosity [ ⁇ inh ] of 1.28 dl/g, a terminal amino group content ([NH 2 ]) of 51.5 ⁇ eq/g, and a terminal carboxyl group content ([COOH]). was 23.4 ⁇ eq/g. Moreover, the polydispersity index determined by gel permeation chromatography was 4.1.
  • Examples 1 to 7 and Comparative Examples 1 to 13 were prepared according to the formulations shown in Table 1 or Table 2 to obtain polyamide compositions. Specifically, the polyamide, copper-based stabilizer, antioxidant, lubricant, and colorant shown in Table 1 or Table 2 are premixed at a predetermined mass ratio, and together with polyolefin (A) and polyolefin (B) (however, , together with polyolefin (A) in Comparative Example 10, and together with polyolefin (C) in Comparative Examples 11 to 13), into the upstream feed port of a twin-screw extruder ("TEM-26SS" manufactured by Toshiba Machine Co., Ltd.).
  • TEM-26SS twin-screw extruder
  • Cylinder temperature 300-320°C (melt-kneading temperature 310-340°C, melt-kneading temperature indicates resin temperature), rotation speed 150 rpm, discharge 10 kg/hr. , cooled and cut to produce a polyamide composition in the form of pellets.
  • test pieces for evaluating various physical properties were produced, and various evaluations were performed by the methods described above. The results are shown in Tables 1 and 2. At this time, the presence or absence of vent-up at the vacuum vent port in the downstream portion was confirmed. In addition, in Table 1, *1 indicates that measurement is not possible.
  • ⁇ Lubricant> WH-255 amide wax light amide, manufactured by Kyoeisha Chemical Co., Ltd.
  • ⁇ colorant> #980B carbon black, manufactured by Mitsubishi Chemical Corporation
  • the polyamide compositions of Examples 1 to 7 have both high heat resistance, production stability in melt-kneading, high tensile elongation at break, low-temperature impact resistance, and whitening resistance. Since the composition of Comparative Example 1 did not contain polyolefin (A), it had insufficient affinity with polyamide, and a composition compatibilized by a compound could not be obtained. Since the compositions of Comparative Examples 2, 3 and 5 did not contain a copper-based stabilizer, the impact strength retention rate was low and the heat aging resistance was insufficient. The compositions of Comparative Examples 4, 6, and 8 had insufficient stability during melt-kneading because the value of Z was smaller than the range defined in this embodiment.
  • Comparative Example 6 a compatibilized composition could not be obtained.
  • the composition of Comparative Example 7 had an insufficient tensile elongation at break because [B]/[A] did not fall within the range specified in this embodiment.
  • the composition of Comparative Example 9 had a Z value larger than the range defined in this embodiment, and therefore had poor tensile elongation at break and tensile elastic modulus, insufficient flexibility, and poor impact strength retention. and the heat aging resistance was not sufficient. Since the composition of Comparative Example 10 did not contain the polyolefin (B), the melt viscosity was very high and the balance between flexibility and viscosity was poor. Since the compositions of Comparative Examples 11 to 13 did not contain polyolefin (A) and polyolefin (B), whitening resistance was insufficient even if polyolefin (C) was contained instead of these.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Provided is a polyamide composition which comprises a polyamide, a polyolefin, and a copper-based stabilizer, wherein: the polyolefin contains at least one kind of polyolefin (A) that contains a copolymer of ethylene, alkyl (meth)acrylate, and an unsaturated epoxide and at least one kind of polyolefin (B) that contains an unsaturated dicarboxylic anhydride; the mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1-2.9; and the value Z calculated by formula (1) is 33-200. Also provided are a production method therefor, use thereof, and a molded body obtained therefrom. Formula (1): Z=1000×(|[ANH]-[EPO]|+[EPO])/X2 [EPO] is the concentration (mmol/kg) of the unsaturated epoxide, which is derived from the polyolefin, per unit mass of the composition. [ANH] is the concentration (mmol/kg) of the unsaturated dicarboxylic anhydride, which is derived from the polyolefin, per unit mass of the composition. The X is the content (mass%) of the polyolefin in the composition.

Description

ポリアミド組成物Polyamide composition
 本発明は、優れた耐熱性を有し、さらに柔軟性、耐衝撃性、加工安定性、耐白化性にも優れるポリアミド組成物に関する。 The present invention relates to a polyamide composition that has excellent heat resistance and is also excellent in flexibility, impact resistance, processing stability, and whitening resistance.
 ポリアミド樹脂は、強度、耐熱性、耐薬品性等に優れており、従来から自動車用の燃料配管や燃料配管継手(コネクター)等、自動車の機構部品に使用されている。例えば、自動車用エンジン冷却に用いられるロングライフクーラントやエアコン冷却用の冷媒を循環させるためのチューブなどにもポリアミド樹脂組成物が用いられる。上記チューブには押出し成形の容易性や柔軟性の観点から、ポリアミド12やポリアミド11、ポリアミド6などの脂肪族ポリアミドが広く用いられている。一方で、これらの脂肪族ポリアミドは、耐薬品性不足、耐熱性不足などの問題点も指摘されている。特に近年、自動車の燃費向上を目的として冷却水や高温のガス、オイルが流れるチューブの樹脂化が盛んに検討されており、従来のチューブよりも、耐熱性、耐衝撃性に優れた材料の登場が望まれている。 Polyamide resin has excellent strength, heat resistance, chemical resistance, etc., and has been used for automobile mechanical parts such as fuel pipes and fuel pipe joints (connectors). For example, polyamide resin compositions are also used in tubes for circulating long-life coolants used for cooling automobile engines and refrigerants for cooling air conditioners. Aliphatic polyamides such as polyamide 12, polyamide 11, and polyamide 6 are widely used for the tube from the viewpoint of ease of extrusion molding and flexibility. On the other hand, problems such as insufficient chemical resistance and insufficient heat resistance have been pointed out for these aliphatic polyamides. Especially in recent years, with the aim of improving the fuel efficiency of automobiles, the use of resin for cooling water, high-temperature gas, and oil-flowing tubes has been actively studied. is desired.
 特許文献1には、半芳香族ポリアミドと変性エラストマーからなり、特定の相分離構造を有するチューブが、優れた表面平滑性と柔軟性を示すことが開示されている。また、上記チューブに使用するエラストマーの官能基濃度が、特定の範囲にあることが好ましいとされている。 Patent Document 1 discloses that a tube made of a semi-aromatic polyamide and a modified elastomer and having a specific phase separation structure exhibits excellent surface smoothness and flexibility. Moreover, it is said that the functional group concentration of the elastomer used for the tube is preferably within a specific range.
 特許文献2には、半芳香族ポリアミド、特定のポリオレフィン及び可塑剤を含む組成物が開示されており、柔軟性、耐熱老化性、耐衝撃性に優れることが示されている。 Patent Document 2 discloses a composition containing a semi-aromatic polyamide, a specific polyolefin and a plasticizer, and is shown to be excellent in flexibility, heat aging resistance, and impact resistance.
国際公開第2020/175290号WO2020/175290 特表2015-501341号公報Japanese Patent Publication No. 2015-501341
 ポリアミドに、ポリアミドと反応する官能基を含むポリオレフィンを配合することで、柔軟性や耐衝撃性を付与することは古くから知られている。この際に、官能基の濃度を高めることでポリオレフィンのポリアミドへの親和性が高まり、分散性を高めることができるが、組成物の粘度が増大し、成形加工性が低下する課題が有る。一方で官能基の濃度を低下させると、ポリアミドへのポリオレフィンの親和性が低下し、溶融混錬時にポリオレフィンの一部がブリードアウトするなど、加工性の低下が生じることが指摘されていた。また、ポリアミドとポリオレフィンからなる組成物を用いた成形体を2次加工した際に表面が白化し、製品としての品位が低下することが指摘されていた。
 そこで本発明は、優れた耐熱性を有し、さらに柔軟性、耐衝撃性、加工安定性、耐白化性にも優れるポリアミド組成物及びその製造方法、上記ポリアミド組成物の使用、並びに上記ポリアミド組成物を用いた成形体を提供することを課題とする。
It has long been known that blending a polyolefin containing a functional group that reacts with a polyamide to impart flexibility and impact resistance to the polyamide. At this time, by increasing the concentration of the functional group, the affinity of the polyolefin to the polyamide can be increased and the dispersibility can be improved. On the other hand, it has been pointed out that when the concentration of functional groups is lowered, the affinity of polyolefin to polyamide is lowered, resulting in deterioration of processability such as bleeding out of a part of polyolefin during melt kneading. In addition, it has been pointed out that when a molded article using a composition comprising a polyamide and a polyolefin is subjected to secondary processing, the surface of the molded article becomes white and the quality of the product deteriorates.
Therefore, the present invention provides a polyamide composition that has excellent heat resistance and is also excellent in flexibility, impact resistance, processing stability, and whitening resistance, a method for producing the same, use of the above polyamide composition, and the above polyamide composition An object of the present invention is to provide a molded body using an object.
 本発明者は鋭意検討した結果、ポリアミドと特定のポリオレフィンと銅系安定剤を溶融混錬することで、優れた耐熱性を維持しつつ、柔軟性、耐衝撃性、加工安定性、耐白化性に優れるポリアミド組成物が得られることを見出し、当該知見に基づいてさらに検討を重ねて本発明を完成した。 As a result of intensive studies, the present inventors found that by melt-kneading a polyamide, a specific polyolefin, and a copper-based stabilizer, flexibility, impact resistance, processing stability, and whitening resistance can be achieved while maintaining excellent heat resistance. The present inventors have found that a polyamide composition having excellent properties can be obtained.
 すなわち、本発明は下記のとおりである。
[1]ポリアミドとポリオレフィンと銅系安定剤を含む組成物であって、
 前記ポリオレフィンが、エチレン、アルキル(メタ)アクリレート及び不飽和エポキシドの共重合体を含む少なくとも一種のポリオレフィン(A)、並びに不飽和ジカルボン酸無水物を含む少なくとも一種のポリオレフィン(B)を含有し、かつ前記ポリオレフィン(A)の含有量[A]に対する前記ポリオレフィン(B)の含有量[B]の質量比[B]/[A]が0.1~2.9であり、
 下記式(1)から算出される値Zが33~200である、ポリアミド組成物。
  Z=1000×(|[ANH]-[EPO]|+[EPO])/X  式(1)
 前記[EPO]は、前記組成物の単位質量当たりの、前記ポリオレフィンに由来する不飽和エポキシドの濃度(mmol/kg)である。
 前記[ANH]は、前記組成物の単位質量当たりの、前記ポリオレフィンに由来する不飽和ジカルボン酸無水物の濃度(mmol/kg)である。
 前記Xは、前記組成物中のポリオレフィンの含有率(質量%)である。
[2]前記ポリアミドが、全ジカルボン酸単位に対してテレフタル酸単位及びナフタレンジカルボン酸単位から選ばれる少なくとも1種を、50モル%以上含む、前記[1]に記載のポリアミド組成物。
[3]前記ポリアミドが、全ジアミン単位に対して、炭素数4~13の脂肪族ジアミン単位、又は、メタキシリレンジアミン単位を、60モル%以上含む、前記[1]又は[2]に記載のポリアミド組成物。
[4]前記脂肪族ジアミン単位が、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種の脂肪族ジアミンに由来する単位である、前記[3]に記載のポリアミド組成物。
[5]前記脂肪族ジアミン単位が、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンから選ばれる少なくとも1種の脂肪族ジアミンに由来する単位である、前記[3]又は[4]に記載のポリアミド組成物。
[6]前記ポリアミドをゲルパーミエーションクロマトグラフィで測定した多分散性指数が3.7以上であり、前記ポリアミドにおける末端アミノ基の含有量が10~70μeq/g、かつ末端カルボキシル基の含有量が10~70μeq/gである、前記[1]~[5]のいずれかに記載のポリアミド組成物。
[7]前記ポリオレフィンの含有率が、14~40質量%である、前記[1]~[6]のいずれかに記載のポリアミド組成物。
[8]前記ポリオレフィンの含有率が、15~30質量%である、前記[1]~[7]のいずれかに記載のポリアミド組成物。
[9]前記ポリオレフィン(B)が、エチレン、アルキル(メタ)アクリレート及び不飽和ジカルボン酸無水物の共重合体である、前記[1]~[8]のいずれかに記載のポリアミド組成物。
[10]前記銅系安定剤の含有率が、0.01~2質量%である、前記[1]~[9]のいずれかに記載のポリアミド組成物。
[11]前記銅系安定剤が、ヨウ化銅、臭化銅、及び酢酸銅からなる群より選ばれる少なくとも1種の銅化合物と、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる少なくとも1種の金属ハロゲン化物とを含む、前記[1]~[10]のいずれかに記載のポリアミド組成物。
[12]前記ポリアミド及び前記ポリオレフィン以外の他種ポリマー、酸化防止剤、充填剤、結晶核剤、着色剤、帯電防止剤、可塑剤、滑剤、難燃剤及び難燃助剤からなる群より選ばれる少なくとも1種の添加剤を含む、前記[1]~[11]のいずれかに記載のポリアミド組成物。
[13]前記[1]~[12]のいずれかに記載のポリアミド組成物の製造方法であって、
 前記ポリアミドと、前記ポリオレフィンと、前記銅系安定剤とを二軸押出機にトップフィードし、溶融混錬する、ポリアミド組成物の製造方法。
[14]単層構造体を作製するための、又は、多層構造体のうち少なくとも1つの層を作製するための、前記[1]~[12]のいずれかに記載のポリアミド組成物の使用。
[15]前記[1]~[12]のいずれかに記載のポリアミド組成物からなる成形体。
[16]押出し成形体、共押出し成形体又はブロー成形体である、前記[15]に記載の成形体。
[17]燃料チューブ、エンジン冷却液チューブ、バッテリー冷却液チューブ、モーター冷却液チューブ、燃料電池冷却チューブ、尿素溶液搬送チューブ、エアコン冷媒用チューブ、ブローバイチューブ、ブレーキブースターチューブ、ブレーキチューブ、オイル冷却チューブ、ターボダクトパイプ、エアサスペンションチューブ又は石油輸送用チューブである、前記[16]に記載の成形体。
That is, the present invention is as follows.
[1] A composition comprising a polyamide, a polyolefin and a copper-based stabilizer,
The polyolefin contains at least one polyolefin (A) containing a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated epoxide, and at least one polyolefin (B) containing an unsaturated dicarboxylic acid anhydride, and The mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1 to 2.9,
A polyamide composition having a value Z of 33 to 200 calculated from the following formula (1).
Z = 1000 × (|[ANH]−[EPO]|+[EPO])/X 2 formula (1)
The [EPO] is the concentration (mmol/kg) of unsaturated epoxide derived from the polyolefin per unit mass of the composition.
The [ANH] is the concentration (mmol/kg) of the unsaturated dicarboxylic anhydride derived from the polyolefin per unit mass of the composition.
The above X is the polyolefin content (% by mass) in the composition.
[2] The polyamide composition according to [1], wherein the polyamide contains at least one selected from terephthalic acid units and naphthalene dicarboxylic acid units in an amount of 50 mol% or more based on all dicarboxylic acid units.
[3] The above [1] or [2], wherein the polyamide contains 60 mol% or more of aliphatic diamine units having 4 to 13 carbon atoms or meta-xylylenediamine units based on all diamine units. of the polyamide composition.
[4] The aliphatic diamine units are 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1, The polyamide composition according to [3], wherein the unit is derived from at least one aliphatic diamine selected from the group consisting of 10-decanediamine.
[5] The above [3] or [4], wherein the aliphatic diamine unit is a unit derived from at least one aliphatic diamine selected from 1,9-nonanediamine and 2-methyl-1,8-octanediamine. ] Polyamide composition according to.
[6] The polydispersity index of the polyamide measured by gel permeation chromatography is 3.7 or more, the content of terminal amino groups in the polyamide is 10 to 70 µeq/g, and the content of terminal carboxyl groups in the polyamide is 10. The polyamide composition according to any one of the above [1] to [5], which is ~70 μeq/g.
[7] The polyamide composition according to any one of [1] to [6], wherein the polyolefin content is 14 to 40% by mass.
[8] The polyamide composition according to any one of [1] to [7], wherein the polyolefin content is 15 to 30% by mass.
[9] The polyamide composition according to any one of [1] to [8], wherein the polyolefin (B) is a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated dicarboxylic acid anhydride.
[10] The polyamide composition according to any one of [1] to [9], wherein the content of the copper-based stabilizer is 0.01 to 2% by mass.
[11] The copper-based stabilizer comprises at least one copper compound selected from the group consisting of copper iodide, copper bromide, and copper acetate, and at least one selected from the group consisting of potassium iodide and potassium bromide. The polyamide composition according to any one of the above [1] to [10], which contains a metal halide.
[12] Selected from the group consisting of polymers other than the polyamide and the polyolefin, antioxidants, fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, flame retardants, and flame retardant aids The polyamide composition according to any one of [1] to [11] above, comprising at least one additive.
[13] A method for producing a polyamide composition according to any one of [1] to [12],
A method for producing a polyamide composition, wherein the polyamide, the polyolefin, and the copper-based stabilizer are top-fed to a twin-screw extruder and melt-kneaded.
[14] Use of the polyamide composition according to any one of [1] to [12] for producing a single layer structure or for producing at least one layer of a multilayer structure.
[15] A molded article made of the polyamide composition according to any one of [1] to [12].
[16] The molded article according to the above [15], which is an extruded article, a co-extruded article or a blow molded article.
[17] Fuel tubes, engine coolant tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes, urea solution delivery tubes, air conditioner coolant tubes, blow-by tubes, brake booster tubes, brake tubes, oil cooling tubes, The formed article according to [16] above, which is a turbo duct pipe, an air suspension tube, or an oil transportation tube.
 本発明によれば、優れた耐熱性を有し、さらに柔軟性、耐衝撃性、加工安定性、耐白化性にも優れるポリアミド組成物及びその製造方法、上記ポリアミド組成物の使用、並びに上記ポリアミド組成物を用いた成形体を提供することができる。 According to the present invention, a polyamide composition having excellent heat resistance, flexibility, impact resistance, processing stability, and whitening resistance, a method for producing the same, use of the above polyamide composition, and the above polyamide A molded article using the composition can be provided.
 本発明のさらなる特徴、形態、利点は、下記の詳細な説明及び実施例を読むことでさらに明らかとなる。 Further features, forms and advantages of the present invention will become clearer upon reading the detailed description and examples below.
 また本明細書において、実施態様の好ましい形態を示すが、個々の好ましい形態を2つ以上組み合わせたものもまた、好ましい形態である。数値範囲で示した事項について、いくつかの数値範囲がある場合、それらの下限値と上限値とを選択的に組み合わせて好ましい形態とすることができる。例えば、「XX~YY」との記載は、「XX以上YY以下」を意味する。また、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構成単位」を意味する。例えば、「ジカルボン酸単位」とは「ジカルボン酸に由来する構成単位」を意味する。「ジアミン単位」とは「ジアミンに由来する構成単位」を意味する。また、「(メタ)アクリレート」とは、「アクリレート」及びそれに対応する「メタクリレート」を意味する。
 また、「チューブ」とは、管やホースなどのような筒状構造体を意味する。
Also, preferred forms of embodiments are indicated herein, and combinations of two or more of the individual preferred forms are also preferred forms. When there are several numerical ranges for items indicated by numerical ranges, the lower and upper limits thereof can be selectively combined to form a preferred form. For example, the description “XX to YY” means “XX or more and YY or less”. In addition, "- unit" (where "-" indicates a monomer) means "a structural unit derived from". For example, a "dicarboxylic acid unit" means a "structural unit derived from a dicarboxylic acid". A "diamine unit" means a "structural unit derived from a diamine". In addition, "(meth)acrylate" means "acrylate" and "methacrylate" corresponding thereto.
Also, "tube" means a cylindrical structure such as a pipe or hose.
<ポリアミド組成物>
[ポリアミド]
 本実施態様のポリアミド組成物は、少なくとも1種のポリアミドを含む。
<Polyamide composition>
[polyamide]
The polyamide composition of this embodiment comprises at least one polyamide.
 上記ポリアミドは、ジカルボン酸単位とジアミン単位の重縮合からなる少なくとも1種の繰り返し単位を含む。 The above polyamide contains at least one repeating unit consisting of polycondensation of dicarboxylic acid units and diamine units.
 ジカルボン酸単位としては、テレフタル酸単位、ナフタレンジカルボン酸単位、イソフタル酸単位、1,4-フェニレンジオキシジ酢酸単位、1,3-フェニレンジオキシジ酢酸単位、ジフェン酸単位、ジフェニルメタン-4,4’-ジカルボン酸単位、ジフェニルスルホン-4,4’-ジカルボン酸単位、4,4’-ビフェニルジカルボン酸単位などの芳香族ジカルボン酸単位が挙げられる。
 上記ナフタレンジカルボン酸単位としては、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、及び1,4-ナフタレンジカルボン酸に由来する単位が挙げられ、2,6-ナフタレンジカルボン酸単位が好ましい。
 またジカルボン酸単位として、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ジメチルマロン酸、2,2-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸、ダイマー酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸等の脂環式ジカルボン酸などに由来する単位が挙げられる。
 これらのジカルボン酸に由来する単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。
Dicarboxylic acid units include terephthalic acid units, naphthalenedicarboxylic acid units, isophthalic acid units, 1,4-phenylenedioxydiacetic acid units, 1,3-phenylenedioxydiacetic acid units, diphenic acid units, and diphenylmethane-4,4. Aromatic dicarboxylic acid units such as '-dicarboxylic acid units, diphenylsulfone-4,4'-dicarboxylic acid units and 4,4'-biphenyldicarboxylic acid units are included.
Examples of the naphthalenedicarboxylic acid unit include units derived from 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and 1,4-naphthalenedicarboxylic acid, and 2,6-naphthalenedicarboxylic acid unit is preferred. .
Dicarboxylic acid units include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, dimethylmalonic acid, and 2,2-diethyl. Aliphatic dicarboxylic acids such as succinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladipic acid, dimer acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4 - units derived from alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid and cyclodecanedicarboxylic acid.
Only one kind of units derived from these dicarboxylic acids may be contained, or two or more kinds thereof may be contained.
 本発明に用いるポリアミドは、全ジカルボン酸単位に対してテレフタル酸単位及びナフタレンジカルボン酸単位から選ばれる少なくとも1種を50モル%以上含むことが好ましい。また、耐薬品性及び耐熱性が良好なポリアミドとなる観点から、本発明に用いるポリアミドは、全ジカルボン酸単位に対してテレフタル酸単位及びナフタレンジカルボン酸単位から選ばれる少なくとも1種を75モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。 The polyamide used in the present invention preferably contains 50 mol% or more of at least one selected from terephthalic acid units and naphthalenedicarboxylic acid units based on all dicarboxylic acid units. Further, from the viewpoint of becoming a polyamide having good chemical resistance and heat resistance, the polyamide used in the present invention contains 75 mol% or more of at least one selected from terephthalic acid units and naphthalene dicarboxylic acid units with respect to all dicarboxylic acid units. More preferably, it contains 90 mol % or more.
 ジアミン単位としては、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン等の直鎖状脂肪族ジアミン;2-メチル-1,3-プロパンジアミン、2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンなどに由来する単位が挙げられる。
 これらのジアミンに由来する単位は1種のみ含まれていてもよいし、2種以上含まれていてもよい。
Diamine units include ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1 ,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine and other linear aliphatic diamines;2 -methyl-1,3-propanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4 ,4-trimethyl-1,6-hexanediamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine and other branched aliphatic diamines; cyclohexanediamine, methylcyclohexanediamine, isophoronediamine alicyclic diamines such as p-phenylenediamine, m-phenylenediamine, xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenyl ether and other aromatic diamines and the like.
Only one type of unit derived from these diamines may be contained, or two or more types thereof may be contained.
 本発明に用いるポリアミドは、全ジアミン単位に対して炭素数4~13の脂肪族ジアミン単位又はメタキシリレンジアミン単位を60モル%以上含むことが好ましい。炭素数4~13の脂肪族ジアミン単位を上記割合で含有するポリアミドを使用すると、靭性、耐熱性、耐薬品性、軽量性に優れたポリアミド組成物が得られる。本発明に用いるポリアミドは、全ジアミン単位に対して炭素数4~13の脂肪族ジアミン単位から選ばれる少なくとも1種を、75モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。 The polyamide used in the present invention preferably contains 60 mol % or more of aliphatic diamine units having 4 to 13 carbon atoms or meta-xylylenediamine units based on all diamine units. By using a polyamide containing aliphatic diamine units having 4 to 13 carbon atoms in the above ratio, a polyamide composition having excellent toughness, heat resistance, chemical resistance and lightness can be obtained. The polyamide used in the present invention preferably contains 75 mol% or more, more preferably 90 mol% or more, of at least one selected from aliphatic diamine units having 4 to 13 carbon atoms with respect to all diamine units. .
 上記の炭素数4~13の脂肪族ジアミン単位は、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種の脂肪族ジアミンに由来する単位であることがより好ましい。耐熱性、低吸水性及び耐薬液性により一層優れるポリアミド組成物が得られることから、上記の炭素数4~13の脂肪族ジアミン単位は、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンから選ばれる少なくとも1種の脂肪族ジアミンに由来する単位であることがより好ましく、1,9-ノナンジアミン単位及び2-メチル-1,8-オクタンジアミン単位であることがさらに好ましい。
 脂肪族ジアミン単位が1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンに由来する単位をともに含む場合には、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=95/5~40/60の範囲にあることが好ましく、90/10~40/60の範囲にあることがより好ましく、80/20~40/60の範囲にあることがさらに好ましい。
The aliphatic diamine units having 4 to 13 carbon atoms are 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octane Units derived from at least one aliphatic diamine selected from the group consisting of diamines and 1,10-decanediamine are more preferred. Since a polyamide composition having even better heat resistance, low water absorption and chemical resistance can be obtained, the aliphatic diamine units having 4 to 13 carbon atoms are 1,9-nonanediamine and 2-methyl-1,8- Units derived from at least one aliphatic diamine selected from octanediamine are more preferred, and 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units are more preferred.
When the aliphatic diamine units contain both units derived from 1,9-nonanediamine and 2-methyl-1,8-octanediamine, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units is preferably in the range of 1,9-nonanediamine unit/2-methyl-1,8-octanediamine unit = 95/5 to 40/60, and in the range of 90/10 to 40/60. is more preferable, and more preferably in the range of 80/20 to 40/60.
 本発明に用いるポリアミドは、アミノカルボン酸単位及び/又はラクタム単位を含んでいてもよい。 
 上記アミノカルボン酸単位としては、例えば、11-アミノウンデカン酸、12-アミノドデカン酸などに由来する単位を挙げることができる。アミノカルボン酸単位は、2種以上含まれていてもよい。ポリアミドにおけるアミノカルボン酸単位の含有率は、ポリアミドを構成する全モノマー単位100モル%に対して、50モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。
The polyamide used in the present invention may contain aminocarboxylic acid units and/or lactam units.
Examples of the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like. Two or more aminocarboxylic acid units may be included. The content of aminocarboxylic acid units in the polyamide is preferably 50 mol% or less, more preferably 20 mol% or less, and 10 mol% or less with respect to 100 mol% of the total monomer units constituting the polyamide. is more preferable.
 上記ラクタム単位としては、例えば、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ラウリルラクタム、α-ピロリドン、α-ピペリドン等などに由来する単位を挙げることができ、ラクタム単位は2種以上含まれていてもよい。ポリアミドにおけるラクタム単位の含有率は、ポリアミドを構成する全モノマー単位100モル%に対して、50モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。 Examples of the lactam unit include units derived from ε-caprolactam, enantholactam, undecanelactam, lauryllactam, α-pyrrolidone, α-piperidone, etc. Two or more types of lactam units are included. good too. The content of the lactam unit in the polyamide is preferably 50 mol% or less, more preferably 20 mol% or less, and 10 mol% or less with respect to 100 mol% of the total monomer units constituting the polyamide. is more preferred.
 本実施態様において、ポリアミドは、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、炭素数4~13の脂肪族ジアミン単位を主成分とするジアミン単位とを含む半芳香族ポリアミドであることが好ましい。
 ここで本明細書において「主成分とする」とは、全単位中の50~100モル%、好ましくは60~100モル%、より好ましくは80~100モル%を構成することをいう。
 代表的な半芳香族ポリアミドとしては、ポリテトラメチレンテレフタルアミド(ポリアミド4T)、ポリペンタメチレンテレフタルアミド(ポリアミド5T)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリ(2-メチルオクタメチレン)テレフタルアミド(ナイロンM8T)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ポリアミド9T/M8T)、ポリノナメチレンナフタレンジカルボキサミド(ポリアミド9N)、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ポリアミド9N/M8N)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリアミド6Iとポリアミド6Tとの共重合体(ポリアミド6I/6T)、ポリアミド6Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド6T/11)、及びポリアミド10Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド10T/11)などが挙げられる。
 これらの中でも、ポリアミド10T/11、ポリノナメチレンナフタレンジカルボキサミド(ポリアミド9N)、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ポリアミド9N/M8N)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ポリアミド9T/M8T)及びポリデカメチレンテレフタルアミド(ポリアミド10T)から選ばれる少なくとも1種が好ましく、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ポリアミド9N/M8N)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ポリアミド9T/M8T)、及びポリアミド10T/11から選ばれる少なくとも1種がより好ましく、成形加工性及び、高温での剛性を担保する観点から、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ポリアミド9T/M8T)がさらに好ましい。
In this embodiment, the polyamide is a semi-aromatic polyamide containing dicarboxylic acid units mainly composed of aromatic dicarboxylic acid units and diamine units mainly composed of aliphatic diamine units having 4 to 13 carbon atoms. is preferred.
In the present specification, the term "mainly composed" means to constitute 50 to 100 mol%, preferably 60 to 100 mol%, more preferably 80 to 100 mol% of the total units.
Typical semi-aromatic polyamides include polytetramethylene terephthalamide (polyamide 4T), polypentamethylene terephthalamide (polyamide 5T), polyhexamethylene terephthalamide (polyamide 6T), polynonamethylene terephthalamide (polyamide 9T), poly(2-methyloctamethylene)terephthalamide (nylon M8T), polynonamethyleneterephthalamide/poly(2-methyloctamethylene)terephthalamide copolymer (polyamide 9T/M8T), polynonamethylenenaphthalene dicarboxamide (polyamide 9N), Polynonamethylene naphthalene dicarboxamide/poly(2-methyloctamethylene) naphthalene dicarboxamide copolymer (polyamide 9N/M8N), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), polyamide 6I and polyamide 6T copolymer (polyamide 6I/6T), polyamide 6T and polyundecaneamide (polyamide 11) copolymer (polyamide 6T/11), and polyamide 10T and polyundecaneamide (polyamide 11) copolymer coalescence (polyamide 10T/11);
Among these, polyamide 10T/11, polynonamethylenenaphthalenedicarboxamide (polyamide 9N), polynonamethylenenaphthalenedicarboxamide/poly(2-methyloctamethylene)naphthalene dicarboxamide copolymer (polyamide 9N/M8N), polynonamethylene terephthalate At least one selected from amide (polyamide 9T), polynonamethylene terephthalamide/poly(2-methyloctamethylene) terephthalamide copolymer (polyamide 9T/M8T) and polydecamethylene terephthalamide (polyamide 10T) is preferred, and polynona Methylenenaphthalene dicarboxamide/poly(2-methyloctamethylene)naphthalene dicarboxamide copolymer (polyamide 9N/M8N), polynonamethylene terephthalamide/poly(2-methyloctamethylene) terephthalamide copolymer (polyamide 9T/M8T), and polyamide At least one selected from 10T/11 is more preferable, and from the viewpoint of ensuring moldability and rigidity at high temperatures, polynonamethylene terephthalamide/poly(2-methyloctamethylene) terephthalamide copolymer (polyamide 9T/M8T ) is more preferred.
 また、ポリアミドとして、脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む半芳香族ポリアミドを用いることもできる。脂肪族ジカルボン酸単位として、前述した脂肪族ジカルボン酸に由来する単位を挙げることができ、これらのうちの1種又は2種以上を含むことができる。また、芳香族ジアミン単位としては、前述した芳香族ジアミンに由来する単位を挙げることができ、これらのうちの1種又は2種以上を含むことができる。また、本発明の効果を阻害しない範囲内で、他の単位を含んでもよい。
 脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む代表的な半芳香族ポリアミドとしては、ポリメタキシリレンアジパミド(MXD6)、ポリパラキシリレンセバカミド(PXD10)などが挙げられる。
As the polyamide, a semi-aromatic polyamide containing dicarboxylic acid units mainly composed of aliphatic dicarboxylic acid units and diamine units mainly composed of aromatic diamine units can be used. Examples of the aliphatic dicarboxylic acid unit include units derived from the aforementioned aliphatic dicarboxylic acids, and one or more of these may be included. In addition, the aromatic diamine unit may include units derived from the aromatic diamine described above, and one or more of these may be included. Also, other units may be included within the range that does not impair the effects of the present invention.
Typical semi-aromatic polyamides containing dicarboxylic acid units mainly composed of aliphatic dicarboxylic acid units and diamine units mainly composed of aromatic diamine units include polymetaxylylene adipamide (MXD6), poly paraxylylene sebacamide (PXD10) and the like.
 また、ポリアミドとして、脂肪族ポリアミドを用いることもできる。
 脂肪族ポリアミドとしては、ポリカプロアミド(ポリアミド6)、ポリウンデカンアミド(ポリアミド11)、ポリドデカンアミド(ポリアミド12)、ポリテトラメチレンアジパミド(ポリアミド46)、ポリヘキサメチレンアジパミド(ポリアミド66)、ポリノナメチレンオキサイド(ポリアミド92)、ポリヘキサメチレンセバカミド(ポリアミド610)、ポリヘキサメチレンドデカミド(ポリアミド612)、ポリノナメチレンセバカミド(ポリアミド910)、ポリノナメチレンドデカミド(ポリアミド912)、ポリデカメチレンセバカミド(ポリアミド1010)、ポリデカメチレンドデカミド(ポリアミド1012)、ポリドデカメチレンセバカミド(ポリアミド1210)、ポリドデカメチレンドデカミド(ポリアミド1212)等が挙げられる。
Moreover, an aliphatic polyamide can also be used as polyamide.
Aliphatic polyamides include polycaproamide (polyamide 6), polyundecaneamide (polyamide 11), polydodecanamide (polyamide 12), polytetramethylene adipamide (polyamide 46), polyhexamethylene adipamide (polyamide 66 ), polynonamethylene oxide (polyamide 92), polyhexamethylene sebacamide (polyamide 610), polyhexamethylene dodecamide (polyamide 612), polynonamethylene sebacamide (polyamide 910), polynonamethylene dodecamide (polyamide 912), polydecamethylene sebacamide (polyamide 1010), polydecamethylene dodecamide (polyamide 1012), polydodecamethylene sebacamide (polyamide 1210), polydodecamethylene dodecamide (polyamide 1212), and the like.
 本発明に用いるポリアミドは、その分子鎖の全末端基に対し10モル%以上が末端封止剤により封止されていることが好ましい。末端封止率が10モル%以上のポリアミドを使用すると、溶融安定性、耐熱水性などの物性がより優れたポリアミド組成物が得られる。 In the polyamide used in the present invention, 10 mol% or more of all the terminal groups of the molecular chains are preferably blocked with a terminal blocking agent. When a polyamide having a terminal capping rate of 10 mol % or more is used, a polyamide composition having better physical properties such as melt stability and hot water resistance can be obtained.
 末端封止剤としては、末端アミノ基又は末端カルボキシル基との反応性を有する単官能性の化合物を用いることができる。具体的には、モノカルボン酸、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類、モノアミンなどが挙げられる。反応性及び封止末端の安定性などの観点から、末端アミノ基に対する末端封止剤としては、モノカルボン酸が好ましく、末端カルボキシル基に対する末端封止剤としては、モノアミンが好ましい。取り扱いの容易さなどの観点からは、末端封止剤としてはモノカルボン酸がより好ましい。 A monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used as the terminal blocking agent. Specific examples include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols, and monoamines. From the viewpoint of reactivity and stability of the terminal to be blocked, monocarboxylic acid is preferable as the terminal blocking agent for the terminal amino group, and monoamine is preferable as the terminal blocking agent for the terminal carboxyl group. From the standpoint of ease of handling, etc., monocarboxylic acids are more preferable as terminal blocking agents.
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はない。モノカルボン酸として、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロペンタンカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物などを挙げることができる。これらの中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及び安息香酸から選ばれる少なくとも1種が好ましい。 The monocarboxylic acid used as the terminal blocking agent is not particularly limited as long as it has reactivity with amino groups. Examples of monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid. cyclopentanecarboxylic acid, cyclohexanecarboxylic acid and other alicyclic monocarboxylic acids; benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid, phenylacetic acid and other aromatic monocarboxylic acids and any mixture thereof. Among these, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, and stearic acid are preferred in terms of reactivity, stability of blocked ends, and price. , and benzoic acid are preferred.
 末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はない。モノアミンとして、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物などを挙げることができる。これらの中でも、反応性、高沸点、封止末端の安定性及び価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、及びアニリンから選ばれる少なくとも1種が好ましい。 The monoamine used as the terminal blocking agent is not particularly limited as long as it has reactivity with the carboxyl group. Examples of monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine and dibutylamine; alicyclic monoamines; aromatic monoamines such as aniline, toluidine, diphenylamine and naphthylamine; arbitrary mixtures thereof; Among these, at least one selected from butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline is preferable from the viewpoints of reactivity, high boiling point, stability of capped ends, price, and the like.
 本発明に用いるポリアミドは、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃で測定した固有粘度[ηinh]が0.6dl/g以上であることが好ましく、0.8dl/g以上であることがより好ましく、1.0dl/g以上であることがさらに好ましい。また、上記固有粘度は、2.0dl/g以下であることが好ましく、1.8dl/g以下であることがより好ましく、1.6dl/g以下であることがさらに好ましい。ポリアミドの固有粘度[ηinh]が上記の範囲内であれば、成形性などの諸物性がより向上する。固有粘度[ηinh]は、溶媒(濃硫酸)の流下時間t(秒)、試料溶液の流下時間t(秒)及び試料溶液における試料濃度c(g/dl)(すなわち、0.2g/dl)から、ηinh=[ln(t/t)]/cの関係式により求めることができる。 The polyamide used in the present invention preferably has an intrinsic viscosity [η inh ] of 0.6 dl/g or more, measured at a concentration of 0.2 g/dl and a temperature of 30° C. using concentrated sulfuric acid as a solvent, and preferably 0.8 dl/g. It is more preferably 1.0 dl/g or more, more preferably 1.0 dl/g or more. The intrinsic viscosity is preferably 2.0 dl/g or less, more preferably 1.8 dl/g or less, and even more preferably 1.6 dl/g or less. When the intrinsic viscosity [η inh ] of the polyamide is within the above range, various physical properties such as moldability are further improved. The intrinsic viscosity [η inh ] is determined by the flowing time t 0 (seconds) of the solvent (concentrated sulfuric acid), the flowing time t 1 (seconds) of the sample solution, and the sample concentration c (g/dl) in the sample solution (i.e., 0.2 g /dl) by the relational expression η inh =[ln(t 1 /t 0 )]/c.
 本発明に用いるポリアミドは、その末端アミノ基の含有量(以下、「末端アミノ基含量」ともいう)([NH])が10~70μeq/gであることが好ましく、10~65μeq/gであることがより好ましく、10~60μeq/gであることがさらに好ましい。末端アミノ基含量([NH])が10μeq/g以上であれば、ポリアミドと、後述するポリオレフィンとの相容性が良好である。また、上記末端アミノ基含量が70μeq/g以下であれば、ポリオレフィンとして後述する変性ポリオレフィンを用いる場合、該末端アミノ基とポリオレフィンの変性部分の過剰反応でゲル化が進行するのを避けることができる。
 本明細書でいう末端アミノ基含量([NH])は、ポリアミドが1g中に含有する末端アミノ基の量(単位:μeq)を指し、指示薬を用いた中和滴定法より求めることができる。
The polyamide used in the present invention preferably has a terminal amino group content (hereinafter also referred to as “terminal amino group content”) ([NH 2 ]) of 10 to 70 μeq/g, more preferably 10 to 65 μeq/g. more preferably 10 to 60 μeq/g. If the terminal amino group content ([NH 2 ]) is 10 µeq/g or more, the compatibility between the polyamide and the later-described polyolefin is good. Further, when the terminal amino group content is 70 μeq/g or less, when a modified polyolefin described later is used as the polyolefin, it is possible to avoid the progress of gelation due to excessive reaction between the terminal amino group and the modified portion of the polyolefin. .
The terminal amino group content ([NH 2 ]) as used herein refers to the amount of terminal amino groups contained in 1 g of the polyamide (unit: μeq), and can be determined by a neutralization titration method using an indicator. .
 本発明に用いるポリアミドは、その末端カルボキシル基の含有量(以下、「末端カルボキシル基含量」ともいう)([COOH])が10~70μeq/gであることが好ましく、12~65μeq/gであることがより好ましく、14~60μeq/gであることがさらに好ましい。末端カルボキシル基含量([COOH])が10μeq/g以上であれば、ポリアミドと、後述するポリオレフィンとの相容性が良好である。また、上記末端カルボキシル基含量が70μeq/g以下であれば、ポリオレフィンとして後述する変性ポリオレフィンを用いる場合、上記末端カルボキシル基とポリオレフィンの変性部分の過剰反応でゲル化が進行するのを避けることができる。
 本明細書でいう末端カルボキシル基含量([COOH])は、ポリアミドが1g中に含有する末端カルボキシル基の量(単位:μeq)を指し、指示薬を用いた中和滴定法より求めることができる。
The polyamide used in the present invention preferably has a terminal carboxyl group content (hereinafter also referred to as "terminal carboxyl group content") ([COOH]) of 10 to 70 µeq/g, and 12 to 65 µeq/g. is more preferable, and 14 to 60 μeq/g is even more preferable. If the terminal carboxyl group content ([COOH]) is 10 µeq/g or more, the compatibility between the polyamide and the later-described polyolefin is good. In addition, if the terminal carboxyl group content is 70 μeq/g or less, when a modified polyolefin described later is used as the polyolefin, it is possible to avoid the progress of gelation due to excessive reaction between the terminal carboxyl group and the modified portion of the polyolefin. .
The terminal carboxyl group content ([COOH]) as used herein refers to the amount of terminal carboxyl groups contained in 1 g of the polyamide (unit: μeq), and can be determined by a neutralization titration method using an indicator.
 ジカルボン酸単位とジアミン単位とを含み、末端アミノ基含量([NH])及び末端カルボキシル基含量([COOH])が上記した範囲にあるポリアミドは、例えば、以下のようにして製造できる。
 まず、ジカルボン酸、ジアミン、及び必要に応じてアミノカルボン酸、ラクタム、触媒、末端封止剤を混合し、ナイロン塩を製造する。この際、上記の反応原料に含まれる全てのカルボキシル基のモル数(X)と全てのアミノ基のモル数(Y)が、過剰分を算出する下記の式(Q)
  -0.5≦[(Y-X)/Y]×100≦2.0   式(Q)
を満足するようにすると、末端アミノ基含量([NH])並びに末端カルボキシル基含量([COOH])が10~70μeq/gであるポリアミドを製造し易くなり好ましい。次に、生成したナイロン塩を200~250℃の温度に加熱し、濃硫酸中30℃における固有粘度[ηinh]が0.10~0.60dl/gのプレポリマーとし、さらに高重合度化することにより、ポリアミドを得ることができる。プレポリマーの固有粘度[ηinh]が0.10~0.60dl/gの範囲内にあると、高重合度化の段階においてカルボキシル基とアミノ基のモルバランスのずれや重合速度の低下が少なく、さらに分子量分布の小さい、各種性能や成形性により優れたポリアミドが得られる。高重合度化の段階を固相重合法により行う場合、減圧下又は不活性ガス流通下に行うことが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色及びゲル化を有効に抑制することができる。また、高重合度化の段階を溶融押出機により行う場合、重合温度は370℃以下であることが好ましく、かかる条件で重合を行うと、ポリアミドの分解がほとんどなく、劣化の少ないポリアミドが得られる。
A polyamide containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) and a terminal carboxyl group content ([COOH]) within the ranges described above can be produced, for example, as follows.
First, a dicarboxylic acid, a diamine, and optionally an aminocarboxylic acid, a lactam, a catalyst and a terminal blocking agent are mixed to produce a nylon salt. At this time, the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the above reaction raw materials are calculated by the following formula (Q)
-0.5 ≤ [(YX) / Y] × 100 ≤ 2.0 Formula (Q)
is satisfied, it is easy to produce a polyamide having a terminal amino group content ([NH 2 ]) and a terminal carboxyl group content ([COOH]) of 10 to 70 μeq/g, which is preferable. Next, the produced nylon salt is heated to a temperature of 200 to 250° C. to obtain a prepolymer having an intrinsic viscosity [η inh ] of 0.10 to 0.60 dl/g at 30° C. in concentrated sulfuric acid, and further to a high degree of polymerization. By doing so, a polyamide can be obtained. When the intrinsic viscosity [η inh ] of the prepolymer is within the range of 0.10 to 0.60 dl/g, the deviation of the molar balance between the carboxyl groups and the amino groups and the decrease in the polymerization rate are small in the stage of increasing the degree of polymerization. Furthermore, a polyamide with a narrow molecular weight distribution and excellent various performances and moldability can be obtained. When the step of increasing the degree of polymerization is performed by a solid phase polymerization method, it is preferably performed under reduced pressure or under an inert gas flow. and can effectively suppress coloring and gelation. Further, when the step of increasing the degree of polymerization is performed by a melt extruder, the polymerization temperature is preferably 370 ° C. or less, and when polymerization is performed under such conditions, there is almost no decomposition of the polyamide, and a polyamide with little deterioration can be obtained. .
〈ポリアミド含有率〉
 本実施態様のポリアミド組成物に含まれるポリアミドの含有率は、ポリアミド組成物100質量%に対して60~86質量%であることが好ましく、65~86質量%であることがより好ましく、70~86質量%であることがさらに好ましく、70~80質量%であることがよりさらに好ましい。ポリアミドの含有率が上記範囲にあると、耐熱性により一層優れ、溶融混錬時の加工安定性や柔軟性、耐衝撃性にさらに優れるポリアミド組成物を得ることができる。
<Polyamide content>
The content of the polyamide contained in the polyamide composition of the present embodiment is preferably 60 to 86% by mass with respect to 100% by mass of the polyamide composition, more preferably 65 to 86% by mass, 70 to It is more preferably 86% by mass, and even more preferably 70 to 80% by mass. When the content of the polyamide is within the above range, it is possible to obtain a polyamide composition which is more excellent in heat resistance, processing stability during melt-kneading, flexibility, and impact resistance.
〈多分散性指数〉
 本実施態様のポリアミド組成物に含まれるポリアミドの多分散性指数Mw/Mn(Mwは重量平均分子量、Mnは数平均分子量)は、3.7以上であることが好ましく、4.0以上であってもよい。多分散性指数が3.7以上であれば押出成形時の溶融張力に優れた組成物を得ることができる。また、ポリアミドの多分散性指数Mw/Mnは、8.0以下であることが好ましい。多分散性指数が8.0以下であれば押出成形時の流動性に優れた組成物を得ることができる。
 ポリアミドの多分散性指数は、ゲルパーミエーションクロマトグラフィで測定することができ、より詳細には、実施例に記載の方法によって測定される値である。
<Polydispersity index>
The polydispersity index Mw/Mn (Mw is the weight average molecular weight, Mn is the number average molecular weight) of the polyamide contained in the polyamide composition of the present embodiment is preferably 3.7 or more, and preferably 4.0 or more. may If the polydispersity index is 3.7 or more, a composition having excellent melt tension during extrusion molding can be obtained. Moreover, the polydispersity index Mw/Mn of the polyamide is preferably 8.0 or less. If the polydispersity index is 8.0 or less, a composition having excellent fluidity during extrusion molding can be obtained.
Polydispersity index of polyamide can be measured by gel permeation chromatography, more specifically, it is a value measured by the method described in Examples.
 ポリアミドを製造する際に使用することができる触媒としては、例えば、リン酸、亜リン酸、次亜リン酸、又はこれらの塩もしくはエステルなどが挙げられる。上記の塩又はエステルとしては、例えば、リン酸、亜リン酸又は次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸又は次亜リン酸のアンモニウム塩;リン酸、亜リン酸又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを挙げることができる。
 上記触媒の使用量は、原料の総質量100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましく、また1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。触媒の使用量が上記下限以上であれば良好に重合が進行する。上記上限以下であれば触媒由来の不純物が生じにくくなり、例えばポリアミド組成物を押出成形した場合に上記不純物による不具合を防ぐことができる。
Catalysts that can be used in producing polyamides include, for example, phosphoric acid, phosphorous acid, hypophosphorous acid, or salts or esters thereof. Examples of the above salts or esters include phosphoric acid, phosphorous acid, or hypophosphorous acid and potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony, and the like. Salt with metal; Ammonium salt of phosphoric acid, phosphorous acid or hypophosphite; Ethyl ester, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester of phosphoric acid, phosphorous acid or hypophosphorous acid , decyl ester, stearyl ester, phenyl ester, and the like.
The amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and 1.0% by mass or less with respect to 100% by mass of the total mass of the raw materials. and more preferably 0.5% by mass or less. If the amount of the catalyst used is at least the above lower limit, the polymerization proceeds satisfactorily. If the content is not more than the above upper limit, catalyst-derived impurities are less likely to occur, and for example, problems due to the above impurities can be prevented when the polyamide composition is extruded.
[ポリオレフィン]
 本実施態様のポリアミド組成物は、ポリアミドとポリオレフィンを含み、ポリオレフィンはマトリックスであるポリアミド中に分散した相として存在している。
 上記ポリオレフィンは、エチレン、アルキル(メタ)アクリレート及び不飽和エポキシドの共重合体を含む少なくとも一種のポリオレフィン(A)、並びに不飽和ジカルボン酸無水物を含む少なくとも一種のポリオレフィン(B)を含有する。
 ポリオレフィンに含まれる、ポリオレフィン(A)及びポリオレフィン(B)の合計含有率は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、実質100質量%であってもよい。
[Polyolefin]
The polyamide composition of this embodiment comprises a polyamide and a polyolefin, the polyolefin being present as a dispersed phase in the matrix polyamide.
The polyolefin contains at least one polyolefin (A) containing a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated epoxide, and at least one polyolefin (B) containing an unsaturated dicarboxylic acid anhydride.
The total content of polyolefin (A) and polyolefin (B) contained in polyolefin is preferably 80% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, and substantially 100% by mass. good too.
〈ポリオレフィン(A)〉
 ポリオレフィン(A)は、エチレン、アルキル(メタ)アクリレート及び不飽和エポキシドの共重合体を含むものである。また、分子内反応によるゲル化を避ける点から、ポリオレフィン(A)は不飽和ジカルボン酸無水物を含まないことが望ましい。
<Polyolefin (A)>
Polyolefin (A) includes a copolymer of ethylene, alkyl (meth)acrylate and unsaturated epoxide. Moreover, from the viewpoint of avoiding gelation due to intramolecular reaction, it is desirable that the polyolefin (A) does not contain an unsaturated dicarboxylic acid anhydride.
 上記不飽和エポキシドとしては、アリルグリシジルエーテル、ビニルグリシジルエーテル、グリシジルマレエート及びイタコネート、グリシジルアクリレート及びメタクリレート等の脂肪族グリシジルエーテル及びエステル;2-シクロヘキセン-1-イルグリシジルエーテル、ジグリシジルシクロヘキセン-4,5-ジカルボキシレート、グリシジルシクロヘキセン-4-カルボキシレート、グリシジル5-ノルボルネン-2-メチル-2-カルボキシレート及びジグリシジルエンド-cis-ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボキシレート等の脂環式グリシジルエーテル及びエステル;等のエポキシドが挙げられる。 The unsaturated epoxides include aliphatic glycidyl ethers and esters such as allyl glycidyl ether, vinyl glycidyl ether, glycidyl maleate and itaconate, glycidyl acrylate and methacrylate; 5-dicarboxylate, glycidylcyclohexene-4-carboxylate, glycidyl 5-norbornene-2-methyl-2-carboxylate and diglycidyl endo-cis-bicyclo[2.2.1]hept-5-ene-2, epoxides such as cycloaliphatic glycidyl ethers and esters such as 3-dicarboxylate;
 上記アルキル(メタ)アクリレートは、2~10個の炭素原子を含むことが好ましい。
 アルキル(メタ)アクリレートとしては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、n-ブチルアクリレート、イソブチルアクリレート及び2-エチルヘキシルアクリレート等が挙げられる。
The alkyl (meth)acrylate preferably contains 2 to 10 carbon atoms.
Alkyl (meth)acrylates include methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
 ポリオレフィン(A)の特に好ましい例として、エチレン、メチルアクリレート及びグリシジルメタクリレートの共重合体、並びに、エチレン、ブチルアクリレート及びグリシジルメタクリレートの共重合体が挙げられる。ポリオレフィン(A)として、市販品を用いることもでき、例えば、SK global chemicalが販売する、製品名Lotader AX8900, Lotader AX8750, Lotader AX8390が使用可能である。 Particularly preferred examples of polyolefin (A) include copolymers of ethylene, methyl acrylate and glycidyl methacrylate, and copolymers of ethylene, butyl acrylate and glycidyl methacrylate. Commercially available products can also be used as the polyolefin (A). For example, Lotader AX8900, Lotader AX8750, and Lotader AX8390 sold by SK global chemical can be used.
〈ポリオレフィン(B)〉
 ポリオレフィン(B)は、不飽和ジカルボン酸無水物を含むポリマーである。この不飽和ジカルボン酸無水物は、グラフト又は共重合のいずれかによりポリマーに導入されたものである。また、分子内反応によるゲル化を避ける点から、ポリオレフィン(B)には不飽和エポキシドを含まないことが望ましい。
<Polyolefin (B)>
Polyolefin (B) is a polymer containing an unsaturated dicarboxylic acid anhydride. The unsaturated dicarboxylic anhydride has been introduced into the polymer either by grafting or copolymerization. Moreover, from the viewpoint of avoiding gelation due to intramolecular reaction, it is desirable that the polyolefin (B) does not contain an unsaturated epoxide.
 不飽和ジカルボン酸無水物の例としては、特に無水マレイン酸、イタコン酸無水物、シトラコン酸無水物及びテトラヒドロフタル酸無水物が挙げられる。 Examples of unsaturated dicarboxylic anhydrides include in particular maleic anhydride, itaconic anhydride, citraconic anhydride and tetrahydrophthalic anhydride.
 また、ポリオレフィン(B)として、例えばα-オレフィン系共重合体、(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体、アイオノマー、又は芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体(以下、「共重合体等」と称することがある。)を、不飽和ジカルボン酸無水物で変性した変性ポリオレフィンを用いることができる。
 上記共重合体等は、1種を単独で、又は2種以上を組み合わせて用いることができる。
Examples of polyolefin (B) include α-olefin copolymers, (ethylene and/or propylene)/(α,β-unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymers, ionomers, Alternatively, a modified polyolefin obtained by modifying an aromatic vinyl compound/conjugated diene compound block copolymer (hereinafter sometimes referred to as "copolymer, etc.") with an unsaturated dicarboxylic acid anhydride can be used.
The above copolymers and the like can be used singly or in combination of two or more.
 上記α-オレフィン系共重合体としては、エチレンと炭素数3以上のα-オレフィンとの共重合体や、プロピレンと炭素数4以上のα-オレフィンとの共重合体などが挙げられる。
 炭素数3以上のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンが挙げられる。これらは1種又は2種以上を用いることができる。
Examples of the α-olefin copolymers include copolymers of ethylene and α-olefins having 3 or more carbon atoms and copolymers of propylene and α-olefins having 4 or more carbon atoms.
Examples of α-olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene. , 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1-pentene, 3 -ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene , 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, and 12-ethyl-1-tetradecene. These can use 1 type(s) or 2 or more types.
 また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等の非共役ジエンのポリエンを共重合してもよい。これらは1種又は2種以上を用いることができる。 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,4-octadiene, 1,5-octadiene, 1,6-octadiene, 1,7-octadiene, 2-methyl-1, 5-hexadiene, 6-methyl-1,5-heptadiene, 7-methyl-1,6-octadiene, 4-ethylidene-8-methyl-1,7-nonadiene, 4,8-dimethyl-1,4,8- Decatriene (DMDT), dicyclopentadiene, cyclohexadiene, cyclooctadiene, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl of non-conjugated dienes such as 5-isopropenyl-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,5-norbornadiene; Polyenes may be copolymerized. These can use 1 type(s) or 2 or more types.
 上記(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、エチレン及び/又はプロピレンとα,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステルとを共重合した重合体である。上記α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸等が挙げられる。また、上記α,β-不飽和カルボン酸エステルとしては、上記不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これらは1種又は2種以上を用いることができる。 The (ethylene and/or propylene)/(α,β-unsaturated carboxylic acid and/or unsaturated carboxylic acid ester) copolymer is composed of ethylene and/or propylene and α,β-unsaturated carboxylic acid and/or It is a polymer obtained by copolymerizing an unsaturated carboxylic acid ester. Examples of the α,β-unsaturated carboxylic acid include acrylic acid and methacrylic acid. Examples of the α,β-unsaturated carboxylic acid esters include methyl esters, ethyl esters, propyl esters, butyl esters, pentyl esters, hexyl esters, heptyl esters, octyl esters, nonyl esters and decyl esters of the above unsaturated carboxylic acids. etc. These can use 1 type(s) or 2 or more types.
 上記アイオノマーは、オレフィンとα,β-不飽和カルボン酸との共重合体において、カルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしては、エチレンが好ましく用いられ、α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸が好ましく用いられるが、ここに例示したものに限定されるものではない。上記オレフィンとα,β-不飽和カルボン酸との共重合体に、さらに不飽和カルボン酸エステルが単量体として共重合されていてもよい。また、金属イオンはLi、Na、K、Mg、Ca、Sr、Ba等のアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等が挙げられる。これらは1種又は2種以上を用いることができる。 The ionomer is a copolymer of an olefin and an α,β-unsaturated carboxylic acid in which at least part of the carboxyl groups are ionized by neutralization with metal ions. Ethylene is preferably used as the olefin, and acrylic acid and methacrylic acid are preferably used as the α,β-unsaturated carboxylic acid, but they are not limited to those exemplified here. The copolymer of the olefin and the α,β-unsaturated carboxylic acid may be further copolymerized with an unsaturated carboxylic acid ester as a monomer. In addition, metal ions include Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, Cd, etc., in addition to alkali metals such as Li, Na, K, Mg, Ca, Sr, and Ba, and alkaline earth metals. is mentioned. These can use 1 type(s) or 2 or more types.
 上記芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体は、芳香族ビニル化合物系重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。また、上記のブロック共重合体では、共役ジエン系重合体ブロックにおける不飽和結合が水素添加されていてもよい。 The above-mentioned aromatic vinyl compound/conjugated diene compound block copolymer is a block copolymer comprising an aromatic vinyl compound polymer block and a conjugated diene polymer block. A block copolymer having one and at least one conjugated diene polymer block is used. In the above block copolymer, the unsaturated bond in the conjugated diene polymer block may be hydrogenated.
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックである。その場合の芳香族ビニル化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられ、これらは1種又は2種以上を用いることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる構造単位を有していてもよい。共役ジエン系重合体ブロックは、ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン化合物の1種又は2種以上から形成された重合体ブロックである。水素添加した芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体では、その共役ジエン重合体ブロックにおける不飽和結合部分の一部又は全部が水素添加されている。 The aromatic vinyl compound-based polymer block is a polymer block mainly composed of structural units derived from aromatic vinyl compounds. Examples of aromatic vinyl compounds in that case include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, 4-cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4-(phenylbutyl)styrene and the like can be mentioned, and one or more of these can be used. In addition, the aromatic vinyl compound-based polymer block may optionally have a structural unit composed of a small amount of other unsaturated monomer. The conjugated diene-based polymer block includes conjugated butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, and the like. It is a polymer block formed from one or more diene compounds. In the hydrogenated aromatic vinyl compound/conjugated diene compound block copolymer, part or all of the unsaturated bond portions in the conjugated diene polymer block are hydrogenated.
 芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及びその水素添加物の分子構造は、直鎖状、分岐状、放射状、又はそれら任意の組み合わせのいずれであってもよい。これらの中でも、芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及び/又はその水素添加物として、1個の芳香族ビニル化合物系重合体ブロックと1個の共役ジエン系重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物系重合体ブロック-共役ジエン系重合体ブロック-芳香族ビニル化合物系重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、及びそれらの水素添加物の1種又は2種以上が好ましく用いられる。芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及びその水素添加物は、例えば、未水添又は水添スチレン/ブタジエンブロック共重合体、未水添又は水添スチレン/イソプレンブロック共重合体、未水添又は水添スチレン/イソプレン/スチレンブロック共重合体、未水添又は水添スチレン/ブタジエン/スチレンブロック共重合体、未水添又は水添スチレン/イソプレン/ブタジエン/スチレンブロック共重合体等が挙げられる。 The molecular structure of the aromatic vinyl compound/conjugated diene compound block copolymer and its hydrogenated product may be linear, branched, radial, or any combination thereof. Among these, as the aromatic vinyl compound/conjugated diene compound block copolymer and/or its hydrogenated product, one aromatic vinyl compound polymer block and one conjugated diene polymer block are linear A diblock copolymer in which three polymer blocks are linked linearly in the order of aromatic vinyl compound polymer block - conjugated diene polymer block - aromatic vinyl compound polymer block. One or more of triblock copolymers and hydrogenated products thereof are preferably used. Aromatic vinyl compound/conjugated diene compound block copolymers and hydrogenated products thereof include, for example, unhydrogenated or hydrogenated styrene/butadiene block copolymers, unhydrogenated or hydrogenated styrene/isoprene block copolymers, Unhydrogenated or hydrogenated styrene/isoprene/styrene block copolymer, Unhydrogenated or hydrogenated styrene/butadiene/styrene block copolymer, Unhydrogenated or hydrogenated styrene/isoprene/butadiene/styrene block copolymer, etc. is mentioned.
 ポリオレフィン(B)は、エチレン、アルキル(メタ)アクリレート及び不飽和ジカルボン酸無水物の共重合体であることが好ましい。
 アルキル(メタ)アクリレートは、2~10個の炭素原子を含むことが好ましい。アルキル(メタ)アクリレートとしては、メチルアクリレート、メチルメタクリレート、エチルアクリレート、n-ブチルアクリレート、イソブチルアクリレート及び2-エチルヘキシルアクリレート等が挙げられる。
Polyolefin (B) is preferably a copolymer of ethylene, alkyl (meth)acrylate and unsaturated dicarboxylic acid anhydride.
Alkyl (meth)acrylates preferably contain from 2 to 10 carbon atoms. Alkyl (meth)acrylates include methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate and 2-ethylhexyl acrylate.
 上記のポリオレフィン(B)の中から、さらに好ましい例として、エチレン、エチルアクリレート及び無水マレイン酸の共重合体、並びに、エチレン、ブチルアクリレート及び無水マレイン酸の共重合体が挙げられる。ポリオレフィン(B)として、市販品を用いることもでき、例えば、SK global chemicalが販売する、製品名Lotader 4700及びLotader 3410が使用可能である。 Among the above polyolefins (B), more preferable examples include copolymers of ethylene, ethyl acrylate and maleic anhydride, and copolymers of ethylene, butyl acrylate and maleic anhydride. Commercially available products can also be used as the polyolefin (B). For example, Lotader 4700 and Lotader 3410 sold by SK global chemical can be used.
 また、ポリオレフィン(B)において、不飽和ジカルボン酸無水物として例示される無水マレイン酸の一部が部分的に加水分解されていても、本発明の範囲を逸脱するものではない。 Further, even if part of the maleic anhydride exemplified as the unsaturated dicarboxylic acid anhydride in the polyolefin (B) is partially hydrolyzed, it does not depart from the scope of the present invention.
〈質量比[B]/[A]〉
 ポリオレフィン(A)の含有量[A]に対するポリオレフィン(B)の含有量[B]の質量比[B]/[A]は、0.1~2.9であり、好ましくは0.2~2.9、より好ましくは0.4~2.9、さらに好ましくは0.5~2.9である。質量比[B]/[A]が0.1未満であると溶融粘度が増大し、成形加工性が低下する傾向にある。質量比[B]/[A]が2.9を超えると、溶融混錬時の安定性と優れた伸び特性を両立することが困難になる傾向にある。
<Mass ratio [B]/[A]>
The mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1 to 2.9, preferably 0.2 to 2. .9, more preferably 0.4 to 2.9, more preferably 0.5 to 2.9. If the mass ratio [B]/[A] is less than 0.1, the melt viscosity tends to increase and the moldability tends to deteriorate. If the mass ratio [B]/[A] exceeds 2.9, it tends to be difficult to achieve both stability during melt kneading and excellent elongation properties.
〈ポリオレフィン含有率〉
 本実施態様のポリアミド組成物に含まれるポリオレフィンの含有率は、ポリアミド組成物100質量%に対して14~40質量%であることが好ましく、15~40質量%であることがより好ましく、15~35質量%であることがさらに好ましく、15~30質量%であることがよりさらに好ましい。ポリオレフィンの含有率が上記範囲にあると、溶融混錬時の加工安定性や柔軟性、耐衝撃性に優れるポリアミド組成物を得ることができる。
<Polyolefin content>
The content of the polyolefin contained in the polyamide composition of the present embodiment is preferably 14 to 40% by mass with respect to 100% by mass of the polyamide composition, more preferably 15 to 40% by mass, 15 to It is more preferably 35% by mass, and even more preferably 15 to 30% by mass. When the polyolefin content is within the above range, a polyamide composition having excellent processing stability, flexibility and impact resistance during melt-kneading can be obtained.
 本実施態様のポリアミド組成物からなる成形体の柔軟性を向上させる観点から、ポリオレフィンの含有量は、ISO 178(2001年第4版)に準じ、23℃、50%RHの条件下において測定されるポリアミド組成物の成形体の曲げ弾性率が2.0GPa以下となる量に調節することが好ましく、1.7GPa以下となる量に調節することがより好ましく、1.5GPa以下となる量に調整することがさらに好ましい。 From the viewpoint of improving the flexibility of the molded article made of the polyamide composition of this embodiment, the polyolefin content is measured under the conditions of 23° C. and 50% RH according to ISO 178 (4th edition, 2001). The bending elastic modulus of the molded body of the polyamide composition is preferably adjusted to 2.0 GPa or less, more preferably 1.7 GPa or less, and adjusted to 1.5 GPa or less. more preferably.
〈官能基濃度〉
 本実施態様のポリアミド組成物は、下記式(1)から算出される値Zが、33~200であり、好ましくは33~150である。Zの値は、35~130であってもよい。Zの値が33未満であると、ポリアミドとポリオレフィンの親和性が不十分となり、溶融混錬時の安定性が低下する場合がある。Zの値が200を超えると溶融粘度が増大し、成形加工が困難になるか、柔軟性や耐衝撃性が不足する恐れがある。
 なお、本明細書において、「官能基濃度」における「官能基」とは、ポリオレフィンに由来する不飽和エポキシドが有するエポキシ基、並びに、ポリオレフィンに由来する不飽和ジカルボン酸無水物が有するカルボキシル基及び酸無水物基を意味する。そして、「官能基濃度」とは、下記[EPO]及び[ANH]を意味する。
<Functional group concentration>
The polyamide composition of this embodiment has a value Z calculated from the following formula (1) of 33-200, preferably 33-150. The value of Z may be 35-130. If the value of Z is less than 33, the affinity between the polyamide and the polyolefin may be insufficient, and the stability during melt kneading may be lowered. If the value of Z exceeds 200, the melt viscosity increases, which may make molding difficult, or the flexibility and impact resistance may be insufficient.
In this specification, the "functional group" in the "functional group concentration" refers to the epoxy group possessed by the polyolefin-derived unsaturated epoxide, and the polyolefin-derived unsaturated dicarboxylic acid anhydride possessed by the carboxyl group and acid means an anhydride group. And "functional group concentration" means the following [EPO] and [ANH].
 式(1)
   Z=1000×(|[ANH]-[EPO]|+[EPO])/X
 上記式(1)において、[EPO]、[ANH]、Xはそれぞれ次のとおりである。
 [EPO]:ポリアミド組成物の単位質量当たりの、ポリオレフィンに由来する不飽和エポキシドの濃度(mmol/kg)。
 [ANH]:ポリアミド組成物の単位質量当たりの、ポリオレフィンに由来する不飽和ジカルボン酸無水物の濃度(mmol/kg)。
 X:ポリアミド組成物中のポリオレフィンの含有率(質量%)。
formula (1)
Z=1000×(|[ANH]−[EPO]|+[EPO])/X 2
In the above formula (1), [EPO], [ANH] and X are as follows.
[EPO]: Concentration of unsaturated epoxide derived from polyolefin per unit mass of polyamide composition (mmol/kg).
[ANH]: Concentration of unsaturated dicarboxylic acid anhydride derived from polyolefin per unit mass of polyamide composition (mmol/kg).
X: Polyolefin content (% by mass) in the polyamide composition.
 また、上記式(1)における不飽和エポキシドの濃度[EPO]及び不飽和ジカルボン酸の濃度[ANH]は、下記の式(2)に従って算出される。
 式(2)
   [EPO]又は[ANH]=100×N×W/M
 上記式(2)において、M、W、Nはそれぞれ次のとおりである。
 M:不飽和エポキシド又は不飽和ジカルボン酸無水物の分子量。
 W:ポリオレフィン(A)又はポリオレフィン(B)に含まれる不飽和エポキシド又は不飽和ジカルボン酸無水物の質量%。Wは、NMRなどの当業者にとり一般的な手法で計測が可能である。
 N:ポリアミド組成物の単位質量当たりのポリオレフィン(A)又はポリオレフィン(B)の質量%。
The unsaturated epoxide concentration [EPO] and the unsaturated dicarboxylic acid concentration [ANH] in the above formula (1) are calculated according to the following formula (2).
formula (2)
[EPO] or [ANH] = 100 x N x W/M
In the above formula (2), M, W and N are as follows.
M: Molecular weight of unsaturated epoxide or unsaturated dicarboxylic acid anhydride.
W: % by mass of unsaturated epoxide or unsaturated dicarboxylic acid anhydride contained in polyolefin (A) or polyolefin (B). W can be measured by a method common to those skilled in the art, such as NMR.
N: Mass % of polyolefin (A) or polyolefin (B) per unit mass of polyamide composition.
 上記Zの値は、ポリアミドと、不飽和エポキシドを有するポリオレフィンと、不飽和ジカルボン酸無水物を有するポリオレフィンとを、溶融混錬する際に、得られるポリアミド組成物の溶融安定性を予測し、溶融安定性に優れ、かつ柔軟性と耐衝撃性に優れるポリアミド組成物を得る上で有用である。不飽和エポキシドと不飽和ジカルボン酸無水物はそれぞれポリアミドと反応して相容化効果を発現するが、上記官能基は互いに反応し得るため、ポリアミドとの反応に使用可能な官能基の残量は両者の差(|[ANH]-[EPO]|)に関連性があると考えられる。ただし、両者は完全に反応するわけではなく、不飽和エポキシドはポリアミドの末端アミノ基と末端カルボキシル基の両方に反応し得るという点で反応性が高いために、ポリアミドとの親和性及び反応性を意味する分子の項には不飽和エポキシド濃度で重みづけを行っている。また、一般にポリオレフィンの配合量が増えるにしたがってポリアミド組成物の溶融安定性は低下する傾向にあるため、ポリオレフィンの含有率Xを分母に配置している。 The above value of Z predicts the melt stability of the resulting polyamide composition when melt-kneading the polyamide, the polyolefin having an unsaturated epoxide, and the polyolefin having an unsaturated dicarboxylic acid anhydride. It is useful for obtaining a polyamide composition which is excellent in stability, flexibility and impact resistance. Unsaturated epoxides and unsaturated dicarboxylic acid anhydrides each react with polyamide to exhibit a compatibilizing effect, but since the above functional groups can react with each other, the remaining amount of functional groups available for reaction with polyamide is The difference between the two (|[ANH]−[EPO]|) is considered to be relevant. However, the two do not react completely, and the unsaturated epoxide is highly reactive in that it can react with both the terminal amino group and the terminal carboxyl group of the polyamide. The meaning numerator term is weighted by the unsaturated epoxide concentration. In addition, since the melt stability of the polyamide composition generally tends to decrease as the blending amount of polyolefin increases, the polyolefin content X is placed in the denominator.
 なお、ポリアミド組成物中における不飽和エポキシド濃度及び不飽和ジカルボン酸無水物濃度は、溶融混錬の過程でポリアミドの末端アミノ基、カルボキシル基、不飽和エポキシド及び不飽和ジカルボン酸無水物が相互に反応するため特定困難である。よって、Zの値は、ポリアミド組成物に用いられる各成分の使用量に基づき算出するものとする。 The unsaturated epoxide concentration and the unsaturated dicarboxylic anhydride concentration in the polyamide composition are such that the terminal amino group, carboxyl group, unsaturated epoxide and unsaturated dicarboxylic anhydride of the polyamide react with each other during the melt-kneading process. difficult to identify. Therefore, the value of Z is calculated based on the amount of each component used in the polyamide composition.
[銅系安定剤]
 本実施態様のポリアミド組成物は、耐熱老化性を向上させるために少なくとも1種の銅系安定剤を含む。
[Copper-based stabilizer]
The polyamide composition of this embodiment contains at least one copper-based stabilizer to improve heat aging resistance.
 銅系安定剤の含有率は、ポリアミド組成物100質量%に対して0.01~2質量%が好ましく、0.1~1.5質量%がより好ましく、0.5~1.2質量%がよりさらに好ましい。銅系安定剤の含有率が上記範囲であれば、耐熱老化性に優れ、押出し成形時のガスの発生量の少ないポリアミド組成物を得ることができる。 The content of the copper-based stabilizer is preferably 0.01 to 2% by mass, more preferably 0.1 to 1.5% by mass, and 0.5 to 1.2% by mass with respect to 100% by mass of the polyamide composition. is even more preferred. When the content of the copper-based stabilizer is within the above range, it is possible to obtain a polyamide composition which is excellent in heat aging resistance and which generates a small amount of gas during extrusion molding.
 銅系安定剤は、銅化合物と金属ハロゲン化物の混合物として用いることができる。ポリアミド組成物中の銅化合物と金属ハロゲン化物との割合について、ハロゲン原子の総モル量と銅原子の総モル量との比(ハロゲン/銅)が2/1~50/1となるように、ポリアミド組成物に銅化合物と金属ハロゲン化物とを含有させることが好ましい。上記比(ハロゲン/銅)は、好ましくは3/1以上、より好ましくは4/1以上、さらに好ましくは5/1以上である。また、上記比(ハロゲン/銅)は、好ましくは45/1以下、より好ましくは40/1以下、さらに好ましくは30/1以下である。比(ハロゲン/銅)が上記下限以上である場合には、成形時の銅析出及び金属腐食をより効果的に抑制することができる。比(ハロゲン/銅)が上記上限以下である場合には、得られるポリアミド組成物の引張物性などの機械物性を損なうことなく、成形機のスクリューなどの腐食をより効果的に抑制することができる。 A copper-based stabilizer can be used as a mixture of a copper compound and a metal halide. Regarding the ratio of the copper compound and the metal halide in the polyamide composition, the ratio of the total molar amount of halogen atoms to the total molar amount of copper atoms (halogen/copper) is 2/1 to 50/1, Preferably, the polyamide composition contains a copper compound and a metal halide. The ratio (halogen/copper) is preferably 3/1 or more, more preferably 4/1 or more, and still more preferably 5/1 or more. The ratio (halogen/copper) is preferably 45/1 or less, more preferably 40/1 or less, and even more preferably 30/1 or less. When the ratio (halogen/copper) is at least the above lower limit, copper deposition and metal corrosion during molding can be more effectively suppressed. When the ratio (halogen/copper) is equal to or less than the above upper limit, it is possible to more effectively suppress corrosion of screws of molding machines without impairing mechanical properties such as tensile properties of the resulting polyamide composition. .
 銅化合物としては、例えばハロゲン化銅、酢酸銅、プロピオン酸銅、安息香酸銅、アジピン酸銅、テレフタル酸銅、イソフタル酸銅、サリチル酸銅、ニコチン酸銅、ステアリン酸銅、エチレンジアミン及びエチレンジアミン四酢酸等のキレート剤に配位した銅錯塩などが挙げられる。上記ハロゲン化銅としては、例えば、ヨウ化銅;臭化第一銅、臭化第二銅等の臭化銅;塩化第一銅等の塩化銅などが挙げられる。これらの銅化合物の中でも、耐熱老化性に優れ、押出時のスクリューやシリンダー部の金属腐食を抑制することができる観点から、ハロゲン化銅及び酢酸銅からなる群より選ばれる少なくとも1種が好ましく、ヨウ化銅、臭化銅、塩化銅、及び酢酸銅からなる群より選ばれる少なくとも1種がより好ましく、ヨウ化銅、臭化銅、及び酢酸銅からなる群より選ばれる少なくとも1種がさらに好ましい。銅化合物は、1種を単独で用いてもよく、2種以上を併用してもよい。 Examples of copper compounds include copper halides, copper acetate, copper propionate, copper benzoate, copper adipate, copper terephthalate, copper isophthalate, copper salicylate, copper nicotinate, copper stearate, ethylenediamine and ethylenediaminetetraacetic acid. and a copper complex coordinated with a chelating agent. Examples of the copper halide include copper iodide; copper bromides such as cuprous bromide and cupric bromide; copper chlorides such as cuprous chloride. Among these copper compounds, at least one selected from the group consisting of copper halides and copper acetates is preferable from the viewpoint of excellent heat aging resistance and ability to suppress metal corrosion of screw and cylinder parts during extrusion. At least one selected from the group consisting of copper iodide, copper bromide, copper chloride, and copper acetate is more preferred, and at least one selected from the group consisting of copper iodide, copper bromide, and copper acetate is more preferred. . A copper compound may be used individually by 1 type, and may use 2 or more types together.
 金属ハロゲン化物としては、銅化合物に該当しない金属ハロゲン化物を用いることができ、元素周期律表の1族又は2族金属元素とハロゲンとの塩が好ましい。金属ハロゲン化物は、例えばヨウ化カリウム、臭化カリウム、塩化カリウム、ヨウ化ナトリウム、塩化ナトリウムなどが挙げられる。これらの中でも、得られるポリアミド組成物が耐熱老化性等の高温耐熱性に優れ、金属腐食を抑制することができる観点などから、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる少なくとも1種が好ましく、ヨウ化カリウムがより好ましい。金属ハロゲン化物は、1種を単独で用いてもよく、2種以上を併用してもよい。
 銅化合物と金属ハロゲン化物の中でも、銅系安定剤は、ヨウ化銅、臭化銅、及び酢酸銅からなる群より選ばれる少なくとも1種の銅化合物と、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる少なくとも1種の金属ハロゲン化物とを含むことが好ましい。
As the metal halide, a metal halide that does not correspond to a copper compound can be used, and a salt of a Group 1 or Group 2 metal element of the periodic table and a halogen is preferable. Examples of metal halides include potassium iodide, potassium bromide, potassium chloride, sodium iodide, sodium chloride and the like. Among these, at least one selected from the group consisting of potassium iodide and potassium bromide from the viewpoint that the obtained polyamide composition is excellent in high-temperature heat resistance such as heat aging resistance and can suppress metal corrosion. Preferred is potassium iodide. A metal halide may be used individually by 1 type, and may use 2 or more types together.
Among the copper compounds and metal halides, the copper-based stabilizer is at least one copper compound selected from the group consisting of copper iodide, copper bromide, and copper acetate, and the group consisting of potassium iodide and potassium bromide. It preferably contains at least one metal halide selected from the above.
 銅化合物と金属ハロゲン化物のポリアミドへの分散性を高めるために、分散剤を使用してもよい。上記分散剤としては、例えば、ラウリル酸、パルミチン酸、ステアリン酸、ベヘン酸、モンタン酸等の高級脂肪酸;高級脂肪酸とアルミニウム等の金属とからなる高級脂肪酸金属塩;エチレンビスステアリルアミド等の高級脂肪酸アミド;ポリエチレンワックス等のワックス類;少なくとも1つのアミド基を有する有機化合物などが挙げられる。 A dispersant may be used to enhance the dispersibility of the copper compound and metal halide in the polyamide. Examples of the dispersant include higher fatty acids such as lauric acid, palmitic acid, stearic acid, behenic acid and montanic acid; higher fatty acid metal salts composed of higher fatty acids and metals such as aluminum; higher fatty acids such as ethylenebisstearylamide. amides; waxes such as polyethylene wax; organic compounds having at least one amide group;
[その他の添加剤]
 本実施態様のポリアミド組成物は、上述したポリアミド、ポリオレフィン及び銅系安定剤以外にその他の添加剤を必要に応じて含んでもよい。
[Other Additives]
The polyamide composition of this embodiment may optionally contain other additives in addition to the polyamide, polyolefin and copper-based stabilizer described above.
 その他の添加剤としては、上記ポリアミド及びポリオレフィン以外の他種ポリマー、酸化防止剤、充填剤、結晶核剤、着色剤、帯電防止剤、可塑剤、滑剤、難燃剤、難燃助剤などが挙げられる。これらその他の添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。 Other additives include polymers other than the above polyamides and polyolefins, antioxidants, fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, flame retardants, flame retardant aids, and the like. be done. These other additives may be used singly or in combination of two or more.
 他種ポリマーとしては、例えば、ポリアセタール、ポリフェニレンオキシド等のポリエーテル樹脂;ポリスルホン、ポリエーテルスルホン等のポリスルホン樹脂;ポリフェニレンスルフィド、ポリチオエーテルスルホン等のポリチオエーテル系樹脂;ポリエーテルエーテルケトン、ポリアリルエーテルケトン等のポリケトン系樹脂;ポリアクリロニトリル、ポリメタクリロニトリル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリロニトリル-ブタジエン-スチレン共重合体等のポリニトリル系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のポリメタクリレート系樹脂;ポリ酢酸ビニル等のポリビニルエステル系樹脂;ポリ塩化ビニリデン、ポリ塩化ビニル、塩化ビニル-塩化ビニリデン共重合体、塩化ビニリデン-メチルアクリレート共重合体等のポリ塩化ビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体等のフッ素系樹脂;ポリカーボネート系樹脂;熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド系樹脂;熱可塑性ポリウレタン樹脂;等が挙げられる。 Examples of other types of polymers include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether resins such as polyphenylene sulfide and polythioethersulfone; polyetheretherketone and polyaryletherketone. polyketone-based resins such as; polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylonitrile-butadiene-styrene copolymer and other polynitrile-based resins; polymethyl methacrylate , polymethacrylate resins such as polyethyl methacrylate; polyvinyl ester resins such as polyvinyl acetate; polyvinylidene chloride, polyvinyl chloride, vinyl chloride-vinylidene chloride copolymer, vinylidene chloride-methyl acrylate copolymer Vinyl chloride resin; cellulose resin such as cellulose acetate and cellulose butyrate; polyvinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetra Fluoroethylene-hexafluoropropylene copolymer, fluorine-based resin such as tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymer; polycarbonate-based resin; polyimide-based resin such as thermoplastic polyimide, polyamideimide, polyetherimide; thermoplastic polyurethane resin; and the like.
 酸化防止剤としては、特に制限されず、アミン系酸化防止剤、ヒンダードフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などの中から1種又は2種以上を組み合わせ使用してもよい。このうち、上記銅系安定剤との組み合わせとしてはアミン系酸化防止剤が好ましい。 The antioxidant is not particularly limited, and may be selected from among amine-based antioxidants, hindered phenol-based antioxidants, phosphorus-based antioxidants, sulfur-based antioxidants, etc., or a combination of two or more thereof. may Among these, an amine-based antioxidant is preferable as a combination with the copper-based stabilizer.
 充填剤としては、例えば、ガラス繊維などの繊維状充填剤、炭酸カルシウム、ウォラストナイト、シリカ、シリカアルミナ、アルミナ、二酸化チタン、チタン酸カリウム、水酸化マグネシウム、二硫化モリブデン等の粉末状充填剤;ハイドロタルサイト、ガラスフレーク、マイカ、クレー、モンモリロナイト、カオリン等のフレーク状充填剤などが挙げられる。 Examples of fillers include fibrous fillers such as glass fiber, powdery fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide. flake fillers such as hydrotalcite, glass flakes, mica, clay, montmorillonite and kaolin;
 結晶核剤としては、ポリアミドの結晶核剤として一般的に使用されるものであれば特に制限されない。結晶核剤として、例えば、タルク、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸亜鉛、酸化アンチモン、酸化マグネシウム、これらの任意の混合物などが挙げられる。これらのうちでも、ポリアミドの結晶化速度を増大させる効果が大きいことから、タルクが好ましい。結晶核剤は、ポリアミドとの相容性を向上させる目的で、シランカップリング剤、チタンカップリング剤などで処理されていてもよい。 The crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide. Crystal nucleating agents include, for example, talc, calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, magnesium oxide, and any mixture thereof. Among these, talc is preferable because it has a large effect of increasing the crystallization rate of polyamide. The crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent, or the like for the purpose of improving compatibility with polyamide.
 着色剤としては、特に制限されず、無機又は有機顔料、及び染料の中からポリアミド組成物の用途に応じて適宜選択できる。薬液輸送用チューブに用いられるポリアミド組成物に配合する着色剤としては、カーボンブラック、ランプブラック、アセチレンブラック、ボーンブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、チタンブラック等の黒色無機顔料が好ましいものとして挙げられる。 The coloring agent is not particularly limited, and can be appropriately selected from inorganic or organic pigments and dyes depending on the application of the polyamide composition. As the colorant to be blended in the polyamide composition used for the tube for transporting chemical solutions, black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, and titanium black are preferred. mentioned.
 帯電防止剤としては、特に制限されず、有機系のものであっても、無機系のものであってもよい。例えば、有機系帯電防止剤としては、リチウムイオン塩、4級アンモニウム塩、イオン性液体などのイオン性化合物;ポリチオフェン、ポリアニリン、ポリピロール、ポリアセチレン等の電子伝導性高分子化合物などが挙げられる。無機系帯電防止剤としては、ATO、ITO、PTO、GZO、五酸化アンチモン、酸化亜鉛などの金属酸化物系導電剤;カーボンナノチューブ、フラーレンなどの炭素系導電剤が挙げられる。耐熱性の観点からは、無機系帯電防止剤が好ましい。なお、着色剤であるカーボンブラックが帯電防止剤としての機能を兼ねていてもよい。 The antistatic agent is not particularly limited, and may be organic or inorganic. Examples of organic antistatic agents include ionic compounds such as lithium ion salts, quaternary ammonium salts, and ionic liquids; and electronic conductive polymer compounds such as polythiophene, polyaniline, polypyrrole, and polyacetylene. Examples of inorganic antistatic agents include metal oxide conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide and zinc oxide; and carbon conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, inorganic antistatic agents are preferred. Carbon black, which is a coloring agent, may also function as an antistatic agent.
 可塑剤としては、ポリアミドの可塑剤として一般的に使用されるものであれば特に制限されない。可塑剤として、例えば、ベンゼンスルホン酸アルキルアミド系化合物、トルエンスルホン酸アルキルアミド系化合物、ヒドロキシ安息香酸アルキルエステル系化合物、ヒドロキシ安息香酸アルキルアミド系化合物等が挙げられる。 The plasticizer is not particularly limited as long as it is commonly used as a plasticizer for polyamide. Examples of plasticizers include benzenesulfonic acid alkylamide compounds, toluenesulfonic acid alkylamide compounds, hydroxybenzoic acid alkylester compounds, and hydroxybenzoic acid alkylamide compounds.
 滑剤としては、ポリアミドの滑剤として一般的に使用されるものであれば特に制限されない。滑剤として、例えば、高級脂肪酸系化合物、オキシ脂肪酸系化合物、脂肪酸アミド系化合物、アルキレンビス脂肪酸アミド系化合物、脂肪酸低級アルコールエステル系化合物、金属石鹸系化合物、ポリオレフィンワックスなどが挙げられる。脂肪酸アミド系化合物、例えば、ステアリン酸カルシウムなどの各種ステアリン酸塩、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアリルアミド、エチレンビスステアリルアミドなどは、外部滑性効果に優れるため好ましい。これらの滑剤は、組成物に内添してもよいし、外添してもよい。特に、ステアリン酸塩を外添した場合には押し出し機のモーター負荷を低減する効果がある。 The lubricant is not particularly limited as long as it is generally used as a polyamide lubricant. Lubricants include, for example, higher fatty acid compounds, oxyfatty acid compounds, fatty acid amide compounds, alkylenebis fatty acid amide compounds, fatty acid lower alcohol ester compounds, metal soap compounds, and polyolefin waxes. Fatty acid amide compounds, for example, various stearates such as calcium stearate, stearic acid amide, palmitic acid amide, methylene bis stearyl amide, ethylene bis stearyl amide and the like are preferable because of their excellent external lubricating effect. These lubricants may be added internally or externally to the composition. In particular, when a stearate is externally added, there is an effect of reducing the motor load of the extruder.
 ポリアミド組成物中におけるその他の添加剤の含有率は、ポリアミド組成物100質量%に対して、50質量%以下であることが好ましく、20質量%以下がより好ましく、5質量%以下がさらに好ましい。 The content of other additives in the polyamide composition is preferably 50% by mass or less, more preferably 20% by mass or less, and even more preferably 5% by mass or less, relative to 100% by mass of the polyamide composition.
[ポリアミド組成物の製造方法]
 本実施態様のポリアミド組成物は、例えば、上記ポリアミドと、上記ポリオレフィンと、上記銅系安定剤とを二軸押出機にトップフィードし、溶融混錬することによって製造することができる。
 本実施態様のポリアミド組成物の製造方法が、ポリアミド、ポリオレフィン及び銅系安定剤を含む上記混合物を溶融混錬する工程を有することで、溶融混錬時に、ポリアミドの末端基、ポリオレフィンの変性部分が相互に反応し、得られる組成物は柔軟性及び耐衝撃性に優れるものとなる。また、ポリオレフィン(A)の変性部位の一部とポリオレフィン(B)の変性部位の一部が互いに反応することで、耐熱性に優れた組成物が得られる。また、ポリオレフィンの変性部位の濃度や配合比率を適切に調整することで、溶融混錬性に優れた組成物を得ることができる。
[Method for producing polyamide composition]
The polyamide composition of this embodiment can be produced, for example, by top-feeding the polyamide, the polyolefin, and the copper-based stabilizer to a twin-screw extruder and melt-kneading them.
The method for producing a polyamide composition of the present embodiment includes the step of melt-kneading the mixture containing polyamide, polyolefin, and copper-based stabilizer, so that the end groups of the polyamide and the modified portion of the polyolefin are They react with each other and the resulting composition has excellent flexibility and impact resistance. Moreover, a composition having excellent heat resistance can be obtained by reacting a part of the modified site of the polyolefin (A) and a part of the modified site of the polyolefin (B) with each other. Also, by appropriately adjusting the concentration and blending ratio of the modified sites of the polyolefin, it is possible to obtain a composition having excellent melt-kneadability.
 溶融混錬時の温度及び時間は、使用するポリアミドの融点などに応じて適宜調整できるが、ポリオレフィンの劣化を抑制する観点から、溶融混錬温度は380℃以下であることが好ましく、370℃以下であることがより好ましく、360℃以下であることがさらに好ましい。溶融混錬時間は1~5分程度であることが好ましい。
 溶融混錬の手法に特に制限はなく、ポリアミド、ポリオレフィン及び銅系安定剤、さらに必要に応じて用いられるその他の添加剤を、均一に混合することのできる方法を好ましく採用することができる。溶融混錬機としては、単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどが好ましく、ポリオレフィン及び銅系安定剤の良分散性と工業的生産性の観点から二軸押出機がより好ましい。
The temperature and time during melt kneading can be appropriately adjusted according to the melting point of the polyamide used, but from the viewpoint of suppressing deterioration of polyolefin, the melt kneading temperature is preferably 380 ° C. or less, and 370 ° C. or less. and more preferably 360° C. or lower. The melt-kneading time is preferably about 1 to 5 minutes.
The method of melt-kneading is not particularly limited, and a method capable of uniformly mixing the polyamide, polyolefin, copper-based stabilizer, and other optional additives can be preferably employed. As the melt-kneader, a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer, etc. are preferable, and a twin-screw extruder is more preferable from the viewpoint of good dispersibility of the polyolefin and the copper-based stabilizer and industrial productivity. .
 上述のように、本実施態様のポリアミド組成物は、ポリアミドとポリオレフィン(A)とポリオレフィン(B)が溶融混錬時に相互に反応することで得ることができるため、溶融混錬時には一定の混錬時間を確保することが好ましい。具体的には溶融混錬装置として二軸押出機を用いる場合、ポリアミド、ポリオレフィン、銅系安定剤及び必要に応じて添加されるその他の添加剤を、二軸押出機の根元の第一フィード口から投入(トップフィード)することが好ましい。 As described above, the polyamide composition of the present embodiment can be obtained by reacting the polyamide, polyolefin (A), and polyolefin (B) with each other during melt kneading. It is preferable to reserve time. Specifically, when using a twin-screw extruder as a melt-kneading device, the polyamide, polyolefin, copper-based stabilizer and other additives added as necessary are added to the first feed port at the base of the twin-screw extruder. It is preferable to feed from the top (top feed).
<成形体>
 本実施態様のポリアミド組成物からなる成形体は、ポリアミド組成物を用いて、射出成形法、ブロー成形法、押出し成形法、共押出し成形法、被覆成形法、圧縮成形法、延伸成形法、真空成形法、発泡成形法、回転成形法、含浸法、レーザー焼結法、熱溶解積層法等の各種成形方法で成形することにより得ることができる。さらに、本実施態様のポリアミド組成物と他のポリマー等とを複合成形して成形体を得ることもできる。
<Molded body>
Molded articles made of the polyamide composition of the present embodiment can be produced by injection molding, blow molding, extrusion molding, co-extrusion molding, coating molding, compression molding, stretch molding, vacuum molding, using the polyamide composition. It can be obtained by molding by various molding methods such as a molding method, a foam molding method, a rotational molding method, an impregnation method, a laser sintering method, and a hot melt lamination method. Furthermore, the polyamide composition of the present embodiment and other polymers can be composite-molded to obtain molded articles.
 本実施態様のポリアミド組成物は、その特性から優れた押出し成形性、共押出し成形性、ブロー成形性、及び被覆成形性を有しており、成形体を得るために、それらの成形性を活かした成形法を好ましく用いることができる。 The polyamide composition of the present embodiment has excellent extrusion moldability, coextrusion moldability, blow moldability, and coating moldability due to its characteristics, and in order to obtain a molded article, these moldability is utilized. A molding method can be preferably used.
<用途>
 本実施態様の成形体は、ポリアミド組成物を主成分とするので、優れた機械特性を示す。さらに、ポリアミド組成物が、特定のポリオレフィンと銅系安定剤を含むために、耐熱性、柔軟性、耐衝撃性にも優れる。
 そのため、自動車部品、内燃機関用途、原油掘削・輸送用途、電気・電子部品、医療、食品、家庭・事務用品・建材関係部品などに使用することが可能である。特に、耐熱性と柔軟性、耐衝撃性に優れるため、中空体用途としては、フィードチューブ、リターンチューブ、エバポチューブ、フューエルフィラーチューブ、ORVRチューブ、リザーブチューブ、ベントチューブ等の燃料チューブ;エンジン冷却液チューブ、バッテリー冷却液チューブ、モーター冷却液チューブ、燃料電池冷却チューブ等の冷却水チューブ; 尿素溶液搬送チューブ、エアコン冷媒用チューブ、ブローバイチューブ、ブレーキブースターチューブ、ブレーキチューブ、オイル冷却チューブ、ターボダクトパイプ、エアサスペンションチューブ及び石油輸送用チューブ、ロードヒーティングチューブ、床暖房チューブ、インフラ供給用チューブ、消火器及び消火設備用チューブ、医療用冷却機材用チューブ、インク、塗料散布チューブ、その他薬液チューブが挙げられる。好ましくは燃料チューブ、エンジン冷却液チューブ、バッテリー冷却液チューブ、モーター冷却液チューブ、燃料電池冷却チューブ、尿素溶液搬送チューブ、エアコン冷媒用チューブ、ブローバイチューブ、ブレーキブースターチューブ、ブレーキチューブ、オイル冷却チューブ、ターボダクトパイプ、エアサスペンションチューブ、及び石油輸送用チューブとして用いることができ、特に、冷却水チューブ、尿素水チューブ、燃料チューブ、ブローバイチューブ、オイル冷却チューブ、ブレーキブースターチューブとして好適に用いることができる。また、被覆成形体としては電線被覆、バスバー被覆、ワーヤー被覆として好適に用いることができる。
 本実施態様のポリアミド組成物は、単層構造体を作製するために使用でき、また、多層構造体のうち少なくとも1つの層を作製するためにも使用できる。例えば、単層構造又は多層構造を有するチューブにおいて、構成する層のうち少なくとも1層に本実施態様のポリアミド組成物を好適に使用することができる。
<Application>
Since the molded article of this embodiment contains a polyamide composition as a main component, it exhibits excellent mechanical properties. Furthermore, since the polyamide composition contains a specific polyolefin and a copper-based stabilizer, it is also excellent in heat resistance, flexibility and impact resistance.
Therefore, it can be used for automobile parts, internal combustion engine applications, crude oil drilling and transportation applications, electrical and electronic parts, medical care, food products, household and office supplies, building material related parts, and the like. In particular, due to its excellent heat resistance, flexibility, and impact resistance, it can be used for hollow body applications such as feed tubes, return tubes, evaporative tubes, fuel filler tubes, ORVR tubes, reserve tubes, vent tubes, and other fuel tubes; engine coolant; Cooling water tubes such as tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes; Air suspension tubes and petroleum transportation tubes, road heating tubes, floor heating tubes, infrastructure supply tubes, fire extinguisher and fire extinguishing equipment tubes, medical cooling equipment tubes, ink and paint spraying tubes, and other chemical liquid tubes. . Preferably fuel tubes, engine coolant tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes, urea solution delivery tubes, air conditioner coolant tubes, blow-by tubes, brake booster tubes, brake tubes, oil cooling tubes, turbo It can be used as a duct pipe, air suspension tube, and petroleum transportation tube, and is particularly suitable as a cooling water tube, urea water tube, fuel tube, blow-by tube, oil cooling tube, and brake booster tube. Moreover, as a covering molding, it can be suitably used as an electric wire covering, a bus bar covering, and a wire covering.
The polyamide composition of this embodiment can be used to make a single layer structure and can also be used to make at least one layer of a multi-layer structure. For example, in a tube having a single-layer structure or a multi-layer structure, the polyamide composition of the present embodiment can be suitably used for at least one of the constituent layers.
 本実施態様の成形体をチューブとして用いる場合、それらは曲げ加工や端末加工、各種コネクタの締結を実施して用いる事ができる。一般に曲げ加工の工程は以下の流れで実施される。
・予熱工程:必要な曲げ寸法においてチューブに潰れが生じないように、チューブを予
熱して軟化させる。
・曲げ工程:チューブを治具に取り付ける、またはガイドローラーで変形させ、所望の形状にチューブを加工する。
・熱処理工程:チューブに生じた応力を緩和させ、形状を固定する。熱処理温度はチューブを構成する材料のガラス転移温度と融点の間で実施する必要があり、温度を高めるほど短い熱処理時間で形状を固定することができる。熱処理温度Tfはチューブを構成する材料の中で最も融点が低い材料の融点をTmとした際に、Tm-80℃≦Tf≦Tm-10℃の範囲であることが好ましく、Tm-60℃≦Tf≦Tm-15℃であることが更に好ましい。上記の範囲に温度を設定することで、経済的な時間で曲げ加工を実施でき、かつ熱処理によるチューブ材の融解を防ぐことができる。
When the molded product of this embodiment is used as a tube, it can be used after bending, terminal processing, and fastening with various connectors. Generally, the process of bending is implemented by the following flows.
- Preheating process: The tube is preheated and softened so that the tube does not collapse at the required bending dimension.
Bending process: The tube is attached to a jig or deformed by guide rollers to process the tube into a desired shape.
・Heat treatment process: The stress generated in the tube is relaxed and the shape is fixed. The heat treatment temperature must be between the glass transition temperature and the melting point of the material forming the tube, and the higher the temperature, the shorter the heat treatment time required to fix the shape. The heat treatment temperature Tf is preferably in the range of Tm-80°C ≤ Tf ≤ Tm-10°C, and Tm-60°C ≤ Tm, where Tm is the melting point of the material with the lowest melting point among the materials constituting the tube. More preferably, Tf≤Tm-15°C. By setting the temperature within the above range, it is possible to carry out the bending process in an economical time and prevent the tube material from melting due to the heat treatment.
 コネクタの締結には圧入法、スピン溶着法、レーザー溶着法など各種方法を用いる事ができる。使用環境が高温、高圧になる場合には信頼性の観点から、スピン溶着法やレーザー溶着法などの溶着法を用いる事が望ましい。溶着法を用いる際には、チューブ材とコネクタ材は化学的な親和性が高いことが望ましく、レーザー溶着法を用いる際には、コネクタ側をレーザー透過材、チューブ側を吸収材として設計し、コネクタの内部にチューブを配置した状態で、コネクタの上部からチューブの円周方向にレーザーを照射することが望ましい。 Various methods such as press fitting, spin welding, and laser welding can be used to fasten the connector. When the usage environment is high temperature and high pressure, it is desirable to use a welding method such as a spin welding method or a laser welding method from the viewpoint of reliability. When using the welding method, it is desirable that the tube material and the connector material have high chemical affinity. With the tube placed inside the connector, it is desirable to irradiate the laser from the top of the connector in the circumferential direction of the tube.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited to these.
 実施例、比較例、及び製造例における各物性の測定は、以下に示す方法に従って行った。
[ポリアミドの物性測定]
・固有粘度
 製造例で得られた半芳香族ポリアミド(試料)について、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃での固有粘度(dl/g)を下記関係式より求めた。
   ηinh=[ln(t/t)]/c
 上記関係式中、ηinhは固有粘度(dl/g)を表し、tは溶媒(濃硫酸)の流下時間(秒)を表し、tは試料溶液の流下時間(秒)を表し、cは試料溶液中の試料の濃度(g/dl)(すなわち、0.2g/dl)を表す。
Physical properties in Examples, Comparative Examples, and Production Examples were measured according to the following methods.
[Measurement of physical properties of polyamide]
・Intrinsic viscosity For the semi-aromatic polyamide (sample) obtained in the production example, the intrinsic viscosity (dl/g) at a concentration of 0.2 g/dl and a temperature of 30°C using concentrated sulfuric acid as a solvent was obtained from the following relational expression. .
η inh =[ln(t 1 /t 0 )]/c
In the above relational expression, η inh represents the intrinsic viscosity (dl / g), t 0 represents the flow time (seconds) of the solvent (concentrated sulfuric acid), t 1 represents the flow time (seconds) of the sample solution, and c represents the concentration (g/dl) of the sample in the sample solution (ie 0.2 g/dl).
・融点
 製造例で得られた半芳香族ポリアミド(試料)の融点は、株式会社日立ハイテクサイエンス製の示差走査熱量分析装置「DSC7020」を使用して測定した。
 融点は、ISO11357-3(2011年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料を加熱し、340℃で5分間保持して試料を完全に融解させた後、10℃/分の速度で50℃まで冷却し50℃で5分間保持した。再び10℃/分の速度で340℃まで昇温した時に現れる融解ピークのピーク温度を融点(℃)とし、融解ピークが複数ある場合は最も高温側の融解ピークのピーク温度を融点(℃)とした。
- Melting point The melting point of the semi-aromatic polyamide (sample) obtained in Production Examples was measured using a differential scanning calorimeter "DSC7020" manufactured by Hitachi High-Tech Science Corporation.
The melting point was measured according to ISO11357-3 (2nd edition, 2011). Specifically, in a nitrogen atmosphere, the sample was heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min, held at 340 ° C. for 5 minutes to completely melt the sample, and then heated at 10 ° C./min. Cooled to 50°C at speed and held at 50°C for 5 minutes. The peak temperature of the melting peak that appears when the temperature is again raised to 340°C at a rate of 10°C/min is the melting point (°C), and if there are multiple melting peaks, the peak temperature of the highest melting peak is the melting point (°C). bottom.
・末端アミノ基含量
 製造例で得られた半芳香族ポリアミド1gをフェノール35mLに溶解し、そこへメタノールを2mL混合し、試料溶液とした。チモールブルーを指示薬とし、0.01規定の塩酸水溶液を使用した滴定を実施し、半芳香族ポリアミドの末端アミノ基含量([NH2]、単位:μeq/g)を測定した。
Content of Terminal Amino Groups 1 g of the semi-aromatic polyamide obtained in Production Example was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therein to prepare a sample solution. Using thymol blue as an indicator, titration was performed using a 0.01N hydrochloric acid aqueous solution to measure the terminal amino group content ([NH 2 ], unit: μeq/g) of the semi-aromatic polyamide.
・末端カルボキシル基含量
 製造例で得られた半芳香族ポリアミド0.5gをオルトクレゾール40mLに溶解し、試料溶液とした。得られた試料溶液を、京都電子工業株式会社製の電位差滴定装置を用いて、0.01規定のエタノール性水酸化カリウム溶液を使用して滴定を実施し、電位の変曲点を検出することで、半芳香族ポリアミドの末端カルボキシル基含量([COOH]、単位:μeq/g)を測定した。
-Terminal carboxyl group content 0.5 g of the semi-aromatic polyamide obtained in Production Example was dissolved in 40 mL of ortho-cresol to prepare a sample solution. The obtained sample solution is titrated using a 0.01N ethanolic potassium hydroxide solution using a potentiometric titrator manufactured by Kyoto Electronics Industry Co., Ltd., and the potential inflection point is detected. , the terminal carboxyl group content ([COOH], unit: μeq/g) of the semi-aromatic polyamide was measured.
・多分散性指数
 製造例で得られた半芳香族ポリアミドの数平均分子量Mnと重量平均分子量Mwをゲルパーミエーションクロマトグラフィで測定し、以下の式により多分散性指数を求めた。
  多分散性指数=Mw/Mn
 上記数平均分子量及び重量平均分子量は、東ソー株式会社製HLC-8320GPC、東ソー株式会社製カラムTSK-gel SuperHM-Nを用いて、トリフルオロ酢酸10mMのヘキサフルオロ-2-プロパノールを溶離液とし、測定温度40℃で測定し、ポリメチルメタクリレート換算で算出した。
- Polydispersity index The number average molecular weight Mn and weight average molecular weight Mw of the semi-aromatic polyamide obtained in the production example were measured by gel permeation chromatography, and the polydispersity index was determined by the following formula.
Polydispersity index = Mw/Mn
The above number-average molecular weight and weight-average molecular weight are measured using HLC-8320GPC manufactured by Tosoh Corporation and column TSK-gel SuperHM-N manufactured by Tosoh Corporation, using 10 mM trifluoroacetic acid hexafluoro-2-propanol as an eluent. It was measured at a temperature of 40° C. and calculated in terms of polymethyl methacrylate.
[ポリアミド組成物の評価項目]
・官能基濃度
 実施例及び比較例で得られたポリアミド組成物中の官能基濃度として、用いた各成分の仕込み量に基づき、下記式(1)からZを算出した。
 式(1)
   Z=1000×(|[ANH]-[EPO]|+[EPO])/X
 上記式(1)において、[EPO]、[ANH]、Xはそれぞれ次のとおりである。
 [EPO]:ポリアミド組成物の単位質量当たりの、ポリオレフィンに由来する不飽和エポキシドの濃度(mmol/kg)。
 [ANH]:ポリアミド組成物の単位質量当たりの、ポリオレフィンに由来する不飽和ジカルボン酸無水物の濃度(mmol/kg)。
 X:ポリアミド組成物中のポリオレフィンの含有率(質量%)。
 また、上記式(1)における不飽和エポキシドの濃度[EPO]及び不飽和ジカルボン酸の濃度[ANH]は、下記の式(2)に従って算出した。
 式(2)
   [EPO]又は[ANH]=100×N×W/M
 上記式(2)において、M、W、Nはそれぞれ次のとおりである。
 M:不飽和エポキシド又は不飽和ジカルボン酸無水物の分子量。
 W:ポリオレフィン(A)又はポリオレフィン(B)に含まれる不飽和エポキシド又は不飽和ジカルボン酸無水物の質量%。本実施例においてWは、カタログ値。
 N:ポリアミド組成物の単位質量当たりのポリオレフィン(A)又はポリオレフィン(B)の質量%。
 なお、実施例及び比較例において、グリシジルメタクリレート分子量を142.2(g/mol)、無水マレイン酸の分子量を98.06(g/mol)として計算した。
[Evaluation items of polyamide composition]
• Functional Group Concentration As the functional group concentration in the polyamide compositions obtained in Examples and Comparative Examples, Z was calculated from the following formula (1) based on the amount of each component used.
formula (1)
Z=1000×(|[ANH]−[EPO]|+[EPO])/X 2
In the above formula (1), [EPO], [ANH] and X are as follows.
[EPO]: Concentration of unsaturated epoxide derived from polyolefin per unit mass of polyamide composition (mmol/kg).
[ANH]: Concentration of unsaturated dicarboxylic acid anhydride derived from polyolefin per unit mass of polyamide composition (mmol/kg).
X: Polyolefin content (% by mass) in the polyamide composition.
The unsaturated epoxide concentration [EPO] and the unsaturated dicarboxylic acid concentration [ANH] in the above formula (1) were calculated according to the following formula (2).
formula (2)
[EPO] or [ANH] = 100 x N x W/M
In the above formula (2), M, W and N are as follows.
M: Molecular weight of unsaturated epoxide or unsaturated dicarboxylic acid anhydride.
W: % by mass of unsaturated epoxide or unsaturated dicarboxylic acid anhydride contained in polyolefin (A) or polyolefin (B). In this example, W is a catalog value.
N: Mass % of polyolefin (A) or polyolefin (B) per unit mass of polyamide composition.
In Examples and Comparative Examples, calculations were made with the molecular weight of glycidyl methacrylate as 142.2 (g/mol) and the molecular weight of maleic anhydride as 98.06 (g/mol).
・溶融混錬時の安定性
 実施例及び比較例において、ポリアミド組成物を2軸押し出し機で製造する際の加工安定性を以下の4段階で評価した。A、B、B′、Cの順に安定性に優れると判断する。
 A:真空ベント口でのベントアップやストランド切れがなく、安定して製造可能。
 B:ストランドは安定しているが、真空ベント口にブリードアウトしたポリオレフィンが堆積する傾向にあり、異物面での懸念がある。
 なお、ポリオレフィンのブリードアウトは、ポリアミドとポリオレフィンの親和性が低いことが原因と考えられる。
 B′:ストランドは安定しているが、組成物の粘度が高く、2軸押し出し機の圧力が非常に高い。また、コンパウンド後にダイ付近に多量の付着物が存在していた。エポキシドはポリアミドとの反応性が高いために生じる現象と考えられる。
 C:ストランド切れが多発し、ペレットを得ることが困難。
 なお、Cのストランド切れが多発する組成においては、ポリアミドのマトリックス中でのポリオレフィンのドメインサイズが肥大化しており、ポリオレフィンのポリアミドに対する親和性が低いことが原因と考えられる。「C」であったポリアミド組成物については、ペレットを得ることができなかったため、溶融粘度、引張試験、耐衝撃試験を行わなかった。
- Stability during melt-kneading In Examples and Comparative Examples, processing stability during production of polyamide compositions with a twin-screw extruder was evaluated according to the following four levels. The order of A, B, B' and C is judged to be superior in stability.
A: Stable production is possible without vent-up or strand breakage at the vacuum vent port.
B: The strand is stable, but polyolefin that bleeds out tends to accumulate at the vacuum vent port, and there is concern about foreign matter.
The bleed-out of polyolefin is considered to be caused by the low affinity between polyamide and polyolefin.
B': The strand is stable, but the viscosity of the composition is high and the pressure of the twin-screw extruder is very high. In addition, a large amount of deposits were present near the die after compounding. Epoxide is considered to be a phenomenon that occurs due to its high reactivity with polyamide.
C: Strand breaks occur frequently, and it is difficult to obtain pellets.
In addition, in the composition in which strand breakage of C occurs frequently, the domain size of the polyolefin in the matrix of the polyamide is enlarged, and the affinity of the polyolefin for the polyamide is low. Melt viscosity, tensile test, and impact resistance test were not performed on the polyamide composition of "C" because pellets could not be obtained.
・溶融粘度
 実施例及び比較例で得られたポリアミド組成物の溶融粘度は、キャピログラフ(株式会社東洋精機製作所製)を用いて、バレル温度300℃、せん断速度121.6sec-1(キャピラリー:内径1.0mm×長さ10mm、押出速度10mm/min)の条件下で溶融粘度(Pa・s)を測定し、流動性の指標とした。
・Melt viscosity The melt viscosity of the polyamide compositions obtained in Examples and Comparative Examples was measured using a capillograph (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 300 ° C. and a shear rate of 121.6 sec -1 (capillary: inner diameter 1 The melt viscosity (Pa·s) was measured under the conditions of (0 mm×10 mm length, extrusion speed 10 mm/min) and used as an index of fluidity.
《試験片の作製》
 住友重機械工業株式会社製の射出成形機(型締力:100トン、スクリュー径:φ32mm)を使用し、実施例及び比較例で得られたポリアミド組成物を用いて、ポリアミドの融点よりも20~30℃高いシリンダー温度とし、金型温度140℃の条件下で、Tランナー金型を用いてポリアミド組成物を成形し、多目的試験片タイプA1(JIS K7139に記載されたダンベル型の試験片;4mm厚、全長170mm、平行部長さ80mm、平行部幅10mm)を作製した。そして、上記多目的試験片から直方体試験片(寸法:長さ×幅×厚さ=80mm×10mm×4mm)を切り出して、引張試験、及び耐衝撃試験の評価用試験片とした。
<<Preparation of test piece>>
Using an injection molding machine manufactured by Sumitomo Heavy Industries, Ltd. (clamping force: 100 tons, screw diameter: φ32 mm), using the polyamide compositions obtained in Examples and Comparative Examples, the melting point of the polyamide was 20 The polyamide composition is molded using a T-runner mold under the conditions of a cylinder temperature of ~ 30 ° C. and a mold temperature of 140 ° C., and a multi-purpose test piece type A1 (a dumbbell-shaped test piece described in JIS K7139; 4 mm thick, total length 170 mm, parallel portion length 80 mm, parallel portion width 10 mm). Then, a rectangular parallelepiped test piece (dimensions: length x width x thickness = 80 mm x 10 mm x 4 mm) was cut out from the multi-purpose test piece and used as a test piece for evaluation of tensile test and impact resistance test.
・引張試験
 上記の方法で作製した多目的試験片タイプA1(4mm厚)を用い、ISO527-1(2012年第2版)に準拠して、オートグラフ(インストロン製)を使用して、23℃における引張強度(最大点)(MPa)、引張破断伸び(%)及び引張弾性率(GPa)を測定した。引張弾性率を測定する、歪0.05~0.25%の範囲では1mm/min、0.3%以降は50mm/minの引張速度で測定を行った。
· Tensile test Using the multi-purpose test piece type A1 (4 mm thickness) prepared by the above method, in accordance with ISO527-1 (2012 2nd edition), using Autograph (manufactured by Instron), 23 ° C. Tensile strength (maximum point) (MPa), tensile elongation at break (%) and tensile elastic modulus (GPa) were measured. The tensile modulus was measured at a tensile speed of 1 mm/min in the strain range of 0.05 to 0.25%, and 50 mm/min after 0.3% strain.
・耐衝撃試験
 上記の方法で作製した多目的試験片タイプA1(4mm厚)から切削して試験片(4mm厚、全長80mm、幅10mm、ノッチ付き)を作製し、ISO179-1(2010年第2版)に準じて衝撃試験機(株式会社東洋精機製作所製)を使用して、23℃及び-40℃におけるノッチ付きシャルピー衝撃値を測定して耐衝撃性(kJ/m)を評価した。
· Impact resistance test A test piece (4 mm thick, total length 80 mm, width 10 mm, notched) is prepared by cutting from the multi-purpose test piece type A1 (4 mm thickness) prepared by the above method, ISO179-1 (2010 second Version), using an impact tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), notched Charpy impact values at 23° C. and −40° C. were measured to evaluate impact resistance (kJ/m 2 ).
・耐衝撃強度保持率
 上記の方法で作製した耐衝撃試験用の試験片を、160℃に設定した恒温槽(三田産業株式会社製「DE-303」)中に1000時間静置した。1000時間後、恒温槽から取り出した試験片に対して上記と同様の方法で23℃における耐衝撃試験を行い、加熱後の試験片の耐衝撃強度を測定した。
 以下の式(X)より耐衝撃強度保持率を求め、長期耐熱性を評価した。
  耐衝撃強度保持率(%)={1000時間経過後の耐衝撃強度/初期の耐衝撃強度}×100  式(X)
· Retention rate of impact resistance strength The test piece for impact resistance test prepared by the above method was placed in a constant temperature bath ("DE-303" manufactured by Mita Sangyo Co., Ltd.) set at 160 ° C. for 1000 hours. After 1000 hours, the test piece was removed from the constant temperature bath and subjected to an impact resistance test at 23° C. in the same manner as described above, and the impact resistance strength of the heated test piece was measured.
Long-term heat resistance was evaluated by obtaining impact strength retention from the following formula (X).
Impact strength retention (%) = {Impact strength after 1000 hours/Initial impact strength} x 100 Formula (X)
《チューブの作製》
 アイ・ケー・ジー株式会社製の単軸押出機(スクリュー径:φ50mm、L/D=28)にストレートダイ(ダイ内径:φ21.0mm、マンドレル外径:φ14.9mm)を接続したチューブ成形装置を用いて、シリンダー温度280℃、ダイ温度280℃、スクリュー回転数30rpmの条件下で実施例及び比較例で得られたポリアミド組成物を吐出した。引き続き、寸法制御と冷却を真空サイジング槽で行い、引取速度10m/minで成形した外径8.0mm、内径6.0mmのチューブを作製した。
《Preparation of tube》
A tube molding device in which a straight die (die inner diameter: φ21.0 mm, mandrel outer diameter: φ14.9 mm) is connected to a single-screw extruder (screw diameter: φ50 mm, L/D = 28) manufactured by IKK Co., Ltd. was used to discharge the polyamide compositions obtained in Examples and Comparative Examples under conditions of a cylinder temperature of 280°C, a die temperature of 280°C, and a screw rotation speed of 30 rpm. Subsequently, dimensional control and cooling were carried out in a vacuum sizing tank, and a tube having an outer diameter of 8.0 mm and an inner diameter of 6.0 mm was produced at a take-up speed of 10 m/min.
・耐白化性試験
 上記手法で得られたチューブの端部を80℃に加熱した円錐形状のヒーターでフレア加工し、温度が室温まで低下したことを確認したのちに、ファーツリー部の最外径が8.9mmのクイックコネクタを圧入し、チューブ端部の表面に生じる白化の有無を目視で確認した。耐白化性は、白化が見られないものをA、白化しているものをCとして評価した。なお、フレア処理はコネクタを圧入する際の中心を合わせやすくするために実施した。
・ Whitening resistance test The end of the tube obtained by the above method was flared with a conical heater heated to 80 ° C. After confirming that the temperature had decreased to room temperature, the outermost diameter of the fir tree part A quick connector with a diameter of 8.9 mm was press-fitted, and the presence or absence of whitening occurring on the surface of the end of the tube was visually confirmed. Whitening resistance was evaluated as A when no whitening was observed and C when whitening was observed. Note that the flare processing was performed to facilitate center alignment when press-fitting the connector.
[製造例]
製造例1[ポリアミドPA-1の製造]
 テレフタル酸9870.6g(59.42モル)、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンの混合物[50/50(モル比)]9497.4g(60.30モル)、安息香酸142.9g(1.17モル)、次亜リン酸ナトリウム一水和物9.8g(原料の総質量に対して0.05質量%)及び蒸留水5リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。攪拌を行いながら、2時間かけてオートクレーブ内部の温度を220℃に昇温した。この時、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま2時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら反応させた。次に、30分かけて圧力を1MPaまで下げ、さらに1時間反応させて、極限粘度[η]が0.2dl/gのプレポリマーを得た。これをホソカワミクロン製フレーククラッシャーを使って2mm以下の粒径まで粉砕し、100℃、減圧下で12時間乾燥した後、230℃、13Pa(0.1mmHg)にて10時間固相重合し、白色のポリアミド樹脂(ポリアミドPA-1)を得た。
 ポリアミドPA-1はテレフタル酸単位と、1,9-ノナンジアミン単位及び2-メチル-1,8-オクタンジアミン単位(1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=50/50(モル比))とからなり、融点は265℃、固有粘度[ηinh]は1.26dl/g、末端アミノ基含量([NH])は15.6μeq/g、末端カルボキシル基含量([COOH])は55.1μeq/gであった。また、ゲルパーミエーションクロマトグラフィで求めた多分散性指数は5.0であった。
[Manufacturing example]
Production Example 1 [Production of Polyamide PA-1]
9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.30 mol), benzoin 142.9 g (1.17 mol) of acid, 9.8 g of sodium hypophosphite monohydrate (0.05% by mass based on the total mass of raw materials) and 5 liters of distilled water were placed in an autoclave having an internal volume of 40 liters. and replaced with nitrogen. While stirring, the temperature inside the autoclave was raised to 220° C. over 2 hours. At this time, the pressure inside the autoclave increased to 2 MPa. After continuing the reaction for 2 hours, the temperature was raised to 230° C., and then the temperature was kept at 230° C. for 2 hours, and the reaction was carried out while the pressure was maintained at 2 MPa by gradually removing water vapor. Next, the pressure was lowered to 1 MPa over 30 minutes, and the reaction was continued for 1 hour to obtain a prepolymer having an intrinsic viscosity [η] of 0.2 dl/g. This was pulverized to a particle size of 2 mm or less using a Hosokawa Micron flake crusher, dried at 100° C. under reduced pressure for 12 hours, and then solid-phase polymerized at 230° C. and 13 Pa (0.1 mmHg) for 10 hours to obtain a white powder. A polyamide resin (polyamide PA-1) was obtained.
Polyamide PA-1 contains terephthalic acid units, 1,9-nonanediamine units and 2-methyl-1,8-octanediamine units (1,9-nonanediamine units/2-methyl-1,8-octanediamine units=50/ 50 (molar ratio)), the melting point is 265° C., the intrinsic viscosity [η inh ] is 1.26 dl/g, the terminal amino group content ([NH 2 ]) is 15.6 μeq/g, the terminal carboxyl group content ( [COOH]) was 55.1 μeq/g. Moreover, the polydispersity index determined by gel permeation chromatography was 5.0.
製造例2[ポリアミドPA-2の製造]
 テレフタル酸9870.6g(59.42モル)、1,9-ノナンジアミンと2-メチル-1,8-オクタンジアミンの混合物[50/50(モル比)]9497.4g(60.90モル)、安息香酸142.9g(1.17モル)、次亜リン酸ナトリウム一水和物9.8g(原料の総質量に対して0.05質量%)及び蒸留水5リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。以降は製造例1と同様の方法で重合を進め、白色のポリアミド樹脂(ポリアミドPA-2)を得た。
 ポリアミドPA-2において、融点は265℃、固有粘度[ηinh]は1.28dl/g、末端アミノ基含量([NH])は51.5μeq/g、末端カルボキシル基含量([COOH])は23.4μeq/gであった。また、ゲルパーミエーションクロマトグラフィで求めた多分散性指数は4.1であった。
Production Example 2 [Production of Polyamide PA-2]
9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonanediamine and 2-methyl-1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.90 mol), benzoin 142.9 g (1.17 mol) of acid, 9.8 g of sodium hypophosphite monohydrate (0.05% by mass based on the total mass of raw materials) and 5 liters of distilled water were placed in an autoclave having an internal volume of 40 liters. and replaced with nitrogen. Thereafter, polymerization was carried out in the same manner as in Production Example 1 to obtain a white polyamide resin (polyamide PA-2).
Polyamide PA-2 has a melting point of 265° C., an intrinsic viscosity [η inh ] of 1.28 dl/g, a terminal amino group content ([NH 2 ]) of 51.5 μeq/g, and a terminal carboxyl group content ([COOH]). was 23.4 μeq/g. Moreover, the polydispersity index determined by gel permeation chromatography was 4.1.
[実施例及び比較例]
 実施例1~7、及び比較例1~13は、表1又は表2に示す処方に従って調製し、ポリアミド組成物を得た。
 具体的には、表1又は表2に示すポリアミド、銅系安定剤、酸化防止剤、滑剤、着色剤を所定の質量比で予め混合して、ポリオレフィン(A)及びポリオレフィン(B)と共に(ただし、比較例10ではポリオレフィン(A)と共に、比較例11~13ではポリオレフィン(C)と共に)、二軸押出機(東芝機械株式会社製「TEM-26SS」)の上流部フィード口に投入した。シリンダー温度300~320℃(溶融混錬温度310~340℃,溶融混錬温度は樹脂温度を示す)、回転数150rpm、吐出10kg/hrの条件下で溶融混錬することにより混錬して押出し、冷却及び切断してペレット状のポリアミド組成物を製造した。
 上記ペレットを用いて各種物性評価用の試験片を作製し、前述の方法で各種評価を行った。結果を表1及び表2に示す。また、この際に、下流部の真空ベント口でのベントアップの有無を確認した。
 なお、表1において、*1は測定不可を表す。
[Examples and Comparative Examples]
Examples 1 to 7 and Comparative Examples 1 to 13 were prepared according to the formulations shown in Table 1 or Table 2 to obtain polyamide compositions.
Specifically, the polyamide, copper-based stabilizer, antioxidant, lubricant, and colorant shown in Table 1 or Table 2 are premixed at a predetermined mass ratio, and together with polyolefin (A) and polyolefin (B) (however, , together with polyolefin (A) in Comparative Example 10, and together with polyolefin (C) in Comparative Examples 11 to 13), into the upstream feed port of a twin-screw extruder ("TEM-26SS" manufactured by Toshiba Machine Co., Ltd.). Cylinder temperature 300-320°C (melt-kneading temperature 310-340°C, melt-kneading temperature indicates resin temperature), rotation speed 150 rpm, discharge 10 kg/hr. , cooled and cut to produce a polyamide composition in the form of pellets.
Using the pellets described above, test pieces for evaluating various physical properties were produced, and various evaluations were performed by the methods described above. The results are shown in Tables 1 and 2. At this time, the presence or absence of vent-up at the vacuum vent port in the downstream portion was confirmed.
In addition, in Table 1, *1 indicates that measurement is not possible.
 表1及び表2に示す各成分は下記の通りである。
<ポリアミド>
製造例1で得られたポリアミドPA-1
製造例2で得られたポリアミドPA-2
Each component shown in Tables 1 and 2 is as follows.
<Polyamide>
Polyamide PA-1 obtained in Production Example 1
Polyamide PA-2 obtained in Production Example 2
<ポリオレフィン(A)>
Lotader(登録商標)AX8930:エチレン、メチルアクリレート及びグリシジルメタクリレートの共重合体[Et/MA/GMA=72/25/3(質量比)]
Lotader(登録商標)AX8900:エチレン、メチルアクリレート及びグリシジルメタクリレートの共重合体[Et/MA/GMA=68/24/8(質量比)]
<ポリオレフィン(B)>
Lotader(登録商標)4700:エチレン、エチルアクリレート及び無水マレイン酸の共重合体[Et/EA/MAH=68.7/30/1.3(質量比)]
Lotader(登録商標)3410:エチレン、ブチルアクリレート及び無水マレイン酸の共重合体[Et/BA/MAH=80/17/3.1(質量比)]
<ポリオレフィン(C)>
Tafmer(登録商標)MH7010:エチレン-ブテン共重合体を無水マレイン酸で変性したエラストマー[酸無水物基濃度:50μeq/g]、三井化学株式会社製(比較例用)
<Polyolefin (A)>
Lotader® AX8930: Copolymer of ethylene, methyl acrylate and glycidyl methacrylate [Et/MA/GMA=72/25/3 (mass ratio)]
Lotader® AX8900: Copolymer of ethylene, methyl acrylate and glycidyl methacrylate [Et/MA/GMA = 68/24/8 (mass ratio)]
<Polyolefin (B)>
Lotader® 4700: Copolymer of ethylene, ethyl acrylate and maleic anhydride [Et/EA/MAH=68.7/30/1.3 (mass ratio)]
Lotader® 3410: Copolymer of ethylene, butyl acrylate and maleic anhydride [Et/BA/MAH=80/17/3.1 (mass ratio)]
<Polyolefin (C)>
Tafmer (registered trademark) MH7010: Elastomer obtained by modifying ethylene-butene copolymer with maleic anhydride [acid anhydride group concentration: 50 μeq/g], manufactured by Mitsui Chemicals, Inc. (for comparative example)
<銅系安定剤>
KG HS01-P:モル比:CuI/KI=10/1、PolyAd Services製
<酸化防止剤>
Naugard(登録商標)445:4,4’-ビス(α、α-ジメチルベンジル)ジフェニルアミン、Addivant製
<Copper-based stabilizer>
KG HS01-P: Molar ratio: CuI/KI = 10/1, manufactured by PolyAd Services <Antioxidant>
Naugard® 445: 4,4′-bis(α,α-dimethylbenzyl)diphenylamine from Addivant
<滑剤>
WH-255:アミドワックス ライトアマイド、共栄社化学株式会社製
<着色剤>
#980B:カーボンブラック、三菱化学株式会社製
<Lubricant>
WH-255: amide wax light amide, manufactured by Kyoeisha Chemical Co., Ltd. <colorant>
#980B: carbon black, manufactured by Mitsubishi Chemical Corporation
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から、実施例1~7のポリアミド組成物は、高い耐熱性と溶融混錬の製造安定性、高い引張破断伸びと低温衝撃性、耐白化性を両立していることが分かる。
 比較例1の組成物は、ポリオレフィン(A)を含まないためにポリアミドとの親和性が不十分であり、コンパウンドにより相容化した組成物を得ることができなかった。
 比較例2、3、5の組成物は銅系安定剤を含まないために耐衝撃強度保持率が低くなり、耐熱老化性が不十分であった。
 比較例4、6、8の組成物は、Zの値が本実施態様において規定する範囲よりも小さいために溶融混錬時の安定性が不十分であった。さらに、比較例6では相容化した組成物を得ることができなかった。
 比較例7の組成物は、[B]/[A]が本実施態様において規定する範囲に入っていないために引張破断伸びが不十分であった。
 比較例9の組成物は、Zの値が本実施態様において規定する範囲よりも大きいために、引張破断伸び及び引張弾性率が劣り、柔軟性が不十分であり、かつ耐衝撃強度保持率が低くなり耐熱老化性も十分ではなかった。
 比較例10の組成物は、ポリオレフィン(B)を含まないために、溶融粘度が非常に高くなり、柔軟性と粘度のバランスが悪くなった。
 比較例11~13の組成物は、ポリオレフィン(A)及びポリオレフィン(B)を含まないために、これらの代わりにポリオレフィン(C)を含んでも、耐白化性が不十分であった。
From Table 1, it can be seen that the polyamide compositions of Examples 1 to 7 have both high heat resistance, production stability in melt-kneading, high tensile elongation at break, low-temperature impact resistance, and whitening resistance.
Since the composition of Comparative Example 1 did not contain polyolefin (A), it had insufficient affinity with polyamide, and a composition compatibilized by a compound could not be obtained.
Since the compositions of Comparative Examples 2, 3 and 5 did not contain a copper-based stabilizer, the impact strength retention rate was low and the heat aging resistance was insufficient.
The compositions of Comparative Examples 4, 6, and 8 had insufficient stability during melt-kneading because the value of Z was smaller than the range defined in this embodiment. Furthermore, in Comparative Example 6, a compatibilized composition could not be obtained.
The composition of Comparative Example 7 had an insufficient tensile elongation at break because [B]/[A] did not fall within the range specified in this embodiment.
The composition of Comparative Example 9 had a Z value larger than the range defined in this embodiment, and therefore had poor tensile elongation at break and tensile elastic modulus, insufficient flexibility, and poor impact strength retention. and the heat aging resistance was not sufficient.
Since the composition of Comparative Example 10 did not contain the polyolefin (B), the melt viscosity was very high and the balance between flexibility and viscosity was poor.
Since the compositions of Comparative Examples 11 to 13 did not contain polyolefin (A) and polyolefin (B), whitening resistance was insufficient even if polyolefin (C) was contained instead of these.

Claims (17)

  1.  ポリアミドとポリオレフィンと銅系安定剤を含む組成物であって、
     前記ポリオレフィンが、エチレン、アルキル(メタ)アクリレート及び不飽和エポキシドの共重合体を含む少なくとも一種のポリオレフィン(A)、並びに不飽和ジカルボン酸無水物を含む少なくとも一種のポリオレフィン(B)を含有し、かつ前記ポリオレフィン(A)の含有量[A]に対する前記ポリオレフィン(B)の含有量[B]の質量比[B]/[A]が0.1~2.9であり、
     下記式(1)から算出される値Zが33~200である、ポリアミド組成物。
      Z=1000×(|[ANH]-[EPO]|+[EPO])/X  式(1)
     前記[EPO]は、前記組成物の単位質量当たりの、前記ポリオレフィンに由来する不飽和エポキシドの濃度(mmol/kg)である。
     前記[ANH]は、前記組成物の単位質量当たりの、前記ポリオレフィンに由来する不飽和ジカルボン酸無水物の濃度(mmol/kg)である。
     前記Xは、前記組成物中のポリオレフィンの含有率(質量%)である。
    A composition comprising a polyamide, a polyolefin and a copper-based stabilizer,
    The polyolefin contains at least one polyolefin (A) containing a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated epoxide, and at least one polyolefin (B) containing an unsaturated dicarboxylic acid anhydride, and The mass ratio [B]/[A] of the content [B] of the polyolefin (B) to the content [A] of the polyolefin (A) is 0.1 to 2.9,
    A polyamide composition having a value Z of 33 to 200 calculated from the following formula (1).
    Z = 1000 × (|[ANH]−[EPO]|+[EPO])/X 2 formula (1)
    The [EPO] is the concentration (mmol/kg) of unsaturated epoxide derived from the polyolefin per unit mass of the composition.
    The [ANH] is the concentration (mmol/kg) of the unsaturated dicarboxylic anhydride derived from the polyolefin per unit mass of the composition.
    The above X is the polyolefin content (% by mass) in the composition.
  2.  前記ポリアミドが、全ジカルボン酸単位に対してテレフタル酸単位及びナフタレンジカルボン酸単位から選ばれる少なくとも1種を、50モル%以上含む、請求項1に記載のポリアミド組成物。 The polyamide composition according to claim 1, wherein the polyamide contains 50 mol% or more of at least one selected from terephthalic acid units and naphthalenedicarboxylic acid units based on all dicarboxylic acid units.
  3.  前記ポリアミドが、全ジアミン単位に対して、炭素数4~13の脂肪族ジアミン単位、又は、メタキシリレンジアミン単位を、60モル%以上含む、請求項1又は2に記載のポリアミド組成物。 The polyamide composition according to claim 1 or 2, wherein the polyamide contains 60 mol% or more of aliphatic diamine units having 4 to 13 carbon atoms or meta-xylylenediamine units relative to all diamine units.
  4.  前記脂肪族ジアミン単位が、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンからなる群より選ばれる少なくとも1種の脂肪族ジアミンに由来する単位である、請求項3に記載のポリアミド組成物。 The aliphatic diamine units are 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decane. 4. The polyamide composition according to claim 3, which is a unit derived from at least one aliphatic diamine selected from the group consisting of diamines.
  5.  前記脂肪族ジアミン単位が、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンから選ばれる少なくとも1種の脂肪族ジアミンに由来する単位である、請求項3又は4に記載のポリアミド組成物。 The polyamide composition according to claim 3 or 4, wherein the aliphatic diamine unit is a unit derived from at least one aliphatic diamine selected from 1,9-nonanediamine and 2-methyl-1,8-octanediamine. thing.
  6.  前記ポリアミドをゲルパーミエーションクロマトグラフィで測定した多分散性指数が3.7以上であり、前記ポリアミドにおける末端アミノ基の含有量が10~70μeq/g、かつ末端カルボキシル基の含有量が10~70μeq/gである、請求項1~5のいずれか1項に記載のポリアミド組成物。 The polydispersity index of the polyamide measured by gel permeation chromatography is 3.7 or more, the content of terminal amino groups in the polyamide is 10 to 70 μeq / g, and the content of terminal carboxyl groups is 10 to 70 μeq / The polyamide composition according to any one of claims 1 to 5, which is g.
  7.  前記ポリオレフィンの含有率が、14~40質量%である、請求項1~6のいずれか1項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 6, wherein the polyolefin content is 14 to 40% by mass.
  8.  前記ポリオレフィンの含有率が、15~30質量%である、請求項1~7のいずれか1項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 7, wherein the polyolefin content is 15 to 30% by mass.
  9.  前記ポリオレフィン(B)が、エチレン、アルキル(メタ)アクリレート及び不飽和ジカルボン酸無水物の共重合体である、請求項1~8のいずれか1項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 8, wherein the polyolefin (B) is a copolymer of ethylene, an alkyl (meth)acrylate and an unsaturated dicarboxylic acid anhydride.
  10.  前記銅系安定剤の含有率が、0.01~2質量%である、請求項1~9のいずれか1項に記載のポリアミド組成物。 The polyamide composition according to any one of claims 1 to 9, wherein the content of the copper-based stabilizer is 0.01 to 2% by mass.
  11.  前記銅系安定剤が、ヨウ化銅、臭化銅、及び酢酸銅からなる群より選ばれる少なくとも1種の銅化合物と、ヨウ化カリウム及び臭化カリウムからなる群より選ばれる少なくとも1種の金属ハロゲン化物とを含む、請求項1~10のいずれか1項に記載のポリアミド組成物。 The copper-based stabilizer comprises at least one copper compound selected from the group consisting of copper iodide, copper bromide, and copper acetate, and at least one metal selected from the group consisting of potassium iodide and potassium bromide. A polyamide composition according to any one of claims 1 to 10, comprising a halide.
  12.  前記ポリアミド及び前記ポリオレフィン以外の他種ポリマー、酸化防止剤、充填剤、結晶核剤、着色剤、帯電防止剤、可塑剤、滑剤、難燃剤及び難燃助剤からなる群より選ばれる少なくとも1種の添加剤を含む、請求項1~11のいずれか1項に記載のポリアミド組成物。 At least one selected from the group consisting of polymers other than the polyamide and the polyolefin, antioxidants, fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, flame retardants, and flame retardant aids The polyamide composition according to any one of claims 1 to 11, comprising an additive of
  13.  請求項1~12のいずれか1項に記載のポリアミド組成物の製造方法であって、
     前記ポリアミドと、前記ポリオレフィンと、前記銅系安定剤とを二軸押出機にトップフィードし、溶融混錬する、ポリアミド組成物の製造方法。
    A method for producing a polyamide composition according to any one of claims 1 to 12,
    A method for producing a polyamide composition, wherein the polyamide, the polyolefin, and the copper-based stabilizer are top-fed to a twin-screw extruder and melt-kneaded.
  14.  単層構造体を作製するための、又は、多層構造体のうち少なくとも1つの層を作製するための、請求項1~12のいずれか1項に記載のポリアミド組成物の使用。 Use of the polyamide composition according to any one of claims 1 to 12 for making a single-layer structure or for making at least one layer of a multilayer structure.
  15.  請求項1~12のいずれか1項に記載のポリアミド組成物からなる成形体。 A molded article made of the polyamide composition according to any one of claims 1 to 12.
  16.  押出し成形体、共押出し成形体又はブロー成形体である、請求項15に記載の成形体。 The molded product according to claim 15, which is an extruded product, a co-extruded product or a blow molded product.
  17.  燃料チューブ、エンジン冷却液チューブ、バッテリー冷却液チューブ、モーター冷却液チューブ、燃料電池冷却チューブ、尿素溶液搬送チューブ、エアコン冷媒用チューブ、ブローバイチューブ、ブレーキブースターチューブ、ブレーキチューブ、オイル冷却チューブ、ターボダクトパイプ、エアサスペンションチューブ又は石油輸送用チューブである、請求項16に記載の成形体。 Fuel tubes, engine coolant tubes, battery coolant tubes, motor coolant tubes, fuel cell cooling tubes, urea solution delivery tubes, air conditioner coolant tubes, blow-by tubes, brake booster tubes, brake tubes, oil cooling tubes, turbo duct pipes , an air suspension tube or an oil transportation tube.
PCT/JP2022/026067 2021-07-08 2022-06-29 Polyamide composition WO2023282154A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280038893.1A CN117396559A (en) 2021-07-08 2022-06-29 Polyamide composition
JP2023533566A JPWO2023282154A1 (en) 2021-07-08 2022-06-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-113646 2021-07-08
JP2021113646 2021-07-08

Publications (1)

Publication Number Publication Date
WO2023282154A1 true WO2023282154A1 (en) 2023-01-12

Family

ID=84801528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026067 WO2023282154A1 (en) 2021-07-08 2022-06-29 Polyamide composition

Country Status (3)

Country Link
JP (1) JPWO2023282154A1 (en)
CN (1) CN117396559A (en)
WO (1) WO2023282154A1 (en)

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543796A (en) * 1991-08-15 1993-02-23 Showa Denko Kk Polyamide-polyolefin resin composition
JPH05117461A (en) * 1991-10-31 1993-05-14 Tosoh Corp Resin composition
JPH06199992A (en) * 1992-12-28 1994-07-19 Sumitomo Chem Co Ltd Production of impact-resistant polyamide resin composition
JPH10505615A (en) * 1994-07-06 1998-06-02 アドバンスド・エラストマー・システムズ・エル・ピー Soft thermoplastic elastomers with improved resistance to oil expansion and compression set
JPH1160942A (en) * 1997-08-08 1999-03-05 Elf Atochem Japan Kk Production of thermoplastic resin composition and molded product therefrom
JP2000080250A (en) * 1998-08-27 2000-03-21 Elf Atochem Sa Thermoplastic composition containing cross-linked phase
JP2002069296A (en) * 2000-06-23 2002-03-08 Degussa Ag Molding material and molded article produced therefrom
JP2002283498A (en) * 2001-01-18 2002-10-03 Matsushita Electric Works Ltd Resin molded item and molded base plate for circuit
JP2004027234A (en) * 2002-06-24 2004-01-29 Atofina Flame-retardant composition based on polyamide and polyolefin
JP2004210828A (en) * 2002-12-27 2004-07-29 Okura Ind Co Ltd Polyamide-based electronic photographic material
JP2010519373A (en) * 2007-02-23 2010-06-03 ロディア オペレーションズ Polyamide-based thermoplastic polymer composition
JP2014528508A (en) * 2011-10-13 2014-10-27 アルケマ フランス Composition comprising semi-aromatic polyamide and cross-linked polyolefin
JP2015501341A (en) * 2011-10-13 2015-01-15 アルケマ フランス Plastic composition based on semi-aromatic polyamide, process for its preparation and use thereof
US20150291794A1 (en) * 2012-11-19 2015-10-15 Arkema France Composition containing a semi-aromatic copolyamide, a polyolefin and a copper heat stabilizer, preparation thereof and uses thereof
JP2016056260A (en) * 2014-09-09 2016-04-21 東レ株式会社 Polyamide resin and production process therefor
JP2016514737A (en) * 2013-03-22 2016-05-23 アルケマ フランス Nanostructured thermoplastic polyolefin grafted polyamide composition
JP2016535164A (en) * 2013-11-05 2016-11-10 アルケマ フランス Impact resistant thermoplastic composition
WO2017131212A1 (en) * 2016-01-29 2017-08-03 株式会社ブリヂストン Tire
JP2018168374A (en) * 2013-02-18 2018-11-01 アルケマ フランス Use of semi-aromatic copolyamide for transporting refrigerant fluid
JP2019521226A (en) * 2016-07-13 2019-07-25 エーエムエス−パテント アクチェンゲゼルシャフト Conductive thermoplastic polyamide molding compound
JP2019535884A (en) * 2016-12-02 2019-12-12 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Filling composition containing polyphenylene sulfide (PPS) and polyamide 6 (PA6)
JP2020521861A (en) * 2017-06-02 2020-07-27 アルケマ フランス Polyamide-containing composition for coolant pipes
JP2020158669A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Semi-aromatic polyamide resin composition and molded article thereof

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543796A (en) * 1991-08-15 1993-02-23 Showa Denko Kk Polyamide-polyolefin resin composition
JPH05117461A (en) * 1991-10-31 1993-05-14 Tosoh Corp Resin composition
JPH06199992A (en) * 1992-12-28 1994-07-19 Sumitomo Chem Co Ltd Production of impact-resistant polyamide resin composition
JPH10505615A (en) * 1994-07-06 1998-06-02 アドバンスド・エラストマー・システムズ・エル・ピー Soft thermoplastic elastomers with improved resistance to oil expansion and compression set
JPH1160942A (en) * 1997-08-08 1999-03-05 Elf Atochem Japan Kk Production of thermoplastic resin composition and molded product therefrom
JP2000080250A (en) * 1998-08-27 2000-03-21 Elf Atochem Sa Thermoplastic composition containing cross-linked phase
JP2002069296A (en) * 2000-06-23 2002-03-08 Degussa Ag Molding material and molded article produced therefrom
JP2002283498A (en) * 2001-01-18 2002-10-03 Matsushita Electric Works Ltd Resin molded item and molded base plate for circuit
JP2004027234A (en) * 2002-06-24 2004-01-29 Atofina Flame-retardant composition based on polyamide and polyolefin
JP2004210828A (en) * 2002-12-27 2004-07-29 Okura Ind Co Ltd Polyamide-based electronic photographic material
JP2010519373A (en) * 2007-02-23 2010-06-03 ロディア オペレーションズ Polyamide-based thermoplastic polymer composition
JP2013241628A (en) * 2007-02-23 2013-12-05 Rhodia Operations Polyamide based thermoplastic polymer composition
JP2014528508A (en) * 2011-10-13 2014-10-27 アルケマ フランス Composition comprising semi-aromatic polyamide and cross-linked polyolefin
JP2015501341A (en) * 2011-10-13 2015-01-15 アルケマ フランス Plastic composition based on semi-aromatic polyamide, process for its preparation and use thereof
US20150291794A1 (en) * 2012-11-19 2015-10-15 Arkema France Composition containing a semi-aromatic copolyamide, a polyolefin and a copper heat stabilizer, preparation thereof and uses thereof
JP2018168374A (en) * 2013-02-18 2018-11-01 アルケマ フランス Use of semi-aromatic copolyamide for transporting refrigerant fluid
JP2016514737A (en) * 2013-03-22 2016-05-23 アルケマ フランス Nanostructured thermoplastic polyolefin grafted polyamide composition
JP2016535164A (en) * 2013-11-05 2016-11-10 アルケマ フランス Impact resistant thermoplastic composition
JP2019178333A (en) * 2013-11-05 2019-10-17 アルケマ フランス Impact-resistant thermoplastic composition
JP2016056260A (en) * 2014-09-09 2016-04-21 東レ株式会社 Polyamide resin and production process therefor
WO2017131212A1 (en) * 2016-01-29 2017-08-03 株式会社ブリヂストン Tire
JP2019521226A (en) * 2016-07-13 2019-07-25 エーエムエス−パテント アクチェンゲゼルシャフト Conductive thermoplastic polyamide molding compound
JP2019535884A (en) * 2016-12-02 2019-12-12 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Filling composition containing polyphenylene sulfide (PPS) and polyamide 6 (PA6)
JP2020521861A (en) * 2017-06-02 2020-07-27 アルケマ フランス Polyamide-containing composition for coolant pipes
JP2020158669A (en) * 2019-03-27 2020-10-01 三井化学株式会社 Semi-aromatic polyamide resin composition and molded article thereof

Also Published As

Publication number Publication date
CN117396559A (en) 2024-01-12
JPWO2023282154A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
JP6881618B2 (en) Manufacturing method of multi-layer tube for transporting chemicals
EP1860134B1 (en) Semi-aromatic polyamide resin
JP4522406B2 (en) Laminated structure
CN107109052B (en) Thermoplastic resin composition and molded article comprising same
CN105121549A (en) Composition containing a semi-aromatic copolyamide, a polyolefin and a copper heat stabilizer, preparation thereof and uses thereof
KR102472750B1 (en) Multilayer tube for fuel transportation, fuel pump module provided with same, use of same, and use of fuel pump module
WO2023282154A1 (en) Polyamide composition
JP6454182B2 (en) Ball seat for ball joint and ball joint having the same
WO2017115699A1 (en) Polyamide resin composition
JP7310942B2 (en) Polyamide resin composition
JP7542519B2 (en) Tube and polyamide resin composition
JP6216196B2 (en) Polyamide resin composition and molded body containing the polyamide resin composition
EP4101896A1 (en) Polyamide resin composition
WO2021039661A1 (en) Method for producing composite molded body
WO2024029470A1 (en) Polyamide resin composition, extrusion-molded body, and production method for extrusion-molded body
JP2023039227A (en) Molded body, and method of using molded body
JP2024066018A (en) Multilayer molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22837570

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023533566

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280038893.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22837570

Country of ref document: EP

Kind code of ref document: A1