Nothing Special   »   [go: up one dir, main page]

WO2023279817A1 - 风机组件和空调器 - Google Patents

风机组件和空调器 Download PDF

Info

Publication number
WO2023279817A1
WO2023279817A1 PCT/CN2022/089939 CN2022089939W WO2023279817A1 WO 2023279817 A1 WO2023279817 A1 WO 2023279817A1 CN 2022089939 W CN2022089939 W CN 2022089939W WO 2023279817 A1 WO2023279817 A1 WO 2023279817A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
fan assembly
volute
tongue
flow
Prior art date
Application number
PCT/CN2022/089939
Other languages
English (en)
French (fr)
Inventor
韦福权
吴彦东
马丽华
Original Assignee
广东美的暖通设备有限公司
合肥美的暖通设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的暖通设备有限公司, 合肥美的暖通设备有限公司 filed Critical 广东美的暖通设备有限公司
Priority to JP2023572945A priority Critical patent/JP2024519553A/ja
Priority to BR112023024872A priority patent/BR112023024872A2/pt
Priority to CA3219902A priority patent/CA3219902A1/en
Priority to US18/564,013 priority patent/US20240301893A1/en
Priority to EP22836576.3A priority patent/EP4368901A4/en
Priority to KR1020237039784A priority patent/KR20230172571A/ko
Priority to AU2022308067A priority patent/AU2022308067A1/en
Publication of WO2023279817A1 publication Critical patent/WO2023279817A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4233Fan casings with volutes extending mainly in axial or radially inward direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/422Discharge tongues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/424Double entry casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0022Centrifugal or radial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/24Means for preventing or suppressing noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/667Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by influencing the flow pattern, e.g. suppression of turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2210/00Working fluids
    • F05D2210/10Kind or type
    • F05D2210/12Kind or type gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • F05D2250/712Shape curved concave

Definitions

  • the present application relates to the field of fan technology, in particular, to a fan assembly and an air conditioner.
  • the fan assembly is the core component of the air conditioner, and its performance determines the size, performance and sound quality of the air conditioner.
  • the air outlet speed of the fan assembly at the air outlet is different (the flow velocity in the middle is greater than the flow velocity at the peripheral side), which makes the noise of the fan assembly and the air conditioner larger, and affects the air supply efficiency of the fan.
  • This application aims to solve at least one of the technical problems existing in the prior art.
  • the first aspect of the present application provides a fan assembly.
  • the second aspect of the present application provides an air conditioner.
  • the first aspect of the present application provides a fan assembly, including: a volute, the volute includes a casing body and a volute tongue connected to the opening of the casing body; the wind wheel is at least partially arranged in the casing body; the volute tongue includes a diffuser Along the axial direction of the wind rotor, the overflow part is located on both sides of the diffuser part, and the overflow part is higher than the diffuser part.
  • the fan assembly proposed by this application includes a volute and a wind wheel.
  • the volute includes a shell body and a volute tongue connected to the opening of the shell body, and at least part of the wind wheel is arranged in the shell body.
  • the rotation of the wind wheel can suck airflow from the outside into the shell body, and the airflow is pressurized by the wind wheel and then flows through the vortex tongue and then discharged.
  • the vortex tongue includes a diffuser portion and an overflow portion, and ensures that the overflow portion is set higher than the diffuser portion, so that the relative position of the diffuser portion is relatively low. In this way, the flow area at the location of the flow passage can be effectively enlarged, thereby reducing the flow velocity of the air flow at the location of the flow passage, so that the overall flow velocity of the fan assembly is relatively uniform.
  • the flow passage is located on both sides of the diffuser, so that the flow diffuser is located in the middle, ensuring that the distribution of the flow diffuser and the flow passage is in line with the distribution of the air flow out of the wind rotor. match.
  • the diffuser is arranged lower than the flow passage, so that the diffuser can be used to increase the flow area where it is located, thereby reducing the flow velocity of the air flow where it is located. In this way, through the cooperation of the above-mentioned overflow part and the diffuser part, the uniformity of the air outlet of the fan assembly is ensured.
  • the fan assembly proposed by the present application can send out a larger air volume, satisfying air conditioning in a larger space.
  • the fan assembly proposed by the present application has lower working sound, which improves the comfort of the fan assembly.
  • the fan assembly proposed by the present application has a smaller volume, meets lower cost or adapts to more diverse installation space requirements.
  • the present application optimizes the shape of the volute, and the volute tongue includes a cooperating flow part and a flow diffuser, which reduces the flow velocity of the air flow at the position of the flow part, ensures the uniformity of the air outlet of the fan assembly, and effectively improves the Operational performance of fan components.
  • the vortex tongue further includes a tongue body, the diffuser part and the overflow part are arranged on the tongue body, and the diffuser part is recessed in the tongue body.
  • the depth of the middle part of the diffuser is greater than the depth of both ends.
  • the diffuser is cut along the axial direction of the wind rotor, and the diffuser includes one arc or multiple connected arcs.
  • the diffuser is intercepted along the axial direction of the wind rotor, and the height of the diffuser rises synchronously from the middle of the diffuser to both ends.
  • the height of the diffuser gradually increases in the direction of the wind outlet of the volute.
  • the diffuser is cut along the radial direction of the wind rotor, the diffuser includes a straight line, and the first included angle between the straight line and the horizontal plane is greater than 8° and less than or equal to 12°.
  • the diffuser is intercepted along the radial direction of the wind rotor, the diffuser includes an arc line, and the second angle between the tangent line near the end of the wind rotor and the horizontal plane of the arc line is greater than 8° and less than or equal to 12°.
  • the diffuser is connected to the inner wall of the shell body 104 .
  • rounded corners are provided between the diffuser and the inner wall of the shell body 104 .
  • the ratio of the maximum depth of the diffuser to the axial dimension of the swirl tongue is greater than or equal to 0.05 and less than or equal to 0.1.
  • the vortex tongue also includes a sinking platform, and the sinking platform is arranged on the flow passage part and on both sides of the flow expansion part.
  • the air inlets of the volute are located on both sides of the wind rotor; the fan assembly further includes a collector, which is arranged at the air inlet of the volute.
  • the volute includes a first casing connected to a second casing; the first casing is provided with a diffuser part and a flow passage part.
  • the second aspect of the present application provides an air conditioner, including: the fan assembly of any one of the above technical solutions.
  • the air conditioner proposed in this application includes the fan assembly of any one of the above technical solutions. Therefore, all the beneficial effects of the fan assembly with the above technical solutions will not be discussed one by one here.
  • Fig. 1 is a schematic structural view of a fan assembly (hidden wind wheel) according to an embodiment of the present application;
  • Fig. 2 is a side view of the fan assembly shown in Fig. 1;
  • Fig. 3 is a sectional view of the fan assembly shown in Fig. 1;
  • Fig. 4 is a schematic structural view of the first housing in the fan assembly shown in Fig. 1;
  • Fig. 5 is a side view of the first housing shown in Fig. 4;
  • Fig. 6 is a partially enlarged view at A of the first casing shown in Fig. 4;
  • Fig. 7 is a partially enlarged view of part B of the first casing shown in Fig. 5 .
  • FIGS. 1 to 7 A fan assembly and an air conditioner provided according to some embodiments of the present application are described below with reference to FIGS. 1 to 7 .
  • the dotted arrow in Fig. 3 represents the air outlet direction of the volute 102;
  • the dotted line L1 in Fig. 2 and Fig. 4 represents the reference plane L1
  • the straight line L2 in Fig. 7 represents the horizontal plane, and the direction indicated by the dotted line O in Fig. 4 is the direction of the wind wheel Axial.
  • the first embodiment of the present application proposes a fan assembly, including: a volute 102 and a wind wheel (not shown in the figure).
  • the volute 102 includes a casing body 104 and a volute tongue 112 connected to the opening of the casing body 104, at least part of the wind wheel is arranged in the casing body 104; during the operation of the fan assembly, the wind wheel The rotation can suck airflow from the outside into the shell body 104, and the airflow will be discharged after being pressurized by the wind wheel.
  • the present embodiment optimizes the shape of the volute 102, and the volute tongue 112 includes a flow-passing part 110 and a flow-diffusing part 108 used in conjunction to ensure that the flow-passing part 110 It is arranged higher than the diffuser 108 so that the relative position of the diffuser 108 is lower. In this way, the flow area at the location of the flow passage 110 at the volute tongue 112 can be effectively enlarged, thereby reducing the flow velocity of the air flow at the location of the flow passage 110 , so that the overall flow velocity of the fan assembly is relatively uniform.
  • the flow-flow part 110 is located on both sides of the diffuser part 108, so that the diffuser part 108 is located in the middle position, ensuring that the diffuser part 108
  • the distribution of the overflow portion 110 is matched with the distribution of the flow of air flowing out of the wind rotor.
  • the diffuser 108 is disposed lower than the flow-passing part 110 , so that the diffuser 108 can be used to increase the flow-flow area at its location, thereby reducing the airflow velocity at its location. In this way, through the cooperation of the above-mentioned overflow part 110 and the diffuser part 108, the uniformity of the air outlet of the fan assembly is ensured.
  • the fan assembly proposed in this embodiment can send out a larger air volume, satisfying air conditioning in a larger space.
  • the fan assembly proposed in this embodiment has a lower working sound, which improves the comfort of the fan assembly.
  • the fan assembly proposed in this embodiment has a smaller volume, meets lower cost or adapts to more diverse installation space requirements.
  • the shape of the volute 102 is optimized, and the volute tongue 112 includes the overflow part 110 and the diffuser 108 used in conjunction to reduce the flow velocity of the air flow at the position of the overflow part 110, ensuring the air outlet of the fan assembly.
  • the uniformity effectively improves the operation performance of the fan assembly.
  • the second embodiment of the present application proposes a fan assembly, on the basis of the first embodiment, further:
  • the volute tongue 112 further includes a tongue body 106 connected to the opening of the shell body 104 , and both the diffuser 108 and the overflow portion 110 are disposed on the tongue body 106 .
  • the overflow part 110 is arranged flush with the inner wall of the tongue body 106.
  • the air flow is directly guided and divided through the inner wall of the tongue body 106, so that the air flow after being pressurized by the wind wheel passes through Flow section 110 and finally discharged.
  • the inner wall of the tongue body 106 defines the above-mentioned overflow portion 110 .
  • the diffuser 108 is recessed in the tongue body 106 .
  • the diffuser 108 is arranged lower than the overflow portion 110, that is, it is ensured that the flow area at the position of the diffuser 108 is larger than the flow area at the position of the overflow portion 110, thereby reducing the flow rate of the diffuser to a certain extent.
  • the flow velocity of the airflow at the location of the part 108 and then make the flow velocity of the airflow at the location of the diffuser part 108 consistent with the flow velocity of the airflow at the location of the overflow part 110, and realize the uniform air supply of the whole fan assembly.
  • a groove is disposed inside the tongue body 106 , and the above-mentioned diffuser portion 108 is defined by the depression.
  • the structure of the volute tongue 112 is simple, and can simplify the structure of the volute tongue 112 and the entire fan assembly, while facilitating the manufacture of the volute tongue 112 and the entire fan assembly.
  • the concave diffuser 108 can further reduce the wind resistance at its location. In this way, under the same air volume, the resistance in the volute 102 can be overcome by higher static pressure, and meanwhile the air volume can be distributed more evenly and reasonably in the volute 102 .
  • the diffuser 108 can be directly connected to the shell body 104, or a rounded corner can be set between the diffuser 108 and the shell body 104, and then the diffuser 108 can be formed by the rounded corner. Connect with the shell body 104.
  • the above two methods can ensure a smooth connection between the diffuser 108 and the inner wall of the shell body 104 .
  • the third embodiment of the present application proposes a fan assembly, on the basis of the second embodiment, further:
  • the depth of the middle part of the diffuser 108 is greater than the depth of both ends.
  • the reference plane L1 along the axial direction of the wind rotor, the center of the diffuser 108 is located on the reference plane L1, along the axial direction of the wind rotor, from the reference plane L1
  • the depth of the middle part of the diffuser part 108 is greater than the depth of both ends.
  • the depth of the diffuser 108 is the depth of the depression of the diffuser 108 .
  • the depth of the diffuser 108 is optimized, so that along the axial direction of the wind rotor, the depth of the middle of the diffuser 108 is greater than the depth of both ends. In this way, along the axial direction of the wind rotor, the depth of the diffuser portion 108 decreases gradually from the center to both sides, which also makes the diffuser effect of the diffuser portion 108 gradually decrease along the axial direction of the wind rotor. That is, along the axial direction of the wind rotor, the flow area gradually decreases from the middle of the diffuser 108 to the two sides.
  • the depth of the diffuser 108 is further optimized on the basis that the diffuser 108 is provided on the volute tongue 112, so that the depth of the diffuser 108 matches the air volume at its location, ensuring that the diffuser 108 is The depth of the reference plane L1 is the largest, and the depth gradually decreases on both sides. In this way, the flow velocity of the air flow at the position where the diffuser 108 is located can be guaranteed to be consistent.
  • the diffuser portion 108 is cut along the axial direction of the wind rotor, and the diffuser portion 108 may include one arc, or may include multiple connected arcs.
  • the depth of the reference plane L1 increases or decreases gradually, and ensures that the reference plane L1 is in a smooth state in the axial direction of the wind rotor.
  • the flow part 108 will not generate wind resistance in the volute 102, so as to ensure the air supply efficiency of the fan assembly.
  • the diffuser 108 is cut along the axial direction of the wind wheel, and the height of the diffuser 108 rises synchronously from the middle to both ends of the diffuser 108 . That is, the diffuser 108 is cut along the axial direction of the wind wheel, and the diffuser 108 is arranged symmetrically with respect to the reference plane L1.
  • the shape of the diffuser 108 is optimized according to the distribution law of the air volume, so as to ensure that the diffuser 108 is intercepted along the axial direction of the wind wheel, and the diffuser 108 is arranged symmetrically with respect to the reference plane L1. That is to say, it is ensured that the shape of the diffuser 108 matches the air volume distribution, and that the reference plane L1 is in a smooth state in the axial direction of the wind wheel.
  • the overall structure of the diffuser 108 is coordinated; The diffuser 108 will not generate wind resistance in the volute 102, so as to ensure the air supply efficiency of the fan assembly.
  • the fourth embodiment of the present application proposes a fan assembly, on the basis of the second embodiment, further:
  • the diffuser 108 is connected to one end of the inner wall of the shell body 104 , and is lower than the end of the diffuser 108 connected to the inner wall of the tongue body 106 . That is, along the air outlet direction of the volute 102 , the height of the diffuser 108 gradually increases.
  • the smooth connection between the diffuser 108 and the inner wall of the volute tongue 112 is ensured.
  • the airflow can be guaranteed to flow out of the shell body 104 smoothly, and the airflow can be ensured to be in a state of smooth transition when passing through the diffuser 108 .
  • the fifth embodiment of the present application proposes a fan assembly, on the basis of the fourth embodiment, further:
  • the air outlet 124 of the volute 102 is set horizontally.
  • the diffuser portion 108 is cut along the radial direction of the wind wheel, and the diffuser portion 108 includes a straight line.
  • the first included angle ⁇ between the straight line and the horizontal plane L2 is greater than 8° and less than or equal to 12°. That is, along the air outlet direction of the volute 102, ensure that there is an inclination angle of 8° to 12° between the wall surface of the diffuser 108 and the air supply direction, and ensure that the diffuser 108 faces the position of the side of the housing body 104 lower.
  • the airflow pressurized by the wind wheel first flows to the position where the diffuser 108 and the flow passage 110 are located; since there is an 8° to 12°
  • the angle of inclination allows the air flow to flow smoothly to the diffuser 108; and because the diffuser 108 is lower than the diffuser 108, it ensures that the flow velocity of the air flowing through the diffuser 108 is reduced, and is consistent with the flow through the flow portion 110
  • the flow rate of the airflow matches.
  • the air supply speed of the entire fan assembly can be guaranteed to be uniform, and secondly, the airflow can be ensured to flow through the diffuser 108 stably and efficiently, so as to reduce the working noise of the fan assembly and improve the air supply efficiency of the fan assembly.
  • the first included angle ⁇ can be 8°, 9°, 10°, 11°, 12°, etc., which are not specifically limited here, as long as noise reduction and air supply efficiency can be achieved, any It is achievable and understandable to those skilled in the art.
  • the sixth embodiment of the present application proposes a fan assembly, on the basis of the fourth embodiment, further:
  • the air outlet 124 of the volute 102 is set horizontally.
  • the diffuser 108 is cut along the radial direction of the wind wheel, and the diffuser 108 includes arc lines (this embodiment is not shown in the figure).
  • the arc line has a second included angle between the tangent line near the end of the wind rotor and the horizontal plane L2, and the second included angle is greater than 8° and less than or equal to 12°. That is, along the air outlet direction of the volute 102, ensure that there is an inclination angle of 8° to 12° between the wall surface of the diffuser 108 and the air supply direction, and ensure that the diffuser 108 faces the position of the side of the housing body 104 lower.
  • the airflow pressurized by the wind wheel first flows to the position where the diffuser 108 and the flow passage 110 are located; since there is an 8° to 12°
  • the angle of inclination allows the air flow to flow smoothly to the diffuser 108; and because the diffuser 108 is lower than the diffuser 108, it ensures that the flow velocity of the air flowing through the diffuser 108 is reduced, and is consistent with the flow through the flow portion 110
  • the flow rate of the airflow matches.
  • the air supply speed of the entire fan assembly can be guaranteed to be uniform, and secondly, the airflow can be ensured to flow through the diffuser 108 stably and efficiently, so as to reduce the working noise of the fan assembly and improve the air supply efficiency of the fan assembly.
  • the second included angle may be 8°, 9°, 10°, 11°, 12°, etc., which are not specifically limited here, as long as noise reduction and air supply efficiency can be achieved, all are It can be realized and can be understood by those skilled in the art.
  • the seventh embodiment of the present application proposes a fan assembly, on the basis of the second embodiment, further:
  • this embodiment optimizes the ratio of the maximum depth H of the diffuser 108 to the axial dimension L of the volute tongue 112, so as to ensure that the maximum depth H of the diffuser 108 and the axial dimension L of the volute tongue 112
  • the ratio to dimension L is greater than or equal to 0.05 and less than or equal to 0.1. In this way, it is ensured that the maximum recessed depth of the diffuser 108 in the volute tongue 112 matches, that is, it is ensured that the maximum recessed size of the diffuser 108 in the volute tongue 112 is appropriate.
  • the maximum depth H of the diffuser 108 directly affects its diffuser effect. That is to say, the greater the maximum depth H of the diffuser 108 is, the better the diffuser effect is at the position with the largest depth, and the better the effect of reducing the flow velocity of the airflow is. Therefore, in this embodiment, the ratio of the maximum depth H of the diffuser 108 to the axial dimension L of the volute tongue 112 is designed to be greater than or equal to 0.05, which ensures sufficient diffuser effect of the diffuser 108 .
  • the ratio of the maximum depth H of the diffuser portion 108 to the axial dimension L of the volute tongue 112 is designed to be less than or equal to 0.1, thereby ensuring that the structure of the diffuser 108 matches the structure of the volute tongue 112, while ensuring the effect of flow diffusion The strength of the volute tongue 112 is ensured, thereby ensuring the service life of the volute tongue 112 and the entire fan assembly.
  • the ratio of the maximum depth H of the diffuser portion 108 to the axial dimension L of the volute tongue 112 may be 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, etc., which is not specifically limited here, as long as it is It is achievable that the diffuser part 108 has sufficient diffuser effect and strong strength, and those skilled in the art can also understand.
  • the eighth embodiment of the present application proposes a fan assembly, on the basis of the second embodiment, further:
  • the fan assembly further includes a countertop 114 .
  • the sunken platform 114 is disposed on the flow-passing portion 110 and located on both sides of the flow-diffusing portion 108 .
  • a sunken platform 114 is provided in the overflow part 110, which can ensure the minimum gap between the inner wall of the volute 102 and the outer edge of the wind wheel at the volute tongue 112, and at the same time reduce the impact of the air flow on the volute 102, optimizing the vortex
  • the flow field inside the shell 102 effectively suppresses the eddy current generated by the airflow at the vortex tongue 112, while ensuring the performance of the fan assembly, it effectively reduces the eddy current noise of the fan, thereby improving the use comfort of the fan assembly and ensuring the delivery of the fan assembly. wind efficiency.
  • the swirl tongue 112 further includes a sunken platform 114 , the sunken platform 114 is arranged on the tongue body 106 , and the diffuser 108 is located between the two sunken platforms 114 . That is to say, in this embodiment, the above-mentioned sunken platform 114 is provided at the position where the volute tongue 112 is close to the two side walls of the volute 102, and it is ensured that the sunken platform 114 is located on both sides of the diffuser 108, and that the diffuser 108 is located on the two sunken platforms. Between 114.
  • the minimum gap between the volute tongue 112 and the outer edge of the wind wheel can be ensured, and the impact of the airflow on the volute tongue 112 can be reduced at the same time, and the volute shell can be optimized.
  • the flow field inside 102 can effectively restrain the airflow from generating eddy current at the vortex tongue 112, while ensuring the performance of the fan assembly, it can effectively reduce the eddy current noise of the fan, thereby improving the use comfort of the fan assembly and ensuring the air supply of the fan assembly efficiency.
  • the air inlet 122 of the volute 102 is located on both sides in the axial direction of the wind rotor, and the air outlet 124 of the volute 102 is located on the radial side of the wind rotor. .
  • external air can enter the volute 102 from both sides in the axial direction of the rotor, and be discharged from the air outlet 124 on the radial side of the rotor after being pressurized by the rotor.
  • the fan assembly further includes a collector 116 .
  • the current collector 116 is disposed on the volute 102 and may be located at the air inlet 122 of the volute 102 . In this way, during the use of the fan assembly, the collector 116 can have a good flow collecting and guiding effect at the air inlet 122 of the volute 102, thereby improving the air supply volume and air supply efficiency of the fan assembly.
  • the volute 102 includes a first housing 118 connected to a second housing 120 , and the first housing 118 is provided with the above-mentioned diffuser 108 and overcurrent section 110.
  • the first housing 118 is the lower housing of the volute 102
  • the second housing 120 is the upper housing of the volute 102
  • the first housing 118 is provided with the above-mentioned volute tongue 112
  • the volute tongue 112 is provided with the above-mentioned expander.
  • the flow part 108 and the flow part 110 is provided with the above-mentioned expander.
  • the ninth embodiment of the present application provides an air conditioner, including the fan assembly according to any one of the first to eighth embodiments.
  • the air conditioner proposed in this embodiment includes the fan assembly of any one of the above embodiments. Therefore, it has all the beneficial effects of the above-mentioned fan assembly, which will not be discussed one by one here.
  • the first specific embodiment of the present application proposes a fan assembly, including a volute 102 and a wind wheel.
  • the shape of the volute 102 is optimized, and the volute tongue 112 includes a flow-passing part 110 and a flow-diffusing part 108 for cooperating, ensuring that the flow-passing part 110 is set higher than the flow-diffusing part 108, so that the flow-flow part 108 relatively low position.
  • the flow area at the location of the flow passage 110 at the volute tongue 112 can be effectively enlarged, thereby reducing the flow velocity of the air flow at the location of the flow passage 110 , so that the overall flow velocity of the fan assembly is relatively uniform.
  • the volute tongue 112 also includes a tongue body 106, the tongue body 106 is connected to the opening of the housing body 104, and the diffuser 108 and the overflow portion 110 are both arranged on the tongue body 106 ; the overflow part 110 is arranged flush with the inner wall of the tongue body 106 , and the diffuser part 108 is recessed in the tongue body 106 .
  • the depth of the diffuser 108 is optimized so that along the axial direction of the rotor, the depth of the middle of the diffuser 108 is greater than the depth of both ends. That is, along the axial direction of the wind rotor, the depth of the diffuser portion 108 gradually decreases from the center to both sides, so that along the axial direction of the wind rotor, the diffuser effect of the diffuser portion 108 gradually decreases.
  • the diffuser 108 is intercepted along the axial direction of the wind rotor, and the diffuser 108 may include one arc or multiple connected arcs to ensure that the reference plane L1 is in a smooth position in the axial direction of the rotor. state.
  • the diffuser 108 is cut along the axial direction of the wind wheel, and the diffuser 108 is arranged symmetrically with respect to the reference plane L1 to ensure that the shape of the diffuser 108 matches the air volume distribution.
  • the height of the diffuser 108 gradually increases to ensure that the air flow passes through the diffuser 108 smoothly, and ensures that the airflow is in a state of smooth transition when passing through the diffuser 108 .
  • the air outlet 124 of the volute 102 is set horizontally.
  • the diffuser 108 is cut along the radial direction of the wind wheel.
  • a first included angle ⁇ is formed between the straight line and the horizontal plane L2, and the first included angle ⁇ is greater than 8° and less than or equal to 12°.
  • ° when the diffuser 108 includes an arc line, the arc line forms a second angle between the tangent near one end of the wind wheel and the horizontal plane L2, and the second angle is greater than 8° and less than or equal to 12° .
  • the maximum depth H of the diffuser 108 and the axial dimension L of the volute tongue 112 are optimized to ensure the ratio of the maximum depth H of the diffuser 108 to the axial dimension L of the volute tongue 112 , greater than or equal to 0.05 and less than or equal to 0.1.
  • the swirl tongue 112 further includes a sunken platform 114 , and the sunken platform 114 is arranged on the overflow part 110 and is located on both sides of the diffuser part 108 .
  • the minimum gap between the inner wall of the volute 102 and the outer edge of the wind wheel can be guaranteed, and the impact of the airflow on the volute 102 can be reduced, the flow field inside the volute 102 can be optimized, and the airflow at the volute tongue 112 can be effectively suppressed.
  • the generation of eddy current effectively reduces the eddy current noise of the fan while ensuring the performance of the fan assembly, thereby improving the comfort of the fan assembly and ensuring the air supply efficiency of the fan assembly.
  • the sunken platform 114 is disposed on the volute tongue 112
  • the diffuser 108 is located between the two sunken platforms 114 .
  • the air inlet 122 of the volute 102 is located on both sides in the axial direction of the wind rotor, and the air outlet 124 of the volute 102 is located on the radial side of the wind rotor.
  • a collector 116 is provided at the air inlet 122 of the volute 102, and the collector 116 can have a good flow collecting and guiding effect at the air inlet 122 of the volute 102, thereby increasing the air supply volume of the fan assembly. and air efficiency.
  • the fan assembly is the core component of the air conditioner, and its performance determines the size, performance and sound quality of the air conditioner.
  • air conditioners are generally noisy, large in size, and poor in heat transfer.
  • the present application proposes a fan assembly, which solves the above-mentioned technical problems of the air conditioner, such as high noise, large size, and poor heat exchange effect.
  • the fan assembly proposed by the present application includes a volute 102, a wind wheel, a diffuser 108 and a flow passage 110;
  • the volute 102 includes a shell body 104 and is connected to the shell The swirl tongue 112 at the opening of the body 104 .
  • the volute tongue 112 includes a cooperating diffuser 108 and an overflow portion 110 , and the diffuser 108 is in a concave state and lower than the overflow portion 110 (the concave direction points to the vortex tongue 112 external).
  • FIG. 4 the volute tongue 112 includes a cooperating diffuser 108 and an overflow portion 110 , and the diffuser 108 is in a concave state and lower than the overflow portion 110 (the concave direction points to the vortex tongue 112 external).
  • a plane with equal distances from the two axial end faces of the rotor is defined as the reference plane L1 , and the diffuser 108 is cut along the axial direction of the rotor, and the diffuser 108 is arranged symmetrically with respect to the reference plane L1 .
  • the diffuser 108 is cut along the radial direction of the wind wheel. As shown in FIG.
  • the diffuser 108 when the diffuser 108 includes a straight line, a first included angle ⁇ is formed between the straight line and the horizontal plane L2, and the first included angle ⁇ is greater than 8 ° and less than or equal to 12 °; when the diffuser 108 includes an arc line, the arc line forms a second angle between the tangent near one end of the wind wheel and the horizontal plane L2, and the second angle is greater than 8 ° and less than or equal to 12°.
  • the ratio of the maximum depth H of the diffuser 108 to the axial dimension of the volute tongue 112 is greater than or equal to 0.05 and less than or equal to 0.1.
  • the diffuser portion 108 is cut along the axial direction of the wind wheel, and the diffuser portion 108 includes one arc or multiple connected arcs.
  • the diffuser 108 may be directly connected to the inner wall of the housing body 104 , or a fillet may be provided between the diffuser 108 and the inner wall of the housing body 104 .
  • a sunken platform 114 may be provided at the position of the overflow portion 110 .
  • the air conditioner using the fan assembly proposed by this application can send out a larger air volume to meet air conditioning in a larger space.
  • the air conditioner using the fan assembly proposed in this application has lower noise, which can effectively improve the comfort of the air conditioner.
  • the air conditioner using the fan assembly proposed by the application has higher static pressure to overcome the resistance in the air supply pipeline and reduce the installation of equipment in the air conditioner.
  • the heat exchanger surface of the air conditioner using the fan assembly proposed by the present application has a more uniform wind speed distribution.
  • the air conditioner using the fan assembly proposed by this application has a smaller volume, meets lower cost or adapts to more diverse installation space requirements.
  • connection refers to two or more than two.
  • connection can be fixed connection, detachable connection, or integral connection; it can be directly connected or through an intermediate The medium is indirectly connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

本申请提供了一种风机组件和空调器,风机组件包括:涡壳,涡壳包括壳本体和连接在壳本体的开口处的涡舌;风轮,至少部分设置在壳本体内;涡舌包括扩流部和过流部,沿风轮的轴向,过流部位于扩流部的两侧,且过流部高于扩流部。本申请对涡壳的形状进行优化,涡舌包括配合使用的过流部和扩流部,降低过流部所在位置的气流的流速,保证了风机组件的出风均匀性,有效提升了风机组件的运行性能。

Description

风机组件和空调器
本申请要求于2021年07月07日提交到中国国家知识产权局、申请号为“202121538970.9”、申请名称为“风机组件和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及风机技术领域,具体而言,涉及一种风机组件和空调器。
背景技术
风机组件是空调器的核心零部件,其性能优劣决定着空调器的尺寸、性能及声品质。相关技术中,风机组件的在出风处的出风速度不同(中部的流速大于周侧的流速),这使得风机组件以及空调器的噪声较大,且影响了风机的送风效率。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。
为此,本申请第一方面提供了一种风机组件。
本申请第二方面提供了一种空调器。
本申请第一方面提供了一种风机组件,包括:涡壳,涡壳包括壳本体和连接在壳本体的开口处的涡舌;风轮,至少部分设置在壳本体内;涡舌包括扩流部和过流部,沿风轮的轴向,过流部位于扩流部的两侧,且过流部高于扩流部。
本申请提出的风机组件包括涡壳和风轮。其中,涡壳包括壳本体和连接在壳本体的开口处的涡舌,风轮的至少部分设置在壳本体内。在风机组件运行过程中,风轮转动可从外部吸入气流至壳本体内,气流经过风轮加压后流经涡舌后排出。
特别地,在风机组件运行过程中,从风轮流出的气流的分布是不均匀的,在风轮的轴向上,越靠近中部的位置的风量越大,而风量越大的地方气流流速 也相应越快。因此,本申请对涡舌的形状进行优化,涡舌包括扩流部和过流部,并且保证过流部高于扩流部设置,使得扩流部的相对位置较低。这样,可有效扩大过流部所在位置的过流面积,进而降低过流部所在位置的气流的流速,使得风机组件的整体流速相对较为均匀。
并且,沿风轮的轴向,过流部位于扩流部的两侧,使得扩流部位于中部的位置,保证了扩流部与过流部的分布位于与风轮流出的气流量分布相匹配。扩流部低于过流部设置,使得扩流部可用于增大其所在位置的过流面积,进而降低其所在位置的气流流速。这样,通过上述过流部和扩流部的配合,保证了风机组件的出风均匀性。
这样,在相同工作声音的情况下,本申请提出的风机组件能送出更大的风量,满足更大空间的空气调节。对应地,在相同风量的情况下,本申请提出的风机组件具有更低的工作声音,提高了风机组件的舒适性。对应地,在相同风量以及相同工作声音的情况下,本申请提出的风机组件具有更小的体积,满足更低的成本或者适应更多元化的安装空间要求。
因此,本申请对涡壳的形状进行优化,涡舌包括配合使用的过流部和扩流部,降低过流部所在位置的气流的流速,保证了风机组件的出风均匀性,有效提升了风机组件的运行性能。
根据本申请上述技术方案的风机组件,还可以具有以下附加技术特征:
在上述技术方案中,涡舌还包括舌本体,扩流部和过流部设置在舌本体,扩流部凹陷于舌本体设置。
在一些可能的设计方案中,沿风轮的轴向,扩流部中部的深度大于两端部的深度。
在一些可能的设计方案中,沿风轮的轴向截取扩流部,扩流部包括一个弧线、或包括多个相连接的弧线。
在一些可能的设计方案中,沿风轮的轴向截取扩流部,自扩流部的中部向两端部,扩流部的高度同步上升。
在一些可能的设计方案中,在涡壳的出风方向上,扩流部的高度逐渐升高。
在一些可能的设计方案中,沿风轮的径向截取扩流部,扩流部包括直线,直线与水平面之间的第一夹角,大于8°并小于或等于12°。
在一些可能的设计方案中,沿风轮的径向截取扩流部,扩流部包括圆弧线,圆弧线在靠近风轮一端的切线与水平面之间的第二夹角,大于8°并小于或等于12°。
在一些可能的设计方案中,扩流部衔接于壳本体104的内壁。
在一些可能的设计方案中,扩流部与壳本体104的内壁之间设置有圆角。
在一些可能的设计方案中,扩流部的最大深度与涡舌的轴向尺寸的比值,大于或等于0.05并小于或等于0.1。
在一些可能的设计方案中,涡舌还包括沉台,沉台设置在过流部,位于扩流部的两侧。
在一些可能的设计方案中,沿风轮轴向,涡壳的进风口位于风轮的两侧;风机组件还包括集流器,集流器设置在涡壳的进风口。
在一些可能的设计方案中,涡壳包括相连接第一壳体和第二壳体;第一壳体设有扩流部和过流部。
本申请第二方面提出了一种空调器,包括:上述任一技术方案的风机组件。
本申请提出的空调器,包括上述任一技术方案的风机组件。因此,具有上述技术方案的风机组件的全部有益效果,在此不再一一论述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本申请一个实施例的风机组件的结构示意图(隐藏风轮);
图2是图1所示风机组件的侧视图;
图3是图1所示风机组件的剖视图;
图4是图1所示风机组件中第一壳体的结构示意图;
图5是图4所示第一壳体的侧视图;
图6是图4所示第一壳体的A处局部放大图;
图7是图5所示第一壳体的B处局部放大图。
其中,图1至图7中附图标记与部件名称之间的对应关系为:
102涡壳,104壳本体,106舌本体,108扩流部,110过流部,112涡舌,114沉台,116集流器,118第一壳体,120第二壳体,122进风口,124出风口。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图7来描述根据本申请一些实施例提供的风机组件和空调器。图3中虚线箭头表示涡壳102的出风方向;图2和图4中点画线L1表示基准面L1,图7中直线L2表示水平面,图4中点画线O所指引的方向为风轮的轴向。
如图1、图2和图3所示,本申请第一个实施例提出了一种风机组件,包括:涡壳102和风轮(图中未示出)。
其中,如图3所示,涡壳102包括壳本体104和连接在壳本体104的开口处的涡舌112,风轮的至少部分设置在壳本体104内;在风机组件运行过程中,风轮转动可从外部吸入气流至壳本体104内,气流经过风轮加压后经过排出。
特别地,在风机组件运行过程中,从风轮流出的气流的分布是不均匀的,在风轮的轴向上,越靠近中部的位置的风量越大,而风量越大的地方气流流速也相应越快。因此,如图4、图5和图6所示,本实施例对涡壳102的形状进行优化,在涡舌112包括有配合使用的过流部110和扩流部108,保证过流部110高于扩流部108设置,使得扩流部108的相对位置较低。这样,可有效扩大涡舌112处过流部110所在位置的过流面积,进而降低过流部110所在位置的气流的流速,使得风机组件的整体流速相对较为均匀。
并且,如图4、图5和图6所示,沿风轮的轴向,过流部110位于扩流部108的两侧,使得扩流部108位于中部的位置,保证了扩流部108与过流部110的分布位于与风轮流出的气流量分布相匹配。扩流部108低于过流部110设置,使得扩流部108可用于增大其所在位置的过流面积,进而降低其所在位置的气流流速。这样,通过上述过流部110和扩流部108的配合,保证了风机组件的出风均匀性。
这样,在相同工作声音的情况下,本实施例提出的风机组件能送出更大的风量,满足更大空间的空气调节。对应地,在相同风量的情况下,本实施例提出的风机组件具有更低的工作声音,提高了风机组件的舒适性。对应地,在相同风量以及相同工作声音的情况下,本实施例提出的风机组件具有更小的体积,满足更低的成本或者适应更多元化的安装空间要求。
因此,本实施例对涡壳102的形状进行优化,涡舌112包括配合使用的过流部110和扩流部108,降低过流部110所在位置的气流的流速,保证了风机组件的出风均匀性,有效提升了风机组件的运行性能。
本申请第二个实施例提出了一种风机组件,在实施例一的基础上,进一步地:
如图4和图6所示,涡舌112还包括舌本体106,舌本体106连接到壳本体104的开口处,扩流部108和过流部110均设置在舌本体106上。
此外,过流部110平齐于舌本体106的内壁设置,在风机组件运行的过程中,直接通过舌本体106的内壁对气流进行导流和分流,使得经过风轮加压后的气流流经过流部110并最终排出。具体地,舌本体106的内壁限定出上述过流部110。
此外,扩流部108凹陷于舌本体106设置。这样,保证扩流部108低于过流部110设置,也即保证了扩流部108所在位置的过流面积要大于过流部110所在位置的过流面积,进而在一定程度上降低扩流部108所在位置的气流的流速,进而使得扩流部108所在位置的气流流速与过流部110所在位置的气流流速一致,实现了整个风机组件的匀速送风。具体地,舌本体106的内部设置有凹槽,通过该凹陷限定出上述扩流部108。
本实施例中涡舌112的结构简单,并且可简化涡舌112以及整个风机组件 的结构,同时便于涡舌112以及整个风机组件的制造。并且,凹陷的扩流部108可进一步降低其所在位置的风阻。这样,在相同风量的情况下,可通过更高的静压来克服涡壳102中的阻力,同时使得风量在涡壳102内分布更加均匀合理。
此外,沿涡壳102的出风方向,扩流部108可以与壳本体104直接衔接,也可以在扩流部108可以与壳本体104之间设置圆角,进而通过圆角将扩流部108与壳本体104衔接起来。上述两种方式均可保证扩流部108与壳本体104的内壁之间平滑连接。
本申请第三个实施例提出了一种风机组件,在实施例二的基础上,进一步地:
如图2和图4所示,沿风轮的轴向,扩流部108中部的深度大于两端部的深度。具体地,定义到风轮两轴向端面距离相等的平面为基准面L1,沿风轮的轴向,扩流部108的中心位于基准面L1上,沿风轮的轴向,从基准面L1到两侧,扩流部108中部的深度大于两端部的深度。具体地,扩流部108的深度即为扩流部108的凹陷深度。
本实施对扩流部108的深度进行优化,使得沿风轮的轴向,扩流部108中部的深度大于两端部的深度。这样,沿风轮的轴向,扩流部108由中心向两侧的深度逐渐减小,也就使得沿风轮的轴向,扩流部108的扩流效果逐渐减小。也即,在沿风轮的轴向,从扩流部108的中部到两侧位置过流面积逐渐减小。
特别地,在风机组件运行过程中,沿风轮的轴向,基准面L1处的风量最大,从基准面L1向两侧的风量逐渐减少。因此,本实施例在涡舌112设置扩流部108的基础上,对扩流部108的深度进一步优化,使得在扩流部108的深度与其所在位置的风量相匹配,保证扩流部108在基准面L1的深度最大,在两侧的深度逐渐降低。这样,可保证扩流部108所在位置的气流流速一致。
在该实施例中,进一步地,如图4所示,沿风轮的轴向截取扩流部108,扩流部108可以包括一个弧线、也可以包括多个相连接的弧线。这样,基准面L1的深度逐渐增大或减小,并保证了基准面L1在风轮的轴向上处于平滑的状态,一方面保证扩流部108的整体结构协调,另一方面保证了扩流部108不会在涡壳102内产生风阻,以保证风机组件的送风效率。
在该实施例中,进一步地,如图4所示,沿风轮的轴向截取扩流部108,自扩流部108的中部向两端部,扩流部108的高度同步上升。也即,沿风轮的轴向截取扩流部108,扩流部108关于基准面L1对称设置。
特别地,在风机组件运行过程中,从风轮中流出的气流从基准面L1朝向两侧是逐渐较小的,并且风量的多少负相关于其所在位置到基准面L1的距离。因此,本实施例根据风量的分布规律对扩流部108的形状进行优化,保证沿风轮的轴向截取扩流部108,扩流部108关于基准面L1对称设置。也即,保证了扩流部108的形状与风量分布相匹配,保证了基准面L1在风轮的轴向上处于平滑的状态,一方面保证扩流部108的整体结构协调,另一方面保证了扩流部108不会在涡壳102内产生风阻,以保证风机组件的送风效率。
本申请第四个实施例提出了一种风机组件,在实施例二的基础上,进一步地:
如图5和图7所示,扩流部108连接于壳本体104内壁的一端,低于扩流部108连接于舌本体106内壁的一端。也即,沿涡壳102的出风方向,扩流部108的高度逐渐升高。
这样,通过对扩流部108的高度进行优化,保证了扩流部108与涡舌112的内壁的平滑连接。这样,在风机组件运行过程中,可保证气流顺畅地从壳本体104流出,并且保证了气流在经过扩流部108时处于平稳过渡的状态。
本申请第五个实施例提出了一种风机组件,在实施例四的基础上,进一步地:
如图5和图7所示,在空调器安装完成后,涡壳102的出风口124水平设置。其中,沿风轮的径向截取扩流部108,扩流部108包括直线。此外,该直线与水平面L2之间的第一夹角θ大于8°并小于或等于12°。也即,沿涡壳102的出风方向,保证扩流部108的壁面与送风方向之间存在8°到12°的倾斜角度,并且保证扩流部108朝向壳本体104的一侧的位置较低。
这样,在风机组件运行过程中,经过风轮加压后的气流首先流向扩流部108和过流部110所在的位置;由于扩流部108的壁面与水平面L2之间存在8°到12°的倾斜角度,使得气流可顺畅地流向扩流部108;并且由于扩流部108低于扩流部108,保证了流经扩流部108的气流的流速降低,并与流经过流部 110的气流的流速相匹配。这样,首先可保证整个风机组件的送风速度均匀,其次是可保证气流平稳且高效地流经扩流部108,以降低风机组件的工作噪声,提升风机组件的送风效率。
具体实施例中,第一夹角θ可以为8°、9°、10°、11°、12°等,在此并不做出具体限定,只要是可以达到降噪和提升送风效率,均是可以实现的,本领域技术人员也是可以理解的。
本申请第六个实施例提出了一种风机组件,在实施例四的基础上,进一步地:
在空调器安装完成后,涡壳102的出风口124水平设置。其中,沿风轮的径向截取扩流部108,扩流部108包括圆弧线(图中未示出这一实施例)。此外,该圆弧线在靠近风轮一端的切线与水平面L2之间具有第二夹角,并且第二夹角大于8°并小于或等于12°。也即,沿涡壳102的出风方向,保证扩流部108的壁面与送风方向之间存在8°到12°的倾斜角度,并且保证扩流部108朝向壳本体104的一侧的位置较低。
这样,在风机组件运行过程中,经过风轮加压后的气流首先流向扩流部108和过流部110所在的位置;由于扩流部108的壁面与水平面L2之间存在8°到12°的倾斜角度,使得气流可顺畅地流向扩流部108;并且由于扩流部108低于扩流部108,保证了流经扩流部108的气流的流速降低,并与流经过流部110的气流的流速相匹配。这样,首先可保证整个风机组件的送风速度均匀,其次是可保证气流平稳且高效地流经扩流部108,以降低风机组件的工作噪声,提升风机组件的送风效率。
具体实施例中,第二夹角可以为8°、9°、10°、11°、12°等,在此并不做出具体限定,只要是可以达到降噪和提升送风效率,均是可以实现的,本领域技术人员也是可以理解的。
本申请第七个实施例提出了一种风机组件,在实施例二的基础上,进一步地:
如图2和图7所示,本实施例对扩流部108的最大深度H和涡舌112的轴向尺寸L的比值进行优化,保证扩流部108的最大深度H与涡舌112的轴向尺寸L的比值,大于或等于0.05并小于或等于0.1。这样,保证了扩流部 108在涡舌112的最大凹陷深度相匹配,也即保证了扩流部108在涡舌112的最大凹陷尺寸适宜。
具体地,扩流部108的最大深度H直接影响了其扩流效果。也就是说,扩流部108的最大深度H越大,其深度最大的位置的扩流效果越好,对气流的流速降低效果也就越好。因此,本实施例设计扩流部108的最大深度H与涡舌112的轴向尺寸L的比值大于或等于0.05,保证了扩流部108足够的扩流效果。
此外,若扩流部108的最大深度H与涡舌112的轴向尺寸L的比值过大,扩流部108会导致整个涡舌112的强度较低。因此,本实施例设计扩流部108的最大深度H与涡舌112轴向尺寸L的比值小于或等于0.1,进而保证扩流部108与涡舌112结构相匹配,在保证扩流效果的同时保证了涡舌112的强度,进而保证涡舌112以及整个风机组件的使用寿命。
具体实施例中,扩流部108的最大深度H与涡舌112的轴向尺寸L的比值可以为0.05、0.06、0.07、0.08、0.09、0.1等,在此并不做出具体限定,只要是可以包括扩流部108具有足够的扩流效果和较强的强度,均是可以实现的,本领域技术人员也是可以理解的。
本申请第八个实施例提出了一种风机组件,在实施例二的基础上,进一步地:
如图4和图6所示,风机组件还包括沉台114。其中,沉台114设置在过流部110,并且位于扩流部108的两侧。在过流部110设置有沉台114,可保证在涡舌112处,涡壳102的内壁与风轮外缘之间的最小间隙,同时可减小气流对涡壳102的冲击,优化了涡壳102内部的流场,有效抑制气流在涡舌112处产生涡流,在保证风机组件性能的同时,有效降低了风机的涡流噪声,进而改善了风机组件的使用舒适性,保证了风机组件的送风效率。
在该实施例中,进一步地,如图4和图6所示,涡舌112还包括沉台114,沉台114设置在舌本体106,扩流部108位于两个沉台114之间。也即,本实施例在涡舌112靠近涡壳102两侧壁的位置设置有上述沉台114,并且保证沉台114位于扩流部108的两侧,保证扩流部108位于两个沉台114之间。特别地,在风机组件运行过程中,通过上述沉台114的设置,可保证涡舌112与风 轮外缘之间的最小间隙,同时可减小气流对涡舌112的冲击,优化了涡壳102内部的流场,有效抑制气流在涡舌112处产生涡流,在保证风机组件性能的同时,有效降低了风机的涡流噪声,进而改善了风机组件的使用舒适性,保证了风机组件的送风效率。
在实施例一至实施例八的基础上,进一步地,如图1所示,涡壳102的进风口122位于风轮轴向的两侧,涡壳102的出风口124位于风轮径向的侧方。这样,在风机组件运行过程中,外部空气可从风轮轴向的两侧进入到涡壳102内部,经过风轮加压后从风轮径向侧方的出风口124排出。
在实施例一至实施例八的基础上,进一步地,如图1所示,风机组件还包括集流器116。其中,集流器116设置在涡壳102上,并可位于涡壳102的进风口122处。这样,在风机组件使用过程在,集流器116可在涡壳102的进风口122处起到良好的集流和导流效果,进而提升风机组件的送风量以及送风效率。
在实施例一至实施例八的基础上,进一步地,如图1所示,涡壳102包括相连接第一壳体118和第二壳体120,第一壳体118设有上述扩流部108和过流部110。具体地,第一壳体118为涡壳102的下壳体,第二壳体120为涡壳102的上壳体,第一壳体118设置有上述涡舌112,涡舌112设置有上述扩流部108和过流部110。
本申请第九个实施例提出了一种空调器,包括如实施例一至实施例八中任一个实施例的风机组件。
本实施例提出的空调器,因包括上述任一实施例的风机组件。因此,具有上述风机组件的全部有益效果,在此不再一一论述。
如图1、图2、图3和图4所示,本申请第一个具体实施例提出了一种风机组件,包括涡壳102和风轮。本实施例对涡壳102的形状进行优化,在涡舌112包括有配合使用的过流部110和扩流部108,保证过流部110高于扩流部108设置,使得扩流部108的相对位置较低。这样,可有效扩大涡舌112处过流部110所在位置的过流面积,进而降低过流部110所在位置的气流的流速,使得风机组件的整体流速相对较为均匀。
在该实施例中,进一步地,如图5所示,涡舌112还包括舌本体106, 舌本体106连接到壳本体104的开口处,扩流部108和过流部110均设置在舌本体106上;过流部110平齐于舌本体106的内壁设置,扩流部108凹陷于舌本体106设置。
在该实施例中,进一步地,如图4所示,对扩流部108的深度进行优化,使得沿风轮的轴向,扩流部108中部的深度大于两端部的深度。也即,沿风轮的轴向,扩流部108由中心向两侧的深度逐渐减小,也就使得沿风轮的轴向,扩流部108的扩流效果逐渐减小。此外,沿风轮的轴向截取扩流部108,扩流部108可以包括一个弧线、也可以包括多个相连接的弧线,保证了基准面L1在风轮的轴向上处于平滑的状态。此外,沿风轮的轴向截取扩流部108,扩流部108关于基准面L1对称设置,保证扩流部108的形状与风量分布相匹配。此外,沿涡壳102的出风方向,扩流部108的高度逐渐升高,保证气流顺畅地从扩流部108流过,并且保证了气流在经过扩流部108时处于平稳过渡的状态。
在该实施例中,进一步地,如图7所示,在空调器安装完成后,涡壳102的出风口124水平设置。沿风轮的径向截取扩流部108,当扩流部108包括直线时,该直线与水平面L2之间形成有第一夹角θ,并且第一夹角θ大于8°并小于或等于12°;当扩流部108包括圆弧线时,该圆弧线在靠近风轮一端的切线与水平面L2之间形成有第二夹角,并且第二夹角大于8°并小于或等于12°。
在该实施例中,进一步地,对扩流部108的最大深度H和涡舌112的轴向尺寸L进行优化,保证扩流部108的最大深度H与涡舌112的轴向尺寸L的比值,大于或等于0.05并小于或等于0.1。
在该实施例中,进一步地,如图6所示,涡舌112还包括沉台114,沉台114设置在过流部110,并且位于扩流部108的两侧。这样,可保证涡壳102的内壁与风轮外缘之间的最小间隙,同时可减小气流对涡壳102的冲击,优化了涡壳102内部的流场,有效抑制气流在涡舌112处产生涡流,在保证风机组件性能的同时,有效降低了风机的涡流噪声,进而改善了风机组件的使用舒适性,保证了风机组件的送风效率。具体地,沉台114设置在涡舌112,扩流部108位于两个沉台114之间。
在该实施例中,进一步地,如图1所示,涡壳102的进风口122位于风轮轴向的两侧,涡壳102的出风口124位于风轮径向的侧方。此外,涡壳102 的进风口122处设置有集流器116,集流器116可在涡壳102的进风口122处起到良好的集流和导流效果,进而提升风机组件的送风量以及送风效率。
具体实施例中,风机组件是空调器的核心零部件,其性能优劣决定着空调器的尺寸、性能及声品质。目前受于风机组件技术上的制约,空调器普遍噪声比较大,尺寸也比较大,换热效果差。本申请提出了一种风机组件,可上述空调器噪声大,尺寸大,换热效果差的技术问题。
如图1、图2、图3和图4所示,本申请提出的风机组件包括涡壳102、风轮、扩流部108和过流部110;涡壳102包括壳本体104和连接在壳本体104的开口处的涡舌112。其中,如图4所示,涡舌112包括配合使用的扩流部108和过流部110,且扩流部108呈下凹的状态并低于过流部110(下凹方向指向涡舌112的外部)。此外,如图4所示,定义到风轮两轴向端面距离相等的平面为基准面L1,沿风轮的轴向截取扩流部108,扩流部108关于基准面L1对称设置。此外,沿风轮的径向截取扩流部108,如图7所示,当扩流部108包括直线时,直线与水平面L2之间形成有第一夹角θ,第一夹角θ大于8°并小于或等于12°;当扩流部108包括圆弧线,圆弧线在靠近风轮一端的切线与水平面L2之间形成有第二夹角,第二夹角大于8°并小于或等于12°。此外,扩流部108的最大深度H与涡舌112的轴向尺寸的比值,大于或等于0.05并小于或等于0.1。此外,沿风轮的轴向截取扩流部108,扩流部108包括一个弧线、或包括多个相连接的弧线。此外,在涡壳102的送风方向上,扩流部108可以直接衔接于壳本体104的内壁,也可以是扩流部108与壳本体104的内壁之间设置有圆角。此外,如图6所示,可以在过流部110的位置设置有沉台114。
在相同噪声的情况下,应用本申请提出的风机组件的空调器能送出更大的风量,满足更大空间的空气调节。对应地,在相同风量的情况下,应用本申请提出的风机组件的空调器具有更低的噪声,可有效提升空调器的舒适性。
在相同风量的情况下,应用本申请提出的风机组件的空调器具有更高的静压,以克服送风管路中的阻力,减少空调器中设备安装。对应地,在相同风量的情况下,应用本申请提出的风机组件的空调器的换热器表面具有更均匀的风速分布。
在相同噪声和相同风量的情况下,应用本申请提出的风机组件的空调器具有更小的体积,满足更低的成本或者适应更多元化的安装空间要求。
在本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种风机组件,其中,包括:
    涡壳,所述涡壳包括壳本体和连接在所述壳本体的开口处的涡舌;
    风轮,至少部分设置在所述壳本体内;
    所述涡舌包括扩流部和过流部,沿所述风轮的轴向,所述过流部位于所述扩流部的两侧,且所述过流部高于所述扩流部。
  2. 根据权利要求1所述的风机组件,其中,
    所述涡舌还包括舌本体,所述扩流部和所述过流部设置在所述舌本体,所述扩流部凹陷于所述舌本体设置。
  3. 根据权利要求2所述的风机组件,其中,
    沿所述风轮的轴向,所述扩流部中部的深度大于两端部的深度。
  4. 根据权利要求3所述的风机组件,其中,
    沿所述风轮的轴向截取所述扩流部,所述扩流部包括一个弧线、或包括多个相连接的弧线。
  5. 根据权利要求2至4中任一项所述的风机组件,其中,
    在所述涡壳的出风方向上,所述扩流部的高度逐渐升高。
  6. 根据权利要求5所述的风机组件,其中,
    沿所述风轮的径向截取所述扩流部,所述扩流部包括直线,所述直线与水平面之间的第一夹角,大于8°并小于或等于12°;或
    沿所述风轮的径向截取所述扩流部,所述扩流部包括圆弧线,所述圆弧线在靠近所述风轮一端的切线与水平面之间的第二夹角,大于8°并小于或等于12°。
  7. 根据权利要求5所述的风机组件,其中,
    沿所述风轮的径向,所述扩流部衔接于所述壳本体的内壁;或
    沿所述风轮的径向,所述扩流部与所述壳本体的内壁之间设置有圆角。
  8. 根据权利要求2所述的风机组件,其中,
    所述扩流部的最大深度与所述涡舌的轴向尺寸的比值,大于或等于0.05并小于或等于0.1。
  9. 根据权利要求1至4中任一项所述的风机组件,其中,
    所述涡舌还包括沉台,所述沉台设置在所述过流部,位于所述扩流部的两侧。
  10. 根据权利要求1至4中任一项所述的风机组件,其中,
    沿所述风轮轴向,所述涡壳的进风口位于所述风轮的两侧;
    所述风机组件还包括集流器,所述集流器设置在所述涡壳的进风口。
  11. 一种空调器,其中,包括:
    权利要求1至10中任一项所述的风机组件。
PCT/CN2022/089939 2021-07-07 2022-04-28 风机组件和空调器 WO2023279817A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023572945A JP2024519553A (ja) 2021-07-07 2022-04-28 ファンアセンブリ及び空調機
BR112023024872A BR112023024872A2 (pt) 2021-07-07 2022-04-28 Conjunto de ventiladores, e, ar condicionado
CA3219902A CA3219902A1 (en) 2021-07-07 2022-04-28 Fan assembly and air conditioner
US18/564,013 US20240301893A1 (en) 2021-07-07 2022-04-28 Fan assembly and air conditioner
EP22836576.3A EP4368901A4 (en) 2021-07-07 2022-04-28 FAN ARRANGEMENT AND AIR CONDITIONING
KR1020237039784A KR20230172571A (ko) 2021-07-07 2022-04-28 팬 어셈블리 및 공기조화기
AU2022308067A AU2022308067A1 (en) 2021-07-07 2022-04-28 Fan assembly and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121538970.9U CN215490035U (zh) 2021-07-07 2021-07-07 风机组件和空调器
CN202121538970.9 2021-07-07

Publications (1)

Publication Number Publication Date
WO2023279817A1 true WO2023279817A1 (zh) 2023-01-12

Family

ID=79725074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089939 WO2023279817A1 (zh) 2021-07-07 2022-04-28 风机组件和空调器

Country Status (9)

Country Link
US (1) US20240301893A1 (zh)
EP (1) EP4368901A4 (zh)
JP (1) JP2024519553A (zh)
KR (1) KR20230172571A (zh)
CN (1) CN215490035U (zh)
AU (1) AU2022308067A1 (zh)
BR (1) BR112023024872A2 (zh)
CA (1) CA3219902A1 (zh)
WO (1) WO2023279817A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN215490035U (zh) * 2021-07-07 2022-01-11 广东美的暖通设备有限公司 风机组件和空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314020A (ja) * 1986-06-27 1988-01-21 Matsushita Electric Ind Co Ltd 横断流送風機
JP2005037001A (ja) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JP2007010240A (ja) * 2005-06-30 2007-01-18 Fujitsu General Ltd 空気調和機
CN101131163A (zh) * 2006-08-25 2008-02-27 浙江兴昌风机有限公司 改良结构的风机
JP2008089205A (ja) * 2006-09-29 2008-04-17 Daikin Ind Ltd 空気調和機
JP2009270778A (ja) * 2008-05-08 2009-11-19 Hitachi Appliances Inc 空気調和機
CN210196137U (zh) * 2019-07-12 2020-03-27 广东美的白色家电技术创新中心有限公司 离心风机及其蜗壳和家用电器
CN210565177U (zh) * 2019-10-10 2020-05-19 广东美的厨房电器制造有限公司 风机和烹饪器具
CN215490035U (zh) * 2021-07-07 2022-01-11 广东美的暖通设备有限公司 风机组件和空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518603A (zh) * 2011-12-19 2012-06-27 海尔集团公司 油烟机风机及安装有该风机的油烟机
CN103512064A (zh) * 2012-06-21 2014-01-15 博西华电器(江苏)有限公司 抽油烟机及其蜗壳、蜗舌
KR102143389B1 (ko) * 2013-03-20 2020-08-28 삼성전자주식회사 원심팬 및 이를 포함하는 공기조화기
US11193499B2 (en) * 2017-12-15 2021-12-07 Regal Beloit America, Inc. Centrifugal blower assembly and method for assembling the same
CN110939607A (zh) * 2018-09-25 2020-03-31 开利公司 风机壳体、风机以及设置有风机的运行系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6314020A (ja) * 1986-06-27 1988-01-21 Matsushita Electric Ind Co Ltd 横断流送風機
JP2005037001A (ja) * 2003-07-16 2005-02-10 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JP2007010240A (ja) * 2005-06-30 2007-01-18 Fujitsu General Ltd 空気調和機
CN101131163A (zh) * 2006-08-25 2008-02-27 浙江兴昌风机有限公司 改良结构的风机
JP2008089205A (ja) * 2006-09-29 2008-04-17 Daikin Ind Ltd 空気調和機
JP2009270778A (ja) * 2008-05-08 2009-11-19 Hitachi Appliances Inc 空気調和機
CN210196137U (zh) * 2019-07-12 2020-03-27 广东美的白色家电技术创新中心有限公司 离心风机及其蜗壳和家用电器
CN210565177U (zh) * 2019-10-10 2020-05-19 广东美的厨房电器制造有限公司 风机和烹饪器具
CN215490035U (zh) * 2021-07-07 2022-01-11 广东美的暖通设备有限公司 风机组件和空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4368901A4

Also Published As

Publication number Publication date
KR20230172571A (ko) 2023-12-22
CA3219902A1 (en) 2023-01-12
EP4368901A1 (en) 2024-05-15
JP2024519553A (ja) 2024-05-16
BR112023024872A2 (pt) 2024-02-15
CN215490035U (zh) 2022-01-11
US20240301893A1 (en) 2024-09-12
AU2022308067A1 (en) 2023-12-07
EP4368901A4 (en) 2024-11-06

Similar Documents

Publication Publication Date Title
US10436496B2 (en) Indoor unit for air-conditioning apparatus
JP2010117110A (ja) 空気調和機の室内機
JP2002243189A (ja) 天井カセット形空調機の流路構造
WO2011029376A1 (zh) 空调器风道装置及使用该风道装置的空调器
JP2000205589A (ja) 空気調和機
WO2023279817A1 (zh) 风机组件和空调器
WO2024222178A1 (zh) 网罩及风机设备
WO2021169197A1 (zh) 一种离心风机和空调装置
CN101915244A (zh) 带凸台的降噪增风蜗舌的贯流风机
CN108488936B (zh) 窗式空调
JP3649567B2 (ja) 貫流送風機
CN108375125B (zh) 窗式空调设备
CN108469073B (zh) 窗式空调设备
CN108443978B (zh) 空调设备
CN108507043B (zh) 导风圈、空调室外机及空调器
US11536290B2 (en) Fan coil unit and air conditioning system
CN214370859U (zh) 风口组件、出风组件和空调系统
CN111981566B (zh) 风机及空调室内机
WO2020048203A1 (zh) 一种风道组件以及空调器
CN215672882U (zh) 蜗壳蜗舌组件、离心风机及空调器
WO2019119818A1 (zh) 风道结构、风机和抽油烟机
CN218862940U (zh) 降噪导流圈和风机
JP2014081147A (ja) 空気調和機の室外ユニット
CN108361888B (zh) 空调设备
CN217715413U (zh) 空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237039784

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237039784

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3219902

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2023572945

Country of ref document: JP

Ref document number: 2022308067

Country of ref document: AU

Ref document number: AU2022308067

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 202327081438

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024872

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2022308067

Country of ref document: AU

Date of ref document: 20220428

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022836576

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022836576

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112023024872

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231128