Nothing Special   »   [go: up one dir, main page]

WO2023136242A1 - 磁気ディスク用基板及びこれを用いた磁気ディスク - Google Patents

磁気ディスク用基板及びこれを用いた磁気ディスク Download PDF

Info

Publication number
WO2023136242A1
WO2023136242A1 PCT/JP2023/000342 JP2023000342W WO2023136242A1 WO 2023136242 A1 WO2023136242 A1 WO 2023136242A1 JP 2023000342 W JP2023000342 W JP 2023000342W WO 2023136242 A1 WO2023136242 A1 WO 2023136242A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic disk
polishing
disk substrate
substrate
magnetic
Prior art date
Application number
PCT/JP2023/000342
Other languages
English (en)
French (fr)
Inventor
英之 畠山
慎平 東藤
高太郎 北脇
浩一郎 滝口
Original Assignee
古河電気工業株式会社
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社, 株式会社Uacj filed Critical 古河電気工業株式会社
Priority to CN202380015359.3A priority Critical patent/CN118435279A/zh
Priority to JP2023574033A priority patent/JPWO2023136242A1/ja
Publication of WO2023136242A1 publication Critical patent/WO2023136242A1/ja
Priority to US18/757,992 priority patent/US20240355357A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/735Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer
    • G11B5/7356Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2
    • G11B5/7358Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer characterised by the back layer comprising non-magnetic particles in the back layer, e.g. particles of TiO2, ZnO or SiO2 specially adapted for achieving a specific property, e.g. average roughness [Ra]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/82Disk carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a magnetic disk substrate having high strength and good impact resistance and a magnetic disk using the same.
  • hard disk devices such as hard disk drives
  • storage devices have become large-capacity storage devices in response to expanding needs for multimedia, etc., which handle multiple types of information (text, video, music) collectively.
  • the increase in capacity of the hard disk drive can be achieved by increasing the number of magnetic disks loaded in the hard disk drive.
  • simply increasing the number of magnetic disks to be loaded requires the size of the hard disk device to be increased.
  • the size of the housing for the hard disk drive is standardized, and it is difficult to change the size significantly.
  • a magnetic disk to be mounted (equipped) in a hard disk drive is generally manufactured by providing a magnetic layer and the like on the main surface of a disk-shaped magnetic disk substrate.
  • Various substrates have been proposed for such magnetic disk substrates.
  • a magnetic disk substrate is disclosed which is thicker than the film thickness of the film.
  • a hard disk drive information recorded on a magnetic disk is generally read by a magnetic head.
  • the magnetic head is retracted from the storage area of the magnetic disk to prevent contact between the magnetic head and the storage area of the magnetic disk when the hard disk drive is stopped.
  • the retraction methods there is a method of retracting the magnetic head onto a ramp (ramp load method).
  • the ramp is arranged to protrude above the main surface of the magnetic disk.
  • the magnetic disk may vibrate greatly when it is incorporated as a magnetic disk into a hard disk drive due to impact from outside the hard disk drive.
  • the magnetic disk more specifically, the magnetic disk substrate itself or the magnetic layer formed on the magnetic disk substrate, is arranged so as to overhang the main surface of the magnetic disk. It collides with a surrounding member (external member) such as a ramp or an adjacent magnetic disk.
  • a surrounding member such as a ramp or an adjacent magnetic disk.
  • the magnetic disk substrate described in Patent Document 1 is thinned to a thickness of 0.5 mm or less, for example, in order to cope with the increase in capacity of the hard disk device, and the main surface of the magnetic disk and the ramp are reduced. It cannot necessarily be said that it is possible to adapt to a form in which the gap between the two is further narrowed from 200 ⁇ m (for example, a form in which the gap is set to 165 ⁇ m).
  • the present invention provides a magnetic disk substrate and a magnetic disk using the same, which can cope with the increase in capacity (increase in the number of loaded sheets) of the hard disk device and can improve the impact resistance characteristics of the hard disk device. The challenge is to
  • the present inventors have made intensive studies on the shock resistance properties of a thin magnetic disk, focusing on the magnetic disk substrate that occupies most of the thickness of the magnetic disk.
  • controlling the surface roughness of the portion (fixing portion) that comes into contact with the fixing jig when the magnetic disk is incorporated into the hard disk drive is effective in suppressing the amount of displacement due to external impact.
  • the root mean square deviation Rq of the surface roughness is 0.01 to 0.01.
  • the magnetic disk substrate for manufacturing a magnetic disk
  • contact between the magnetic disk and an external member such as a ramp caused by an external impact when incorporated in a hard disk drive is reduced, and particles on the surface of the magnetic disk are reduced. , scratches and defects are less likely to occur. Therefore, even if the thickness of the magnetic disk substrate is reduced, it is possible to improve the impact resistance characteristics of the hard disk device in which the distance from the external member is reduced.
  • the magnetic disk of the present invention can improve impact resistance when incorporated into a hard disk device.
  • FIG. 1 is a plan view of an example of a magnetic disk substrate viewed from the direction normal to the main surface.
  • FIG. 2 is a schematic diagram showing an example of arrangement of a fixing portion of a magnetic disk substrate and a fixing jig.
  • FIG. 3 is an exploded perspective view showing an example of a form of incorporating (loading) a magnetic disk into a hard disk drive.
  • FIG. 4 is a flowchart for explaining the aluminum alloy substrate for magnetic disk of the present invention and the method for manufacturing a magnetic disk using the same.
  • FIG. 5 is a flowchart for explaining the magnetic disk glass substrate of the present invention and the method for manufacturing a magnetic disk using the glass substrate.
  • FIG. 6 is a schematic diagram illustrating positions on the magnetic disk substrate where Rq was measured in the example.
  • FIG. 7 is a magnetic disk substrate showing the arrangement relationship of the magnetic disk substrate, the inner peripheral edge sensor, and the outer peripheral edge sensor when measuring the maximum displacement H and the attenuation rate E of the displacement in the example. It is a schematic diagram seen from the side direction of. In FIG. 7(a), the magnetic disk substrate is in a stationary state, and in FIG. 7(b), the magnetic disk substrate is deformed by vibration and bent downward in the plate thickness direction.
  • FIG. 8 is a schematic diagram for explaining how to obtain the maximum displacement amount H and the attenuation rate E of the displacement amount obtained in the example.
  • FIG. 9 is an explanatory diagram showing an example of impact pulses applied in the impact test.
  • the magnetic disk substrate 1 is a substrate used for manufacturing the magnetic disk 2, and generally has a disk shape or an annular shape.
  • FIG. 1 is a plan view of an example of a magnetic disk substrate viewed from the direction normal to one main surface.
  • a magnetic disk substrate 1 shown in FIG. 1 has a disk-like shape and has a circular hole 12 in the center. Although the magnetic disk substrate 1 may be disc-shaped without the circular hole 12, it is preferably disc-shaped with the circular hole 12 in the center.
  • the magnetic disk substrate 1 has a pair of front and back main surfaces 14 .
  • the magnetic disk substrate 1 has fixing portions 11 on two principal surfaces 14, that is, front and back surfaces.
  • the fixing portion 11 is a portion that comes into contact with the fixing jig 3 when the magnetic disk substrate 1 is used as the magnetic disk 2 and incorporated into a hard disk device.
  • the fixed part 11 is (concentrically) arranged in a (concentric) circle at a distance of 32 mm or less, preferably 30 mm or less from the center of the magnetic disk substrate 1 from the inner edge arranged at the inner peripheral end portion 15 of the magnetic disk substrate 1. It is a (concentric) annular portion defined by the outer edge (virtual line 13).
  • the fixing portion 11 When used for a 2.5-inch hard disk device, the fixing portion 11 is formed at a distance of 29 mm or less, preferably 27 mm or less from the inner edge of the magnetic disk substrate 1 located at the inner peripheral end portion 15 of the magnetic disk substrate 1 and the center of the magnetic disk substrate 1 . It is an annular portion defined by an outer edge (virtual line 13) that is circularly arranged at a distance.
  • the inner diameter of the fixing portion 11 matches the inner diameter of the magnetic disk substrate 1 , but the inner diameter of the fixing portion 11 may be slightly larger than the inner diameter of the magnetic disk substrate 1 .
  • the outer diameter of the fixing portion 11 can be set according to the outer diameter of the fixing jig 3 used when fixing the magnetic disk 2, and may be the same as the outer diameter of the fixing jig 3, slightly larger, or slightly smaller. can do.
  • a magnetic layer is formed outside in the direction (radial direction) from the center of the fixed portion 11 toward the outer circumference.
  • no magnetic layer is formed on the fixed portion 11 of the magnetic disk substrate 1 . In this sense, when the magnetic disk substrate 1 is used as the magnetic disk 2, the fixed portion 11 of the magnetic disk substrate 1 and the fixed portion 21 of the magnetic disk 2 can be regarded as the same.
  • the fixing jig 3 is used when the magnetic disk substrate 1 as the magnetic disk 2 is incorporated into the hard disk device.
  • the fixing jig 3 usually has a disk-like or annular shape in plan view.
  • the fixing jig 3 may be any member that is normally used when the magnetic disk 2 is incorporated into a hard disk drive, and includes a disk clamper 31, a large diameter portion 33a provided in the bearing (also referred to as a large diameter portion of the bearing), spacer 34 and the like.
  • the fixing jig 3 can be made of an aluminum alloy.
  • FIG. 2 shows an example of arrangement of the fixing jig 3 with respect to the fixing portion 11 on one main surface.
  • the fixing part 11 and the fixing jig 3 (34) have the same shape in plan view, and although they are separated in FIG. be done.
  • the form of arrangement of the fixing part 11 and the fixing jig 3 when incorporated into the hard disk drive is not particularly limited as long as the position where the fixing jig 3 is arranged is inside the fixing part 11 in a plan view.
  • the fixing jig 3 may be in contact with the entire fixing portion 11 in a plan view, or may be in contact with a part of the fixing portion 11 in a plan view.
  • FIG. 3 shows an exploded perspective view schematically showing an example of the form of incorporating the magnetic disk 2 into a hard disk drive. Specifically, FIG. 3 shows an example of the arrangement of the magnetic disks 2 when three magnetic disks 2 are incorporated. 3, three magnetic disks 2 are arranged in the order shown in FIG.
  • the three magnetic disks 2 are supported by the large-diameter portion 33a of the bearing 33, and are attached to the bearing 33 via two spacers 34.
  • the core 33b of the bearing is inserted into the circular hole of the magnetic disk 2 and the circular hole of the spacer .
  • the outer diameter of the fixing portion 21 on the magnetic disk 2, the diameter of the large diameter portion 33a of the bearing, the outer diameter of the spacer 34, and the diameter of the disk clamper 31 are the same.
  • the inner diameter of the magnetic disk 2 and the inner diameter of the spacer 34 are the same.
  • the diameter of the core 33b of the bearing is such that when the magnetic disk 2 and the spacer 34 are inserted, no gap is formed between them.
  • the three magnetic disks 2 are assembled in such a manner that the large-diameter portion 33 a of the bearing, the two spacers 34 , the disk clamper 31 , and the fixing portion 21 are in contact with each other.
  • 3 does not show the magnetic layer of the magnetic disk 2, external members such as a magnetic head and a lamp, a housing, and the like, from the viewpoint of simply showing the built-in form.
  • the form of incorporation is not limited to the form described above, and may be a normal form of incorporation including the above.
  • a spacer 34 may be further arranged between the large diameter portion 33 a of the bearing and the magnetic disk 2 .
  • the two fixing portions 11, 11 of the two main surfaces 14, 14 each have a surface roughness root-mean-square deviation Rq of 0.01 to 0.44 ⁇ m.
  • the surface roughness root-mean-square deviation Rq is within the above range, when the magnetic disk substrate 1 is used as the magnetic disk 2 and incorporated into a hard disk drive, vibration of the magnetic disk 2 can be suppressed and impact resistance can be improved. .
  • the fulcrum distribution of the deformation also referred to as the difference in the amount of displacement
  • the root mean square deviation Rq of the surface roughness of the fixing portion 11 is preferably 0.10 to 0.44 ⁇ m, more preferably 0.15 to 0.40 ⁇ m.
  • the root-mean-square deviation Rq of the surface roughness of the fixing portion 11 can also be 0.17 to 0.40 ⁇ m.
  • the root-mean-square deviation Rq of the surface roughness of the fixing portion 11 can be measured according to JIS B 0601-2001 by the method described in Examples. Even when the magnetic disk substrate 1 is used as the magnetic disk 2, by measuring the root mean square roughness Rq of the surface roughness at the fixed portion 21 of the magnetic disk 2, the fixed portion 11 of the magnetic disk substrate 1 can be measured.
  • a root-mean-square roughness Rq of the surface roughness can be measured. This is because the fixed portion 21 of the magnetic disk 2 and the fixed portion 11 of the magnetic disk substrate 1 are usually the same.
  • the method for adjusting the root-mean-square deviation Rq of the surface roughness is not particularly limited. Dilute the polishing liquid with water of 1 M ⁇ cm or more, keep stirring while supplying the polishing liquid, and when supplying the polishing liquid to the polishing pad via a pipe, the pipe should have an electrical resistivity of 10 M ⁇ cm. The above range can be set by cleaning the pipe so that the electrical resistivity of the water becomes 1 M ⁇ cm or more at the pipe outlet when the above water is supplied from the pipe inlet. Regardless of which preparation method is employed, Rq tends to be small. From the viewpoint of lowering the electrical resistivity, the water used for diluting the polishing liquid is preferably pure water, and more preferably ion-exchanged water or distilled water.
  • the absolute value of the difference ⁇ Rq between the Rqs of the two fixing portions 11 of the magnetic disk substrate 1 (that is, the absolute value of Rq of the fixing portion 11 on the front side ⁇ Rq of the fixing portion 11 on the back side) is 0.01 to 0. It is preferably 0.11 ⁇ m.
  • the vibration damping rate of the magnetic disk substrate 1 can be increased. It is believed that by aligning the surface roughness of the front and back surfaces of the fixing portion 11, the difference in the amount of displacement between the top and bottom of the substrate is reduced, and the vibration is damped more quickly.
  • the absolute value of ⁇ Rq is preferably 0.01 to 0.08 ⁇ m, more preferably 0.01 to 0.05 ⁇ m, and more preferably 0.01 to 0.05 ⁇ m. It is even more preferable to have
  • the method for adjusting the absolute value of ⁇ Rq is not particularly limited. The above range can be set by, for example, reversing the thickness direction up and down once or more.
  • the thickness of the magnetic disk substrate 1 can be the same as that of a normal magnetic disk substrate, and can be further reduced.
  • the plate thickness of the magnetic disk substrate 1 is preferably 0.50 mm or less. Although the lower limit of the plate thickness of the magnetic disk substrate 1 is not particularly limited, it is practically 0.30 mm or more.
  • the outer diameter of the magnetic disk substrate 1 can be the same as the outer diameter of a normal magnetic disk substrate. When the magnetic disk substrate 1 is used for a 2.5-inch hard disk device, the outer diameter of the magnetic disk substrate 1 is preferably 65 mm or more. The upper limit is limited by the internal dimensions of the housing of the hard disk device, and 70 mm or less is practical.
  • the outer diameter of the magnetic disk substrate 1 of the present invention is preferably 95 mm or more, more preferably 97 mm or more.
  • the upper limit is limited by the inner dimensions of the case, and 101 mm or less is practical.
  • the inner diameter of the magnetic disk substrate 1 can be the same as that of a normal magnetic disk substrate.
  • the inner diameter of the magnetic disk substrate 1 of the present invention is preferably 22 mm or less.
  • the lower limit is restricted by the diameter of the rotating shaft, and 18 mm or more is practical.
  • the inner diameter of the magnetic disk substrate 1 of the present invention is preferably 26 mm or less.
  • a preferable form of the magnetic disk substrate 1 is a form having an outer diameter of 97 mm or more, an inner diameter of 26 mm or less, and a plate thickness of 0.5 mm or less.
  • the magnetic disk substrate 1 of the present invention has the following configuration and exhibits particularly favorable effects when used in a hard disk drive having the following specifications.
  • the magnetic disk substrate 1 satisfies the root mean square deviation Rq, the maximum value H and its attenuation factor E can be suppressed within the following ranges. As a result, when the substrate 1 is incorporated into a hard disk device as the magnetic disk 2, even if vibration occurs, the generation of particles, scratches, and defects on the surface of the magnetic disk can be effectively suppressed.
  • One magnetic disk substrate 1 is sandwiched from above and below by the fixing jigs 3 (disk clamper 31 and spacer 34) at the fixing portion 11 and fixed horizontally to the bearing 33. Then, 2.
  • An impact of 8 msec and 490 m/s 2 is applied from below (from the bearing 33 side toward the disk clamper 31 side) in the normal direction (board thickness direction) of the main surface 14 of the magnetic disk substrate 1 .
  • the vertical direction means the plate thickness direction (sandwiching direction) of the magnetic disk substrate.
  • the maximum value H of the displacement is obtained by vibrating the magnetic disk substrate 1 due to the impact in this impact test, and plotting the displacement in the plate thickness direction of the outer peripheral edge due to this impact against time as shown in FIG. It is the absolute value ( ⁇ m) of the first large downward displacement in the displacement-time graph.
  • the attenuation rate E of the amount of displacement refers to the slope ( ⁇ m/msec) when connecting the vertices of the displacements that greatly decrease in the first and second times in this graph.
  • the impact test can be performed by the method described in Examples. This impact test is performed using the magnetic disk substrate 1 on which no magnetic layer is formed. does not substantially affect E.
  • the maximum value H of displacement in the plate thickness direction of the outer peripheral edge of the magnetic disk substrate 1 is preferably 165 ⁇ m or less.
  • the maximum displacement amount H is more preferably 164 ⁇ m or less, more preferably 150 ⁇ m or less, and even more preferably 130 ⁇ m or less.
  • the lower limit of the maximum displacement H is not particularly limited, it is practically 100 ⁇ m or more.
  • the attenuation rate E of the displacement amount in the plate thickness direction of the outer peripheral end portion of the magnetic disk substrate 1 is 17.7 ⁇ m/msec or more.
  • the upper limit of the attenuation rate E is not particularly limited, it is practically 30 ⁇ m/msec or less. More preferably, the magnetic disk substrate 1 has a maximum value H of displacement of 165 ⁇ m or less and an attenuation rate E of displacement of 17.7 ⁇ m/msec or more.
  • the displacement H and attenuation factor E measured in the same manner except that the magnetic disk 2 is used are the displacement of the magnetic disk substrate 1.
  • H and the decay factor E can be considered. This is because the magnetic layer does not affect these measured values as described above.
  • the conditions of the above impact test are the impacts when fixing the hard disk drive to the HDD mount rack, computer, etc. during actual use (inserting the hard disk drive terminal into the terminal of the blade, etc., and inserting the blade into the side guide of the blade server). It is a condition that reproduces the shock when it reaches the deepest end by pushing it in while sliding it.
  • the action time was set to 2.8 msec
  • the maximum acceleration (applied acceleration) was set to 490 m/s 2 .
  • FIG. 9 shows an explanatory diagram of impact pulses used in the impact test.
  • the vertical axis is acceleration and the horizontal axis is time.
  • a shock pulse is composed of an applied acceleration G (corresponding to the maximum acceleration) and an action time.
  • the magnetic disk 2 of the present invention is a magnetic disk using the magnetic disk substrate 1 described above.
  • the magnetic disk substrate 1 of the present invention can be used as the magnetic disk 2 by forming a magnetic layer on at least one of its main surfaces 14 . It is preferable to form a magnetic layer on both main surfaces 14 .
  • the structure of the magnetic disk 2 can be the same as that of a normal magnetic disk, except that it has the fixing portion 21 described above.
  • the fixing part 21 can apply the description of the fixing part 11, and can have the same root mean square deviation of surface roughness Rq, inner diameter, and outer diameter as those of the fixing part 11. It is the same.
  • the magnetic layer can have the same structure as a normal magnetic disk. Although the thickness of the magnetic layer is not particularly limited, it is preferably 1 to 100 nm.
  • the magnetic disk 2 Since the magnetic disk 2 obtained using the magnetic disk substrate 1 of the present invention has the above characteristics, the magnetic disk 2 is a 3.5-inch normal hard disk and is required to have more severe impact resistance. It can also be used with .5 inch or 3.5 inch hard disks. Thicknesses of 7 mm, 9.5 mm, and 12.5 mm are known as thicknesses of major 2.5-inch hard disk enclosures, and thicknesses of 20 mm, 26 mm, etc. are known as thicknesses of major 3.5-inch hard disk enclosures. If the thickness of the magnetic disk 2 is 0.5 mm, the number of magnetic disks 2 that can be mounted in a 26 mm-thick housing for a normal 3.5-inch hard disk is 9 or less.
  • the thickness of the magnetic disk 2 is set to less than 0.5 mm, it is possible to mount 10 or more magnetic disks in the hard disk without increasing the thickness of the housing significantly exceeding 26 mm.
  • the gap between the main surface of the magnetic disk and an external member such as a ramp on the same side as the main surface is sometimes set to about 200 ⁇ m.
  • the gap between the magnetic disk 2 and the external member can be further reduced. In this way, it is possible to mount many magnetic disks in the hard disk device. According to the invention, the gap can be as narrow as 170 ⁇ m, or even 165 ⁇ m.
  • Materials with excellent mechanical properties and workability are generally used as materials for the magnetic disk substrate 1.
  • aluminum alloys and glass can be preferably used.
  • conventional aluminum alloys and glass used as substrate materials can be used without particular limitations.
  • a magnetic disk substrate manufactured using an aluminum alloy is sometimes referred to as an aluminum alloy substrate
  • a magnetic disk substrate manufactured using glass is sometimes referred to as a glass substrate.
  • Al-Mg alloys, Al-Fe-Mn-Ni alloys, and Al-Fe-Mn-Mg-Ni alloys can be preferably used as aluminum alloys for the substrate material, but are not limited to these. do not have.
  • Al-Mg alloy for example, JIS5086 (A5086) (Mg: 3.5 to 4.5% by mass, Fe: 0.50% by mass or less, Si: 0.40% by mass or less, Mn: 0.20 ⁇ 0.70% by mass, Cr: 0.05 to 0.25% by mass, Cu: 0.10% by mass or less, Ti: 0.15% by mass or less, and Zn: 0.25% by mass or less, and the balance Al and unavoidable impurities) can be used.
  • JIS5086 A5086
  • Fe 0.50% by mass or less
  • Si 0.40% by mass or less
  • Mn 0.20 ⁇ 0.70% by mass
  • Cr 0.05 to 0.25% by mass
  • Cu 0.10% by mass or less
  • Ti 0.15% by mass or less
  • Zn 0.25% by mass or less
  • the method for manufacturing the magnetic disk aluminum alloy substrate is not particularly limited as long as it is a method capable of manufacturing a magnetic disk substrate having the surface roughness root-mean-square deviation Rq within the above range. From the viewpoint of making the surface roughness root-mean-square deviation Rq within the above range, the method for manufacturing an aluminum alloy substrate for a magnetic disk has a grain size of 0.03 ⁇ m or more and 1.0 ⁇ m or less (a grain size of 0.1 ⁇ m or more and 1.0 ⁇ m or less).
  • the rough polishing step and/or the fine polishing step is preferably a step of polishing while supplying a polishing liquid to the polishing pad from the upper surface plate side.
  • the rough polishing step and/or the fine polishing step is preferably a step of polishing while supplying a polishing liquid of 10 ml/min or more per disk blank, which will be described later.
  • the rough polishing step and/or the fine polishing step are preferably steps using a polishing liquid diluted with water having an electrical resistivity of 1 M ⁇ cm or more.
  • the polishing liquid under stirring to the polishing pad.
  • the fine polishing step it is preferable to turn the disk blank upside down in the plate thickness direction once or more during the polishing step.
  • the outlet of the pipe Prior to the rough polishing step and/or the fine polishing step, when water having an electric resistivity of 10 M ⁇ cm or more is supplied from the inlet of the pipe to which the polishing liquid is supplied, the outlet of the pipe has an electrical resistivity of 1 M ⁇ cm or more. It is preferable to clean to an extent.
  • FIG. 4 is a flowchart illustrating an example of a method of manufacturing an aluminum alloy substrate and a magnetic disk using the same.
  • the steps of preparing an aluminum alloy (step S101) to cold rolling (step S105) are steps of manufacturing an aluminum alloy material by melting and casting and making it into an aluminum alloy plate.
  • an aluminum alloy disc blank is manufactured by a pressure flattening process (step S106).
  • the manufactured disc blank is subjected to pretreatment such as cutting/grinding process (step S107), degreasing/etching process (step S108), zincate process (step S109), Ni--P plating process (step S110).
  • step S111 a rough polishing step
  • step S112 a fine polishing step
  • a molten metal of an aluminum alloy material having the above composition is prepared by heating and melting according to a conventional method (step S101).
  • the prepared molten metal of the aluminum alloy material is cast by a semi-continuous casting (DC casting) method, a continuous casting (CC casting) method, or the like to cast the aluminum alloy material (step S102).
  • DC casting may be vertical semi-continuous casting or horizontal semi-continuous casting.
  • the manufacturing conditions of the aluminum alloy material in the DC casting method and the CC casting method are as follows.
  • the molten metal poured through the spout is cooled by cooling water discharged directly to the bottom block, the water-cooled walls of the mold, and the outer periphery of the ingot (ingot). Then, it is drawn downward as an aluminum alloy ingot.
  • the ingot obtained by this process is sometimes called a slab.
  • a molten metal is supplied through a casting nozzle between a pair of rolls (or a belt caster or a block caster), and heat is removed from the rolls to directly cast an aluminum alloy thin plate.
  • a major difference between the DC casting method and the CC casting method is the cooling rate during casting.
  • CC casting which has a high cooling rate, is characterized by a smaller size of second phase particles than DC casting.
  • step S104 the aluminum ingot obtained by DC casting is hot-rolled into a plate material.
  • step S103 the DC cast aluminum alloy ingot can be subjected to a homogenization treatment as necessary (step S103).
  • step S105 is performed following step S102 without performing these steps.
  • heat treatment is preferably performed at 280 to 620° C. for 0.5 to 30 hours, and more preferably at 300 to 620° C. for 1 to 24 hours. . If the heating temperature during the homogenization treatment is less than 280° C. or the heating time is less than 0.5 hours, the homogenization treatment may be insufficient and the loss factor may vary greatly among aluminum alloy substrates. If the heating temperature during the homogenization treatment exceeds 620°C, there is a risk that the aluminum alloy ingot will melt. Even if the heating time in the homogenization process exceeds 30 hours, the effect is saturated, and no further remarkable improvement effect can be obtained.
  • step S104 the aluminum alloy ingot (DC casting) that has been homogenized or not is hot-rolled into a plate material (step S104).
  • the conditions for hot rolling are not particularly limited, but the hot rolling start temperature is preferably 250 to 600°C, and the hot rolling end temperature is preferably 230 to 450°C.
  • the hot-rolled rolled plate or the cast plate cast by the CC casting method is cold-rolled into an aluminum alloy plate of about 0.3 to 0.6 mm (step S105).
  • the cold rolling conditions are not particularly limited, and may be determined according to the required product plate strength and plate thickness, and the rolling reduction is preferably 10 to 95%.
  • Annealing treatment may be performed before cold rolling or during cold rolling to ensure cold rolling workability.
  • batch heating is preferably performed at 300 to 450° C. for 0.1 to 10 hours, and continuous heating is performed at 400 to 500° C. for 0 to 10 hours. It is preferable to carry out under the condition of holding for 60 seconds.
  • the holding time of 0 seconds means cooling immediately after reaching the desired holding temperature.
  • the aluminum alloy plate obtained by cold rolling is punched into a disk shape to obtain a disk-shaped aluminum alloy plate.
  • the disk-shaped aluminum alloy plate becomes a disk blank by a pressure flattening process (step S106).
  • the pressure flattening treatment the disk-shaped aluminum alloy plate is subjected to pressure annealing at 200 to 450 ° C. for 0.5 to 10 hours, for example, while applying a load of 30 to 100 MPa in the atmosphere. is performed to produce a flattened disc blank.
  • the disk blank is subjected to cutting/grinding (step S107) and, if necessary, heat treatment before the zincate treatment or the like.
  • the inner and outer peripheries of the disk blank are cut to adjust the shape, and the main surface is ground.
  • the recording surface of the disc blank may be cut as a preliminary treatment for grinding.
  • the inner and outer peripheral end faces may be chamfered. Grinding can be performed using a SiC grindstone of No. 800 to 4000 and a commercially available batch-type double-side simultaneous grinder.
  • This double-sided simultaneous polishing machine consists of a cast iron upper surface plate and a lower surface plate, a carrier that holds a plurality of aluminum substrates between the upper surface plate and the lower surface plate, and contact between the upper surface plate and the lower surface plate. and a SiC grindstone attached to the surface. Grinding is performed by rotating the upper and lower surface plates in opposite directions while holding the disk blank with a carrier. The rotation speed of the upper and lower surface plates can be 10 to 30 rpm. Since the carrier rotates with the sun gear, the disk blank is ground while planetary motion is performed on the grindstone. Further, when the heat treatment is performed, the heat treatment is performed under the condition that the disk blank is held at 200 to 350° C. for 5 to 60 minutes. Distortion caused by cutting and grinding can be removed by heat treatment.
  • the disk blank surface is degreased and etched (step S108).
  • the degreasing treatment can be carried out by a conventional method, and for example, it is preferable to use a commercially available degreasing solution under conditions of a temperature of 40 to 70° C., a treatment time of 3 to 10 minutes, and a concentration of 10 to 500 ml/L.
  • the etching treatment can be performed by a conventional method, for example, using a commercially available etchant, etc., at a temperature of 50 to 75° C., a treatment time of 0.5 to 5 minutes, and a concentration of 1 to 50 mL/L. preferable.
  • zincate processing (Zn replacement processing) is performed on the disc blank surface (step S109).
  • a zincate film is formed on the disk blank surface.
  • a commercially available zincate treatment solution can be used for the zincate treatment, and is preferably carried out under conditions of a temperature of 10 to 35° C., a treatment time of 0.1 to 5 minutes, and a concentration of 100 to 500 mL/L.
  • the zincate treatment is performed at least once, and may be performed twice or more. By performing the zincate treatment multiple times, fine Zn can be precipitated to form a uniform zincate film. When the zincate treatment is performed twice or more, the Zn stripping treatment can be performed in between.
  • the Zn stripping treatment is preferably performed using an HNO 3 solution under conditions of a temperature of 15 to 40° C., a treatment time of 10 to 120 seconds, and a nitric acid concentration of 10 to 60%.
  • the second and subsequent zincate treatments are preferably carried out under the same conditions as the first zincate treatment.
  • the zincate-treated disk blank surface is subjected to electroless Ni--P plating (step S110) as a base treatment for adhering the magnetic material.
  • electroless Ni—P plating it is preferable to use a commercially available plating solution or the like and perform plating under conditions of a temperature of 80 to 95° C., a treatment time of 30 to 180 minutes, and a Ni concentration of 3 to 10 g/L. Pure water cleaning may be performed between each treatment from the degreasing treatment to the zincate treatment.
  • the plated surface is subjected to a rough polishing step and a fine polishing step as polishing processes for smoothing (steps S111 and S112).
  • the details are not particularly limited as long as the root-mean-square deviation Rq of the surface roughness can be obtained.
  • a polishing liquid containing large-diameter abrasive grains with a particle size of 0.03 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.2 ⁇ m or more and 0.85 ⁇ m or less and a hard or soft polishing pad the main Roughly polish the surface.
  • the main surface is subjected to precision polishing. polishing.
  • small-diameter abrasive grains used in the precision polishing step those having a smaller diameter than the large-diameter abrasive grains used in the rough polishing step are used.
  • hard means hardness (Asker C) of 85 or more measured by the measuring method specified in the standard of the Japan Rubber Association (compliant standard: SRIS0101), and "soft” means hardness of 60 to 80.
  • the average particle diameter (d50) is the so-called median diameter, and the particle size distribution is measured by a laser diffraction/scattering method, and the particle size when the cumulative distribution is 50% when the total volume of the particles is 100%.
  • polishing conditions in the rough polishing step are influenced by the aluminum alloy used, the processing conditions in steps S101 to S110, etc., and thus are difficult to uniquely determine. 5 to 35 rpm, polishing solution supply rate of 10 to 500 ml/min (more preferably 50 to 500 ml/min), polishing time of 1 to 10 min, processing pressure of 10 to 100 g/cm 2 , polishing amount of 0.1 to 10 ⁇ m. can be It is preferable to turn the disk blank upside down in the plate thickness direction during the rough polishing step. The inversion may be performed once or multiple times.
  • the timing of turning over the disk blank is not particularly limited, but it is preferable that both surfaces of the disk blank are polished evenly, and it is more preferable to turn over when half of the total polishing time of the rough polishing process has elapsed.
  • Other polishing conditions in the precision polishing step are influenced by the aluminum alloy used, the processing conditions from step S101 to rough polishing, etc., and are difficult to determine unambiguously. 5 to 35 rpm, polishing liquid supply rate of 10 to 500 ml/min (more preferably 50 to 500 mL/min), polishing time of 1 to 10 min, processing pressure of 10 to 100 g/cm 2 , polishing amount of 0.01 to 1 ⁇ m.
  • the disk blank upside down in the plate thickness direction during the precision polishing step can be It is preferable to turn the disk blank upside down in the plate thickness direction during the precision polishing step.
  • the inversion may be performed once or multiple times.
  • the timing of turning over the disk blank is not particularly limited, but it is preferable that both surfaces of the disk blank are polished evenly, and it is more preferable to turn over when half of the total polishing time in the precision polishing process has elapsed.
  • the rough polishing step and the rough polishing step can be carried out using a commercially available batch-type double-side simultaneous polishing machine.
  • This double-sided simultaneous polishing machine includes an upper surface plate and a lower surface plate made of cast iron, a carrier that holds a plurality of disk blanks between the upper surface plate and the lower surface plate, and contact between the disk blanks on the upper surface plate and the lower surface plate. Attached to the surface are polishing pads (ie, the number of polishing pads is twice the number of disk blanks).
  • a plurality of disk blanks are held between an upper surface plate and a lower surface plate by a carrier, and each disk blank is pressed under a predetermined working pressure by the upper surface plate and the lower surface plate.
  • each disk blank is collectively pressed by the polishing pads from above and below (parallel to the direction of gravity).
  • the upper surface plate and the lower surface plate are rotated in different directions.
  • the carrier since the carrier also rotates by the sun gear, the disk blank performs planetary motion. This causes the disc blank to slide over the surface of the polishing pad, polishing both surfaces simultaneously.
  • the polishing pad is porous (having bag-like pores with an open surface), the polishing liquid is supplied between the polishing pad and the disc blank through the polishing pad. Supply of the polishing liquid to the polishing pad can be carried out by a normal method.
  • the polishing liquid can be supplied to the polishing pad through a pipe from a tank that stores the polishing liquid. It is preferable that the tank storing the polishing liquid has a stirring means.
  • the polishing liquid is preferably supplied to the polishing pad from the upper surface plate side. Supplying the grinding liquid from the upper surface plate side to the polishing pad specifically means making holes in the upper surface plate and the polishing pad, and dropping and pouring the grinding liquid into the holes from above.
  • a porous polishing pad is used as the polishing pad used in the rough polishing process and the precision polishing process.
  • the aluminum alloy substrate for a magnetic disk according to the present invention is manufactured by the polishing process (surface polishing) after the electroless Ni--P plating process described above.
  • the step of attaching the magnetic material can be performed by a normal method.
  • the magnetic layer is formed by attaching a magnetic material to the surface of the aluminum alloy substrate.
  • Glass substrate A glass substrate will be described.
  • Glass ceramics such as amorphous glass and crystallized glass can be used as the material of the glass plate.
  • amorphous glass from the viewpoint of moldability, workability, and product surface roughness.
  • aluminosilicate glass, soda lime glass, soda aluminosilicate glass, aluminoborosilicate glass, borosilicate glass, etc. is preferred.
  • a preferred form of the glass used for the magnetic disk substrate is SiO 2 : 55 to 75% as a main component, Al 2 O 3 : 0.7 to 25%, Li 2 O: 0.01 to 6%, Na 2 . O: 0.7-12%, K 2 O: 0-8%, MgO: 0-7%, CaO: 0-10%, ZrO 2 : 0-10%, TiO 2 : 0-1% were added. is glass.
  • the method for manufacturing the magnetic-disk glass substrate is not particularly limited as long as it is a method capable of manufacturing a magnetic-disk substrate having the surface roughness root-mean-square deviation Rq within the above range. From the viewpoint of setting the surface roughness root-mean-square deviation Rq within the above range, the method for manufacturing a magnetic disk glass substrate has a grain size of 0.1 ⁇ m or more and 1.0 ⁇ m or less and an average grain size of 0.2 ⁇ m or more and 0.2 ⁇ m or more.
  • a step of roughly polishing the main surface using a polishing liquid containing abrasive grains of 85 ⁇ m or less and a hard polishing pad It is preferable to include at least a step of precision polishing the main surface using a polishing liquid containing abrasive grains of 02 ⁇ m or more and 0.08 ⁇ m or less and a soft polishing pad.
  • the conditions in the rough polishing step and the fine polishing step can also be applied to the conditions in the production of the aluminum alloy substrate.
  • abrasive grains with a grain size of 0.03 ⁇ m or more and 1.0 ⁇ m or less can be used.
  • the rough polishing step corresponds to step S204 described later, and the fine polishing step corresponds to step S205 described later.
  • the description of steps S204 and S205 can be referred to.
  • At least one of the following preferred steps is preferably performed in the rough polishing step and/or the fine polishing step.
  • the rough polishing step and/or the fine polishing step is preferably a step of polishing while supplying a polishing liquid to the polishing pad from the upper surface plate side.
  • the rough polishing step and/or the fine polishing step is preferably a step of polishing while supplying a polishing liquid of 10 ml/min or more per disk blank, which will be described later.
  • the rough polishing step and/or the fine polishing step are preferably steps using a polishing liquid diluted with water having an electrical resistivity of 1 M ⁇ cm or more.
  • a polishing liquid diluted with water having an electrical resistivity of 1 M ⁇ cm or more it is preferable to supply the polishing liquid under stirring to the polishing pad.
  • water having an electric resistivity of 10 M ⁇ cm or more is supplied from the inlet of the pipe to which the polishing liquid is supplied, the outlet of the pipe has an electrical resistivity of 1 M ⁇ cm or more. It is preferable to clean to an extent.
  • FIG. 5 is a flowchart for explaining an example of a method of manufacturing a glass substrate and a magnetic disk using the same.
  • a glass plate having a predetermined thickness is prepared (step S201).
  • the prepared glass plate is subjected to coring, and the inner and outer peripheral edges are polished to form a disc-shaped disc blank (step S202).
  • a step of lapping the disk-shaped disk blank is performed (step S203).
  • the molded or lapped disk blanks are collectively sandwiched between upper and lower polishing pads, and a rough polishing step (step S204) is performed in which a plurality of disk blanks are simultaneously polished with cerium oxide abrasive grains.
  • step S204 Each disc blank polished in step S204 is further subjected to a precision polishing step (step S205) for polishing with colloidal silica abrasive grains at the same time to manufacture a glass substrate.
  • the manufactured glass substrate becomes a magnetic disk through the step of attaching a magnetic substance (step S206).
  • the preparation of the glass plate in step S201 can be carried out using a known manufacturing method such as a float method, a down-draw method, or a direct press method using molten glass as a raw material. Further, by using a redraw method in which a base glass plate manufactured by a float method or the like is heated to soften and stretched to a desired thickness, a glass plate having a small variation in thickness can be manufactured relatively easily. preferable.
  • a disk-shaped disk blank is formed from the glass plate prepared in step S201 through a coring process and a process of polishing the inner and outer peripheral edges.
  • the formed disk blank is a disk-shaped disk blank having two main surfaces and a circular hole formed in the center.
  • the thickness of the disk blank can be adjusted by carrying out the lapping process of step S203 and lapping the disk-shaped disk blank formed in step S202.
  • This lapping step is preferably performed when the thickness of the glass plate varies greatly, such as when the redraw method is not adopted in step S201.
  • the lapping process can be performed so that the variation in the thickness of the glass plate is about ⁇ 3 ⁇ m.
  • the lapping process can be performed by a conventional method, for example, using a batch-type double-sided polishing machine using diamond pellets.
  • polishing step S202 or S203 the main surface of the disc blank obtained in step S202 or S203 is subjected to polishing.
  • this polishing step it is preferable to perform polishing in a plurality of stages with the diameter of the abrasive grains being adjusted.
  • This polishing process includes polishing in at least two stages, rough polishing (S204) and precision polishing (S205).
  • the main surface of the disk blank is roughly polished.
  • Rough polishing is carried out using a hard polishing pad and a polishing liquid containing abrasive grains with a particle size of 0.1 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.2 ⁇ m or more and 0.85 ⁇ m or less. can be done.
  • Other polishing conditions for rough polishing are as follows: use a hard polishing pad with a hardness of 86 to 88, a polishing surface plate rotation speed of 5 to 35 rpm, a sun gear rotation speed of 5 to 35 rpm, and a polishing liquid supply rate of 10 to 500 ml/ml.
  • the polishing liquid preferably contains abrasive grains made of cerium oxide having a particle size of 0.1 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.2 ⁇ m or more and 0.85 ⁇ m or less. It is preferable to turn the disk blank upside down in the plate thickness direction during the rough polishing step. The inversion may be performed once or multiple times.
  • the timing of turning over the disk blank is not particularly limited, but it is preferable that both surfaces of the disk blank are polished evenly, and it is more preferable to turn over when half of the total polishing time of the rough polishing process has elapsed.
  • the rough polishing step and the rough polishing step can be carried out using a commercially available batch-type double-side simultaneous polishing machine. Also in the method for manufacturing a glass substrate, the simultaneous double-sided polishing machine described in the method for manufacturing an aluminum substrate can be used.
  • the rough-polished main surface is precision-polished.
  • the polishing pad of the double-side simultaneous polishing machine is replaced with a softer polishing pad for precision polishing made of, for example, urethane foam, and the grain size is 0.01 ⁇ m or more and less than 0.1 ⁇ m, and the average grain size is 0.02 ⁇ m.
  • the polishing can be carried out by polishing the glass substrate using the polishing pad while supplying a polishing liquid containing polishing abrasive grains made of colloidal silica as small as 0.08 ⁇ m or less. As a result, the main surface of the disrank is mirror-polished, and a magnetic-disk glass substrate is manufactured.
  • polishing conditions for precision polishing are as follows: use a soft polishing pad with a hardness of 75 to 77; rotate the polishing surface plate at 5 to 35 rpm; minutes (more preferably 50 to 500 mL/min), a processing pressure of 10 to 120 g/cm 2 , a polishing time of 1 to 10 minutes, and a polishing amount of 5 to 15 ⁇ m per side. Also, the polishing amount can be 0.01 to 1 ⁇ m. It is preferable to turn the disk blank upside down in the plate thickness direction during the precision polishing step. The inversion may be performed once or multiple times. The timing of turning over the disk blank is not particularly limited, but it is preferable that both surfaces of the disk blank are polished evenly, and it is more preferable to turn over when half of the total polishing time in the precision polishing process has elapsed.
  • chemical strengthening treatment with a sodium nitrate solution or a potassium nitrate solution can be performed during the polishing process.
  • the step of attaching the magnetic material can be performed by a normal method.
  • Examples 1-3 and Comparative Examples 1-2 magnetic disk substrates having an outer diameter of 97 mm, an inner diameter of 25 mm, and a thickness of 0.50 mm were produced. Details of each example are described below.
  • Example 1 A5086 alloy (aluminum alloy A) was melted according to a standard method, and a slab was obtained by DC casting (vertical semi-continuous casting) to a width of 1310 mm and a plate thickness of 500 mm. Each of the four sides of this slab was chamfered by 10 mm, homogenized at 540° C. for 6 hours, and hot rolled at a hot rolling start temperature of 540° C. and a hot rolling end temperature of 340° C. to obtain a plate thickness of 3.5 mm. A 0 mm hot-rolled sheet was obtained. This hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.48 mm.
  • This cold-rolled sheet is punched into an annular ring with an inner diameter of 24 mm and an outer diameter of 98 mm, and is subjected to heat treatment at 320° C. for 3 hours while applying pressure of 30 MPa using a continuous annealing furnace in the atmosphere. Pressure annealing was performed and pressure flattening treatment was performed. A disc blank was thus obtained. Further, by cutting the inner and outer circumferences of the disc blank, an annular disc blank having an inner diameter of 25 mm and an outer diameter of 97 mm was obtained. At this time, the inner and outer peripheral end surfaces were chamfered at the same time. The disk blank after this processing was surface-ground with a No. 4000 SiC grindstone to a thickness of 0.46 mm.
  • Both surfaces of this disk blank were subjected to degreasing treatment, etching treatment, first zincate treatment, Zn stripping treatment, and second zincate treatment as follows.
  • the degreasing treatment was carried out using a degreasing solution AD-68F (trade name, manufactured by Uyemura & Co., Ltd.) under conditions of a temperature of 45° C., a treatment time of 3 minutes, and a concentration of 500 mL/L.
  • Etching was performed using AD-107F (trade name, manufactured by Uemura & Co., Ltd.) etchant under conditions of a temperature of 60° C., a processing time of 2 minutes, and a concentration of 50 mL/L.
  • the first zincate treatment was performed using a zincate treatment liquid AD-301F-3X (trade name, manufactured by Uemura & Co., Ltd.) under conditions of a temperature of 20°C, a treatment time of 1 minute, and a concentration of 200 mL/L.
  • the Zn stripping treatment was performed using a commercially available nitric acid reagent under conditions of a temperature of 25° C., a treatment time of 60 seconds, and a nitric acid concentration of 30%.
  • the second zincate treatment was performed under the same conditions as the first zincate treatment. In addition, cleaning with pure water was performed between each treatment from the degreasing treatment to the second zincate treatment.
  • Nimden HDX (trade name, manufactured by Uemura & Co., Ltd.) plating solution under the conditions of a temperature of 88°C, a treatment time of 130 minutes, and a Ni concentration of 6 g/L.
  • the Ni--P plated disk blank was set in a double-sided simultaneous polishing machine (trade name: 9B double-sided polishing machine manufactured by SPEEDFAM), and a rough polishing step and a fine polishing step were performed to produce an aluminum alloy substrate. Details will be described below.
  • the polishing conditions in the rough polishing step are as follows: a urethane foam polishing pad having a hardness of 66; aluminum oxide having a particle size of 0.03 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.85 ⁇ m; was used.
  • Other polishing conditions in the rough polishing process were as follows: polishing liquid was supplied from the upper surface plate side, the number of revolutions of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 100 ml/min, the polishing time was 2 minutes, and the processing pressure was 100 ml/min. was 80 g/cm 2 and the polishing amount was 1 ⁇ m. Further, the disc blank was placed upside down in the plate thickness direction and polished under the same conditions.
  • a precision polishing step was performed.
  • pure water is added to a urethane foam polishing pad having a hardness of 76 and colloidal silica having a particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m and an average particle size of 0.08 ⁇ m to obtain free abrasive grains.
  • Other polishing conditions in the precision polishing process were as follows: polishing liquid was supplied from the upper surface plate side, the rotation speed of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 150 ml/min, the polishing time was 2 minutes, and the processing pressure was was 80 g/cm 2 and the polishing amount was 0.2 ⁇ m.
  • the disc blank was placed upside down in the plate thickness direction and polished under the same conditions.
  • polishing was performed while supplying the polishing liquid at a polishing liquid supply rate of 10 ml/min or more per disc blank in the rough polishing step and the fine polishing step.
  • the abrasive grains were diluted with water having an electrical resistivity of 1 M ⁇ cm or more.
  • the polishing liquid was continuously stirred during feeding.
  • Example 1 When performing rough polishing and precision polishing, the piping to which the polishing liquid is supplied was cleaned to such an extent that when water having an electrical resistivity of 10 M ⁇ cm or more was supplied from the inlet, the outlet of the pipe became 1 M ⁇ cm or more. . Thus, a magnetic disk substrate of Example 1 was obtained.
  • Example 2 An Al--Fe--Mn--Ni alloy (alloy B) was melted according to a standard method, and a slab was obtained by DC casting (vertical semi-continuous casting) into a width of 1310 ⁇ plate thickness of 500 mm. This slab was chamfered by 10 mm on each side, homogenized at 520 ° C. for 6 hours, hot rolled at a hot rolling start temperature of 520 ° C. and a hot rolling end temperature of 340 ° C., and hot rolled to a thickness of 3.0 mm. A rolled plate was used. This hot-rolled sheet was cold-rolled to obtain a cold-rolled sheet having a thickness of 0.48 mm.
  • the alloy B had a composition of Fe: 0.7% by mass, Mn: 0.9% by mass, Ni: 1.7% by mass, and the balance being aluminum and unavoidable impurities.
  • This cold-rolled sheet is punched into an annular ring with an inner diameter of 24 mm and an outer diameter of 98 mm, and is subjected to heat treatment at 320° C. for 3 hours while applying pressure of 30 MPa using a continuous annealing furnace in the atmosphere. Pressure annealing was performed and pressure flattening treatment was performed. A disc blank was thus obtained. Further, by cutting the inner and outer circumferences of the disc blank, an annular disc blank having an inner diameter of 25 mm and an outer diameter of 97 mm was obtained.
  • the disk blank after this processing was surface-ground with a No. 4000 SiC grindstone to a thickness of 0.46 mm. Both surfaces of this disk blank were subjected to degreasing treatment, etching treatment, first zincate treatment, Zn stripping treatment, and second zincate treatment as follows.
  • the degreasing treatment was carried out using a degreasing solution AD-68F (trade name, manufactured by Uyemura & Co., Ltd.) under conditions of a temperature of 45° C., a treatment time of 3 minutes, and a concentration of 500 mL/L.
  • Etching was performed using AD-107F (trade name, manufactured by Uemura & Co., Ltd.) etchant under conditions of a temperature of 60° C., a processing time of 2 minutes, and a concentration of 50 mL/L.
  • the first zincate treatment was performed using a zincate treatment liquid AD-301F-3X (trade name, manufactured by Uemura & Co., Ltd.) under conditions of a temperature of 20°C, a treatment time of 1 minute, and a concentration of 200 mL/L.
  • the Zn stripping treatment was performed using a commercially available nitric acid reagent under conditions of a temperature of 25° C., a treatment time of 60 seconds, and a nitric acid concentration of 30%.
  • the second zincate treatment was performed under the same conditions as the first zincate treatment.
  • cleaning with pure water was performed between each treatment from the degreasing treatment to the second zincate treatment.
  • both sides of the disk blank were subjected to electroless Ni-P plating using Nimden HDX (trade name, manufactured by Uemura & Co., Ltd.) plating solution under the conditions of a temperature of 88°C, a treatment time of 130 minutes, and a Ni concentration of 6 g/L.
  • the Ni--P plated disk blank was set in a double-sided simultaneous polishing machine (trade name: 9B double-sided polishing machine manufactured by SPEEDFAM), and a rough polishing step and a fine polishing step were performed to produce an aluminum alloy substrate. Details will be described below.
  • the polishing conditions in the rough polishing step are as follows: a urethane foam polishing pad having a hardness of 66; was used.
  • Other polishing conditions in the rough polishing process were as follows: polishing liquid was supplied from the upper surface plate side, the number of revolutions of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 100 ml/min, the polishing time was 2 minutes, and the processing pressure was 100 ml/min.
  • a precision polishing step was performed.
  • pure water is added to a urethane foam polishing pad having a hardness of 76 and colloidal silica having a particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m and an average particle size of 0.08 ⁇ m to obtain free abrasive grains. was used.
  • polishing liquid was supplied from the upper surface plate side, the rotation speed of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 150 ml/min, the polishing time was 3 minutes, and the processing pressure was was 80 g/cm 2 and the polishing amount was 0.2 ⁇ m. Further, the disc blank was placed upside down in the plate thickness direction and polished under the same conditions. As described above, polishing was performed while supplying the polishing liquid at a polishing liquid supply rate of 10 ml/min or more per disc blank in the rough polishing step and the fine polishing step.
  • the abrasive grains were diluted with water having an electrical resistivity of 1 M ⁇ cm or more.
  • the polishing liquid was continuously stirred during feeding.
  • the piping to which the polishing liquid is supplied was cleaned to such an extent that when water having an electrical resistivity of 10 M ⁇ cm or more was supplied from the inlet, the outlet of the pipe became 1 M ⁇ cm or more. .
  • a magnetic disk substrate of Example 2 was obtained.
  • Example 3 Using the redraw method, glass plates made of aluminosilicate glass having a width of 100 mm and a length of 10 m or more were produced, and glass plates having a thickness of 0.6 mm were selected. The selected glass plate was subjected to coring and inner and outer peripheral edge polishing to form a disk-shaped disk blank. Further, the formed disk-shaped disk blank was set in a simultaneous double-side polishing machine, and a rough polishing process and a precision polishing process were performed to manufacture a glass substrate.
  • the polishing conditions in the rough polishing step are a urethane polishing pad (manufactured by Hamai Sangyo Co., Ltd.: HPC-90D) with a hardness of 87 and cerium oxide with a particle size of 0.1 ⁇ m or more and 0.4 ⁇ m or less and an average particle size of 0.2 ⁇ m.
  • a polishing liquid was used in which pure water was added to abrasive grains to obtain free abrasive grains. Further, as other polishing conditions in the rough polishing step, the polishing liquid was supplied from the upper surface plate side, the rotation speed of the polishing surface plate was 25 rpm, the rotation speed of the sun gear was 10 rpm, and the polishing liquid supply rate was 150 ml/min.
  • the time was 2 minutes, the polishing amount was 1 ⁇ m on one side, and the processing pressure was 120 g/cm 2 . Further, the disc blank was placed upside down in the plate thickness direction and polished under the same conditions. In this step, the total polishing amount on both sides was 2 ⁇ m.
  • pure water is added to a urethane foam polishing pad (manufactured by Fujibo Ehime Co., Ltd.) having a hardness of 76 and colloidal silica having a particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m and an average particle size of 0.08 ⁇ m. was added to obtain free abrasive grains.
  • polishing liquid was supplied from the upper surface plate side; The time was 5 minutes, the polishing amount was 0.2 ⁇ m on one side, and the processing pressure was 50 g/cm 2 . Further, the disc blank was placed upside down in the plate thickness direction and polished under the same conditions. In this step, the total polishing amount on both sides was 0.4 ⁇ m. As described above, polishing was performed while supplying the polishing liquid at a polishing liquid supply rate of 10 ml/min or more per disc blank in the rough polishing step and the fine polishing step. In preparing the polishing liquids used for rough polishing and precision polishing, the abrasive grains were diluted with water having an electrical resistivity of 1 M ⁇ cm or more.
  • the polishing liquid was continuously stirred during feeding.
  • the piping to which the polishing liquid is supplied was cleaned to such an extent that when water having an electrical resistivity of 10 M ⁇ cm or more was supplied from the inlet, the outlet of the pipe became 1 M ⁇ cm or more. .
  • a magnetic disk substrate of Example 3 was obtained.
  • Example 1 A magnetic disk substrate was obtained in the same manner as in Example 1, except that the polishing step was performed under the following conditions.
  • a urethane foam polishing pad having a hardness of 66 and aluminum oxide having a particle size of 0.03 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.85 ⁇ m were mixed with pure water to obtain a free abrasive.
  • a granulated polishing liquid was used.
  • polishing liquid was supplied from the upper surface plate side, the number of revolutions of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 80 ml/min, the polishing time was 4 minutes, and the processing pressure. was 100 g/cm 2 and the polishing amount was 1 ⁇ m. No inversion of the disc blank was performed.
  • a precision polishing step was performed. In the precision polishing step, pure water is added to a urethane foam polishing pad having a hardness of 76 and colloidal silica having a particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m and an average particle size of 0.08 ⁇ m to obtain free abrasive grains. was used.
  • polishing liquid was supplied from the upper surface plate, the number of revolutions of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 150 ml/min, the polishing time was 4 minutes, and the processing pressure was 100 g/cm 2 and the polishing amount was 0.2 ⁇ m. No inversion of the disc blank was performed.
  • the piping to which the polishing liquid is supplied is cleaned to such an extent that when water having an electrical resistivity of 10 M ⁇ cm or more is supplied from the inlet, the outlet of the piping becomes 1 M ⁇ cm or more. I didn't. Thus, a magnetic disk substrate of Comparative Example 1 was obtained.
  • Comparative example 2 A magnetic disk substrate was obtained in the same manner as in Example 2, except that the polishing step was performed under the following conditions.
  • a urethane foam polishing pad having a hardness of 66 and aluminum oxide having a particle size of 0.03 ⁇ m or more and 1.0 ⁇ m or less and an average particle size of 0.85 ⁇ m were mixed with pure water to obtain a free abrasive.
  • a granulated polishing liquid was used.
  • polishing liquid was supplied from the upper surface plate side, the number of revolutions of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 80 ml/min, the polishing time was 2 minutes, and the processing pressure. was 100 g/cm 2 and the polishing amount was 1 ⁇ m. No inversion of the disc blank was performed.
  • a precision polishing step was performed. In the precision polishing step, pure water is added to a urethane foam polishing pad having a hardness of 76 and colloidal silica having a particle size of 0.01 ⁇ m or more and less than 0.1 ⁇ m and an average particle size of 0.08 ⁇ m to obtain free abrasive grains. was used.
  • polishing liquid was supplied from the upper surface plate side, the rotation speed of the polishing surface plate was 35 rpm, the polishing liquid supply rate was 150 ml/min, the polishing time was 6 minutes, and the processing pressure was was 100 g/cm 2 and the polishing amount was 0.2 ⁇ m. No inversion of the disc blank was performed.
  • the piping to which the polishing liquid is supplied is cleaned to such an extent that when water having an electrical resistivity of 10 M ⁇ cm or more is supplied from the inlet, the outlet of the piping becomes 1 M ⁇ cm or more. I didn't. Thus, a magnetic disk substrate of Comparative Example 2 was obtained.
  • the root-mean-square deviation Rq of the surface roughness of the fixing portion was measured for various magnetic disk substrates prepared.
  • the root-mean-square deviation Rq of the surface roughness of the fixing part was represented by measuring the root-mean-square deviation Rq of the surface roughness of a part of the fixing part.
  • the position on the magnetic disk substrate where the Rq was measured was on the circumference of a circle with a radius of 30 mm from the center of the magnetic disk substrate for various magnetic disk substrates manufactured. (That is, the location indicated by the phantom line 6 located within the fixed portion 11 on the magnetic disk substrate 1 shown in FIG.
  • the measurement was performed using an optical measuring instrument (Mesa Horizontal Laser Interferometer (trade name) manufactured by Zygo). The measurement mode was set to measure the surface roughness on the circumference.
  • the root-mean-square deviation Rq ( ⁇ m) of surface roughness was determined using MetroPro 8.3.3 software attached to the optical measuring instrument. Measurements were performed on both main surfaces of the magnetic disk substrate, and the root mean square deviation Rq of the surface roughness of one main surface was recorded in the "Surface Rq" column of Table 1, and the square of the surface roughness of the other main surface was recorded.
  • the average deviation Rq is shown in the column of "back surface Rq" in Table 1. Furthermore, the absolute value of the difference ⁇ Rq between the front surface Rq and the back surface Rq is described in the column of "Front/back surface difference ⁇ Rq".
  • This impact tester is equipped with one test table, and can apply an external impact of any magnitude to the test object by dropping this test table.
  • a displacement measuring device UMA-500 (trade name) manufactured by Unipulse) was used.
  • This displacement measuring device includes a capacitance type sensor, and can calculate the distance between the sensor and the measurement object by measuring the capacitance between the sensor and the measurement object.
  • the magnetic disk substrate was attached to the test stand of the impact tester using the same jig as a commercially available hard disk drive so that the main surface of the magnetic disk substrate was parallel to the test stand. Specifically, the mounting was performed as follows.
  • the hard disk drive (12 TB HDD [HUH721212ALE600], manufactured by Western Digital, equipped with eight magnetic disk substrates) was disassembled, and aluminum alloy fixing jigs (disk clampers, spacers) and screws with a nominal diameter of M2 were assembled. I took out 6 pieces. Separately, a bearing having the same shape as the bearing of the hard disk drive except that the length of the core was short (for one magnetic disk substrate) was prepared and fixed to the test stand. One magnetic disk substrate was held by a fixing jig (disk clamper, spacer) taken out from the hard disk drive, and the six screws were screwed together from above the disk clamper with a torque of 50 cN ⁇ m. , mounted on the bearing.
  • a fixing jig disk clamper, spacer
  • a fixing portion 11 (a portion surrounded by an inner peripheral edge and a circle with a radius of 14.5 mm from the center of the magnetic disk substrate) provided on the inner peripheral portion is provided for fixing. It was in contact with the jig.
  • the disk clamper had an outer diameter of 30 mm and a thickness of 5.6 mm.
  • the spacer was toric and had an inner diameter of 25 mm, an outer diameter of 32 mm and a thickness of 1.7 mm.
  • the sensors of the above-described displacement measuring apparatus are placed on a test stand, the inner peripheral edge sensor 7 and the outer peripheral edge sensor.
  • the inner peripheral edge sensor 7 is positioned 20 mm in the outer peripheral direction from the center of the magnetic disk substrate to be measured before vibration is applied to the test stand, and the outer peripheral edge sensor 8 is positioned at the center of the magnetic disk substrate. 44.18 mm in the outer peripheral direction from the top, along the direction normal to the main surface of the magnetic disk substrate 1 in a stationary state, so that the distance between the magnetic disk substrate 1 and the sensor can be measured.
  • 7 shows the arrangement of the inner peripheral edge sensor 7, the outer peripheral edge sensor 8, and the magnetic disk substrate 1 with respect to the magnetic disk substrate 1, viewed from the horizontal direction (perpendicular to the thickness direction of the magnetic disk substrate).
  • Fig. 3 shows an end view. In FIG.
  • the magnetic disk substrate 1 is in a stationary state (state before impact is applied), and the inner peripheral edge sensor 7 and the outer peripheral edge sensor 8 are perpendicular to the main surface of the magnetic disk substrate 1. are placed in FIG. 7A, the magnetic disk substrate 1 is sandwiched between a disk clamper 31 and a spacer 34 at fixed portions (not shown) and fixed to bearings (not shown). Although the outer diameters of the disk clamper 31 and the spacer 34 are different, they are shown as having the same diameter in FIG. 7(a) for the sake of simplification.
  • FIG. 7(b) is an end view showing the arrangement of the inner peripheral edge sensor 7 and the outer peripheral edge sensor 8 with respect to the magnetic disk substrate 1 deformed and bent downward due to the vibration caused by the applied impact.
  • both h1 and h2 are larger than h1 and h2 in FIG. 7(a) due to the bending.
  • the magnetic disk substrate 1 vibrates in the plate thickness direction (vertical direction) due to the vibration caused by the impact, and the vibration attenuates with the lapse of time.
  • the impact tester Using the impact tester, the test stand was vertically dropped, and an impact of 490 m/s 2 and 2.8 msec was applied to the bearing from below in the direction normal to the main surface of the magnetic disk substrate. At this time, the distance (h1) between the outer peripheral edge sensor 8 and the magnetic disk substrate 1 and the distance (h2) between the inner peripheral edge sensor 7 and the magnetic disk substrate 1 are measured.
  • the amount of displacement of the distance from the edge from the static state to the vibrating state and the amount of displacement from the static state to the vibrating state of the distance between the inner peripheral edge sensor and the inner peripheral edge were obtained (both units: ⁇ m).
  • the difference (h1-h2) between these displacement amounts at the same time was calculated, and this difference was taken as the displacement amount of the outer peripheral edge of the magnetic disk substrate.
  • the influence of the displacement of the bearing can be eliminated by obtaining the displacement amount of the outer peripheral edge as the difference between the displacement amounts h1 and h2 at two points on the magnetic disk substrate, the inner peripheral edge and the outer peripheral edge. As shown in FIG.
  • the obtained displacement amount of the outer peripheral edge is plotted against a displacement amount-time graph (vertical axis: displacement amount ( ⁇ m), horizontal Axis: Time (msec)), the absolute value of the first large downward displacement is defined as the maximum displacement amount H ( ⁇ m), and the slope when connecting the peaks of the first and second large downward displacements was taken as the damping rate E ( ⁇ m/msec) of the amount of displacement due to vibration.
  • the magnetic disk substrate was not rotated by a motor.
  • Table 1 shows the evaluation results.
  • the front surface Rq and rear surface Rq were too large, and the displacement amount H could not be reduced.
  • the attenuation factor E was also small.
  • both the surface Rq and the rear surface Rq were within the range of 0.01 to 0.44 ⁇ m, and the displacement amount H was reduced.
  • the attenuation factor E was also improved.
  • a magnetic disk using the magnetic disk substrate of the present invention can reduce the amount of displacement H and can improve the attenuation factor E. Therefore, if this magnetic disk is used, the impact resistance of the hard disk drive can be improved. I know you can.
  • the maximum displacement H when subjected to an impact of 490 m/s 2 and 2.8 msec is less than 171 ⁇ m, a hard disk having a gap of 165 ⁇ m between the magnetic disk and an external member such as a ramp using the magnetic disk substrate as the magnetic disk. Even when incorporated into a drive, particles are less likely to occur when the magnetic head comes into contact with external members such as ramps and scrapes the ramp members, and in some cases scratches or defects on the surface of the magnetic disk are less likely to occur. It can be a hard disk drive.
  • the attenuation rate E when receiving an impact of 490 m/s 2 and 2.8 msec is 17.7 ⁇ m/msec or more, when the magnetic disk substrate is incorporated into a hard disk drive as a magnetic disk, Even if a large vibration occurs, the vibration can be damped in a short time, and the number of times of contact with external members is reduced. In addition, when the magnetic disk is not rotating, repeated contact at the same position on the magnetic disk is reduced. As a result, it is possible to obtain a hard disk drive in which generation of particles and scratches and defects on the surface of the magnetic disk are much less likely to occur.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

一対の表裏の主面を有する磁気ディスク用基板であって、上記表裏の主面のそれぞれに、磁気ディスク用基板を磁気ディスクとした上でハードディスク装置に組みこむ際に固定用治具と接触する部位である固定部位を有し、上記表裏の主面のそれぞれの固定部位の表面粗さの二乗平均偏差Rqが0.01~0.44μmである磁気ディスク用基板、及びこれを用いた磁気ディスク。

Description

磁気ディスク用基板及びこれを用いた磁気ディスク
 本発明は、高強度で良好な耐衝撃特性を有する磁気ディスク用基板及びこれを用いた磁気ディスクに関する。
 近年、記憶装置(ハードディスクドライブ等のハードディスク装置を含む。)には、複数の種類の情報(テキスト、映像、音楽)などをひとまとめに扱うマルチメディア化等のニーズの拡大に対応して、大容量化及び高密度化が求められている。ハードディスク装置の大容量化は、ハードディスク装置に搭載される磁気ディスクの積載枚数の増加などによって達成できる。例えば、複数の磁気ディスクを積み重ねて積載するハードディスク装置が挙げられる。このようなハードディスク装置において、磁気ディスクの積載枚数を単に増加させると、ハードディスク装置を大型化する必要がある。しかし、ハードディスク装置用筐体のサイズは規格化されている場合があり、サイズを大きく変えることは難しい。このため、磁気ディスクの厚みの大部分を占める磁気ディスク用基板の薄肉化も求められている。
 ハードディスク装置に装着(装備)される磁気ディスクは、一般に、円盤状の磁気ディスク用基板の主面上に、磁気層等を設けて作成される。このような磁気ディスク用基板としては、種々のものが提案されており、例えば、特許文献1には、2つの主面を有する基板本体と特定の損失係数を有する金属材料の膜とを備え、上記膜を含む厚さが0.7mm以下であり、上記膜が基板全面を覆っている磁気ディスク用基板であって、磁気ディスク用基板の端面において、上記膜の厚みを、主面上における上記膜の膜厚よりも厚くした磁気ディスク用基板が開示されている。
特許第6467118号
 ハードディスク装置においては、一般的に、磁気ディスクに記録された情報を磁気ヘッドにより読み取る。この磁気ヘッドは、ハードディスクドライブでは、ハードディスクドライブの停止時に、磁気ヘッドと磁気ディスクの記憶領域との接触を防ぐために磁気ディスクの記憶領域から退避する。この退避の方式の一つとして、磁気ヘッドをランプ上に退避させる方式(ランプロード方式)がある。この方式において、ランプは、磁気ディスクの主面上に張り出すように配置される。
 上述の通り、磁気ディスクの薄肉化のため、磁気ディスク用基板の薄肉化が要望されている。しかし、磁気ディスク用基板を薄肉化すると磁気ディスクとしてハードディスク装置に組み込まれた際に、ハードディスク装置外部からの衝撃で磁気ディスクが大きく振動する場合がある。この振動の振れ幅が大きいと、磁気ディスク、より具体的には磁気ディスク用基板そのもの又は磁気ディスク用基板上に形成された磁性体層等が、磁気ディスクの主面上に張り出すように配置されているランプ等の周囲の部材(外部部材)と、又は隣接する磁気ディスクと、衝突してしまう。このような衝突が生じると、磁気ディスクに接触した部材が削れてパーティクルを生じる、磁気ディスク表面に傷等の欠陥が生じる等の不具合につながりやすい。そこで、振動の抑制された、耐衝撃特性の優れた磁気ディスクとできる磁気ディスク用基板が求められている。
 一方で、ハードディスク装置への磁気ディスクの積載枚数を増加させるため、磁気ディスクの主面とランプとの間隙をさらに狭くすることが検討されている。
 特許文献1に記載の磁気ディスク用基板は、磁気ディスクの主面とランプとの間隙を0.2mm(200μm)とすることを想定して開発されたものであり、特許文献1には2msec、120G(1177m/s)の衝撃を与えた際に、磁気ディスク用基板の外周端部の板厚方向の変位量が0.2mm以上となる回数を4回以下に抑制できることが記載されている。しかし、特許文献1に記載された磁気ディスク用基板は、ハードディスク装置の大容量化に対応すべく、磁気ディスク用基板を例えば板厚0.5mm以下に薄肉化しながら、磁気ディスクの主面とランプとの間隙を200μmからさらに狭くする形態(例えば、間隙:165μmとする形態)に対応可能とは必ずしも言えないものであった。
 本発明は、ハードディスク装置の高容量化(積載枚数の増加)に対応可能であり、かつハードディスク装置の耐衝撃特性の向上を可能とする磁気ディスク用基板、及びこれを用いた磁気ディスクを提供することを課題とする。
 本発明者らは、薄肉化した磁気ディスクの耐衝撃特性について磁気ディスクの厚みの大部分を占める磁気ディスク用基板に着目して鋭意検討した結果、一対の表裏の主面を有する磁気ディスク用基板において、磁気ディスクとしたときに、ハードディスク装置に組みこむ際に固定用治具と接触する部位(固定部位)の表面粗さを制御することが外部衝撃による変位量の抑制に効果的であることを見出した。この知見に基づき、さらに検討を進めたところ、上記一対の主面を有する磁気ディスク用基板の固定部位の表面粗さを特性する物性の中でも表面粗さの二乗平均偏差Rqをそれぞれ0.01~0.44μmに設定することにより、例えば板厚0.5mm以下に薄肉化した磁気ディスク用基板であっても、板厚0.5mmを超える磁気ディスク用基板を用いた場合と同等以上の耐衝撃特性を実現できることを見出した。本発明はこれらの知見に基づき更に検討を重ね、完成されるに至ったものである。
 すなわち、本発明の課題は以下の手段によって達成された。
〔1〕
 一対の表裏の主面を有する磁気ディスク用基板であって、
 上記表裏の主面のそれぞれに、上記磁気ディスク用基板を磁気ディスクとした上でハードディスク装置に組みこむ際に固定用治具と接触する固定部位を有し、
 上記表裏の主面のそれぞれの固定部位の表面粗さの二乗平均偏差Rqが0.01~0.44μmである磁気ディスク用基板。
〔2〕
 上記表裏の主面の固定部位のRqの差ΔRqの絶対値が0.01~0.11μmである〔1〕に記載の磁気ディスク用基板。
〔3〕
 下記の衝撃試験によって上記磁気ディスク用基板を振動させた際に、上記磁気ディスク用基板の外周端部の板厚方向の変位量の最大値Hが165μm以下で、且つ、上記変位量の減衰率Eが17.7μm/msec以上である〔1〕又は〔2〕に記載の磁気ディスク用基板。
<衝撃試験>
 上記磁気ディスク用基板を、上記固定部位で固定用治具により上下から挟持し水平に軸受けに固定した状態で、上記軸受けに対して2.8msec、490m/sの衝撃を上記磁気ディスク用基板主面の法線方向に下方から与える。
〔4〕
 外径97mm以上、内径26mm以下、板厚0.5mm以下である円盤状の、〔1〕~〔3〕のいずれか1項に記載の磁気ディスク用基板。
〔5〕
 〔1〕~〔4〕のいずれか1項に記載の磁気ディスク用基板を用いた磁気ディスク。
 本明細書において「~」を用いて表される数値範囲は、「~」前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 上述の磁気ディスク用基板を磁気ディスクの作成に用いることにより、ハードディスク装置に組み込んだ際に、外部から受ける衝撃により生じる磁気ディスクとランプ等の外部部材との接触が低減され、磁気ディスク表面のパーティクルの発生、傷や欠陥が生じ難くなる。このため、磁気ディスク用基板の板厚を薄くしても、外部部材との距離が減少したハードディスク装置において耐衝撃特性を向上させることができる。本発明の磁気ディスクは、ハードディスク装置に組み込んだ際に、耐衝撃性を向上させることができる。
図1は、磁気ディスク用基板の一例を主面法線方向から平面視した平面図である。 図2は、磁気ディスク用基板の固定部位と固定用治具との配置の一例を示す模式図である。 図3は、磁気ディスクのハードディスク装置への組み込み(積載)の形態の一例を示す分解斜視図である。 図4は、本発明の磁気ディスク用アルミニウム合金基板と、これを用いた磁気ディスクの製造方法を説明するフロー図である。 図5は、本発明の磁気ディスク用ガラス基板と、これを用いた磁気ディスクの製造方法を説明するフロー図である。 図6は、実施例においてRqを測定した、磁気ディスク用基板上の位置を説明する模式図である。 図7は、実施例の最大変位量H及び変位量の減衰率Eの測定の際の、磁気ディスク用基板と内周端部センサー及び外周端部センサーの配置の関係を示す、磁気ディスク用基板の側面方向からみた模式図である。図7(a)では、磁気ディスク用基板は静止状態にあり、図7(b)では、磁気ディスク用基板は振動により変形し板厚方向下方に撓んだ状態にある。 図8は、実施例で求めた最大変位量H及び変位量の減衰率Eの求め方を説明する模式図である。 図9は、衝撃試験において印加する衝撃パルスの一例を示す説明図である。
 以下、本発明に係る磁気ディスク用基板及び磁気ディスクの一実施形態について、図1~3を参照しながら説明する。
 磁気ディスク用基板1は、磁気ディスク2の製造に用いられる基板であり、その形状は、一般的には円盤状又は円環状である。
 図1は、磁気ディスク用基板の一例を一方の主面法線方向から平面視した平面図である。
 図1に示す磁気ディスク用基板1は、円盤状の形状を有し、中心に円孔12を有する。磁気ディスク用基板1は、円孔12を有さない円盤状とも出来るが、中心に円孔12を有する円盤状であることが好ましい。
 磁気ディスク用基板1は一対の表裏の主面14を有する。
 磁気ディスク用基板1は、2つの、すなわち表裏の主面14に固定部位11をそれぞれ有する。固定部位11は、磁気ディスク用基板1を磁気ディスク2とした上でハードディスク装置に組み込む際に、固定用治具3と接触する部位をいう。
 固定部位11は、磁気ディスク用基板1の内周端部15に配置される内縁と、磁気ディスク用基板1の中心から32mm以下、好ましくは30mm以下の距離に(同心)円状に配置される外縁(仮想線13)とにより区画される(同心)円環状の部位である。2.5インチハードディスク装置用に用いる場合、固定部位11は、磁気ディスク用基板1の内周端部15に配置される内縁と、磁気ディスク用基板1の中心から29mm以下、好ましくは27mm以下の距離に円状に配置される外縁(仮想線13)とにより区画される円環状の部位である。図1では、固定部位11の内径は、磁気ディスク用基板1の内径と一致しているが、固定部位11の内径は、磁気ディスク用基板1の内径より少し大きな径とすることもできる。固定部位11の外径は、磁気ディスク2を固定する際に用いる固定用治具3の外径に合わせて設定でき、固定用治具3の外径と同じか少し大きな径か少し小さな径とすることができる。磁気ディスク用基板1を磁気ディスク2とする際には、この固定部位11の中心から外周に向けた方向(半径方向)の外側に磁性体層が形成される。一方で、磁気ディスク用基板1の固定部位11上には、磁性体層は形成されない。この意味で、磁気ディスク用基板1を磁気ディスク2とした際には、磁気ディスク用基板1の固定部位11と、磁気ディスク2の固定部位21とは、同一視することができる。
 本発明において、固定用治具3は、図3に例示するように、磁気ディスク2とした磁気ディスク用基板1をハードディスク装置に組み込む際に、磁気ディスク用基板1の固定部位11(磁気ディスク2の固定部位21)に接触する形態で配置される部材をいう。固定用治具3は、通常、平面視、円盤状又は円環状の形態をしている。固定用治具3は、磁気ディスク2をハードディスク装置に組み込む際に通常使用される部材であればよく、ディスククランパ31、軸受けに設けられた大径部33a(軸受けの大径部ともいう)、スペーサ34等である。固定用治具3は、アルミニウム合金製とすることができる。
 固定用治具3の、一つの主面の固定部位11に対する配置の例を図2に示す。図2において、固定部位11と固定用治具3(34)とは、平面視同形状であり、図2では離間しているが固定用治具3(34)は固定部位11に接して配される。ハードディスク装置への組み込みの際の、固定部位11と固定用治具3との配置の形態は、固定用治具3の配置される位置が、固定部位11の平面視内側であれば特に限定されない。固定用治具3は、固定部位11の平面視全体で接触してもよく、固定部位11の平面視した一部で接触してもよい。
 磁気ディスク用基板1は、磁気ディスク2とした上で、固定部位21で固定された状態でハードディスク装置等に組み込まれる。より具体的には、固定部位21において、固定用治具3により厚さ方向上下から挟持され、ハードディスク装置の軸受けに固定される。磁気ディスク2のハードディスク装置への組み込みの形態の一例を模式的に示す分解斜視図を図3に示す。具体的には、図3は、3枚の磁気ディスク2を組み込む際の、磁気ディスク2の配置の形態の一例を示している。図3において、3枚の磁気ディスク2は、固定用治具3(ディスククランパ31、軸受けの大径部33a、スペーサ34)とともに、図3に示す順で配置される。ディスククランパ31側から6つの取り付けネジ4を軸受け33に螺合することにより、3枚の磁気ディスク2は、軸受け33の大径部33aで支持され、2つのスペーサ34を介して、軸受け33に固定される。軸受けの芯33bは、磁気ディスク2の円孔、スペーサ34の円孔に挿入される。磁気ディスク2上の固定部位21の外径と、軸受けの大径部33aの直径と、スペーサ34の外径と、ディスククランパ31の直径とは同じである。磁気ディスク2の内径と、スペーサ34の内径とは同じである。軸受けの芯33bの直径は、磁気ディスク2とスペーサ34とを挿入した際にいずれとも隙間のできない大きさである。取り付けネジ4の螺合後には、3枚の磁気ディスク2は、軸受けの大径部33aと、2枚のスペーサ34と、ディスククランパ31と、固定部位21で接触する形態で組み込まれる。組み込みの形態を端的に示す観点から、図3では磁気ディスク2が有する磁性体層、並びに、磁気ヘッド、ランプ等の外部部材、筐体等は図示していない。
 組み込みの形態は上記形態に限定されず、上記を含めた通常の組み込みの形態とすることができる。例えば、軸受けの大径部33aと磁気ディスク2との間にスペーサ34をさらに配置してもよい。
 本発明の磁気ディスク用基板1は、2つの主面14、14の、2つの固定部位11、11の表面粗さの二乗平均偏差Rqがそれぞれ0.01~0.44μmである。表面粗さの二乗平均偏差Rqが上記範囲にあると、磁気ディスク用基板1を磁気ディスク2としハードディスク装置に組み込んだ際に、磁気ディスク2の振動が抑制され、耐衝撃特性を高めることができる。固定部位11の表面粗さのRqを上記範囲内に制御、調整することにより、衝撃時の磁気ディスク用基板1の変形(変位量の差ともいう)の支点分布がより均一となり、磁気ディスク用基板1の最外周部の、衝撃による変形が縮小すると考えられる。固定部位11の表面粗さの二乗平均偏差Rqは、0.10~0.44μmが好ましく、0.15~0.40μmがより好ましい。固定部位11の表面粗さの二乗平均偏差Rqは、0.17~0.40μmとすることもできる。
 上記固定部位11の表面粗さの二乗平均偏差Rqは、JIS B 0601-2001に準じて、実施例に記載の方法で測定することができる。磁気ディスク用基板1を磁気ディスク2とした場合であっても、磁気ディスク2の固定部位21における表面粗さの二乗平均粗さRqを測定することにより、磁気ディスク用基板1の固定部位11における表面粗さの二乗平均粗さRqを測定することができる。磁気ディスク2の固定部位21と磁気ディスク用基板1の固定部位11とは、通常同じであるためである。
 上記表面粗さの二乗平均偏差Rqの調整方法は、特に制限されないが、例えば、研磨工程において、後述するディスクブランク1枚当たり10ml/分以上の研磨液を供給しながら研磨すること、電気抵抗率1MΩ・cm以上の水を用いて研磨液を希釈すること、研磨液を供給する間攪拌し続けること、研磨液を研磨パッドへ配管経由で供給する場合には配管を、電気抵抗率10MΩ・cm以上の水を配管の入口から供給した際に配管の出口で水の電気抵抗率が1MΩ・cm以上となる程度に、清浄にすること等により、上記範囲に設定することができる。いずれの調製方法を採用しても、Rqは小さくなる傾向である。
 上記電気抵抗率を下げる観点からは、研磨液の希釈に用いる水は、純水が好ましく、イオン交換水及び蒸留水がより好ましい。
 磁気ディスク用基板1の2つの固定部位11のRqの差ΔRqの絶対値(すなわち、表面側の固定部位11のRq-裏面側の固定部位11のRqの絶対値)は、0.01~0.11μmであることが好ましい。ΔRqの絶対値を上記範囲とすることにより、磁気ディスク用基板1の振動の減衰率を高めることができる。固定部位11の表裏の表面粗さを揃えることで、基板上下の変位量の差が小さくなり振動がより早く減衰するものと考えられる。
 減衰率をより高める観点からは、ΔRqの絶対値は、0.01~0.08μmであることが好ましく、0.01~0.05μmであることがより好ましく、0.01~0.05μmであることがさらに好ましい。
 ΔRqの絶対値の調整方法は、特に制限されないが、例えば、研磨工程において、研磨液を上定盤側から供給すること、ディスクブランクの上下を反転させ同じ時間だけ研磨すること、ディスクブランクの板厚方向上下の反転を一回以上実施すること等により上記範囲に設定することができる。
 磁気ディスク用基板1の板厚は、通常の磁気ディスク用基板の板厚と同様とすることができ、さらに薄肉化することもできる。磁気ディスク用基板1の板厚は、0.50mm以下であることが好ましい。磁気ディスク用基板1の板厚の下限は特に限定されないが、0.30mm以上が実際的である。
 磁気ディスク用基板1の外径は、通常の磁気ディスク用基板の外径と同様とすることができる。磁気ディスク用基板1を2.5インチハードディスク装置用に用いる場合、磁気ディスク用基板1の外径は、65mm以上であることが好ましい。上限はハードディスク装置の筐体の内寸により制限され、70mm以下が実際的である。磁気ディスク用基板1を3.5インチハードディスク装置用に用いる場合、本発明の磁気ディスク用基板1の外径は、95mm以上であることが好ましく、97mm以上がより好ましい。上限はケースの内寸により制限され、101mm以下が実際的である。
 磁気ディスク用基板1の内径は、通常の磁気ディスク用基板の内径と同様とすることができる。2.5インチハードディスク装置用に用いる場合、本発明の磁気ディスク用基板1の内径は、22mm以下であることが好ましい。下限は回転軸の直径により制限され、18mm以上が実際的である。3.5インチハードディスク用に用いる場合、本発明の磁気ディスク用基板1の内径は、26mm以下であることが好ましい。25mm以下とすることもできる。下限は回転軸の直径により制限され、24mm以上が実際的である。
 磁気ディスク用基板1の好ましい形態は、外径97mm以上、内径26mm以下、板厚0.5mm以下である形態である。
 本発明の磁気ディスク用基板1は、下記の形態とし、下記の仕様のハードディスクドライブに用いた場合に、特に好ましい効果を奏する。
 磁気ディスク用基板1のサイズ:外径97mm以下、内径25mm以下、板厚0.5mm以下
 材料:Al-Mg系合金又はアルミノシリケートガラス
 使用の態様:磁気記録ディスク
 ハードディスクドライブの仕様:3.5インチハードディスク又は2.5インチハードディスク(いずれもランプロード式)
 磁気ディスクとランプとの間隙:例えば171μm未満、より好ましくは165μm以下
 磁気ディスク用基板1は、上記二乗平均偏差Rqを満たしているから、下記の衝撃試験による衝撃を与えた際に、磁気ディスク用基板1の外周端部の板厚方向の変位量の最大値H及びその減衰率Eをそれぞれ下記範囲内に抑えることができる。これにより、基板1を磁気ディスク2としてハードディスク装置に組み込んだ際に、たとえ振動が発生しても、パーティクルの発生、磁気ディスク表面の傷、欠陥の発生を効果的に抑制できる。
 
<衝撃試験>
 1枚の磁気ディスク用基板1を、固定部位11で固定用治具3(ディスククランパ31及びスペーサ34)により上下から挟持し水平に軸受け33に固定した状態で、軸受け33に対して、2.8msec、490m/sの衝撃を磁気ディスク用基板1の主面14の法線方向(板厚方向)に下方から(軸受け33側からディスククランパ31側に向かって)与える。
 なお、衝撃試験において、上下方向とは磁気ディスク用基板の板厚方向(挟持方向)をいい、「上(側)」とはディスククランパ31側、「下(側)」とは軸受け33側をいう。
 
 変位量の最大値Hは、この衝撃試験による衝撃によって磁気ディスク用基板1を振動させ、この衝撃による外周端部の板厚方向の変位量を、図8に示すように、時間に対してプロットして変位量-時間グラフとした際の、最初に大きく下に下がる変位の絶対値(μm)をいう。また、変位量の減衰率Eは、このグラフにおいて、1回目と2回目に大きく下がる変位の頂点を結んだ際の傾き(μm/msec)をいう。
 上記衝撃試験は、具体的には実施例に記載の方法によって行うことができる。この衝撃試験は、磁性体層の形成されていない磁気ディスク用基板1を用いて行うが、磁性体層は一般的には薄膜であるため、その剛性は、変位量の最大値H及び減衰率Eに実質的に影響しない。
 上記衝撃試験によって磁気ディスク用基板1を振動させた際に、磁気ディスク用基板1の外周端部の板厚方向の変位量の最大値Hが165μm以下であることが好ましい。
 上記最大変位量Hは、164μm以下であることがより好ましく、150μm以下であることがより好ましく、130μm以下であることがさらに好ましい。最大変位量Hの下限は特に限定されないが、100μm以上であることが実際的である。
 磁気ディスク用基板1は、上記衝撃試験によって磁気ディスク用基板1を振動させた際に、磁気ディスク用基板1の外周端部の板厚方向の変位量の減衰率Eが17.7μm/msec以上であることが好ましい。減衰率Eの上限は特に限定されないが、30μm/msec以下であることが実際的である。
 磁気ディスク用基板1は、上記変位量の最大値Hが165μm以下で、且つ、上記変位量の減衰率Eが17.7μm/msec以上である形態がより好ましい。
 なお、磁気ディスク用基板1が磁気ディスク2とされている場合であっても、磁気ディスク2を用いる以外は同じ方法で測定した変位量H及び減衰率Eを、磁気ディスク用基板1の変位量H及び減衰率Eとみなすことができる。上述のように磁性体層はこれらの測定値に影響しないためである。
 上記衝撃試験の条件は、実際の使用の際の、ハードディスク装置をHDDマウントラック、コンピュータ等に固定する際の衝撃(ブレード等の端子にハードディスク装置端子を差し込む、そのブレードをブレードサーバーのサイドガイドを滑らせながら奥まで押し込んで最奥に到着した際の衝撃等)を再現した条件である。この衝撃を再現するため、本発明においては、作用時間を2.8msecに、最大加速度(印加加速度)を490m/sに設定した。なお、特許文献1においても、衝撃試験がなされているが、特許文献1に記載の作用時間2msec、最大加速度120G(1177m/s)の衝撃を与える試験では、作用時間が短すぎ、目的とするハードディスク装置をHDDマウントラック、コンピュータ等に固定する際の衝撃を再現することはできない。
 図9に、衝撃試験に用いられる衝撃パルスの説明図を示す。縦軸は加速度であり、横軸は時間である。衝撃パルスは、印加加速度G(最大加速度に相当)、作用時間から構成される。
 本発明の磁気ディスク2は、上記磁気ディスク用基板1を用いた磁気ディスクである。
 本発明の磁気ディスク用基板1は、その主面14の少なくとも一方に磁性体層を形成することにより、磁気ディスク2として用いることができる。主面14の両方に磁性体層を形成することが好ましい。
 磁気ディスク2の構造は、上記固定部位21を有する以外は、通常の磁気ディスクと同様の構造とすることができる。
 固定部位21は固定部位11についての記載を適用することができ、固定部位11と同様の表面粗さの二乗平均偏差Rq、内径、及び外径とすることができ、好ましい態様も固定部位11と同様である。
 磁性体層は、通常の磁気ディスクと同様の構造とすることができる。
 磁性体層の厚みは、特に限定されないが、1~100nmが好ましい。
 本発明の磁気ディスク用基板1を用いて得られた磁気ディスク2は、基板1が上記特性を有するため、3.5インチの通常のハードディスクに加えて、より厳しい耐衝撃性が求められる公称2.5インチまたは3.5インチのハードディスクにも用いることができる。
 主要な2.5インチハードディスク用筐体の厚みとして、7mm、9.5mm、12.5mm、主要な3.5インチハードディスク用筐体の厚みとして、20mm、26mm等が知られている。
 磁気ディスク2の板厚が0.5mmである場合、通常の3.5インチ用ハードディスク用の厚さ26mmの筐体に搭載できる磁気ディスク2の枚数は9枚以下である。しかし、磁気ディスク2の板厚を0.5mm未満とすることにより、筐体の厚みを26mmから大きく超える厚みとすることなく、ハードディスクに磁気ディスクを10枚以上搭載することが可能となる。
 通常のハードディスクドライブにおいて、磁気ディスクの主面とこの主面と同じ側にあるランプ等の外部部材との間隙は200μm程度に設定されることがある。本発明の磁気ディスク用基板1を用いれば、磁気ディスク2と外部部材との間隙をさらに減少させることができる。このようにして、ハードディスク装置に磁気ディスクを多く搭載することを可能とできる。本発明によれば、上記間隙を170μm、さらには165μmといったより狭い間隙とすることが可能である。
 磁気ディスク用基板1の材料としては、一般に、機械的特性や加工性に優れる材料が用いられており、具体的には、アルミニウム合金、及びガラスを好ましく用いることができる。特に、基板1の二乗平均偏差Rqを上記範囲に設定する本発明の基板においては、基板の材料として用いられる従来のアルミニウム合金及びガラスを特に制限されることなく用いることができる。以下、アルミニウム合金を用いて製造された磁気ディスク用基板をアルミニウム合金基板、ガラスを用いて製造された磁気ディスク用基板をガラス基板ということがある。
<アルミニウム合金基板>
 まず、アルミニウム合金基板について説明する。
 基板材料のアルミニウム合金としては、Al-Mg系合金、Al-Fe-Mn-Ni系合金、Al-Fe-Mn-Mg-Ni系合金を好ましく用いることができるが、これに制限されるものではない。
 Al-Mg系合金としては、例えば、JIS5086(A5086)(Mg:3.5~4.5質量%、Fe:0.50質量%以下、Si:0.40質量%以下、Mn:0.20~0.70質量%、Cr:0.05~0.25質量%、Cu:0.10質量%以下、Ti:0.15質量%以下及びZn:0.25質量%以下を含有し、残部Al及び不可避的不純物からなる)を用いることができる。
 以下に、磁気ディスク用アルミニウム合金基板、及びこれを用いた磁気ディスクの製造方法の一例を説明する。
 磁気ディスク用アルミニウム合金基板の製造方法は、表面粗さの二乗平均偏差Rqが上記範囲にある磁気ディスク用基板を製造可能な方法であれば、特に限定されない。表面粗さの二乗平均偏差Rqを上記範囲とする観点からは、磁気ディスク用アルミニウム合金基板の製造方法は、粒径が0.03μm以上1.0μm以下(粒径0.1μm以上1.0μm以下とすることもできる)で、平均粒径が0.2μm以上0.85μm以下の研磨砥粒を含む研磨液と硬質又は軟質の研磨パッドとを用いて、主面を粗研磨する工程と、次いで、粒径が0.01μm以上0.1μm未満で、平均粒径が0.02μm以上0.08μm以下の研磨砥粒を含む研磨液と軟質の研磨パッドを用いて、主面を精密研磨する工程とを少なくとも有することが好ましい。
 粗研磨工程は後述のステップS111に相当し、精密研磨工程は後述するステップS112に相当する。粗研磨工程及び精密研磨工程の詳細については、ステップS111及びS112の記載を参照することができる。
 上記粗研磨工程及び/又は精密研磨工程は、下記の好ましい工程を少なくとも1つ行うことが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、上定盤側から研磨パッドへ研磨液を供給しながら研磨する工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、後述するディスクブランク1枚当たり10ml/分以上の研磨液を供給しながら研磨する工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、電気抵抗率1MΩ・cm以上の水を用いて希釈された研磨液を用いる工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程において、研磨パッドに対して攪拌下の研磨液を供給することが好ましい。
 上記粗研磨工程及び/又は精密研磨工程において、研磨工程の途中でディスクブランクの板厚方向上下を一回以上反転させることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程に先立って、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にすることが好ましい。
 図4は、アルミニウム合金基板、及び、これを用いた磁気ディスクの製造方法の一例を説明するフロー図である。図4において、アルミニウム合金の調製工程(ステップS101)~冷間圧延(ステップS105)は、溶解鋳造でアルミニウム合金素材を製造し、これをアルミニウム合金板にする工程である。次いで、加圧平坦化処理(ステップS106)によって、アルミニウム合金のディスクブランクが製造される。そして、製造したディスクブランクに対して切削加工・研削加工工程(ステップS107)、脱脂・エッチング処理(ステップS108)等の前処理を行い、ジンケート処理(ステップS109)、Ni-Pめっき処理(ステップS110)、粗研磨工程(ステップS111)、及び精密研磨工程(ステップS112)、を行い、磁気ディスク用アルミニウム合金基板が製造される。製造された磁気ディスク用アルミニウム合金基板は、磁性体の付着工程(ステップS113)によって磁気ディスクとなる。
 以下、この図4を参照しつつ、各工程の内容を詳細に説明する。
 まず、上述の成分組成を有するアルミニウム合金素材の溶湯を、常法に従って加熱・溶融することによって調製する(ステップS101)。
 次に、調製されたアルミニウム合金素材の溶湯を、半連続鋳造(DC鋳造)法や連続鋳造(CC鋳造)法等により鋳造して、アルミニウム合金素材を鋳造する(ステップS102)。DC鋳造は、竪型半連続鋳造でもよく、横型半連続鋳造でもよい。DC鋳造法及びCC鋳造法における、アルミニウム合金素材の製造条件等は、以下のとおりとなる。
 DC鋳造法においては、スパウトを通して注がれた溶湯が、ボトムブロックと、水冷されたモールドの壁、ならびに、インゴット(鋳塊)の外周部に直接吐出される冷却水で熱を奪われ、凝固し、アルミニウム合金の鋳塊として下方に引き出される。この工程で得られたインゴットをスラブということがある。
 一方、CC鋳造法では、一対のロール(又は、ベルトキャスタ、ブロックキャスタ)の間に鋳造ノズルを通して溶湯を供給し、ロールからの抜熱でアルミニウム合金の薄板を直接鋳造する。
 DC鋳造法とCC鋳造法との大きな相違点は、鋳造時の冷却速度にある。冷却速度が大きいCC鋳造法では、第二相粒子のサイズがDC鋳造に比べ小さいのが特徴である。
 次に、DC鋳造により得られたアルミニウム鋳塊に対しては、熱間圧延し板材とする(ステップS104)。この熱間圧延に先立って、DC鋳造されたアルミニウム合金鋳塊については、必要に応じて均質化処理を実施することができる(ステップS103)。CC鋳造においては、これらの工程を行わず、ステップS102に引き続きステップS105を行う。
 ステップS103として、均質化処理を行う場合は、280~620℃で0.5~30時間の加熱処理を行うことが好ましく、300~620℃で1~24時間の加熱処理を行うことがより好ましい。均質化処理時の加熱温度が280℃未満又は加熱時間が0.5時間未満の場合は、均質化処理が不十分で、アルミニウム合金基板毎の損失係数のバラツキが大きくなる虞がある。均質化処理時の加熱温度が620℃を超えると、アルミニウム合金鋳塊に溶融が発生する虞がある。均質化処理時の加熱時間が30時間を超えてもその効果は飽和し、それ以上の顕著な改善効果が得られない。
 ステップS104においては、均質化処理を施した、或いは、均質化処理を施していないアルミニウム合金鋳塊(DC鋳造)を熱間圧延し板材とする(ステップS104)。熱間圧延するに当たっては、特にその条件は限定されるものではないが、熱間圧延開始温度を好ましくは250~600℃とし、熱間圧延終了温度を好ましくは230~450℃とする。
 次に、熱間圧延した圧延板、又は,CC鋳造法で鋳造した鋳造板を冷間圧延して0.3~0.6mm程度のアルミニウム合金板とする(ステップS105)。冷間圧延の条件は特に限定されるものではなく、必要な製品板強度や板厚に応じて定めればよく、圧延率を10~95%とするのが好ましい。冷間圧延の前、或いは、冷間圧延の途中において、冷間圧延加工性を確保するために焼鈍処理を施してもよい。焼鈍処理を実施する場合には、例えばバッチ式の加熱ならば、300~450℃で0.1~10時間の条件で行うことが好ましく、連続式の加熱ならば、400~500℃で0~60秒間保持の条件で行うことが好ましい。ここで、保持時間が0秒とは、所望の保持温度に到達後直ちに冷却することを意味する。
 そして、冷間圧延により得られたアルミニウム合金板を円盤状に打ち抜き、円盤状アルミニウム合金板とする。円盤状アルミニウム合金板は、加圧平坦化処理(ステップS106)によってディスクブランクとなる。加圧平坦化処理では、円盤状アルミニウム合金板に対して、大気中で、30~100MPaの負荷荷重を負荷して加圧しながら、例えば200~450℃で0.5~10時間の加圧焼鈍が行われ、平坦化したディスクブランクが作製される。
 ディスクブランクには、ジンケート処理等の前に、切削加工・研削加工(ステップS107)と必要に応じて加熱処理を行う。
 切削・研削加工工程においては、ディスクブランクの内外周を切削加工して形状を整え、主面を研削加工する。この工程を行う前に、研削加工の予備処理として、ディスクブランクの記録面を切削加工してもよい。この工程において、さらに内外周端面へチャンファー加工を施してもよい。
 研削加工は800~4000番のSiC砥石と、市販のバッチ式の両面同時研磨機を用いて実施することができる。この両面同時研磨機は、鋳鉄製の上定盤及び下定盤と、複数のアルミ基板を上定盤と下定盤との間に保持するキャリアと、上定盤及び下定盤のアルミ基板との接触面に取り付けられた、SiC砥石とを備える。研削加工は、ディスクブランクをキャリアで保持しながら、上下定盤をそれぞれ反対方向に回転させる。上下定盤の回転数は10~30rpmとすることができる。キャリアはサンギアで回転するため、ディスクブランクは砥石の上を遊星運動しながら研削される。
 また、加熱処理を行う場合には、ディスクブランクを200~350℃で5~60分保持の条件で加熱処理を行う。加熱処理を行うことにより、切削・研削加工で入った歪を除去することができる。
 次に、ディスクブランク表面を脱脂・エッチング処理する(ステップS108)。
 脱脂処理は、通常の方法で行うことができ、例えば、市販の脱脂液などを用い、温度40~70℃、処理時間3~10分、濃度10~500ml/Lの条件で行うことが好ましい。
 エッチング処理は、通常の方法で行うことができ、例えば、市販のエッチング液などを用い、温度50~75℃、処理時間0.5~5分、濃度1~50mL/Lの条件で行うことが好ましい。
 次に、ディスクブランク表面に対して、ジンケート処理(Zn置換処理)を施す(ステップS109)。
 ジンケート処理では、ディスクブランク表面にジンケート皮膜が形成される。ジンケート処理は、市販のジンケート処理液を用いることができ、温度10~35℃、処理時間0.1~5分、濃度100~500mL/Lの条件で行うことが好ましい。ジンケート処理は、少なくとも1回なされ、2回以上行っても良い。ジンケート処理を複数回行うことで、微細なZnを析出させて、均一なジンケート皮膜を形成することができる。ジンケート処理を2回以上行う場合、その合間にZn剥離処理を行うことができる。Zn剥離処理は、HNO溶液を用い、温度15~40℃、処理時間10~120秒、硝酸濃度:10~60%の条件で行うことが好ましい。また、2回目以降のジンケート処理は、最初のジンケート処理と同様の条件で実施することが好ましい。
 更に、ジンケート処理したディスクブランク表面に、磁性体付着の下地処理として無電解Ni-Pめっき処理(ステップS110)を施す。無電解Ni-Pめっき処理工程は、市販のめっき液等を用い、温度80~95℃、処理時間30~180分、Ni濃度3~10g/Lの条件でめっき処理を行うことが好ましい。
 脱脂処理からジンケート処理までの各処理間には純水洗浄を実施してもよい。
 無電解Ni-Pめっき処理後のめっき表面に、平滑化のための研磨加工として粗研磨工程及び精密研磨工程を行う(ステップS111及びS112)。この研磨加工工程では、上記表面粗さの二乗平均偏差Rqを得ることができれば、その詳細は特に限定されないが、研磨砥粒の径を調整した複数段階での研磨を行うことが好ましい。研磨工程は、用いる研磨砥粒の粒径の異なる、少なくとも2段階の研磨を行うことが好ましい。例えば、粒径が0.03μm以上1.0μm以下で、平均粒径が0.2μm以上0.85μm以下の大径研磨砥粒を含む研磨液と硬質または軟質の研磨パッドとを用いて、主面を粗研磨を行う。次に、粒径が0.01μm以上0.1μm未満で、平均粒径が0.02μm以上0.08μm以下の小径研磨砥粒を含む研磨液と軟質の研磨パッドを用いて、主面の精密研磨を行う。精密研磨工程における小径研磨砥粒としては、粗研磨工程で用いた大径研磨砥粒よりも小径のものを用いる。ここで、「硬質」とは日本ゴム協会標準規格(準拠規格:SRIS0101)に定める測定方法で測定した硬度(アスカーC)が85以上のもの、「軟質」とは同硬度が60~80のものをいう。平均粒径(d50)とは、いわゆるメジアン径であり、レーザー回折・散乱法により粒度分布を測定し、累積分布において粒子の全体積を100%としたときに50%累積となるときの粒径を意味する。
 また、粗研磨工程におけるその他の研磨条件は、用いたアルミニウム合金、ステップS101~S110までの処理条件等により影響されるため一義的に決定することが難しいが、例えば、研磨定盤の回転数を5~35rpm、研磨液供給速度を10~500ml/分(より好ましくは50~500ml/分)、研磨時間1~10分、加工圧力を10~100g/cm、研磨量を0.1~10μmとすることができる。粗研磨工程の途中で、ディスクブランクの板厚方向上下を反転させることが好ましい。反転は一回でもよく、複数回行うこともできる。ディスクブランクを反転させる時期は特に制限されないが、ディスクブランクの両面が均等に研磨されるようにすることが好ましく、粗研磨工程の全研磨時間の半分が経過した際に反転させることがより好ましい。
 上記精密研磨工程におけるその他の研磨条件は、用いたアルミニウム合金、ステップS101~粗研磨までの処理条件等により影響されるため一義的に決定することが難しいが、例えば、研磨定盤の回転数を5~35rpm、研磨液供給速度を10~500ml/分(より好ましくは50~500mL/分)、研磨時間1~10分、加工圧力を10~100g/cm、研磨量を0.01~1μmとすることができる。精密研磨工程の途中で、ディスクブランクの板厚方向上下を反転させることが好ましい。反転は一回でもよく、複数回行うこともできる。ディスクブランクを反転させる時期は特に制限されないが、ディスクブランクの両面が均等に研磨されるようにすることが好ましく、精密研磨工程の全研磨時間の半分が経過した際に反転させることがより好ましい。
 粗研磨工程及び粗研磨工程は、市販のバッチ式の両面同時研磨機を用いて実施することができる。この両面同時研磨機は、鋳鉄製の上定盤及び下定盤と、複数のディスクブランクを上定盤と下定盤との間に保持するキャリアと、上定盤及び下定盤のディスクブランクとの接触面に取り付けられた、研磨パッド(すなわち、研磨パッドの枚数はディスクブランクの枚数の2倍である)とを備える。そして、この両面同時研磨機は、キャリアによって上定盤と下定盤との間に複数のディスクブランクを保持し、上定盤と下定盤とによって各ディスクブランクを所定の加工圧力で挟圧する。すると、各ディスクブランクは上下(重力方向に平行)から一括して研磨パッドによって挟圧される。次に、研磨パッドと各ディスクブランクとの間に研磨液を所定の供給量で供給しながら、上定盤と下定盤とを互いに異なる向きに回転させる。この際、キャリアもサンギアによって自転するため、ディスクブランクは遊星運動を行う。これによって、ディスクブランクは研磨パッドの表面を摺動し、両表面を同時に研磨する。なお、研磨パッドは多孔質(表面が開口した袋状の孔を有する)であるので、研磨パッドを介して研磨パッドとディスクブランクとの間に研磨液が供給される。
 研磨液の研磨パッドへの供給は通常の方法で行うことができる。例えば、研磨液は、研磨液を蓄えたタンクから配管を経由して研磨パッドに供給することができる。研磨液を蓄えたタンクは攪拌手段を備えることが好ましい。
 研磨液は、上定盤側から研磨パッドに供給することが好ましい。上定盤側から研磨パッドに供給するとは、具体的には、上定盤及び研磨パッドに穴を空け、穴に上から研削液を落として流し込むことをいう。
 粗研磨工程及び精密研磨工程で用いる研磨パッドは、多孔質の研磨パッドを用いる。
 以上説明した、無電解Ni-Pめっき処理後の研磨加工工程(表面研磨)により、本発明に係る磁気ディスク用アルミニウム合金基板が製造される。
 磁性体の付着工程(ステップ113)は、通常の方法により行うことができる。磁性体層の形成は、一般的なアルミニウム合金基板の場合、アルミニウム合金基板の表面に磁性体を付着させることにより行われる。
<ガラス基板>
 ガラス基板について説明する。
 ガラス板の材料としては、アモルファスガラスや結晶化ガラスなどのガラスセラミックスを用いることができる。なお、成形性や加工性、製品の表面粗さの観点からアモルファスガラスを用いることが好ましく、例えば、アルミノシリケートガラス、ソーダライムガラス、ソーダアルミノシリケートガラス、アルミノボロシリケートガラス、ボロシリケートガラスなどを用いることが好ましい。
 磁気ディスク用基板に用いられるガラスの好ましい態様は、SiO:55~75%を主成分とし、Al:0.7~25%、LiO:0.01~6%、NaO:0.7~12%、KO:0~8%、MgO:0~7%、CaO:0~10%、ZrO:0~10%、TiO:0~1%を添加したガラスである。
 以下に、磁気ディスク用ガラス基板、及びこれを用いた磁気ディスクの製造方法の一例を説明する。
 磁気ディスク用ガラス基板の製造方法は、表面粗さの二乗平均偏差Rqが上記範囲にある磁気ディスク用基板を製造可能な方法であれば、特に限定されない。表面粗さの二乗平均偏差Rqを上記範囲とする観点からは、磁気ディスク用ガラス基板の製造方法は、粒径が0.1μm以上1.0μm以下で、平均粒径が0.2μm以上0.85μm以下の研磨砥粒を含む研磨液と硬質の研磨パッドとを用いて、主面を粗研磨する工程と、次いで、粒径が0.01μm以上0.1μm未満で、平均粒径が0.02μm以上0.08μm以下の研磨砥粒を含む研磨液と軟質の研磨パッドを用いて、主面を精密研磨する工程とを少なくとも有することが好ましい。粗研磨工程及び精密研磨工程における条件はアルミニウム合金基板の製造の際の条件を適用することもできる。例えば、粗研磨工程において、粒径が0.03μm以上1.0μm以下の砥粒を用いることもできる。
 粗研磨工程は後述のステップS204に相当し、精密研磨工程は後述するステップS205に相当する。粗研磨工程及び精密研磨工程の詳細については、ステップS204及びS205の記載を参照することができる。
 上記粗研磨工程及び/又は精密研磨工程は、下記の好ましい工程を少なくとも1つ行うことが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、上定盤側から研磨パッドへ研磨液を供給しながら研磨する工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、後述するディスクブランク1枚当たり10ml/分以上の研磨液を供給しながら研磨する工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程は、電気抵抗率1MΩ・cm以上の水を用いて希釈された研磨液を用いる工程であることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程において、研磨パッドに対して攪拌下の研磨液を供給することが好ましい。
 上記粗研磨工程及び/又は精密研磨工程において、研磨工程の途中でディスクブランクの板厚方向上下を一回以上反転させることが好ましい。
 上記粗研磨工程及び/又は精密研磨工程に先立って、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にすることが好ましい。
 図5は、ガラス基板、並びに、これを用いた磁気ディスクの製造方法の一例を説明するフロー図である。このガラス基板の製造では、図5に示すように、はじめに、所定の厚さのガラス板を準備する(ステップS201)。つぎに、準備したガラス板をコアリングして、内外周の端面研磨加工を行うことで、円盤状のディスクブランクを成形する(ステップS202)。さらに必要に応じて、円盤状のディスクブランクをラッピングする工程を行う(ステップS203)。つぎに、成形した又はラッピングしたディスクブランクを、上下から一括して研磨パッドで挟圧し、複数のディスクブランクを酸化セリウム砥粒により、同時に研磨する粗研磨工程(ステップS204)を行い、つづいて、ステップS204において研磨した各ディスクブランクをコロイダルシリカ砥粒により、さらに同時に研磨する精密研磨工程を行い(ステップS205)、ガラス基板を製造する。製造されたガラス基板は、磁性体の付着工程(ステップS206)によって磁気ディスクとなる。
 以下、図5を参照しつつ、各工程について具体的に説明する。
 まず、ステップS201のガラス板の準備は、例えば溶融ガラスを原料としたフロート法、ダウンドロー法、ダイレクトプレス法などの公知の製造方法を用いて実施できる。また、フロート法等を用いて製造した母材ガラス板を加熱して軟化し、所望の厚さに延伸するリドロー法を用いれば、厚さのばらつきが小さいガラス板を比較的容易に製造できるので好ましい。
 次に、ステップS202の円盤状のディスクブランクの形成においては、ステップS201において準備したガラス板から、コアリング工程、内外周の端面研磨工程によって円盤状のディスクブランクを形成する。形成したディスクブランクは、2面の主面を有し、中央部に円孔が形成された円盤状のディスクブランクである。
 必要に応じて、ステップS203のラッピング工程を行い、ステップS202により形成した円盤状のディスクブランクに対しラッピングを実施することで、ディスクブランクの厚さを調整することができる。このラッピング工程は、上記ステップS201においてリドロー法を採用しなかった場合などガラス板の厚さのばらつきが大きい場合に行うことが好ましい。ラッピング工程は、ガラス板の厚さのばらつきが±3μm程度となるように行うことができる。ラッピング工程は、通常の方法で行うことができ、例えばダイヤモンドペレットを用いたバッチ式の両面研磨機を用いて実施することができる。
 次いで、上記ステップS202またはS203により得られたディスクブランクの主面に、研磨加工を行う。この研磨加工工程では、研磨砥粒の径を調整した複数段階での研磨を行うことが好ましい。この研磨加工工程は、少なくとも粗研磨(S204)と精密研磨(S205)との2段階での研磨を含む。
 ステップS204の粗研磨工程においては、ディスクブランクの主面を粗研磨する。
 粗研磨は、粒径が0.1μm以上1.0μm以下で、平均粒径が0.2μm以上0.85μm以下の研磨砥粒を含む研磨液と硬質の研磨パッドとを用いて、実施することができる。
 粗研磨のその他の研磨条件は、硬度86~88の硬質の研磨パッドを用い、研磨定盤の回転数を5~35rpm、サンギアの回転数を5~35rpm、研磨液供給速度を10~500ml/分(より好ましくは50~500mL/分)、加工圧力を10~120g/cm、研磨時間1~10分、研磨量を片面あたり0.1~1.2μmとすることが好ましい。研磨パッドとしては、硬質のポリウレタン等からなる研磨パッドを用いることが好ましい。研磨液として、粒径が0.1μm以上1.0μm以下で、平均粒径が0.2μm以上0.85μm以下の酸化セリウムからなる研磨砥粒を含むものを用いることが好ましい。
 粗研磨工程の途中で、ディスクブランクの板厚方向上下を反転させることが好ましい。反転は一回でもよく、複数回行うこともできる。ディスクブランクを反転させる時期は特に制限されないが、ディスクブランクの両面が均等に研磨されるようにすることが好ましく、粗研磨工程の全研磨時間の半分が経過した際に反転させることがより好ましい。
 粗研磨工程及び粗研磨工程は、市販のバッチ式の両面同時研磨機を用いて実施することができる。ガラス基板の製造方法においても、アルミニウム基板の製造方法において説明した両面同時研磨機を用いることができる。
 次に、ステップS205の精密研磨工程においては、粗研磨された主面を精密研磨する。
 精密研磨は、両面同時研磨機の研磨パッドを、例えば発泡ウレタンからなるより軟質の精密研磨用の研磨パッドに取り替え、粒径が0.01μm以上0.1μm未満で、平均粒径が0.02μm以上0.08μm以下と小さいコロイダルシリカからなる研磨砥粒を含む研磨液を供給しながら、上記研磨パットを用いてガラス基板を研磨することにより実施することができる。これによって、ディスランクの主面が鏡面に研磨され、磁気ディスク用ガラス基板が製造される。
 精密研磨のその他の研磨条件は、硬度75~77の軟質の研磨パッドを用い、研磨定盤の回転数を5~35rpm、サンギアの回転数を5~35rpm、研磨液供給速度を10~500ml/分(より好ましくは50~500mL/分)、加工圧力を10~120g/cm、研磨時間1~10分、研磨量を片面あたり5~15μmとすることが好ましい。また、研磨量は0.01~1μmとすることもできる。精密研磨工程の途中で、ディスクブランクの板厚方向上下を反転させることが好ましい。反転は一回でもよく、複数回行うこともできる。ディスクブランクを反転させる時期は特に制限されないが、ディスクブランクの両面が均等に研磨されるようにすることが好ましく、精密研磨工程の全研磨時間の半分が経過した際に反転させることがより好ましい。
 なお、研磨加工の途中で、硝酸ナトリウム溶液や硝酸カリウム溶液による化学強化処理を行うことができる。
 磁性体の付着工程(ステップS205)は、通常の方法により行うことができる。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されない。
 実施例1~3,比較例1~2において、外径が97mm、内径が25mm、厚みが0.50mmの磁気ディスク用基板を作成した。各実施例の詳細を以下に記載する。
(実施例1)
 A5086合金(アルミニウム合金A)を定法に従い溶解し、幅1310×板厚500mmにDC鋳造(竪型半連続鋳造)してスラブを得た。このスラブの4面をそれぞれ10mm面削し、540℃で6時間均質化処理を行った後、熱間圧延開始温度540℃、熱間圧延終了温度340℃で熱間圧延し、板厚3.0mmの熱間圧延板とした。この熱間圧延板を冷間圧延し、板厚0.48mmの冷間圧延板とした。
 この冷間圧延板を内径24mm、外径98mmの円環状にプレスで打抜き、大気中で、連続焼鈍炉を用いて、30MPaの負荷荷重を負荷して加圧しながら、320℃で3時間の加圧焼鈍を行って加圧平坦化処理した。このようにしてディスクブランクを得た。更に、ディスクブランクの内外周を切削加工することで内径25mm、外径97mmの円環状のディスクブランクとした。この際、同時に内外周端面へチャンファー加工を施した。
 この加工後のディスクブランクを4000番SiC砥石で表面研削して板厚0.46mmとした。このディスクブランクの両面を以下のようにして、脱脂処理、エッチング処理、第1ジンケート処理、Zn剥離処理、及び第2ジンケート処理した。
 脱脂処理は、脱脂液AD-68F(商品名、上村工業製)を用い、温度45℃、処理時間3分、濃度500mL/Lの条件で行った。
 エッチング処理は、AD-107F(商品名、上村工業製)エッチング液を用い、温度60℃、処理時間2分、濃度50mL/Lの条件で行った。
 第1ジンケート処理は、ジンケート処理液AD-301F-3X(商品名、上村工業製)を用い、温度20℃、処理時間1分、濃度200mL/Lの条件で行った。
 Zn剥離処理は、市販の硝酸試薬を用い、温度25℃、処理時間60秒、硝酸濃度30%の条件で行った。
 第2ジンケート処理は、第1ジンケート処理と同様の条件で行った。
 また、脱脂処理から第2ジンケート処理までの各処理間には純水洗浄を実施した。
 その後、ディスクブランクの両面に対して、無電解Ni-Pめっき処理を、ニムデンHDX(商品名、上村工業製)めっき液を用い、温度88℃、処理時間130分、Ni濃度6g/Lの条件で行った。
 更に、Ni-Pめっきされたディスクブランクを両面同時研磨機(商品名:9B両面研削機、SPEEDFAM社製)にセットし、粗研磨工程及び精密研磨工程を行い、アルミニウム合金基板を製造した。以下、詳述する。
 粗研磨工程における研磨条件は、硬度が66の発泡ウレタン研磨パッドと、粒径が0.03μm以上1.0μm以下で平均粒径が0.85μmの酸化アルミニウムに純水を加えて遊離砥粒とした研磨液とを用いた。なお、粗研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を100ml/分、研磨時間を2分、加工圧力を80g/cm、研磨量を1μmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。
 次に、精密研磨工程を行った。精密研磨工程においては、硬度が76の発泡ウレタン研磨パッドと、粒径が0.01μm以上0.1μm未満で平均粒径が0.08μmのコロイダルシリカに純水を加えて遊離砥粒とした研磨液とを用いた。なお、精密研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を150ml/分、研磨時間を2分、加工圧力を80g/cm、研磨量を0.2μmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。
 上述の通り、粗研磨工程及び精密研磨工程においてディスクブランク1枚当たり10ml/分以上の研磨液供給速度で研磨液を供給しながら研磨した。粗研磨及び精密研磨に用いる研磨液の調製の際には、いずれも砥粒を電気抵抗率1MΩ・cm以上の水を用いて希釈した。粗研磨及び精密研磨のいずれにおいても、研磨液は、供給する間攪拌し続けた。粗研磨及び精密研磨を行うにあたり、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にした。
 このようにして実施例1の磁気ディスク用基板を得た。
(実施例2)
 Al-Fe-Mn-Ni系合金(合金B)を定法に従い溶解し、幅1310×板厚500mmにDC鋳造(竪型半連続鋳造)してスラブを得た。このスラブを各面10mm面削し、520℃で6時間均質化処理の後、熱間圧延開始温度520℃、熱間圧延終了温度340℃で熱間圧延し、板厚3.0mmの熱間圧延板とした。この熱間圧延板を冷間圧延し、板厚0.48mmの冷間圧延板とした。合金Bの組成は、Fe:0.7質量%、Mn:0.9質量%、Ni:1.7質量%を含み、残部がアルミニウムと不可避不純物を含むものであった。この冷間圧延板を内径24mm、外径98mmの円環状にプレスで打抜き、大気中で、連続焼鈍炉を用いて、30MPaの負荷荷重を負荷して加圧しながら、320℃で3時間の加圧焼鈍を行って加圧平坦化処理した。このようにしてディスクブランクを得た。更に、ディスクブランクの内外周を切削加工することで内径25mm、外径97mmの円環状のディスクブランクとした。この際、同時に内外周端面へチャンファー加工を施した。
 この加工後のディスクブランクを4000番SiC砥石で表面研削して板厚0.46mmとした。このディスクブランクの両面を以下のようにして、脱脂処理、エッチング処理、第1ジンケート処理、Zn剥離処理、及び第2ジンケート処理した。
 脱脂処理は、脱脂液AD-68F(商品名、上村工業製)を用い、温度45℃、処理時間3分、濃度500mL/Lの条件で行った。
 エッチング処理は、AD-107F(商品名、上村工業製)エッチング液を用い、温度60℃、処理時間2分、濃度50mL/Lの条件で行った。
 第1ジンケート処理は、ジンケート処理液AD-301F-3X(商品名、上村工業製)を用い、温度20℃、処理時間1分、濃度200mL/Lの条件で行った。
 Zn剥離処理は、市販の硝酸試薬を用い、温度25℃、処理時間60秒、硝酸濃度30%の条件で行った。
 第2ジンケート処理は、第1ジンケート処理と同様の条件で行った。
 また、脱脂処理から第2ジンケート処理までの各処理間には純水洗浄を実施した。
 その後、ディスクブランクの両面に対して、無電解Ni-Pめっき処理を、ニムデンHDX(商品名、上村工業製)めっき液を用い、温度88℃、処理時間130分、Ni濃度6g/Lの条件で行った。
 更に、Ni-Pめっきされたディスクブランクを両面同時研磨機(商品名:9B両面研削機、SPEEDFAM社製)にセットし、粗研磨工程及び精密研磨工程を行い、アルミニウム合金基板を製造した。以下、詳述する。
 粗研磨工程における研磨条件としては、硬度が66の発泡ウレタン研磨パッドと、粒径が0.03μm以上1.0μm以下で平均粒径が0.85μmの酸化アルミニウムに純水を加えて遊離砥粒とした研磨液とを用いた。なお、粗研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を100ml/分、研磨時間を2分、加工圧力を80g/cm、研磨量を1μmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。
 次に、精密研磨工程を行った。精密研磨工程においては、硬度が76の発泡ウレタン研磨パッドと、粒径が0.01μm以上0.1μm未満で平均粒径が0.08μmのコロイダルシリカに純水を加えて遊離砥粒とした研磨液とを用いた。なお、精密研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を150ml/分、研磨時間を3分、加工圧力を80g/cm、研磨量を0.2μmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。
 上述の通り、粗研磨工程及び精密研磨工程においてディスクブランク1枚当たり10ml/分以上の研磨液供給速度で研磨液を供給しながら研磨した。粗研磨及び精密研磨に用いる研磨液の調製の際には、いずれも砥粒を電気抵抗率1MΩ・cm以上の水を用いて希釈した。粗研磨及び精密研磨のいずれにおいても、研磨液は、供給する間攪拌し続けた。粗研磨及び精密研磨を行うにあたり、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にした。
 このようにして実施例2の磁気ディスク用基板を得た。
(実施例3)
 リドロー法を用いて、幅100mm、長さ10m以上のアルミノシリケートガラスからなるガラス板を製造し、厚さ0.6mmのガラス板を選別した。選択したガラス板に対して、コアリング、及び、内外周の端面研磨を行い円盤状のディスクブランクを成形した。さらに、成形した円盤状のディスクブランクを両面同時研磨機にセットし、粗研磨工程および精密研磨工程を行い、ガラス基板を製造した。
 粗研磨工程における研磨条件としては、硬度が87のウレタン研磨パッド(浜井産業社製:HPC-90D)と、粒径が0.1μm以上0.4μm以下で平均粒径が0.2μmの酸化セリウム研磨砥粒に純水を加えて遊離砥粒とした研磨液とを用いた。また、粗研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を25rpm、サンギアの回転数を10rpm、研磨液供給速度を150ml/分、研磨時間を2分、研磨量を片面1μm、加工圧力を120g/cmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。この工程において、研磨量は両面合わせて2μmであった。
 次に、精密研磨工程においては、硬度が76の発泡ウレタン研磨パッド(フジボウ愛媛社製)と、粒径が0.01μm以上0.1μm未満で平均粒径が0.08μmのコロイダルシリカに純水を加えて遊離砥粒とした研磨液とを用いた。なお、精密研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を25rpm、サンギアの回転数を10rpm、研磨液供給速度を150ml/分、研磨時間を5分、研磨量を片面0.2μm、加工圧力を50g/cmとした。さらにディスクブランクを板厚方向上下に反転させて設置し、同じ条件で研磨した。この工程において、研磨量は両面合わせて0.4μmであった。
 上述の通り、粗研磨工程及び精密研磨工程においてディスクブランク1枚当たり10ml/分以上の研磨液供給速度で研磨液を供給しながら研磨した。粗研磨及び精密研磨に用いる研磨液の調製の際には、いずれも砥粒を電気抵抗率1MΩ・cm以上の水を用いて希釈した。粗研磨及び精密研磨のいずれにおいても、研磨液は、供給する間攪拌し続けた。粗研磨及び精密研磨を行うにあたり、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にした。
 このようにして実施例3の磁気ディスク用基板を得た。
(比較例1)
 研磨工程を下記の条件で行った以外は、実施例1と同様にして、磁気ディスク用基板を得た。
 比較例1の粗研磨条件としては、硬度が66の発泡ウレタン研磨パッドと、粒径が0.03μm以上1.0μm以下で平均粒径が0.85μmの酸化アルミニウムに純水を加えて遊離砥粒とした研磨液とを用いた。なお、粗研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を80ml/分、研磨時間を4分、加工圧力を100g/cm、研磨量を1μmとした。ディスクブランクの反転は行わなかった。
 次に、精密研磨工程を行った。精密研磨工程においては、硬度が76の発泡ウレタン研磨パッドと、粒径が0.01μm以上0.1μm未満で平均粒径が0.08μmのコロイダルシリカに純水を加えて遊離砥粒とした研磨液とを用いた。なお、精密研磨工程におけるその他の研磨条件としては、研磨液を上定盤から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を150ml/分、研磨時間を4分、加工圧力を100g/cm、研磨量を0.2μmとした。ディスクブランクの反転は行わなかった。
 なお、粗研磨及び精密研磨を行うにあたり、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にしなかった。
 このようにして比較例1の磁気ディスク用基板を得た。
(比較例2)
 研磨工程を下記の条件で行った以外は、実施例2と同様にして、磁気ディスク用基板を得た。
 比較例2の粗研磨条件としては、硬度が66の発泡ウレタン研磨パッドと、粒径が0.03μm以上1.0μm以下で平均粒径が0.85μmの酸化アルミニウムに純水を加えて遊離砥粒とした研磨液とを用いた。なお、粗研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を80ml/分、研磨時間を2分、加工圧力を100g/cm、研磨量を1μmとした。ディスクブランクの反転は行わなかった。
 次に、精密研磨工程を行った。精密研磨工程においては、硬度が76の発泡ウレタン研磨パッドと、粒径が0.01μm以上0.1μm未満で平均粒径が0.08μmのコロイダルシリカに純水を加えて遊離砥粒とした研磨液とを用いた。なお、精密研磨工程におけるその他の研磨条件としては、研磨液を上定盤側から供給し、研磨定盤の回転数を35rpm、研磨液供給速度を150ml/分、研磨時間を6分、加工圧力を100g/cm、研磨量を0.2μmとした。ディスクブランクの反転は行わなかった。
 なお、粗研磨及び精密研磨を行うにあたり、研磨液が供給される配管を、電気抵抗率10MΩ・cm以上の水を入口から供給した場合に、配管の出口で1MΩ・cm以上となる程度に清浄にしなかった。
 このようにして比較例2の磁気ディスク用基板を得た。
(表面及び裏面Rqの測定)
 作成した各種磁気ディスク用基板について、固定部位の表面粗さの二乗平均偏差Rqを測定した。
 この測定においては、固定部位の一部の表面粗さの二乗平均偏差Rqを測定することにより、固定部位の表面粗さの二乗平均偏差Rqを代表させた。このRqの測定を行った磁気ディスク用基板上の位置は、作製した各種磁気ディスク用基板について、磁気ディスク用基板の中心から半径30mm円周上である。(すなわち、図6に示す磁気ディスク用基板1上の固定部位11内に位置する仮想線6で示した箇所である。)
 測定は、光学測定計機(Zygo社製、Mesa Horizontal Laser Interferometer(商品名))を用いて行った。測定の際のモードは、上記円周上の表面粗さを測定するモードとした。得られたデータは、上記光学測定機に付属のMetroPro8.3.3ソフトを用い、表面粗さの二乗平均偏差Rq(μm)を求めた。測定は、磁気ディスク用基板の主面の両方について行い、一方の主面の表面粗さの二乗平均偏差Rqを表1の「表面Rq」欄に、もう一方の主面の表面粗さの二乗平均偏差Rqを表1の「裏面Rq」欄に記載した。さらに表面Rqと裏面Rqとの差ΔRqの絶対値を「表裏面差分ΔRq」欄に記載した。
(最大変位Hの測定、減衰率Eの測定)
 作成した各磁気ディスク用基板について、磁気ディスク用基板を衝撃試験によって振動させた際の、磁気ディスク用基板の外周端部(下記センサーの測定位置)の板厚方向の変位量の最大値H、及びこの変位量の減衰率Eを以下のようにして求めた。この測定は、室温(25℃)で行った。
 
<衝撃試験>
 磁気ディスク用基板を、固定部位で固定用治具により上下から挟持し水平に軸受けに固定した状態で、軸受けに対して2.8msec、490m/sの衝撃を磁気ディスク用基板主面の法線方向(板厚方向)に下方から与えた。
 
 測定には、衝撃試験機(エア・ブラウン社製、SM-110-MP(商品名))を用いた。この衝撃試験機は、1つの試験台を備え、この試験台を落下させることにより任意の大きさの外部衝撃を被検体に加えることが可能である。また、変位計測装置(ユニパルス社製、UMA-500(商品名))を用いた。この変位計測装置は、静電容量方式のセンサーを備え、センサーと測定対象物との間の静電容量を測定することにより、センサーと測定対象物との間の距離を算出することができる。
 磁気ディスク用基板を、上記衝撃試験機の試験台に、市販のハードディスクドライブと同じ治具を用いて、磁気ディスク用基板の主面が試験台と平行になるように取り付けた。取り付けは、具体的には以下のように行った。まず、上記ハードディスクドライブ(12TB HDD[HUH721212ALE600]、WESTERN Digital社製、磁気ディスク用基板を8枚搭載)を分解してアルミ合金製の固定用治具(ディスククランパ、スペーサ)及び呼び径M2のネジ6本を取り出した。別途、上記ハードディスクドライブの軸受けと芯の長さが短い(磁気ディスク用基板1枚用)以外は同じ形状の軸受けを用意し、試験台に固定した。1枚の磁気ディスク用基板を、上記ハードディスクドライブから取り出した固定用治具(ディスククランパ、スペーサ)で挟持し、上記ネジ6本を、ディスククランパの上から50cN・mのトルクで螺合して、軸受けに組付けた。組み付け後の磁気ディスク用基板は、その内周部に設けた固定部位11(内周端部と磁気ディスク用基板の中心から半径14.5mmの円周とに囲われた部位)において、固定用治具と接していた。ディスククランパの外径は30mm、厚み5.6mmであった。スペーサは円環状であり、その内径は25mmであり、外径は32mm、厚み1.7mmであった。
 図7に示すように、外部衝撃の付加に伴い発生する磁気ディスク用基板の外周端部の変位量を測定するために試験台上に上記変位測定装置のセンサーを内周端部センサー7及び外周端部センサー8として取り付けた。内周端部センサー7は、試験台の、測定対象とする、振動を与える前の磁気ディスク用基板の中心から外周方向へ20mmの位置で、外周端部センサー8は、磁気ディスク用基板の中心から外周方向へ44.18mmの位置で、静止状態の磁気ディスク用基板1の主面の法線方向に沿って磁気ディスク用基板1とセンサーとの距離を測定できるようにそれぞれ取り付けた。図7に磁気ディスク用基板1に対する内周端部センサー7と外周端部センサー8と磁気ディスク用基板1との配置を水平方向(磁気ディスク用基板の厚さ方向に対して垂直方向)からみた端面図を示す。図7(a)において磁気ディスク用基板1は静止状態(衝撃印加前の状態)にあり、内周端部センサー7及び外周端部センサー8は、磁気ディスク用基板1の主面に対して垂直に配置されている。図7(a)において、磁気ディスク用基板1は、ディスククランパ31とスペーサ34とに固定部位(図示せず)で挟持されて軸受け(図示せず)に固定されている。なお、ディスククランパ31とスペーサ34の外径は異なるが、図7(a)では、簡略化のため同径で表している。内周端部センサー7と磁気ディスク用基板1の主面(内周端部センサー7に近い方:対向する主面)との距離をh2、及び外周端部センサー8と磁気ディスク用基板1の主面(外周端部センサー8に近い方:対向する主面)との距離をh1とする。図7(b)に衝撃印加による振動により変形して下方に撓んだ磁気ディスク用基板1に対する内周端部センサー7と外周端部センサー8との配置を示す端面図を示す。図7(b)においては、上記撓みによりh1及びh2はいずれも図7(a)におけるh1及びh2よりも大きくなっている。図示はしないが、磁気ディスク用基板1は衝撃による振動によって、板厚方向(上下方向)に振動し、その振動は時間の経過につれて減衰する。
 上述の衝撃試験機にて、試験台を垂直に落下させ、軸受けに対して490m/s、2.8msecの衝撃を上記磁気ディスク用基板主面の法線方向に下方から与えた。このとき、外周端部センサー8と磁気ディスク用基板1との距離(h1)、及び内周端部センサー7と磁気ディスク用基板1との距離(h2)を測定し、外周端部センサーと外周端部との距離の、静止状態から振動状態への変位量と、内周端部センサーと内周端部との距離の静止状態から振動状態への変位量とを求めた(いずれも単位:μm)。これらの変位量の、同時間における差分(h1-h2)を算出し、この差分を磁気ディスク用基板の外周端部の変位量とした。このように、磁気ディスク用基板上の内周端部と外周端部の2点における変位量h1及びh2の差分として外周端部の変位量を求めることにより、軸受の変位の影響を排除できる。得られた外周端部の変位量を、図8に示す通り、磁気ディスク用基板の主面の法線方向上向きの変位を正として変位量-時間グラフ(縦軸:変位量(μm)、横軸:時間(msec))に示した際に、最初に大きく下に下がる変位の絶対値を最大変位量H(μm)とし、1回目と2回目に大きく下がる変位の頂点を結んだ際の傾きを振動による変位量の減衰率E(μm/msec)とした。
 本試験では、磁気ディスク用基板はモータによる回転はさせなかった。
 表1に評価結果を示す。
 比較例1及び2の磁気ディスク用基板は、表面Rq及び裏面Rqが大きすぎ、変位量Hを低減することができなかった。その上、減衰率Eも小さかった。
 実施例1~3の磁気ディスク用基板は、表面Rq及び裏面Rqがいずれも0.01~0.44μmの範囲内であり、変位量Hが低減されていた。また、減衰率Eも向上していた。本発明の磁気ディスク用基板を用いた磁気ディスクは、変位量Hを低減でき、また、減衰率Eを向上できること、それゆえに、この磁気ディスクを用いればハードディスクドライブの耐衝撃性を向上させることができることが分かる。
 490m/s、2.8msecの衝撃を受けた際の最大変位量Hが171μm未満であれば、磁気ディスク用基板を磁気ディスクとして磁気ディスクとランプ等の外部部材との間隙が165μmであるハードディスクドライブに組み込んだ場合であっても、磁気ヘッドがランプ等の外部部材に接触してランプ部材が削れるなどしてパーティクルが発生しにくく、さらに場合によっては磁気ディスクの表面に傷や欠陥が生じにくいハードディスクドライブとすることができる。
 また、490m/s、2.8msecの衝撃を受けた際の減衰率Eが17.7μm/msec以上であれば、磁気ディスク用基板を磁気ディスクとしてハードディスクドライブに組み込んだ場合に、磁気ディスクにたとえ大きな振動が発生しても短時間で振動を減衰させることができ、外部部材との接触回数が少なくなる。また、磁気ディスクが回転していない状況では磁気ディスク上の同じ位置において繰り返し接触が少なくなる。その結果、パーティクルの発生、並びに磁気ディスク表面の傷及び欠陥がさらにいっそう生じにくいハードディスクドライブとすることができる。
Figure JPOXMLDOC01-appb-T000001
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2022年1月11日に日本国で特許出願された特願2022-002122に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
 1 磁気ディスク用基板
 11 固定部位
 12 円孔
 13 仮想線
 14 主面
 15 内周端部
 2 磁気ディスク
 21 固定部位
 3 固定用治具
 31 ディスククランパ
 33 軸受け
 33a 軸受けの大径部
 33b 軸受けの芯
 34 スペーサ
 4 ネジ
 6 仮想線
 7 内周端部センサー
 8 外周端部センサー
 S101 アルミニウム合金成分の調整
 S102 アルミニウム合金の鋳造
 S103 均質化処理
 S104 熱間圧延
 S105 冷間圧延
 S106 加熱平坦化処理
 S107 切削加工・研削加工
 S108 脱脂・エッチング処理
 S109 ジンケート処理
 S110 Ni-Pめっき処理
 S111 粗研磨
 S112 精密研磨
 S113 磁性体の付着
 S201 ガラス板の準備
 S202 円盤状ディスブランクの形成
 S203 ラッピング工程
 S204 粗研磨
 S205 精密研磨
 S206 磁性体の付着
 

Claims (5)

  1.  一対の表裏の主面を有する磁気ディスク用基板であって、
     前記表裏の主面のそれぞれに、前記磁気ディスク用基板を磁気ディスクとした上でハードディスク装置に組みこむ際に固定用治具と接触する固定部位を有し、
     前記表裏の主面のそれぞれの固定部位の表面粗さの二乗平均偏差Rqが0.01~0.44μmである磁気ディスク用基板。
  2.  前記表裏の主面の固定部位のRqの差ΔRqの絶対値が0.01~0.11μmである請求項1に記載の磁気ディスク用基板。
  3.  下記の衝撃試験によって前記磁気ディスク用基板を振動させた際に、前記磁気ディスク用基板の外周端部の板厚方向の変位量の最大値Hが165μm以下で、且つ、前記変位量の減衰率Eが17.7μm/msec以上である請求項1又は2に記載の磁気ディスク用基板。
    <衝撃試験>
     前記磁気ディスク用基板を、前記固定部位で固定用治具により上下から挟持し水平に軸受けに固定した状態で、前記軸受けに対して2.8msec、490m/sの衝撃を前記磁気ディスク用基板主面の法線方向に下方から与える。
  4.  外径97mm以上、内径26mm以下、板厚0.5mm以下である円盤状の、請求項1~3のいずれか1項に記載の磁気ディスク用基板。
  5.  請求項1~4のいずれか1項に記載の磁気ディスク用基板を用いた磁気ディスク。
PCT/JP2023/000342 2022-01-11 2023-01-10 磁気ディスク用基板及びこれを用いた磁気ディスク WO2023136242A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202380015359.3A CN118435279A (zh) 2022-01-11 2023-01-10 磁盘用基板和使用了该磁盘用基板的磁盘
JP2023574033A JPWO2023136242A1 (ja) 2022-01-11 2023-01-10
US18/757,992 US20240355357A1 (en) 2022-01-11 2024-06-28 Magnetic disk substrate and magnetic disk using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-002122 2022-01-11
JP2022002122 2022-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/757,992 Continuation US20240355357A1 (en) 2022-01-11 2024-06-28 Magnetic disk substrate and magnetic disk using the same

Publications (1)

Publication Number Publication Date
WO2023136242A1 true WO2023136242A1 (ja) 2023-07-20

Family

ID=87279116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000342 WO2023136242A1 (ja) 2022-01-11 2023-01-10 磁気ディスク用基板及びこれを用いた磁気ディスク

Country Status (4)

Country Link
US (1) US20240355357A1 (ja)
JP (1) JPWO2023136242A1 (ja)
CN (1) CN118435279A (ja)
WO (1) WO2023136242A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226044A (ja) * 1994-02-08 1995-08-22 Sony Corp 磁気ディスク
WO2014069609A1 (ja) * 2012-10-31 2014-05-08 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2022004826A1 (ja) * 2020-07-03 2022-01-06 株式会社Uacj 磁気ディスク用基板及び当該磁気ディスク用基板を用いた磁気ディスク

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07226044A (ja) * 1994-02-08 1995-08-22 Sony Corp 磁気ディスク
WO2014069609A1 (ja) * 2012-10-31 2014-05-08 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2022004826A1 (ja) * 2020-07-03 2022-01-06 株式会社Uacj 磁気ディスク用基板及び当該磁気ディスク用基板を用いた磁気ディスク

Also Published As

Publication number Publication date
CN118435279A (zh) 2024-08-02
JPWO2023136242A1 (ja) 2023-07-20
US20240355357A1 (en) 2024-10-24

Similar Documents

Publication Publication Date Title
JP5662423B2 (ja) 磁気記録媒体ガラス基板用ガラスブランクの製造方法、磁気記録媒体ガラス基板の製造方法および磁気記録媒体の製造方法
US20200211595A1 (en) Substrate for magnetic recording medium, magnetic recording medium, hard disk drive
JP6089039B2 (ja) 磁気ディスク用ガラス基板、磁気ディスク
US20200211591A1 (en) Substrate for magnetic recording medium, magnetic recording medium, hard disk drive
JP6313314B2 (ja) 磁気ディスク用ガラス基板の製造方法、ガラス基板の製造方法及び磁気ディスクの製造方法、並びに研削工具
WO2014034251A1 (ja) 磁気ディスク用ガラス基板、磁気ディスク
JP5454988B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP7270682B2 (ja) 固定砥粒砥石及びガラス基板の製造方法
WO2022004826A1 (ja) 磁気ディスク用基板及び当該磁気ディスク用基板を用いた磁気ディスク
JP2001167430A (ja) 磁気ディスク用基板およびその製造方法
WO2023136242A1 (ja) 磁気ディスク用基板及びこれを用いた磁気ディスク
WO2023027142A1 (ja) 磁気ディスク用基板及びその製造方法並びに磁気ディスク
JP6170557B2 (ja) 磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法、研削砥石
JP7113157B1 (ja) 磁気ディスク及び磁気ディスク用基板
CN111048122B (zh) 固定磨粒磨石以及基板的制造方法
JP5704777B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP2008226407A (ja) 磁気ディスク用基板の製造方法および化学強化装置ならびに磁気ディスクの製造方法
CN109285565B (zh) 磁盘用玻璃基板的制造方法和磁盘的制造方法
JP3641171B2 (ja) 磁気記録媒体用ガラス基板の製造方法
JP2010179395A (ja) ガラス基板の製造方法
JP2019079582A (ja) 磁気記録媒体用アルミニウム合金基板の製造方法
JP2013012281A (ja) Hdd用ガラス基板の製造方法
JP2012203942A (ja) 情報記録媒体用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23740251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023574033

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202380015359.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 23740251

Country of ref document: EP

Kind code of ref document: A1