Nothing Special   »   [go: up one dir, main page]

WO2021039661A1 - Method for producing composite molded body - Google Patents

Method for producing composite molded body Download PDF

Info

Publication number
WO2021039661A1
WO2021039661A1 PCT/JP2020/031701 JP2020031701W WO2021039661A1 WO 2021039661 A1 WO2021039661 A1 WO 2021039661A1 JP 2020031701 W JP2020031701 W JP 2020031701W WO 2021039661 A1 WO2021039661 A1 WO 2021039661A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
acid
molded product
elastomer
mass
Prior art date
Application number
PCT/JP2020/031701
Other languages
French (fr)
Japanese (ja)
Inventor
健治 關口
長谷川 敏明
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2021542856A priority Critical patent/JPWO2021039661A1/ja
Publication of WO2021039661A1 publication Critical patent/WO2021039661A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding

Definitions

  • the present invention relates to a method for producing a composite molded product in which a polyamide resin molded product is welded using a welding technique.
  • a method in which a plurality of primary molded products are combined and welded to manufacture various hollow molded parts that are difficult to mold by general injection molding.
  • the method include a vibration welding method, an ultrasonic welding method, a hot plate welding method, a laser welding method, and an injection welding method.
  • the vibration welding method and ultrasonic waves are used because of the reliability of the joint and the wide range of application.
  • a method of welding a molded body by vibration, such as a welding method, is attracting attention.
  • Patent Document 1 shows that a composite molded product produced by injection welding has high welding strength by using a polyamide containing a specific amount of triamine units.
  • Patent Document 2 discloses that the weldability and impact resistance of a composite molded product are improved by containing a specific amount of an expensive alcohol compound and a phosphorus-containing compound in a polyamide resin.
  • Patent Document 3 discloses that the tensile elongation of a welded portion is improved by blending an amide wax with a composition containing polyamide and glass fiber.
  • Patent Documents 1 to 3 there is no disclosure about the weldability of the composition containing the elastomer, and there is room for improvement in the toughness of the composite molded product.
  • the present invention provides a manufacturing method capable of obtaining a composite molded product having high toughness in view of these conventional techniques.
  • the present invention is as follows.
  • the molded product is a polyamide resin molded product.
  • At least one of the above-mentioned polyamide resin molded articles is a molded article of a polyamide resin composition obtained by using at least a polyamide (A), an elastomer (B), and a chain extender (C).
  • Example and Comparative Example It is a schematic diagram of the flat plate produced in Example and Comparative Example. It is a schematic diagram of the composite molded body produced in Example and Comparative Example. It is a schematic diagram of the test piece for a tensile test produced in an Example and a comparative example.
  • the composite molded product is produced by welding two or more polyamide resin molded products by vibration. At least one of the polyamide resin molded articles is a molded article (hereinafter, may be referred to as "molded article X") of the polyamide resin composition (hereinafter, may be referred to as "composition X”) described later. is there.
  • molded article X molded article of the polyamide resin composition
  • composition X polyamide resin composition
  • a composite molded product having sufficient mechanical properties and excellent toughness can be obtained by vibration welding the molded product X of the composition X containing a chain extender in addition to the polyamide and elastomer. It is possible. Further, in the present invention, it is also important to weld the above-mentioned polyamide resin molded product by vibration. By adopting welding accompanied by vibration, deterioration of the welded joint surface is suppressed, and excellent toughness can be exhibited.
  • composition for forming the other polyamide resin molded body may be the same as the composition X forming the other molded body X, but is not the same. It may be a composition included in the technical scope of X.
  • compositions that are not the same but are included in the technical scope of the composition X include, for example, in the composition X that forms one molded product X and the composition that forms the other polyamide resin molded product. Examples thereof include compositions having the same components but different amounts, or compositions having different optional components.
  • the composition for forming the other polyamide resin molded product may be a polyamide resin composition different from the composition X.
  • Examples of the polyamide resin composition different from the composition X include a polyamide resin composition using polyamide (A) and elastomer (B) as a matrix resin and not using a chain extender (C). From the viewpoint of ease of welding, it is preferable to use a polyamide having a melting point close to that of the polyamide (A) used in one molded product X as the composition for forming the other polyamide resin molded product, and the melting points of both polyamides are preferable. The difference between the two is more preferably 5 ° C. or less.
  • composition X is obtained using at least polyamide (A), elastomer (B) and chain extender (C). Since the polyamide (A), the elastomer (B) and the chain extender (C) can react during melt-kneading, the composition X contains a structure derived from each component, and in addition, each unreacted component is also included. Can be included.
  • the polyamide (A) is preferably a semi-aromatic polyamide from the viewpoint of toughness, heat resistance and chemical resistance.
  • the semi-aromatic polyamide is mainly a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component, or an aliphatic dicarboxylic acid unit.
  • main component means that 50 to 100 mol%, preferably 60 to 100 mol%, of all the units are composed.
  • "-unit” here, “-” indicates a monomer
  • dicarboxylic acid unit means “dicarboxylic acid”. It means “a constituent unit derived from”
  • diamine unit means “a constituent unit derived from diamine”.
  • a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component is preferable.
  • a semi-aromatic polyamide containing a diamine unit is more preferable.
  • the total content of the total dicarboxylic acid unit and the total diamine unit in the semi-aromatic polyamide is preferably 60 to 100 mol% with respect to 100 mol% of all the monomer units constituting the semi-aromatic polyamide. , 80 to 100 mol% is more preferable, 90 to 100 mol% is further preferable, and it may be 100 mol%.
  • the dicarboxylic acid unit constituting the semi-aromatic polyamide preferably contains 50 to 100 mol% of the aromatic dicarboxylic acid unit with respect to the total dicarboxylic acid unit.
  • a semi-aromatic polyamide containing an aromatic dicarboxylic acid unit in this proportion is used, a polyamide resin composition having good toughness, heat resistance and chemical resistance can be obtained.
  • the content of the aromatic dicarboxylic acid unit in the total dicarboxylic acid unit is more preferably 75 to 100 mol%, further preferably 90 to 100 mol%.
  • aromatic dicarboxylic acid unit examples include terephthalic acid unit, naphthalenedicarboxylic acid unit (2,6-naphthalenedicarboxylic acid unit, 2,7-naphthalenedicarboxylic acid unit, 1,4-naphthalenedicarboxylic acid unit, etc.), isophthalic acid unit, and the like.
  • the dicarboxylic acid unit may contain one or more of these aromatic dicarboxylic acid units.
  • the aromatic dicarboxylic acid unit is preferably a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit.
  • the semi-aromatic polyamide preferably contains a dicarboxylic acid unit containing 50 mol% or more of at least one selected from terephthalic acid and naphthalenedicarboxylic acid units with respect to the total dicarboxylic acid units.
  • the dicarboxylic acid unit constituting the semi-aromatic polyamide may contain a dicarboxylic acid unit other than the aromatic dicarboxylic acid unit in a range of preferably less than 50 mol% with respect to the total dicarboxylic acid unit.
  • dicarboxylic acid units include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelliic acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid, dodecanedicarboxylic acid, and dimethylmalonic acid.
  • An aliphatic dicarboxylic acid such as 2,2-diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladipic acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-Cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, alicyclic dicarboxylic acid such as cyclodecanedicarboxylic acid; and the like.
  • the dicarboxylic acid unit may contain one or more of these other dicarboxylic acid units.
  • the content of these other dicarboxylic acid units in the dicarboxylic acid unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
  • the semi-aromatic polyamide used in the present invention may further contain a unit derived from a polyvalent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid within a range that allows melt molding.
  • the diamine unit constituting the semi-aromatic polyamide preferably contains 60 to 100 mol% of an aliphatic diamine unit having 4 to 13 carbon atoms with respect to the total diamine unit.
  • a semi-aromatic polyamide containing an aliphatic diamine unit having 4 to 13 carbon atoms in this ratio is used, a polyamide resin composition having excellent toughness, heat resistance, chemical resistance and light weight can be obtained.
  • the content of the aliphatic diamine unit having 4 to 13 carbon atoms in the total diamine unit is more preferably 75 to 100 mol%, further preferably 90 to 100 mol%.
  • Examples of the aliphatic diamine unit having 4 to 13 carbon atoms include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, and 1,8-octane.
  • Linear aliphatic diamines such as diamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine; 2-methyl-1 , 5-Pentane Diamine, 3-Methyl-1,5-Pentane Diamine, 2,2,4-trimethyl-1,6-Hexane Diamine, 2,4,4-trimethyl-1,6-Hexane Diamine, 2-Methyl Units derived from branched chain aliphatic diamines such as -1,8-octanediamine and 5-methyl-1,9-nonandiamine; can be mentioned.
  • the diamine unit may contain one or more of these alipha
  • the above-mentioned aliphatic diamine units having 4 to 13 carbon atoms are 1,4-butanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decane. More preferably, it is at least one selected from units derived from diamine. Further, since a polyamide resin composition having further excellent heat resistance, low water absorption and chemical resistance can be obtained, the unit is derived from 1,9-nonanediamine and / or 2-methyl-1,8-octanediamine. Is more preferable, and 1,9-nonanediamine unit and 2-methyl-1,8-octanediamine unit are further preferable.
  • the 1,9-nonandiamine unit and 2-methyl-1,8-octanediamine are used.
  • the diamine unit constituting the semi-aromatic polyamide may contain other diamine units other than the aliphatic diamine unit having 4 to 13 carbon atoms, preferably in the range of less than 40 mol% with respect to the total diamine unit.
  • examples of such other diamine units include aliphatic diamines having 3 or less carbon atoms such as ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, and 2-methyl-1,3-propanediamine; Alicyclic diamines such as methylcyclohexanediamine and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diamino Units derived from aromatic diamines such as diphenyl ether can be mentioned.
  • the diamine unit may contain one or more of these other di
  • the semi-aromatic polyamide may further contain an aminocarboxylic acid unit and / or a lactam unit as long as the effect of the present invention is not impaired.
  • the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like, and two or more kinds of aminocarboxylic acid units may be contained.
  • the content of the aminocarboxylic acid unit in the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all the monomer units constituting the semi-aromatic polyamide. It is preferably 10 mol% or less, and more preferably 10 mol% or less.
  • the semi-aromatic polyamide may further contain lactam units as long as it does not interfere with the effects of the present invention.
  • lactam unit examples include units derived from ⁇ -caprolactam, enantractum, undecan lactam, lauryl lactam, ⁇ -pyrrolidone, ⁇ -piperidone, etc., even if two or more lactam units are contained. Good.
  • the content of the lactam unit in the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all the monomer units constituting the semi-aromatic polyamide. It is more preferably 10 mol% or less.
  • Polytetramethylene terephthalamide is a typical semi-aromatic polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit having 4 to 13 carbon atoms as a main component.
  • Polyamide 4T Polypentamethylene terephthalamide (Polyamide 5T), Polyhexamethylene terephthalamide (Polyamide 6T), Polynonamethylene terephthalamide (Polyamide 9T), Poly (2-Methyloctamethylene) terephthalamide (Nylon M8T), Polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T), polynonamethylenenaphthalenedicarboxamide (polyamide 9N), polynonamethylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) Naphthalenedicarboxamide copolymer (nylon 9N / M8N), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), copolymer of polyamide 6I and polyamide 6T (polyamide 6I / 6T), polyamide 6T Examples thereof include
  • polyamide 10T / 11 polynonamethylene naphthalenedicarboxamide (polyamide 9N), polynonamethylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) naphthalenedicarboxamide copolymer (nylon 9N / M8N), polynonamethylene terephthal.
  • polyamide 9T polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer
  • polydecamethylene terephthalamide polyamide 10T
  • polyamide 9T polynonamethylene naphthalenedicarboxamide
  • polyamide 9N polynonamethylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) naphthalenedicarboxamide copolymer
  • polyamide 10T polydecamethylene terephthalamide
  • Methylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) naphthalenedicarboxamide copolymer (nylon 9N / M8N), polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T), and polyamide At least one selected from 10T / 11 is more preferable, and polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T) is further preferable.
  • the semi-aromatic polyamide containing a dicarboxylic acid unit containing an aliphatic dicarboxylic acid unit as a main component and a diamine unit containing an aromatic diamine unit as a main component is an aliphatic dicarboxylic acid unit.
  • the unit derived from the above-mentioned aliphatic dicarboxylic acid can be mentioned, and one or more of these can be included.
  • the aromatic diamine unit include units derived from the above-mentioned aromatic diamine, and one or more of these can be included. Further, other units may be included as long as the effects of the present invention are not impaired.
  • Typical semi-aromatic polyamides containing a dicarboxylic acid unit containing an aliphatic dicarboxylic acid unit as a main component and a diamine unit containing an aromatic diamine unit as a main component include polymethaxylylene adipamide (MXD6) and poly. Examples thereof include paraxylylene sebacamide (PXD10).
  • a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used. Specific examples thereof include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols and monoamines. From the viewpoint of reactivity and stability of the sealing terminal, a monocarboxylic acid is preferable as the terminal sealing agent for the terminal amino group, and a monoamine is preferable as the terminal sealing agent for the terminal carboxyl group. From the viewpoint of ease of handling, a monocarboxylic acid is more preferable as the terminal encapsulant.
  • the monocarboxylic acid used as the terminal encapsulant is not particularly limited as long as it has reactivity with an amino group.
  • monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid.
  • Acids alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid and cyclohexanecarboxylic acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, ⁇ -naphthalenecarboxylic acid, ⁇ -naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and phenylacetic acid. Acid; any mixture thereof and the like can be mentioned.
  • the monoamine used as the terminal encapsulant is not particularly limited as long as it has reactivity with a carboxyl group.
  • methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine and stearyl are not particularly limited.
  • Adipose monoamines such as amines, dimethylamines, diethylamines, dipropylamines and dibutylamines; alicyclic monoamines such as cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamines and naphthylamines; any mixture thereof and the like.
  • At least one selected from butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline is preferable from the viewpoints of reactivity, high boiling point, stability of the sealing end, and price.
  • the semi-aromatic polyamide preferably has an intrinsic viscosity [ ⁇ inh ] of 0.6 dl / g or more, preferably 0.8 dl / g, measured at a concentration of 0.2 g / dl and a temperature of 30 ° C. using concentrated sulfuric acid as a solvent.
  • the above is more preferable, 0.6 dl / g or more is further preferable, and 1.0 dl / g or more is particularly preferable.
  • the intrinsic viscosity [ ⁇ inh ] is preferably 2.0 dl / g or less, more preferably 1.8 dl / g or less, and further preferably 1.6 dl / g or less.
  • the intrinsic viscosity [ ⁇ inh ] of the polyamide is within the above range, various physical properties such as moldability are further improved.
  • the semi-aromatic polyamide preferably has a terminal amino group content ([NH 2 ]) of 5 to 60 ⁇ eq / g, more preferably in the range of 5 to 50 ⁇ eq / g, and 5 to 30 ⁇ eq / g. It is more preferably within the range.
  • the terminal amino group content ([NH 2 ]) is 5 ⁇ eq / g or more, the compatibility between the semi-aromatic polyamide and the elastomer described later is good.
  • terminal amino group content is 60 ⁇ eq / g or less
  • an acid-modified elastomer described later is used as the elastomer (B)
  • the terminal amino group reacts too much with the modified portion of the elastomer to cause gelation. Can be avoided.
  • the terminal amino group content ([NH 2 ]) referred to in the present specification refers to the amount of terminal amino groups (unit: ⁇ eq) contained in 1 g of the semi-aromatic polyamide, and is determined by a neutralization titration method using an indicator. be able to.
  • a semi-aromatic polyamide containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) in the above range can be produced, for example, as follows.
  • a nylon salt is produced by mixing a dicarboxylic acid, a diamine, and if necessary, an aminocarboxylic acid, a lactam, a catalyst, and an end sealant.
  • the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the above reaction raw material are the following formula (1).
  • the semi-aromatic polyamide having a terminal amino group content ([NH 2 ]) of 5 to 60 ⁇ eq / g can be easily produced.
  • the produced nylon salt was heated to a temperature of 200 to 250 ° C. to obtain a prepolymer having an intrinsic viscosity [ ⁇ inh ] of 0.10 to 0.60 dlL / g at 30 ° C. in concentrated sulfuric acid, and the degree of polymerization was further increased. By doing so, a semi-aromatic polyamide can be obtained.
  • the intrinsic viscosity [ ⁇ inh ] of the prepolymer is in the range of 0.10 to 0.60 dLl / g, the deviation of the molecular balance between the carboxyl group and the amino group and the decrease in the polymerization rate are small at the stage of increasing the degree of polymerization. Further, a semi-aromatic polyamide having a small molecular weight distribution and excellent in various performances and moldability can be obtained.
  • the step of increasing the degree of polymerization is carried out by the solid phase polymerization method, it is preferably carried out under reduced pressure or under an inert gas flow, and when the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is high.
  • the polymerization temperature is preferably 370 ° C. or lower, and when the polymerization is carried out under such conditions, the polyamide is hardly decomposed and the semi-aromatic polyamide with little deterioration is hardly deteriorated. Is obtained.
  • Examples of the catalyst that can be used in producing the semi-aromatic polyamide include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or esters thereof.
  • Examples of the above salts or esters include phosphoric acid, phosphite or hypophosphoric acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like.
  • the amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on 100% by mass of the total mass of the raw material of the semi-aromatic polyamide.
  • the amount of the catalyst used is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on 100% by mass of the total mass of the raw material of the semi-aromatic polyamide.
  • the amount of the catalyst used is equal to or higher than the above lower limit, the polymerization proceeds satisfactorily. If it is not more than the above upper limit, impurities derived from the catalyst are less likely to occur, and for example, when a polyamide resin composition is molded, problems due to the impurities can be prevented.
  • the elastomer (B) is preferably at least one selected from the following (b1) to (b5) from the viewpoint of imparting toughness and impact resistance to the composite molded product.
  • the ⁇ -olefin-based copolymer includes a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms, or a copolymer of propylene and an ⁇ -olefin having 4 or more carbon atoms. Examples include copolymers.
  • a copolymer of ethylene and an ⁇ -olefin having 3 or more carbon atoms is preferable.
  • Examples of ⁇ -olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene.
  • ⁇ -olefin having 3 or more carbon atoms at least one selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene is preferable, and 1-butene is preferable. Is more preferable.
  • (B2) (Ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer (ethylene and / or propylene) / ( ⁇ , ⁇ -unsaturated carboxylic acid)
  • the and / or unsaturated carboxylic acid ester) -based copolymer is at least one selected from ethylene and propylene, and at least one selected from ⁇ , ⁇ -unsaturated carboxylic acid monomer and unsaturated carboxylic acid ester monomer. It is a copolymer obtained by copolymerizing one kind.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid.
  • Examples of the ⁇ , ⁇ -unsaturated carboxylic acid ester monomer include methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, and nonyl of these ⁇ , ⁇ -unsaturated carboxylic acids. Examples include esters and decyl esters. One type or two or more types of these monomers can be used.
  • (B3) Ionomer Ionomer is an ionomer in which at least a part of the carboxyl groups in the copolymer of an olefin and an ⁇ , ⁇ -unsaturated carboxylic acid is ionized by neutralization of a metal ion.
  • Ethylene is preferably used as the olefin.
  • ⁇ , ⁇ -unsaturated carboxylic acid acrylic acid and methacrylic acid are preferably used.
  • the above-mentioned copolymer is not limited to those exemplified here, and an unsaturated carboxylic acid ester monomer may be copolymerized.
  • the metal ions include alkali metals such as Li, Na, K, Mg, Ca, Sr, and Ba, alkaline earth metals, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, and Cd. Can be mentioned. One kind or two or more kinds of these metal ions can be used.
  • (B4) Polymer of aromatic vinyl compound and conjugated diene compound-based block
  • the copolymer of aromatic vinyl compound and conjugated diene compound-based block is an aromatic vinyl compound-based polymer block and conjugated diene-based polymer block.
  • a block polymer comprising at least one aromatic vinyl compound-based polymer block and at least one conjugated diene-based polymer block is used. Further, in the above-mentioned block copolymer, the unsaturated bond in the conjugated diene-based polymer block may be hydrogenated.
  • the aromatic vinyl compound-based polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound.
  • the aromatic vinyl compound include styrene, ⁇ -methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, and 4-.
  • Examples thereof include cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene and the like.
  • the aromatic vinyl compound-based polymer block may have a structural unit composed of a small amount of other unsaturated monomers as the case may be.
  • the conjugated diene polymer block is conjugated with butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene and the like.
  • the molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and its hydrogenated product may be linear, branched, radial, or any combination thereof.
  • one aromatic vinyl compound-based polymer block and one conjugated diene-based polymer block are used as a copolymer of an aromatic vinyl compound and a conjugated diene compound-based block and / or a hydrogenated product thereof.
  • Three polymer blocks are linearly bonded in the order of linearly bonded diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block.
  • One or more of the triblock copolymers and their hydrogenated products are preferably used.
  • unhydrogenated or hydrogenated styrene / butadiene block copolymer unhydrogenated or hydrogenated styrene / isoprene block copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene block copolymer, not yet.
  • examples thereof include hydrogenated or hydrogenated styrene / butadiene / styrene block copolymer, unhydrogenated or hydrogenated styrene / isoprene / butadiene / styrene block copolymer and the like.
  • (B5) A polymer obtained by modifying at least one selected from the above (b1) to (b4) with an unsaturated compound having at least one selected from a carboxyl group and an acid anhydride group (b1) to (b4). At least one selected from the above can be modified with an unsaturated compound having at least one selected from a carboxyl group and an acid anhydride group. When modified with such an unsaturated compound, the terminal amino group of the semi-aromatic polyamide reacts with the carboxyl group and / or acid anhydride group of the modified component, which is a component of the elastomer, to form a semi-aromatic polyamide.
  • the affinity between the phase and the elastomeric phase becomes stronger, the impact resistance and elongation characteristics are improved, and flexibility is exhibited.
  • a polymer obtained by modifying an ⁇ -olefin copolymer with an unsaturated compound having a carboxyl group and / or an acid anhydride group is preferable, and a polymer obtained by modifying an ethylene-butene copolymer with the unsaturated compound. Is more preferable.
  • Examples of the unsaturated compound having a carboxyl group used in the modified polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid. Examples thereof include ⁇ and ⁇ -unsaturated carboxylic acids such as acids. Examples of unsaturated compounds having an acid anhydride group include dicarboxylic acid anhydrides having ⁇ , ⁇ -unsaturated bonds such as maleic anhydride and itaconic anhydride. As the unsaturated compound having a carboxyl group and / or an acid anhydride group, a dicarboxylic acid anhydride having an ⁇ , ⁇ -unsaturated bond is preferable, and maleic anhydride is more preferable.
  • the carboxyl group and / or acid anhydride As a modification method using an unsaturated compound having a carboxyl group and / or an acid anhydride group, when the above (b1) to (b4) (hereinafter, also referred to as “base resin”) are produced, the carboxyl group and / or acid anhydride is used. Examples thereof include a method of copolymerizing with an unsaturated compound having a physical group and a method of grafting an unsaturated compound having a carboxyl group and / or an acid anhydride group with the above base resin. Of these, a method of grafting an unsaturated compound having a carboxyl group and / or an acid anhydride group with the above base resin is preferable.
  • the elastomer (B) a commercially available product manufactured industrially can be used, and examples thereof include "Toughmer (registered trademark)" manufactured by Mitsui Chemicals, Inc.
  • a chain extender (C) is used from the viewpoint of imparting toughness to the composite molded product.
  • the chain extender (C) is blended with the polyamide (A) and the elastomer (B)
  • the chain extender (C) is formed on the welded surface between the molded product X and the other polyamide resin molded product due to heat generated by vibration during welding. It is thought that it will react.
  • the polyamide (A) and the chain extender (C) between the molded bodies and the elastomer (B) and the chain extender (C) between the molded bodies are used.
  • the chain extender (C) in the molded body X can react with the components (polyamide and the like) in the other molded body. Therefore, at least one of the two molded bodies to be welded may be the molded body X.
  • the chain extender (C) may contain two or more functional groups reactive with the polyamide (A) in one molecule.
  • Examples of the chain extender (C) include a polyol compound, an oxazoline compound, an isocyanate compound, an epoxy compound, and a carbodiimide compound. Among these, a carbodiimide compound is particularly preferable from the viewpoint of reactivity with the polyamide (A).
  • As the chain extender (C) one kind or two or more kinds can be used.
  • carbodiimide compound examples include monocarbodiimide and polycarbodiimide, and polycarbodiimide is desirable from the viewpoint of heat resistance. More specifically, the polycarbodiimide is preferably a compound having a repeating unit represented by the following general formula (I).
  • X 1 represents a divalent hydrocarbon group.
  • the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group.
  • the chain aliphatic group has 1 or more carbon atoms, preferably 1 to 20, and more preferably 6 to 18.
  • the alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 or more carbon atoms, more preferably 6 to 20, and even more preferably 6 to 18.
  • the hydrocarbon group may have a substituent such as an amino group, a hydroxyl group, or an alkoxy group.
  • polycarbodiimides examples include aliphatic polycarbodiimides, aromatic polycarbodiimides, and mixtures thereof. Of these, an aliphatic polycarbodiimide is more preferable from the viewpoint of chemical resistance and molding processability of the obtained molded product X and reactivity with the polyamide (A).
  • X 1 is a group selected from the group consisting of an alkylene group having 3 to 18 carbon atoms, a divalent group represented by the following general formula (II), and a divalent group represented by the following general formula (III). It is more preferable that it is a divalent group represented by the following general formula (III).
  • R 1 to R 5 are independently single bonds or alkylene groups having 1 to 8 carbon atoms.
  • R 1 and R 2 in the general formula (II) are preferably single bonds.
  • R 3 and R 5 in the general formula (III) are preferably single bonds, and
  • R 4 is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
  • ⁇ Mixing amount> When the total amount of the polyamide (A) and the elastomer (B) is 100 parts by mass, it is preferable to use the polyamide (A) in an amount of 60 to 90 parts by mass. When the blending amount of the polyamide is within the above numerical range, mechanical strength, toughness, heat resistance and chemical resistance are easily exhibited. When the total amount of the polyamide (A) and the elastomer (B) is 100 parts by mass, the blending amount of the polyamide (A) is more preferably 63 parts by mass or more, further preferably 66 parts by mass or more. The blending amount of the polyamide (A) is more preferably 87 parts by mass or less, and further preferably 84 parts by mass or less.
  • the blending amount of the elastomer (B) is preferably 3 to 40% by mass with respect to a total of 100% by mass of the polyamide (A), the elastomer (B), and the chain extender (C).
  • the blending amount of the elastomer (B) is 3% by mass or more, good toughness is likely to be exhibited, and when it is 40% by mass or less, excellent strength can be exhibited.
  • the blending amount of the elastomer (B) is more preferably 4% by mass or more, further preferably 19% by mass or more.
  • the blending amount of the elastomer (B) is more preferably 35% by mass or less, further preferably 31% by mass or less.
  • the amount of the chain extender (C) to be blended with respect to 100 parts by mass of the total of the polyamide (A) and the elastomer (B) is preferably 0.01 to 5 parts by mass. When the blending amount of the chain extender (C) is within the above numerical range, excellent toughness and mechanical strength are likely to be exhibited.
  • the blending amount of the chain extender (C) with respect to 100 parts by mass of the total of the polyamide (A) and the elastomer (B) is more preferably 0.05 parts by mass or more, further preferably 0.1 parts by mass or more.
  • the amount of the chain extender (C) to be blended is more preferably 4 parts by mass or less, further preferably 3 parts by mass or less.
  • the ratio of the total amount of the polyamide (A), the elastomer (B), and the chain extender (C) to 100% by mass of the raw material used in the composition X is preferably 95% by mass or more, preferably 97% by mass or more. More preferred.
  • the ratio of the total amount of the polyamide (A), the elastomer (B), and the chain extender (C) to 100% by mass of the raw material used in the composition X is preferably 99.5% by mass or less, preferably 99% by mass. The following is more preferable.
  • Composition X contains other types of polymers (other than elastomer (B)), fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, antioxidants, flame retardants and flame retardants, if necessary. Other components such as may be contained as an additive.
  • polyether resins such as polyacetal and polyphenylene oxide
  • polysulfone resins such as polysulfone and polyethersulfone
  • polythioether-based resins such as polyphenylene sulfide and polythioether sulfone
  • polyether ether ketone and polyallyl ether ketone examples include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether-based resins such as polyphenylene sulfide and polythioether sulfone; polyether ether ketone and polyallyl ether ketone.
  • Polyketone-based resins such as polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylnitrile-butadiene-styrene copolymer and other polynitrile-based resins; polymethylmethacrylate Polymethacrylate-based resin such as polyethyl methacrylate; polyvinyl ester-based resin such as polyvinyl acetate; polyvinylidene chloride, polyvinyl chloride, vinyl chloride-vinylidene chloride copolymer, vinylidene chloride-methylacrylate copolymer and the like.
  • Vinyl chloride resin Cellulosic resin such as cellulose acetate, cellulose butyrate; Vinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetra Fluoropolymers such as fluoroethylene-hexafluoropropylene copolymers, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers; polycarbonate resins; polyimide resins such as thermoplastic polyimides, polyamideimides and polyetherimides; Thermoplastic polyurethane resin; and the like.
  • the filler examples include fibrous fillers such as glass fiber, and powder fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide.
  • fibrous fillers such as glass fiber
  • powder fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide.
  • flake-like fillers such as hydrotalcite, glass flakes, mica, clay, montmorillonite, and kaolin.
  • the crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide.
  • the crystal nucleating agent include talc, calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, magnesium oxide, and any mixture thereof. Of these, talc is preferable because it has a large effect of increasing the crystallization rate of polyamide.
  • the crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent, or the like for the purpose of improving compatibility with polyamide.
  • the colorant is not particularly limited and can be appropriately selected from inorganic or organic pigments and dyes.
  • black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, and titanium black are preferable.
  • the antistatic agent is not particularly limited and may be an organic type or an inorganic type.
  • examples of the organic antistatic agent include ionic compounds such as lithium ion salt, quaternary ammonium salt and ionic liquid; and electron conductive polymer compounds such as polythiophene, polyaniline, polypyrrole and polyacetylene.
  • examples of the inorganic antistatic agent include metal oxide-based conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide, and zinc oxide; and carbon-based conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, an inorganic antistatic agent is preferable.
  • carbon black which is a colorant may also function as an antistatic agent.
  • the plasticizer is not particularly limited as long as it is generally used as a plasticizer for polyamide, and is, for example, a benzenesulfonic acid alkylamide compound, a toluenesulfonic acid alkylamide compound, or a hydroxybenzoic acid alkylester compound. , Hydroxybenzoic acid alkylamide compounds and the like.
  • the lubricant is not particularly limited as long as it is generally used as a polyamide lubricant.
  • the lubricant include higher fatty acid compounds, oxy fatty acid compounds, fatty acid amide compounds, alkylene bis fatty acid amide compounds, fatty acid lower alcohol ester compounds, metal soap compounds, and polyolefin waxes.
  • the fatty acid amide compound for example, stearic acid amide, palmitic acid amide, methylene bisstearyl amide, ethylene bisstearyl amide and the like are preferable because they have an excellent external slipping effect.
  • antioxidant examples include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds and the like. These other components may be used alone or in combination of two or more. The blending amount of these other components is preferably 5% by mass or less, more preferably 3% by mass or less, based on 100% by mass of the composition X.
  • composition X is not particularly limited, and a known method can be used.
  • the composition X can be prepared by melt-kneading a mixture of a polyamide (A), an elastomer (B), a chain extender (C), and the above other components to be blended if necessary. ..
  • the chain extender (C) is added after the polyamide (A) and the elastomer (B) are melt-kneaded, so that the mutual reaction between the polyamide (A) and the elastomer (B) during the melt-kneading is chain-extended. It can be prevented from being inhibited by the agent (C).
  • a chain extender (C) is further added and melt-kneaded.
  • a chain extender (C) is charged from the first feed port and the chain extender (C) is charged from the second feed port provided between the first kneading portion and the second kneading portion installed on the screw.
  • the chain extender (C) may be added after being dry-blended with the polyamide (A), if necessary.
  • the melt-kneading temperature is 380 ° C. or lower. It is preferably 370 ° C. or lower, more preferably 360 ° C. or lower.
  • the melt-kneading time is preferably about 1 to 5 minutes.
  • the method of melt-kneading is not particularly limited, and a method capable of uniformly mixing the polyamide (A), the elastomer (B), the chain extender (C) and the above other components can be preferably adopted.
  • a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer and the like are preferable, and a twin-screw extruder is more preferable from the viewpoint of good dispersibility of the elastomer and industrial productivity.
  • pelletized products After adjusting the composition X, for example, pelletized products can be subjected to various molding methods to obtain a molded product X.
  • the molding method of the molded body X may be appropriately selected depending on the intended use, but methods such as injection molding, extrusion molding, hollow molding, compression molding, press molding, and calendar molding can be adopted.
  • the composite molded body is manufactured by welding the above-mentioned two or more polyamide resin molded bodies by vibration.
  • a welding method that does not involve vibration it becomes difficult to develop excellent toughness.
  • an infrared welding method or the like inconveniences such as excessive deterioration of the elastomer (B) on the welded surface due to oxygen existing in the environment around the molded body during heating occur, and excellent toughness cannot be obtained. ..
  • welding is performed by vibration, there is almost no possibility that the effect of the present invention will be impaired even by an infrared assisted vibration welding method in which, for example, heat welding and vibration welding are combined.
  • the surfaces to be pressure-welded between the molded product X and the mating polyamide resin molded product may be welded by a method of welding by frictional heat generated during welding.
  • the welding method include a vibration welding method, an infrared assisted vibration welding method, an ultrasonic welding method, a spin welding method, and a high frequency welding method.
  • the vibration welding method and the infrared assisted vibration welding method are desirable.
  • the welding conditions may be set according to the form of the molded product and are not particularly limited.
  • the welding pressure of the surface to be pressed is about 0.1 to 25 MPa
  • the amplitude is about 0.5 to 4.0 mm
  • the frequency is. It can be set to about 100 to 300 Hz.
  • the composite molded body obtained by the present invention makes use of its excellent properties, and makes use of its excellent properties, such as automobile parts, aircraft parts, internal combustion engine applications, crude oil drilling / transportation applications, electrical / electronic parts, medical care, food, household / office supplies / building material-related parts. It can be used for such purposes, and is particularly preferably used for automobile parts.
  • radiator tank parts As automobile parts, radiator tank parts, radiator liquid reserve tanks, water pumps, water inlet pipes, water outlet pipes, water pump housings, thermostat housings, etc., which are particularly required to have strength and toughness, can be used as coolant in the automobile engine room. It is suitably used for engine cooling system parts used under the contact of fuel, and fuel system parts such as fuel delivery pipe, fuel pump housing, valve, and fuel tank. It can also be used for interior parts, exterior parts, electrical components and the like.
  • Applications other than automobile parts include, for example, submarine oil pipes, marine oil pipes, underground oil pipes, pipe liners, submarine cable gears, cams, insulation blocks, valves, power tool parts, agricultural machinery parts, engine covers, and lawnmowers. Examples include small fuel tanks for machines.
  • ⁇ inh [ln (t 1 / t 0 )] / c (2)
  • ⁇ inh represents the intrinsic viscosity (dl / g)
  • t 0 represents the flow time (seconds) of the solvent (concentrated sulfuric acid)
  • t 1 represents the flow time (seconds) of the sample solution
  • c Represents the concentration of the sample in the sample solution (g / dl) (ie, 0.2 g / dl).
  • the melting point of the semi-aromatic polyamide obtained in the production example was measured using a differential scanning calorimetry apparatus "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd.
  • the melting point was measured according to ISO11357-3 (2011 2nd edition). Specifically, the sample (semi-aromatic polyamide) is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample. It was cooled to 50 ° C. at a rate of 10 ° C./min and held at 50 ° C. for 5 minutes.
  • the peak temperature of the melting peak that appears when the temperature is raised to 340 ° C at a rate of 10 ° C / min again is defined as the melting point (° C), and when there are multiple melting peaks, the peak temperature of the melting peak on the highest temperature side is defined as the melting point (° C). did.
  • Terminal amino group concentration 1 g of the semi-aromatic polyamide obtained in the production example was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therein to prepare a sample solution. Titration was carried out using thymol blue as an indicator and an aqueous hydrochloric acid solution of 0.01N was carried out, and the terminal amino group content ([NH 2 ], unit: ⁇ eq / g) of the semi-aromatic polyamide was measured.
  • the test piece A is fixed up and down to a vibration welding machine so that the cutting surface becomes a welding surface, and the ends are melted and joined by rubbing with vibration. I let you. Specifically, it was welded under the following conditions using an M-112H type vibration welding device manufactured by Branson. ⁇ Frequency: 240Hz ⁇ Welding pressure: 1.5MPa ⁇ Amplitude: 1.8 mm ⁇ Welding allowance: 1.2 mm
  • FIG. 2 shows a schematic view (shape) of the composite molded body obtained by the above welding.
  • the cutting surfaces of the two test pieces A are welded to each other via the welding surface 3 to form a composite molded body.
  • a schematic diagram of the test piece B for a tensile test produced by using the composite molded body is shown in FIG.
  • the central portion of this composite molded body is cut so that the tensile test test piece B includes the welding surface 3, and the three central portions are each subjected to the tensile test test piece B.
  • the average value of the tensile breaking strength obtained by the following method was used as the welding strength, and the average value of the tensile breaking elongation was calculated as the breaking elongation.
  • the pressure inside the autoclave was boosted to 2 MPa.
  • the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, water vapor was gradually removed, and the reaction was carried out while maintaining the pressure at 2 MPa.
  • the pressure was lowered to 1 MPa over 30 minutes and reacted for another 1 hour to obtain a prepolymer having an ultimate viscosity [ ⁇ ] of 0.2 dL / g. This was pulverized to a particle size of 2 mm or less using a flake crusher manufactured by Hosokawa Micron Co., Ltd., dried at 100 ° C.
  • Examples 1 to 3 Comparative Examples 1 to 3
  • the pellets of the polyamide resin compositions A-1, A-2, A-3, B-1, B-2, and B-3 obtained in Production Example 2 were used by the above method.
  • the prepared welding test pieces A were welded to each other by the above-mentioned infrared auxiliary vibration welding (IRVW) to prepare a composite molded body.
  • Table 2 shows the evaluation results of the tensile test of the tensile test test piece B obtained by cutting the composite molded body by the above method.
  • Examples 4 to 6, Comparative Examples 4 to 6 As shown in Table 3, a composite molded body and a test piece B for a tensile test were prepared in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 3 except that the above vibration welding (VW) was used as the welding method, and described above. The tensile test was carried out by the method of. The evaluation results are shown in Table 3.
  • the manufacturing method of the present invention a composite molded body having excellent toughness can be manufactured. Therefore, the manufacturing method of the present invention can be used for manufacturing automobile parts, aircraft parts, internal combustion engine applications, crude oil drilling / transportation applications, electrical / electronic parts, medical care, food, household / office supplies / building material-related parts, and the like. It is possible and is particularly preferably used in the manufacture of automotive parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

A method for producing a composite molded body by welding two or more molded bodies, wherein: the molded bodies are polyamide resin molded bodies; at least one of the polyamide resin molded bodies is a molded body of a polyamide resin composition that is obtained using at least (A) a polyamide, (B) an elastomer and (C) a chain extender; and the two or more molded bodies are welded with each other by means of vibration.

Description

複合成形体の製造方法Manufacturing method of composite molded product
 本発明は、ポリアミド樹脂成形体を溶着技術を用いて溶着させる複合成形体の製造方法に関する。 The present invention relates to a method for producing a composite molded product in which a polyamide resin molded product is welded using a welding technique.
 近年、自動車の二酸化炭素排出規制の強化に伴い、車体の軽量化ニーズが高まっており、金属部品の樹脂化が進められている。樹脂化のメリットとしては、軽量化に加えて、加工性向上、静音化、さらに形状自由度の高さも挙げられる。 In recent years, with the tightening of carbon dioxide emission regulations for automobiles, the need for weight reduction of automobile bodies has increased, and metal parts are being made into resins. The merits of using resin include not only weight reduction, but also improved workability, noise reduction, and a high degree of freedom in shape.
 形状自由度の優位性をさらに高めるために、複数の一次成形品を組み合わせて溶着し、一般的な射出成形では成形困難な各種中空成形体部品を製造する手法が開発されている。当該手法としては、例えば振動溶着法、超音波溶着法、熱板溶着法、レーザー溶着法、射出溶着法などが挙げられ、接合部の信頼性や適用範囲の広さから振動溶着法や超音波溶着法などの成形体を振動により溶着させる方法が注目されている。 In order to further enhance the superiority of shape freedom, a method has been developed in which a plurality of primary molded products are combined and welded to manufacture various hollow molded parts that are difficult to mold by general injection molding. Examples of the method include a vibration welding method, an ultrasonic welding method, a hot plate welding method, a laser welding method, and an injection welding method. The vibration welding method and ultrasonic waves are used because of the reliability of the joint and the wide range of application. A method of welding a molded body by vibration, such as a welding method, is attracting attention.
 ポリアミド樹脂は、優れた機械強度、靭性、耐熱性、耐薬品を有するため、自動車用途においても、上記の溶着技術を用いた複合成形品の開発が盛んに行われている。特に、溶着部の物性は一般に一次成形品の物性よりも劣る場合が多いため、溶着部の物性を改良する手法が提案されている。例えば、特許文献1には特定量のトリアミン単位を含むポリアミドを用いることで、射出溶着で製造した複合成形体が高い溶着強度を有することが示されている。特許文献2にはポリアミド樹脂に特定量の高価アルコール化合物とリン含有化合物を含有させることで、複合成形品の溶着性と耐衝撃性が改良されることが開示されている。特許文献3にはポリアミドとガラス繊維を含む組成物にアミド系ワックスを配合することで溶着部の引張伸度が改善されることが開示されている。 Since polyamide resin has excellent mechanical strength, toughness, heat resistance, and chemical resistance, composite molded products using the above welding technology are being actively developed even in automobile applications. In particular, since the physical characteristics of the welded portion are generally inferior to those of the primary molded product, a method for improving the physical characteristics of the welded portion has been proposed. For example, Patent Document 1 shows that a composite molded product produced by injection welding has high welding strength by using a polyamide containing a specific amount of triamine units. Patent Document 2 discloses that the weldability and impact resistance of a composite molded product are improved by containing a specific amount of an expensive alcohol compound and a phosphorus-containing compound in a polyamide resin. Patent Document 3 discloses that the tensile elongation of a welded portion is improved by blending an amide wax with a composition containing polyamide and glass fiber.
国際公開2015/040863号International release 2015/040863 特開2018-012760JP 2018-012760 特開2019-108526JP-A-2019-108526
 複合成形品の靭性、耐衝撃性を改善するためにエラストマーを配合した組成物を溶着した際には、溶着部の靭性が低く、複合成形品として十分な特性を得るのが困難であった。特許文献1~3においては、エラストマーを配合した組成物の溶着性については何ら開示がなく、複合成形品の靭性には改善の余地があった。 When a composition containing an elastomer was welded in order to improve the toughness and impact resistance of the composite molded product, the toughness of the welded portion was low, and it was difficult to obtain sufficient characteristics as the composite molded product. In Patent Documents 1 to 3, there is no disclosure about the weldability of the composition containing the elastomer, and there is room for improvement in the toughness of the composite molded product.
 本発明は、これら従来技術に鑑み、高い靭性を有する複合成形体を得ることのできる製造方法を提供する。 The present invention provides a manufacturing method capable of obtaining a composite molded product having high toughness in view of these conventional techniques.
 上記課題を解決すべく鋭意検討した結果、本発明者らは下記本発明を想到し、当該課題を解決できることを見出した。
 すなわち、本発明は下記のとおりである。
As a result of diligent studies to solve the above problems, the present inventors have conceived the following inventions and found that the problems can be solved.
That is, the present invention is as follows.
 2つ以上の成形体を溶着させる複合成形体の製造において、
 前記成形体がポリアミド樹脂成形体であり、
 前記ポリアミド樹脂成形体の少なくとも一つが、少なくともポリアミド(A)、エラストマー(B)、及び鎖延長剤(C)を用いて得られるポリアミド樹脂組成物の成形体であり、
 前記2つ以上の成形体を振動により溶着させる、複合成形体の製造方法。
In the manufacture of a composite molded body in which two or more molded bodies are welded together
The molded product is a polyamide resin molded product.
At least one of the above-mentioned polyamide resin molded articles is a molded article of a polyamide resin composition obtained by using at least a polyamide (A), an elastomer (B), and a chain extender (C).
A method for producing a composite molded body, in which the two or more molded bodies are welded by vibration.
 本発明によれば、高い靭性を有する複合成形体を得ることのできる製造方法を提供することができる。 According to the present invention, it is possible to provide a manufacturing method capable of obtaining a composite molded product having high toughness.
実施例及び比較例で作製した平板の模式図である。It is a schematic diagram of the flat plate produced in Example and Comparative Example. 実施例及び比較例で作製した複合成形体の模式図である。It is a schematic diagram of the composite molded body produced in Example and Comparative Example. 実施例及び比較例で作製した引張試験用試験片の模式図である。It is a schematic diagram of the test piece for a tensile test produced in an Example and a comparative example.
 以下、本発明の実施態様の一例に基づいて説明する。ただし、以下に示す実施態様は、本発明の技術思想を具体化するための例示であって、本発明は以下の記載に限定されない。
 また本明細書において、実施態様の好ましい形態を示すが、個々の好ましい形態を2つ以上組み合わせたものもまた、好ましい形態である。数値範囲で示した事項について、いくつかの数値範囲がある場合、それらの下限値と上限値とを選択的に組み合わせて好ましい形態とすることができる。
 なお、本明細書において、「XX~YY」との数値範囲の記載がある場合、「XX以上YY以下」を意味する。
Hereinafter, description will be made based on an example of an embodiment of the present invention. However, the embodiments shown below are examples for embodying the technical idea of the present invention, and the present invention is not limited to the following description.
Further, although the preferred embodiment of the embodiment is shown in the present specification, a combination of two or more individual preferred embodiments is also a preferred embodiment. When there are several numerical ranges for the items shown in the numerical range, the lower limit value and the upper limit value thereof can be selectively combined to form a preferable form.
In this specification, when the numerical range of "XX to YY" is described, it means "XX or more and YY or less".
<ポリアミド樹脂成形体>
 本発明の実施態様において、複合成形体は、2つ以上のポリアミド樹脂成形体を振動により溶着させて製造する。
 ポリアミド樹脂成形体の少なくとも一つは、後述のポリアミド樹脂組成物(以下、「組成物X」と称すことがある。)の成形体(以下、「成形体X」と称すことがある。)である。
 ポリアミドからなる成形体は溶着が比較的容易であるが、ポリアミドだけでは成形体が脆くなりやすいため十分な機械的特性が得られないことがある。ポリアミド成形体の脆さを改善するため樹脂材料としてエラストマーを配合することが考えらえるが、ポリアミドにエラストマーを配合することにより成形体の溶着が困難になる問題がある。本発明よれば、ポリアミド及びエラストマーに加え、さらに鎖延長剤を配合する組成物Xの成形体Xを振動溶着することにより、十分な機械的特性を有しつつ靭性に優れた複合成形体を得ることが可能である。
 また本発明において、振動により上記ポリアミド樹脂成形体を溶着させることも重要である。振動をともなう溶着を採用することにより溶着接合面の劣化が抑えられ、優れた靭性を発現することができる。
<Polyamide resin molded product>
In the embodiment of the present invention, the composite molded product is produced by welding two or more polyamide resin molded products by vibration.
At least one of the polyamide resin molded articles is a molded article (hereinafter, may be referred to as "molded article X") of the polyamide resin composition (hereinafter, may be referred to as "composition X") described later. is there.
A molded product made of polyamide is relatively easy to weld, but the molded product tends to be brittle with polyamide alone, so that sufficient mechanical properties may not be obtained. It is conceivable to add an elastomer as a resin material in order to improve the brittleness of the polyamide molded product, but there is a problem that it becomes difficult to weld the molded product by blending the elastomer with the polyamide. According to the present invention, a composite molded product having sufficient mechanical properties and excellent toughness can be obtained by vibration welding the molded product X of the composition X containing a chain extender in addition to the polyamide and elastomer. It is possible.
Further, in the present invention, it is also important to weld the above-mentioned polyamide resin molded product by vibration. By adopting welding accompanied by vibration, deterioration of the welded joint surface is suppressed, and excellent toughness can be exhibited.
 他方のポリアミド樹脂成形体(即ち、成形体Xと溶着させる成形体)を形成する組成物は、一方の成形体Xを形成する組成物Xと同一であってもよく、同一ではないが組成物Xの技術範囲に包含される組成物であってもよい。
 上記「同一ではないが組成物Xの技術範囲に包含される組成物」としては、例えば、一方の成形体Xを形成する組成物Xと他方のポリアミド樹脂成形体を形成する組成物とにおいて、用いる成分は同一であるが配合量が異なる組成物、あるいは任意成分が異なる組成物等が挙げられる。
 また、他方のポリアミド樹脂成形体を形成する組成物は、組成物Xとは異なるポリアミド樹脂組成物であってもよい。上記組成物Xとは異なるポリアミド樹脂組成物としては、例えば、ポリアミド(A)及びエラストマー(B)をマトリックス樹脂として用い、鎖延長剤(C)を用いないポリアミド樹脂組成物等が挙げられる。
 他方のポリアミド樹脂成形体を形成する組成物には、溶着の容易性の観点から、一方の成形体Xに用いられるポリアミド(A)と融点が近いポリアミドを用いることが好ましく、両者のポリアミドの融点の差が5℃以下であることがより好ましい。
The composition for forming the other polyamide resin molded body (that is, the molded body to be welded to the molded body X) may be the same as the composition X forming the other molded body X, but is not the same. It may be a composition included in the technical scope of X.
The above-mentioned "compositions that are not the same but are included in the technical scope of the composition X" include, for example, in the composition X that forms one molded product X and the composition that forms the other polyamide resin molded product. Examples thereof include compositions having the same components but different amounts, or compositions having different optional components.
Further, the composition for forming the other polyamide resin molded product may be a polyamide resin composition different from the composition X. Examples of the polyamide resin composition different from the composition X include a polyamide resin composition using polyamide (A) and elastomer (B) as a matrix resin and not using a chain extender (C).
From the viewpoint of ease of welding, it is preferable to use a polyamide having a melting point close to that of the polyamide (A) used in one molded product X as the composition for forming the other polyamide resin molded product, and the melting points of both polyamides are preferable. The difference between the two is more preferably 5 ° C. or less.
[ポリアミド樹脂組成物(組成物X)]
 組成物Xは、少なくともポリアミド(A)、エラストマー(B)及び鎖延長剤(C)を用いて得られる。ポリアミド(A)、エラストマー(B)及び鎖延長剤(C)は溶融混練時に反応し得るため、組成物Xには、当該各成分由来の構造が含まれ、加えて未反応の当該各成分も含まれ得る。
[Polyamide resin composition (composition X)]
Composition X is obtained using at least polyamide (A), elastomer (B) and chain extender (C). Since the polyamide (A), the elastomer (B) and the chain extender (C) can react during melt-kneading, the composition X contains a structure derived from each component, and in addition, each unreacted component is also included. Can be included.
〈ポリアミド(A)〉
 ポリアミド(A)は、靭性、耐熱性及び耐薬品性の観点から、半芳香族ポリアミドであることが好ましい。
 本発明において半芳香族ポリアミドとは、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、脂肪族ジアミン単位を主成分とするジアミン単位とを含むポリアミド、又は、脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含むポリアミドをいう。ここで「主成分とする」とは、全単位中の50~100モル%、好ましくは60~100モル%を構成することをいう。
 なお、本明細書において、「~単位」(ここで「~」は単量体を示す)とは「~に由来する構成単位」を意味し、例えば「ジカルボン酸単位」とは「ジカルボン酸に由来する構成単位」を意味し、「ジアミン単位」とは「ジアミンに由来する構成単位」を意味する。
<Polyamide (A)>
The polyamide (A) is preferably a semi-aromatic polyamide from the viewpoint of toughness, heat resistance and chemical resistance.
In the present invention, the semi-aromatic polyamide is mainly a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component, or an aliphatic dicarboxylic acid unit. A polyamide containing a dicarboxylic acid unit as a component and a diamine unit containing an aromatic diamine unit as a main component. Here, the term "main component" means that 50 to 100 mol%, preferably 60 to 100 mol%, of all the units are composed.
In the present specification, "-unit" (here, "-" indicates a monomer) means "a structural unit derived from", and for example, "dicarboxylic acid unit" means "dicarboxylic acid". It means "a constituent unit derived from", and "diamine unit" means "a constituent unit derived from diamine".
 本発明に用いる半芳香族ポリアミドとしては、芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、脂肪族ジアミン単位を主成分とするジアミン単位とを含むポリアミドが好ましい。中でも、全ジカルボン酸単位に対して芳香族ジカルボン酸単位を50~100モル%含有するジカルボン酸単位と、全ジアミン単位に対して炭素数4~13の脂肪族ジアミン単位を60~100モル%含有するジアミン単位とを含む半芳香族ポリアミドがより好ましい。
 また、半芳香族ポリアミドにおける全ジカルボン酸単位と全ジアミン単位との合計の含有率は、半芳香族ポリアミドを構成する全モノマー単位100モル%に対して、60~100モル%であることが好ましく、80~100モル%であることがより好ましく、90~100モル%であることがさらに好ましく、100モル%であってもよい。
As the semi-aromatic polyamide used in the present invention, a polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit as a main component is preferable. Among them, a dicarboxylic acid unit containing 50 to 100 mol% of an aromatic dicarboxylic acid unit with respect to the total dicarboxylic acid unit and 60 to 100 mol% of an aliphatic diamine unit having 4 to 13 carbon atoms with respect to the total diamine unit. A semi-aromatic polyamide containing a diamine unit is more preferable.
The total content of the total dicarboxylic acid unit and the total diamine unit in the semi-aromatic polyamide is preferably 60 to 100 mol% with respect to 100 mol% of all the monomer units constituting the semi-aromatic polyamide. , 80 to 100 mol% is more preferable, 90 to 100 mol% is further preferable, and it may be 100 mol%.
(ジカルボン酸単位)
 半芳香族ポリアミドを構成するジカルボン酸単位は、全ジカルボン酸単位に対して芳香族ジカルボン酸単位を50~100モル%含有することが好ましい。芳香族ジカルボン酸単位をこの割合で含有する半芳香族ポリアミドを使用すると、靭性、耐熱性及び耐薬品性が良好なポリアミド樹脂組成物が得られる。全ジカルボン酸単位における芳香族ジカルボン酸単位の含有率は、75~100モル%がより好ましく、90~100モル%がさらに好ましい。
(Dicarboxylic acid unit)
The dicarboxylic acid unit constituting the semi-aromatic polyamide preferably contains 50 to 100 mol% of the aromatic dicarboxylic acid unit with respect to the total dicarboxylic acid unit. When a semi-aromatic polyamide containing an aromatic dicarboxylic acid unit in this proportion is used, a polyamide resin composition having good toughness, heat resistance and chemical resistance can be obtained. The content of the aromatic dicarboxylic acid unit in the total dicarboxylic acid unit is more preferably 75 to 100 mol%, further preferably 90 to 100 mol%.
 芳香族ジカルボン酸単位としては、テレフタル酸単位、ナフタレンジカルボン酸単位(2,6-ナフタレンジカルボン酸単位、2,7-ナフタレンジカルボン酸単位、1,4-ナフタレンジカルボン酸単位等)、イソフタル酸単位、1,4-フェニレンジオキシジ酢酸単位、1,3-フェニレンジオキシジ酢酸単位、ジフェン酸単位、ジフェニルメタン-4,4’-ジカルボン酸単位、ジフェニルスルホン-4,4’-ジカルボン酸単位、4,4’-ビフェニルジカルボン酸単位等が挙げられる。ジカルボン酸単位は、これら芳香族ジカルボン酸単位を1種又は2種以上含むことができる。
 これらの中でも、芳香族ジカルボン酸単位はテレフタル酸単位及び/又はナフタレンジカルボン酸単位であることが好ましい。よって、半芳香族ポリアミドは、全ジカルボン酸単位に対してテレフタル酸及びナフタレンジカルボン酸単位から選ばれる少なくとも1種を50モル%以上含むジカルボン酸単位を含むことが好ましい。
Examples of the aromatic dicarboxylic acid unit include terephthalic acid unit, naphthalenedicarboxylic acid unit (2,6-naphthalenedicarboxylic acid unit, 2,7-naphthalenedicarboxylic acid unit, 1,4-naphthalenedicarboxylic acid unit, etc.), isophthalic acid unit, and the like. 1,4-phenylenedioxydiacetic acid unit, 1,3-phenylenedioxydiacetic acid unit, diphenylic acid unit, diphenylmethane-4,4'-dicarboxylic acid unit, diphenylsulfone-4,4'-dicarboxylic acid unit, 4 , 4'-biphenyldicarboxylic acid unit and the like. The dicarboxylic acid unit may contain one or more of these aromatic dicarboxylic acid units.
Among these, the aromatic dicarboxylic acid unit is preferably a terephthalic acid unit and / or a naphthalene dicarboxylic acid unit. Therefore, the semi-aromatic polyamide preferably contains a dicarboxylic acid unit containing 50 mol% or more of at least one selected from terephthalic acid and naphthalenedicarboxylic acid units with respect to the total dicarboxylic acid units.
 半芳香族ポリアミドを構成するジカルボン酸単位は、全ジカルボン酸単位に対して、好ましくは50モル%未満の範囲で、芳香族ジカルボン酸単位以外の他のジカルボン酸単位を含んでもよい。かかる他のジカルボン酸単位としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸、ジメチルマロン酸、2,2-ジエチルコハク酸、2,2-ジメチルグルタル酸、2-メチルアジピン酸、トリメチルアジピン酸等の脂肪族ジカルボン酸;1,3-シクロペンタンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、シクロヘプタンジカルボン酸、シクロオクタンジカルボン酸、シクロデカンジカルボン酸等の脂環式ジカルボン酸;などに由来する単位を挙げることができる。ジカルボン酸単位は、これら他のジカルボン酸単位を1種又は2種以上含むことができる。ジカルボン酸単位におけるこれらの他のジカルボン酸単位の含有率は、25モル%以下であることが好ましく、10モル%以下であることがより好ましい。
 本発明で用いる半芳香族ポリアミドはさらに、トリメリット酸、トリメシン酸、ピロメリット酸等の多価カルボン酸に由来する単位を溶融成形が可能な範囲内で含んでいてもよい。
The dicarboxylic acid unit constituting the semi-aromatic polyamide may contain a dicarboxylic acid unit other than the aromatic dicarboxylic acid unit in a range of preferably less than 50 mol% with respect to the total dicarboxylic acid unit. Examples of such other dicarboxylic acid units include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelliic acid, suberic acid, azelaic acid, sebacic acid, undecandicarboxylic acid, dodecanedicarboxylic acid, and dimethylmalonic acid. An aliphatic dicarboxylic acid such as 2,2-diethylsuccinic acid, 2,2-dimethylglutaric acid, 2-methyladipic acid, trimethyladipic acid; 1,3-cyclopentanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1 , 4-Cyclohexanedicarboxylic acid, cycloheptanedicarboxylic acid, cyclooctanedicarboxylic acid, alicyclic dicarboxylic acid such as cyclodecanedicarboxylic acid; and the like. The dicarboxylic acid unit may contain one or more of these other dicarboxylic acid units. The content of these other dicarboxylic acid units in the dicarboxylic acid unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
The semi-aromatic polyamide used in the present invention may further contain a unit derived from a polyvalent carboxylic acid such as trimellitic acid, trimesic acid, and pyromellitic acid within a range that allows melt molding.
(ジアミン単位)
 半芳香族ポリアミドを構成するジアミン単位は、全ジアミン単位に対して炭素数4~13の脂肪族ジアミン単位を60~100モル%含有することが好ましい。炭素数4~13の脂肪族ジアミン単位をこの割合で含有する半芳香族ポリアミドを使用すると、靭性、耐熱性、耐薬品性及び軽量性に優れたポリアミド樹脂組成物が得られる。全ジアミン単位における炭素数4~13の脂肪族ジアミン単位の含有率は、75~100モル%がより好ましく、90~100モル%がさらに好ましい。
(Diamine unit)
The diamine unit constituting the semi-aromatic polyamide preferably contains 60 to 100 mol% of an aliphatic diamine unit having 4 to 13 carbon atoms with respect to the total diamine unit. When a semi-aromatic polyamide containing an aliphatic diamine unit having 4 to 13 carbon atoms in this ratio is used, a polyamide resin composition having excellent toughness, heat resistance, chemical resistance and light weight can be obtained. The content of the aliphatic diamine unit having 4 to 13 carbon atoms in the total diamine unit is more preferably 75 to 100 mol%, further preferably 90 to 100 mol%.
 上記の炭素数4~13の脂肪族ジアミン単位としては、例えば、1,4-ブタンジアミン、1,5-ペンタンジアミン、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン、1,13-トリデカンジアミン等の直鎖状脂肪族ジアミン;2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミン;などに由来する単位を挙げることができる。ジアミン単位は、これら脂肪族ジアミン単位を1種又は2種以上含むことができる。 Examples of the aliphatic diamine unit having 4 to 13 carbon atoms include 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, and 1,8-octane. Linear aliphatic diamines such as diamine, 1,9-nonanediamine, 1,10-decanediamine, 1,11-undecanediamine, 1,12-dodecanediamine, 1,13-tridecanediamine; 2-methyl-1 , 5-Pentane Diamine, 3-Methyl-1,5-Pentane Diamine, 2,2,4-trimethyl-1,6-Hexane Diamine, 2,4,4-trimethyl-1,6-Hexane Diamine, 2-Methyl Units derived from branched chain aliphatic diamines such as -1,8-octanediamine and 5-methyl-1,9-nonandiamine; can be mentioned. The diamine unit may contain one or more of these aliphatic diamine units.
 上記の炭素数4~13の脂肪族ジアミン単位は、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンに由来する単位から選ばれる少なくとも1種であることがより好ましい。
 また、耐熱性、低吸水性及び耐薬液性により一層優れるポリアミド樹脂組成物が得られることから、1,9-ノナンジアミン及び/又は2-メチル-1,8-オクタンジアミンに由来する単位であることがより好ましく、1,9-ノナンジアミン単位及び2-メチル-1,8-オクタンジアミン単位であることがさらに好ましい。脂肪族ジアミン単位が、1,9-ノナンジアミン及び2-メチル-1,8-オクタンジアミンに由来する単位をともに含む場合には、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=95/5~40/60の範囲にあることが好ましく、90/10~40/60の範囲にあることがより好ましく、80/20~40/60の範囲にあることがさらに好ましい。
The above-mentioned aliphatic diamine units having 4 to 13 carbon atoms are 1,4-butanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decane. More preferably, it is at least one selected from units derived from diamine.
Further, since a polyamide resin composition having further excellent heat resistance, low water absorption and chemical resistance can be obtained, the unit is derived from 1,9-nonanediamine and / or 2-methyl-1,8-octanediamine. Is more preferable, and 1,9-nonanediamine unit and 2-methyl-1,8-octanediamine unit are further preferable. When the aliphatic diamine unit contains both units derived from 1,9-nonandiamine and 2-methyl-1,8-octanediamine, the 1,9-nonandiamine unit and 2-methyl-1,8-octanediamine are used. The molar ratio of the units is preferably in the range of 1,9-nonanediamine units / 2-methyl-1,8-octanediamine units = 95/5 to 40/60, preferably in the range of 90/10 to 40/60. It is more preferable to be in the range of 80/20 to 40/60.
 半芳香族ポリアミドを構成するジアミン単位は、全ジアミン単位に対して、好ましくは40モル%未満の範囲で、炭素数4~13の脂肪族ジアミン単位以外の他のジアミン単位を含んでもよい。かかる他のジアミン単位としては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,3-プロパンジアミン、2-メチル-1,3-プロパンジアミン等の炭素数3以下の脂肪族ジアミン;シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミン等の脂環式ジアミン;p-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル等の芳香族ジアミンなどに由来する単位を挙げることがでる。ジアミン単位は、これら他のジアミン単位を1種又は2種以上含むことができる。ジアミン単位におけるこれらの他のジアミン単位の含有率は25モル%以下であることが好ましく、10モル%以下であることがより好ましい。 The diamine unit constituting the semi-aromatic polyamide may contain other diamine units other than the aliphatic diamine unit having 4 to 13 carbon atoms, preferably in the range of less than 40 mol% with respect to the total diamine unit. Examples of such other diamine units include aliphatic diamines having 3 or less carbon atoms such as ethylenediamine, 1,2-propanediamine, 1,3-propanediamine, and 2-methyl-1,3-propanediamine; Alicyclic diamines such as methylcyclohexanediamine and isophoronediamine; p-phenylenediamine, m-phenylenediamine, xylylenediamine, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 4,4'-diamino Units derived from aromatic diamines such as diphenyl ether can be mentioned. The diamine unit may contain one or more of these other diamine units. The content of these other diamine units in the diamine unit is preferably 25 mol% or less, and more preferably 10 mol% or less.
(他の単位)
 半芳香族ポリアミドは、本発明の効果を阻害しない範囲内で、さらにアミノカルボン酸単位及び/又はラクタム単位を含んでいてもよい。 
 当該アミノカルボン酸単位としては、例えば、11-アミノウンデカン酸、12-アミノドデカン酸などに由来する単位を挙げることができ、アミノカルボン酸単位は2種以上含まれていてもよい。半芳香族ポリアミドにおけるアミノカルボン酸単位の含有率は、半芳香族ポリアミドを構成する全モノマー単位100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。
(Other units)
The semi-aromatic polyamide may further contain an aminocarboxylic acid unit and / or a lactam unit as long as the effect of the present invention is not impaired.
Examples of the aminocarboxylic acid unit include units derived from 11-aminoundecanoic acid, 12-aminododecanoic acid, and the like, and two or more kinds of aminocarboxylic acid units may be contained. The content of the aminocarboxylic acid unit in the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all the monomer units constituting the semi-aromatic polyamide. It is preferably 10 mol% or less, and more preferably 10 mol% or less.
 半芳香族ポリアミドは、本発明の効果を阻害しない範囲内で、さらにラクタム単位を含んでいてもよい。
 当該ラクタム単位としては、例えば、ε-カプロラクタム、エナントラクタム、ウンデカンラクタム、ラウリルラクタム、α-ピロリドン、α-ピペリドンなどに由来する単位を挙げることができ、ラクタム単位は2種以上含まれていてもよい。半芳香族ポリアミドにおけるラクタム単位の含有率は、半芳香族ポリアミドを構成する全モノマー単位100モル%に対して、40モル%以下であることが好ましく、20モル%以下であることがより好ましく、10モル%以下であることがさらに好ましい。
The semi-aromatic polyamide may further contain lactam units as long as it does not interfere with the effects of the present invention.
Examples of the lactam unit include units derived from ε-caprolactam, enantractum, undecan lactam, lauryl lactam, α-pyrrolidone, α-piperidone, etc., even if two or more lactam units are contained. Good. The content of the lactam unit in the semi-aromatic polyamide is preferably 40 mol% or less, more preferably 20 mol% or less, based on 100 mol% of all the monomer units constituting the semi-aromatic polyamide. It is more preferably 10 mol% or less.
(半芳香族ポリアミド)
 芳香族ジカルボン酸単位を主成分とするジカルボン酸単位と、炭素数4~13の脂肪族ジアミン単位を主成分とするジアミン単位とを含む代表的な半芳香族ポリアミドとしては、ポリテトラメチレンテレフタルアミド(ポリアミド4T)、ポリペンタメチレンテレフタルアミド(ポリアミド5T)、ポリヘキサメチレンテレフタルアミド(ポリアミド6T)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリ(2-メチルオクタメチレン)テレフタルアミド(ナイロンM8T)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ナイロン9T/M8T)、ポリノナメチレンナフタレンジカルボキサミド(ポリアミド9N)、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ナイロン9N/M8N)、ポリデカメチレンテレフタルアミド(ポリアミド10T)、ポリヘキサメチレンイソフタルアミド(ポリアミド6I)、ポリアミド6Iとポリアミド6Tとの共重合体(ポリアミド6I/6T)、ポリアミド6Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド6T/11)、及びポリアミド10Tとポリウンデカンアミド(ポリアミド11)との共重合体(ポリアミド10T/11)などが挙げられる。
 これらの中でも、ポリアミド10T/11、ポリノナメチレンナフタレンジカルボキサミド(ポリアミド9N)、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ナイロン9N/M8N)、ポリノナメチレンテレフタルアミド(ポリアミド9T)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ナイロン9T/M8T)及びポリデカメチレンテレフタルアミド(ポリアミド10T)から選ばれる少なくとも1種が好ましく、ポリノナメチレンナフタレンジカルボキサミド/ポリ(2-メチルオクタメチレン)ナフタレンジカルボキサミドコポリマー(ナイロン9N/M8N)、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ナイロン9T/M8T)、及びポリアミド10T/11から選ばれる少なくとも1種がより好ましく、ポリノナメチレンテレフタルアミド/ポリ(2-メチルオクタメチレン)テレフタルアミドコポリマー(ナイロン9T/M8T)がさらに好ましい。
(Semi-aromatic polyamide)
Polytetramethylene terephthalamide is a typical semi-aromatic polyamide containing a dicarboxylic acid unit containing an aromatic dicarboxylic acid unit as a main component and a diamine unit containing an aliphatic diamine unit having 4 to 13 carbon atoms as a main component. (Polyamide 4T), Polypentamethylene terephthalamide (Polyamide 5T), Polyhexamethylene terephthalamide (Polyamide 6T), Polynonamethylene terephthalamide (Polyamide 9T), Poly (2-Methyloctamethylene) terephthalamide (Nylon M8T), Polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T), polynonamethylenenaphthalenedicarboxamide (polyamide 9N), polynonamethylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) Naphthalenedicarboxamide copolymer (nylon 9N / M8N), polydecamethylene terephthalamide (polyamide 10T), polyhexamethylene isophthalamide (polyamide 6I), copolymer of polyamide 6I and polyamide 6T (polyamide 6I / 6T), polyamide 6T Examples thereof include a copolymer of polyamide canamide (polyamide 11) (polyamide 6T / 11) and a copolymer of polyamide 10T and polyundecan amide (polyamide 11) (polyamide 10T / 11).
Among these, polyamide 10T / 11, polynonamethylene naphthalenedicarboxamide (polyamide 9N), polynonamethylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) naphthalenedicarboxamide copolymer (nylon 9N / M8N), polynonamethylene terephthal. At least one selected from amide (polyamide 9T), polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T) and polydecamethylene terephthalamide (polyamide 10T) is preferred. Methylenenaphthalenedicarboxamide / poly (2-methyloctamethylene) naphthalenedicarboxamide copolymer (nylon 9N / M8N), polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T), and polyamide At least one selected from 10T / 11 is more preferable, and polynonamethylene terephthalamide / poly (2-methyloctamethylene) terephthalamide copolymer (nylon 9T / M8T) is further preferable.
 一方、半芳香族ポリアミドのうち、脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む半芳香族ポリアミドについては、脂肪族ジカルボン酸単位として、前述した脂肪族ジカルボン酸から誘導される単位を挙げることができ、これらのうちの1種又は2種以上を含むことができる。また、芳香族ジアミン単位としては、前述した芳香族ジアミンから誘導される単位を挙げることができ、これらのうちの1種又は2種以上を含むことができる。また、本発明の効果を阻害しない範囲内で、他の単位を含んでもよい。
 脂肪族ジカルボン酸単位を主成分とするジカルボン酸単位と、芳香族ジアミン単位を主成分とするジアミン単位とを含む代表的な半芳香族ポリアミドとしては、ポリメタキシリレンアジパミド(MXD6)、ポリパラキシリレンセバカミド(PXD10)などが挙げられる。
On the other hand, among the semi-aromatic polyamides, the semi-aromatic polyamide containing a dicarboxylic acid unit containing an aliphatic dicarboxylic acid unit as a main component and a diamine unit containing an aromatic diamine unit as a main component is an aliphatic dicarboxylic acid unit. Examples of the unit derived from the above-mentioned aliphatic dicarboxylic acid can be mentioned, and one or more of these can be included. In addition, examples of the aromatic diamine unit include units derived from the above-mentioned aromatic diamine, and one or more of these can be included. Further, other units may be included as long as the effects of the present invention are not impaired.
Typical semi-aromatic polyamides containing a dicarboxylic acid unit containing an aliphatic dicarboxylic acid unit as a main component and a diamine unit containing an aromatic diamine unit as a main component include polymethaxylylene adipamide (MXD6) and poly. Examples thereof include paraxylylene sebacamide (PXD10).
 半芳香族ポリアミドは、その分子鎖の末端基の10モル%以上が末端封止剤により封止されていることが好ましい。末端封止率が10モル%以上の半芳香族ポリアミドを使用すると、溶融安定性、耐熱水性などの物性がより優れたポリアミド樹脂組成物が得られる。 It is preferable that 10 mol% or more of the terminal groups of the molecular chain of the semi-aromatic polyamide is sealed with an end sealant. When a semi-aromatic polyamide having a terminal sealing ratio of 10 mol% or more is used, a polyamide resin composition having more excellent physical properties such as melt stability and heat resistance can be obtained.
 末端封止剤としては、末端アミノ基又は末端カルボキシル基との反応性を有する単官能性の化合物を用いることができる。具体的には、モノカルボン酸、酸無水物、モノイソシアネート、モノ酸ハロゲン化物、モノエステル類、モノアルコール類、モノアミンなどが挙げられる。反応性及び封止末端の安定性などの観点から、末端アミノ基に対する末端封止剤としては、モノカルボン酸が好ましく、末端カルボキシル基に対する末端封止剤としては、モノアミンが好ましい。取り扱いの容易さなどの観点からは、末端封止剤としてはモノカルボン酸がより好ましい。 As the terminal encapsulant, a monofunctional compound having reactivity with a terminal amino group or a terminal carboxyl group can be used. Specific examples thereof include monocarboxylic acids, acid anhydrides, monoisocyanates, monoacid halides, monoesters, monoalcohols and monoamines. From the viewpoint of reactivity and stability of the sealing terminal, a monocarboxylic acid is preferable as the terminal sealing agent for the terminal amino group, and a monoamine is preferable as the terminal sealing agent for the terminal carboxyl group. From the viewpoint of ease of handling, a monocarboxylic acid is more preferable as the terminal encapsulant.
 末端封止剤として使用されるモノカルボン酸としては、アミノ基との反応性を有するものであれば特に制限はない。モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸;シクロペンタンカルボン酸、シクロヘキサンカルボン酸等の脂環式モノカルボン酸;安息香酸、トルイル酸、α-ナフタレンカルボン酸、β-ナフタレンカルボン酸、メチルナフタレンカルボン酸、フェニル酢酸等の芳香族モノカルボン酸;これらの任意の混合物などを挙げることができる。これらの中でも、反応性、封止末端の安定性、価格などの点から、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、及び安息香酸から選ばれる少なくとも1種が好ましい。 The monocarboxylic acid used as the terminal encapsulant is not particularly limited as long as it has reactivity with an amino group. Examples of monocarboxylic acids include aliphatic monocarboxylic acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, capric acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutylic acid. Acids; alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid and cyclohexanecarboxylic acid; aromatic monocarboxylic acids such as benzoic acid, toluic acid, α-naphthalenecarboxylic acid, β-naphthalenecarboxylic acid, methylnaphthalenecarboxylic acid and phenylacetic acid. Acid; any mixture thereof and the like can be mentioned. Among these, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, etc., in terms of reactivity, stability of the sealing end, price, etc. , And at least one selected from benzoic acid is preferred.
 末端封止剤として使用されるモノアミンとしては、カルボキシル基との反応性を有するものであれば特に制限はなく、例えば、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン;シクロヘキシルアミン、ジシクロヘキシルアミン等の脂環式モノアミン;アニリン、トルイジン、ジフェニルアミン、ナフチルアミン等の芳香族モノアミン;これらの任意の混合物などを挙げることができる。これらの中でも、反応性、高沸点、封止末端の安定性及び価格などの点から、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、シクロヘキシルアミン、及びアニリンから選ばれる少なくとも1種が好ましい。 The monoamine used as the terminal encapsulant is not particularly limited as long as it has reactivity with a carboxyl group. For example, methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine and stearyl are not particularly limited. Adipose monoamines such as amines, dimethylamines, diethylamines, dipropylamines and dibutylamines; alicyclic monoamines such as cyclohexylamines and dicyclohexylamines; aromatic monoamines such as aniline, toluidine, diphenylamines and naphthylamines; any mixture thereof and the like. Can be mentioned. Among these, at least one selected from butylamine, hexylamine, octylamine, decylamine, stearylamine, cyclohexylamine, and aniline is preferable from the viewpoints of reactivity, high boiling point, stability of the sealing end, and price.
 半芳香族ポリアミドは、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃で測定した固有粘度[ηinh]が、0.6dl/g以上であることが好ましく、0.8dl/g以上であることがより好ましく、0.6dl/g以上であることがさらに好ましく、1.0dl/g以上であることが特に好ましい。また、上記固有粘度[ηinh]が、2.0dl/g以下であることが好ましく、1.8dl/g以下であることがより好ましく、1.6dl/g以下であることがさらに好ましい。ポリアミドの固有粘度[ηinh]が上記の範囲内であれば、成形性などの諸物性がより向上する。固有粘度[ηinh]は、溶媒(濃硫酸)の流下時間t(秒)、試料溶液の流下時間t(秒)及び試料溶液における試料濃度c(g/dl)(すなわち、0.2g/dl)から、ηinh=[ln(t/t)]/cの関係式により求めることができる。 The semi-aromatic polyamide preferably has an intrinsic viscosity [η inh ] of 0.6 dl / g or more, preferably 0.8 dl / g, measured at a concentration of 0.2 g / dl and a temperature of 30 ° C. using concentrated sulfuric acid as a solvent. The above is more preferable, 0.6 dl / g or more is further preferable, and 1.0 dl / g or more is particularly preferable. Further, the intrinsic viscosity [η inh ] is preferably 2.0 dl / g or less, more preferably 1.8 dl / g or less, and further preferably 1.6 dl / g or less. When the intrinsic viscosity [η inh ] of the polyamide is within the above range, various physical properties such as moldability are further improved. The intrinsic viscosity [η inh ] is the flow time of the solvent (concentrated sulfuric acid) t 0 (sec), the flow time of the sample solution t 1 (sec), and the sample concentration c (g / dl) in the sample solution (that is, 0.2 g). From / dl), it can be obtained by the relational expression of η inh = [ln (t 1 / t 0)] / c.
 半芳香族ポリアミドは、その末端アミノ基含量([NH])が5~60μeq/gであることが好ましく、5~50μeq/gの範囲内にあることがより好ましく、5~30μeq/gの範囲内にあることがさらに好ましい。末端アミノ基含量([NH])が5μeq/g以上であれば、半芳香族ポリアミドと、後述するエラストマーとの相容性が良好である。また、該末端アミノ基含量が60μeq/g以下であれば、エラストマー(B)として後述する酸変性エラストマーを用いる場合、該末端アミノ基とエラストマーの変性部分とが反応しすぎてゲル化するのを避けることができる。
 本明細書でいう末端アミノ基含量([NH])は、半芳香族ポリアミドが1g中に含有する末端アミノ基の量(単位:μeq)を指し、指示薬を用いた中和滴定法より求めることができる。
The semi-aromatic polyamide preferably has a terminal amino group content ([NH 2 ]) of 5 to 60 μeq / g, more preferably in the range of 5 to 50 μeq / g, and 5 to 30 μeq / g. It is more preferably within the range. When the terminal amino group content ([NH 2 ]) is 5 μeq / g or more, the compatibility between the semi-aromatic polyamide and the elastomer described later is good. Further, when the terminal amino group content is 60 μeq / g or less, when an acid-modified elastomer described later is used as the elastomer (B), the terminal amino group reacts too much with the modified portion of the elastomer to cause gelation. Can be avoided.
The terminal amino group content ([NH 2 ]) referred to in the present specification refers to the amount of terminal amino groups (unit: μeq) contained in 1 g of the semi-aromatic polyamide, and is determined by a neutralization titration method using an indicator. be able to.
 ジカルボン酸単位とジアミン単位とを含み、末端アミノ基含量([NH])が上記した範囲にある半芳香族ポリアミドは、例えば、以下のようにして製造できる。
 まず、ジカルボン酸、ジアミン、及び必要に応じてアミノカルボン酸、ラクタム、触媒、末端封止剤を混合し、ナイロン塩を製造する。この際、上記の反応原料に含まれる全てのカルボキシル基のモル数(X)と全てのアミノ基のモル数(Y)が下記の式(1)
  -0.5≦[(Y-X)/Y]×100≦2.0   (1)
を満足するようにすると、末端アミノ基含量([NH])が5~60μeq/gである半芳香族ポリアミドを製造し易くなり好ましい。次に、生成したナイロン塩を200~250℃の温度に加熱し、濃硫酸中30℃における固有粘度[ηinh]が0.10~0.60dlL/gのプレポリマーとし、さらに高重合度化することにより、半芳香族ポリアミドを得ることができる。プレポリマーの固有粘度[ηinh]が0.10~0.60dLl/gの範囲内にあると、高重合度化の段階においてカルボキシル基とアミノ基のモルバランスのずれや重合速度の低下が少なく、さらに分子量分布の小さい、各種性能や成形性により優れた半芳香族ポリアミドが得られる。高重合度化の段階を固相重合法により行う場合、減圧下又は不活性ガス流通下に行うことが好ましく、重合温度が200~280℃の範囲内であれば、重合速度が大きく、生産性に優れ、着色及びゲル化を有効に抑制することができる。 また、高重合度化の段階を溶融押出機により行う場合、重合温度は370℃以下であることが好ましく、かかる条件で重合を行うと、ポリアミドの分解がほとんどなく、劣化の少ない半芳香族ポリアミドが得られる。
A semi-aromatic polyamide containing a dicarboxylic acid unit and a diamine unit and having a terminal amino group content ([NH 2 ]) in the above range can be produced, for example, as follows.
First, a nylon salt is produced by mixing a dicarboxylic acid, a diamine, and if necessary, an aminocarboxylic acid, a lactam, a catalyst, and an end sealant. At this time, the number of moles (X) of all carboxyl groups and the number of moles (Y) of all amino groups contained in the above reaction raw material are the following formula (1).
-0.5 ≤ [(YX) / Y] x 100 ≤ 2.0 (1)
Is preferable because the semi-aromatic polyamide having a terminal amino group content ([NH 2 ]) of 5 to 60 μeq / g can be easily produced. Next, the produced nylon salt was heated to a temperature of 200 to 250 ° C. to obtain a prepolymer having an intrinsic viscosity [η inh ] of 0.10 to 0.60 dlL / g at 30 ° C. in concentrated sulfuric acid, and the degree of polymerization was further increased. By doing so, a semi-aromatic polyamide can be obtained. When the intrinsic viscosity [η inh ] of the prepolymer is in the range of 0.10 to 0.60 dLl / g, the deviation of the molecular balance between the carboxyl group and the amino group and the decrease in the polymerization rate are small at the stage of increasing the degree of polymerization. Further, a semi-aromatic polyamide having a small molecular weight distribution and excellent in various performances and moldability can be obtained. When the step of increasing the degree of polymerization is carried out by the solid phase polymerization method, it is preferably carried out under reduced pressure or under an inert gas flow, and when the polymerization temperature is in the range of 200 to 280 ° C., the polymerization rate is high and the productivity is high. It is excellent in color and can effectively suppress coloring and gelation. Further, when the step of increasing the degree of polymerization is carried out by a melt extruder, the polymerization temperature is preferably 370 ° C. or lower, and when the polymerization is carried out under such conditions, the polyamide is hardly decomposed and the semi-aromatic polyamide with little deterioration is hardly deteriorated. Is obtained.
 半芳香族ポリアミドを製造する際に使用することができる触媒としては、例えば、リン酸、亜リン酸、次亜リン酸、又はこれらの塩もしくはエステルなどが挙げられる。上記の塩又はエステルとしては、例えば、リン酸、亜リン酸又は次亜リン酸と、カリウム、ナトリウム、マグネシウム、バナジウム、カルシウム、亜鉛、コバルト、マンガン、錫、タングステン、ゲルマニウム、チタン、アンチモン等の金属との塩;リン酸、亜リン酸又は次亜リン酸のアンモニウム塩;リン酸、亜リン酸又は次亜リン酸のエチルエステル、イソプロピルエステル、ブチルエステル、ヘキシルエステル、イソデシルエステル、オクタデシルエステル、デシルエステル、ステアリルエステル、フェニルエステルなどを挙げることができる。
 上記触媒の使用量は、半芳香族ポリアミドの原料の総質量100質量%に対して、0.01質量%以上であることが好ましく、0.05質量%以上であることがより好ましい。また、上記触媒の使用量は、半芳香族ポリアミドの原料の総質量100質量%に対して、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましい。触媒の使用量が上記下限以上であれば良好に重合が進行する。上記上限以下であれば触媒由来の不純物が生じにくくなり、例えばポリアミド樹脂組成物を成形した場合に上記不純物による不具合を防ぐことができる。
Examples of the catalyst that can be used in producing the semi-aromatic polyamide include phosphoric acid, phosphorous acid, hypophosphorous acid, and salts or esters thereof. Examples of the above salts or esters include phosphoric acid, phosphite or hypophosphoric acid, potassium, sodium, magnesium, vanadium, calcium, zinc, cobalt, manganese, tin, tungsten, germanium, titanium, antimony and the like. Salt with metal; ammonium salt of phosphoric acid, phosphite or hypophosphoric acid; ethyl ester of phosphoric acid, phosphite or hypophosphoric acid, isopropyl ester, butyl ester, hexyl ester, isodecyl ester, octadecyl ester , Decyl ester, stearyl ester, phenyl ester and the like.
The amount of the catalyst used is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, based on 100% by mass of the total mass of the raw material of the semi-aromatic polyamide. The amount of the catalyst used is preferably 1.0% by mass or less, more preferably 0.5% by mass or less, based on 100% by mass of the total mass of the raw material of the semi-aromatic polyamide. When the amount of the catalyst used is equal to or higher than the above lower limit, the polymerization proceeds satisfactorily. If it is not more than the above upper limit, impurities derived from the catalyst are less likely to occur, and for example, when a polyamide resin composition is molded, problems due to the impurities can be prevented.
〈エラストマー(B)〉
 組成物Xには、エラストマー(B)を用いる。
 エラストマー(B)は、複合成形体に靭性や耐衝撃性を付与する観点から下記(b1)~(b5)から選ばれる少なくとも1種であることが好ましい。
(b1)α-オレフィン共重合体
(b2)(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体
(b3)アイオノマー
(b4)芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体
(b5)前記(b1)~(b4)から選ばれる少なくとも1種を、カルボキシル基及び酸無水物基から選ばれる少なくとも1種を有する不飽和化合物で変性した重合体
<Elastomer (B)>
An elastomer (B) is used for the composition X.
The elastomer (B) is preferably at least one selected from the following (b1) to (b5) from the viewpoint of imparting toughness and impact resistance to the composite molded product.
(B1) α-olefin copolymer (b2) (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer (b3) ionomer (b4) fragrance Copolymer of Group Vinyl Compound and Conjugated Diene Compound Block (b5) Unsaturated having at least one selected from the above (b1) to (b4) and at least one selected from a carboxyl group and an acid anhydride group. Compound-modified copolymer
(b1)α-オレフィン系共重合体
 α-オレフィン系共重合体としては、エチレンと炭素数3以上のα-オレフィンとの共重合体や、プロピレンと炭素数4以上のα-オレフィンとの共重合体などが挙げられる。α-オレフィン系共重合体としては、エチレンと炭素数3以上のα-オレフィンとの共重合体が好ましい。
 炭素数3以上のα-オレフィンとしては、例えば、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジメチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1-ヘキセン、9-メチル-1-デセン、11-メチル-1-ドデセン、12-エチル-1-テトラデセンが挙げられる。これらは1種又は2種以上を用いることができる。上記の中でも、炭素数3以上のα-オレフィンとしてはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン及び1-オクテンからなる群から選ばれる少なくとも1種が好ましく、1-ブテンがより好ましい。
(B1) α-olefin-based copolymer The α-olefin-based copolymer includes a copolymer of ethylene and an α-olefin having 3 or more carbon atoms, or a copolymer of propylene and an α-olefin having 4 or more carbon atoms. Examples include copolymers. As the α-olefin copolymer, a copolymer of ethylene and an α-olefin having 3 or more carbon atoms is preferable.
Examples of α-olefins having 3 or more carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene. , 1-Tridecene, 1-Tetradecene, 1-Pentadecene, 1-Hexadecene, 1-Hexene, 1-Octadecene, 1-Nonadecene, 1-Eicocene, 3-Methyl-1-butene, 3-Methyl-1-pentene, 3 -Ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl-1-hexene , 3-Ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, 12-ethyl-1-tetradecene. These can be used alone or in combination of two or more. Among the above, as the α-olefin having 3 or more carbon atoms, at least one selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene and 1-octene is preferable, and 1-butene is preferable. Is more preferable.
 また、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,4-オクタジエン、1,5-オクタジエン、1,6-オクタジエン、1,7-オクタジエン、2-メチル-1,5-ヘキサジエン、6-メチル-1,5-ヘプタジエン、7-メチル-1,6-オクタジエン、4-エチリデン-8-メチル-1,7-ノナジエン、4,8-ジメチル-1,4,8-デカトリエン(DMDT)、ジシクロペンタジエン、シクロヘキサジエン、シクロオクタジエン、5-ビニルノルボルネン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、2,3-ジイソプロピリデン-5-ノルボルネン、2-エチリデン-3-イソプロピリデン-5-ノルボルネン、2-プロペニル-2,5-ノルボルナジエン等の非共役ジエンのポリエンを共重合してもよい。これらは1種又は2種以上を用いることができる。 In addition, 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadien, 1,4-octadien, 1,5-octadien, 1,6-octadien, 1,7-octadien, 2-methyl-1, 5-Hexadien, 6-Methyl-1,5-Heptadien, 7-Methyl-1,6-octadien, 4-Etylidene-8-Methyl-1,7-Norbornene, 4,8-Dimethyl-1,4,8- Decatrine (DMDT), dicyclopentadiene, cyclohexadiene, cyclooctadien, 5-vinylnorbornene, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 6-chloromethyl Non-conjugated diene such as -5-isopropenyl-2-norbornene, 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene-5-norbornene, 2-propenyl-2,5-norbornene Polyene may be copolymerized. These can be used alone or in combination of two or more.
(b2)(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体
 (エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体は、エチレン及びプロピレンから選ばれる少なくとも1種と、α,β-不飽和カルボン酸単量体及び不飽和カルボン酸エステル単量体から選ばれる少なくとも1種とを共重合した共重合体である。
 α,β-不飽和カルボン酸単量体としては、アクリル酸、メタクリル酸などが挙げられる。α,β-不飽和カルボン酸エステル単量体としては、これらα,β-不飽和カルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル、ペンチルエステル、ヘキシルエステル、ヘプチルエステル、オクチルエステル、ノニルエステル、デシルエステル等が挙げられる。これら単量体は1種又は2種以上を用いることができる。
(B2) (Ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid) The and / or unsaturated carboxylic acid ester) -based copolymer is at least one selected from ethylene and propylene, and at least one selected from α, β-unsaturated carboxylic acid monomer and unsaturated carboxylic acid ester monomer. It is a copolymer obtained by copolymerizing one kind.
Examples of the α, β-unsaturated carboxylic acid monomer include acrylic acid and methacrylic acid. Examples of the α, β-unsaturated carboxylic acid ester monomer include methyl ester, ethyl ester, propyl ester, butyl ester, pentyl ester, hexyl ester, heptyl ester, octyl ester, and nonyl of these α, β-unsaturated carboxylic acids. Examples include esters and decyl esters. One type or two or more types of these monomers can be used.
(b3)アイオノマー
 アイオノマーは、オレフィンとα,β-不飽和カルボン酸との共重合体におけるカルボキシル基の少なくとも一部が金属イオンの中和によりイオン化されたものである。オレフィンとしては、エチレンが好ましく用いられる。α,β-不飽和カルボン酸としては、アクリル酸、メタクリル酸が好ましく用いられる。上記共重合体は、ここに例示したものに限定されるものではなく、不飽和カルボン酸エステル単量体が共重合されていてもよい。また、金属イオンはLi、Na、K、Mg、Ca、Sr、Ba等のアルカリ金属、アルカリ土類金属の他、Al、Sn、Sb、Ti、Mn、Fe、Ni、Cu、Zn、Cd等が挙げられる。これら金属イオンは1種又は2種以上を用いることができる。
(B3) Ionomer Ionomer is an ionomer in which at least a part of the carboxyl groups in the copolymer of an olefin and an α, β-unsaturated carboxylic acid is ionized by neutralization of a metal ion. Ethylene is preferably used as the olefin. As the α, β-unsaturated carboxylic acid, acrylic acid and methacrylic acid are preferably used. The above-mentioned copolymer is not limited to those exemplified here, and an unsaturated carboxylic acid ester monomer may be copolymerized. The metal ions include alkali metals such as Li, Na, K, Mg, Ca, Sr, and Ba, alkaline earth metals, Al, Sn, Sb, Ti, Mn, Fe, Ni, Cu, Zn, and Cd. Can be mentioned. One kind or two or more kinds of these metal ions can be used.
(b4)芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体
 芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体は、芳香族ビニル化合物系重合体ブロックと共役ジエン系重合体ブロックからなるブロック共重合体であり、芳香族ビニル化合物系重合体ブロックを少なくとも1個と、共役ジエン系重合体ブロックを少なくとも1個有するブロック共重合体が用いられる。また、上記のブロック共重合体では、共役ジエン系重合体ブロックにおける不飽和結合が水素添加されていてもよい。
(B4) Polymer of aromatic vinyl compound and conjugated diene compound-based block The copolymer of aromatic vinyl compound and conjugated diene compound-based block is an aromatic vinyl compound-based polymer block and conjugated diene-based polymer block. A block polymer comprising at least one aromatic vinyl compound-based polymer block and at least one conjugated diene-based polymer block is used. Further, in the above-mentioned block copolymer, the unsaturated bond in the conjugated diene-based polymer block may be hydrogenated.
 芳香族ビニル化合物系重合体ブロックは、芳香族ビニル化合物に由来する構造単位から主としてなる重合体ブロックである。上記芳香族ビニル化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、ビニルナフタレン、ビニルアントラセン、4-プロピルスチレン、4-シクロヘキシルスチレン、4-ドデシルスチレン、2-エチル-4-ベンジルスチレン、4-(フェニルブチル)スチレン等が挙げられる。これらは1種又は2種以上を用いることができる。また、芳香族ビニル化合物系重合体ブロックは、場合により少量の他の不飽和単量体からなる構造単位を有していてもよい。
 共役ジエン系重合体ブロックは、ブタジエン、クロロプレン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン化合物の1種又は2種以上から形成された重合体ブロックである。
 水素添加した芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体では、その共役ジエン重合体ブロックにおける不飽和結合部分の一部又は全部が水素添加されている。
The aromatic vinyl compound-based polymer block is a polymer block mainly composed of structural units derived from an aromatic vinyl compound. Examples of the aromatic vinyl compound include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, vinylnaphthalene, vinylanthracene, 4-propylstyrene, and 4-. Examples thereof include cyclohexylstyrene, 4-dodecylstyrene, 2-ethyl-4-benzylstyrene, 4- (phenylbutyl) styrene and the like. These can be used alone or in combination of two or more. Further, the aromatic vinyl compound-based polymer block may have a structural unit composed of a small amount of other unsaturated monomers as the case may be.
The conjugated diene polymer block is conjugated with butadiene, chloroprene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene and the like. A polymer block formed from one or more diene compounds.
In the copolymer of the hydrogenated aromatic vinyl compound and the conjugated diene compound system block, a part or all of the unsaturated bond portion in the conjugated diene polymer block is hydrogenated.
 芳香族ビニル化合物/共役ジエン化合物系ブロック共重合体及びその水素添加物の分子構造は、直鎖状、分岐状、放射状、又はそれら任意の組み合わせのいずれであってもよい。これらの中でも、芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体及び/又はその水素添加物として、1個の芳香族ビニル化合物系重合体ブロックと1個の共役ジエン系重合体ブロックが直鎖状に結合したジブロック共重合体、芳香族ビニル化合物系重合体ブロック-共役ジエン系重合体ブロック-芳香族ビニル化合物系重合体ブロックの順に3つの重合体ブロックが直鎖状に結合しているトリブロック共重合体、及びそれらの水素添加物の1種又は2種以上が好ましく用いられる。具体的には、未水添又は水添スチレン/ブタジエンブロック共重合体、未水添又は水添スチレン/イソプレンブロック共重合体、未水添又は水添スチレン/イソプレン/スチレンブロック共重合体、未水添又は水添スチレン/ブタジエン/スチレンブロック共重合体、未水添又は水添スチレン/イソプレン/ブタジエン/スチレンブロック共重合体等が挙げられる。 The molecular structure of the aromatic vinyl compound / conjugated diene compound block copolymer and its hydrogenated product may be linear, branched, radial, or any combination thereof. Among these, one aromatic vinyl compound-based polymer block and one conjugated diene-based polymer block are used as a copolymer of an aromatic vinyl compound and a conjugated diene compound-based block and / or a hydrogenated product thereof. Three polymer blocks are linearly bonded in the order of linearly bonded diblock copolymer, aromatic vinyl compound polymer block-conjugated diene polymer block-aromatic vinyl compound polymer block. One or more of the triblock copolymers and their hydrogenated products are preferably used. Specifically, unhydrogenated or hydrogenated styrene / butadiene block copolymer, unhydrogenated or hydrogenated styrene / isoprene block copolymer, unhydrogenated or hydrogenated styrene / isoprene / styrene block copolymer, not yet. Examples thereof include hydrogenated or hydrogenated styrene / butadiene / styrene block copolymer, unhydrogenated or hydrogenated styrene / isoprene / butadiene / styrene block copolymer and the like.
(b5)上記(b1)~(b4)から選ばれる少なくとも1種を、カルボキシル基及び酸無水物基から選ばれる少なくとも1種を有する不飽和化合物で変性した重合体
 上記(b1)~(b4)から選ばれる少なくとも1種を、カルボキシル基及び酸無水物基から選ばれる少なくとも1種を有する不飽和化合物で変性したものを用いることができる。このような不飽和化合物で変性すると、半芳香族ポリアミドが有する末端アミノ基と、エラストマーの成分である該変性成分が有するカルボキシル基及び/又は酸無水物基とが反応し、半芳香族ポリアミドの相とエラストマーの相との界面の親和性が強くなり、耐衝撃性と伸び特性が向上し柔軟性が発現される。上記の中でも、α-オレフィン系共重合体をカルボキシル基及び/又は酸無水物基を有する不飽和化合物で変性した重合体が好ましく、エチレン-ブテン共重合体を当該不飽和化合物で変性した重合体がより好ましい。
(B5) A polymer obtained by modifying at least one selected from the above (b1) to (b4) with an unsaturated compound having at least one selected from a carboxyl group and an acid anhydride group (b1) to (b4). At least one selected from the above can be modified with an unsaturated compound having at least one selected from a carboxyl group and an acid anhydride group. When modified with such an unsaturated compound, the terminal amino group of the semi-aromatic polyamide reacts with the carboxyl group and / or acid anhydride group of the modified component, which is a component of the elastomer, to form a semi-aromatic polyamide. The affinity between the phase and the elastomeric phase becomes stronger, the impact resistance and elongation characteristics are improved, and flexibility is exhibited. Among the above, a polymer obtained by modifying an α-olefin copolymer with an unsaturated compound having a carboxyl group and / or an acid anhydride group is preferable, and a polymer obtained by modifying an ethylene-butene copolymer with the unsaturated compound. Is more preferable.
 カルボキシル基及び/又は酸無水物基を有する不飽和化合物により変性された変性重合体に用いられる、カルボキシル基を有する不飽和化合物としては、例えば、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等のα,β-不飽和カルボン酸などが挙げられる。また、酸無水物基を有する不飽和化合物としては、無水マレイン酸、無水イタコン酸等のα,β-不飽和結合を有するジカルボン酸無水物などが挙げられる。カルボキシル基及び/又は酸無水物基を有する不飽和化合物としては、α,β-不飽和結合を有するジカルボン酸無水物が好ましく、無水マレイン酸がより好ましい。 Examples of the unsaturated compound having a carboxyl group used in the modified polymer modified with an unsaturated compound having a carboxyl group and / or an acid anhydride group include acrylic acid, methacrylic acid, maleic acid, fumaric acid, and itaconic acid. Examples thereof include α and β-unsaturated carboxylic acids such as acids. Examples of unsaturated compounds having an acid anhydride group include dicarboxylic acid anhydrides having α, β-unsaturated bonds such as maleic anhydride and itaconic anhydride. As the unsaturated compound having a carboxyl group and / or an acid anhydride group, a dicarboxylic acid anhydride having an α, β-unsaturated bond is preferable, and maleic anhydride is more preferable.
 カルボキシル基及び/又は酸無水物基を有する不飽和化合物による変性方法としては、上記(b1)~(b4)(以下「ベース樹脂」ともいう)を製造する際に、カルボキシル基及び/又は酸無水物基を有する不飽和化合物と共重合させる方法や、上記のベース樹脂にカルボキシル基及び/又は酸無水物基を有する不飽和化合物をグラフト化反応させる方法が挙げられる。なかでも、上記のベース樹脂にカルボキシル基及び/又は酸無水物基を有する不飽和化合物をグラフト化反応させる方法が好ましい。
 エラストマー(B)は工業的に製造されている市販品を用いることもでき、例えば三井化学(株)製「タフマー(登録商標)」等が挙げられる。
As a modification method using an unsaturated compound having a carboxyl group and / or an acid anhydride group, when the above (b1) to (b4) (hereinafter, also referred to as “base resin”) are produced, the carboxyl group and / or acid anhydride is used. Examples thereof include a method of copolymerizing with an unsaturated compound having a physical group and a method of grafting an unsaturated compound having a carboxyl group and / or an acid anhydride group with the above base resin. Of these, a method of grafting an unsaturated compound having a carboxyl group and / or an acid anhydride group with the above base resin is preferable.
As the elastomer (B), a commercially available product manufactured industrially can be used, and examples thereof include "Toughmer (registered trademark)" manufactured by Mitsui Chemicals, Inc.
〈鎖延長剤(C)〉
 組成物Xには、複合成形体に靭性を付与する観点から鎖延長剤(C)を用いる。ポリアミド(A)及びエラストマー(B)に鎖延長剤(C)を配合すると、溶着時の振動による発熱により、成形体Xと他方のポリアミド樹脂成形体との溶着面において鎖延長剤(C)が反応すると考えられる。例えば、2つの成形体Xを溶着する場合、成形体間のポリアミド(A)と鎖延長剤(C)とが、及び、成形体間のエラストマー(B)と鎖延長剤(C)とが、互いに反応することで靭性に優れた複合成形体が得られていると推定される。また、溶着する成形体の少なくとも一つが成形体Xであれば、成形体X中の鎖延長剤(C)が他方の成形体中の成分(ポリアミド等)と反応し得る。したがって、溶着する2つの成形体のうち少なくとも一つが成形体Xであればよい。
<Chain extender (C)>
For the composition X, a chain extender (C) is used from the viewpoint of imparting toughness to the composite molded product. When the chain extender (C) is blended with the polyamide (A) and the elastomer (B), the chain extender (C) is formed on the welded surface between the molded product X and the other polyamide resin molded product due to heat generated by vibration during welding. It is thought that it will react. For example, when two molded bodies X are welded, the polyamide (A) and the chain extender (C) between the molded bodies and the elastomer (B) and the chain extender (C) between the molded bodies are used. It is presumed that a composite molded product having excellent toughness is obtained by reacting with each other. Further, if at least one of the molded bodies to be welded is the molded body X, the chain extender (C) in the molded body X can react with the components (polyamide and the like) in the other molded body. Therefore, at least one of the two molded bodies to be welded may be the molded body X.
 鎖延長剤(C)としては、ポリアミド(A)と反応性のある官能基を1分子中に2つ以上含んでいればよい。鎖延長剤(C)として例えば、ポリオール化合物、オキサゾリン化合物、イソシアネート化合物、エポキシ化合物、カルボジイミド化合物が挙げられる。これらの中でも、特にポリアミド(A)との反応性の観点からカルボジイミド化合物が好ましい。鎖延長剤(C)は、1種又は2種以上を用いることができる。 The chain extender (C) may contain two or more functional groups reactive with the polyamide (A) in one molecule. Examples of the chain extender (C) include a polyol compound, an oxazoline compound, an isocyanate compound, an epoxy compound, and a carbodiimide compound. Among these, a carbodiimide compound is particularly preferable from the viewpoint of reactivity with the polyamide (A). As the chain extender (C), one kind or two or more kinds can be used.
 カルボジイミド化合物としては、モノカルボジイミドとポリカルボジイミドが挙げられ、耐熱性の観点からポリカルボジイミドが望ましい。ポリカルボジイミドは、より具体的には下記一般式(I)で表される繰り返し単位を有する化合物が好ましい。 Examples of the carbodiimide compound include monocarbodiimide and polycarbodiimide, and polycarbodiimide is desirable from the viewpoint of heat resistance. More specifically, the polycarbodiimide is preferably a compound having a repeating unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001

 
Figure JPOXMLDOC01-appb-C000001

 
 上記一般式(I)中、Xは、2価の炭化水素基を示す。該炭化水素基としては、鎖状脂肪族基、脂環式構造含有脂肪族基、及び芳香環含有基が挙げられる。鎖状脂肪族基の炭素数は1以上であり、好ましくは1~20、より好ましくは6~18である。脂環式構造含有脂肪族基及び芳香環含有基の炭素数は好ましくは5以上、より好ましくは6~20、さらに好ましくは6~18である。該炭化水素基は、アミノ基、水酸基、アルコキシ基などの置換基を有していてもよい。 In the above general formula (I), X 1 represents a divalent hydrocarbon group. Examples of the hydrocarbon group include a chain aliphatic group, an alicyclic structure-containing aliphatic group, and an aromatic ring-containing group. The chain aliphatic group has 1 or more carbon atoms, preferably 1 to 20, and more preferably 6 to 18. The alicyclic structure-containing aliphatic group and aromatic ring-containing group preferably have 5 or more carbon atoms, more preferably 6 to 20, and even more preferably 6 to 18. The hydrocarbon group may have a substituent such as an amino group, a hydroxyl group, or an alkoxy group.
 ポリカルボジイミドとしては、脂肪族ポリカルボジイミド、芳香族ポリカルボジイミド、又はこれらの混合物が挙げられる。このうち、得られる成形体Xの耐薬品性と成形加工性、及びポリアミド(A)との反応性の観点から脂肪族ポリカルボジイミドがより好ましい。
 脂肪族ポリカルボジイミドとしては、上記一般式(I)で表される繰り返し単位を有し、Xが鎖状脂肪族基又は脂環式構造含有脂肪族基であるポリカルボジイミドが好ましい。Xは、炭素数3~18のアルキレン基、下記一般式(II)で表される2価の基、及び下記一般式(III)で表される2価の基からなる群から選ばれる基であることがより好ましく、下記一般式(III)で表される2価の基であることがさらに好ましい。
Examples of polycarbodiimides include aliphatic polycarbodiimides, aromatic polycarbodiimides, and mixtures thereof. Of these, an aliphatic polycarbodiimide is more preferable from the viewpoint of chemical resistance and molding processability of the obtained molded product X and reactivity with the polyamide (A).
The aliphatic polycarbodiimide having a repeating unit represented by the general formula (I), X 1 is polycarbodiimide is preferably a chain aliphatic group or an alicyclic structure-containing aliphatic group. X 1 is a group selected from the group consisting of an alkylene group having 3 to 18 carbon atoms, a divalent group represented by the following general formula (II), and a divalent group represented by the following general formula (III). It is more preferable that it is a divalent group represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000002

 
Figure JPOXMLDOC01-appb-C000002

 
 上記一般式(II)及び一般式(III)中、R~Rは、それぞれ独立に、単結合、又は炭素数1~8のアルキレン基である。一般式(II)中のR及びRは、好ましくは単結合である。一般式(III)中のR及びRは、好ましくは単結合であり、Rは、好ましくは炭素数1~6のアルキレン基、より好ましくは炭素数1~3のアルキレン基である。 In the general formula (II) and the general formula (III), R 1 to R 5 are independently single bonds or alkylene groups having 1 to 8 carbon atoms. R 1 and R 2 in the general formula (II) are preferably single bonds. R 3 and R 5 in the general formula (III) are preferably single bonds, and R 4 is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 3 carbon atoms.
〈配合量〉
 ポリアミド(A)及びエラストマー(B)を合計100質量部としたとき、ポリアミド(A)を60~90質量部で用いることが好ましい。
 ポリアミドの配合量が、上記数値範囲であることにより、機械強度、靭性、耐熱性及び耐薬品性が発現しやすくなる。ポリアミド(A)及びエラストマー(B)を合計100質量部としたときの、ポリアミド(A)の配合量は63質量部以上がより好ましく、66質量部以上がさらに好ましい。また、ポリアミド(A)の上記配合量は87質量部以下がより好ましく、84質量部以下がさらに好ましい。
<Mixing amount>
When the total amount of the polyamide (A) and the elastomer (B) is 100 parts by mass, it is preferable to use the polyamide (A) in an amount of 60 to 90 parts by mass.
When the blending amount of the polyamide is within the above numerical range, mechanical strength, toughness, heat resistance and chemical resistance are easily exhibited. When the total amount of the polyamide (A) and the elastomer (B) is 100 parts by mass, the blending amount of the polyamide (A) is more preferably 63 parts by mass or more, further preferably 66 parts by mass or more. The blending amount of the polyamide (A) is more preferably 87 parts by mass or less, and further preferably 84 parts by mass or less.
 また、ポリアミド(A)、エラストマー(B)、及び鎖延長剤(C)の合計100質量%に対するエラストマー(B)の配合量は3~40質量%が好ましい。
 エラストマー(B)の上記配合量が3質量%以上であると良好な靭性が発現しやすくなり、40質量%以下であれば優れた強度を発現することができる。
 より優れた靭性及び耐衝撃性を付与する観点から、エラストマー(B)の上記配合量は4質量%以上がより好ましく、19質量%以上がさらに好ましい。また、成形性の観点から、エラストマー(B)の上記配合量は、35質量%以下がより好ましく、31質量%以下がさらに好ましい。
The blending amount of the elastomer (B) is preferably 3 to 40% by mass with respect to a total of 100% by mass of the polyamide (A), the elastomer (B), and the chain extender (C).
When the blending amount of the elastomer (B) is 3% by mass or more, good toughness is likely to be exhibited, and when it is 40% by mass or less, excellent strength can be exhibited.
From the viewpoint of imparting more excellent toughness and impact resistance, the blending amount of the elastomer (B) is more preferably 4% by mass or more, further preferably 19% by mass or more. Further, from the viewpoint of moldability, the blending amount of the elastomer (B) is more preferably 35% by mass or less, further preferably 31% by mass or less.
 ポリアミド(A)及びエラストマー(B)の合計100質量部に対する鎖延長剤(C)の配合量は0.01~5質量部が好ましい。
 鎖延長剤(C)の配合量が、上記数値範囲であることにより、優れた靭性、機械強度が発現しやすくなる。ポリアミド(A)及びエラストマー(B)の合計100質量部に対する鎖延長剤(C)の配合量は0.05質量部以上がより好ましく、0.1質量部以上がさらに好ましい。また、鎖延長剤(C)の上記配合量は4質量部以下がより好ましく、3質量部以下がさらに好ましい。
The amount of the chain extender (C) to be blended with respect to 100 parts by mass of the total of the polyamide (A) and the elastomer (B) is preferably 0.01 to 5 parts by mass.
When the blending amount of the chain extender (C) is within the above numerical range, excellent toughness and mechanical strength are likely to be exhibited. The blending amount of the chain extender (C) with respect to 100 parts by mass of the total of the polyamide (A) and the elastomer (B) is more preferably 0.05 parts by mass or more, further preferably 0.1 parts by mass or more. The amount of the chain extender (C) to be blended is more preferably 4 parts by mass or less, further preferably 3 parts by mass or less.
 また、組成物Xに用いる原料100質量%に対する、ポリアミド(A)、エラストマー(B)、及び鎖延長剤(C)の合計配合量の割合は、95質量%以上が好ましく、97質量%以上がより好ましい。また、組成物Xに用いる原料100質量%に対する、ポリアミド(A)、エラストマー(B)、及び鎖延長剤(C)の合計配合量の割合は、99.5質量%以下が好ましく、99質量%以下がより好ましい。 The ratio of the total amount of the polyamide (A), the elastomer (B), and the chain extender (C) to 100% by mass of the raw material used in the composition X is preferably 95% by mass or more, preferably 97% by mass or more. More preferred. The ratio of the total amount of the polyamide (A), the elastomer (B), and the chain extender (C) to 100% by mass of the raw material used in the composition X is preferably 99.5% by mass or less, preferably 99% by mass. The following is more preferable.
〈添加剤〉
 組成物Xは、必要に応じて他種ポリマー(エラストマー(B)以外)、充填剤、結晶核剤、着色剤、帯電防止剤、可塑剤、滑剤、酸化防止剤、難燃剤及び難燃助剤などの他の成分を添加剤として含有してもよい。
<Additive>
Composition X contains other types of polymers (other than elastomer (B)), fillers, crystal nucleating agents, colorants, antistatic agents, plasticizers, lubricants, antioxidants, flame retardants and flame retardants, if necessary. Other components such as may be contained as an additive.
 他種ポリマーとしては、例えば、ポリアセタール、ポリフェニレンオキシド等のポリエーテル樹脂;ポリスルホン、ポリエーテルスルホン等のポリスルホン樹脂;ポリフェニレンスルフィド、ポリチオエーテルスルホン等のポリチオエーテル系樹脂;ポリエーテルエーテルケトン、ポリアリルエーテルケトン等のポリケトン系樹脂;ポリアクリロニトリル、ポリメタクリロニトリル、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、メタクリロニトリル-ブタジエン-スチレン共重合体等のポリニトリル系樹脂;ポリメタクリル酸メチル、ポリメタクリル酸エチル等のポリメタクリレート系樹脂;ポリ酢酸ビニル等のポリビニルエステル系樹脂;ポリ塩化ビニリデン、ポリ塩化ビニル、塩化ビニル-塩化ビニリデン共重合体、塩化ビニリデン-メチルアクリレート共重合体等のポリ塩化ビニル系樹脂;酢酸セルロース、酪酸セルロース等のセルロース系樹脂;ポリフッ化ビニリデン、ポリフッ化ビニル、エチレン-テトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、エチレン-クロロトリフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン-ビニリデンフルオライド共重合体等のフッ素系樹脂;ポリカーボネート系樹脂;熱可塑性ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリイミド系樹脂;熱可塑性ポリウレタン樹脂;などが挙げられる。 Examples of other polymers include polyether resins such as polyacetal and polyphenylene oxide; polysulfone resins such as polysulfone and polyethersulfone; polythioether-based resins such as polyphenylene sulfide and polythioether sulfone; polyether ether ketone and polyallyl ether ketone. Polyketone-based resins such as polyacrylonitrile, polymethacrylonitrile, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, methacrylnitrile-butadiene-styrene copolymer and other polynitrile-based resins; polymethylmethacrylate Polymethacrylate-based resin such as polyethyl methacrylate; polyvinyl ester-based resin such as polyvinyl acetate; polyvinylidene chloride, polyvinyl chloride, vinyl chloride-vinylidene chloride copolymer, vinylidene chloride-methylacrylate copolymer and the like. Vinyl chloride resin; Cellulosic resin such as cellulose acetate, cellulose butyrate; Vinylidene fluoride, polyvinyl fluoride, ethylene-tetrafluoroethylene copolymer, polychlorotrifluoroethylene, ethylene-chlorotrifluoroethylene copolymer, tetra Fluoropolymers such as fluoroethylene-hexafluoropropylene copolymers, tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers; polycarbonate resins; polyimide resins such as thermoplastic polyimides, polyamideimides and polyetherimides; Thermoplastic polyurethane resin; and the like.
 充填剤としては、例えば、ガラス繊維などの繊維状充填剤、炭酸カルシウム、ウォラストナイト、シリカ、シリカアルミナ、アルミナ、二酸化チタン、チタン酸カリウム、水酸化マグネシウム、二硫化モリブデン等の粉末状充填剤;ハイドロタルサイト、ガラスフレーク、マイカ、クレー、モンモリロナイト、カオリン等のフレーク状充填剤などが挙げられる。 Examples of the filler include fibrous fillers such as glass fiber, and powder fillers such as calcium carbonate, wollastonite, silica, silica alumina, alumina, titanium dioxide, potassium titanate, magnesium hydroxide, and molybdenum disulfide. Examples include flake-like fillers such as hydrotalcite, glass flakes, mica, clay, montmorillonite, and kaolin.
 結晶核剤としては、ポリアミドの結晶核剤として一般的に使用されるものであれば特に制限されない。結晶核剤としては、例えば、タルク、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム、ステアリン酸亜鉛、酸化アンチモン、酸化マグネシウム、これらの任意の混合物などが挙げられる。これらのうちでも、ポリアミドの結晶化速度を増大させる効果が大きいことから、タルクが好ましい。結晶核剤は、ポリアミドとの相容性を向上させる目的で、シランカップリング剤、チタンカップリング剤などで処理されていてもよい。 The crystal nucleating agent is not particularly limited as long as it is generally used as a crystal nucleating agent for polyamide. Examples of the crystal nucleating agent include talc, calcium stearate, aluminum stearate, barium stearate, zinc stearate, antimony oxide, magnesium oxide, and any mixture thereof. Of these, talc is preferable because it has a large effect of increasing the crystallization rate of polyamide. The crystal nucleating agent may be treated with a silane coupling agent, a titanium coupling agent, or the like for the purpose of improving compatibility with polyamide.
 着色剤としては、特に制限されず、無機又は有機顔料、及び染料の中から適宜選択できる。着色剤としては、カーボンブラック、ランプブラック、アセチレンブラック、ボーンブラック、サーマルブラック、チャンネルブラック、ファーネスブラック、チタンブラック等の黒色無機顔料が好ましいものとして挙げられる。 The colorant is not particularly limited and can be appropriately selected from inorganic or organic pigments and dyes. As the colorant, black inorganic pigments such as carbon black, lamp black, acetylene black, bone black, thermal black, channel black, furnace black, and titanium black are preferable.
 帯電防止剤としては、特に制限されず、有機系のものであっても、無機系のものであってもよい。例えば、有機系帯電防止剤としては、リチウムイオン塩、4級アンモニウム塩、イオン性液体などのイオン性化合物;ポリチオフェン、ポリアニリン、ポリピロール、ポリアセチレン等の電子伝導性高分子化合物などが挙げられる。無機系帯電防止剤としては、ATO、ITO、PTO、GZO、五酸化アンチモン、酸化亜鉛などの金属酸化物系導電剤;カーボンナノチューブ、フラーレンなどの炭素系導電剤が挙げられる。耐熱性の観点からは、無機系帯電防止剤が好ましい。なお、着色剤であるカーボンブラックが帯電防止剤としての機能を兼ねていてもよい。 The antistatic agent is not particularly limited and may be an organic type or an inorganic type. For example, examples of the organic antistatic agent include ionic compounds such as lithium ion salt, quaternary ammonium salt and ionic liquid; and electron conductive polymer compounds such as polythiophene, polyaniline, polypyrrole and polyacetylene. Examples of the inorganic antistatic agent include metal oxide-based conductive agents such as ATO, ITO, PTO, GZO, antimony pentoxide, and zinc oxide; and carbon-based conductive agents such as carbon nanotubes and fullerenes. From the viewpoint of heat resistance, an inorganic antistatic agent is preferable. In addition, carbon black which is a colorant may also function as an antistatic agent.
 可塑剤としては、ポリアミドの可塑剤として一般的に使用されるものであれば特に制限されず、例えば、ベンゼンスルホン酸アルキルアミド系化合物、トルエンスルホン酸アルキルアミド系化合物、ヒドロキシ安息香酸アルキルエステル系化合物、ヒドロキシ安息香酸アルキルアミド系化合物等が挙げられる。 The plasticizer is not particularly limited as long as it is generally used as a plasticizer for polyamide, and is, for example, a benzenesulfonic acid alkylamide compound, a toluenesulfonic acid alkylamide compound, or a hydroxybenzoic acid alkylester compound. , Hydroxybenzoic acid alkylamide compounds and the like.
 滑剤としては、ポリアミドの滑剤として一般的に使用されるものであれば特に制限されない。滑剤としては、例えば、高級脂肪酸系化合物、オキシ脂肪酸系化合物、脂肪酸アミド系化合物、アルキレンビス脂肪酸アミド系化合物、脂肪酸低級アルコールエステル系化合物、金属石鹸系化合物、ポリオレフィンワックスなどが挙げられる。脂肪酸アミド系化合物として、例えば、ステアリン酸アミド、パルミチン酸アミド、メチレンビスステアリルアミド、エチレンビスステアリルアミドなどは、外部滑性効果に優れるため好ましい。 The lubricant is not particularly limited as long as it is generally used as a polyamide lubricant. Examples of the lubricant include higher fatty acid compounds, oxy fatty acid compounds, fatty acid amide compounds, alkylene bis fatty acid amide compounds, fatty acid lower alcohol ester compounds, metal soap compounds, and polyolefin waxes. As the fatty acid amide compound, for example, stearic acid amide, palmitic acid amide, methylene bisstearyl amide, ethylene bisstearyl amide and the like are preferable because they have an excellent external slipping effect.
 酸化防止剤としては、例えば、ヒンダードフェノール系化合物、リン系化合物、ラクトン系化合物、ヒドロキシル系化合物などが挙げられる。
 これらの他の成分は、1種単独で用いられてもよく、2種以上を併用してもよい。
 これらの他の成分の配合量は、組成物X100質量%に対して、5質量%以下が好ましく、3質量%以下がより好ましい。
Examples of the antioxidant include hindered phenol compounds, phosphorus compounds, lactone compounds, hydroxyl compounds and the like.
These other components may be used alone or in combination of two or more.
The blending amount of these other components is preferably 5% by mass or less, more preferably 3% by mass or less, based on 100% by mass of the composition X.
〈組成物Xの調整方法〉
 組成物Xの調整は特に制限されず、公知の方法を用いることができる。例えば、ポリアミド(A)、エラストマー(B)、鎖延長剤(C)、及び必要に応じ配合される上記その他の成分をドライブレンドした混合物を溶融混練することで組成物Xを調整することができる。
 この時、鎖延長剤(C)は、ポリアミド(A)とエラストマー(B)を溶融混練した後に添加することで、溶融混練中のポリアミド(A)とエラストマー(B)の相互の反応が鎖延長剤(C)によって阻害されることを防ぐことができる。すなわち、ポリアミド(A)とエラストマー(B)を溶融混練した後に、鎖延長剤(C)をさらに添加し、溶融混練することが好ましい。
 具体的には溶融混練装置として二軸押出機を用いる場合、ポリアミド(A)、エラストマー(B)、必要に応じて配合されるその他の成分をドライブレンドした混合物を、二軸押出機の根元の第一フィード口から投入し、スクリューに設置された第一混練部と第二混練部の間に設けられた第二フィード口から鎖延長剤(C)を投入することが好ましい。この際、鎖延長剤(C)は必要に応じてポリアミド(A)とドライブレンドしてから投入してもよい。
<Method of adjusting composition X>
The preparation of the composition X is not particularly limited, and a known method can be used. For example, the composition X can be prepared by melt-kneading a mixture of a polyamide (A), an elastomer (B), a chain extender (C), and the above other components to be blended if necessary. ..
At this time, the chain extender (C) is added after the polyamide (A) and the elastomer (B) are melt-kneaded, so that the mutual reaction between the polyamide (A) and the elastomer (B) during the melt-kneading is chain-extended. It can be prevented from being inhibited by the agent (C). That is, it is preferable that after the polyamide (A) and the elastomer (B) are melt-kneaded, a chain extender (C) is further added and melt-kneaded.
Specifically, when a twin-screw extruder is used as the melt-kneading device, a mixture of polyamide (A), elastomer (B), and other components to be blended as needed is dry-blended at the base of the twin-screw extruder. It is preferable that the chain extender (C) is charged from the first feed port and the chain extender (C) is charged from the second feed port provided between the first kneading portion and the second kneading portion installed on the screw. At this time, the chain extender (C) may be added after being dry-blended with the polyamide (A), if necessary.
 上記溶融混練時の温度及び時間は、使用するポリアミド(A)の融点などに応じて適宜調整できるが、エラストマー(B)の重合性の劣化を抑制する観点から、溶融混練温度は380℃以下であることが好ましく、370℃以下であることがより好ましく、360℃以下であることがさらに好ましい。溶融混練時間は1~5分程度であることが好ましい。
 溶融混練の手法に特に制限はなく、ポリアミド(A)、エラストマー(B)、鎖延長剤(C)及び上記その他の成分を均一に混合することのできる方法を好ましく採用することができる。例えば、単軸押出機、二軸押出機、ニーダー、バンバリーミキサーなどが好ましく、エラストマーの良分散性と工業的生産性の観点から二軸押出機がより好ましい。
The temperature and time during the melt-kneading can be appropriately adjusted according to the melting point of the polyamide (A) used, etc., but from the viewpoint of suppressing deterioration of the polymerizable property of the elastomer (B), the melt-kneading temperature is 380 ° C. or lower. It is preferably 370 ° C. or lower, more preferably 360 ° C. or lower. The melt-kneading time is preferably about 1 to 5 minutes.
The method of melt-kneading is not particularly limited, and a method capable of uniformly mixing the polyamide (A), the elastomer (B), the chain extender (C) and the above other components can be preferably adopted. For example, a single-screw extruder, a twin-screw extruder, a kneader, a Banbury mixer and the like are preferable, and a twin-screw extruder is more preferable from the viewpoint of good dispersibility of the elastomer and industrial productivity.
[成形方法]
 上記組成物Xを調整した後、例えばペレット化したものを各種成形方法に供することにより、成形体Xを得ることができる。成形体Xの成形方法は、用途に応じて適宜選択すればよいが、射出成形、押出成形、中空成形、圧縮成形、プレス成形、カレンダー成形等の方法を採用することができる。
[Molding method]
After adjusting the composition X, for example, pelletized products can be subjected to various molding methods to obtain a molded product X. The molding method of the molded body X may be appropriately selected depending on the intended use, but methods such as injection molding, extrusion molding, hollow molding, compression molding, press molding, and calendar molding can be adopted.
<溶着方法>
 本実施形態において、複合成形体は、前述の2以上のポリアミド樹脂成形体を振動により溶着させて製造する。振動を伴わない溶着方法を採用した場合、優れた靭性を発現することが困難となる。例えば、赤外線溶着法等を採用した場合、加熱時に成形体周囲の環境下に存在する酸素によって、溶着面におけるエラストマー(B)が過剰に劣化する等の不都合が生じ、優れた靭性が得られなくなる。一方、振動により溶着させるのであれば、例えば熱溶着と振動溶着とを組み合わせた赤外線補助振動溶着法であっても本発明の効果が損なわれるおそれがほとんどない。これは加熱により成形体の溶着面は溶融されるが、次いで行われる振動の摩擦熱によって当該溶着面が溶着されるため酸素によるエラストマー(B)の劣化が抑えられるものと考えられる。
<Welding method>
In the present embodiment, the composite molded body is manufactured by welding the above-mentioned two or more polyamide resin molded bodies by vibration. When a welding method that does not involve vibration is adopted, it becomes difficult to develop excellent toughness. For example, when an infrared welding method or the like is adopted, inconveniences such as excessive deterioration of the elastomer (B) on the welded surface due to oxygen existing in the environment around the molded body during heating occur, and excellent toughness cannot be obtained. .. On the other hand, if welding is performed by vibration, there is almost no possibility that the effect of the present invention will be impaired even by an infrared assisted vibration welding method in which, for example, heat welding and vibration welding are combined. It is considered that this is because the welded surface of the molded product is melted by heating, but the welded surface is welded by the frictional heat of the subsequent vibration, so that the deterioration of the elastomer (B) due to oxygen is suppressed.
 本実施形態の一例としては、上記成形体Xと相手のポリアミド樹脂成形体との圧接する面同士を、溶着時に発生する摩擦熱によって溶着する方法により溶着させればよい。上記溶着方法としては、例えば、振動溶着法、赤外線補助振動溶着法、超音波溶着法、スピン溶着法、及び高周波溶着法が挙げられる。これら溶着方法の中でも、振動溶着法や赤外線補助振動溶着法が望ましい。
 溶着条件は成形体の形態等に応じて設定すればよく特に限定されないが、例えば、圧接する面の溶着圧力を0.1~25MPa程度、振幅は0.5~4.0mm程度、振動数は100~300Hz程度に設定することができる。
As an example of the present embodiment, the surfaces to be pressure-welded between the molded product X and the mating polyamide resin molded product may be welded by a method of welding by frictional heat generated during welding. Examples of the welding method include a vibration welding method, an infrared assisted vibration welding method, an ultrasonic welding method, a spin welding method, and a high frequency welding method. Among these welding methods, the vibration welding method and the infrared assisted vibration welding method are desirable.
The welding conditions may be set according to the form of the molded product and are not particularly limited. For example, the welding pressure of the surface to be pressed is about 0.1 to 25 MPa, the amplitude is about 0.5 to 4.0 mm, and the frequency is. It can be set to about 100 to 300 Hz.
<用途>
 本発明で得られる複合成形体は、その優れた特性を活かし、自動車部品、航空機部品、内燃機関用途、原油掘削・輸送用途、電気・電子部品、医療、食品、家庭・事務用品・建材関係部品などに使用することが可能であり、特に自動車用部品に好適に用いられる。
<Use>
The composite molded body obtained by the present invention makes use of its excellent properties, and makes use of its excellent properties, such as automobile parts, aircraft parts, internal combustion engine applications, crude oil drilling / transportation applications, electrical / electronic parts, medical care, food, household / office supplies / building material-related parts. It can be used for such purposes, and is particularly preferably used for automobile parts.
 自動車用部品としては、特に強度と靭性が要求される、ラジエータータンク部品、ラジエーター液リザーブタンク、ウォーターポンプ、ウォーターインレットパイプ、ウォーターアウトレットパイプ、ウォーターポンプハウジング、サーモスタットハウジングなど自動車エンジンルーム内で冷却液との接触下で使用されるエンジン冷却系部品、及びフューエルデリバリーパイプ、燃料ポンプハウジング、バルブ、燃料タンク等の燃料系部品に好適に使用される。また、内装部品、外装部品、及び電装部品等にも用いることができる。 As automobile parts, radiator tank parts, radiator liquid reserve tanks, water pumps, water inlet pipes, water outlet pipes, water pump housings, thermostat housings, etc., which are particularly required to have strength and toughness, can be used as coolant in the automobile engine room. It is suitably used for engine cooling system parts used under the contact of fuel, and fuel system parts such as fuel delivery pipe, fuel pump housing, valve, and fuel tank. It can also be used for interior parts, exterior parts, electrical components and the like.
 また、自動車部品以外の用途としては、例えば海底オイルパイプ、海上オイルパイプ、地中オイルパイプ、パイプライナー、海底ケーブルギア、カム、絶縁ブロック、バルブ、電動工具部品、農機具部品、エンジンカバー、芝刈り機の小型燃料タンクなどが挙げられる。 Applications other than automobile parts include, for example, submarine oil pipes, marine oil pipes, underground oil pipes, pipe liners, submarine cable gears, cams, insulation blocks, valves, power tool parts, agricultural machinery parts, engine covers, and lawnmowers. Examples include small fuel tanks for machines.
 以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
 実施例、比較例、及び製造例における各物性の測定、並びに溶着方法は、以下に示す方法に従って行った。
《固有粘度》
 製造例で得られた半芳香族ポリアミド(試料)について、濃硫酸を溶媒とし、濃度0.2g/dl、温度30℃での固有粘度(dl/g)を下記関係式(2)より求めた。
   ηinh=[ln(t/t)]/c (2)
 上記関係式中、ηinhは固有粘度(dl/g)を表し、tは溶媒(濃硫酸)の流下時間(秒)を表し、tは試料溶液の流下時間(秒)を表し、cは試料溶液中の試料の濃度(g/dl)(すなわち、0.2g/dl)を表す。
The measurement of each physical property and the welding method in Examples, Comparative Examples, and Production Examples were carried out according to the methods shown below.
《Intrinsic viscosity》
The intrinsic viscosity (dl / g) of the semi-aromatic polyamide (sample) obtained in the production example at a concentration of 0.2 g / dl and a temperature of 30 ° C. was determined from the following relational expression (2) using concentrated sulfuric acid as a solvent. ..
η inh = [ln (t 1 / t 0 )] / c (2)
In the above relational expression, η inh represents the intrinsic viscosity (dl / g), t 0 represents the flow time (seconds) of the solvent (concentrated sulfuric acid), t 1 represents the flow time (seconds) of the sample solution, and c. Represents the concentration of the sample in the sample solution (g / dl) (ie, 0.2 g / dl).
《融点》
 製造例で得られた半芳香族ポリアミドの融点は、(株)日立ハイテクサイエンス製の示差走査熱量分析装置「DSC7020」を使用して測定した。
 融点は、ISO11357-3(2011年第2版)に準拠して測定を行った。具体的には、窒素雰囲気下で、30℃から340℃へ10℃/分の速度で試料(半芳香族ポリアミド)を加熱し、340℃で5分間保持して試料を完全に融解させた後、10℃/分の速度で50℃まで冷却し50℃で5分間保持した。再び10℃/分の速度で340℃まで昇温した時に現れる融解ピークのピーク温度を融点(℃)とし、融解ピークが複数ある場合は最も高温側の融解ピークのピーク温度を融点(℃)とした。
《Melting point》
The melting point of the semi-aromatic polyamide obtained in the production example was measured using a differential scanning calorimetry apparatus "DSC7020" manufactured by Hitachi High-Tech Science Co., Ltd.
The melting point was measured according to ISO11357-3 (2011 2nd edition). Specifically, the sample (semi-aromatic polyamide) is heated from 30 ° C. to 340 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere and held at 340 ° C. for 5 minutes to completely melt the sample. It was cooled to 50 ° C. at a rate of 10 ° C./min and held at 50 ° C. for 5 minutes. The peak temperature of the melting peak that appears when the temperature is raised to 340 ° C at a rate of 10 ° C / min again is defined as the melting point (° C), and when there are multiple melting peaks, the peak temperature of the melting peak on the highest temperature side is defined as the melting point (° C). did.
《末端アミノ基濃度》
 製造例で得られた半芳香族ポリアミド1gをフェノール35mLに溶解し、そこへメタノールを2mL混合し、試料溶液とした。チモールブルーを指示薬とし、0.01規定の塩酸水溶液を使用した滴定を実施し、半芳香族ポリアミドの末端アミノ基含量([NH2]、単位:μeq/g)を測定した。
<< Terminal amino group concentration >>
1 g of the semi-aromatic polyamide obtained in the production example was dissolved in 35 mL of phenol, and 2 mL of methanol was mixed therein to prepare a sample solution. Titration was carried out using thymol blue as an indicator and an aqueous hydrochloric acid solution of 0.01N was carried out, and the terminal amino group content ([NH 2 ], unit: μeq / g) of the semi-aromatic polyamide was measured.
《溶着用試験片》
 実施例及び比較例により得られたポリアミド樹脂組成物のペレットを、住友重機械工業(株)製の射出成形機(型締力:100トン、スクリュー径:φ32mm)を使用し、ポリアミドの融点よりも30~40℃高いシリンダー温度とし、金型温度140℃の条件下で、ファンゲート金型を用いてポリアミド樹脂組成物を射出成形し、平板(寸法:長さ×幅×厚さ=150mm×100mm×4mm)を作製した。
 そして、上記平板を図1のように切削加工し、直方体試験片(寸法:長さ×幅×厚さ=100mm×40mm×4mm)を1つの平板から3枚切り出して、溶着用試験片Aとした。
《Plastic welding test piece》
Using an injection molding machine (mold clamping force: 100 tons, screw diameter: φ32 mm) manufactured by Sumitomo Heavy Industries, Ltd., the pellets of the polyamide resin composition obtained in Examples and Comparative Examples were measured from the melting point of the polyamide. The polyamide resin composition was injection-molded using a fangate mold under the condition that the cylinder temperature was 30 to 40 ° C higher and the mold temperature was 140 ° C, and the flat plate (dimensions: length x width x thickness = 150 mm x). 100 mm × 4 mm) was produced.
Then, the flat plate is cut as shown in FIG. 1, and three rectangular parallelepiped test pieces (dimensions: length x width x thickness = 100 mm x 40 mm x 4 mm) are cut out from one flat plate to form a welding test piece A. did.
《振動溶着,VW》
 上記の方法で作製した溶着用試験片Aを用い、当該試験片Aを切削面が溶着面になるように振動溶着機に上下に固定し、端部を振動で摩擦することにより溶融して接合させた。具体的にはブランソン社製M-112H型振動溶着装置を用いて、次の条件で溶着した。
・振動数:240Hz
・溶着圧力:1.5MPa
・振幅:1.8mm
・溶着代:1.2mm
《Vibration welding, VW》
Using the welding test piece A produced by the above method, the test piece A is fixed up and down to a vibration welding machine so that the cutting surface becomes a welding surface, and the ends are melted and joined by rubbing with vibration. I let you. Specifically, it was welded under the following conditions using an M-112H type vibration welding device manufactured by Branson.
・ Frequency: 240Hz
・ Welding pressure: 1.5MPa
・ Amplitude: 1.8 mm
・ Welding allowance: 1.2 mm
《赤外線補助振動溶着,IRVW》
 上記の振動溶着において、溶着用試験片Aを溶着する前に赤外線ヒーター(加熱部寸法130mm×4mm)を溶着用試験片Aの間に挿入して端部を事前に加熱した後に振動溶着を実施した。振動溶着に使用した装置と条件は上記と同様である。赤外線ヒーターの照射条件を以下に示す。
・赤外線照射出力:上部側14.3A, 下部側14.4A
・赤外線照射距離:上部側2.0mm, 下部側2.5mm
・赤外線照射時間:13.0秒
《Infrared auxiliary vibration welding, IRVW》
In the above vibration welding, an infrared heater (heating part size 130 mm × 4 mm) is inserted between the welding test pieces A before welding the welding test piece A, and the end portion is preheated and then vibration welding is performed. did. The equipment and conditions used for vibration welding are the same as above. The irradiation conditions of the infrared heater are shown below.
-Infrared irradiation output: Upper side 14.3A, lower side 14.4A
・ Infrared irradiation distance: 2.0 mm on the upper side, 2.5 mm on the lower side
・ Infrared irradiation time: 13.0 seconds
《赤外線溶着,IRW》
 上記の赤外線補助振動溶着において、赤外線ヒーターで溶着用試験片Aを加熱した後に、振動をさせずに当該試験片Aを圧着させて接合した。赤外線ヒーターの照射条件は上記と同様である。圧着条件を以下に示す。
・溶着圧力:1.5MPa
・圧着時間:5.0秒
《Infrared welding, IRW》
In the above infrared auxiliary vibration welding, after heating the welding test piece A with an infrared heater, the test piece A was crimped and joined without vibrating. The irradiation conditions of the infrared heater are the same as above. The crimping conditions are shown below.
・ Welding pressure: 1.5MPa
・ Crimping time: 5.0 seconds
《引張試験用試験片》
 上記の溶着によって得られた複合成形体の模式図(形状)を図2に示す。図2において、2枚の上記試験片Aの切削面同士が溶着面3を介して溶着し、複合成形体が形成される。そして、複合成形体を用いて作製される引張試験用試験片Bの模式図を図3に示す。この複合成形体の中央部を幅10mmで、図3に示すように、引張試験用試験片Bが溶着面3を含むように切削加工し、中央部の3個をそれぞれ引張試験用試験片Bとした。
 引張試験用試験片Bを用い、下記の方法により得られた引張破断強度の平均値を溶着強度とし、引張破断伸度の平均値を破断伸度として算出した。
《Test piece for tensile test》
FIG. 2 shows a schematic view (shape) of the composite molded body obtained by the above welding. In FIG. 2, the cutting surfaces of the two test pieces A are welded to each other via the welding surface 3 to form a composite molded body. A schematic diagram of the test piece B for a tensile test produced by using the composite molded body is shown in FIG. As shown in FIG. 3, the central portion of this composite molded body is cut so that the tensile test test piece B includes the welding surface 3, and the three central portions are each subjected to the tensile test test piece B. And said.
Using the test piece B for a tensile test, the average value of the tensile breaking strength obtained by the following method was used as the welding strength, and the average value of the tensile breaking elongation was calculated as the breaking elongation.
《引張試験》
 上記の方法で作製した引張試験用試験片Bを用い、引張強度についてはインストロン社のオートグラフ5969を使用して引張速度5mm/min、チャック間距離40mmで23℃、50%RHにおける引張破断強度(MPa)及び引張破断伸度(%)を測定した。なお、伸度は呼びひずみを用いている。
《Tensile test》
Using the test piece B for tensile test prepared by the above method, the tensile strength was 5 mm / min using Instron's Autograph 5969, the distance between chucks was 40 mm, and the tensile fracture at 23 ° C. and 50% RH. The strength (MPa) and the tensile elongation at break (%) were measured. Nominal strain is used for the elongation.
製造例1[半芳香族ポリアミドの製造]
 テレフタル酸9870.6g(59.42モル)、1,9-ノナンジアミンと2-メチル1,8-オクタンジアミンの混合物[50/50(モル比)]9497.4g(60.00モル)、安息香酸142.9g(1.17モル)、次亜リン酸ナトリウム一水和物19.5g(原料の総質量に対して0.1質量%)及び蒸留水5リットルを内容積40リットルのオートクレーブに入れ、窒素置換した。100℃で30分間攪拌し、2時間かけてオートクレーブ内部の温度を220℃に昇温した。この時、オートクレーブ内部の圧力は2MPaまで昇圧した。そのまま2時間反応を続けた後230℃に昇温し、その後2時間、230℃に温度を保ち、水蒸気を徐々に抜いて圧力を2MPaに保ちながら反応させた。次に、30分かけて圧力を1MPaまで下げ、さらに1時間反応させて、極限粘度[η]が0.2dL/gのプレポリマーを得た。これをホソカワミクロン株式会社製フレーククラッシャーを使って2mm以下の粒径まで粉砕し、100℃、減圧下で12時間乾燥した後、230℃、13Pa(0.1mmHg)にて10時間固相重合し、白色のポリアミド樹脂(ポリアミド1)を得た。
 ポリアミド1はテレフタル酸単位と、1,9-ノナンジアミン単位及び2-メチル-1,8-オクタンジアミン単位(1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=50/50(モル比))とからなり、融点は265℃、固有粘度[ηinh]は1.20dL/g、末端アミノ基濃度([NH])は15μeq/gであった。
Production Example 1 [Production of semi-aromatic polyamide]
9870.6 g (59.42 mol) of terephthalic acid, a mixture of 1,9-nonandiamine and 2-methyl1,8-octanediamine [50/50 (molar ratio)] 9497.4 g (60.00 mol), benzoic acid 142.9 g (1.17 mol), 19.5 g of sodium hypophosphate monohydrate (0.1 mass% with respect to the total mass of the raw material) and 5 liters of distilled water were placed in an autoclave having an internal volume of 40 liters. , Nitrophobic. The mixture was stirred at 100 ° C. for 30 minutes, and the temperature inside the autoclave was raised to 220 ° C. over 2 hours. At this time, the pressure inside the autoclave was boosted to 2 MPa. After continuing the reaction for 2 hours as it was, the temperature was raised to 230 ° C., and then the temperature was maintained at 230 ° C. for 2 hours, water vapor was gradually removed, and the reaction was carried out while maintaining the pressure at 2 MPa. Next, the pressure was lowered to 1 MPa over 30 minutes and reacted for another 1 hour to obtain a prepolymer having an ultimate viscosity [η] of 0.2 dL / g. This was pulverized to a particle size of 2 mm or less using a flake crusher manufactured by Hosokawa Micron Co., Ltd., dried at 100 ° C. under reduced pressure for 12 hours, and then solid-phase polymerized at 230 ° C. and 13 Pa (0.1 mmHg) for 10 hours. A white polyamide resin (polyamide 1) was obtained.
Polyamide 1 contains terephthalic acid units, 1,9-nonandiamine units and 2-methyl-1,8-octanediamine units (1,9-nonandiamine units / 2-methyl-1,8-octanediamine units = 50/50 ( The molar ratio)), the melting point was 265 ° C., the intrinsic viscosity [η inh ] was 1.20 dL / g, and the terminal amino group concentration ([NH 2 ]) was 15 μeq / g.
製造例2[ポリアミド樹脂組成物の製造A-1, A-2, A-3, B-1, B-2, B-3]
 表1に示すポリアミド(A)、エラストマー(B)、鎖延長剤(C)、酸化防止剤、滑剤、及び着色剤を予め混合して、二軸押出機(東芝機械(株)製「TEM-26SS」)の上流部フィード口に投入した。鎖延長剤(C)を使用する場合(A-1, A-2, A-3)は、スクリューの第一混練部と第二混練部の中間部フィード口から投入し、シリンダー温度300~320℃、溶融混練時間約1分の条件下で溶融混練することにより混練して押出し、冷却及び切断してペレット状のポリアミド樹脂組成物を製造した。
Production Example 2 [Production of Polyamide Resin Composition A-1, A-2, A-3, B-1, B-2, B-3]
Polyamide (A), elastomer (B), chain extender (C), antioxidant, lubricant, and colorant shown in Table 1 are mixed in advance, and a twin-screw extruder (“TEM-” manufactured by Toshiba Machine Co., Ltd. It was put into the upstream feed port of "26SS"). When the chain extender (C) is used (A-1, A-2, A-3), it is charged from the intermediate feed port between the first kneading part and the second kneading part of the screw, and the cylinder temperature is 300 to 320. A pellet-shaped polyamide resin composition was produced by kneading, extruding, cooling and cutting by melt-kneading at ° C. and a melt-kneading time of about 1 minute.
 なお、表1に示す各成分は下記の通りである。
<ポリアミド(A)>
 製造例1で得られた半芳香族ポリアミド(ポリアミド1)
<エラストマー(B)>
 エチレン-ブテン共重合体を無水マレイン酸で変性したエラストマー(三井化学(株)製、タフマーMH5020)
<鎖延長剤(C)>
 脂環式ポリカルボジイミド(日清紡ケミカル(株)製、カルボジライトHMV-15CA)
<酸化防止剤>
 ヒンダードフェノール系酸化防止剤(住友化学(株)製、SUMILIZER GA-80)
<滑剤>
 ポリオレフィンワックス(クラリアントケミカルズ製、LICOCENE PE MA4221)
<着色剤>
 カーボンブラック(三菱ケミカル(株)製、#980B)
Each component shown in Table 1 is as follows.
<Polyamide (A)>
Semi-aromatic polyamide (polyamide 1) obtained in Production Example 1
<Elastomer (B)>
Elastomer obtained by modifying an ethylene-butene copolymer with maleic anhydride (Mitsui Chemicals, Inc., Toughmer MH5020)
<Chain extender (C)>
Alicyclic polycarbodiimide (manufactured by Nisshinbo Chemical Co., Ltd., carbodilite HMV-15CA)
<Antioxidant>
Hindered phenolic antioxidant (Sumitomo Chemical Co., Ltd., SUMILIZER GA-80)
<Glidant>
Polyolefin wax (manufactured by Clariant Chemicals, LICOCENE PE MA4221)
<Colorant>
Carbon black (manufactured by Mitsubishi Chemical Corporation, # 980B)
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
[実施例1~3, 比較例1~3]
 表2に示す様に製造例2で得られたポリアミド樹脂組成物A-1, A-2, A-3, B-1, B-2, B-3のペレットを用いて、上述の方法により作製した溶着用試験片A同士を上記赤外線補助振動溶着(IRVW)により溶着し、複合成形体を作製した。当該複合成形体を上述の方法により切削して得られた引張試験用試験片Bの引張試験の評価結果を表2に示す。
[Examples 1 to 3, Comparative Examples 1 to 3]
As shown in Table 2, the pellets of the polyamide resin compositions A-1, A-2, A-3, B-1, B-2, and B-3 obtained in Production Example 2 were used by the above method. The prepared welding test pieces A were welded to each other by the above-mentioned infrared auxiliary vibration welding (IRVW) to prepare a composite molded body. Table 2 shows the evaluation results of the tensile test of the tensile test test piece B obtained by cutting the composite molded body by the above method.
[実施例4~6, 比較例4~6]
 表3に示す様に溶着の手法に上記振動溶着(VW)を用いた以外は実施例1~3, 比較例1~3と同様に複合成形体及び引張試験用試験片Bを作製し、上述の方法により引張試験を実施した。評価結果を表3に示す。
[Examples 4 to 6, Comparative Examples 4 to 6]
As shown in Table 3, a composite molded body and a test piece B for a tensile test were prepared in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 3 except that the above vibration welding (VW) was used as the welding method, and described above. The tensile test was carried out by the method of. The evaluation results are shown in Table 3.
[比較例7~12]
 表4に示す様に溶着の手法に上記赤外線溶着(IRW)を用いた以外は実施例1~3, 比較例1~3と同様に複合成形体及び引張試験用試験片Bを作製し、上述の方法により引張試験を実施した。評価結果を表4に示す。
[Comparative Examples 7 to 12]
As shown in Table 4, a composite molded body and a test piece B for a tensile test were prepared in the same manner as in Examples 1 to 3 and Comparative Examples 1 to 3 except that the above infrared welding (IRW) was used as the welding method, and described above. The tensile test was carried out by the method of. The evaluation results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 実施例1~6と比較例1~6から、鎖延長剤(C)をポリアミド樹脂組成物に用いることにより、優れた引張強度を有しつつ引張破断伸びの数値が極めて顕著に高くなり、実施例1~6で得られた複合成形体は靭性に優れることが分かる。
 また成形体を振動により溶着させなかった比較例7~12から、鎖延長剤(C)をポリアミド樹脂組成物に用いるあるいは用いにないにかかわらず、引張破断伸びに劣る結果となった。
From Examples 1 to 6 and Comparative Examples 1 to 6, by using the chain extender (C) in the polyamide resin composition, the numerical value of tensile elongation at break becomes extremely high while having excellent tensile strength. It can be seen that the composite molded products obtained in Examples 1 to 6 have excellent toughness.
Further, from Comparative Examples 7 to 12 in which the molded product was not welded by vibration, the result was that the tensile elongation at break was inferior regardless of whether or not the chain extender (C) was used in the polyamide resin composition.
 本発明の製造方法によれば、優れた靭性を有する複合成形体を製造することができる。そのため、本発明の製造方法は、自動車部品、航空機部品、内燃機関用途、原油掘削・輸送用途、電気・電子部品、医療、食品、家庭・事務用品・建材関係部品などの製造に利用することが可能であり、特に自動車用部品の製造に好適に用いられる。 According to the manufacturing method of the present invention, a composite molded body having excellent toughness can be manufactured. Therefore, the manufacturing method of the present invention can be used for manufacturing automobile parts, aircraft parts, internal combustion engine applications, crude oil drilling / transportation applications, electrical / electronic parts, medical care, food, household / office supplies / building material-related parts, and the like. It is possible and is particularly preferably used in the manufacture of automotive parts.
1.平板
2.複合成形体
3.溶着面
A.溶着用試験片A
B.引張試験用試験片B(3個)
1. 1. Flat plate 2. Composite molded body 3. Welded surface A. Welding test piece A
B. Tensile test piece B (3 pieces)

Claims (8)

  1.  2つ以上の成形体を溶着させる複合成形体の製造において、
     前記成形体がポリアミド樹脂成形体であり、
     前記ポリアミド樹脂成形体の少なくとも一つが、少なくともポリアミド(A)、エラストマー(B)、及び鎖延長剤(C)を用いて得られるポリアミド樹脂組成物の成形体であり、
     前記2つ以上の成形体を振動により溶着させる、複合成形体の製造方法。
    In the manufacture of a composite molded body in which two or more molded bodies are welded together
    The molded product is a polyamide resin molded product.
    At least one of the above-mentioned polyamide resin molded articles is a molded article of a polyamide resin composition obtained by using at least a polyamide (A), an elastomer (B), and a chain extender (C).
    A method for producing a composite molded body, in which the two or more molded bodies are welded by vibration.
  2.  前記ポリアミド(A)及び前記エラストマー(B)を合計100質量部としたとき、前記ポリアミド(A)を60~90質量部で用いる、請求項1に記載の複合成形体の製造方法。 The method for producing a composite molded product according to claim 1, wherein when the polyamide (A) and the elastomer (B) are 100 parts by mass in total, the polyamide (A) is used in 60 to 90 parts by mass.
  3.  前記ポリアミド(A)、前記エラストマー(B)、及び前記鎖延長剤(C)の合計100質量%に対する前記エラストマー(B)の配合量が3~40質量%である、請求項1又は2に記載の複合成形体の製造方法。 The first or second claim, wherein the blending amount of the elastomer (B) is 3 to 40% by mass with respect to a total of 100% by mass of the polyamide (A), the elastomer (B), and the chain extender (C). Method for manufacturing a composite molded product.
  4.  前記ポリアミド(A)及び前記エラストマー(B)の合計100質量部に対する前記鎖延長剤(C)の配合量が0.01~5質量部である、請求項1~3のいずれかに記載の複合成形体の製造方法。 The composite according to any one of claims 1 to 3, wherein the amount of the chain extender (C) blended with respect to a total of 100 parts by mass of the polyamide (A) and the elastomer (B) is 0.01 to 5 parts by mass. A method for manufacturing a molded product.
  5.  前記ポリアミド(A)が、全ジカルボン酸単位に対して芳香族ジカルボン酸単位を50~100モル%含有するジカルボン酸単位と、全ジアミン単位に対して炭素数4~13の脂肪族ジアミン単位を60~100モル%含有するジアミン単位とを含む半芳香族ポリアミドである、請求項1~4のいずれかに記載の複合成形体の製造方法。 The polyamide (A) contains 60 to 100 mol% of aromatic dicarboxylic acid units with respect to all dicarboxylic acid units and 60 aliphatic diamine units having 4 to 13 carbon atoms with respect to all diamine units. The method for producing a composite molded product according to any one of claims 1 to 4, which is a semi-aromatic polyamide containing a diamine unit containing up to 100 mol%.
  6.  前記脂肪族ジアミン単位が、1,4-ブタンジアミン、1,6-ヘキサンジアミン、1,9-ノナンジアミン、2-メチル-1,8-オクタンジアミン及び1,10-デカンジアミンに由来する単位から選ばれる少なくとも1種である、請求項5に記載の複合成形体の製造方法。 The aliphatic diamine unit is selected from units derived from 1,4-butanediamine, 1,6-hexanediamine, 1,9-nonanediamine, 2-methyl-1,8-octanediamine and 1,10-decanediamine. The method for producing a composite molded product according to claim 5, which is at least one of the above.
  7.  前記エラストマー(B)が、下記(b1)~(b5)から選ばれる少なくとも1種である、請求項1~6のいずれかに記載の複合成形体の製造方法。
    (b1)α-オレフィン共重合体
    (b2)(エチレン及び/又はプロピレン)/(α,β-不飽和カルボン酸及び/又は不飽和カルボン酸エステル)系共重合体
    (b3)アイオノマー
    (b4)芳香族ビニル化合物と共役ジエン化合物系ブロックとの共重合体
    (b5)前記(b1)~(b4)から選ばれる少なくとも1種を、カルボキシル基及び酸無水物基から選ばれる少なくとも1種を有する不飽和化合物で変性した重合体
    The method for producing a composite molded product according to any one of claims 1 to 6, wherein the elastomer (B) is at least one selected from the following (b1) to (b5).
    (B1) α-olefin copolymer (b2) (ethylene and / or propylene) / (α, β-unsaturated carboxylic acid and / or unsaturated carboxylic acid ester) copolymer (b3) ionomer (b4) fragrance Copolymer of Group Vinyl Compound and Conjugated Diene Compound Block (b5) Unsaturated having at least one selected from the above (b1) to (b4) and at least one selected from a carboxyl group and an acid anhydride group. Compound-modified copolymer
  8.  前記鎖延長剤(C)が、カルボジイミド化合物である、請求項1~7のいずれかに記載の複合成形体の製造方法。 The method for producing a composite molded product according to any one of claims 1 to 7, wherein the chain extender (C) is a carbodiimide compound.
PCT/JP2020/031701 2019-08-23 2020-08-21 Method for producing composite molded body WO2021039661A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542856A JPWO2021039661A1 (en) 2019-08-23 2020-08-21

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153069 2019-08-23
JP2019153069 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039661A1 true WO2021039661A1 (en) 2021-03-04

Family

ID=74685485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031701 WO2021039661A1 (en) 2019-08-23 2020-08-21 Method for producing composite molded body

Country Status (2)

Country Link
JP (1) JPWO2021039661A1 (en)
WO (1) WO2021039661A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186201A (en) * 1998-10-16 2000-07-04 Asahi Chem Ind Co Ltd Welded polyamide molding
JP2001131404A (en) * 1999-11-01 2001-05-15 Toray Ind Inc Thermoplastic resin composition and molded product
JP2003193009A (en) * 2001-10-16 2003-07-09 Toyobo Co Ltd Resin composition for dielectric heating adhesion, hot- melt adhesive, method for adhering adherend, resin composition for adherend use used as adherend of hot- melt adhesive, adhesion complex and method for disassembling the same
JP2004525247A (en) * 2001-05-04 2004-08-19 ディーエスエム アイピー アセッツ ビー.ブイ. Welding method of two polyamide parts
JP2008075077A (en) * 2006-08-22 2008-04-03 Mitsubishi Engineering Plastics Corp Method for producing composite molded article involving process for welding with laser light, and composite molded article
US20080248295A1 (en) * 2005-11-03 2008-10-09 Basf Se Articles Comprising Rubber, Thermoplastic Polyurethane and Engineering Polymer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000186201A (en) * 1998-10-16 2000-07-04 Asahi Chem Ind Co Ltd Welded polyamide molding
JP2001131404A (en) * 1999-11-01 2001-05-15 Toray Ind Inc Thermoplastic resin composition and molded product
JP2004525247A (en) * 2001-05-04 2004-08-19 ディーエスエム アイピー アセッツ ビー.ブイ. Welding method of two polyamide parts
JP2003193009A (en) * 2001-10-16 2003-07-09 Toyobo Co Ltd Resin composition for dielectric heating adhesion, hot- melt adhesive, method for adhering adherend, resin composition for adherend use used as adherend of hot- melt adhesive, adhesion complex and method for disassembling the same
US20080248295A1 (en) * 2005-11-03 2008-10-09 Basf Se Articles Comprising Rubber, Thermoplastic Polyurethane and Engineering Polymer
JP2008075077A (en) * 2006-08-22 2008-04-03 Mitsubishi Engineering Plastics Corp Method for producing composite molded article involving process for welding with laser light, and composite molded article

Also Published As

Publication number Publication date
JPWO2021039661A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
JP5722018B2 (en) Semi-aromatic molding composition and method of use
EP3192650B1 (en) Layered tube
JP6881618B2 (en) Manufacturing method of multi-layer tube for transporting chemicals
JP6911665B2 (en) Resin composition, molded product and manufacturing method of molded product
JP6654045B2 (en) Polyamide-based thermoplastic elastomer composition and molded article thereof
JP2022546060A (en) Polyamides and corresponding polymer compositions, articles and methods of manufacture and use
JP2015104830A (en) Laminate tube
JP6455075B2 (en) Laminated tube
WO2021039661A1 (en) Method for producing composite molded body
JP4120402B2 (en) Thermoplastic polymer composition
EP3047954B1 (en) Molded article manufacturing method, injection welding material, and molded article
WO2017115699A1 (en) Polyamide resin composition
JP6454182B2 (en) Ball seat for ball joint and ball joint having the same
EP4101896A1 (en) Polyamide resin composition
JP2014240148A (en) Electroconductive laminate tube
JP5572923B2 (en) Cable housing
JP5724541B2 (en) Laminated tube
JP2013095791A (en) Conductive polyamide resin composition and molded product thereof
JP7542519B2 (en) Tube and polyamide resin composition
WO2023282154A1 (en) Polyamide composition
TW201829617A (en) Resin composition, molded article, and method for producing molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542856

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858541

Country of ref document: EP

Kind code of ref document: A1