Nothing Special   »   [go: up one dir, main page]

WO2023105965A1 - Solid-state imaging element, and imaging device - Google Patents

Solid-state imaging element, and imaging device Download PDF

Info

Publication number
WO2023105965A1
WO2023105965A1 PCT/JP2022/039734 JP2022039734W WO2023105965A1 WO 2023105965 A1 WO2023105965 A1 WO 2023105965A1 JP 2022039734 W JP2022039734 W JP 2022039734W WO 2023105965 A1 WO2023105965 A1 WO 2023105965A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging device
solid
photoelectric conversion
state imaging
pixel
Prior art date
Application number
PCT/JP2022/039734
Other languages
French (fr)
Japanese (ja)
Inventor
靖久 栃木
勇佑 松村
克彦 半澤
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2023566144A priority Critical patent/JPWO2023105965A1/ja
Publication of WO2023105965A1 publication Critical patent/WO2023105965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to solid-state imaging devices and imaging devices.
  • Processing of image data captured by a solid-state image sensor is generally performed by an external device to the solid-state image sensor. If the basic operation of image processing such as convolution operation is performed by the solid-state imaging device of the imaging device, the speed of cooperation with external equipment will be increased, and the user's convenience will be improved.
  • the present disclosure provides a solid-state imaging device and an imaging device that are capable of performing arithmetic processing while suppressing an increase in the size of the solid-state imaging device.
  • a plurality of pixel regions each composed of a plurality of pixels; a plurality of first charge storage units corresponding to each of the pixel regions;
  • a plurality of pixels in the pixel region are a photoelectric conversion unit; a power storage unit corresponding to the photoelectric conversion unit; a first element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and the electricity storage unit; a second element that brings into a conducting state or a non-conducting state with the electricity storage portion of a pixel that is adjacent to at least one of the vertical direction and the horizontal direction;
  • a solid-state imaging device is provided in which at least one of the second elements of the plurality of pixels is connected to the first electricity storage unit.
  • the plurality of pixels may be of a front side illumination type or a back side illumination type.
  • the accumulation time of the photoelectric conversion unit may be controlled by the first element.
  • the pixels are further comprising a third element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and a predetermined potential line;
  • the accumulation time of the photoelectric conversion unit may be controlled by the third element.
  • a second power storage unit that accumulates accumulated charges
  • a fourth element that establishes a conductive state or a non-conductive state between the first power storage unit and the second power storage unit.
  • the number of the second elements in the pixel region may be 2xnHxnV.
  • the number of the second elements in the pixel region may be nHxnV+nH or nHxnV+nV.
  • the photoelectric conversion element in the pixel region and the second element may be configured in different layers.
  • the photoelectric conversion unit may be made of at least one of silicon, indium gallium arsenide, and organic germanium.
  • the first and second elements may be composed of at least one of silicon, an oxide semiconductor, and an organic semiconductor.
  • the first element may be brought into a conducting state after the photoelectric conversion period of the photoelectric conversion unit is finished.
  • the photoelectric conversion period of the photoelectric conversion unit may be controlled according to the weight value of the arithmetic processing.
  • the pixel area may be changeable with respect to the corresponding first power storage unit.
  • the range of the pixel area with respect to the first power storage unit may be changed according to the calculation range of the calculation process.
  • the first power storage unit, the power storage unit, and the second power storage unit may be floating diffusion units.
  • An amplifier circuit that amplifies a signal corresponding to the charge accumulated in the first electricity storage unit as a voltage signal may be further provided.
  • the amplifier circuit may constitute a source follower circuit, and the voltage signal may be read based on time information of pulse width modulation.
  • an analog-to-digital converter that is electrically connected to the fifth element and that converts into digital data corresponding to accumulated electric charges by photoelectric conversion for each pixel region; You may also prepare.
  • a solid-state imaging device and an arithmetic processing unit capable of performing a convolution operation
  • An imaging apparatus is provided in which the information on the pixel region corresponding to the weight value and the calculation range is supplied from the arithmetic processing unit.
  • first digital data generated by an analog-to-digital converter after the photoelectric conversion period of the photoelectric converter is controlled according to the positive weight value of the arithmetic processing and transferred to the first electricity storage unit;
  • the photoelectric conversion period of the photoelectric conversion unit is controlled according to the absolute value of the negative weight value of the arithmetic processing, and the second digital signal generated by the analog-to-digital conversion unit after being transferred to the first storage unit You may calculate the difference of data and.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present technology
  • FIG. 2 is a block diagram showing a configuration example of a solid-state imaging device
  • FIG. 4 is a diagram schematically showing pixels arranged in a matrix in a pixel array section
  • FIG. 4 is a diagram showing a configuration example of a reading unit
  • FIG. 4 is a diagram showing a configuration example of a pixel array section
  • 4A and 4B are diagrams showing configurations of pixels
  • FIG. FIG. 2 is a circuit diagram showing a configuration example of a pixel circuit
  • FIG. 7 is a plan view of the light receiving chip of the pixel array section shown in FIG.
  • FIG. 7 is a plan view of another configuration example of the light-receiving chip of the pixel array section shown in FIG. 6 as viewed from the back side;
  • FIG. 4 is a diagram schematically showing a cross section of a main part of a pixel array section;
  • FIG. 4 is a diagram showing addition ranges for respective timings and corresponding floating diffusions;
  • FIG. 13 is a diagram showing addition ranges at timings different from those in FIG. 12;
  • FIG. 14 is a diagram showing addition ranges at timings different from those in FIG. 13 ;
  • FIG. 13 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. 12;
  • FIG. 13 is a timing chart showing another processing example of the addition range at timing t1 in FIG. 12;
  • FIG. FIG. 4 is a circuit diagram showing a configuration example of a pixel circuit AFD according to a modification of the first embodiment;
  • FIG. 4 is a circuit diagram showing a configuration example of a pixel circuit according to a second embodiment;
  • FIG. 20 is a plan view of the pixel array portion shown in FIG. 19;
  • FIG. 11 is a diagram showing a configuration example of a pixel array section according to the third embodiment;
  • FIG. 22 is a plan view of the pixel array portion shown in FIG. 21;
  • FIG. 11 is a diagram showing a configuration example of a pixel array section according to the fourth embodiment;
  • FIG. 12 is a diagram showing a configuration example of a pixel according to the fourth embodiment
  • FIG. 24 is a plan view of the light-receiving chip of the pixel array section shown in FIG. 23 as viewed from the rear side
  • FIG. 11 is a timing chart showing an example of processing according to the fourth embodiment of the addition range
  • FIG. The figure which shows typically the example of a process with respect to the weight value of (1) Formula which concerns on 5th Embodiment.
  • FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to an embodiment of the present technology.
  • This imaging apparatus 100 includes an imaging lens 110 , a solid-state imaging device 200 , a recording section 120 , a control section 130 , an analysis section 140 , a communication section 150 and a speaker section 160 .
  • the imaging device 100 is, for example, a smart phone, a mobile phone, a PC (Personal Computer), or the like.
  • the imaging lens 110 collects incident light and guides it to the solid-state imaging device 200 .
  • the solid-state imaging device 200 has a plurality of gradation pixels.
  • the gradation pixel outputs a luminance signal corresponding to the amount of received light.
  • the solid-state imaging device 200 is capable of weighted addition of luminance signals of a plurality of pixels for gradation, for example.
  • the pixel for gradation may be called a pixel.
  • the solid-state imaging device 200 can perform predetermined signal processing such as weighted addition at the analog signal stage, and outputs the processed data to the recording unit 120 via the signal line 209 .
  • the recording unit 120 records data from the solid-state imaging device 200 and the like.
  • the control unit 130 controls the imaging device 100 as a whole.
  • the control unit 130 controls the solid-state imaging device 200 to capture image data.
  • the analysis unit 140 can perform recognition processing using, for example, a neural network.
  • the analysis unit 140 has an arithmetic processing unit 142 .
  • the arithmetic processing unit 142 can cause the solid-state imaging device 200 to perform arithmetic processing such as convolution on data of each pixel captured by the solid-state imaging device 200 in the analog signal stage.
  • the analysis unit 140 can also perform predetermined analysis processing, image processing, etc., using the calculation result of the calculation processing unit 142, for example.
  • the arithmetic processing such as the convolution operation performed by the arithmetic processing unit 142 as described above is performed by the solid-state imaging device 200 at the stage of the analog signal, and the subsequent arithmetic processing is performed by the arithmetic processing unit 142 .
  • the communication unit 150 performs wireless communication with an external device. Thereby, content or the like is received from an external server and recorded in the recording unit 120 via the control unit 130 .
  • the control unit 130 causes the display unit 170 to display an image based on this content, for example.
  • the speaker unit 160 has a highly directional speaker and can transmit audio information only to the user.
  • the speaker unit 160 can change the direction in which sound is transmitted.
  • FIG. 2 is a diagram showing an example of the layered structure of the solid-state imaging device 200 according to the embodiment of the present technology.
  • This solid-state imaging device 200 includes a detection chip 202 and a light receiving chip 201 stacked on the detection chip 202 . These substrates are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection.
  • functions corresponding to the recording unit 120, the control unit 130, and the analysis unit 140 shown in FIG. 1 may be configured in the detection chip 202.
  • FIG. In this case, the configuration related to imaging and imaging processing of the imaging device 100 is configured within the layered structure of the solid-state imaging device 200 .
  • the light receiving chip 201 and the detection chip 202 may be configured in the same layer.
  • FIG. 3 is a block diagram showing a configuration example of the solid-state imaging device 200.
  • the solid-state imaging device 200 includes a pixel array section 30, an accumulation control circuit 210, a first access control circuit 211a, a second access control circuit 211b, and a third access control circuit. 211 c , a reading unit 212 , a signal processing unit 213 , a second signal processing unit 214 , a timing control circuit 214 and an output interface 215 .
  • the pixel array unit 30 is configured in the light receiving chip 201, and includes an accumulation control circuit 210, a first access control circuit 211a, a second access control circuit 211b, a third access control circuit 211c, a reading unit 212,
  • the signal processing section 213 , the second signal processing section 214 , the timing control circuit 214 and the output interface 215 may be configured within the detection chip 202 .
  • FIG. 4 is a diagram schematically showing pixels Pix arranged in a matrix in the pixel array section 30.
  • a plurality of pixels Pix are two-dimensionally arranged in a matrix (array).
  • one floating diffusion FDa is arranged for a processing area Afd corresponding to a predetermined number of pixels Pix.
  • a floating diffusion FD is configured for each pixel Pix, and accumulated charges for each floating diffusion FD are integrated by the floating diffusion FDa.
  • the pixel array unit 30 has a configuration in which the present technology is applied to a so-called backside illumination type image sensor in which the back side is illuminated with light.
  • the present technology may be applied to a front side illuminated image sensor.
  • the pixel array section 30 is, for example, a CMOS image sensor.
  • the processing area Afd corresponds to the addition range of the floating diffusion FDa described later with reference to FIGS. 11 to 13.
  • FIG. This configuration example of the pixel array unit 30 is an example suitable for, for example, a 3 ⁇ 3 weighting filter, but is not limited to this.
  • the accumulation control circuit 210 controls the photoelectric conversion units of the pixels Pix. That is, the accumulation control circuit 210 can control resetting of accumulated charges in each of the plurality of photoelectric conversion units, generation of accumulated charges according to weight values, and the like.
  • the accumulation control circuit 210 executes a control command according to the weight value of the arithmetic processing section 142 (see FIG. 1) via the control section 130 (see FIG. 1). Details of the photoelectric conversion unit will also be described later.
  • the first access control circuit 211a can control the connection of the floating diffusions FD of the plurality of pixels Pix in the row direction, for example, via signal lines HSW1 to HSW3 (see FIG. 6).
  • the second access control circuit 211b can control the connection of the floating diffusions FD of the plurality of pixels Pix in the column direction, for example, via signal lines VSW1 to VSW3 (see FIG. 6).
  • the third access control circuit 211c cooperates with the first access control circuit 211a and the second access control circuit 211b, resets the accumulated charges of the floating diffusions FD and FDa, charges the floating diffusions FD and FDa, and stores the charges of the floating diffusions FD and FDa. It is possible to control the amplification of the luminance signal according to the accumulated charge of the . Details of control examples of the storage control circuit 210, the first access control circuit 211a, the second access control circuit 211b, and the third access control circuit 211c will also be described later.
  • FIG. 5 is a diagram showing a configuration example of the reading unit 212.
  • the reading unit 212 has a plurality of constant current sources 220 and a plurality of analog-to-digital conversion units ADC230.
  • a plurality of constant current sources 220 and a plurality of AD converters ADC230 are provided corresponding to a plurality of signal lines VSL, respectively.
  • the constant current source 21 generates a current corresponding to the accumulated charge of the selected floating diffusion FDa (see FIG. 4) as the image luminance signal Sig for the corresponding signal line VSL.
  • the AD conversion unit ADC230 is configured to perform AD conversion based on the signal Sig on the corresponding signal line VSL. That is, the AD conversion unit ADC230 converts the analog gradation luminance signal Sig supplied via the vertical signal line VSL into a digital signal by time division. The AD converter ADC230 supplies the generated digital signal to the signal processor 213 .
  • the signal processing section 213 performs predetermined signal processing on the digital signal from the reading section 212 .
  • the signal processing unit 213 supplies the data indicating the processing result and the detection signal to the recording unit 120 via the signal line 209 .
  • the timing control circuit 214 controls the timing of each component of the solid-state imaging device 200 based on the time stamp information.
  • the timing control circuit 212d performs the processes of the accumulation control circuit 210, the first access control circuit 211a, the second access control circuit 211b, the third access control circuit 211c, the reading unit 212, and the signal processing unit 213. Control timing.
  • the output interface 215 outputs image data, which is a digital signal supplied from the signal processing unit 213 , to the recording unit 120 .
  • FIG. 6 is a diagram showing a configuration example of the pixel array section 30. As shown in FIG. For example, it is a configuration example of 3 ⁇ 3 pixels Pix on the upper left with respect to FDa in FIG.
  • FIG. 7 is a diagram showing a configuration example of a pixel Pix. As shown in FIG. 7, the pixel Pix has switching elements TR1 to TR3, a photoelectric converter PD, and a floating diffusion FD.
  • the photoelectric conversion part PD is an element that generates charges proportional to incident light, and is made of at least one of silicon, indium gallium arsenide, and organic germanium, for example.
  • the switching elements TR1 to TR3 are composed of, for example, at least one of silicon, an oxide semiconductor, and an organic semiconductor.
  • the accumulation control lines TRG1-9 connect between each pixel Pix and the accumulation control circuit 210 (see FIG. 3). Pulsed control signals Trg1-Trg9 are supplied from the storage control circuit 210 to the storage control lines TRG1-TRG9.
  • the horizontal control lines HSW1-HSW3 connect between the pixels Pix in each row and the first access control circuit 211a (see FIG. 3). Pulsed control signals Hsw1-3 are supplied to the horizontal control lines HSW1-HSW3 from the first access control circuit 211a (see FIG. 3).
  • the vertical control lines VSW1-3 connect between the pixels Pix in each column and the second access control circuit 211b (see FIG. 3). Pulse-shaped control signals Vsw1-3 are supplied to the vertical control lines VSW1-3 from the second access control circuit 211b.
  • the control lines RSTL and RSEL connect between each pixel circuit AFD and the third access control circuit 211c (see FIG. 3).
  • the control lines RSTL and RSEL are supplied with pulse-shaped control signals Rst and Sel from the third access control circuit 211c.
  • the third access control circuit 211c can perform the reset operation and accumulation operation of the floating diffusions FD and FDa in conjunction with the accumulation control circuit 210, the first access control circuit 211a and the second access control circuit 211b. is.
  • the switching elements TR1 to T3 are, for example, N-type MOS (Metal Oxide Semiconductor) transistors.
  • the floating diffusion FD is configured using, for example, a diffusion layer formed on the surface of the semiconductor substrate.
  • One end of the switching element TR1 is connected to the floating diffusion FD on the left, the other end of the switching element TR1 on the left, and one end of the switching element TR2 on the left.
  • the other end of the switching element TR1 is connected to the floating diffusion FD, one end of the switching element TR1 on the right, and one end of the switching element TR2.
  • the gate of the switching element TR1 is connected to the horizontal control line HSW.
  • the switching element TR1 is in a connected state (on) when the control signals Hsw1-Hsw3 supplied via the horizontal control lines HSW1-3 are high, and is in a non-connected state (off) when the control signals Hsw1-3 are low.
  • the connected state (ON) of the switching element may be referred to as the conducting state
  • the disconnected state (OFF) may be referred to as the non-conducting state.
  • One end of the switching element TR2 is connected to the other end of the upper adjacent switching element TR2, the floating diffusion FD, and one end of the right adjacent switching element TR1.
  • the other end of the switching element TR2 is connected to one end of the adjacent switching element TR2 on the lower side.
  • the gate of the switching element TR2 is connected to the vertical control line VSW.
  • the switching element TR2 is in a connected state (on) when the control signals Vsw1-3 supplied via the horizontal control lines VSW1-3 are high, and is in a non-connected state (off) when the control signals Vsw1-3 are low.
  • the switching element TR2 may be referred to as a vertical transfer transistor.
  • One end of the switching element TR3 is connected to one end of the photoelectric conversion unit PD, and the other end is connected to the floating diffusion FD. Also, the gate of the switching element TR3 is connected to the storage control line TRG. As a result, the switching element TR3 is in a connected state (on) when the control signal Trg supplied via the storage control line TRG is high, and is in a non-connected state (off) when it is low. Note that the switching element TR3 may be referred to as a TRG transistor. As shown in FIG. 6, when the number of pixels in the addition range (filter range) is nHxnV, the number of switching elements TR1 and TR2 in the addition range is 2xnHxnV.
  • nH indicates the number of pixels in the row direction of the filter range
  • nV indicates the number of pixels in the vertical direction of the filter range.
  • FIG. 8 is a circuit diagram showing a configuration example of the pixel circuit AFD.
  • the pixel circuit AFD has a control line RSTL and a control line RSEL.
  • One ends of the control lines RSTL and RSEL are connected to the third access control circuit 211c (see FIG. 3) as described above.
  • a pulse-shaped control signal Rst is supplied to the control line RSTL by the third access control circuit 211c.
  • the control line SELL is supplied with a pulse-shaped control signal Sel by the third access control circuit 211c.
  • the pixel circuit AFD has three switching elements RST, AMP, SEL and a floating diffusion FDa.
  • the switching elements RST, AMP, and SEL are, for example, N-type MOS (Metal Oxide Semiconductor) transistors.
  • the floating diffusion FDa is configured using, for example, a diffusion layer formed on the surface of the semiconductor substrate.
  • the switching elements ST, AMP, and SEL are made of, for example, at least one of silicon, an oxide semiconductor, and an organic semiconductor.
  • One end of the switching element RST is connected to the floating diffusion FDa, and the other end is connected to the power supply VDD. Also, the gate of the switching element RST is connected to the control line RSTL. As a result, the switching element RST is in a connected state (on) when the control signal Rst supplied via the control line RSTL is high, and is in a non-connected state (off) when it is low. Note that the switching element RST may be referred to as a reset transistor.
  • One end of the switching element AMP is connected to the power supply VDD, and the other end is connected to one end of the switching element SEL. Also, the gate of the switching element AMP is connected to the floating diffusion FDa. As a result, the switching element AMP supplies a voltage signal corresponding to the charge accumulated in the floating diffusion FDa to one end of the switching element SEL. Note that the switching element AMP may be referred to as an amplification transistor.
  • One end of the switching element SEL is connected to the other end of the switching element AMP, and the other end is connected to the signal line VSL. Also, the gate of the switching element SEL is connected to the control line RSEL. As a result, the switching element SEL is in a connected state (on) when the control signal Rsel supplied via the main line RSEL is high, and is in a non-connected state (off) when it is low. Note that the switching element SEL may be referred to as a route selection transistor.
  • the switching element RST is rendered conductive based on the control signal Rst, and similarly, the switching elements TR1 and TR2 are rendered conductive based on the control signals Hsw1-3 and the control signals Vsw1-3. , the floating diffusion FDa, and the floating diffusion FD of each pixel are discharged. Then, the switching element RST becomes non-conductive based on the control signal Rst, and similarly, the switching elements TR1 and TR2 become non-conductive based on the control signals Hsw1-3 and the control signals Vsw1-3.
  • the switching elements TR1 and TR2 are brought into conduction based on the control signals Hsw1 to Hsw3 and the control signals Vsw1 to Vsw3. It accumulates charges transferred from the photoelectric conversion unit PD via the floating diffusion FD.
  • the pixel circuit AFD is electrically connected to the signal line VSL by turning on the switching element SEL based on the control signal Sel.
  • the switching element AMP is connected to the constant current source 220 (see FIG. 5) of the reading section 212 and operates as a so-called source follower.
  • a voltage signal corresponding to the voltage of the floating diffusion FDa at that time is output to the ADC 230 as the image luminance signal Sig as described above.
  • the switching element AMP constitutes a source follower circuit, and the voltage signal is read based on the time information of pulse width modulation (PWM).
  • PWM pulse width modulation
  • FIG. 9 is a plan view of the light-receiving chip 201 of the pixel array section 30 shown in FIG. 6 as seen from the rear side.
  • the photoelectric conversion units PD of each pixel Pix are arranged in a two-dimensional array.
  • Switching elements TR1 to TR3 are arranged around the photoelectric conversion part PD.
  • the other end of the switching element TR2 of the lower right pixel Pix in the upper left 3 ⁇ 3 pixel Pix drawing (see FIG. 6), the floating diffusion FDa and the gate of the switching element AMP, and one end of the switching element RST are Connected.
  • the floating diffusion FD of each pixel is finally accumulated in the floating diffusion FDa and read out as the image luminance signal Sig.
  • FIG. 10 is a plan view of another configuration example when the light receiving chip 201 of the pixel array section 30 shown in FIG. 6 is viewed from the back side.
  • the diffusion layer of the floating diffusion FD of three pixels is shared, and the number of floating diffusions FD is suppressed more than the pixel array section 30 of FIG.
  • the control lines TRG1-9, HSW1-3, and VSW1-3 are omitted, but the control lines are connected to the gates of the switching elements in the same manner as in FIG.
  • FIG. 11 is a diagram schematically showing a cross section of a main part of the pixel array section 30.
  • a light receiving chip 201 corresponds to the semiconductor layer 100S
  • a detection chip 202 corresponds to the semiconductor layers 100T, 200T and 200S.
  • the semiconductor layers 100S and 100T are indicated by the substrate 201a
  • the semiconductor layers 200T and 200S are indicated by the substrate 201b.
  • the substrates 201a and 201b are electrically connected by, for example, through electrodes 120E and 121E.
  • the photoelectric conversion part PD, floating diffusion FD, and VSS contact region 118 have planar regions.
  • the photoelectric conversion part PD is composed of, for example, a p-well layer 115 and an n-type semiconductor region 114 .
  • the switching element TR3 may be composed of a planar transistor.
  • a transfer gate TG is provided on the surface of the semiconductor layer 100S.
  • the side surfaces of this transfer gate TG are covered with sidewalls SW.
  • the sidewall SW contains silicon nitride (SiN), for example.
  • a gate insulating film is provided between the semiconductor layer 100S and the transfer gate TG.
  • the transfer gate TG of each pixel Pix is provided, for example, so as to surround the floating diffusion FD in plan view.
  • the semiconductor layer 100S is provided with a pixel separation section 117 that separates the pixels ix from each other.
  • the pixel separation portion 117 is formed extending in the normal direction of the semiconductor layer 100S (the direction perpendicular to the surface of the semiconductor layer 100S).
  • the pixel separation section 117 is provided so as to separate the pixels Pix from each other, and has, for example, a grid-like planar shape (see FIG. 4).
  • the pixel separation unit 117 electrically and optically separates the pixels Pix from each other, for example.
  • the pixel separation section 117 includes, for example, a light shielding film 117A and an insulating film 117B. For example, tungsten (W) or the like is used for the light shielding film 117A.
  • the insulating film 117B is provided between the light shielding film 117A and the p-well layer 115 or the n-type semiconductor region 114. As shown in FIG.
  • the insulating film 117B is made of, for example, silicon oxide (SiO).
  • the pixel separation section 117 has, for example, an FTI (Full Trench Isolation) structure and penetrates the semiconductor layer 100S. Although not shown, the pixel separation section 117 is not limited to the FTI structure penetrating the semiconductor layer 100S. For example, a DTI (Deep Trench Isolation) structure that does not penetrate the semiconductor layer 100S may be used.
  • the pixel separation portion 117 extends in the normal direction of the semiconductor layer 100S and is formed in a partial region of the semiconductor layer 100S.
  • a pinning region 116 is provided in the semiconductor layer 100S.
  • the pinning region 116 is provided on the side surface of the pixel isolation portion 117 , specifically between the pixel isolation portion 117 and the p-well layer 115 or the n-type semiconductor region 114 .
  • the pinning region 116 is composed of, for example, a p-type semiconductor region.
  • FIG. 12 to 14 are diagrams exemplifying the range of calculation processing of weighting calculation.
  • FIG. 12 is a diagram showing addition ranges A11 to A22 at timings t1 to t3 and corresponding floating diffusions FD11 to FD22.
  • FIG. 13 shows the range of addition at timings t4 to t6
  • FIG. 14 shows the range of addition at timings t7 to t9.
  • 12 to 15 the addition ranges A11 to A22 and the corresponding floating diffusions FDa11 to FDa22 relatively indicate arbitrary regions of the pixel array section 30.
  • FIG. 12 to 14 are diagrams exemplifying the range of calculation processing of weighting calculation.
  • FIG. 12 is a diagram showing addition ranges A11 to A22 at timings t1 to t3 and corresponding floating diffusions FD11 to FD22.
  • FIG. 13 shows the range of addition at timings t4 to t6
  • FIG. 14 shows the range of addition at timings t7 to t
  • the addition range of the floating diffusion FDa11 is the addition range A11
  • the addition range of the floating diffusion FDa12 is the addition range A12
  • the addition range of the floating diffusion FDa21 is the addition range A21
  • the addition range of the floating diffusion FDa22 is the addition range A22.
  • Other floating diffusions FDan similarly have addition ranges An.
  • the addition ranges overlap, so nine times of addition processing at timings t1 to t9 are performed within the imaging element 200. FIG. That is, nine images are captured at timings t1 to t9.
  • FIG. 15 is a diagram showing an example of 3 ⁇ 3 weight values w ij in equation (1).
  • equation (1) is an example of addition processing used in the processing of the arithmetic processing unit 142 (see FIG. 1).
  • the arithmetic processing unit 142 supplies, for example, the weight value wij information of the equation (1) to the accumulation control circuit 210 (see FIG. 3) via the control unit 130 .
  • the weight value wij may be referred to as a filter value, and the addition range may be referred to as a filter.
  • the image luminance signal Sigij is calculated by adding the weight value wij to the luminance value pij .
  • i, j indicate the position of the pixel Pix in the pixel array. That is, i indicates the position in the horizontal direction in the pixel array section 30, and j indicates the position in the vertical direction.
  • the luminance value p ij corresponds to the charge accumulated in the photoelectric conversion unit PD in the pixel range Pix at positions i and j.
  • the addition range A11 in FIGS. 12 to 14 shows an example of the addition range in which the brightness value p ij of the equation (1) is included in the addition process.
  • the charge proportional to the charge accumulated in the 3 ⁇ 3 floating diffusion FD in the addition range A11 is finally accumulated in the floating diffusion FDa11.
  • the charge proportional to the charge accumulated in the 3 ⁇ 3 floating diffusion FD in the addition range A12 is finally accumulated in the floating diffusion FDa12.
  • the charge proportional to the charge accumulated in the 3 ⁇ 3 floating diffusion FD in the addition range A21 is finally accumulated in the floating diffusion FDa11.
  • the charge proportional to the charge accumulated in the 3 ⁇ 3 floating diffusion FD in the addition range A22 is finally accumulated in the floating diffusion FDa22.
  • the addition range A11 to A22 shifts to the right by one pixel range
  • the addition range A11 to A22 further shifts to the right by one pixel range.
  • the addition range A11 to A22 shifts downward by one pixel range from the position at timing t1, and at timing t5, the addition range A11 to A22 further shifts to the right by one pixel.
  • the addition range A11 to A22 is further shifted to the right by one pixel range. As shown in FIG.
  • the addition range A11 to A22 shifts downward by one pixel range from timing t4, and at timing t5, the addition range A11 to A22 shifts one pixel to the right.
  • the addition range A11 to A22 is further shifted to the right by one pixel range. In this manner, in the calculation process of the weighting calculation shown in, for example, formula (1), the addition process is performed while changing the addition range A11 to A22 nine times.
  • the accumulation control circuit 210 supplies each pixel Pix with signals Trg1 to TrgH*V having time information proportional to the weight value wij . Then, the photoelectric conversion unit PD of each pixel Pix performs photoelectric conversion based on the signals Trg1 to TrgH*V for a period of time proportional to the weight value wij to accumulate charges. That is, in the present embodiment, a calculation corresponding to the weight value wij is performed by performing photoelectric conversion for a time proportional to the weight value wij . Then, the accumulated charge for each pixel Pix is finally transferred to the floating diffusion FDa.
  • FIG. 16 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. A processing example of the addition range A11 will be described based on FIG. 16 while referring to FIGS.
  • the vertical axis indicates Trg1-9, Rst, and Rsel in order from the top.
  • the horizontal axis indicates time.
  • the switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3.
  • the ranges of the switching elements TR1 and TR2 connected to the floating diffusion FDa are changed according to the area A11 from timings t1 to t9.
  • each switching element TR3 becomes conductive, and the charges in each photoelectric conversion unit PD and each floating diffusion FD and the charges in the floating diffusion FDa are supplied to the power supply VDD. Ejected and initialized. Then, when the control signals Trg1 to Trg9 transition from high level signals to low level signals, each photoelectric conversion unit PD accumulates electric charge according to the amount of received light for an accumulation time proportional to the weight value wij .
  • the signal Rst becomes a low level signal and the switching element RST becomes conductive
  • the signal Rst becomes a high level signal again.
  • the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized again.
  • the control signals Trg1 to Trg9 become a high level signal
  • the charges in each photoelectric conversion unit PD are transferred to each floating diffusion FD, and further transferred to the floating diffusion FDa. . That is, the charge corresponding to the processing result equivalent to the addition processing of formula (1) is transferred into the floating diffusion FDa.
  • the switching element SEL becomes conductive, and the signal Sig proportional to the charge accumulated in the floating diffusion FDa is output to the conversion unit ADC 230 of the reading unit 212 (see FIG. 5) via the VSL line. be done.
  • the other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
  • FIG. 17 is a timing chart showing another processing example of the addition range A11 at timing t1 in FIG.
  • a processing example of the addition range A11 will be described based on FIG. 16 while referring to FIGS.
  • the end points of the light receiving times of the photoelectric conversion units PD are aligned, whereas in the processing example shown in FIG. differ.
  • the vertical axis indicates Trg1-9, Rst, and Rsel in order from the top.
  • the horizontal axis indicates time.
  • the switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3.
  • the control signals Trg1 to Trg9 become high level signals, the charges in each photoelectric conversion unit PD, each floating diffusion FD, and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized.
  • each photoelectric conversion unit PD accumulates electric charge according to the amount of received light for an accumulation time proportional to the weight value wij .
  • the signal Rst becomes a low level signal
  • the switching element RST becomes conductive
  • the signal Rst becomes a high level signal again
  • the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized again. be done.
  • the signal Rst becomes a low level signal again
  • the control signals Trg1 to Trg9 become high level signals according to the accumulation time proportional to the weight value wij
  • the time proportional to the weight value wij in each photoelectric conversion unit PD is reached. is transferred into each floating diffusion FD and further transferred into the floating diffusion FDa. That is, the charge corresponding to the processing result equivalent to the addition processing of formula (1) is transferred into the floating diffusion FDa.
  • the switching element SEL becomes conductive, and the signal Sig proportional to the charge accumulated in the floating diffusion FDa is output to the conversion unit ADC 230 of the reading unit 212 (see FIG. 5) via the VSL line. be done.
  • the other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
  • the photoelectric conversion unit PD of each pixel Pix can A charge is accumulated by photoelectric conversion.
  • a weighting operation for example, equation (1)
  • the charge accumulated in the floating diffusion FD of each pixel Pix can be transferred to the floating diffusion FDa, it is possible to change the position of the addition range A11 without providing only one floating diffusion FDa corresponding to the addition range A11. It becomes possible. As a result, even when the luminance value p ij is added with a different weight value w ij during addition processing of the image luminance signal Sigij (i ⁇ n ⁇ i ⁇ i+n, j ⁇ m ⁇ j ⁇ j+m), the floating diffusion FDa It becomes possible to cope without increasing the number. As a result, an increase in the size of the arithmetic element 200 can be suppressed.
  • the pixel circuit AFD further includes a floating diffusion FDb, and the capacitance of the floating diffusion of the pixel circuit AFD can be switched. Differs from 100. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
  • FIG. 18 is a circuit diagram showing a configuration example of a pixel circuit AFD according to a modification of the first embodiment.
  • the pixel circuit AFD further has a floating diffusion FDb, a control line FGL, and a switching element FG.
  • One end of the control line FGL is connected to the third access control circuit 211c (see FIG. 3).
  • a control signal Fg is supplied to the control line FGL by the third access control circuit 211c.
  • the switching element FG is, for example, an N-type MOS (Metal Oxide Semiconductor) transistor.
  • One end of the switching element RST is connected to the floating diffusion FDb, and the other end is connected to the power supply VDD.
  • One end of the switching element FG is connected to the floating diffusion FDa, and the other end is connected to the floating diffusion FDb.
  • the gate of the switching element FG is connected to the control line FGL.
  • the switching element FG and the switching element RST are brought into conduction based on the control signals Fg and Rst. Thereby, the charges accumulated in the floating diffusion FD and the floating diffusion FD2 are discharged. Next, based on the control signal Rst, the switching element RST is turned off. As a result, after the exposure period T ends, each switching element TR3 becomes conductive based on the control signal Trg. and store charges transferred via the floating diffusion FD.
  • the pixel circuit AFD is electrically connected to the signal line VSL by turning on the switching element SEL based on the control signal Sel.
  • the switching element AMP is connected to the constant current source 220 (see FIG. 5) of the reading section 212 and operates as a so-called source follower.
  • a voltage corresponding to the voltages of the floating diffusion FDa and the floating diffusion FDb at that time is output to the ADC 230 as the image luminance signal Sig as described above.
  • the switching element FG and the switching element RST are brought into conduction based on the control signals Fg and Rst. Thereby, the charges accumulated in the floating diffusion FDa and the floating diffusion FDb are discharged. Next, the switching element FG is turned off based on the control signal Fgt. As a result, after the exposure period T is completed, each switching element TR3 is turned on based on the control signal Trg, and the floating diffusion FDa is switched from each photoelectric conversion unit PD. Accumulates the charges transferred via the element TR3 and the floating diffusion FD. After that, the same processing as described above is performed.
  • the pixel circuit AFD further includes the floating diffusion FDb. This makes it possible to switch the capacitance of the floating diffusion in accordance with the amount of light received by the solid-state imaging device 200, and to adjust the imaging sensitivity and the storage charge capacity.
  • the imaging device 100 according to the second embodiment differs from the imaging device 100 according to the first embodiment in that the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 is reduced to one row. do. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
  • FIG. 19 is a diagram showing a configuration example of the pixel array section 30 according to the second embodiment.
  • it is a configuration example of 3 ⁇ 3 pixels Pix on the upper left with respect to FDa in FIG.
  • the configuration differs from that of the pixel array section 30 according to the first embodiment in that only three switching elements TR1 are arranged for one row.
  • the 3 ⁇ 3 addition range filter range
  • the switching elements TR1 are three elements for one row
  • the range of the photoelectric conversion unit PD and the floating diffusion FD connected to the floating diffusion FDa11 can be changed, for example, from FIGS.
  • the addition range A11 in FIG. 14 can be changed.
  • the switching element TR1 when the switching element TR1 is arranged for each pixel Pix, in the example of the addition range of 3 ⁇ 3, the switching element TR2 may be three elements for one column. Also in this case, the range of the photoelectric conversion unit PD and the floating diffusion FD connected to the floating diffusion FDa11 can be changed to, for example, the addition range A11 of FIGS. 12 to 14. FIG. Thus, when the number of pixels in the addition range is nHxnV, the number of switching elements TR1 and TR2 in the addition range is nHxnV+nH or nHxnV+nV.
  • nH indicates the number of pixels in the addition range in the row direction
  • nV indicates the number of pixels in the addition range in the vertical direction.
  • FIG. 20 is a plan view of the pixel array section 30 shown in FIG. 19.
  • FIG. 20 the pixel array section 30 according to the second embodiment has a configuration in which the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 is reduced to one row or one column. be.
  • the number of switching elements TR1 in the Afd region of the pixel array section 30 is reduced to one row or one column. Accordingly, the size of the pixel array section 30 can be reduced by reducing the number of switching elements TR1 or TR2.
  • the imaging device 100 according to the third embodiment is different from the second embodiment in that the pixel array section 30 is configured by a photoelectric conversion layer (PD layer) and a pixel transistor layer (pixel Tr layer) via the connection section C10. It is different from the imaging device 100 according to the form. Differences from the imaging apparatus 100 according to the second embodiment will be described below.
  • FIG. 21 is a diagram showing a configuration example of the pixel array section 30 according to the third embodiment.
  • the pixel array section 30 according to the third embodiment includes a photoelectric conversion layer (PD layer) and a pixel transistor layer (pixel Tr layer) via a connection section C10.
  • the photoelectric conversion layer includes a photoelectric conversion unit PD of each pixel Pix and a switching element TR3.
  • the pixel transistor layer includes switching elements TR1 and TR2, switching element SEL. AMP and RST are configured.
  • the imaging device 100 reduces the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 to one row or one column, and (PD layer) and a pixel transistor layer (pixel Tr layer). Accordingly, by reducing the number of switching elements TR1 or TR2, the size of the pixel array section 30 can be reduced, and the plane area of the pixel array section 30 can be reduced.
  • FIG. 23 is a diagram showing a configuration example of the pixel array section 30 according to the fourth embodiment. For example, it is a configuration example of 3 ⁇ 3 pixels Pix on the upper left with respect to FDa in FIG. In FIG. 23, the wiring of TRG1-9 is omitted.
  • FIG. 24 is a diagram showing a configuration example of a pixel Pix according to the fourth embodiment.
  • the pixel Pix differs from the pixel Pix according to the first embodiment in that it further includes a switching element TR4.
  • One end of the switching element TR4 is connected to the pixel Pix, and the other end is connected to the power supply VDD.
  • the gate of the switching element TR4 is connected to the control line OFG.
  • the control lines OFG 1 - 9 are connected to the accumulation control circuit 210 .
  • the switching element TR4 is connected (ON) when the control signal Ofg supplied from the storage control circuit 210 via the main line OFG is high, and is disconnected (OFF) when it is low.
  • the switching element TR4 may be referred to as an OFG transistor.
  • the number of switching elements TR1 or TR2 may correspond to one row or one column. That is, in an example of 3 ⁇ 3 addition filters, the number of switching elements TR1 or TR2 may be three.
  • FIG. 25 is a plan view of the light-receiving chip 201 of the pixel array section 30 shown in FIG. 23, viewed from the rear side.
  • the photoelectric conversion units PD of each pixel Pix are arranged in a two-dimensional array.
  • Switching elements TR1 to TR4 are arranged around the photoelectric conversion part PD.
  • the other end of the switching element TR2 of the lower right pixel Pix in the upper left 3 ⁇ 3 pixel Pix drawing (see FIG. 6), the floating diffusion FDa and the gate of the switching element AMP, and one end of the switching element RST are Connected.
  • the charge of the floating diffusion FD of each pixel Pix is finally accumulated in the floating diffusion FDa and read out as the image luminance signal Sig.
  • FIG. 26 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. 12 according to the fourth embodiment. As shown in FIG. 26, the vertical axis indicates the control signals Ofg1-9, Trg1-9, Rst and Rsel in order from the top. The horizontal axis indicates time.
  • each switching element TR4 becomes conductive, and the electric charge in each photoelectric conversion unit PD is discharged to the power supply VDD and initialized. Then, when the control signals Ofg1 to Ofg9 transition from high level signals to low level signals, each photoelectric conversion unit PD accumulates charges according to the amount of received light for an accumulation time proportional to the weight value wij .
  • the signal Rsel becomes a high level signal and the switching element SEL becomes conductive. Subsequently, the switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3. As a result, the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized.
  • the other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
  • the photoelectric conversion unit PD of each pixel Pix can A charge is accumulated by photoelectric conversion.
  • a weighting operation for example, equation (1)
  • the charge accumulated in the floating diffusion FD of each pixel Pix can be transferred to the floating diffusion FDa, it is possible to change the position of the addition range A11 without providing only one floating diffusion FDa corresponding to the addition range A11. It becomes possible. As a result, even when the luminance value p ij is added with a different weight value w ij during addition processing of the image luminance signal Sigij (i ⁇ n ⁇ i ⁇ i+n, j ⁇ m ⁇ j ⁇ j+m), the floating diffusion FDa It becomes possible to cope without increasing the number. As a result, an increase in the size of the arithmetic element 200 can be suppressed.
  • the image pickup apparatus 100 according to the fifth embodiment differs from the image pickup apparatus 100 according to the first embodiment in that it can be driven when the weight value w ij (F104) in equation (1) has a negative value. do. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
  • FIG. 27 is a diagram schematically showing a processing example for the weight value w ijj (F104) of the formula (1) according to the fifth embodiment.
  • positive access control circuit 210, first access control circuit 211a, second access control circuit 211b, and third access control circuit 211c control Accumulation of each photoelectric conversion element PD is performed for an accumulation time length corresponding to the weight value wij having a value.
  • the charge of each pixel Pix is transferred to the floating diffusion FDa through the floating diffusion FD. After that, it is converted into a first digital signal by the AD conversion unit ADC230 (see FIG. 5) and recorded in the recording unit 120 (see FIG. 1). It is assumed that the accumulation time of the length corresponding to the weight value wij having a negative value is zero.
  • the weight value w ij having a negative value is controlled by the accumulation control circuit 210, the first access control circuit 211a, the second access control circuit 211b, and the third access control circuit 211c .
  • Accumulation of each photoelectric conversion element PD is performed for an accumulation time length corresponding to the absolute value of (F104). Then, the charge between the photoelectric conversion units PD of each pixel Pix is transferred to the floating diffusion FDa via the floating diffusion FD. After that, it is converted into a second digital signal by the AD conversion section ADC 230 (see FIG. 5) and recorded in the recording section 120 (see FIG. 1). It is assumed that the accumulation time of the length corresponding to the weight value wij having a positive value is zero.
  • the arithmetic processing unit 142 calculates the difference between the first digital signal in the first frame F100 and the second digital signal in the second frame F102 recorded in the recording unit 120 (see FIG. 1), generates a digital signal corresponding to the weight value w ij (F104) of .
  • the calculation result corresponding to the weight value w ij (F104) of the equation (1) is generated as a numerical value.
  • the imaging apparatus 100 performs accumulation in each photoelectric conversion element PD for an accumulation time length corresponding to the weight value wij having a positive value, and obtains the first digital signal. Convert. Subsequently, accumulation is performed in each photoelectric conversion element PD for an accumulation time length corresponding to the absolute value of the weight value wij having a negative value, and is converted into a second digital signal. Subsequently, the arithmetic processing unit 142 subtracts the second digital signal from the first digital signal. This makes it possible to drive arithmetic processing when the weight value w ij (F104) in equation (1) has a negative value.
  • This technology can be configured as follows.
  • a plurality of pixel regions composed of a plurality of pixels; a plurality of first charge storage units corresponding to each of the pixel regions;
  • a plurality of pixels in the pixel region are a photoelectric conversion unit; a power storage unit corresponding to the photoelectric conversion unit; a first element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and the electricity storage unit; a second element that brings into a conducting state or a non-conducting state with the electricity storage portion of a pixel that is adjacent to at least one of the vertical direction and the horizontal direction;
  • a solid-state imaging device wherein at least one of the second elements included in the plurality of pixels is connected to the first electricity storage section.
  • the pixels are further comprising a third element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and a predetermined potential line;
  • the solid-state imaging device further comprising:
  • the solid-state imaging device according to (1), further comprising an amplifier circuit that amplifies a signal corresponding to the charge accumulated in the first electricity storage unit as a voltage signal.
  • first digital data generated by an analog-to-digital converter after the photoelectric conversion period of the photoelectric converter is controlled according to the positive weight value of the arithmetic processing and transferred to the first electricity storage unit;
  • the photoelectric conversion period of the photoelectric conversion unit is controlled according to the absolute value of the negative weight value of the arithmetic processing, and the second digital signal generated by the analog-to-digital conversion unit after being transferred to the first storage unit.
  • 100 imaging device
  • 142 arithmetic processing unit
  • 200 image sensor
  • 210 Accumulation control circuit
  • A11 to A22 addition range (pixel range)
  • FG switching element (fourth element)
  • FD Floating diffusion (storage unit)
  • FDa floating diffusion (first power storage unit)
  • PD photoelectric conversion unit
  • TR1 switching element (second element)
  • TR2 switching element
  • TR3 switching element
  • TR4 Switching element (third element).

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

[Problem] To provide, with the present disclosure: a solid-state imaging element that can execute arithmetic processing and suppress enlargement of the solid-state imaging element; and an imaging device. [Solution] In order to solve the above problem, the present disclosure provides a solid-state imaging element that comprises: a plurality of pixel areas constituted by a plurality of pixels; and a plurality of first power storage units corresponding to the pixel areas respectively. The plurality of pixels in the pixel areas have a photoelectric conversion unit, a power storage unit corresponding to the photoelectric conversion unit, a first element that establishes a conductive state or a non-conductive state between the photoelectric conversion unit and the power storage unit, and a second element that establishes a conductive state or a non-conductive state between the power storage units of vertically and/or horizontally adjacent pixels. At least any of the second elements included in the plurality of pixels is connected to the first power storage units.

Description

固体撮像素子、及び撮像装置Solid-state imaging device and imaging device
 本開示は、固体撮像素子、及び撮像装置に関する。 The present disclosure relates to solid-state imaging devices and imaging devices.
 固体撮像素子により撮像された画像データに対する処理は、固体撮像素子の外部装置により行われるのが一般的である。畳み込み演算などの画像処理の基本演算が、撮像装置の固体撮像素子で行われると、外部の機器との連携がより高速となり、使用者の利便性が向上する。 Processing of image data captured by a solid-state image sensor is generally performed by an external device to the solid-state image sensor. If the basic operation of image processing such as convolution operation is performed by the solid-state imaging device of the imaging device, the speed of cooperation with external equipment will be increased, and the user's convenience will be improved.
特願2019-519793号公報Japanese Patent Application No. 2019-519793
 一方で、畳み込み演算などの演算処理を撮像装置の固体撮像素子で行わせようとすると、固体撮像素子が大型してしまう恐れがある。 On the other hand, if you try to use the solid-state imaging device of the imaging device to perform arithmetic processing such as convolution, there is a risk that the solid-state imaging device will become large.
 そこで、本開示では、固体撮像素子の大型化を抑制しつつ演算処理が可能な固体撮像素子、及び撮像装置を提供するものである。 Therefore, the present disclosure provides a solid-state imaging device and an imaging device that are capable of performing arithmetic processing while suppressing an increase in the size of the solid-state imaging device.
 上記の課題を解決するために、本開示によれば、複数の画素で構成される複数の画素領域と、
 前記画素領域それぞれに対応する複数の第1畜電部と、を備え、
 前記画素領域内の複数の画素は、
 光電変換部と、
 前記光電変換部に対応する畜電部と、
 前記光電変換部と、前記畜電部との間を導通状態又は非導通状態にする第1素子と、
 縦及び横の少なくとも一方に隣接する画素の前記畜電部と導通状態又は非導通状態にする第2素子と、を有し、
 前記複数の画素が有する第2素子の少なくともいずれかは前記第1畜電部に接続される、固体撮像素子が提供される。
In order to solve the above problems, according to the present disclosure, a plurality of pixel regions each composed of a plurality of pixels;
a plurality of first charge storage units corresponding to each of the pixel regions;
A plurality of pixels in the pixel region are
a photoelectric conversion unit;
a power storage unit corresponding to the photoelectric conversion unit;
a first element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and the electricity storage unit;
a second element that brings into a conducting state or a non-conducting state with the electricity storage portion of a pixel that is adjacent to at least one of the vertical direction and the horizontal direction;
A solid-state imaging device is provided in which at least one of the second elements of the plurality of pixels is connected to the first electricity storage unit.
 前記複数の画素は、表面照射型又は裏面照射型であってもよい。 The plurality of pixels may be of a front side illumination type or a back side illumination type.
 前記光電変換部の蓄積時間は、前記第1素子により、制御されてもよい。 The accumulation time of the photoelectric conversion unit may be controlled by the first element.
 前記画素は、
 前記光電変換部と、所定の電位線との間を導通状態又は非導通状態にする第3素子を更に有し、
 前記光電変換部の蓄積時間は、前記第3素子により、制御されてもよい。
The pixels are
further comprising a third element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and a predetermined potential line;
The accumulation time of the photoelectric conversion unit may be controlled by the third element.
 蓄積電荷を蓄積する第2蓄電部と、
 前記第1畜電部と前記第2蓄電部との間を導通状態又は非導通状態にする第4素子と、 を更に備えてもよい。
a second power storage unit that accumulates accumulated charges;
and a fourth element that establishes a conductive state or a non-conductive state between the first power storage unit and the second power storage unit.
 前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数が2xnHxnVであってもよい。 When the number of pixels in the pixel region is nHxnV, the number of the second elements in the pixel region may be 2xnHxnV.
 前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数がnHxnV+nH、又はnHxnV+nVであってもよい。 When the number of pixels in the pixel region is nHxnV, the number of the second elements in the pixel region may be nHxnV+nH or nHxnV+nV.
 前記画素領域内の光電変換素子と、前記第2素子とは、異なる層に構成されてもよい。 The photoelectric conversion element in the pixel region and the second element may be configured in different layers.
 前記光電変換部は、シリコン、インジウムガリウムヒ素、及びゲルマニウム有機の少なくともいずれかで構成されてもよい。 The photoelectric conversion unit may be made of at least one of silicon, indium gallium arsenide, and organic germanium.
 前記第1及び第2素子は、シリコン、酸化物半導体、及び有機半導体の少なくともいずれかで構成されてもよい。 The first and second elements may be composed of at least one of silicon, an oxide semiconductor, and an organic semiconductor.
 前記光電変換部の光電変換期間の終了後に、前記第1素子を導通状態にしてよい。 The first element may be brought into a conducting state after the photoelectric conversion period of the photoelectric conversion unit is finished.
 演算処理の重み値に応じて、前記光電変換部の光電変換期間が制御されてもよい。 The photoelectric conversion period of the photoelectric conversion unit may be controlled according to the weight value of the arithmetic processing.
 前記画素領域は、対応する前記第1畜電部に対して変更可能であってもよい。 The pixel area may be changeable with respect to the corresponding first power storage unit.
 演算処理の演算範囲に応じて、前記第1畜電部に対する前記画素領域の範囲が変更されてもよい。 The range of the pixel area with respect to the first power storage unit may be changed according to the calculation range of the calculation process.
 前記第1畜電部、前記畜電部及び前記第2蓄電部は、フローティングディフュージョン部であってもよい。 The first power storage unit, the power storage unit, and the second power storage unit may be floating diffusion units.
 前記第1畜電部に蓄積された電荷に応じた信号を電圧信号として増幅する増幅回路を、更に備えてもよい。 An amplifier circuit that amplifies a signal corresponding to the charge accumulated in the first electricity storage unit as a voltage signal may be further provided.
 前記増幅回路は,ソースフォロア回路を構成しており、前記電圧信号は、パルス幅変調の時間情報に基づき読み出されてもよい。 The amplifier circuit may constitute a source follower circuit, and the voltage signal may be read based on time information of pulse width modulation.
 前記第5素子に電気的に接続され、前記画素領域毎の光電変換による蓄積電荷に対応するデジタルデータに変換するアナログデジタル変換部を、
 更に備えてもよい。
an analog-to-digital converter that is electrically connected to the fifth element and that converts into digital data corresponding to accumulated electric charges by photoelectric conversion for each pixel region;
You may also prepare.
 上記の課題を解決するために、本開示によれば、
 固体撮像素子と、
 畳み込み演算を行うことが可能な演算処理部と、を備え、
 前記重み値、及び演算範囲に対応する前記画素領域の情報は前記演算処理部から供給される、撮撮像装置が提供される。
In order to solve the above problems, according to the present disclosure,
a solid-state imaging device;
and an arithmetic processing unit capable of performing a convolution operation,
An imaging apparatus is provided in which the information on the pixel region corresponding to the weight value and the calculation range is supplied from the arithmetic processing unit.
 前記演算処理部では、
 前記演算処理の正の重み値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後にアナログデジタル変換部により生成された第1デジタルデータと、
 前記演算処理の負の重み値の絶対値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後に前記アナログデジタル変換部により生成された第2デジタルデータと、の差分を演算してもよい。
In the arithmetic processing unit,
first digital data generated by an analog-to-digital converter after the photoelectric conversion period of the photoelectric converter is controlled according to the positive weight value of the arithmetic processing and transferred to the first electricity storage unit;
The photoelectric conversion period of the photoelectric conversion unit is controlled according to the absolute value of the negative weight value of the arithmetic processing, and the second digital signal generated by the analog-to-digital conversion unit after being transferred to the first storage unit You may calculate the difference of data and.
本技術の実施の形態における撮像装置の一構成例を示すブロック図。1 is a block diagram showing a configuration example of an imaging device according to an embodiment of the present technology; FIG. 固体撮像素子の積層構造の一例を示す図。The figure which shows an example of the laminated structure of a solid-state image sensor. 固体撮像素子の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a solid-state imaging device; 画素アレイ部に行列状に配置される画素を模式的に示す図。FIG. 4 is a diagram schematically showing pixels arranged in a matrix in a pixel array section; 読出部の一構成例を示す図。FIG. 4 is a diagram showing a configuration example of a reading unit; 画素アレイ部の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a pixel array section; 画素の構成を示す図。4A and 4B are diagrams showing configurations of pixels; FIG. 画素回路の構成例を示す回路図。FIG. 2 is a circuit diagram showing a configuration example of a pixel circuit; 図6で示した画素アレイ部の受光チップを背面側から見た平面図。FIG. 7 is a plan view of the light receiving chip of the pixel array section shown in FIG. 6 as seen from the back side; 図6で示した画素アレイ部の受光チップを背面側から見た別の構成例における平面図。FIG. 7 is a plan view of another configuration example of the light-receiving chip of the pixel array section shown in FIG. 6 as viewed from the back side; 画素アレイ部の要部の断面を模式的に示す図。FIG. 4 is a diagram schematically showing a cross section of a main part of a pixel array section; タイミングそれぞれの加算範囲と、対応するフローティングディフュージョンとを示す図。FIG. 4 is a diagram showing addition ranges for respective timings and corresponding floating diffusions; 図12と異なるタイミングそれぞれの加算範囲を示す図。FIG. 13 is a diagram showing addition ranges at timings different from those in FIG. 12; 図13と異なるタイミングそれぞれの加算範囲を示す図。FIG. 14 is a diagram showing addition ranges at timings different from those in FIG. 13 ; (1)式における3×3の重み値の一例を示す図。(1) The figure which shows an example of the weight value of 3x3 in Formula. 図12のタイミングt1における加算範囲A11の処理例を示すタイミングチャート。FIG. 13 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. 12; FIG. 図12のタイミングt1における加算範囲の別の処理例を示すタイミングチャート。FIG. 13 is a timing chart showing another processing example of the addition range at timing t1 in FIG. 12; FIG. 第1実施形態の変形例に係る画素回路AFDの構成例を示す回路図。FIG. 4 is a circuit diagram showing a configuration example of a pixel circuit AFD according to a modification of the first embodiment; 第2実施形態に係る画素回路の構成例を示す回路図。FIG. 4 is a circuit diagram showing a configuration example of a pixel circuit according to a second embodiment; 図19で示した画素アレイ部の平面図。FIG. 20 is a plan view of the pixel array portion shown in FIG. 19; 第3実施形態に係る画素アレイ部の構成例を示す図。FIG. 11 is a diagram showing a configuration example of a pixel array section according to the third embodiment; 図21で示した画素アレイ部の平面図。FIG. 22 is a plan view of the pixel array portion shown in FIG. 21; 第4実施形態に係る画素アレイ部の構成例を示す図FIG. 11 is a diagram showing a configuration example of a pixel array section according to the fourth embodiment; 第4実施形態に係る画素の構成例を示す図FIG. 12 is a diagram showing a configuration example of a pixel according to the fourth embodiment; 図23で示した画素アレイ部の受光チップを背面側から見た平面図。FIG. 24 is a plan view of the light-receiving chip of the pixel array section shown in FIG. 23 as viewed from the rear side; 加算範囲の第4実施形態に係る処理例を示すタイミングチャート。FIG. 11 is a timing chart showing an example of processing according to the fourth embodiment of the addition range; FIG. 第5実施形態に係る(1)式の重み値に対する処理例を模式的に示す図。The figure which shows typically the example of a process with respect to the weight value of (1) Formula which concerns on 5th Embodiment.
 以下、図面を参照して、固体撮像素子、及び撮像装置の実施形態について説明する。以下では、撮像センサ、及び撮像装置の主要な構成部分を中心に説明するが、固体撮像素子、及び撮像装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Hereinafter, embodiments of a solid-state imaging device and an imaging device will be described with reference to the drawings. Although the main components of the imaging sensor and the imaging device will be mainly described below, the solid-state imaging device and the imaging device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
(第1実施形態)
 図1は、本技術の実施の形態における撮像装置100の一構成例を示すブロック図である。この撮像装置100は、撮像レンズ110、固体撮像素子200、記録部120、制御部130、解析部140、通信部150、及びスピーカ部160を備える。撮像装置100は、例えば、スマートフォンや携帯電話、PC(Personal Computer)などである。
(First embodiment)
FIG. 1 is a block diagram showing a configuration example of an imaging device 100 according to an embodiment of the present technology. This imaging apparatus 100 includes an imaging lens 110 , a solid-state imaging device 200 , a recording section 120 , a control section 130 , an analysis section 140 , a communication section 150 and a speaker section 160 . The imaging device 100 is, for example, a smart phone, a mobile phone, a PC (Personal Computer), or the like.
 撮像レンズ110は、入射光を集光して固体撮像素子200に導くものである。固体撮像素子200は、複数の階調用画素を有する。階調用画素は、受光量に応じた輝度信号を出力する。また、固体撮像素子200は、例えば複数の階調用画素の輝度信号を重み付け加算が可能である。なお、以下では階調用画素を画素と称する場合がある。 The imaging lens 110 collects incident light and guides it to the solid-state imaging device 200 . The solid-state imaging device 200 has a plurality of gradation pixels. The gradation pixel outputs a luminance signal corresponding to the amount of received light. Further, the solid-state imaging device 200 is capable of weighted addition of luminance signals of a plurality of pixels for gradation, for example. In addition, below, the pixel for gradation may be called a pixel.
 固体撮像素子200は、重み付け加算などの所定の信号処理をアナログ信号の段階で実行可能であり、その処理後のデータを記録部120に信号線209を介して出力する。 The solid-state imaging device 200 can perform predetermined signal processing such as weighted addition at the analog signal stage, and outputs the processed data to the recording unit 120 via the signal line 209 .
 記録部120は、固体撮像素子200からのデータなどを記録するものである。制御部130は、撮像装置100全体を制御する。例えば、制御部130は、固体撮像素子200を制御して画像データを撮像させるものである。 The recording unit 120 records data from the solid-state imaging device 200 and the like. The control unit 130 controls the imaging device 100 as a whole. For example, the control unit 130 controls the solid-state imaging device 200 to capture image data.
 解析部140は、例えばニューラルネットを用いた認識処理を行うことが可能である。この解析部140は、演算処理部142を有する。演算処理部142は、固体撮像素子200で撮像される各画素のデータに対する例えば畳み込み演算などの演算処理を、アナログ信号の段階で固体撮像素子200に行なわせることが可能である。 The analysis unit 140 can perform recognition processing using, for example, a neural network. The analysis unit 140 has an arithmetic processing unit 142 . The arithmetic processing unit 142 can cause the solid-state imaging device 200 to perform arithmetic processing such as convolution on data of each pixel captured by the solid-state imaging device 200 in the analog signal stage.
 また、解析部140は、例えば演算処理部142の演算結果を用いて、所定の解析処理、画像処理などを行うことも可能である。例えば、上述のように演算処理部142で行う畳み込み演算などの演算処理が、アナログ信号の段階で固体撮像素子200により行われ、その後の演算処理が演算処理部142により行われる。 In addition, the analysis unit 140 can also perform predetermined analysis processing, image processing, etc., using the calculation result of the calculation processing unit 142, for example. For example, the arithmetic processing such as the convolution operation performed by the arithmetic processing unit 142 as described above is performed by the solid-state imaging device 200 at the stage of the analog signal, and the subsequent arithmetic processing is performed by the arithmetic processing unit 142 .
 通信部150は、外部装置と無線通信を行う。これにより、外部のサーバからコンテンツなどを受信し、制御部130を介して記録部120に記録する。制御部130は、例えばこのコンテンツに基づく画像を表示部170に表示させる。 The communication unit 150 performs wireless communication with an external device. Thereby, content or the like is received from an external server and recorded in the recording unit 120 via the control unit 130 . The control unit 130 causes the display unit 170 to display an image based on this content, for example.
 スピーカ部160は、高指向性のスピーカを備え、ユーザのみに音声情報を伝達可能である。このスピーカ部160は、音声の伝達する向きを変更可能である。 The speaker unit 160 has a highly directional speaker and can transmit audio information only to the user. The speaker unit 160 can change the direction in which sound is transmitted.
 図2は、本技術の実施の形態における固体撮像素子200の積層構造の一例を示す図である。この固体撮像素子200は、検出チップ202と、その検出チップ202に積層された受光チップ201とを備える。これらの基板は、ビアなどの接続部を介して電気的に接続される。なお、ビアの他、Cu-Cu接合やバンプにより接続することもできる。なお、検出チップ202内に図1で示す記録部120、制御部130、及び解析部140に対応する機能を構成してもよい。この場合、撮像装置100の撮像と撮像処理に関する構成が固体撮像素子200の積層構造内に構成される。また、受光チップ201と、検出チップ202と、を同一層に構成してもよい。 FIG. 2 is a diagram showing an example of the layered structure of the solid-state imaging device 200 according to the embodiment of the present technology. This solid-state imaging device 200 includes a detection chip 202 and a light receiving chip 201 stacked on the detection chip 202 . These substrates are electrically connected through connections such as vias. In addition to vias, Cu--Cu bonding or bumps may be used for connection. Note that functions corresponding to the recording unit 120, the control unit 130, and the analysis unit 140 shown in FIG. 1 may be configured in the detection chip 202. FIG. In this case, the configuration related to imaging and imaging processing of the imaging device 100 is configured within the layered structure of the solid-state imaging device 200 . Also, the light receiving chip 201 and the detection chip 202 may be configured in the same layer.
 図3は、固体撮像素子200の構成例を示すブロック図である。図3に示すように、本開示に係る固体撮像素子200は、画素アレイ部30と、蓄積制御回路210と、第1アクセス制御回路211aと、第2アクセス制御回路211bと、第3アクセス制御回路211cと、読出部212と、信号処理部213と、第2信号処理部214と、タイミング制御回路214と、出力インターフェース215とを有する。例えば、画素アレイ部30を受光チップ201内に構成し、蓄積制御回路210と、第1アクセス制御回路211aと、第2アクセス制御回路211bと、第3アクセス制御回路211cと、読出部212と、信号処理部213と、第2信号処理部214と、タイミング制御回路214と、出力インターフェース215とを検出チップ202内に構成してもよい。 FIG. 3 is a block diagram showing a configuration example of the solid-state imaging device 200. As shown in FIG. As shown in FIG. 3, the solid-state imaging device 200 according to the present disclosure includes a pixel array section 30, an accumulation control circuit 210, a first access control circuit 211a, a second access control circuit 211b, and a third access control circuit. 211 c , a reading unit 212 , a signal processing unit 213 , a second signal processing unit 214 , a timing control circuit 214 and an output interface 215 . For example, the pixel array unit 30 is configured in the light receiving chip 201, and includes an accumulation control circuit 210, a first access control circuit 211a, a second access control circuit 211b, a third access control circuit 211c, a reading unit 212, The signal processing section 213 , the second signal processing section 214 , the timing control circuit 214 and the output interface 215 may be configured within the detection chip 202 .
 ここで、図4に基づき、画素アレイ部30の構成を説明する。図4は、画素アレイ部30に行列状に配置される画素Pixを模式的に示す図である。図4に示すように、画素アレイ部30には、複数の画素Pixが行列状(アレイ状)に2次元配列されている。また、所定数の画素Pixに対応する処理領域Afdに対して一つのフローティングディフュージョンFDaが配置されている。本実施形態に係る画素アレイ部30では、画素Pix毎にフローティングディフュージョンFDを構成し、フローティングディフュージョンFD毎の蓄積電荷をフローティングディフュージョンFDaで積算する。なお、画素Pix、処理領域Afd、及びフローティングディフュージョンFDaの詳細は後述する。画素アレイ部30は、裏面側に光が照射される所謂裏面照射型のイメージセンサに、本技術を適用した構成である。もちろん、表面照射型のイメージセンサに本技術を適用してもよい。 Here, the configuration of the pixel array section 30 will be described based on FIG. FIG. 4 is a diagram schematically showing pixels Pix arranged in a matrix in the pixel array section 30. As shown in FIG. As shown in FIG. 4, in the pixel array section 30, a plurality of pixels Pix are two-dimensionally arranged in a matrix (array). Also, one floating diffusion FDa is arranged for a processing area Afd corresponding to a predetermined number of pixels Pix. In the pixel array section 30 according to the present embodiment, a floating diffusion FD is configured for each pixel Pix, and accumulated charges for each floating diffusion FD are integrated by the floating diffusion FDa. Details of the pixel Pix, the processing area Afd, and the floating diffusion FDa will be described later. The pixel array unit 30 has a configuration in which the present technology is applied to a so-called backside illumination type image sensor in which the back side is illuminated with light. Of course, the present technology may be applied to a front side illuminated image sensor.
 画素アレイ部30は、例えばCMOSイメージセンサである。例えば処理領域Afdは、図11乃至図13により後述するフローティングディフュージョンFDaの加算範囲に対応する。この画素アレイ部30の構成例は、例えば3×3の重み付けフィルタに適した例であるが、これに限定されない。 The pixel array section 30 is, for example, a CMOS image sensor. For example, the processing area Afd corresponds to the addition range of the floating diffusion FDa described later with reference to FIGS. 11 to 13. FIG. This configuration example of the pixel array unit 30 is an example suitable for, for example, a 3×3 weighting filter, but is not limited to this.
 再び図3に示すように、蓄積制御回路210は、画素Pixの光電変換部を制御する。すなわち、蓄積制御回路210は、複数の光電変換部それぞれの蓄積電荷のリセット、重み値に応じた蓄積電荷の生成などを制御可能である。この蓄積制御回路210は、制御部130(図1参照)を介して演算処理部142(図1参照)の重み値に応じた制御指令を実行する。なお、光電変換部の詳細も後述する。 As shown in FIG. 3 again, the accumulation control circuit 210 controls the photoelectric conversion units of the pixels Pix. That is, the accumulation control circuit 210 can control resetting of accumulated charges in each of the plurality of photoelectric conversion units, generation of accumulated charges according to weight values, and the like. The accumulation control circuit 210 executes a control command according to the weight value of the arithmetic processing section 142 (see FIG. 1) via the control section 130 (see FIG. 1). Details of the photoelectric conversion unit will also be described later.
 第1アクセス制御回路211aは、例えば信号線HSW1~3(図6参照)を介して、複数の画素PixのフローティングディフュージョンFDそれぞれの行方向の接続を制御することが可能である。第2アクセス制御回路211bは、例えば信号線VSW1~3(図6参照)を介して、複数の画素PixのフローティングディフュージョンFDそれぞれの列方向の接続を制御することが可能である。 The first access control circuit 211a can control the connection of the floating diffusions FD of the plurality of pixels Pix in the row direction, for example, via signal lines HSW1 to HSW3 (see FIG. 6). The second access control circuit 211b can control the connection of the floating diffusions FD of the plurality of pixels Pix in the column direction, for example, via signal lines VSW1 to VSW3 (see FIG. 6).
 第3アクセス制御回路211cは、第1アクセス制御回路211a及び第2アクセス制御回路211bと連動し、フローティングディフュージョンFD、FDaの蓄積電荷のリセット、フローティングディフュージョンFD、FDaの電荷蓄積、フローティングディフュージョンFD、FDaの蓄積電荷に応じた輝度信号の増幅を制御することが可能である。なお、蓄積制御回路210、第1アクセス制御回路211a、第2アクセス制御回路211b、及び第3アクセス制御回路211cの制御例の詳細も後述する。 The third access control circuit 211c cooperates with the first access control circuit 211a and the second access control circuit 211b, resets the accumulated charges of the floating diffusions FD and FDa, charges the floating diffusions FD and FDa, and stores the charges of the floating diffusions FD and FDa. It is possible to control the amplification of the luminance signal according to the accumulated charge of the . Details of control examples of the storage control circuit 210, the first access control circuit 211a, the second access control circuit 211b, and the third access control circuit 211c will also be described later.
 図5に基づき、読出部212の構成例を説明する。図5は、読出部212の一構成例を示す図である。読出部212は、複数の定電流源220と、複数のアナログデジタル(Analog to Digital)変換部ADC230と、を有している。複数の定電流源220および複数のAD変換部ADC230は、複数の信号線VSLに対応してそれぞれ設けられる。 A configuration example of the reading unit 212 will be described based on FIG. FIG. 5 is a diagram showing a configuration example of the reading unit 212. As shown in FIG. The reading unit 212 has a plurality of constant current sources 220 and a plurality of analog-to-digital conversion units ADC230. A plurality of constant current sources 220 and a plurality of AD converters ADC230 are provided corresponding to a plurality of signal lines VSL, respectively.
 定電流源220の一端は、対応する信号線VSLに接続され、他端は接地される。この定電流源21は、対応する信号線VSLに対して、選択されたフローティングディフュージョンFDa(図4参照)の蓄積電荷に応じた電流を画像輝度信号Sigとして生成する。 One end of the constant current source 220 is connected to the corresponding signal line VSL, and the other end is grounded. The constant current source 21 generates a current corresponding to the accumulated charge of the selected floating diffusion FDa (see FIG. 4) as the image luminance signal Sig for the corresponding signal line VSL.
 AD変換部ADC230は、対応する信号線VSLにおける信号Sigに基づいてAD変換を行うように構成される。すなわち、AD変換部ADC230は、垂直信号線VSLを介して供給されたアナログの階調用輝度信号Sigを時分割によりデジタル信号に変換する。このAD変換部ADC230は、生成したデジタル信号を信号処理部213に供給する。 The AD conversion unit ADC230 is configured to perform AD conversion based on the signal Sig on the corresponding signal line VSL. That is, the AD conversion unit ADC230 converts the analog gradation luminance signal Sig supplied via the vertical signal line VSL into a digital signal by time division. The AD converter ADC230 supplies the generated digital signal to the signal processor 213 .
 再び図3に示すように、信号処理部213は、読出部212からのデジタル信号に対し、所定の信号処理を実行するものである。この信号処理部213は、処理結果を示すデータと検出信号とを信号線209を介して記録部120に供給する。 As shown in FIG. 3 again, the signal processing section 213 performs predetermined signal processing on the digital signal from the reading section 212 . The signal processing unit 213 supplies the data indicating the processing result and the detection signal to the recording unit 120 via the signal line 209 .
 タイミング制御回路214は、タイムスタンプ情報に基づき固体撮像素子200の各構成のタイミングを制御する。例えば、タイミング制御回路212dは、蓄積制御回路210と、第1アクセス制御回路211aと、第2アクセス制御回路211bと、第3アクセス制御回路211cと、読出部212と、信号処理部213との処理タイミングを制御する。出力インターフェース215は、信号処理部213から供給されるデジタル信号である画像データなどを記録部120に出力する。 The timing control circuit 214 controls the timing of each component of the solid-state imaging device 200 based on the time stamp information. For example, the timing control circuit 212d performs the processes of the accumulation control circuit 210, the first access control circuit 211a, the second access control circuit 211b, the third access control circuit 211c, the reading unit 212, and the signal processing unit 213. Control timing. The output interface 215 outputs image data, which is a digital signal supplied from the signal processing unit 213 , to the recording unit 120 .
 ここで、図6乃至図10に基づき、画素アレイ部30の詳細な構成例を説明する。図6は、画素アレイ部30の構成例を示す図である。例えば、図4のFDaに対して左上の3×3の画素Pixの構成例である。図7は、画素Pixの構成例を示す図である。図7に示すように、画素Pixは、スイッチング素子TR1~TR3と光電変換部PDと、フローティングディフュージョンFDとを有する。光電変換部PDは、入射光に比例した電荷を生成する素子であり、例えばシリコン、インジウムガリウムヒ素、及びゲルマニウム有機の少なくともいずれかで構成される。スイッチング素子TR1~TR3は、例えばシリコン、酸化物半導体、及び有機半導体の少なくともいずれかで構成される。 Here, a detailed configuration example of the pixel array section 30 will be described with reference to FIGS. 6 to 10. FIG. FIG. 6 is a diagram showing a configuration example of the pixel array section 30. As shown in FIG. For example, it is a configuration example of 3×3 pixels Pix on the upper left with respect to FDa in FIG. FIG. 7 is a diagram showing a configuration example of a pixel Pix. As shown in FIG. 7, the pixel Pix has switching elements TR1 to TR3, a photoelectric converter PD, and a floating diffusion FD. The photoelectric conversion part PD is an element that generates charges proportional to incident light, and is made of at least one of silicon, indium gallium arsenide, and organic germanium, for example. The switching elements TR1 to TR3 are composed of, for example, at least one of silicon, an oxide semiconductor, and an organic semiconductor.
 図6に示すように、蓄積制御線TRG1~9は、各画素Pixと蓄積制御回路210(図3参照)との間を接続する。蓄積制御線TRG1~9には、蓄積制御回路210からパルス状の制御信号Trg1~9が供給される。 As shown in FIG. 6, the accumulation control lines TRG1-9 connect between each pixel Pix and the accumulation control circuit 210 (see FIG. 3). Pulsed control signals Trg1-Trg9 are supplied from the storage control circuit 210 to the storage control lines TRG1-TRG9.
 水平制御線HSW1~3は、各行の画素Pixと第1アクセス制御回路211a(図3参照)との間を接続する。水平制御線HSW1~3には、第1アクセス制御回路211a(図3参照)からパルス状の制御信号Hsw1~3が供給される。 The horizontal control lines HSW1-HSW3 connect between the pixels Pix in each row and the first access control circuit 211a (see FIG. 3). Pulsed control signals Hsw1-3 are supplied to the horizontal control lines HSW1-HSW3 from the first access control circuit 211a (see FIG. 3).
 垂直制御線VSW1~3は、各列の画素Pixと第2アクセス制御回路211b(図3参照)との間を接続する。垂直制御線VSW1~3には、第2アクセス制御回路211bからパルス状の制御信号Vsw1~3が供給される。 The vertical control lines VSW1-3 connect between the pixels Pix in each column and the second access control circuit 211b (see FIG. 3). Pulse-shaped control signals Vsw1-3 are supplied to the vertical control lines VSW1-3 from the second access control circuit 211b.
 制御線RSTL,RSEL(後述の図8参照)は、各画素回路AFDと第3アクセス制御回路211c(図3参照)との間を接続する。制御線RSTL,RSELには、第3アクセス制御回路211cからパルス状の制御信号Rst、Selが供給される。また、第3アクセス制御回路211cは、フローティングディフュージョンFD,FDaのリセット動作、蓄積動作などを、蓄積制御回路210、第1アクセス制御回路211a及び第2アクセス制御回路211bと連動して行うことが可能である。 The control lines RSTL and RSEL (see FIG. 8 described later) connect between each pixel circuit AFD and the third access control circuit 211c (see FIG. 3). The control lines RSTL and RSEL are supplied with pulse-shaped control signals Rst and Sel from the third access control circuit 211c. In addition, the third access control circuit 211c can perform the reset operation and accumulation operation of the floating diffusions FD and FDa in conjunction with the accumulation control circuit 210, the first access control circuit 211a and the second access control circuit 211b. is.
 図7に示すように、スイッチング素子TR1~T3は、例えばN型のMOS(Metal Oxide Semiconductor)トランジスタである。フローティングディフュージョンFDは、例えば、半導体基板の表面に形成された拡散層を用いて構成される。 As shown in FIG. 7, the switching elements TR1 to T3 are, for example, N-type MOS (Metal Oxide Semiconductor) transistors. The floating diffusion FD is configured using, for example, a diffusion layer formed on the surface of the semiconductor substrate.
 スイッチング素子TR1の一端は、左隣のフローティングディフュージョンFDと、左隣のスイッチング素子TR1の他端と、左隣のスイッチング素子TR2の一端と接続される。また、スイッチング素子TR1の他端は、フローティングディフュージョンFDと、右隣のスイッチング素子TR1の一端と、スイッチング素子TR2の一端と接続される。さらにまた、スイッチング素子TR1のゲートは、水平制御線HSWと接続される。これにより、スイッチング素子TR1は、水平制御線HSW1~3を介して供給される制御信号Hsw1~3がハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、本実施形態では、スイッチング素子の接続状態(オン)を導通状態と称し、非接続状態(オフ)を非導通状態と称する場合がある。 One end of the switching element TR1 is connected to the floating diffusion FD on the left, the other end of the switching element TR1 on the left, and one end of the switching element TR2 on the left. The other end of the switching element TR1 is connected to the floating diffusion FD, one end of the switching element TR1 on the right, and one end of the switching element TR2. Furthermore, the gate of the switching element TR1 is connected to the horizontal control line HSW. As a result, the switching element TR1 is in a connected state (on) when the control signals Hsw1-Hsw3 supplied via the horizontal control lines HSW1-3 are high, and is in a non-connected state (off) when the control signals Hsw1-3 are low. In this embodiment, the connected state (ON) of the switching element may be referred to as the conducting state, and the disconnected state (OFF) may be referred to as the non-conducting state.
 スイッチング素子TR2の一端は、上隣のスイッチング素子TR2の他端と、フローティングディフュージョンFDと、右隣のスイッチング素子TR1の一端と接続される。また、スイッチング素子TR2の他端は、下隣のスイッチング素子TR2の一端と接続される。さらにまた、スイッチング素子TR2のゲートは、垂直制御線VSWと接続される。これにより、スイッチング素子TR2は、水平制御線VSW1~3を介して供給される制御信号Vsw1~3がハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、スイッチング素子TR2は、垂直転送トランジスタと称する場合がある。 One end of the switching element TR2 is connected to the other end of the upper adjacent switching element TR2, the floating diffusion FD, and one end of the right adjacent switching element TR1. The other end of the switching element TR2 is connected to one end of the adjacent switching element TR2 on the lower side. Furthermore, the gate of the switching element TR2 is connected to the vertical control line VSW. As a result, the switching element TR2 is in a connected state (on) when the control signals Vsw1-3 supplied via the horizontal control lines VSW1-3 are high, and is in a non-connected state (off) when the control signals Vsw1-3 are low. Note that the switching element TR2 may be referred to as a vertical transfer transistor.
 スイッチング素子TR3の一端は、光電変換部PDの一端と接続され、他端は、フローティングディフュージョンFDと接続される。また、スイッチング素子TR3のゲートは、蓄積制御線TRGと接続される。これにより、スイッチング素子TR3は、蓄積制御線TRGを介して供給される制御信号Trgがハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、スイッチング素子TR3は、TRGトランジスタと称する場合がある。図6に示すように、加算範囲(フィルタ範囲)の画素の数をnHxnVとしたときに、加算範囲のスイッチング素子TR1及びTR2の数は2xnHxnVである。ここで、nHは、フィルタ範囲の行方向の画素の数を示し、nVは、フィルタ範囲の縦方向の画素の数を示す。 One end of the switching element TR3 is connected to one end of the photoelectric conversion unit PD, and the other end is connected to the floating diffusion FD. Also, the gate of the switching element TR3 is connected to the storage control line TRG. As a result, the switching element TR3 is in a connected state (on) when the control signal Trg supplied via the storage control line TRG is high, and is in a non-connected state (off) when it is low. Note that the switching element TR3 may be referred to as a TRG transistor. As shown in FIG. 6, when the number of pixels in the addition range (filter range) is nHxnV, the number of switching elements TR1 and TR2 in the addition range is 2xnHxnV. Here, nH indicates the number of pixels in the row direction of the filter range, and nV indicates the number of pixels in the vertical direction of the filter range.
 図8は、画素回路AFDの構成例を示す回路図である。画素回路AFDは、制御線RSTLと、制御線RSELとを有している。制御線RSTL、RSELは、上述のように、一端が第3アクセス制御回路211c(図3参照)に接続される。この制御線RSTLには、第3アクセス制御回路211cによりパルス状の制御信号Rstが供給される。同様に、制御線SELLには、第3アクセス制御回路211cによりパルス状の制御信号Selが供給される。 FIG. 8 is a circuit diagram showing a configuration example of the pixel circuit AFD. The pixel circuit AFD has a control line RSTL and a control line RSEL. One ends of the control lines RSTL and RSEL are connected to the third access control circuit 211c (see FIG. 3) as described above. A pulse-shaped control signal Rst is supplied to the control line RSTL by the third access control circuit 211c. Similarly, the control line SELL is supplied with a pulse-shaped control signal Sel by the third access control circuit 211c.
 画素回路AFDは、3個のスイッチング素子RST、AMP、SELと、フローティングディフュージョンFDaとを、有している。スイッチング素子RST、AMP、SELは、例えばN型のMOS(Metal Oxide Semiconductor)トランジスタである。フローティングディフュージョンFDaは、例えば、半導体基板の表面に形成された拡散層を用いて構成される。スイッチング素子ST、AMP、SELは、例えばシリコン、酸化物半導体、及び有機半導体の少なくともいずれかで構成される。 The pixel circuit AFD has three switching elements RST, AMP, SEL and a floating diffusion FDa. The switching elements RST, AMP, and SEL are, for example, N-type MOS (Metal Oxide Semiconductor) transistors. The floating diffusion FDa is configured using, for example, a diffusion layer formed on the surface of the semiconductor substrate. The switching elements ST, AMP, and SEL are made of, for example, at least one of silicon, an oxide semiconductor, and an organic semiconductor.
 スイッチング素子RSTの一端は、フローティングディフュージョンFDaに接続され、他端は電源VDDに接続される。また、スイッチング素子RSTのゲートは制御線RSTLに接続される。これにより、スイッチング素子RSTは、御線RSTLを介して供給される制御信号Rstがハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、スイッチング素子RSTは、リセットトランジスタと称する場合がある。 One end of the switching element RST is connected to the floating diffusion FDa, and the other end is connected to the power supply VDD. Also, the gate of the switching element RST is connected to the control line RSTL. As a result, the switching element RST is in a connected state (on) when the control signal Rst supplied via the control line RSTL is high, and is in a non-connected state (off) when it is low. Note that the switching element RST may be referred to as a reset transistor.
 スイッチング素子AMPの一端は電源VDDに接続され、他端はスイッチング素子SELの一端に接続される。また、スイッチング素子AMPのゲートはフローティングディフュージョンFDaに接続される。これにより、スイッチング素子AMPは、フローティングディフュージョンFDaの蓄積電荷に応じた電圧信号をスイッチング素子SELの一端に供給する。なお、スイッチング素子AMPは、増幅トランジスタと称する場合がある。 One end of the switching element AMP is connected to the power supply VDD, and the other end is connected to one end of the switching element SEL. Also, the gate of the switching element AMP is connected to the floating diffusion FDa. As a result, the switching element AMP supplies a voltage signal corresponding to the charge accumulated in the floating diffusion FDa to one end of the switching element SEL. Note that the switching element AMP may be referred to as an amplification transistor.
 スイッチング素子SELの一端は、スイッチング素子AMPの他端に接続され、他端は信号線VSLに接続される。また、スイッチング素子SELのゲートは制御線RSELに接続される。これにより、スイッチング素子SELは、御線RSELを介して供給される制御信号Rselがハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、スイッチング素子SELは、経路選択トランジスタと称する場合がある。 One end of the switching element SEL is connected to the other end of the switching element AMP, and the other end is connected to the signal line VSL. Also, the gate of the switching element SEL is connected to the control line RSEL. As a result, the switching element SEL is in a connected state (on) when the control signal Rsel supplied via the main line RSEL is high, and is in a non-connected state (off) when it is low. Note that the switching element SEL may be referred to as a route selection transistor.
 この構成により、例えば制御信号Rstに基づいてスイッチング素子RSTが導通状態になり、同様に、制御信号Hsw1~3、及び制御信号Vsw1~3に基づいてスイッチング素子TR1、TR2が導通状態になることにより、フローティングディフュージョンFDa、各画素のフローティングディフュージョンFDに蓄積された電荷が排出される。そして、制御信号Rstに基づいてスイッチング素子RSTが非導通状態になり、同様に、制御信号Hsw1~3、及び制御信号Vsw1~3に基づいてスイッチング素子TR1、TR2が非導通状態になる。 With this configuration, for example, the switching element RST is rendered conductive based on the control signal Rst, and similarly, the switching elements TR1 and TR2 are rendered conductive based on the control signals Hsw1-3 and the control signals Vsw1-3. , the floating diffusion FDa, and the floating diffusion FD of each pixel are discharged. Then, the switching element RST becomes non-conductive based on the control signal Rst, and similarly, the switching elements TR1 and TR2 become non-conductive based on the control signals Hsw1-3 and the control signals Vsw1-3.
 次に、各光電変換部PDの露光期間が終了した後に、制御信号Hsw1~3、及び制御信号Vsw1~3に基づいてスイッチング素子TR1、TR2が導通状態になることにより、フローティングディフュージョンFDaは、各光電変換部PDからフローティングディフュージョンFDを介して転送された電荷を蓄積する。 Next, after the exposure period of each photoelectric conversion unit PD ends, the switching elements TR1 and TR2 are brought into conduction based on the control signals Hsw1 to Hsw3 and the control signals Vsw1 to Vsw3. It accumulates charges transferred from the photoelectric conversion unit PD via the floating diffusion FD.
 次に、制御信号Selに基づいて、スイッチング素子SELが導通状態になることにより、画素回路AFDは、信号線VSLと電気的に接続される。これにより、スイッチング素子AMPは、読出部212の定電流源220(図5参照)に接続され、いわゆるソースフォロワとして動作する。その時のフローティングディフュージョンFDaの電圧に応じた電圧信号を、上述のように、画像輝度信号SigとしてADC230に出力する。このように、スイッチング素子AMPは、ソースフォロア回路を構成しており、電圧信号は、パルス幅変調(PWM :Pulse Width Modulator)の時間情報に基づき読み出される。 Next, the pixel circuit AFD is electrically connected to the signal line VSL by turning on the switching element SEL based on the control signal Sel. Thereby, the switching element AMP is connected to the constant current source 220 (see FIG. 5) of the reading section 212 and operates as a so-called source follower. A voltage signal corresponding to the voltage of the floating diffusion FDa at that time is output to the ADC 230 as the image luminance signal Sig as described above. Thus, the switching element AMP constitutes a source follower circuit, and the voltage signal is read based on the time information of pulse width modulation (PWM).
 図9は、図6で示した画素アレイ部30の受光チップ201を背面側から見た平面図である。図9に示すように、各画素Pixの光電変換部PDが2次元アレイ状に配置される。そして、光電変換部PDの廻りに、スイッチング素子TR1~TR3が配置される。そして、左上の3×3の画素Pixの図面(図6参照)の右下の画素Pixのスイッチング素子TR2の他端と、フローティングディフュージョンFDaとスイッチング素子AMPのゲートと、スイッチング素子RSTの一端とが接続される。このように、各画素のフローティングディフュージョンFDが最終的にフローティングディフュージョンFDaに蓄積され、画像輝度信号Sigとして読み出される。 FIG. 9 is a plan view of the light-receiving chip 201 of the pixel array section 30 shown in FIG. 6 as seen from the rear side. As shown in FIG. 9, the photoelectric conversion units PD of each pixel Pix are arranged in a two-dimensional array. Switching elements TR1 to TR3 are arranged around the photoelectric conversion part PD. The other end of the switching element TR2 of the lower right pixel Pix in the upper left 3×3 pixel Pix drawing (see FIG. 6), the floating diffusion FDa and the gate of the switching element AMP, and one end of the switching element RST are Connected. Thus, the floating diffusion FD of each pixel is finally accumulated in the floating diffusion FDa and read out as the image luminance signal Sig.
 図10は、図6で示した画素アレイ部30の受光チップ201を背面側から見た別の構成例における平面図である。図10では、3つの画素のフローティングディフュージョンFDの拡散層を共有化し、フローティングディフュージョンFDの数を図9の画素アレイ部30よりも抑制している。また、図10では、制御線TRG1~9、HSW1~3,VSW1~3の記載を省略しているが、図9と同様に各スイッチング素子のゲートには制御線が接続される。 FIG. 10 is a plan view of another configuration example when the light receiving chip 201 of the pixel array section 30 shown in FIG. 6 is viewed from the back side. In FIG. 10, the diffusion layer of the floating diffusion FD of three pixels is shared, and the number of floating diffusions FD is suppressed more than the pixel array section 30 of FIG. In FIG. 10, the control lines TRG1-9, HSW1-3, and VSW1-3 are omitted, but the control lines are connected to the gates of the switching elements in the same manner as in FIG.
 図11は、画素アレイ部30の要部の断面を模式的に示す図である。図11に示すように、受光チップ201(図2参照)が半導体層100Sに対応し、検出チップ202が半導体層100T,200T,200Sに対応する。図11では、半導体層100S、100Tを基板201aで示し、半導体層200T,200Sを基板201bで示している。基板201aと基板201bとは、例えば貫通電極120E,121Eにより電気的に接続されている。光電変換部PD、フローティングディフュージョンFD、VSSコンタクト領域118は、平面領域を有している。光電変換部PDは、例えばpウェル層115、及びn型半導体領域114で構成される。 FIG. 11 is a diagram schematically showing a cross section of a main part of the pixel array section 30. FIG. As shown in FIG. 11, a light receiving chip 201 (see FIG. 2) corresponds to the semiconductor layer 100S, and a detection chip 202 corresponds to the semiconductor layers 100T, 200T and 200S. In FIG. 11, the semiconductor layers 100S and 100T are indicated by the substrate 201a, and the semiconductor layers 200T and 200S are indicated by the substrate 201b. The substrates 201a and 201b are electrically connected by, for example, through electrodes 120E and 121E. The photoelectric conversion part PD, floating diffusion FD, and VSS contact region 118 have planar regions. The photoelectric conversion part PD is composed of, for example, a p-well layer 115 and an n-type semiconductor region 114 .
 スイッチング素子TR3は、平面型トランジスタにより構成されていてもよい。このとき、例えば、半導体層100Sの表面上に転送ゲートTGが設けられている。例えば、この転送ゲートTGの側面は、サイドウォールSWにより覆われている。サイドウォールSWは、例えば窒化シリコン(SiN)を含んでいる。半導体層100Sと転送ゲートTGとの間には、ゲート絶縁膜が設けられている。画素Pix各々の転送ゲートTGは、例えば、平面視でフローティングディフュージョンFDを囲むように設けられている。 The switching element TR3 may be composed of a planar transistor. At this time, for example, a transfer gate TG is provided on the surface of the semiconductor layer 100S. For example, the side surfaces of this transfer gate TG are covered with sidewalls SW. The sidewall SW contains silicon nitride (SiN), for example. A gate insulating film is provided between the semiconductor layer 100S and the transfer gate TG. The transfer gate TG of each pixel Pix is provided, for example, so as to surround the floating diffusion FD in plan view.
 半導体層100Sには、画素ix各々を互いに分離する画素分離部117が設けられている。画素分離部117は、半導体層100Sの法線方向(半導体層100Sの表面に対して垂直な方向)に延在して形成されている。画素分離部117は、画素Pixを互いに仕切るように設けられており、例えば格子状の平面形状を有している(図4参照)。画素分離部117は、例えば、画素Pixを互いに電気的および光学的に分離する。画素分離部117は、例えば、遮光膜117Aおよび絶縁膜117Bを含んでいる。遮光膜117Aには、例えば、タングステン(W)等が用いられる。絶縁膜117Bは、遮光膜117Aとpウェル層115またはn型半導体領域114との間に設けられている。絶縁膜117Bは、例えば、酸化シリコン(SiO)によって構成されている。画素分離部117は、例えば、FTI(Full Trench Isolation)構造を有しており、半導体層100Sを貫通している。図示しないが、画素分離部117は半導体層100Sを貫通するFTI構造に限定されない。例えば、半導体層100Sを貫通しないDTI(Deep Trench Isolation)構造であっても良い。画素分離部117は、半導体層100S の法線方向に延在して、半導体層100Sの一部の領域に形成される。 The semiconductor layer 100S is provided with a pixel separation section 117 that separates the pixels ix from each other. The pixel separation portion 117 is formed extending in the normal direction of the semiconductor layer 100S (the direction perpendicular to the surface of the semiconductor layer 100S). The pixel separation section 117 is provided so as to separate the pixels Pix from each other, and has, for example, a grid-like planar shape (see FIG. 4). The pixel separation unit 117 electrically and optically separates the pixels Pix from each other, for example. The pixel separation section 117 includes, for example, a light shielding film 117A and an insulating film 117B. For example, tungsten (W) or the like is used for the light shielding film 117A. The insulating film 117B is provided between the light shielding film 117A and the p-well layer 115 or the n-type semiconductor region 114. As shown in FIG. The insulating film 117B is made of, for example, silicon oxide (SiO). The pixel separation section 117 has, for example, an FTI (Full Trench Isolation) structure and penetrates the semiconductor layer 100S. Although not shown, the pixel separation section 117 is not limited to the FTI structure penetrating the semiconductor layer 100S. For example, a DTI (Deep Trench Isolation) structure that does not penetrate the semiconductor layer 100S may be used. The pixel separation portion 117 extends in the normal direction of the semiconductor layer 100S and is formed in a partial region of the semiconductor layer 100S.
 半導体層100Sには、例えば、ピニング領域116が設けられている。ピニング領域116は、画素分離部117の側面、具体的には、画素分離部117とpウェル層115またはn型半導体領域114との間に設けられている。ピニング領域116は、例えば、p型半導体領域により構成されている。 For example, a pinning region 116 is provided in the semiconductor layer 100S. The pinning region 116 is provided on the side surface of the pixel isolation portion 117 , specifically between the pixel isolation portion 117 and the p-well layer 115 or the n-type semiconductor region 114 . The pinning region 116 is composed of, for example, a p-type semiconductor region.
 次に、図12乃至図15に基づいて、より詳細に動作例を説明する。図12乃至図14は、重み付け演算の演算処理の範囲を例示する図である。図12は、タイミングt1~t3それぞれの加算範囲A11~A22と、対応するフローティングディフュージョンFD11~FD22とを示す図である。同様に、図13は、タイミングt4~t6それぞれの加算範囲を示し、図14は、タイミングt7~t9それぞれの加算範囲を示す図である。なお、図12乃至図15において、加算範囲A11~A22と、対応するフローティングディフュージョンFDa11~FDa22とは、画素アレイ部30の任意の領域を相対的に示している。 Next, operation examples will be described in more detail based on FIGS. 12 to 15. FIG. 12 to 14 are diagrams exemplifying the range of calculation processing of weighting calculation. FIG. 12 is a diagram showing addition ranges A11 to A22 at timings t1 to t3 and corresponding floating diffusions FD11 to FD22. Similarly, FIG. 13 shows the range of addition at timings t4 to t6, and FIG. 14 shows the range of addition at timings t7 to t9. 12 to 15, the addition ranges A11 to A22 and the corresponding floating diffusions FDa11 to FDa22 relatively indicate arbitrary regions of the pixel array section 30. FIG.
 フローティングディフュージョンFDa11の加算範囲が加算範囲A11であり、フローティングディフュージョンFDa12の加算範囲が加算範囲A12であり、フローティングディフュージョンFDa21の加算範囲が加算範囲A21であり、フローティングディフュージョンFDa22の加算範囲が加算範囲A22である。他のフローティングディフュージョンFDanも同様に加算範囲Anを有する。つまり、3×3の加算範囲A11~A22では、(1)式に示すように、加算範囲が重複するので、タイミングt1~t9の9回の加算処理を撮像素子200内で行うこととなる。すなわち、タイミングt1~t9の9回の撮像が行われる。 The addition range of the floating diffusion FDa11 is the addition range A11, the addition range of the floating diffusion FDa12 is the addition range A12, the addition range of the floating diffusion FDa21 is the addition range A21, and the addition range of the floating diffusion FDa22 is the addition range A22. be. Other floating diffusions FDan similarly have addition ranges An. In other words, in the 3×3 addition ranges A11 to A22, as shown in equation (1), the addition ranges overlap, so nine times of addition processing at timings t1 to t9 are performed within the imaging element 200. FIG. That is, nine images are captured at timings t1 to t9.
 図15は、(1)式における3×3の重み値wijの一例を示す図である。例えば(1)式は演算処理部142(図1参照)の処理で用いられる加算処理の一例である。演算処理部142は、例えば(1)式の重み値wijの情報を、制御部130を介して蓄積制御回路210(図3参照)に供給する。なお、本実施形態では、重み値wijをフィルタ値、加算範囲をフィルタと称する場合がある。 FIG. 15 is a diagram showing an example of 3×3 weight values w ij in equation (1). For example, equation (1) is an example of addition processing used in the processing of the arithmetic processing unit 142 (see FIG. 1). The arithmetic processing unit 142 supplies, for example, the weight value wij information of the equation (1) to the accumulation control circuit 210 (see FIG. 3) via the control unit 130 . In this embodiment, the weight value wij may be referred to as a filter value, and the addition range may be referred to as a filter.
Figure JPOXMLDOC01-appb-M000001
すなわち、重み付け演算では(1)式に示すように、画像輝度信号Sigijは重み値wijで輝度値pijを加算処理することにより演算される。ここで、i、jは画素アレイの画素Pixの位置を示す。すなわちiは画素アレイ部30における水平方向の位置を示し、jは垂直方向の位置を示す。また、n、mは所定の自然数であり、加算範囲に対応する。例えば3×3の加算範囲であれば、n=m=1である。輝度値pijは、位置i、jの画素範囲Pixの光電変換部PDに蓄積される電荷に対応する。この場合、輝度値pijは、画像輝度信号Sigij(i-n≦i≦i+n、 j-m≦j≦j+m)の加算処理時に異なる重み値wijで加算される。例えばn=m=1である場合、輝度値pijは、9回異なる重み値wijで加算処理される。これらから分かるように、図12乃至図14の加算範囲A11は、例えば(1)式の輝度値pijが加算処理に含まれる加算範囲の例を示している。
Figure JPOXMLDOC01-appb-M000001
That is, in the weighting operation, as shown in equation (1), the image luminance signal Sigij is calculated by adding the weight value wij to the luminance value pij . where i, j indicate the position of the pixel Pix in the pixel array. That is, i indicates the position in the horizontal direction in the pixel array section 30, and j indicates the position in the vertical direction. Also, n and m are predetermined natural numbers and correspond to the range of addition. For example, n=m=1 for a 3×3 addition range. The luminance value p ij corresponds to the charge accumulated in the photoelectric conversion unit PD in the pixel range Pix at positions i and j. In this case, the brightness values p ij are added with different weight values w ij during addition processing of image brightness signals Sigij (i−n≦i≦i+n, j−m≦j≦j+m). For example, when n=m=1, the luminance value pij is added nine times with different weight values wij . As can be seen from these, the addition range A11 in FIGS. 12 to 14 shows an example of the addition range in which the brightness value p ij of the equation (1) is included in the addition process.
 タイミングt1では、加算範囲A11の3×3のフローティングディフュージョンFDに蓄積された電荷に比例する電荷は、最終的にはフローティングディフュージョンFDa11に蓄積される。同様に、加算範囲A12の3×3のフローティングディフュージョンFDに蓄積された電荷に比例する電荷は、最終的にはフローティングディフュージョンFDa12に蓄積される。同様に、加算範囲A21の3×3のフローティングディフュージョンFDに蓄積された電荷に比例する電荷は、最終的にはフローティングディフュージョンFDa11に蓄積される。同様に、加算範囲A22の3×3のフローティングディフュージョンFDに蓄積された電荷に比例する電荷は、最終的にはフローティングディフュージョンFDa22に蓄積される。 At timing t1, the charge proportional to the charge accumulated in the 3×3 floating diffusion FD in the addition range A11 is finally accumulated in the floating diffusion FDa11. Similarly, the charge proportional to the charge accumulated in the 3×3 floating diffusion FD in the addition range A12 is finally accumulated in the floating diffusion FDa12. Similarly, the charge proportional to the charge accumulated in the 3×3 floating diffusion FD in the addition range A21 is finally accumulated in the floating diffusion FDa11. Similarly, the charge proportional to the charge accumulated in the 3×3 floating diffusion FD in the addition range A22 is finally accumulated in the floating diffusion FDa22.
 次に、タイミングt2では、加算範囲A11~A22は、右に一画素範囲分ずれ、タイミングt3では、更に加算範囲A11~A22は、右に一画素範囲分ずれる。図13に示すように、次に、タイミングt4では、加算範囲A11~A22は、タイミングt1の位置から下に一画素範囲分ずれ、タイミングt5では、更に加算範囲A11~A22は、右に一画素範囲分ずれ、タイミングt6では、更に加算範囲A11~A22は、右に一画素範囲分ずれる。図14に示すように、次に、タイミングt5では、加算範囲A11~A22は、タイミングt4の一から下に一画素範囲分ずれ、タイミングt5では、更に加算範囲A11~A22は、右に一画素範囲分ずれ、タイミングt6では、更に加算範囲A11~A22は、右に一画素範囲分ずれる。このように、例えば(1)式で示す重み付け演算の演算処理では、加算範囲A11~A22を9回、変更しながら加算処理が行われる。 Next, at timing t2, the addition range A11 to A22 shifts to the right by one pixel range, and at timing t3, the addition range A11 to A22 further shifts to the right by one pixel range. As shown in FIG. 13, at timing t4, the addition range A11 to A22 shifts downward by one pixel range from the position at timing t1, and at timing t5, the addition range A11 to A22 further shifts to the right by one pixel. At timing t6, the addition range A11 to A22 is further shifted to the right by one pixel range. As shown in FIG. 14, next, at timing t5, the addition range A11 to A22 shifts downward by one pixel range from timing t4, and at timing t5, the addition range A11 to A22 shifts one pixel to the right. At timing t6, the addition range A11 to A22 is further shifted to the right by one pixel range. In this manner, in the calculation process of the weighting calculation shown in, for example, formula (1), the addition process is performed while changing the addition range A11 to A22 nine times.
 より具体的には、蓄積制御回路210(図3参照)は、重み値wijに比例する時間情報を有する信号Trg1~TrgH*Vを各画素Pixに供給する。そして、各画素Pixの光電変換部PDは、信号Trg1~TrgH*Vに基づき、重み値wijに比例する時間の間、光電変換を行い、電荷を蓄積する。すなわち、本実施形態では、重み値wijに比例する時間の間、光電変換を行うことにより重み値wijに相当する演算を行うものである。そして、最終的にフローティングディフュージョンFDaに画素Pix毎の蓄積電荷を転送する。 More specifically, the accumulation control circuit 210 (see FIG. 3) supplies each pixel Pix with signals Trg1 to TrgH*V having time information proportional to the weight value wij . Then, the photoelectric conversion unit PD of each pixel Pix performs photoelectric conversion based on the signals Trg1 to TrgH*V for a period of time proportional to the weight value wij to accumulate charges. That is, in the present embodiment, a calculation corresponding to the weight value wij is performed by performing photoelectric conversion for a time proportional to the weight value wij . Then, the accumulated charge for each pixel Pix is finally transferred to the floating diffusion FDa.
 図16は、図12のタイミングt1における加算範囲A11の処理例を示すタイミングチャートである。図6乃至8を参照しつつ、図16に基づき、加算範囲A11の処理例を説明する。 FIG. 16 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. A processing example of the addition range A11 will be described based on FIG. 16 while referring to FIGS.
 図16に示すように、縦軸は、Trg1~9、Rst,Rselを上から順に示す。横軸は時間を示す。信号Rstのハイレベル信号により、画素回路AFDのスイッチング素子RSTが導通状態となり、且つ制御信号Hsw1~3、及び制御信号Vsw1~3に基づいて各スイッチング素子TR1、TR2が導通状態になる。なお、図12乃至図14に示すように、タイミングt1からt9に応じてフローティングディフュージョンFDaに接続される各スイッチング素子TR1、TR2の範囲は領域A11に応じて変更される。 As shown in FIG. 16, the vertical axis indicates Trg1-9, Rst, and Rsel in order from the top. The horizontal axis indicates time. The switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3. As shown in FIGS. 12 to 14, the ranges of the switching elements TR1 and TR2 connected to the floating diffusion FDa are changed according to the area A11 from timings t1 to t9.
 これにより、制御信号Trg1~9がハイレベル信号になると、各スイッチング素子TR3が導通状態となり、各光電変換部PDと各フローティングディフュージョンFD内の電荷と、フローティングディフュージョンFDa内の電荷とが電源VDDに排出され、初期化される。そして、制御信号Trg1~9がハイレベル信号からロウレベル信号に遷移すると、各光電変換部PDは、重み値wijに比例する蓄積時間の間、受光量に応じた電荷を蓄積する。 As a result, when the control signals Trg1 to Trg9 become high level signals, each switching element TR3 becomes conductive, and the charges in each photoelectric conversion unit PD and each floating diffusion FD and the charges in the floating diffusion FDa are supplied to the power supply VDD. Ejected and initialized. Then, when the control signals Trg1 to Trg9 transition from high level signals to low level signals, each photoelectric conversion unit PD accumulates electric charge according to the amount of received light for an accumulation time proportional to the weight value wij .
 信号Rstがロウレベル信号になり、スイッチング素子RSTが導通状態となった後に、再び信号Rstがハイレベル信号となる。これにより、各フローティングディフュージョンFD内の電荷と、フローティングディフュージョンFDa内の電荷とが電源VDDに排出され再び初期化される。続けて、再び信号Rstがロウレベル信号となり、制御信号Trg1~9がハイレベル信号になると、各光電変換部PD内の電荷が各フローティングディフュージョンFD内に転送され、更にフローティングディフュージョンFDa内に転送される。すなわち、(1)式の加算処理と同等の処理結果に対応する電荷がフローティングディフュージョンFDa内に転送される。そして、信号Rselがハイレベル信号になるとスイッチング素子SELが導通状態となり、フローティングディフュージョンFDa内の蓄積電荷に比例した信号SigがVSL線を介して読出部212(図5参照)の変換部ADC230に出力される。 After the signal Rst becomes a low level signal and the switching element RST becomes conductive, the signal Rst becomes a high level signal again. As a result, the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized again. Subsequently, when the signal Rst becomes a low level signal again and the control signals Trg1 to Trg9 become a high level signal, the charges in each photoelectric conversion unit PD are transferred to each floating diffusion FD, and further transferred to the floating diffusion FDa. . That is, the charge corresponding to the processing result equivalent to the addition processing of formula (1) is transferred into the floating diffusion FDa. Then, when the signal Rsel becomes a high level signal, the switching element SEL becomes conductive, and the signal Sig proportional to the charge accumulated in the floating diffusion FDa is output to the conversion unit ADC 230 of the reading unit 212 (see FIG. 5) via the VSL line. be done.
 なお、他の加算範囲A12~Anにおいても同様の駆動が同時に行われ、各フローティングディフュージョンFDaには、加算範囲A12~Anに対応する電荷が蓄積される。そして、同一のVSl線に接続されるフローティングディフュージョンFDaの各電荷は、上述したように、順に増幅処理が行われ、デジタルの輝度信号に時分割で変換される。 The other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
 図17は、図12のタイミングt1における加算範囲A11の別の処理例を示すタイミングチャートである。図6乃至8を参照しつつ、図16に基づき、加算範囲A11の処理例を説明する。図16に示す処理例では、各光電変換部PDの受光時間の終了時点を揃えていたのに対し、図17に示す処理例では、各光電変換部PDの受光時間の開始時点を揃える点で相違する。 FIG. 17 is a timing chart showing another processing example of the addition range A11 at timing t1 in FIG. A processing example of the addition range A11 will be described based on FIG. 16 while referring to FIGS. In the processing example shown in FIG. 16, the end points of the light receiving times of the photoelectric conversion units PD are aligned, whereas in the processing example shown in FIG. differ.
 図17に示すように、縦軸は、Trg1~9、Rst,Rselを上から順に示す。横軸は時間を示す。信号Rstのハイレベル信号により、画素回路AFDのスイッチング素子RSTが導通状態となり、且つ制御信号Hsw1~3、及び制御信号Vsw1~3に基づいてスイッチング素子TR1、TR2が導通状態になる。これにより、制御信号Trg1~9がハイレベル信号になると各光電変換部PDと、各フローティングディフュージョンFD内の電荷と、フローティングディフュージョンFDa内の電荷とが電源VDDに排出され、初期化される。そして、制御信号Trg1~9がハイレベル信号からロウレベル信号に遷移すると、各光電変換部PDは、重み値wijに比例する蓄積時間の間、受光量に応じた電荷を蓄積する。 As shown in FIG. 17, the vertical axis indicates Trg1-9, Rst, and Rsel in order from the top. The horizontal axis indicates time. The switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3. Thus, when the control signals Trg1 to Trg9 become high level signals, the charges in each photoelectric conversion unit PD, each floating diffusion FD, and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized. Then, when the control signals Trg1 to Trg9 transition from high level signals to low level signals, each photoelectric conversion unit PD accumulates electric charge according to the amount of received light for an accumulation time proportional to the weight value wij .
 信号Rstがロウレベル信号になり、スイッチング素子RSTが導通状態となり、再び信号Rstがハイレベル信号となり、各フローティングディフュージョンFD内の電荷と、フローティングディフュージョンFDa内の電荷とが電源VDDに排出され再び初期化される。続けて、再び信号Rstがロウレベル信号となり、制御信号Trg1~9が重み値wijに比例する蓄積時間に応じてハイレベル信号になると、各光電変換部PD内の重み値wijに比例する時間の蓄積電荷が各フローティングディフュージョンFD内に転送され、更にフローティングディフュージョンFDa内に転送される。すなわち、(1)式の加算処理と同等の処理結果に対応する電荷がフローティングディフュージョンFDa内に転送される。そして、信号Rselがハイレベル信号になるとスイッチング素子SELが導通状態となり、フローティングディフュージョンFDa内の蓄積電荷に比例した信号SigがVSL線を介して読出部212(図5参照)の変換部ADC230に出力される。 The signal Rst becomes a low level signal, the switching element RST becomes conductive, the signal Rst becomes a high level signal again, and the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized again. be done. Subsequently, the signal Rst becomes a low level signal again, and when the control signals Trg1 to Trg9 become high level signals according to the accumulation time proportional to the weight value wij , the time proportional to the weight value wij in each photoelectric conversion unit PD is reached. is transferred into each floating diffusion FD and further transferred into the floating diffusion FDa. That is, the charge corresponding to the processing result equivalent to the addition processing of formula (1) is transferred into the floating diffusion FDa. Then, when the signal Rsel becomes a high level signal, the switching element SEL becomes conductive, and the signal Sig proportional to the charge accumulated in the floating diffusion FDa is output to the conversion unit ADC 230 of the reading unit 212 (see FIG. 5) via the VSL line. be done.
 なお、他の加算範囲A12~Anにおいても同様の駆動が同時に行われ、各フローティングディフュージョンFDaには、加算範囲A12~Anに対応する電荷が蓄積される。そして、同一のVSl線に接続されるフローティングディフュージョンFDaの各電荷は、上述したように、順に増幅処理が行われ、デジタルの輝度信号に時分割で変換される。 The other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
 以上説明したように、本実施形態によれば、繰り返し加算処理の一例である重み付け演算(例えば(1)式)の重み値wijに比例する時間により、各画素Pixの光電変換部PDは、光電変換を行い、電荷を蓄積することとした。これにより、各画素Pixの蓄積電荷を加算するので、アナログ信号により重み付け演算(例えば(1)式)を行うことが可能となる。 As described above, according to the present embodiment, the photoelectric conversion unit PD of each pixel Pix can A charge is accumulated by photoelectric conversion. As a result, since the charges accumulated in each pixel Pix are added, it is possible to perform a weighting operation (for example, equation (1)) using an analog signal.
 また、各画素PixのフローティングディフュージョンFDに蓄積された電荷をフローティングディフュージョンFDaに転送できるので、加算範囲A11に対応するフローティングディフュージョンFDaを1つしか設けずに、加算範囲A11の位置を変更することが可能となる。これにより、輝度値pijが画像輝度信号Sigij(i-n≦i≦i+n、 j-m≦j≦j+m)の加算処理時に異なる重み値wijで加算される場合にも、フローティングディフュージョンFDaの数を増加させずに対応可能となる。これにより、演算素子200の大型化を抑制できる。 In addition, since the charge accumulated in the floating diffusion FD of each pixel Pix can be transferred to the floating diffusion FDa, it is possible to change the position of the addition range A11 without providing only one floating diffusion FDa corresponding to the addition range A11. It becomes possible. As a result, even when the luminance value p ij is added with a different weight value w ij during addition processing of the image luminance signal Sigij (i−n≦i≦i+n, j−m≦j≦j+m), the floating diffusion FDa It becomes possible to cope without increasing the number. As a result, an increase in the size of the arithmetic element 200 can be suppressed.
 (第1実施形態の変形例1)
 第1実施形態の変形例1に係る撮像装置100は、画素回路AFDが更にフローティングディフュージョンFDbを備え、画素回路AFDのローティングディフュージョンの容量を切り変えられることで、第1実施形態に係る撮像装置100と相違する。以下では、第1実施形態に係る撮像装置100と相違する点を説明する。
(Modification 1 of the first embodiment)
In the imaging device 100 according to Modification Example 1 of the first embodiment, the pixel circuit AFD further includes a floating diffusion FDb, and the capacitance of the floating diffusion of the pixel circuit AFD can be switched. Differs from 100. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
 図18は、第1実施形態の変形例に係る画素回路AFDの構成例を示す回路図である。画素回路AFDは、フローティングディフュージョンFDbと、制御線FGLと、スイッチング素子FGとを、更に有している。制御線FGLは、一端が第3アクセス制御回路211c(図3参照)に接続される。この制御線FGLには、第3アクセス制御回路211cにより制御信号Fgが供給される。スイッチング素子FGは、例えばN型のMOS(Metal Oxide Semiconductor)トランジスタである。 FIG. 18 is a circuit diagram showing a configuration example of a pixel circuit AFD according to a modification of the first embodiment. The pixel circuit AFD further has a floating diffusion FDb, a control line FGL, and a switching element FG. One end of the control line FGL is connected to the third access control circuit 211c (see FIG. 3). A control signal Fg is supplied to the control line FGL by the third access control circuit 211c. The switching element FG is, for example, an N-type MOS (Metal Oxide Semiconductor) transistor.
 スイッチング素子RSTの一端は、フローティングディフュージョンFDbに接続され、他端は電源VDDに接続される。また、スイッチング素子FGの一端はフローティングディフュージョンFDaに接続され、他端はフローティングディフュージョンFDbに接続される。また、スイッチング素子FGのゲートは制御線FGLに接続される。 One end of the switching element RST is connected to the floating diffusion FDb, and the other end is connected to the power supply VDD. One end of the switching element FG is connected to the floating diffusion FDa, and the other end is connected to the floating diffusion FDb. Also, the gate of the switching element FG is connected to the control line FGL.
 この構成により、スイッチング素子FGを導通状態とすることにより、フローティングディフュージョンFDaとフローティングディフュージョンFDbとが並列接続され、容量を増加可能となる。このため、撮像素子200の撮像光量に応じて、フローティングディフュージョンFDaを用いる場合と、フローティングディフュージョンFDaとフローティングディフュージョンFDbとを用いる場合とを切り変えることが可能となる。 With this configuration, by making the switching element FG conductive, the floating diffusion FDa and the floating diffusion FDb are connected in parallel, making it possible to increase the capacitance. Therefore, it is possible to switch between using the floating diffusion FDa and using the floating diffusion FDa and the floating diffusion FDb according to the imaging light amount of the imaging device 200 .
 フローティングディフュージョンFDaとフローティングディフュージョンFDbを用いる場合には、制御信号Fg、Rstに基づいて、スイッチング素子FGとスイッチング素子RSTを導通状態にする。これにより、フローティングディフュージョンFDとフローティングディフュージョンFD2とに蓄積された電荷が排出される。次に、制御信号Rstに基づいて、スイッチング素子RSTを非導通状態にする。これにより、露光期間Tが終了した後に、制御信号Trgに基づいて、各スイッチング素子TR3が導通状態になることにより、フローティングディフュージョンFDaとフローティングディフュージョンFDbとは、各光電変換部PDのからスイッチング素子TR3及びフローティングディフュージョンFDを介して転送された電荷を蓄積する。 When using the floating diffusion FDa and the floating diffusion FDb, the switching element FG and the switching element RST are brought into conduction based on the control signals Fg and Rst. Thereby, the charges accumulated in the floating diffusion FD and the floating diffusion FD2 are discharged. Next, based on the control signal Rst, the switching element RST is turned off. As a result, after the exposure period T ends, each switching element TR3 becomes conductive based on the control signal Trg. and store charges transferred via the floating diffusion FD.
 次に、制御信号Selに基づいて、スイッチング素子SELが導通状態になることにより、画素回路AFDは、信号線VSLと電気的に接続される。これにより、スイッチング素子AMPは、読出部212の定電流源220(図5参照)に接続され、いわゆるソースフォロワとして動作する。その時のフローティングディフュージョンFDaとフローティングディフュージョンFDbの電圧に応じた電圧を、上述のように、画像輝度信号SigとしてADC230に出力する。 Next, the pixel circuit AFD is electrically connected to the signal line VSL by turning on the switching element SEL based on the control signal Sel. Thereby, the switching element AMP is connected to the constant current source 220 (see FIG. 5) of the reading section 212 and operates as a so-called source follower. A voltage corresponding to the voltages of the floating diffusion FDa and the floating diffusion FDb at that time is output to the ADC 230 as the image luminance signal Sig as described above.
 フローティングディフュージョンFDaのみを用いる場合には、制御信号Fg、Rstに基づいて、スイッチング素子FGとスイッチング素子RSTを導通状態にする。これにより、フローティングディフュージョンFDaとフローティングディフュージョンFDbとに蓄積された電荷が排出される。次に、制御信号Fgtに基づいて、スイッチング素子FGを非導通状態にする。これにより、露光期間Tが終了した後に、制御信号Trgに基づいて、制御信号Trgに基づいて、各スイッチング素子TR3が導通状態になることにより、フローティングディフュージョンFDaは、各光電変換部PDのからスイッチング素子TR3及びフローティングディフュージョンFDを介して転送された電荷を蓄積する。後は、上述と同等の処理が行われる。 When only the floating diffusion FDa is used, the switching element FG and the switching element RST are brought into conduction based on the control signals Fg and Rst. Thereby, the charges accumulated in the floating diffusion FDa and the floating diffusion FDb are discharged. Next, the switching element FG is turned off based on the control signal Fgt. As a result, after the exposure period T is completed, each switching element TR3 is turned on based on the control signal Trg, and the floating diffusion FDa is switched from each photoelectric conversion unit PD. Accumulates the charges transferred via the element TR3 and the floating diffusion FD. After that, the same processing as described above is performed.
 以上説明したように、第1実施形態の変形例に係る撮像装置100は、画素回路AFDが更にフローティングディフュージョンFDbを備えこととした。これにより固体撮像素子200の受光光量に応じて、フローティングディフュージョンの容量を切り変えられることが可能となり、撮像感度と蓄積電荷容量の調整が可能となる。 As described above, in the imaging device 100 according to the modified example of the first embodiment, the pixel circuit AFD further includes the floating diffusion FDb. This makes it possible to switch the capacitance of the floating diffusion in accordance with the amount of light received by the solid-state imaging device 200, and to adjust the imaging sensitivity and the storage charge capacity.
 (第2実施形態)
 第2実施形態に係る撮像装置100は、画素アレイ部30のAfd領域(図4参照)内のスイッチング素子TR1の数を1行分に減らした点で第1実施形態に係る撮像装置100と相違する。以下では、第1実施形態に係る撮像装置100と相違する点を説明する。
(Second embodiment)
The imaging device 100 according to the second embodiment differs from the imaging device 100 according to the first embodiment in that the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 is reduced to one row. do. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
 図19は、第2実施形態に係る画素アレイ部30の構成例を示す図である。例えば、図4のFDaに対して左上の3×3の画素Pixの構成例である。スイッチング素子TR1が1行分の3素子しか配置されていない点で、第1実施形態に係る画素アレイ部30の構成と異なる。3×3の加算範囲(フィルタ範囲)の例では、スイッチング素子TR1が1行分の3素子あれば、フローティングディフュージョンFDa11に接続される光電変換部PD及びフローティングディフュージョンFDの範囲を、例えば図12乃至図14の加算範囲A11に変更可能である。 FIG. 19 is a diagram showing a configuration example of the pixel array section 30 according to the second embodiment. For example, it is a configuration example of 3×3 pixels Pix on the upper left with respect to FDa in FIG. The configuration differs from that of the pixel array section 30 according to the first embodiment in that only three switching elements TR1 are arranged for one row. In the example of the 3×3 addition range (filter range), if the switching elements TR1 are three elements for one row, the range of the photoelectric conversion unit PD and the floating diffusion FD connected to the floating diffusion FDa11 can be changed, for example, from FIGS. The addition range A11 in FIG. 14 can be changed.
 同様に、画素Pix毎にスイッチング素子TR1を配置する場合には、3×3の加算範囲の例では、スイッチング素子TR2を1列分の3素子としてもよい。この場合も、フローティングディフュージョンFDa11に接続される光電変換部PD及びフローティングディフュージョンFDの範囲を、例えば図12乃至図14の加算範囲A11に変更可能である。このように、加算範囲の画素の数をnHxnVとしたときに、加算範囲のスイッチング素子TR1及びTR2の数がnHxnV+nH、又はnHxnV+nVである。ここで、nHは、加算範囲の行方向の画素の数を示し、nVは、加算範囲の縦方向の画素の数を示す。 Similarly, when the switching element TR1 is arranged for each pixel Pix, in the example of the addition range of 3×3, the switching element TR2 may be three elements for one column. Also in this case, the range of the photoelectric conversion unit PD and the floating diffusion FD connected to the floating diffusion FDa11 can be changed to, for example, the addition range A11 of FIGS. 12 to 14. FIG. Thus, when the number of pixels in the addition range is nHxnV, the number of switching elements TR1 and TR2 in the addition range is nHxnV+nH or nHxnV+nV. Here, nH indicates the number of pixels in the addition range in the row direction, and nV indicates the number of pixels in the addition range in the vertical direction.
 図20は、図19で示した画素アレイ部30の平面図である。図20に示すように、第2実施形態に係る画素アレイ部30は、画素アレイ部30のAfd領域(図4参照)内のスイッチング素子TR1の数を1行分又は1列分に減らす構成である。 20 is a plan view of the pixel array section 30 shown in FIG. 19. FIG. As shown in FIG. 20, the pixel array section 30 according to the second embodiment has a configuration in which the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 is reduced to one row or one column. be.
 以上説明したように、本実施形態に係る撮像装置100は、画素アレイ部30のAfd領域内のスイッチング素子TR1の数を1行分又は1列分に減らすこととした。これにより、スイッチング素子TR1又はスイッチング素子TR2の数を減らすことにより、画素アレイ部30を小型化できる。 As described above, in the imaging device 100 according to the present embodiment, the number of switching elements TR1 in the Afd region of the pixel array section 30 is reduced to one row or one column. Accordingly, the size of the pixel array section 30 can be reduced by reducing the number of switching elements TR1 or TR2.
 (第3実施形態)
 第3実施形態に係る撮像装置100は、画素アレイ部30は、接続部C10を介して光電変換層(PD層)と、画素トランジスタ層(画素Tr層)とにより構成される点で第2実施形態に係る撮像装置100と相違する。以下では、第2実施形態に係る撮像装置100と相違する点を説明する。
(Third embodiment)
The imaging device 100 according to the third embodiment is different from the second embodiment in that the pixel array section 30 is configured by a photoelectric conversion layer (PD layer) and a pixel transistor layer (pixel Tr layer) via the connection section C10. It is different from the imaging device 100 according to the form. Differences from the imaging apparatus 100 according to the second embodiment will be described below.
 図21は、第3実施形態に係る画素アレイ部30の構成例を示す図である。例えば、図4のFDaに対して左上の3×3の画素Pixの構成例である。図22は、図21で示した画素アレイ部30の平面図である。図21及び図22に示すように、第3実施形態に係る画素アレイ部30は、接続部C10を介して光電変換層(PD層)と、画素トランジスタ層(画素Tr層)とにより構成される。光電変換層には、各画素Pixの光電変換部PD、スイッチング素子TR3が構成される。一方で画素トランジスタ層には、スイッチング素子TR1、TR2と、スイッチング素子SEL.AMP、RSTとが構成される。 FIG. 21 is a diagram showing a configuration example of the pixel array section 30 according to the third embodiment. For example, it is a configuration example of 3×3 pixels Pix on the upper left with respect to FDa in FIG. 22 is a plan view of the pixel array section 30 shown in FIG. 21. FIG. As shown in FIGS. 21 and 22, the pixel array section 30 according to the third embodiment includes a photoelectric conversion layer (PD layer) and a pixel transistor layer (pixel Tr layer) via a connection section C10. . The photoelectric conversion layer includes a photoelectric conversion unit PD of each pixel Pix and a switching element TR3. On the other hand, the pixel transistor layer includes switching elements TR1 and TR2, switching element SEL. AMP and RST are configured.
 以上説明したように、本実施形態に係る撮像装置100は、画素アレイ部30のAfd領域(図4参照)内のスイッチング素子TR1の数を1行分又は1列分に減らすと共に、光電変換層(PD層)と、画素トランジスタ層(画素Tr層)との2層構造とすることとした。これにより、スイッチング素子TR1又はスイッチング素子TR2の数を減らすことにより、画素アレイ部30を小型化できると共に、画素アレイ部30の平面積を減らすことが可能である。 As described above, the imaging device 100 according to the present embodiment reduces the number of switching elements TR1 in the Afd region (see FIG. 4) of the pixel array section 30 to one row or one column, and (PD layer) and a pixel transistor layer (pixel Tr layer). Accordingly, by reducing the number of switching elements TR1 or TR2, the size of the pixel array section 30 can be reduced, and the plane area of the pixel array section 30 can be reduced.
 (第4実施形態)
 第4実施形態に係る撮像装置100は、画素アレイ部30の光電変換部PDをフローティングディフュージョンFDとは独立に初期化できるイッチング素子TR4を更に備える点で、第1実施形態に係る撮像装置100と相違する。以下では、第1実施形態に係る撮像装置100と相違する点を説明する。図23は第4実施形態に係る画素アレイ部30の構成例を示す図である。例えば、図4のFDaに対して左上の3×3の画素Pixの構成例である。図23では、TRG1~9の配線を省略している。図24は、第4実施形態に係る画素Pixの構成例を示す図である。
(Fourth embodiment)
The imaging apparatus 100 according to the fourth embodiment is different from the imaging apparatus 100 according to the first embodiment in that it further includes a switching element TR4 capable of initializing the photoelectric conversion unit PD of the pixel array unit 30 independently of the floating diffusion FD. differ. Differences from the imaging apparatus 100 according to the first embodiment will be described below. FIG. 23 is a diagram showing a configuration example of the pixel array section 30 according to the fourth embodiment. For example, it is a configuration example of 3×3 pixels Pix on the upper left with respect to FDa in FIG. In FIG. 23, the wiring of TRG1-9 is omitted. FIG. 24 is a diagram showing a configuration example of a pixel Pix according to the fourth embodiment.
 図23及び24に示すように、画素Pixは、スイッチング素子TR4を更に備える点で第1実施形態に係る画素Pixと異なる。スイッチング素子TR4の一端は、画素Pixに接続され、他端は、他端は電源VDDに接続される。また、スイッチング素子TR4のゲートは制御線OFGに接続される。制御線OFG1~9は、蓄積制御回路210に接続される。これにより、スイッチング素子TR4は、御線OFGを介して蓄積制御回路210から供給される制御信号Ofgがハイの時に接続状態(オン)となり、ロウの時に非接続状態(オフ)となる。なお、スイッチング素子TR4は、OFGトランジスタと称する場合がある。また、第2実施形態に係る撮像装置100と同様に、スイッチング素子TR1又はTR2の数を一行分又は1列分としてもよい。すなわち、加算フィルタが3×3の例では、スイッチング素子TR1又はTR2の数を3個としてもよい。 As shown in FIGS. 23 and 24, the pixel Pix differs from the pixel Pix according to the first embodiment in that it further includes a switching element TR4. One end of the switching element TR4 is connected to the pixel Pix, and the other end is connected to the power supply VDD. Also, the gate of the switching element TR4 is connected to the control line OFG. The control lines OFG 1 - 9 are connected to the accumulation control circuit 210 . As a result, the switching element TR4 is connected (ON) when the control signal Ofg supplied from the storage control circuit 210 via the main line OFG is high, and is disconnected (OFF) when it is low. Note that the switching element TR4 may be referred to as an OFG transistor. Also, as in the imaging device 100 according to the second embodiment, the number of switching elements TR1 or TR2 may correspond to one row or one column. That is, in an example of 3×3 addition filters, the number of switching elements TR1 or TR2 may be three.
 図25は、図23で示した画素アレイ部30の受光チップ201を背面側から見た平面図である。図25に示すように、各画素Pixの光電変換部PDが2次元アレイ状に配置される。そして、光電変換部PDの廻りに、スイッチング素子TR1~TR4が配置される。そして、左上の3×3の画素Pixの図面(図6参照)の右下の画素Pixのスイッチング素子TR2の他端と、フローティングディフュージョンFDaとスイッチング素子AMPのゲートと、スイッチング素子RSTの一端とが接続される。このように、各画素PixのフローティングディフュージョンFDの電荷が最終的にフローティングディフュージョンFDaに蓄積され、画像輝度信号Sigとして読み出される。 FIG. 25 is a plan view of the light-receiving chip 201 of the pixel array section 30 shown in FIG. 23, viewed from the rear side. As shown in FIG. 25, the photoelectric conversion units PD of each pixel Pix are arranged in a two-dimensional array. Switching elements TR1 to TR4 are arranged around the photoelectric conversion part PD. The other end of the switching element TR2 of the lower right pixel Pix in the upper left 3×3 pixel Pix drawing (see FIG. 6), the floating diffusion FDa and the gate of the switching element AMP, and one end of the switching element RST are Connected. Thus, the charge of the floating diffusion FD of each pixel Pix is finally accumulated in the floating diffusion FDa and read out as the image luminance signal Sig.
 図26は、図12のタイミングt1における加算範囲A11の第4実施形態に係る処理例を示すタイミングチャートである。図26に示すように、縦軸は、制御信号Ofg1~9、Trg1~9、Rst,Rselを上から順に示す。横軸は時間を示す。 FIG. 26 is a timing chart showing a processing example of the addition range A11 at timing t1 in FIG. 12 according to the fourth embodiment. As shown in FIG. 26, the vertical axis indicates the control signals Ofg1-9, Trg1-9, Rst and Rsel in order from the top. The horizontal axis indicates time.
 制御信号Ofg1~9がハイレベル信号になると、各スイッチング素子TR4が導通状態となり、各光電変換部PD内の電荷が電源VDDに排出され、初期化される。そして、制御信号Ofg1~9がハイレベル信号からロウレベル信号に遷移すると、各光電変換部PDは、重み値wijに比例する蓄積時間の間、受光量に応じた電荷を蓄積する。 When the control signals Ofg1 to Ofg9 become high level signals, each switching element TR4 becomes conductive, and the electric charge in each photoelectric conversion unit PD is discharged to the power supply VDD and initialized. Then, when the control signals Ofg1 to Ofg9 transition from high level signals to low level signals, each photoelectric conversion unit PD accumulates charges according to the amount of received light for an accumulation time proportional to the weight value wij .
 信号Rselがハイレベル信号となりスイッチング素子SELが導通状態となる。続けて信号Rstのハイレベル信号により、画素回路AFDのスイッチング素子RSTが導通状態となり、且つ制御信号Hsw1~3、及び制御信号Vsw1~3に基づいて各スイッチング素子TR1、TR2が導通状態になる。これにより、各フローティングディフュージョンFD内の電荷と、フローティングディフュージョンFDa内の電荷とが電源VDDに排出され、初期化される。 The signal Rsel becomes a high level signal and the switching element SEL becomes conductive. Subsequently, the switching element RST of the pixel circuit AFD is turned on by the high level signal Rst, and the switching elements TR1 and TR2 are turned on based on the control signals Hsw1-3 and control signals Vsw1-3. As a result, the charges in each floating diffusion FD and the charges in the floating diffusion FDa are discharged to the power supply VDD and initialized.
 続けて信号Rstがロウレベル信号となり、制御信号Trg1~9が同時にハイレベル信号になると、各光電変換部PD内の電荷が各フローティングディフュージョンFD内に転送され、更にフローティングディフュージョンFDa内に転送される。すなわち、(1)式の加算処理と同等の処理結果に対応する電荷がフローティングディフュージョンFDa内に転送される。そして、スイッチング素子SELが導通状態であるので、フローティングディフュージョンFDa内の蓄積電荷に比例した信号SigがVSL線を介して読出部212(図5参照)の変換部ADC230に出力される。 Subsequently, when the signal Rst becomes a low level signal and the control signals Trg1 to Trg9 simultaneously become a high level signal, the charges in each photoelectric conversion unit PD are transferred to each floating diffusion FD, and further transferred to the floating diffusion FDa. That is, the charge corresponding to the processing result equivalent to the addition processing of formula (1) is transferred into the floating diffusion FDa. Then, since the switching element SEL is in a conductive state, a signal Sig proportional to the charge accumulated in the floating diffusion FDa is output to the conversion unit ADC 230 of the readout unit 212 (see FIG. 5) through the VSL line.
 なお、他の加算範囲A12~Anにおいても同様の駆動が同時に行われ、各フローティングディフュージョンFDaには、加算範囲A12~Anに対応する電荷が蓄積される。そして、同一のVSl線に接続されるフローティングディフュージョンFDaの各電荷は、上述したように、順に増幅処理が行われ、デジタルの輝度信号に時分割で変換される。 The other addition ranges A12 to An are similarly driven at the same time, and charges corresponding to the addition ranges A12 to An are accumulated in each floating diffusion FDa. Then, as described above, each electric charge of the floating diffusion FDa connected to the same VS1 line is sequentially amplified and converted into a digital luminance signal in a time division manner.
 以上説明したように、本実施形態によれば、繰り返し加算処理の一例である重み付け演算(例えば(1)式)の重み値wijに比例する時間により、各画素Pixの光電変換部PDは、光電変換を行い、電荷を蓄積することとした。これにより、各画素Pixの蓄積電荷を加算するので、アナログ信号により重み付け演算(例えば(1)式)を行うことが可能となる。 As described above, according to the present embodiment, the photoelectric conversion unit PD of each pixel Pix can A charge is accumulated by photoelectric conversion. As a result, since the charges accumulated in each pixel Pix are added, it is possible to perform a weighting operation (for example, equation (1)) using an analog signal.
 また、各画素PixのフローティングディフュージョンFDに蓄積された電荷をフローティングディフュージョンFDaに転送できるので、加算範囲A11に対応するフローティングディフュージョンFDaを1つしか設けずに、加算範囲A11の位置を変更することが可能となる。これにより、輝度値pijが画像輝度信号Sigij(i-n≦i≦i+n、 j-m≦j≦j+m)の加算処理時に異なる重み値wijで加算される場合にも、フローティングディフュージョンFDaの数を増加させずに対応可能となる。これにより、演算素子200の大型化を抑制できる。この場合、各画素Pixはスイッチング素子TR4を有するので、画素アレイ部30の光電変換部PDをフローティングディフュージョンFDとは独立に初期化可能となる。
 (第5実施形態)
 第5実施形態に係る撮像装置100は、(1)式の重み値wij(F104)が負の値を有する場合の駆動も可能である点で、第1実施形態に係る撮像装置100と相違する。以下では、第1実施形態に係る撮像装置100と相違する点を説明する。
In addition, since the charge accumulated in the floating diffusion FD of each pixel Pix can be transferred to the floating diffusion FDa, it is possible to change the position of the addition range A11 without providing only one floating diffusion FDa corresponding to the addition range A11. It becomes possible. As a result, even when the luminance value p ij is added with a different weight value w ij during addition processing of the image luminance signal Sigij (i−n≦i≦i+n, j−m≦j≦j+m), the floating diffusion FDa It becomes possible to cope without increasing the number. As a result, an increase in the size of the arithmetic element 200 can be suppressed. In this case, since each pixel Pix has the switching element TR4, the photoelectric conversion unit PD of the pixel array unit 30 can be initialized independently of the floating diffusion FD.
(Fifth embodiment)
The image pickup apparatus 100 according to the fifth embodiment differs from the image pickup apparatus 100 according to the first embodiment in that it can be driven when the weight value w ij (F104) in equation (1) has a negative value. do. Differences from the imaging apparatus 100 according to the first embodiment will be described below.
 図27は、第5実施形態に係る(1)式の重み値wijj(F104)に対する処理例を模式的に示す図である。図27に示すように、蓄積制御回路210と、第1アクセス制御回路211aと、第2アクセス制御回路211bと、第3アクセス制御回路211cと、の制御にしたがい、第1フレームF100では、正の値を有する重み値wijに応じた長さの蓄積時間で各光電変換素子PDの蓄積が行われる。そして、各画素Pixの電荷がフローティングディフュージョンFDを介してフローティングディフュージョンFDaに転送される。この後、第1デジタル信号にAD変換部ADC230(図5参照)で変換され、記録部120(図1参照)に記録される。なお、負の値を有する重み値wijに応じた長さの蓄積時間は0とする。 FIG. 27 is a diagram schematically showing a processing example for the weight value w ijj (F104) of the formula (1) according to the fifth embodiment. As shown in FIG. 27, in the first frame F100, positive access control circuit 210, first access control circuit 211a, second access control circuit 211b, and third access control circuit 211c control Accumulation of each photoelectric conversion element PD is performed for an accumulation time length corresponding to the weight value wij having a value. Then, the charge of each pixel Pix is transferred to the floating diffusion FDa through the floating diffusion FD. After that, it is converted into a first digital signal by the AD conversion unit ADC230 (see FIG. 5) and recorded in the recording unit 120 (see FIG. 1). It is assumed that the accumulation time of the length corresponding to the weight value wij having a negative value is zero.
 第2フレームF102では、蓄積制御回路210と、第1アクセス制御回路211aと、第2アクセス制御回路211bと、第3アクセス制御回路211cと、の制御にしたがい、不の値を有する重み値wij(F104)の絶対値に応じた長さの蓄積時間で各光電変換素子PDの蓄積が行われる。そして、各画素Pixの光電変換部PD間での電荷がフローティングディフュージョンFDを介してフローティングディフュージョンFDaに転送される。この後、第2デジタル信号にAD変換部ADC230(図5参照)で変換され、記録部120(図1参照)に記録される。なお、正の値を有する重み値wijに応じた長さの蓄積時間は0とする。 In the second frame F102, the weight value w ij having a negative value is controlled by the accumulation control circuit 210, the first access control circuit 211a, the second access control circuit 211b, and the third access control circuit 211c . Accumulation of each photoelectric conversion element PD is performed for an accumulation time length corresponding to the absolute value of (F104). Then, the charge between the photoelectric conversion units PD of each pixel Pix is transferred to the floating diffusion FDa via the floating diffusion FD. After that, it is converted into a second digital signal by the AD conversion section ADC 230 (see FIG. 5) and recorded in the recording section 120 (see FIG. 1). It is assumed that the accumulation time of the length corresponding to the weight value wij having a positive value is zero.
 そして、演算処理部142では、記録部120(図1参照)に記録される第1フレームF100における第1デジタル信号と第2フレームF102における第2デジタル信号との差分を演算し、(1)式の重み値wij(F104)に対応するデジタル信号を生成する。この場合、(1)式の重み値wij(F104)に対応する演算結果が数値として生成される。 Then, the arithmetic processing unit 142 calculates the difference between the first digital signal in the first frame F100 and the second digital signal in the second frame F102 recorded in the recording unit 120 (see FIG. 1), generates a digital signal corresponding to the weight value w ij (F104) of . In this case, the calculation result corresponding to the weight value w ij (F104) of the equation (1) is generated as a numerical value.
 以上説明したように、第5実施形態に係る撮像装置100は、正の値を有する重み値wijに応じた長さの蓄積時間で各光電変換素子PDの蓄積を行い、第1デジタル信号に変換する。続けて、負の値を有する重み値wijの絶対値に応じた長さの蓄積時間で各光電変換素子PDの蓄積を行い、第2デジタル信号に変換する。続けて、演算処理部142により第1デジタル信号から第2デジタル信号を減算することとした。これにより、(1)式の重み値wij(F104)が負の値を有する場合の演算処理駆動も可能となる。 As described above, the imaging apparatus 100 according to the fifth embodiment performs accumulation in each photoelectric conversion element PD for an accumulation time length corresponding to the weight value wij having a positive value, and obtains the first digital signal. Convert. Subsequently, accumulation is performed in each photoelectric conversion element PD for an accumulation time length corresponding to the absolute value of the weight value wij having a negative value, and is converted into a second digital signal. Subsequently, the arithmetic processing unit 142 subtracts the second digital signal from the first digital signal. This makes it possible to drive arithmetic processing when the weight value w ij (F104) in equation (1) has a negative value.
 なお、本技術は以下のような構成を取ることができる。 This technology can be configured as follows.
(1)
 複数の画素で構成される複数の画素領域と、
 前記画素領域それぞれに対応する複数の第1畜電部と、を備え、
 前記画素領域内の複数の画素は、
 光電変換部と、
 前記光電変換部に対応する畜電部と、
 前記光電変換部と、前記畜電部との間を導通状態又は非導通状態にする第1素子と、
 縦及び横の少なくとも一方に隣接する画素の前記畜電部と導通状態又は非導通状態にする第2素子と、を有し、
 前記複数の画素が有する第2素子の少なくともいずれかは前記第1畜電部に接続される、固体撮像素子。
(1)
a plurality of pixel regions composed of a plurality of pixels;
a plurality of first charge storage units corresponding to each of the pixel regions;
A plurality of pixels in the pixel region are
a photoelectric conversion unit;
a power storage unit corresponding to the photoelectric conversion unit;
a first element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and the electricity storage unit;
a second element that brings into a conducting state or a non-conducting state with the electricity storage portion of a pixel that is adjacent to at least one of the vertical direction and the horizontal direction;
A solid-state imaging device, wherein at least one of the second elements included in the plurality of pixels is connected to the first electricity storage section.
(2)
 前記複数の画素は、表面照射型又は裏面照射型である、(1)に記載の固体撮像素子。
(2)
The solid-state imaging device according to (1), wherein the plurality of pixels are front side illumination type or back side illumination type.
(3)
 前記光電変換部の蓄積時間は、前記第1素子により、制御される、(2)に記載の固体撮像素子。
(3)
The solid-state imaging device according to (2), wherein the accumulation time of the photoelectric conversion unit is controlled by the first element.
(4)
 前記画素は、
 前記光電変換部と、所定の電位線との間を導通状態又は非導通状態にする第3素子を更に有し、
 前記光電変換部の蓄積時間は、前記第3素子により、制御される、(2)に記載の固体撮像素子。
(4)
The pixels are
further comprising a third element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and a predetermined potential line;
The solid-state imaging device according to (2), wherein the accumulation time of the photoelectric conversion unit is controlled by the third element.
(5)
 蓄積電荷を蓄積する第2蓄電部と、
 前記第1畜電部と前記第2蓄電部との間を導通状態又は非導通状態にする第4素子(FG)と、
 を更に備える、(1)に記載の固体撮像素子。
(5)
a second power storage unit that accumulates accumulated charges;
a fourth element (FG) that establishes a conducting state or a non-conducting state between the first power storage unit and the second power storage unit;
The solid-state imaging device according to (1), further comprising:
(6)
 前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数が2xnHxnVである、(1)に記載の固体撮像素子。
(6)
The solid-state imaging device according to (1), wherein the number of the second elements in the pixel region is 2xnHxnV when the number of pixels in the pixel region is nHxnV.
(7)
 前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数がnHxnV+nH、又はnHxnV+nVである、(1)に記載の固体撮像素子。
(7)
The solid-state imaging device according to (1), wherein the number of the second elements in the pixel region is nHxnV+nH or nHxnV+nV, where nHxnV is the number of pixels in the pixel region.
(8)
 前記画素領域内の光電変換素子と、前記第2素子とは、異なる層に構成される、(1)に記載の固体撮像素子。
(8)
The solid-state imaging device according to (1), wherein the photoelectric conversion element in the pixel region and the second element are configured in different layers.
(9)
 前記光電変換部は、シリコン、インジウムガリウムヒ素、及びゲルマニウム有機の少なくともいずれかで構成される、(1)に記載の固体撮像素子。
(9)
The solid-state imaging device according to (1), wherein the photoelectric conversion section is made of at least one of silicon, indium gallium arsenide, and organic germanium.
(10)
 前記第1及び第2素子は、シリコン、酸化物半導体、及び有機半導体の少なくともいずれかで構成される、(1)に記載の固体撮像素子。
(10)
The solid-state imaging device according to (1), wherein the first and second elements are composed of at least one of silicon, an oxide semiconductor, and an organic semiconductor.
(11)
 前記光電変換部の光電変換期間の終了後に、前記第1素子を導通状態にする、(1)に記載の固体撮像素子。
(11)
The solid-state imaging device according to (1), wherein the first element is rendered conductive after the photoelectric conversion period of the photoelectric conversion section ends.
(12)
 演算処理の重み値に応じて、前記光電変換部の光電変換期間が制御される、(3)に記載の固体撮像素子。
(12)
The solid-state imaging device according to (3), wherein a photoelectric conversion period of the photoelectric conversion unit is controlled according to a weight value of arithmetic processing.
(13)
 前記画素領域は、対応する前記第1畜電部に対して変更可能である、(1)に記載の固体撮像素子。
(13)
The solid-state imaging device according to (1), wherein the pixel area can be changed with respect to the corresponding first electricity storage unit.
(14)
 演算処理の演算範囲に応じて、前記第1畜電部に対する前記画素領域の範囲が変更される、(12)に記載の固体撮像素子。
(14)
The solid-state imaging device according to (12), wherein the range of the pixel region for the first electricity storage unit is changed according to the computation range of computation processing.
(15)
 前記第1畜電部、前記畜電部及び前記第2蓄電部は、フローティングディフュージョン部である、(5)に記載の固体撮像素子。
(15)
The solid-state imaging device according to (5), wherein the first electricity storage unit, the electricity storage unit, and the second electricity storage unit are floating diffusion units.
(16)
 前記第1畜電部に蓄積された電荷に応じた信号を電圧信号として増幅する増幅回路を、更に備える、(1)に記載の固体撮像素子。
(16)
The solid-state imaging device according to (1), further comprising an amplifier circuit that amplifies a signal corresponding to the charge accumulated in the first electricity storage unit as a voltage signal.
(17)
 前記増幅回路は,ソースフォロア回路を構成しており、前記電圧信号は、パルス幅変調の時間情報に基づき読み出される、(16)に記載の固体撮像素子。
(17)
The solid-state imaging device according to (16), wherein the amplifier circuit constitutes a source follower circuit, and the voltage signal is read based on time information of pulse width modulation.
(18)
 (14)に記載の固体撮像素子と、
 畳み込み演算を行うことが可能な演算処理部と、を備え、
 前記重み値、及び演算範囲に対応する前記画素領域の情報は前記演算処理部から供給される、撮像装置。
(18)
(14) the solid-state imaging device; and
and an arithmetic processing unit capable of performing a convolution operation,
The imaging device, wherein the weight value and the information of the pixel area corresponding to the calculation range are supplied from the calculation processing unit.
(19)
 前記演算処理部では、
 前記演算処理の正の重み値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後にアナログデジタル変換部により生成された第1デジタルデータと、
 前記演算処理の負の重み値の絶対値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後に前記アナログデジタル変換部により生成された第2デジタルデータと、の差分を演算する、(18)に記載の撮像装置。
(19)
In the arithmetic processing unit,
first digital data generated by an analog-to-digital converter after the photoelectric conversion period of the photoelectric converter is controlled according to the positive weight value of the arithmetic processing and transferred to the first electricity storage unit;
The photoelectric conversion period of the photoelectric conversion unit is controlled according to the absolute value of the negative weight value of the arithmetic processing, and the second digital signal generated by the analog-to-digital conversion unit after being transferred to the first storage unit The imaging device according to (18), which calculates the difference between the data and the.
 本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-described contents. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
100:撮像装置、 
142:演算処理部、 
200:撮像素子、 
210:蓄積制御回路、 
A11~A22:加算範囲(画素範囲)、 
FG:スイッチング素子(第4素子)、
FD:フローティングディフュージョン(畜電部)、 
FDa:フローティングディフュージョン(第1畜電部)、 
FDbフローティングディフュージョン(第2畜電部)、 
PD:光電変換部、
TR1:スイッチング素子(第2素子)、 
TR2:スイッチング素子(第2素子)、 
TR3:スイッチング素子(第1素子)、 
TR4:スイッチング素子(第3素子)。
100: imaging device,
142: arithmetic processing unit,
200: image sensor,
210: Accumulation control circuit,
A11 to A22: addition range (pixel range),
FG: switching element (fourth element),
FD: Floating diffusion (storage unit),
FDa: floating diffusion (first power storage unit),
FDb floating diffusion (second power storage unit),
PD: photoelectric conversion unit,
TR1: switching element (second element),
TR2: switching element (second element),
TR3: switching element (first element),
TR4: Switching element (third element).

Claims (19)

  1.  複数の画素で構成される複数の画素領域と、
     前記画素領域それぞれに対応する複数の第1畜電部と、を備え、
     前記画素領域内の複数の画素は、
     光電変換部と、
     前記光電変換部に対応する畜電部と、
     前記光電変換部と、前記畜電部との間を導通状態又は非導通状態にする第1素子と、
     縦及び横の少なくとも一方に隣接する画素の前記畜電部と導通状態又は非導通状態にする第2素子と、を有し、
     前記複数の画素が有する第2素子の少なくともいずれかは前記第1畜電部に接続される、固体撮像素子。
    a plurality of pixel regions composed of a plurality of pixels;
    a plurality of first charge storage units corresponding to each of the pixel regions;
    A plurality of pixels in the pixel region are
    a photoelectric conversion unit;
    a power storage unit corresponding to the photoelectric conversion unit;
    a first element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and the electricity storage unit;
    a second element that brings into a conducting state or a non-conducting state with the electricity storage portion of a pixel that is adjacent to at least one of the vertical direction and the horizontal direction;
    A solid-state imaging device, wherein at least one of the second elements included in the plurality of pixels is connected to the first electricity storage unit.
  2.  前記複数の画素は、表面照射型又は裏面照射型である、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the plurality of pixels are front side illumination type or back side illumination type.
  3.  前記光電変換部の蓄積時間は、前記第1素子により、制御される、請求項2に記載の固体撮像素子。 3. The solid-state imaging device according to claim 2, wherein the accumulation time of said photoelectric conversion unit is controlled by said first element.
  4.  前記画素は、
     前記光電変換部と、所定の電位線との間を導通状態又は非導通状態にする第3素子を更に有し、
     前記光電変換部の蓄積時間は、前記第3素子により、制御される、請求項2に記載の固体撮像素子。
    The pixels are
    further comprising a third element that establishes a conducting state or a non-conducting state between the photoelectric conversion unit and a predetermined potential line;
    3. The solid-state imaging device according to claim 2, wherein the accumulation time of said photoelectric conversion section is controlled by said third element.
  5.  蓄積電荷を蓄積する第2蓄電部と、
     前記第1畜電部と前記第2蓄電部との間を導通状態又は非導通状態にする第4素子と、 を更に備える、請求項1に記載の固体撮像素子。
    a second power storage unit that accumulates accumulated charges;
    2. The solid-state imaging device according to claim 1, further comprising: a fourth element that brings a conductive state or a non-conductive state between said first power storage unit and said second power storage unit.
  6.  前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数が2xnHxnVである、請求項1に記載の固体撮像素子。 2. The solid-state imaging device according to claim 1, wherein the number of said second elements in said pixel region is 2xnHxnV when the number of pixels in said pixel region is nHxnV.
  7.  前記画素領域内の複数の画素の数をnHxnVとしたときに、前記画素領域内の前記第2素子の数がnHxnV+nH、又はnHxnV+nVである、請求項1に記載の固体撮像素子。 2. The solid-state imaging device according to claim 1, wherein the number of said second elements in said pixel region is nHxnV+nH or nHxnV+nV when the number of pixels in said pixel region is nHxnV.
  8.  前記画素領域内の光電変換素子と、前記第2素子とは、異なる層に構成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the photoelectric conversion element in the pixel region and the second element are configured in different layers.
  9.  前記光電変換部は、シリコン、インジウムガリウムヒ素、及びゲルマニウム有機の少なくともいずれかで構成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the photoelectric conversion section is composed of at least one of silicon, indium gallium arsenide, and organic germanium.
  10.  前記第1及び第2素子は、シリコン、酸化物半導体、及び有機半導体の少なくともいずれかで構成される、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the first and second elements are composed of at least one of silicon, an oxide semiconductor, and an organic semiconductor.
  11.  前記光電変換部の光電変換期間の終了後に、前記第1素子を導通状態にする、請求項1に記載の固体撮像素子。 2. The solid-state imaging device according to claim 1, wherein the first element is rendered conductive after the photoelectric conversion period of the photoelectric conversion section ends.
  12.  演算処理の重み値に応じて、前記光電変換部の光電変換期間が制御される、請求項3に記載の固体撮像素子。 The solid-state imaging device according to claim 3, wherein the photoelectric conversion period of the photoelectric conversion unit is controlled according to the weight value of arithmetic processing.
  13.  前記画素領域は、対応する前記第1畜電部に対して変更可能である、請求項1に記載の固体撮像素子。 The solid-state imaging device according to claim 1, wherein the pixel area can be changed with respect to the corresponding first power storage unit.
  14.  演算処理の演算範囲に応じて、前記第1畜電部に対する前記画素領域の範囲が変更される、請求項12に記載の固体撮像素子。 13. The solid-state imaging device according to claim 12, wherein the range of said pixel region for said first electricity storage unit is changed according to the computation range of computation processing.
  15.  前記第1畜電部、前記畜電部及び前記第2蓄電部は、フローティングディフュージョン部である、請求項5に記載の固体撮像素子。 The solid-state imaging device according to claim 5, wherein the first electricity storage unit, the electricity storage unit, and the second electricity storage unit are floating diffusion units.
  16.  前記第1畜電部に蓄積された電荷に応じた信号を電圧信号として増幅する増幅回路を、更に備える、請求項1に記載の固体撮像素子。 2. The solid-state imaging device according to claim 1, further comprising an amplifier circuit that amplifies a signal corresponding to the charge accumulated in said first electricity storage unit as a voltage signal.
  17.  前記増幅回路は,ソースフォロア回路を構成しており、前記電圧信号は、パルス幅変調の時間情報に基づき読み出される、請求項16に記載の固体撮像素子。 17. The solid-state imaging device according to claim 16, wherein said amplifier circuit constitutes a source follower circuit, and said voltage signal is read based on time information of pulse width modulation.
  18.  請求項14に記載の固体撮像素子と、
     畳み込み演算を行うことが可能な演算処理部と、を備え、
     前記重み値、及び演算範囲に対応する前記画素領域の情報は前記演算処理部から供給される、撮像装置。
    The solid-state imaging device according to claim 14;
    and an arithmetic processing unit capable of performing a convolution operation,
    The imaging device, wherein the weight value and the information of the pixel area corresponding to the calculation range are supplied from the calculation processing unit.
  19.  前記演算処理部では、
     前記演算処理の正の重み値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後にアナログデジタル変換部により生成された第1デジタルデータと、
     前記演算処理の負の重み値の絶対値に応じて、前記光電変換部の光電変換期間が制御され、前記第1畜電部に転送された後に前記アナログデジタル変換部により生成された第2デジタルデータと、の差分を演算する、請求項18に記載の撮像装置。
    In the arithmetic processing unit,
    first digital data generated by an analog-to-digital converter after the photoelectric conversion period of the photoelectric converter is controlled according to the positive weight value of the arithmetic processing and transferred to the first electricity storage unit;
    The photoelectric conversion period of the photoelectric conversion unit is controlled according to the absolute value of the negative weight value of the arithmetic processing, and the second digital signal generated by the analog-to-digital conversion unit after being transferred to the first storage unit 19. The imaging device according to claim 18, which calculates a difference between data and .
PCT/JP2022/039734 2021-12-06 2022-10-25 Solid-state imaging element, and imaging device WO2023105965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023566144A JPWO2023105965A1 (en) 2021-12-06 2022-10-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197798 2021-12-06
JP2021-197798 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023105965A1 true WO2023105965A1 (en) 2023-06-15

Family

ID=86730080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039734 WO2023105965A1 (en) 2021-12-06 2022-10-25 Solid-state imaging element, and imaging device

Country Status (2)

Country Link
JP (1) JPWO2023105965A1 (en)
WO (1) WO2023105965A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219857A (en) * 2015-05-14 2016-12-22 ブリルニクスジャパン株式会社 Solid-state image pickup device, driving method for the same and electronic equipment
WO2018062303A1 (en) * 2016-09-29 2018-04-05 株式会社ニコン Image-capturing element and electronic camera
JP2021093563A (en) * 2019-12-06 2021-06-17 ソニーセミコンダクタソリューションズ株式会社 Solid state image sensor and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219857A (en) * 2015-05-14 2016-12-22 ブリルニクスジャパン株式会社 Solid-state image pickup device, driving method for the same and electronic equipment
WO2018062303A1 (en) * 2016-09-29 2018-04-05 株式会社ニコン Image-capturing element and electronic camera
JP2021093563A (en) * 2019-12-06 2021-06-17 ソニーセミコンダクタソリューションズ株式会社 Solid state image sensor and control method

Also Published As

Publication number Publication date
JPWO2023105965A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
US9231011B2 (en) Stacked-chip imaging systems
US9343500B2 (en) Solid-state imaging device, driving method thereof, and electronic device
US10756129B2 (en) Image sensors having imaging pixels with ring-shaped gates
JP6075646B2 (en) Solid-state imaging device, driving method thereof, and electronic apparatus
US9681070B2 (en) Solid-state imaging device, signal processing method of solid-state imaging device, and electronic apparatus
US8754452B2 (en) Solid-state imaging device, method of manufacturing same, and electronic apparatus
US10186535B2 (en) Image sensors with stacked photodiodes
US8638379B2 (en) Solid-state image pickup device with shared amplifier nearest pixel corresponding to shortest light wavelength and electronic apparatus using the same
US9269730B2 (en) Imaging systems with backside isolation trenches
JPWO2013172205A1 (en) IMAGING DEVICE, IMAGING METHOD, ELECTRONIC DEVICE, AND PROGRAM
JP2013084744A (en) Solid-state imaging element and electronic equipment
JP7497396B2 (en) Image pickup element and image pickup device
JP2011066241A (en) Solid-state image pickup device and method for manufacturing the same, and electronic apparatus
CN104617118A (en) Solid-state imaging device, manufacturing mehtod therefor and electronic device
WO2023105965A1 (en) Solid-state imaging element, and imaging device
WO2022149444A1 (en) Solid-state imaging element and imaging device
WO2023042498A1 (en) Solid-state imaging element and imaging device
JP2018050028A (en) Solid state image pickup device and electronic apparatus
US20240380998A1 (en) Solid-state imaging element and imaging device
US20240121527A1 (en) Reference pixel column readout
WO2022067455A1 (en) Solid state imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903897

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023566144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE