Nothing Special   »   [go: up one dir, main page]

WO2023190456A1 - 硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板 - Google Patents

硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板 Download PDF

Info

Publication number
WO2023190456A1
WO2023190456A1 PCT/JP2023/012395 JP2023012395W WO2023190456A1 WO 2023190456 A1 WO2023190456 A1 WO 2023190456A1 JP 2023012395 W JP2023012395 W JP 2023012395W WO 2023190456 A1 WO2023190456 A1 WO 2023190456A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxyl group
resin
resin composition
cured product
photosensitive resin
Prior art date
Application number
PCT/JP2023/012395
Other languages
English (en)
French (fr)
Inventor
康昭 荒井
正人 吉田
博英 佐藤
和也 佐藤
英司 播磨
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Publication of WO2023190456A1 publication Critical patent/WO2023190456A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a cured product, a photosensitive resin composition, and more particularly, a cured product of a curable resin composition, a photosensitive resin composition, and a dry film, and a printed wiring board equipped with a coating made of the cured product. Regarding.
  • solder resist layer is formed on the patterned substrate in an area other than the connection hole.
  • the solder resist layer is formed by applying a liquid curable resin composition to the substrate and then curing it, or by using a curable dry film without using a liquid curable resin composition. be done.
  • a composition suitable for forming a solder resist layer for example, Patent Document 1 discloses a curable resin composition containing a carboxyl group-containing resin having a specific acid value, an acrylic copolymer, an epoxy resin, etc. ing.
  • Patent Document 2 discloses a photosensitive film laminate having a layer containing inorganic particles as a dry film for forming a solder resist layer.
  • identification characters and symbols are printed with marking ink to identify the mounting position of the electronic components to be mounted, in consideration of the subsequent electronic component mounting process.
  • Marking inks are mainly thermosetting and UV curing types that are formed by pattern printing, or alkaline developable types that are formed by exposing through a negative film and removing the unexposed areas with an alkaline aqueous solution.
  • laser marking has also been used in which the color tone of the irradiated area is changed by irradiating it with laser light to display characters, symbols, etc.
  • the marking ink may be difficult to print or easily peel off. , the visibility of the marker could be reduced. This is especially true when the marking ink has strict curing conditions (for example, the marking ink is made of a photocurable and thermosetting resin composition, and it is necessary to perform both photocuring and thermosetting to cure the ink). ), this tendency was remarkable.
  • Patent Document 3 proposes the combined use of a bisphenol-type carboxyl group-containing resin and a novolak-type carboxyl group-containing resin as a photosensitive resin composition that can suppress the occurrence of cracks without reducing heat resistance. ing.
  • Patent Document 4 describes a photosensitive resin composition that has excellent chemical resistance to plating solutions and the like, which contains a bisphenol-type carboxyl group-containing resin, an unsaturated basic acid copolymer resin, and an alicyclic epoxy group-containing unsaturated compound. It has been proposed to use a carboxyl group-containing resin, which is a reaction product with a carboxyl group-containing resin.
  • the present invention has been made in view of the above problems, and its purpose is to easily apply marking ink to the surface, have excellent adhesion with the marking ink after curing, and furthermore, provide a method for printing characters and letters on the surface.
  • An object of the present invention is to provide a cured product capable of forming a marker with excellent symbol visibility.
  • Another object of the present invention is to provide a photosensitive resin composition that can suppress contamination of a plating solution and suppress plating defects while satisfying properties required for solder resists such as insulation reliability. That's true.
  • the present inventors conducted various studies regarding the above-mentioned problems, and found that the printability and adhesion of marking ink to the surface of a cured product depend on the cured coating film of the curable resin composition when forming the cured product. It was found that the condition at the time of formation is affected. That is, it has been found that if warpage or cracks occur on the surface during the formation of a cured coating film, the marking ink may not be printed properly afterward, or even if it is printed, it will peel off during the post-curing process. Furthermore, in order to prevent warping and cracking, the curable resin composition must contain a specific silica, and the average coefficient of linear expansion of the cured product of the curable resin composition must be within a specific range.
  • a cured product consisting of a curable resin composition containing a curable resin and an inorganic filler, The inorganic filler contains amorphous silica, A cured product characterized in that the cured product has an average coefficient of linear expansion of 70 to 100 ppm/°C when the temperature changes from 0°C to 180°C.
  • the cured product according to [1] which has a glass transition point (Tg) within the range of 100 to 120°C.
  • Tg glass transition point
  • the cured product according to [1] wherein the cured product has an average coefficient of linear expansion of 70 to 85 ppm/°C when the temperature changes from 0°C to 180°C.
  • a photosensitive resin composition comprising (A) a carboxyl group-containing resin, (B) a photopolymerizable monomer, and (C) a thermosetting component, (A)
  • the carboxyl group-containing resin is (A1) a carboxyl group-containing resin having a novolac skeleton; (A2) a carboxyl group-containing resin having a bisphenol skeleton; (A3) an unsaturated basic acid copolymerizable carboxyl group-containing resin; including;
  • the total amount of the carboxyl group-containing resin (A1) and the carboxyl group-containing resin (A2) is 60 to 80% by mass based on the entire carboxyl group-containing resin (A),
  • a photosensitive resin composition, wherein the amount of the carboxyl group-containing resin (A3) is 40 to 20% by mass based on the entire carboxyl group-containing resin (A).
  • the amount of the carboxyl group-containing resin (A2) is 20 to 50% by mass based on the entire carboxyl group-containing resin (A).
  • thermosetting component (C) contains an epoxy resin having an isocyanuric ring.
  • D The photosensitive resin composition according to [6], further comprising an inorganic filler.
  • a dry film comprising a resin layer obtained by applying the photosensitive resin composition according to [6] to a first film and drying it.
  • a cured product obtained by curing the photosensitive resin composition according to [6] or the resin layer of the dry film according to [13].
  • a cured product according to [1] or [14] which is used for a solder resist.
  • a printed wiring board comprising the cured product according to [1] or [14] on a substrate.
  • the cured product of the present invention it is easy to apply marking ink to the surface, it has excellent adhesion with the marking ink after curing, and it is also possible to form a marker on the surface with excellent visibility of characters and symbols.
  • properties required for solder resists such as insulation reliability can be achieved by using three specific carboxyl group-containing resins in a specific ratio as photosensitive resin components. It is possible to suppress contamination of the plating solution and also suppress plating defects while filling the plating solution.
  • the term "average coefficient of linear expansion" refers to the rate at which the length of a cured product, which is a test piece, expands due to an increase in temperature per 1°C.
  • the cured product in the present invention refers to a cured product of a curable resin composition, a photosensitive resin composition, and a resin layer in a dry film (hereinafter sometimes referred to as a curable resin composition, etc.). , place a cloth impregnated with isopropyl alcohol on the surface of the cured resin composition, etc., then place a 500g weight on top of it, let it stand for 1 minute, and then harden on the surface of the cloth. This refers to a state in which no adhesive resin composition or the like is attached.
  • the cured product according to the present invention is obtained by curing a curable resin composition containing a curable resin and an inorganic filler.
  • the cured product is characterized by an average coefficient of linear expansion in the length direction (direction perpendicular to the thickness direction) of 70 to 100 ppm/°C.
  • marking ink can be easily applied to the surface, and the adhesiveness of the marking ink after curing is excellent, and furthermore, characters can be printed on the surface. It is possible to form markers with excellent visibility of symbols and marks. Although the reason is not certain, it can be inferred as follows.
  • the cured product has an average coefficient of linear expansion of 70 to 100 ppm/°C when the temperature is raised from 0°C to 180°C, it can also be used when curing the curable resin composition to form the cured product. It is thought that warpage and surface cracks are less likely to occur, and as a result, marking ink can be easily applied to the surface of the cured product, making it possible to form markers with high visibility.
  • the curable resin composition contains amorphous silica as an inorganic filler, and since the amorphous silica has a lower surface smoothness than other silicas, its anchoring effect allows the cured product to bond with the marking ink. Since the adhesion is also increased, it is thought that peeling of the marker from the surface of the cured product can be suppressed.
  • a more preferable average coefficient of linear expansion is 70 to 85 ppm/°C.
  • the average coefficient of linear expansion of the cured product can be measured by a conventional method using a thermomechanical analyzer, but in the present invention, it refers to the value measured as follows. First, a curable resin composition is applied onto a copper foil, dried, and heated or irradiated with light to obtain a cured product in the form of a flat film having a thickness of 20 ⁇ m after curing. Next, the obtained cured product was cut into a test piece with a width of 3 mm and a length of 30 mm, and using a thermomechanical analyzer (TMA/SS6000, manufactured by Seiko Instruments Inc.), Perform measurements.
  • TMA/SS6000 thermomechanical analyzer
  • the maximum tensile load is 50 N/m
  • the span (distance between chucks) is 10 mm
  • the temperature increase rate is 10° C./min.
  • the test piece is attached to a thermomechanical analyzer, heated from 30°C to 200°C, and left for 10 minutes. After that, the temperature was cooled to -30°C at a temperature decreasing rate of -10°C/min, and the measurement was performed from -30°C to 250°C at a temperature increasing rate of 10°C/min, and the measured values at 0°C and 180°C were Read and calculate the average coefficient of linear expansion ( ⁇ ) using the following formula.
  • LS Length of test piece (cured product) before measurement (measured value)
  • L(0) Amount of change in length of test piece (cured product) at 0°C (measured value)
  • L (180) Amount of change in length of test piece (cured product) at 180°C (measured value) T(0): 0(°C) T(180): 180(°C) It is. )
  • the cured product of the present invention preferably has a glass transition point (Tg) within the range of 100 to 120°C.
  • Tg glass transition point
  • the coefficient of linear expansion tends to fall within the desired range, resulting in a stable cured product and improved marking adhesion.
  • TMA thermomechanical analyzer
  • the average coefficient of linear expansion ( ⁇ ) of the cured product of the present invention can be adjusted as appropriate by the blending ratio of the curable resin and inorganic filler, and the degree of main curing by heating or light irradiation. Further, the glass transition point of the cured product of the present invention can be adjusted as appropriate by adjusting the combination (compatibility) of the curable resin and other resins contained in the curable resin composition.
  • the cured product according to the present invention is obtained by curing a curable resin composition.
  • the curable resin composition contains a curable resin and an inorganic filler. It goes without saying that, in addition to the curable resin and inorganic filler, optional additives such as a curing agent or curing accelerator for curing the curable component, and a coloring agent may also be included, if necessary.
  • a curing agent or curing accelerator for curing the curable component may also be included, if necessary.
  • curable resins examples include acrylic resins, epoxy resins, epoxy acrylate resins, silicone resins, phenol resins, polyimide resins, polyurethane resins, melamine resins, and urea resins that have photocurable or thermosetting functional groups. Or thermosetting resin etc. are mentioned. These resins may be used alone or in combination of two or more types, but it is recommended to use both photocurable resins and thermosetting resins under strict curing conditions such as dual cure. However, it is preferable in that it can show excellent adhesion.
  • Examples of the photocurable resin of the curable resin include polymerizable monomers and oligomers.
  • As the polymerizable monomer a photopolymerizable monomer having an ethylenically unsaturated double bond can be preferably used.
  • Examples of the photopolymerizable monomer include known and commonly used polyester (meth)acrylate, polyether (meth)acrylate, urethane (meth)acrylate, carbonate (meth)acrylate, and epoxy (meth)acrylate.
  • hydroxyalkyl acrylates such as 2-hydroxyethyl acrylate and 2-hydroxypropyl acrylate
  • glycol diacrylates such as ethylene glycol, methoxytetraethylene glycol, polyethylene glycol, and propylene glycol
  • N,N-dimethylacrylamide N-methylol acrylamide, N,N-dimethylaminopropylacrylamide, and other acrylamides
  • hexanediol trimethylolpropane
  • Polyhydric alcohols such as pentaerythritol, dipentaerythritol, tris-hydroxyethyl isocyanurate
  • polyhydric acrylates such as their ethylene oxide adducts, propylene oxide adducts, or ⁇ -caprolactone adducts
  • examples of polymerizable oligomers include unsaturated polyester oligomers, (meth)acrylate oligomers, and the like.
  • examples of (meth)acrylate oligomers include epoxy (meth)acrylates such as phenol novolak epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, and epoxyurethane (meth)acrylate.
  • epoxy (meth)acrylates such as phenol novolak epoxy (meth)acrylate, cresol novolac epoxy (meth)acrylate, and bisphenol type epoxy (meth)acrylate, urethane (meth)acrylate, and epoxyurethane (meth)acrylate.
  • the amount of the photocurable resin in the curable resin composition is 1 part by mass per 100 parts by mass of the carboxyl group-containing resin in terms of solid content.
  • the amount is preferably 40 parts by weight, more preferably 5 to 35 parts by weight.
  • the curable resin contained in the curable resin composition may include a photosensitive resin that can be patterned by exposure and development.
  • a photosensitive resin is preferable in that it can be patterned by exposure and development to form a cured resin film in a desired pattern on the substrate.
  • thermosetting resin can be used as the curable resin.
  • known compounds such as melamine resin, benzoguanamine resin, melamine derivative, amino resin such as benzoguanamine derivative, isocyanate compound, blocked isocyanate compound, cyclocarbonate compound, epoxy compound, oxetane compound, episulfide resin, bismaleimide, carbodiimide resin, etc. are used.
  • a compound having a plurality of cyclic ether groups or cyclic thioether groups hereinafter abbreviated as cyclic (thio)ether group
  • cyclic (thio)ether group cyclic (thio)ether group
  • the above compound having multiple cyclic (thio)ether groups in the molecule is a compound having multiple 3-, 4-, or 5-membered cyclic (thio)ether groups in the molecule, for example, multiple epoxy groups in the molecule.
  • Examples include a compound having a plurality of oxetanyl groups in the molecule, ie, a polyfunctional oxetane compound, a compound having a plurality of thioether groups in the molecule, ie, an episulfide resin, and the like.
  • polyfunctional epoxy compounds include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, and phenol novolac type epoxy resin. resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, and the like.
  • polyfunctional epoxy compounds include, for example, jER 828, 806, 807, YX8000, YX8034, 834 manufactured by Mitsubishi Chemical Corporation, YD-128, YDF-170, and ZX manufactured by Nippon Steel Chemical & Materials Corporation. -1059, ST-3000, EPICLON 830, 835, 840, 850, N-730A, N-695 manufactured by DIC Corporation, and RE-306 manufactured by Nippon Kayaku Corporation.
  • polyfunctional oxetane compounds include bis[(3-methyl-3-oxetanylmethoxy)methyl]ether, bis[(3-ethyl-3-oxetanylmethoxy)methyl]ether, and 1,4-bis[(3- Methyl-3-oxetanylmethoxy)methyl]benzene, 1,4-bis[(3-ethyl-3-oxetanylmethoxy)methyl]benzene, (3-methyl-3-oxetanyl)methyl acrylate, (3-ethyl-3-
  • polyfunctional oxetanes such as (oxetanyl) methyl acrylate, (3-methyl-3-oxetanyl) methyl methacrylate, (3-ethyl-3-oxetanyl) methyl methacrylate, and their oligomers or copolymers, oxetane alcohol and novolac resins , poly(p-hydroxystyrene), card
  • Examples of compounds having multiple cyclic thioether groups in the molecule include bisphenol A episulfide resin. Furthermore, an episulfide resin in which the oxygen atom of the epoxy group of a novolac type epoxy resin is replaced with a sulfur atom can also be used using a similar synthesis method.
  • the compounding amount of a compound having a plurality of cyclic (thio)ether groups in the molecule is as follows:
  • the number of functional groups of the compound having a thio)ether group is preferably 0.8 to 2.5 mol, more preferably 1.0 to 2.0 mol.
  • the blending amount of the polyfunctional epoxy compound should be calculated based on the solid content of the carboxyl group.
  • the amount is preferably 20 to 50 parts by mass based on 100 parts by mass of the resin contained.
  • amino resins such as melamine derivatives and benzoguanamine derivatives
  • amino resins include methylolmelamine compounds, methylolbenzoguanamine compounds, methylolglycoluril compounds, and methylolurea compounds.
  • a polyisocyanate compound can be blended.
  • the polyisocyanate compound include 4,4'-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, o-xylylene diisocyanate, m-xylylene diisocyanate, and Aromatic polyisocyanates such as 2,4-tolylene dimer; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, methylene diisocyanate, trimethylhexamethylene diisocyanate, 4,4-methylene bis(cyclohexyl isocyanate) and isophorone diisocyanate; bicyclo Examples include alicyclic polyisocyanates such as heptane triisocyanate; and adducts, biurets
  • an addition reaction product of an isocyanate compound and an isocyanate blocking agent can be used.
  • the isocyanate compound that can react with the isocyanate blocking agent include the above-mentioned polyisocyanate compounds.
  • Isocyanate blocking agents include, for example, phenolic blocking agents; lactam blocking agents; active methylene blocking agents; alcohol blocking agents; oxime blocking agents; mercaptan blocking agents; acid amide blocking agents; imide blocking agents; Examples include amine blocking agents, imidazole blocking agents, and imine blocking agents.
  • the curable resin is preferably an alkali-soluble resin in that it can be developed when patterning.
  • the curable resin composition contains an alkali-soluble resin, it is preferable to contain a photopolymerizable monomer and a photopolymerization initiator as other components.
  • the alkali-soluble resin may be any resin as long as it dissolves in an aqueous alkali solution, and known and commonly used resins may be used.
  • the alkali-soluble resins can be used alone or in combination of two or more. Examples include carboxyl group-containing resins and water-soluble resins such as phenolic hydroxyl group-containing resins. Among these, carboxyl group-containing resins and phenolic hydroxyl group-containing resins are preferred, and carboxyl group-containing resins are more preferred because they have excellent developability. When the carboxyl group-containing resin contains a carboxyl group, it can be made alkaline developable.
  • the ethylenically unsaturated double bond is derived from acrylic acid or methacrylic acid or derivatives thereof.
  • a compound having a plurality of ethylenically unsaturated groups in the molecule that is, a photopolymerizable resin.
  • carboxyl group-containing resins include the following compounds (which may be oligomers or polymers).
  • (meth)acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • a carboxyl group-containing resin obtained by copolymerizing an unsaturated carboxylic acid such as (meth)acrylic acid with an unsaturated group-containing compound such as styrene, ⁇ -methylstyrene, lower alkyl (meth)acrylate, or isobutylene.
  • Diisocyanates such as aliphatic diisocyanates, branched aliphatic diisocyanates, alicyclic diisocyanates, aromatic diisocyanates, carboxyl group-containing dialcohol compounds such as dimethylolpropionic acid and dimethylolbutanoic acid, polycarbonate polyols, and polyethers.
  • a carboxyl group-containing urethane resin produced by polyaddition reaction of diol compounds such as polyols, polyester polyols, polyolefin polyols, acrylic polyols, bisphenol A-based alkylene oxide adduct diols, and compounds having phenolic hydroxyl groups and alcoholic hydroxyl groups.
  • Diisocyanate and bifunctional epoxy resins such as bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, bixylenol epoxy resin, and biphenol epoxy resin ( Carboxyl group-containing photosensitivity resulting from polyaddition reaction of partially acid anhydride-modified products of reactants with monocarboxylic acid compounds having ethylenically unsaturated double bonds such as meth)acrylic acid, carboxyl group-containing dialcohol compounds, and diol compounds.
  • Urethane resin Urethane resin.
  • one isocyanate group and one or more (meth)acryloyl groups are added in the molecule, such as an equimolar reaction product of isophorone diisocyanate and pentaerythritol triacrylate.
  • a carboxyl group-containing photosensitive resin obtained by reacting (meth)acrylic acid with a difunctional or higher polyfunctional (solid) epoxy resin and adding a dibasic acid anhydride to the hydroxyl group present in the side chain.
  • Group-containing photosensitive resin A carboxyl product obtained by reacting (meth)acrylic acid with a polyfunctional epoxy resin in which the hydroxyl groups of a bifunctional (solid) epoxy resin are further epoxidized with epichlorohydrin, and adding a dibasic acid anhydride to the resulting hydroxyl groups.
  • Difunctional oxetane resin is reacted with a dicarboxylic acid such as adipic acid, phthalic acid, hexahydrophthalic acid, etc., and the resulting primary hydroxyl group is converted into a dibase such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, etc. Carboxyl group-containing polyester resin with acid anhydride added.
  • a dicarboxylic acid such as adipic acid, phthalic acid, hexahydrophthalic acid, etc.
  • An epoxy compound having multiple epoxy groups in one molecule a compound having at least one alcoholic hydroxyl group and one phenolic hydroxyl group in one molecule, such as p-hydroxyphenethyl alcohol, and (meth) Maleic anhydride, tetrahydrophthalic anhydride, trimellitic anhydride, pyromellitic anhydride, adipine are reacted with an unsaturated group-containing monocarboxylic acid such as acrylic acid, and the alcoholic hydroxyl group of the resulting reaction product is A carboxyl group-containing photosensitive resin obtained by reacting polybasic acid anhydrides such as acids.
  • reaction obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with an alkylene oxide such as ethylene oxide or propylene oxide with an unsaturated group-containing monocarboxylic acid.
  • alkylene oxide such as ethylene oxide or propylene oxide
  • unsaturated group-containing monocarboxylic acid A carboxyl group-containing photosensitive resin obtained by reacting a product with a polybasic acid anhydride.
  • (11) Obtained by reacting a reaction product obtained by reacting a compound having multiple phenolic hydroxyl groups in one molecule with a cyclic carbonate compound such as ethylene carbonate or propylene carbonate with an unsaturated group-containing monocarboxylic acid.
  • a carboxyl group-containing photosensitive resin obtained by reacting a reaction product with a polybasic acid anhydride.
  • a carboxyl group-containing photosensitive resin obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups in one molecule to the resins (1) to (11) above.
  • (meth)acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • the aforementioned (6) is preferably contained in a proportion of 10 to 80% by mass, more preferably contained in a proportion of 10 to 60% by mass, and 10 to 40% by mass, based on the entire carboxyl group-containing resin. It is more preferable that it be contained in a proportion of .
  • the aforementioned (7) is preferably contained in a proportion of 20 to 70% by mass, more preferably contained in a proportion of 30 to 60% by mass, and 40 to 55% by mass, based on the entire carboxyl group-containing resin. It is more preferable that it be contained in a proportion of .
  • the aforementioned (12) is preferably contained in a proportion of 20 to 40% by mass, more preferably 25 to 40% by mass, based on the entire carboxyl group-containing resin.
  • carboxyl group-containing resins can be used without being limited to those listed above, and one type may be used alone or a plurality of types may be used in combination.
  • the acid value of the carboxyl group-containing resin is preferably 40 to 150 mgKOH/g.
  • the acid value of the carboxyl group-containing resin is 40 mgKOH/g or more, alkaline development becomes good. Further, by setting the acid value to 150 mgKOH/g or less, it is possible to easily draw a good resist pattern. More preferably, it is 50 to 130 mgKOH/g.
  • the weight average molecular weight of the carboxyl group-containing resin varies depending on the resin skeleton, but is generally preferably from 2,000 to 150,000. By setting the weight average molecular weight to 2,000 or more, tack-free performance and resolution can be improved. Further, by setting the weight average molecular weight to 150,000 or less, developability and storage stability can be improved. More preferably, it is 5,000 to 30,000. Note that the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • the amount of the carboxyl group-containing resin in the curable resin composition is preferably 20 to 60% by mass in terms of solid content. By setting the content to 20% by mass or more, the strength of the coating film can be improved. Further, by setting the content to 60% by mass or less, the viscosity becomes appropriate and printability improves. More preferably, it is 25 to 50% by mass.
  • the blending amount of the entire curable resin in the curable resin composition should be 20 to 80% by mass based on the entire curable resin composition in terms of solid content, from the viewpoint of printability and adhesion of the marking ink. is preferable, and more preferably 30 to 70% by mass.
  • the curable resin composition for forming the cured product of the present invention contains a carboxyl group-containing resin, a photopolymerizable monomer, or an oligomer
  • a photopolymerization initiator may be included in order to react with light exposure.
  • the photopolymerization initiator any known ones can be used.
  • photopolymerization initiators include bis-(2,6-dichlorobenzoyl) phenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2, 6-dichlorobenzoyl)-4-propylphenylphosphine oxide, bis-(2,6-dichlorobenzoyl)-1-naphthylphosphine oxide, bis-(2,6-dimethoxybenzoyl)phenylphosphine oxide, bis-( 2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, bis-(2,6-dimethoxybenzoyl)-2,5-dimethylphenylphosphine oxide, bis-(2,4,6- Bisacylphosphine oxides such as trimethylbenzoyl)-phenylphosphine oxide; 2,6-dimethoxybenzo
  • oxime esters bis( ⁇ 5-2,4-cyclopentadien-1-yl)-bis(2,6-difluoro-3-(1H-pyrrol-1-yl)phenyl)titanium, bis(cyclopentadienyl) )-Bis[2,6-difluoro-3-(2-(1-pyl-1-yl)ethyl)phenyl]titanium and other titanocenes; phenyl disulfide 2-nitrofluorene, butyroin, anisoin ethyl ether, azobis Examples include isobutyronitrile and tetramethylthiuram disulfide. These photopolymerization initiators may be used alone or in combination of two or more.
  • ⁇ -aminoacetophenone photopolymerization initiators include Omnirad 907, 369, 369E, and 379 manufactured by IGM Resins. Further, as a commercially available acylphosphine oxide photopolymerization initiator, Omnirad 819 manufactured by IGM Resins, etc. may be mentioned.
  • Commercially available oxime ester photopolymerization initiators include Irgacure OXE01 and OXE02 manufactured by BASF Japan Co., Ltd., N-1919 manufactured by ADEKA Corporation, ADEKA Arkles NCI-831 and NCI-831E, and Changzhou Strong Electronics New Materials Co., Ltd. Examples include TR-PBG-304.
  • JP 2004-359639, JP 2005-097141, JP 2005-220097, JP 2006-160634, JP 2008-094770, JP 2008-509967, Examples include carbazole oxime ester compounds described in Japanese Patent Application Publication No. 2009-040762 and JP-A No. 2011-80036.
  • the amount of the photopolymerization initiator is preferably 1 to 30 parts by mass based on 100 parts by mass of the carboxyl group-containing resin in terms of solid content. . If the amount is 1 part by mass or more, the photocurability of the curable resin composition will be good, and the film properties such as chemical resistance will also be good. Further, when the amount is 30 parts by mass or less, an effect of reducing outgas is obtained, and furthermore, light absorption on the surface of the cured film becomes good, and deep curability is less likely to deteriorate. More preferably, it is 2 to 25 parts by mass.
  • a photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator.
  • the photoinitiation aid or sensitizer include benzoin compounds, anthraquinone compounds, thioxanthone compounds, ketal compounds, benzophenone compounds, tertiary amine compounds, and xanthone compounds.
  • thioxanthone compounds such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, and 4-isopropylthioxanthone.
  • thioxanthone compound By including the thioxanthone compound, deep curability can be improved. Although these compounds can be used as a photopolymerization initiator in some cases, it is preferable to use them in combination with a photopolymerization initiator. Moreover, one type of photoinitiation aid or sensitizer may be used alone, or two or more types may be used in combination.
  • photopolymerization initiators since these photopolymerization initiators, photoinitiation aids, and sensitizers absorb specific wavelengths, their sensitivity may become low depending on the case, and they may function as ultraviolet absorbers. However, these are not used solely for the purpose of improving the sensitivity of the curable resin composition. If necessary, it absorbs light of a specific wavelength to increase the photoreactivity of the surface, change the line shape and aperture of the resist pattern to vertical, tapered, or reverse tapered, and improve the accuracy of line width and aperture diameter. can be improved.
  • thermosetting catalyst when a thermosetting resin is included in the curable resin composition for forming the cured product of the present invention, a thermosetting catalyst may be included to promote the curing.
  • the thermosetting catalyst include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- Imidazole derivatives such as (2-cyanoethyl)-2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4-(dimethylamino)-N,N-dimethylbenzylamine, 4-methoxy-N,N-dimethylbenzyl Examples include amines, amine compounds such as 4-methyl-N,N-dimethylbenzylamine, hydrazine compounds such as adipic acid dihydrazide and sebacic acid
  • commercially available products include, for example, 2MZ-A, 2MZ-OK, 2PHZ, 2P4BHZ, and 2P4MHZ (all brand names of imidazole compounds) manufactured by Shikoku Kasei Kogyo Co., Ltd., and U-CAT manufactured by San-Apro Co., Ltd. Examples include 3513N (trade name of dimethylamine compound), DBU, DBN, U-CAT SA 102 (all bicyclic amidine compounds and salts thereof).
  • the compounds are not limited to the above-mentioned compounds, but may be any compound that acts as a thermal curing catalyst for epoxy resins and oxetane compounds, or that promotes the reaction between at least one of epoxy groups and oxetanyl groups and carboxyl groups. They may be used alone or in combination of two or more.
  • thermosetting catalysts can be used alone or in combination of two or more.
  • the blending amount of the thermosetting catalyst is determined based on the carboxyl group content in terms of solid content when the curable resin composition contains a carboxyl group-containing resin.
  • the amount is preferably 0.01 to 8 parts by weight, more preferably 0.05 to 5 parts by weight, based on 100 parts by weight of the resin.
  • the cured product of the present invention is obtained by curing a curable resin composition containing amorphous silica as an inorganic filler.
  • a curable resin composition containing amorphous silica
  • the printability when printing marking ink on the surface of the cured product, the adhesion of the marker after printing, and the visibility thereof are greatly improved.
  • the reason for this is not clear, but it is thought to be as follows. That is, since amorphous silica has a lower surface smoothness than crystalline silica, it is thought that its anchor effect improves printability and adhesion.
  • amorphous silica in the present invention refers to silica other than crystalline silica (crystalline silica includes fine crystalline silica), and although it does not have long-range order like crystalline silica, it does have short-range order. Refers to silica in a certain substance state. Thermodynamically, this is a non-equilibrium metastable state.
  • Known and commonly used amorphous silica can be used, and examples thereof include silica gel and diatomaceous earth. Further, the amorphous silica may be synthetic silica as long as it is amorphous.
  • the amorphous silica preferably has an oil absorption of 180 to 350 ml/100 g.
  • Such amorphous silica is porous, and as a result of absorbing oil from organic solvents during curing and drying, the amorphous silica and other extender pigments become more dense, resulting in poor marking ink applicability. It can be inferred that the adhesion is improved. More preferably, the oil absorption amount is 200 to 300 ml/100 g. In the present invention, oil absorption is measured in accordance with "JIS K5101-13-1:2004 Pigment Test Methods - Part 13: Oil Absorption - Section 1: Refined Linseed Oil Method".
  • amorphous silica can be used, and may be synthetic or natural. Moreover, it is not necessary to perform surface treatment or not. The type of surface treatment is the same as that for the extender pigment. Examples of the products include ACEMATT 82, ACEMATT 790, ACEMATT OK 412, and ACEMATT OK 500 (all manufactured by EVONIK DEGUSSA).
  • the amorphous silica described above may be surface-treated to improve dispersibility in the curable resin composition. By using surface-treated amorphous silica, aggregation can be suppressed.
  • the surface treatment method is not particularly limited and any known and commonly used method may be used. However, amorphous silica can be treated with a surface treatment agent having a curable reactive group, such as a coupling agent having a curable reactive group as an organic group. Preferably, the surface is treated.
  • silane-based, titanate-based, aluminate-based, zircoaluminate-based coupling agents, etc. can be used.
  • silane coupling agents are preferred.
  • examples of such silane coupling agents include vinyltrimethoxysilane, vinyltriethoxysilane, N-(2-aminomethyl)-3-aminopropylmethyldimethoxysilane, N-(2-aminoethyl)-3-amino Propyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-anilinopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 2-(3,4-epoxy Examples include cyclohexyl)ethyltrimethoxysilane, 3-methacryloxypropyltrimethoxysilane, and 3-mercaptopropyltri
  • the average particle diameter (D50) of the amorphous silica is preferably 0.1 to 10 ⁇ m, more preferably 1 to 5 ⁇ m.
  • the average particle size means the particle size at 50% cumulative volume obtained using a laser diffraction scattering particle size distribution measuring method.
  • the average particle diameter of amorphous silica shall refer to the value measured as described above for silica before preparing the curable resin composition (preliminary stirring and kneading).
  • the amount of amorphous silica blended in the curable resin composition should be 2 to 30% by mass based on the entire curable resin composition in terms of solid content, from the viewpoint of printability and adhesion of the marking ink.
  • the amount is preferably 5 to 20% by mass, and more preferably 5 to 20% by mass.
  • inorganic fillers may be added to the curable resin composition as needed in order to increase the physical strength of the cured product.
  • Known inorganic fillers can be used, and in particular, talc, mica, aluminum oxide, calcium oxide, magnesium oxide, zinc oxide, calcium carbonate, magnesium carbonate, fly ash, dehydrated sludge, kaolin, clay, calcium hydroxide, Aluminum hydroxide, magnesium hydroxide, hydrotalcite, aluminum silicate, magnesium silicate, calcium silicate, wollastonite, potassium titanate, magnesium sulfate, calcium sulfate, magnesium phosphate, sepiolite, zonolite, boron nitride, aluminum borate, Silica balloons, glass flakes, glass balloons, iron slag, copper, iron, iron oxide, sendust, alnico magnets, magnetic powders such as various ferrites, cement, glass powder, Neuburg silica, antimony trioxide, magnesium oxys
  • the above-mentioned inorganic filler also preferably has an average particle diameter (D50) of 0.1 to 200 ⁇ m, more preferably 1 to 10 ⁇ m, from the viewpoint of dispersibility and the like. Further, like amorphous silica, it may be surface-treated from the viewpoint of dispersibility.
  • D50 average particle diameter
  • the total amount of the inorganic filler combined with the amorphous silica is preferably 20 to 70% by mass, and preferably 40 to 60% by mass, based on the entire curable resin composition in terms of solid content. More preferred. This improves the ability to prevent the adhesion of the curable resin composition from decreasing and the resistance to cold and hot cycles, and as a result, the adhesion to the marking ink can be further improved.
  • the curable resin composition according to the present invention may optionally contain a colorant, an elastomer, a mercapto compound, a urethanization catalyst, a thixation agent, an adhesion promoter, a block copolymer, a chain transfer agent, At least one of polymerization inhibitors, copper damage inhibitors, antioxidants, rust preventives, thickeners such as organic bentonite and montmorillonite, antifoaming agents such as silicone-based, fluorine-based, and polymer-based antifoaming agents, and leveling agents. , phosphinates, phosphate ester derivatives, flame retardants such as phosphorus compounds such as phosphazene compounds, and other components can be blended. As these materials, those known in the field of electronic materials can be used.
  • organic solvent may be added to the curable resin composition from the viewpoint of ease of preparation and coatability.
  • organic solvents include ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene, xylene, and tetramethylbenzene; cellosolve, methyl cellosolve, butyl cellosolve, carbitol, methyl carbitol, butyl carbitol, and propylene glycol monomethyl ether.
  • Glycol ethers such as , dipropylene glycol monomethyl ether, dipropylene glycol diethyl ether, diethylene glycol monomethyl ether acetate, tripropylene glycol monomethyl ether; ethyl acetate, butyl acetate, butyl lactate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbyl Esters such as tall acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate, and propylene carbonate; aliphatic hydrocarbons such as octane and decane; petroleum solvents such as petroleum ether, petroleum naphtha, and solvent naphtha; Conventional organic solvents can be used. These organic solvents can be used alone or in combination of two or more.
  • the blending amount of the organic solvent in the curable resin composition can be changed as appropriate depending on the materials constituting the curable resin composition.
  • the amount may be 20 to 300 parts by mass based on 100 parts by mass of the group-containing resin (solid content).
  • the curable resin composition may be used in the form of a dry film or in liquid form. When used in liquid form, it may be one-liquid or two-liquid or more.
  • the photosensitive resin composition according to the present invention contains (A) a carboxyl group-containing resin, (B) a photopolymerizable monomer, and (C) a thermosetting component as essential components.
  • A a carboxyl group-containing resin
  • B a photopolymerizable monomer
  • C a thermosetting component
  • the photosensitive resin composition according to the present invention includes (A) as a carboxyl group-containing resin, (A1) a carboxyl group-containing resin having a novolak skeleton, (A2) a carboxyl group-containing resin having a bisphenol skeleton, and (A3) an unsaturated It contains a basic acid copolymerizable carboxyl group-containing resin and three types of carboxyl group-containing resins in a specific ratio.
  • the present invention by containing the above-mentioned three specific photosensitive resins in a specific ratio as the carboxyl group-containing resin, it is possible to satisfy the properties required for solder resists such as heat resistance and insulation reliability, while also achieving high plating resistance.
  • a photosensitive resin composition that can suppress liquid contamination and also suppress plating defects can be obtained. Although the reason is not certain, it can be inferred as follows.
  • (A1) As the carboxyl group-containing resin having a novolac skeleton, polyfunctional epoxy resins such as phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A cresol novolac type epoxy resin, dicyclopentadiene cresol novolac type epoxy resin, etc.
  • Carboxyl group-containing photosensitive resin (A1a) which is obtained by reacting meth)acrylic acid and adding a dibasic acid anhydride such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride to the hydroxyl group present in the side chain;
  • a carboxyl group-containing photosensitive resin (meth)acrylic acid is reacted with a polyfunctional epoxy resin in which the hydroxyl groups of the polyfunctional epoxy resin are further epoxidized with epichlorohydrin, and a polybasic acid anhydride is added to the resulting hydroxyl groups ( A1b), a cyclic ether such as ethylene oxide or a cyclic carbonate such as propylene carbonate is added to a polyfunctional phenolic compound such as a novolak resin, the resulting hydroxyl group is partially esterified with (meth)acrylic acid, and the remaining hydroxyl group is injected with a polybase.
  • Examples include carboxyl group-containing photosensitive resins obtained by adding a compound having an epoxy group and one or more (meth)acryloyl groups.
  • a cresol novolac type carboxyl group-containing resin is preferable because it has better soldering heat resistance than a phenol novolak type carboxyl group containing resin.
  • (meth)acrylate is used as a term to generically refer to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • (meth)acryloyl group is used as a generic term for an acryloyl group, a methacryloyl group, and both of them, and the same applies to other similar expressions.
  • Carboxyl group-containing resins having a bisphenol skeleton include bifunctional epoxy resins such as bisphenol A epoxy resin, hydrogenated bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S epoxy resin, and (meth)acrylic resins.
  • a carboxyl group-containing photosensitive resin (A2a) obtained by reacting an acid and adding a polybasic acid anhydride to the resulting hydroxyl group, and a polyfunctional epoxy resin in which the hydroxyl group of the above bifunctional epoxy resin is further epoxidized with epichlorohydrin.
  • Examples include carboxyl group-containing photosensitive resins obtained by adding a compound having one epoxy group and one or more (meth)acryloyl groups to a molecule such as glycidyl (meth)acrylate.
  • Each of the carboxyl group-containing resins (A1) and (A2) described above has a large number of free carboxyl groups in the side chains of the backbone polymer, and therefore can be developed with an aqueous alkaline solution.
  • the acid value of these carboxyl group-containing resins (A1) and (A2) is preferably 40 to 200 mgKOH/g.
  • the acid value of the carboxyl group-containing resins A1 and A2 is 40 to 200 mgKOH/g, alkaline development becomes easy, dissolution of the exposed area by the developer is suppressed, and it becomes easy to draw a fine resist pattern. More preferably 45 to 120 mgKOH/g.
  • the weight average molecular weight of the carboxyl group-containing resins (A1) and (A2) described above varies depending on the resin skeleton, but it affects the moisture resistance (solubility in water), resolution, developability, etc. of the coating film after exposure. From this point of view, it is generally preferably from 2,000 to 150,000, more preferably from 5,000 to 100,000.
  • the weight average molecular weight means a standard polystyrene equivalent value measured by gel permeation chromatography (GPC) method.
  • the carboxyl group-containing resin (A3) is obtained by copolymerizing a (meth)acrylic acid ester and a compound having one unsaturated group and at least one carboxyl group in one molecule.
  • (meth)acrylic acid esters include (meth)acrylates such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, and hexyl (meth)acrylate.
  • Acid alkyl esters such as 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, caprolactone-modified 2-hydroxyethyl (meth)acrylate, Glycol-modified (meth)acrylates such as methoxydiethylene glycol (meth)acrylate, ethoxydiethylene glycol (meth)acrylate, isooctyloxydiethylene glycol (meth)acrylate, methoxytriethylene glycol (meth)acrylate, and methoxypolyethylene glycol (meth)acrylate, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • examples of compounds having one unsaturated group and at least one carboxyl group in one molecule include acrylic acid, methacrylic acid, and modified unsaturated monocarboxylic acids in which the chain between the unsaturated group and the carboxylic acid is extended. , for example, ⁇ -carboxyethyl (meth)acrylate, 2-acryloyloxyethylsuccinic acid, 2-acryloyloxyethylhexahydrophthalic acid, unsaturated monocarboxylic acid having an ester bond by lactone modification, modified unsaturated having an ether bond, etc.
  • examples include monocarboxylic acids and those containing two or more carboxyl groups in the molecule, such as maleic acid. These may be used alone or in combination of two or more.
  • an unsaturated basic acid copolymerizable carboxyl group-containing resin the above-described unsaturated basic acid copolymer resin (i.e., (meth)acrylic ester) and one unsaturated base acid copolymer resin in one molecule are used.
  • a resin is produced by reacting some of the acid groups of a copolymer resin (obtained by copolymerizing a saturated group and a compound having at least one carboxyl group) with the epoxy groups of an unsaturated compound containing an alicyclic epoxy group.
  • a resin having an unsaturated group introduced therein can be preferably used.
  • PCBT characteristics are further improved by using an unsaturated basic acid copolymerizable carboxyl group-containing resin together with the carboxyl group-containing resins (A1) and (A2) described above in a specific ratio.
  • the alicyclic epoxy group-containing unsaturated compound that reacts with a portion of the acid groups of the unsaturated basic acid copolymer resin described above has one radically polymerizable unsaturated group and an alicyclic epoxy group in one molecule.
  • compounds having both an alicyclic epoxy group and an acrylic group are preferred, such as 3,4-epoxycyclohexylmethyl acrylate, 3,4-epoxycyclohexylethyl acrylate, 3,4-epoxycyclohexylbutyl acrylate, etc. Can be mentioned. These may be used alone or in combination of two or more.
  • unsaturated compounds containing aliphatic epoxy groups such as glycidyl (meth)acrylate, ⁇ -methylglycidyl (meth)acrylate, allylglycidyl ether, etc. May be used together.
  • the weight average molecular weight of the carboxyl group-containing resin (A3) above varies depending on the resin skeleton, but from the viewpoint of moisture resistance (solubility in water), resolution, developability, etc. of the coating film after exposure, it is generally It is preferably 3,000 to 100,000, more preferably 5,000 to 50,000.
  • the total blending amount of the carboxyl group-containing resin (A1) and the carboxyl group-containing resin (A2) is 60 to 80% by mass based on the entire carboxyl group-containing resin (A). It is. Further, the blending amount of the carboxyl group-containing resin (A3) is 40 to 20% by mass based on the entire carboxyl group-containing resin (A).
  • the compounding amount of each carboxyl group-containing resin is the compounding amount in terms of solid content (the same applies hereinafter).
  • the total blending amount of the carboxyl group-containing resin (A1) and the carboxyl group-containing resin (A2) should be 65 to 75% by mass based on the entire carboxyl group-containing resin (A) from the viewpoint of gold plating resistance. preferable.
  • the blending amount of the carboxyl group-containing resin (A1) is determined from the viewpoint of preventing gold plating from adhering to the entire (A) carboxyl group-containing resin. It is preferably contained in a proportion of 10 to 60% by mass, and more preferably contained in a proportion of 10 to 40% by mass.
  • the blending amount of the carboxyl group-containing resin (A2) should be 20 to 60% by mass based on the entire carboxyl group-containing resin (A) from the viewpoint of suppressing development residue from re-adhering to the substrate. is preferable, and more preferably 40 to 60% by mass.
  • the blending amount of the carboxyl group-containing resin (A3) is preferably 40 to 20% by mass based on the entire carboxyl group-containing resin (A) from the viewpoint of suppressing PCT resistance and gold plating abnormalities.
  • the amount of the carboxyl group-containing resin (A) is preferably 20 to 60% by mass based on the entire photosensitive resin composition. By setting the content to 20% by mass or more, the strength of the coating film can be improved. Further, by setting the content to 60% by mass or less, the viscosity becomes appropriate and workability is improved. More preferably, it is 25 to 50% by mass.
  • the photopolymerizable monomer (B) contained in the photosensitive resin composition is a monomer having an ethylenically unsaturated double bond.
  • the photopolymerizable monomer those shown in the above-mentioned curable resin composition can be used.
  • the amount of the photopolymerizable monomer (B) in the photosensitive resin composition is preferably 1 to 50 parts by weight, and 5 to 40 parts by weight, based on 100 parts by weight of the carboxyl group-containing resin, in terms of solid content. It is more preferable that
  • the photosensitive resin composition according to the present invention may contain a photopolymerization initiator in order to react the above-mentioned (A) carboxyl group-containing resin and (B) photopolymerizable monomer by exposure to light.
  • a photopolymerization initiator those shown in the above-mentioned curable resin composition can be used.
  • the amount of the photopolymerization initiator to be blended is preferably 1 to 20 parts by weight based on 100 parts by weight of the carboxyl group-containing resin (A) in terms of solid content. If the amount is 1 part by mass or more, the photocurability of the photosensitive resin composition will be good, and the film properties such as chemical resistance will also be good. Further, when the amount is 20 parts by mass or less, an effect of reducing outgas is obtained, and furthermore, light absorption on the surface of the cured film becomes good, and deep curability is less likely to deteriorate. More preferably, it is 2 to 15 parts by mass.
  • a photoinitiation aid or a sensitizer may be used in combination with the photopolymerization initiator.
  • the photoinitiation aid or sensitizer those shown in the above-mentioned curable resin composition can be used.
  • the photosensitive resin composition according to the present invention contains (C) a thermosetting component in addition to (A) a carboxyl group-containing resin and (B) a photopolymerizable monomer.
  • a thermosetting component By including a thermosetting component, the barrier properties (for example, etching resistance, etc.) of the cured film in the subsequent process are improved, and resolution and removability can be achieved at a high level.
  • the thermosetting component those shown as "curable resin" in the above-mentioned curable resin composition can be used.
  • an epoxy resin having an isocyanuric ring can be preferably used from the viewpoint of achieving both resolution and releasability.
  • the epoxy resin having an isocyanuric ring include 1,3-bis(2,3-epoxypropyl)-5-(2-propenyl)-1,3,5-triazine-2,4,6(1H,3H ,5H)-trione; 1,3,5-tris(2,3-epoxypropyl)-1,3,5-triazine-2,4,6(1H,3H, 5H)-trione, 1,3,5-tris(2,3-epoxy-2-methylpropyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1, 3,5-tris(3,4-epoxybutyl)-1,3,5-triazine-2,4,6(1H,3H,5H)-trione, 1,3,5-
  • epoxy resins having an isocyanuric ring include, for example, TEPIC-PAS B26L, TEPIC-PAS B22, TEPIC-VL, TEPIC-UC, TEPIC-G, TEPIC-S, TEPIC-SP manufactured by Nissan Chemical Co., Ltd.
  • Examples include TEPIC-SS.
  • the blending amount of the thermosetting component (C) is such that the number of functional groups of the thermosetting component (C) reacting is 0.8 to 2.0 per 1.0 mol of carboxyl groups contained in the carboxyl group-containing resin (A).
  • the amount is preferably 5 mol, more preferably 1.0 to 2.0 mol.
  • the epoxy group of the epoxy resin is preferably 1.0 to 2.0 mol per 1.0 mol of carboxyl group of the carboxyl group-containing resin (A).
  • the amount is 1 mol or more, carboxyl groups can be prevented from remaining in the cured film, and good heat resistance, alkali resistance, electrical insulation, etc. can be obtained.
  • the above-mentioned amount is 2 mol or less, it is possible to prevent the low molecular weight cyclic (thio)ether group from remaining in the dried coating film, and to ensure good strength etc. of the cured coating film.
  • the photosensitive resin composition may contain a thermosetting catalyst for accelerating the curing of the thermosetting component (C) described above.
  • a thermosetting catalyst for accelerating the curing of the thermosetting component (C) described above.
  • the thermosetting catalyst those shown in the above-mentioned curable resin composition can be used.
  • thermosetting catalysts can be used alone or in combination of two or more.
  • the blending amount of the thermosetting catalyst is 0.01 to 8 parts by mass per 100 parts by mass of (A) carboxyl group-containing resin in terms of solid content. It is preferably 0.05 to 5 parts by weight, more preferably 0.05 to 5 parts by weight.
  • the photosensitive resin composition according to the present invention may contain (D) an inorganic filler, if necessary, in order to increase the physical strength of the cured film.
  • an inorganic filler known fillers can be used, especially silica, talc, mica, aluminum oxide, calcium oxide, magnesium oxide, zinc oxide, calcium carbonate, magnesium carbonate, fly ash, dehydrated sludge, kaolin, clay, and hydroxide.
  • Calcium aluminum hydroxide, magnesium hydroxide, hydrotalcite, aluminum silicate, magnesium silicate, calcium silicate, wollastonite, potassium titanate, magnesium sulfate, calcium sulfate, magnesium phosphate, sepiolite, zonolite, boron nitride, boric acid
  • Examples include sulfate, hydrated aluminum, hydrated gypsum, alum, and barium sulfate.
  • One type of other inorganic fillers may be used alone, or two or more types may be used in combination.
  • silica talc and barium sulfate are preferred.
  • the silica may be either amorphous or crystalline, or a mixture thereof. Particularly preferred is amorphous (fused) silica.
  • the inorganic filler used preferably has an average particle diameter (D50) of 0.1 to 100 ⁇ m, more preferably 0.1 to 50 ⁇ m, from the viewpoint of dispersibility and the like.
  • D50 average particle diameter
  • the average particle size means the particle size at 50% cumulative volume obtained using a laser diffraction scattering particle size distribution measuring method.
  • the average particle diameter of the filler shall refer to the value measured as described above for the filler before preparing the photosensitive resin composition (preliminary stirring and kneading).
  • the blending amount of the inorganic filler in the photosensitive resin composition is preferably 1 to 500 parts by mass, more preferably 10 to 300 parts by mass, based on 100 parts by mass of the carboxyl group-containing resin, in terms of solid content. preferable. This makes it possible to further improve the ability to prevent a decrease in adhesion and the resistance to cold/hot cycles of the photosensitive resin composition.
  • the above-mentioned inorganic filler may be surface-treated to improve dispersibility in the photosensitive resin composition.
  • a surface-treated inorganic filler By using a surface-treated inorganic filler, aggregation can be suppressed.
  • the surface treatment method is not particularly limited and any known and commonly used method may be used, but the surface of the inorganic filler may be treated with a surface treatment agent having a curable reactive group, such as a coupling agent having a curable reactive group as an organic group. Preferably.
  • silane coupling agents are preferably immobilized on the surface of the inorganic filler in advance by adsorption or reaction.
  • the amount of the coupling agent to be treated with respect to 100 parts by mass of the inorganic filler is preferably 0.5 to 10 parts by mass.
  • the photosensitive resin composition according to the present invention may contain, if necessary, those shown as “other components” in the above-mentioned curable resin composition.
  • the photosensitive resin composition of the present invention may contain an organic solvent from the viewpoint of ease of preparation and coatability.
  • organic solvent those shown in the above-mentioned curable resin composition can be used.
  • the blending amount of the organic solvent in the photosensitive resin composition can be changed as appropriate depending on the material constituting the photosensitive resin composition, for example, based on 100 parts by mass of (A) carboxyl group-containing resin (solid content). The amount can be 30 to 300 parts by mass. Note that the blending amount of the organic solvent herein includes the organic solvent contained in the varnish when a resin such as (A) carboxyl group-containing resin is used as a varnish.
  • the photosensitive resin composition of the present invention may be used in the form of a dry film or in liquid form. When used in liquid form, it may be one-liquid or two-liquid or more.
  • the above-mentioned curable resin composition and the photosensitive resin composition of the present invention consist of a first film and the above-mentioned curable resin composition or the above-mentioned photosensitive resin composition formed on the first film. It can also be in the form of a dry film including a resin layer.
  • the first film in the dry film of the present invention is formed by heating or the like on a base material such as a substrate so that the resin layer side made of a curable resin composition or a photosensitive resin composition formed on the dry film is in contact with the base material. When laminated and integrally molded, it refers to the material that is adhered to at least the resin layer.
  • the first film may be peeled off from the resin layer in a step after lamination. In particular, in the present invention, it is preferable to peel off the resin layer in the step after exposure.
  • the curable resin composition or the photosensitive resin composition is diluted with an organic solvent to adjust the viscosity to an appropriate level, and then coated with a comma coater, blade coater, lip coater, rod coater, squeeze coater,
  • a film can be obtained by applying it to a uniform thickness on the first film using a reverse coater, transfer roll coater, gravure coater, spray coater, etc., and drying it for 1 to 30 minutes, usually at a temperature of 50 to 130°C. .
  • the coating film thickness is generally appropriately selected within the range of 1 to 150 ⁇ m, preferably 10 to 60 ⁇ m after drying.
  • any known film can be used without any particular restriction, such as polyester films such as polyethylene terephthalate and polyethylene naphthalate, polyimide films, polyamide-imide films, polypropylene films, polystyrene films, etc.
  • a film made of plastic resin can be suitably used.
  • polyester films are preferred from the viewpoints of heat resistance, mechanical strength, handleability, and the like.
  • a laminate of these films can also be used as the first film.
  • thermoplastic resin film as described above is preferably a film stretched in a uniaxial direction or a biaxial direction.
  • the thickness of the first film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the surface of the resin layer is further coated to prevent dust from adhering to the surface of the resin layer. It is preferable to laminate a second removable film on top of the film.
  • the second film in the dry film according to the present invention refers to a film that is peeled off from the resin layer before lamination when the dry film is laminated and integrally molded by heating or the like so that the resin layer side of the dry film is in contact with a base material such as a substrate. say.
  • the second film that can be peeled off from the resin layer for example, polyethylene film, polytetrafluoroethylene film, polypropylene film, surface-treated paper, etc. can be used. It is sufficient if the adhesive force between the resin layer and the second film is smaller than the adhesive force between the resin layer and the first film.
  • the thickness of the second film is not particularly limited, but can be, for example, 10 ⁇ m to 150 ⁇ m.
  • the cured product of the present invention can be obtained by curing the above-described curable resin composition or the resin layer of a dry film.
  • the curable resin composition is adjusted to a viscosity suitable for the coating method using the above-mentioned organic solvent, and then applied onto the substrate using a dip coating method, a flow coating method, a roll coating method, a bar coating method, or a screen printing method.
  • a tack-free resin layer is formed by applying it to the surface of a substrate, etc. using a method such as curtain coating, and then drying (temporary drying) by volatilizing the organic solvent contained in the composition at a temperature of 60 to 100°C. do.
  • the resin layer is bonded onto the base material using a laminator or the like so that the resin layer is in contact with the base material, and then the carrier film is peeled off to form the resin layer on the base material.
  • the above-mentioned base materials include printed wiring boards and flexible printed wiring boards on which circuits are previously formed using copper, etc., as well as paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/nonwoven epoxy, and glass cloth/paper epoxy.
  • synthetic fiber epoxy, fluororesin/polyethylene/polyphenylene ether, polyphenylene oxide/cyanate, etc. are used in materials such as copper-clad laminates for high-frequency circuits, and all grades (FR-4, etc.) of copper-clad laminates are used.
  • Other examples include metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates, and the like.
  • the dry film When it is in the form of a dry film, it is preferable to bond it onto the substrate using a vacuum laminator or the like under pressure and heat.
  • a vacuum laminator By using such a vacuum laminator, when using a board with a circuit formed thereon, even if the circuit board surface is uneven, the dry film will adhere tightly to the circuit board, so there will be no air bubbles mixed in.
  • the ability to fill in the recesses on the substrate surface is also improved.
  • the pressurizing condition is preferably about 0.1 to 2.0 MPa, and the heating condition is preferably 40 to 120°C.
  • the cured resin composition contains an organic solvent
  • Volatile drying is carried out by using a hot air circulation drying oven, IR oven, hot plate, convection oven, etc. (equipped with a steam-based air heating heat source) and by bringing the hot air in the dryer into countercurrent contact with the substrate through a nozzle. This can be done using a spraying method).
  • a resin layer on the base material After forming a resin layer on the base material, it is selectively exposed to active energy rays through a photomask with a predetermined pattern formed thereon, and the unexposed areas are treated with a dilute alkaline aqueous solution (for example, 0.3 to 3 mass% sodium carbonate aqueous solution).
  • a dilute alkaline aqueous solution for example, 0.3 to 3 mass% sodium carbonate aqueous solution.
  • the cured product is developed to form a pattern.
  • the first film after exposure, the first film is peeled off from the dry film and developed to form a patterned cured product on the base material.
  • the first film may be peeled off from the dry film before exposure, and the exposed resin layer may be exposed and developed, as long as the properties are not impaired.
  • the exposure machine used for the active energy ray irradiation may be any device that is equipped with a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a mercury short arc lamp, etc., and irradiates ultraviolet rays in the range of 350 to 450 nm.
  • a direct drawing device for example, a laser direct imaging device that draws an image directly with a laser using CAD data from a computer
  • the lamp light source or laser light source of the direct drawing machine may have a maximum wavelength in the range of 350 to 450 nm.
  • the exposure amount for image formation varies depending on the film thickness, etc., but can generally be in the range of 10 to 1000 mJ/cm 2 , preferably 20 to 800 mJ/cm 2 .
  • the above development method may be a dipping method, a shower method, a spray method, a brush method, etc.
  • the developer may be potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, etc.
  • Alkaline aqueous solutions such as ammonia and amines can be used.
  • the cured product of the present invention can be obtained by heating and curing (eg, 100 to 220°C) after the above-described exposure and development (main curing). At this time, in order to keep the average coefficient of linear expansion within the range of 70 to 100 ppm/°C, it is preferable to irradiate the cured product with active energy rays after heat curing. By irradiating active energy rays again after heating and curing, depending on the composition of the curable resin composition, the photopolymerizable monomer etc. can be further cured, and it is possible to adjust the coefficient of average linear expansion to the desired value. Excellent adhesion after marking ink hardens.
  • the active energy ray irradiation after heat curing is preferably carried out at an exposure dose of 500 to 2000 mJ/cm 2 , although it depends on the composition of the curable resin composition.
  • Examples of the device include high-pressure mercury lamps (3 lamps of 80 W/cm 3 ).
  • the cured product of the present invention is used, for example, to form a solder resist, coverlay, or interlayer insulating layer of electronic components such as printed wiring boards. It may also be used to form solder dams on printed wiring boards. Among them, it is preferable to use it to form a solder resist.
  • the cured product of the present invention when the cured product is formed on a printed wiring board to be described later, it is easy to apply marking ink to the surface of the cured product, it has excellent adhesion with the marking ink after curing, and it also has characters on the surface. It is possible to form markers with excellent visibility of signs and symbols.
  • the cured product obtained from the resin layer of the photosensitive resin composition of the present invention or its dry film after exposing and developing to form a pattern of the cured product on the substrate, the cured product is further exposed to active energy rays.
  • active energy rays Various properties such as adhesion and hardness can be improved by heat curing after irradiation (for example, 100 to 220°C), or by irradiating active energy rays after heat curing, or by final curing (main curing) by heat curing only.
  • a coating (cured coating) made of an excellent cured product can be formed.
  • the printed wiring board of the present invention has a cured product of the present invention, or a cured product obtained from the photosensitive resin composition of the present invention or a dry film thereof.
  • the method for producing the cured product is as described above.
  • the base materials for forming printed wiring boards include paper phenol, paper epoxy, glass cloth epoxy, glass polyimide, glass cloth/nonwoven epoxy, It uses materials such as glass cloth/paper epoxy, synthetic fiber epoxy, fluororesin/polyethylene/polyphenylene ether, polyphenylene oxide/cyanate, etc. for high frequency circuits, and is compatible with all grades (FR-4, etc.). ), metal substrates, polyimide films, polyethylene terephthalate films, polyethylene naphthalate (PEN) films, glass substrates, ceramic substrates, wafer plates, etc.
  • solder reflow processing can be performed by a conventionally known method. Further, solder reflow is generally performed under processing conditions of, for example, 245 to 260° C. for 5 to 10 seconds.
  • the photosensitive resin composition of the present invention or its dry film is suitably used for manufacturing electronic parts such as printed wiring boards, and more suitably used for forming a permanent film. At that time, a cured product is formed by the method described above using the photosensitive resin composition of the present invention or a dry film thereof.
  • the resin layer of the photosensitive resin composition of the present invention or its dry film is insulating, it is preferably used to form a solder resist, a coverlay, or an interlayer insulation layer. Note that the photosensitive resin composition according to the present invention may be used to form a solder dam.
  • This reaction product was cooled to 80 to 90°C, 106 parts of tetrahydrophthalic anhydride was added, and the reaction product was allowed to react for 8 hours. After cooling, it was taken out.
  • the thus obtained carboxyl group-containing resin solution had a solid content of 65%, an acid value of the solids of 85 mgKOH/g, and a weight average molecular weight of 10,000.
  • this resin solution will be referred to as varnish A1-1.
  • the carboxyl group-containing resin solution thus obtained had a solid content of 65%, an acid value of the solid content of 78 mgKOH/g, and a weight average molecular weight of 8,000.
  • this resin solution will be referred to as varnish A1-2.
  • the obtained epoxy resin about 3.1 out of 3.3 alcoholic hydroxyl groups in the bisphenol A type epoxy resin as the starting material were epoxidized, as calculated from the epoxy equivalent. 310 parts of the obtained epoxy resin and 282 parts of carbitol acetate were charged into a flask, heated to 90°C, stirred, and dissolved. The obtained solution was once cooled to 60°C, 72 parts (1 mol) of acrylic acid, 0.5 part of methylhydroquinone, and 2 parts of triphenylphosphine were added, heated to 100°C, and reacted for about 60 hours to remove the acid. A reactant having a value of 0.2 mgKOH/g was obtained.
  • varnish A2-1 140 parts (0.92 mol) of tetrahydrophthalic anhydride was added to this and heated to 90°C to obtain a carboxyl group-containing resin solution.
  • the thus obtained carboxyl group-containing resin solution had a solid content of 64.0%, an acid value of the solid content of 100 mgKOH/g, and a weight average molecular weight of 15,000.
  • this resin solution will be referred to as varnish A2-1.
  • the obtained epoxy resin about 5 out of 6.2 alcoholic hydroxyl groups in the bisphenol F type epoxy resin as the starting material were epoxidized, as calculated from the epoxy equivalent. 310 parts of the obtained epoxy resin and 282 parts of carbitol acetate were charged into a flask, heated to 90°C and stirred to dissolve. The obtained solution was once cooled to 60°C, 72 parts (1 mol) of acrylic acid, 0.5 part of methylhydroquinone, and 2 parts of triphenylphosphine were added, heated to 100°C, and reacted for about 60 hours to remove the acid. A reactant having a value of 0.2 mgKOH/g was obtained.
  • varnish A2-2 140 parts (0.92 mol) of tetrahydrophthalic anhydride was added to this and heated to 90°C to obtain a carboxyl group-containing resin solution.
  • the thus obtained carboxyl group-containing resin solution had a solid content of 65.0%, an acid value of the solid content of 100 mgKOH/g, and a weight average molecular weight of 15,000.
  • this resin solution will be referred to as varnish A2-2.
  • varnish A3-1 a carboxyl group-containing resin having a solid content of 53.8%, an acid value of the solid content of 108.9 mgKOH/g, and a weight average molecular weight of 25,000 was obtained.
  • this resin solution will be referred to as varnish A3-1.
  • reaction solution was cooled to room temperature, neutralized with 35.35 parts of a 15% aqueous sodium hydroxide solution, and then washed with water. Thereafter, the toluene was distilled off using an evaporator while replacing it with 118.1 parts of carbitol acetate to obtain a novolac type acrylate resin solution. Subsequently, 332.5 parts of the obtained novolac type acrylate resin solution and 1.22 parts of triphenylphosphine were charged into a reactor equipped with a stirrer, a thermometer, and an air blowing tube, and air was introduced at a rate of 10 ml/min.
  • varnish B1 a resin solution of a carboxyl group-containing photosensitive resin having a solid content of 71%, an acid value of 88 mgKOH/g, and a weight average molecular weight of 2,500 was obtained.
  • this resin solution will be referred to as varnish B1.
  • this resin solution was cooled to 60°C, 0.7 part of triphenylphosphine was added, heated to 100°C, and reacted for about 32 hours to obtain a resin solution with a solid content of 50% and an epoxy equivalent of 371 g/equivalent.
  • Ta 203 parts of 1,5-dihydroxynaphthalene having a hydroxyl group equivalent of 80 g/equivalent was added to a reaction vessel equipped with a gas introduction pipe, a stirring device, a cooling pipe, a thermometer, and a dropping funnel for continuous dropping of an aqueous alkali metal hydroxide solution.
  • each component *1 to *18 in Table 1 below is as follows.
  • *1 Dipentaerythritol penta and hexaacrylate, photopolymerizable monomer (DPHA, manufactured by Kyoeisha Chemical Co., Ltd.)
  • DPHA photopolymerizable monomer
  • oligomer oligomer
  • Cresol novolac type epoxy resin RN-695, manufactured by DIC Corporation
  • *4 Triepoxy resin with isocyanuric ring (TEPIC-S, manufactured by Nissan Chemical Co., Ltd.) *5: Bisphenol A type epoxy resin (jER 828, manufactured by Mitsubishi Chemical Corporation) *6: Dicyclopentadiene skeleton-containing polyfunctional solid epoxy resin (HP-7200, manufactured by DIC Corporation) *7: Biphenylaralkyl epoxy resin (YX-4000, manufactured by Nippon Kayaku Co., Ltd.) *8: Biphenylaralkyl epoxy resin (NC3000H
  • Example 2 using an exposure device equipped with a metal halide lamp, and developed (30°C, 0.2 MPa, 30°C, 1 wt% Na 2 CO 3 solution). ) was performed for 60 seconds and the remaining step tablet pattern had 7 steps, which was defined as the optimum exposure amount. Furthermore, after exposure and development, the film was cured at 150° C. for 30 minutes. After curing, for Examples 1 and 2 and Comparative Example 2, the surface of the coating film was further irradiated using a high-pressure mercury lamp (80 W/cm 3 lights, 1000 mJ/cm 2 ) to form a cured product (cured film). Test board 1 was obtained.
  • a high-pressure mercury lamp 80 W/cm 3 lights, 1000 mJ/cm 2
  • the average coefficient of linear expansion from 0 to 180°C and glass transition temperature (Tg) of the obtained cured product were measured as follows.
  • the cured product obtained as described above was cut into a test piece with a width of 3 mm and a length of 30 mm.
  • the expansion coefficient was measured.
  • the maximum tensile load was 50 N/m
  • the span (distance between chucks) was 10 mm
  • the temperature increase rate was 10° C./min.
  • the test piece was attached to a thermomechanical analyzer, heated from 30°C to 200°C, left for 10 minutes, cooled to -30°C at a cooling rate of -10°C/min, and then heated from -30°C to 250°C.
  • (1/LS) ⁇ [ ⁇ L(180)-L(0) ⁇ /(T(180)-T(0)]
  • L(0) Length of test piece (cured product) before measurement (measured value)
  • L(0) Amount of change in length of test piece (cured product) at 0°C (measured value)
  • L (180) Amount of change in length of test piece (cured product) at 180°C (measured value) T(0): 0(°C) T(180): 180(°C) It is.
  • ⁇ Marking evaluation> (1) Printability A marking ink (PMR-6000 W30, manufactured by Taiyo Ink Manufacturing Co., Ltd.) was applied to the surface of the cured coating film of the test substrate obtained in the above manner in a rectangular shape with a size of 10 x 20 mm. Printing was performed so that the film thickness after curing was 20 ⁇ m. This was dried at 80° C. for 30 minutes to form a marker. The printing condition of the marker portion was visually confirmed, and the marking printability was evaluated using the following evaluation criteria. ⁇ : No bleeding or blurring is observed. ⁇ : Staining or blurring is observed. The evaluation results are as shown in Table 2 below.
  • Adhesion A marking ink (PMR-6000 W30, manufactured by Taiyo Ink Mfg. Co., Ltd.) was applied to the surface of the cured coating film of the test substrate obtained as above in a rectangular shape of 10 x 20 mm in size. Printing was performed so that the film thickness after curing was 20 ⁇ m. After drying this at 80° C. for 30 minutes, it was exposed to light in a pattern that left letters and symbols approximately 10 to 20 ⁇ m in the printed area, and this was developed with 1 wt% Na 2 CO 3 at 30° C. for 60 seconds. As for the exposure amount, after drying, it was exposed through a step tablet (Kodak No.
  • the cured resin composition formed using a curable resin composition that does not contain amorphous silica It can be seen that, like the other comparative examples, the marking ink printability of the product was not good, and the adhesion with the marking ink was also insufficient.
  • a developing machine manufactured by Tokyo Kakoki Co., Ltd., solder resist developing device (150 L) containing 1% Na 2 CO 3 aqueous solution (liquid temperature 30°C) was used. 100 sheets were developed using a tank)), and the number of re-deposition of development residue was visually confirmed.
  • the evaluation criteria were as follows. ⁇ : 0 pieces were re-attached. ⁇ : 1 to 9 pieces were re-attached. ⁇ : 10 or more pieces were re-attached. The evaluation results are as shown in Table 3 below.
  • PCBT Pressure Cooker Bias Test
  • test substrate After the substrate with the dried coating film was left at room temperature for 30 minutes, it was exposed to light at an exposure dose of 400 mJ/cm 2 and was placed in a developing machine (Tokyo) containing a 1% Na 2 CO 3 aqueous solution (liquid temperature 30°C). Development was performed for 60 seconds using a solder resist developing device (150 L tank) manufactured by Kakoki Co., Ltd. Subsequently, a post-cure treatment was performed at 150° C. for 60 minutes to harden the coating film, thereby producing a substrate provided with a cured film (hereinafter referred to as "test substrate").
  • test substrate a substrate provided with a cured film
  • the insulation reliability of the obtained test board was continuously measured in a tank using an insulation deterioration evaluation tester (MIG-8600B manufactured by IMV Corporation) at 121 ° C. and 97% humidity with an applied voltage of 30 V. The time required for the resistance to decrease to 10 6 ⁇ or less and to lose insulation was measured.
  • the evaluation criteria were as follows. ⁇ : 150 hours or more ⁇ : 100 to 149 hours ⁇ : 50 to 99 hours ⁇ : 49 hours or less.
  • the evaluation results were as shown in Table 3 below.
  • the following evaluation was performed as an evaluation item for suppressing plating defects. Specifically, the above test board was degreased by immersing it in an acidic degreasing solution (20 vol% aqueous solution of Metex L-5B manufactured by Nippon MacDermid Co., Ltd.) at 30°C for 3 minutes, and then immersing it in running water for 3 minutes. I washed it with water. Next, the test substrate was immersed in a 14.3 wt % ammonium persulfate aqueous solution at room temperature for 3 minutes to perform soft etching, and then immersed in running water for 3 minutes and washed with water.
  • an acidic degreasing solution (20 vol% aqueous solution of Metex L-5B manufactured by Nippon MacDermid Co., Ltd.
  • I washed it with water.
  • the test substrate was immersed in a 14.3 wt % ammonium persulfate aqueous solution at room temperature for 3 minutes to perform soft etching
  • the test substrate was immersed in a 10 vol % sulfuric acid aqueous solution at room temperature for 1 minute, then immersed in running water for 30 seconds to 1 minute and rinsed with water. Subsequently, the test board was immersed in a 30°C catalyst solution (a 10 vol% aqueous solution of Metal Plate Activator 350, manufactured by Meltex Co., Ltd.) for 7 minutes to apply the catalyst, and then immersed in running water for 3 minutes and washed with water. did. Electroless nickel plating was performed by immersing the catalyst-applied test substrate in a nickel plating solution (manufactured by Meltex Co., Ltd., 20 vol% aqueous solution of Melplate Ni-865M, pH 4.6) for 30 minutes at 85°C. .
  • a nickel plating solution manufactured by Meltex Co., Ltd., 20 vol% aqueous solution of Melplate Ni-865M, pH 4.6
  • the test substrate was immersed in a 10 vol % sulfuric acid aqueous solution at room temperature for 1 minute, then immersed in running water for 30 seconds to 1 minute and rinsed with water.
  • the test board was immersed for 30 minutes in a gold plating solution (manufactured by Meltex Co., Ltd., aqueous solution of Ourolectrores UP 15 vol% and potassium gold cyanide 3 vol%, pH 6) at 95°C, resulting in a thickness of Ni of 5 ⁇ m and Au of 0.05 ⁇ m.
  • a gold plating solution manufactured by Meltex Co., Ltd., aqueous solution of Ourolectrores UP 15 vol% and potassium gold cyanide 3 vol%, pH 6
  • the Pad portion of the test substrate that was subjected to the electroless gold plating treatment as described above was visually checked to see if it had been plated, and the presence or absence of unplatedness was evaluated based on the following criteria. ⁇ : No plating was observed to be deposited. ⁇ : One place where plating was not deposited was observed. ⁇ : Non-adhesive plating was observed at many places. The evaluation results were as shown in Table 3 below.
  • the following evaluation was performed as an item for evaluating the suppression of contamination of the plating solution. Specifically, the Pad portion of the test board was visually checked for any abnormality on the plated surface, and the presence or absence of any abnormality on the plating surface was evaluated based on the following criteria. ⁇ : 0 abnormal locations ⁇ : 1 abnormal location ⁇ : Many abnormal locations The evaluation results were as shown in Table 3 below.
  • the photosensitive resin compositions (Examples 4 to 8) in which three specific carboxyl group-containing resins are combined in specific proportions meet the requirements of solder resists such as insulation reliability. It can be seen that the contamination of the plating solution and the occurrence of plating defects can be suppressed while satisfying the above characteristics.
  • the photosensitive resin composition (Comparative Example 4) in which only a carboxyl group-containing resin having a novolak skeleton is used as the carboxyl group-containing resin, contamination of the plating solution and occurrence of plating defects can be suppressed, but insulation reliability etc. The properties required for solder resist are insufficient.
  • a photosensitive resin composition (Comparative Example 5) using two types of carboxyl group-containing resins, a carboxyl group-containing resin having a novolak skeleton and a carboxyl group-containing resin having a bisphenol skeleton, and a carboxyl group-containing resin having a bisphenol skeleton
  • a photosensitive resin composition (Comparative Example 6) in which two types of carboxyl group-containing resin and unsaturated basic acid copolymerizable resin were used in combination, abnormalities appeared on the plating surface and contamination of the plating solution appears to have occurred.
  • a photosensitive resin composition (Comparative Example 7) in which two types of carboxyl group-containing resins, a carboxyl group-containing resin having a novolak skeleton and an unsaturated basic acid copolymerizable carboxyl group-containing resin, It can be seen that defects such as non-plating occur due to the influence of the residue. Furthermore, even when three specific types of carboxyl group-containing resins are combined, the photosensitive resin composition (Comparative Example 8) in which each component is outside the predetermined ratio range has poor solder resist properties such as insulation reliability. It can be seen that although the required characteristics were met, defects such as non-plating occurred due to the influence of residues in the developer, as well as abnormalities on the plating surface and contamination of the plating solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

表面にマーキングインキを塗布しやすく、硬化後のマーキングインキとの密着性に優れ、さらに表面に文字や記号の視認性に優れたマーカーを形成できる硬化物を提供する。硬化性樹脂および無機フィラーを含む硬化性樹脂組成物からなる硬化物であって、無機フィラーが非晶質シリカを含み、厚さ20μmの硬化物の、0℃から180℃に温度変化した際の平均線膨張率が70~100ppm/℃であることを特徴とする、硬化物とする。

Description

硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板 関連出願の相互参照
 本願は、2022年3月31日に日本に出願された特願2022-060840号、および2022年3月31日に日本に出願された特願2022-060828号に基づき優先権を主張し、その内容をここに援用する。
 本発明は、硬化物、感光性樹脂組成物に関し、より詳細には、硬化性樹脂組成物、感光性樹脂組成物およびドライフィルムの硬化物、ならびに当該硬化物からなる被膜を備えたプリント配線板に関する。
 一般に、電子機器などに用いられるプリント配線板において、プリント配線板に電子部品を実装する際のはんだリフローなどの工程においてプリント配線板の不要な部分にはんだが付着するのを防止するために、回路パターンの形成された基板上の接続孔を除く領域にソルダーレジスト層が形成されている。ソルダーレジスト層は、基板に液状の硬化性樹脂組成物を塗布した後に硬化させて形成したり、あるいは、液状の硬化性樹脂組成物を使用することなく、硬化性のドライフィルムを使用して形成される。ソルダーレジスト層の形成に適した組成物として、例えば、特許文献1には、特定の酸価を有するカルボキシル基含有樹脂、アクリル系共重合体、エポキシ樹脂等を含む硬化性樹脂組成物が開示されている。また、特許文献2には、ソルダーレジスト層を形成するためのドライフィルムとして無機粒子を含有する層を有する感光性フィルム積層体が開示されている。
 ところで、プリント配線板の表面には、その後の電子部材の実装工程を考慮して、搭載する電子部材の搭載位置がわかるように、その情報についてマーキングインキによって識別文字や記号等(マーカー)が印字される場合がある。マーキングインキには、主にパターン印刷によって形成される熱硬化型およびUV硬化型、あるいはネガフィルム越しに露光しアルカリ水溶液で未露光部を除去することで形成されるアルカリ現像型が使用されている。また、最近では、レーザー光を照射することによって、照射部分の色調を変化させ、文字や記号などを表示させるレーザーマーキングと呼ばれる技術も使用されている。
 上記のようにソルダーレジスト層を備えたプリント配線基板に、マーキングインキによりマーカーを形成した場合に、マーキングインキの塗布条件や硬化条件によっては、それに起因してマーキングインキが印刷しづらかったり、剥がれやすく、マーカーの視認性が低下する場合があった。特に、マーキングインキの硬化条件が厳しい場合(例えば、マーキングインキが光硬化性および熱硬化性の樹脂組成物からなり、インキを硬化させるために光硬化と熱硬化の両方を実施する必要があるような場合)、その傾向は顕著であった。
 一方、ソルダーレジスト層には、はんだ耐熱性、耐クラック性、絶縁信頼性といった様々な要求があり、それら要求特性を満足するような感光性樹脂組成物が検討されている。例えば、特許文献3には、耐熱性を低下させることなくクラックの発生を抑制し得る感光性樹脂組成物として、ビスフェノール型カルボキシル基含有樹脂とノボラック型カルボキシル基含有樹脂とを併用することが提案されている。
 また、プリント配線板の製造工程においては、通常、ソルダーレジスト層を形成した後に、導体パターンの表面処理、プリントコンタクト用の端子形成、ボンディングパット形成等のために、金めっきや錫めっきが施される。これらのめっき処理には、通電やめっきリードが不要なことから、無電解金めっきや無電解錫めっきが行われるようになっており、そのため感光性樹脂組成物においても、めっき液耐性の改善が求められている。例えば、特許文献4には、めっき液等の耐薬品性に優れた感光性樹脂組成物として、ビスフェノール型カルボキシル基含有樹脂と、不飽和塩基酸共重合樹脂と脂環式エポキシ基含有不飽和化合物との反応物であるカルボキシル基含有樹脂とを併用することが提案されている。
 特許文献3に記載されているような感光性樹脂組成物を使用すると、無電解めっき処理を行った際にめっき液が汚れやすく、場合によってはめっき不良が発生したり、めっき液の交換頻度が多くなる傾向にあった。また、特許文献4に記載されているような感光性樹脂組成物を使用すると、露光後の現像処理において現像残渣が基板に再付着してしまい、場合よっては付着した現像残渣の影響によりめっき不良が発生することがあった。
特開平10-142793号公報 特開2018-169537号公報 特開2017-529551号公報 国際出願公開WO2003/032089号パンフレット
 したがって、本発明は、以上の問題点に鑑みてなされたものであり、その目的は、表面にマーキングインキを塗布しやすく、硬化後のマーキングインキとの密着性に優れ、さらに、表面に文字や記号の視認性に優れたマーカーを形成できる硬化物を提供することにある。また、本発明の別の目的は、絶縁信頼性等のソルダーレジストに要求される特性を満たしながらも、めっき液の汚染を抑制でき、且つめっき不良も抑制し得る感光性樹脂組成物を提供することである。
 上記の課題に対して本発明者らが種々の検討を行ったところ、マーキングインキの硬化物表面への印刷性や密着性は、硬化物を形成する際の硬化性樹脂組成物の硬化塗膜形成時の状態に影響していることを見出した。即ち、硬化塗膜形成時に反りや表面にクラックが生じていると、その後マーキングインキを印刷してもうまく印刷できなかったり、印刷できたとしても硬化後の工程において剥がれることを見出した。さらに発明者らは、反りやクラックを生じさせないためには、硬化性樹脂組成物が特定のシリカを含有し、その硬化性樹脂組成物が硬化した硬化物の平均線膨張率が特定の範囲内にあれば、上記課題を解決できることを見出した。
 また、感光性樹脂成分として、特定の3種のカルボキシル基含有樹脂を併用することにより、絶縁信頼性等のソルダーレジストに要求される特性を満たしながらも、めっき液の汚染を抑制でき、且つめっき不良も抑制し得る感光性樹脂組成物が得られるとの知見を得た。本発明はかかる知見によるものである。
 即ち、本発明の要旨は以下のとおりである。
[1] 硬化性樹脂および無機フィラーを含む硬化性樹脂組成物からなる硬化物であって、
 無機フィラーが非晶質シリカを含み、
 前記硬化物の、0℃から180℃に温度変化した際の平均線膨張率が70~100ppm/℃であることを特徴とする、硬化物。
[2] ガラス転移点(Tg)が100~120℃の範囲内である、[1]に記載の硬化物。
[3] 前記硬化物の、0℃から180℃に温度変化した際の平均線膨張率が70~85ppm/℃である、[1]に記載の硬化物。
[4] 前記硬化性樹脂が、熱硬化性樹脂および光硬化性樹脂を含む、[1]に記載の硬化物。
[5] 前記非晶質シリカが、固形分換算で、前記硬化性樹脂組成物全体に対して2~30質量%含まれる、[1]に記載に硬化物。
[6] (A)カルボキシル基含有樹脂、(B)光重合性モノマー、および(C)熱硬化性成分を含んでなる感光性樹脂組成物であって、
 (A)カルボキシル基含有樹脂が、
  (A1)ノボラック骨格を有するカルボキシル基含有樹脂と、
  (A2)ビスフェノール骨格を有するカルボキシル基含有樹脂と、
  (A3)不飽和塩基酸共重合型のカルボキシル基含有樹脂と、
を含み、
 前記(A1)のカルボキシル基含有樹脂と、前記(A2)のカルボキシル基含有樹脂との合計配合量が、前記(A)カルボキシル基含有樹脂全体に対して60~80質量%であり、
 前記(A3)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して40~20質量%である、ことを特徴とする、感光性樹脂組成物。
[7] 前記(A3)のカルボキシル基含有樹脂が、不飽和塩基酸共重合樹脂と脂環式エポキシ基含有不飽和化合物との反応物である、[6]に記載の感光性樹脂組成物。
[8] 前記(A1)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して10~60質量%である、[6]に記載の感光性樹脂組成物。
[9] 前記(A2)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して20~50質量%である、[6]に記載の感光性樹脂組成物。
[10] 前記(C)熱硬化性成分が、イソシアヌル環を有するエポキシ樹脂を含む、[6]に記載の感光性樹脂組成物。
[11] (D)無機フィラーをさらに含む、[6]に記載の感光性樹脂組成物。
[12] 前記(D)無機フィラーが溶融シリカを含む、[11]に記載の感光性樹脂組成物。
[13] [6]に記載の感光性樹脂組成物を第1のフィルムに塗布、乾燥して得られる樹脂層を有する、ドライフィルム。
[14] [6]に記載の感光性樹脂組成物または[13]に記載のドライフィルムの樹脂層を硬化させて得られる硬化物。
[15] ソルダーレジストに用いられる、[1]または[14]に記載の硬化物。
[16] 基板上に、[1]または[14]に記載の硬化物を備える、プリント配線板。
 本発明の硬化物によれば、表面にマーキングインキを塗布しやすく、硬化後のマーキングインキとの密着性に優れ、さらに、表面に文字や記号の視認性に優れたマーカーを形成することができる。
 本発明の感光性樹脂組成物によれば、感光性樹脂成分として、特定の3種のカルボキシル基含有樹脂を特定の割合で併用することにより、絶縁信頼性等のソルダーレジストに要求される特性を満たしながらも、めっき液の汚染を抑制でき、且つめっき不良も抑制することができる。
[定義]
 本発明において「平均線膨張率」とは、温度の上昇によって試験片である硬化物の長さが膨張する割合を1℃あたりで示したものをいう。
 また、本発明における硬化物とは、硬化性樹脂組成物、感光性樹脂組成物、およびドライフィルム中の樹脂層(以下、硬化性樹脂組成物等という場合もある)を硬化させたものであり、硬化処理をおこなった硬化性樹脂組成物等の表面に、イソプロピルアルコールを含ませたウエスを載せ、さらに、その上に500gのおもりを載せて1分間、静置した後に、ウエスの表面に硬化性樹脂組成物等が付着していない状態であることをいう。
[硬化物]
 本発明による硬化物は、硬化性樹脂および無機フィラーを含む硬化性樹脂組成物を硬化させたものであり、厚さ20μmの膜状形態の硬化物を0℃から180℃に温度変化した際の硬化物の長さ方向(厚さ方向と垂直方向)の平均線膨張率が70~100ppm/℃であることを特徴とする。本発明によれば、平均線膨張率が上記範囲内にあるような硬化物であれば、表面にマーキングインキを塗布しやすく、硬化後のマーキングインキとの密着性に優れ、さらに、表面に文字や記号の視認性にも優れるマーカーを形成できるものである。その理由は定かではないが、以下のように推認できる。すなわち、0℃から180℃に昇温した際の平均線膨張率が70~100ppm/℃であるような硬化物であれば、硬化性樹脂組成物を硬化させて硬化物を形成する際にも反りや表面にクラックが生じにくく、その結果、硬化物の表面にマーキングインキを塗布しやすく視認性の高いマーカーを形成できたものと考えられる。また、硬化性樹脂組成物が、無機フィラーとして非晶質シリカを含み、当該非晶質シリカは他のシリカと比べて表面の平滑性が低いため、そのアンカー効果により硬化物とマーキングインキとの密着性も高くなるため、硬化物表面からマーカーが剥離することを抑制できるものと考えられる。より好ましい平均線膨張率は、70~85ppm/℃である。
 硬化物の平均線膨張率は熱機械分析装置を用いて定法により測定することができるが、本発明においては、下記のようにして測定した値を意味するものとする。
 先ず、銅箔上に、硬化性樹脂組成物を塗布、乾燥し、加熱や光照射により、硬化後の厚みが20μmの平膜状の硬化物を得る。
 次に、得られた硬化物を、幅3mm、長さ30mmに切り出して試験片とし、熱機械分析装置(TMA/SS6000、セイコー・インスツルメンツ株式会社製)を用いて、引張りモードでの熱膨張係数の測定を行う。引張りの最大荷重は50N/m、スパン(チャック間距離)は10mm、昇温速度は10℃/分とする。試験片を熱機械分析装置に装着し、30℃から200℃まで加熱し、10分間放置する。その後、降温速度-10℃/分の条件で-30℃まで冷却し、-30℃から250℃まで昇温速度10℃/分の条件で測定を行い、0℃および180℃での測定値を読み取り、下記式により平均線膨張率(α)を算出する。
  α=(1/LS)×[{L(180)-L(0)}/(T(180)-T(0)]
(なお、式中、
 LS:測定前の試験片(硬化物)長さ(測定値)
 L(0):0℃における試験片(硬化物)長さの変化量(測定値)
 L(180):180℃における試験片(硬化物)長さの変化量(測定値)
 T(0):0(℃)
 T(180):180(℃)
である。)
 また、本発明の硬化物は、ガラス転移点(Tg)が100~120℃の範囲内であることが好ましい。Tgがこの範囲にあるような硬化物とすることで、線膨張係数も所望の範囲に入りやすくなり、その結果、安定した硬化物が得られ、マーキング密着性が向上する。なお、本発明の硬化物のTgは、熱機械分析装置(TMA)によって測定した際のTMA曲線を用いて、以下の内容により特定することができる。すなわち、平均線膨張率と同様の条件で測定した際のTMA曲線から、0℃と30℃の2点を通る直線A、150℃と180℃の2点を通る直線Bをそれぞれ引いて、直線Aと直線Bとが交差する点(外挿点)の温度を本発明の硬化物のTgとする。
 本発明の硬化物の平均線膨張率(α)は、上記ガラス転移点以外にも硬化性樹脂および無機フィラーの配合割合や、加熱や光照射による本硬化の程度により適宜調整することができる。また、本発明の硬化物のガラス転移点は、硬化性樹脂組成物に含まれる硬化性樹脂やその他の樹脂の組合せ(相溶性)等によって適宜調整することができる。
[硬化性樹脂組成物]
 本発明による硬化物は、硬化性樹脂組成物を硬化させたものである。硬化性樹脂組成物は、硬化性樹脂および無機フィラーを含む。硬化性樹脂および無機フィラー以外にも、必要に応じて硬化性成分を硬化せしめる硬化剤や硬化促進剤、さらには着色剤等の任意の添加剤が含まれていてもよいことは言うまでもない。以下、硬化性樹脂組成物を構成する各成分について説明する。
<硬化性樹脂>
 硬化性樹脂としては、光硬化性や熱硬化性の官能基を有するアクリル樹脂、エポキシ樹脂、エポキシアクリレート樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、ポリウレタン樹脂、メラミン樹脂、ユリア樹脂等の光硬化性または熱硬化性樹脂等が挙げられる。これら樹脂は1種単独で使用してもよいし2種以上を併用して用いてもよいが、光硬化性樹脂および熱硬化性樹脂のいずれをも併用することが、デュアルキュア等厳しい硬化条件であっても、優れた密着性を示すことができる点において好ましい。
 硬化性樹脂の光硬化性樹脂としては、重合可能なモノマーやオリゴマーが挙げられる。重合性モノマーとしては、エチレン性不飽和二重結合を有する光重合性モノマーを好ましく使用することができる。光重合性モノマーとしては、例えば、公知慣用のポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ウレタン(メタ)アクリレート、カーボネート(メタ)アクリレート、エポキシ(メタ)アクリレートなどが挙げられる。具体的には、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレートなどのヒドロキシアルキルアクリレート類;エチレングリコール、メトキシテトラエチレングリコール、ポリエチレングリコール、プロピレングリコールなどのグリコールのジアクリレート類;N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、N,N-ジメチルアミノプロピルアクリルアミドなどのアクリルアミド類;N,N-ジメチルアミノエチルアクリレート、N,N-ジメチルアミノプロピルアクリレートなどのアミノアルキルアクリレート類;ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリス-ヒドロキシエチルイソシアヌレートなどの多価アルコールまたはこれらのエチレオキサイド付加物、プロピレンオキサイド付加物、もしくはε-カプロラクトン付加物などの多価アクリレート類;フェノキシアクリレート、ビスフェノールAジアクリレート、およびこれらのフェノール類のエチレンオキサイド付加物もしくはプロピレンオキサイド付加物などの多価アクリレート類;グリセリンジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリグリシジルイソシアヌレートなどのグリシジルエーテルの多価アクリレート類;前記に限らず、ポリエーテルポリオール、ポリカーボネートジオール、水酸基末端ポリブタジエン、ポリエステルポリオールなどのポリオールを直接アクリレート化、もしくは、ジイソシアネートを介してウレタンアクリレート化したアクリレート類およびメラミンアクリレート、および前記アクリレートに対応する各メタクリレート類のいずれか少なくとも1種から適宜選択して用いることができる。このような光重合性モノマーは、反応性希釈剤としても用いることができる。
 また、重合可能なオリゴマーとしては、不飽和ポリエステル系オリゴマー、(メタ)アクリレート系オリゴマー等が挙げられる。(メタ)アクリレート系オリゴマーとしては、フェノールノボラックエポキシ(メタ)アクリレート、クレゾールノボラックエポキシ(メタ)アクリレート、ビスフェノール型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、エポキシウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリブタジエン変性(メタ)アクリレート等が挙げられる。
 硬化性樹脂組成物における光硬化性樹脂の配合量は、硬化性樹脂組成物中に後述するカルボキシル基含有樹脂が含まれる場合、固形分換算で、カルボキシル基含有樹脂100質量部に対して、1~40質量部であることが好ましく、5~35質量部であることがより好ましい。
 また、硬化性樹脂組成物に含まれる硬化性樹脂の中には、露光、現像することによってパターニング可能な感光性樹脂が含まれていてもよい。このような感光性樹脂は、露光、現像することによってパターニングし、基板上に所望パターンの樹脂硬化膜を形成することができる点で好ましい。
 硬化性樹脂の熱硬化性樹脂としては、公知のものをいずれも用いることができる。例えば、メラミン樹脂、ベンゾグアナミン樹脂、メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂、イソシアネート化合物、ブロックイソシアネート化合物、シクロカーボネート化合物、エポキシ化合物、オキセタン化合物、エピスルフィド樹脂、ビスマレイミド、カルボジイミド樹脂等の公知の化合物を使用できる。特に好ましくは、分子中に複数の環状エーテル基または環状チオエーテル基(以下、環状(チオ)エーテル基と略す)を有する化合物を使用することができる。これらの熱硬化性樹脂は、1種を単独または2種以上を組み合わせて用いることができる。熱硬化性樹脂を含むことにより、後工程での硬化被膜の強度を向上させることができる。
 上記の分子中に複数の環状(チオ)エーテル基を有する化合物は、分子中に3、4または5員環の環状(チオ)エーテル基を複数有する化合物であり、例えば、分子内に複数のエポキシ基を有する化合物、すなわち多官能エポキシ化合物、分子内に複数のオキセタニル基を有する化合物、すなわち多官能オキセタン化合物、分子内に複数のチオエーテル基を有する化合物、すなわちエピスルフィド樹脂等が挙げられる。
 このような多官能エポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂等が挙げられる。
 市販されている多官能エポキシ化合物としては、例えば、三菱ケミカル株式会社製のjER 828、806、807、YX8000、YX8034、834、日鉄ケミカル&マテリアル株式会社製のYD-128、YDF-170、ZX-1059、ST-3000、DIC株式会社製のEPICLON 830、835、840、850、N-730A、N-695、および日本化薬株式会社製のRE-306等が挙げられる。
 多官能オキセタン化合物としては、例えば、ビス[(3-メチル-3-オキセタニルメトキシ)メチル]エーテル、ビス[(3-エチル-3-オキセタニルメトキシ)メチル]エーテル、1,4-ビス[(3-メチル-3-オキセタニルメトキシ)メチル]ベンゼン、1,4-ビス[(3-エチル-3-オキセタニルメトキシ)メチル]ベンゼン、(3-メチル-3-オキセタニル)メチルアクリレート、(3-エチル-3-オキセタニル)メチルアクリレート、(3-メチル-3-オキセタニル)メチルメタクリレート、(3-エチル-3-オキセタニル)メチルメタクリレートやそれらのオリゴマーまたは共重合体等の多官能オキセタン類の他、オキセタンアルコールとノボラック樹脂、ポリ(p-ヒドロキシスチレン)、カルド型ビスフェノール類、カリックスアレーン類、カリックスレゾルシンアレーン類、またはシルセスキオキサン等の水酸基を有する樹脂とのエーテル化物等が挙げられる。その他、オキセタン環を有する不飽和モノマーとアルキル(メタ)アクリレートとの共重合体等も挙げられる。
 分子中に複数の環状チオエーテル基を有する化合物としては、ビスフェノールA型エピスルフィド樹脂等が挙げられる。また、同様の合成方法を用いて、ノボラック型エポキシ樹脂のエポキシ基の酸素原子を硫黄原子に置き換えたエピスルフィド樹脂なども用いることができる。
 分子中に複数の環状(チオ)エーテル基を有する化合物の配合量は、カルボキシル基含有樹脂が含まれる場合、当該樹脂中のカルボキシル基1.0molあたりに対し、反応する分子中に複数の環状(チオ)エーテル基を有する化合物の官能基数が0.8~2.5molが好ましく、より好ましくは1.0~2.0molである。0.8mol以上とすることで、硬化被膜におけるカルボキシル基の残存を防止して、良好な耐熱性や耐アルカリ性、電気絶縁性等を得ることができる。また、上記配合量を2.5mol以下とすることで、低分子量の環状(チオ)エーテル基が乾燥塗膜に残存することを防止して、硬化被膜の強度等を良好に確保することができる。
 また、分子中に複数の環状(チオ)エーテル基を有する化合物が多官能エポキシ化合物であって、カルボキシル基含有樹脂が含まれる場合、多官能エポキシ化合物の配合量は、固形分換算で、カルボキシル基含有樹脂100質量部に対して、20~50質量部であることが好ましい。
 メラミン誘導体、ベンゾグアナミン誘導体等のアミノ樹脂としては、メチロールメラミン化合物、メチロールベンゾグアナミン化合物、メチロールグリコールウリル化合物およびメチロール尿素化合物等が挙げられる。
 イソシアネート化合物としては、ポリイソシアネート化合物を配合することができる。ポリイソシアネート化合物としては、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート、o-キシリレンジイソシアネート、m-キシリレンジイソシアネートおよび2,4-トリレンダイマー等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、4,4-メチレンビス(シクロヘキシルイソシアネート)およびイソホロンジイソシアネート等の脂肪族ポリイソシアネート;ビシクロヘプタントリイソシアネート等の脂環式ポリイソシアネート;並びに先に挙げたイソシアネート化合物のアダクト体、ビューレット体およびイソシアヌレート体等が挙げられる。
 ブロックイソシアネート化合物としては、イソシアネート化合物とイソシアネートブロック剤との付加反応生成物を用いることができる。イソシアネートブロック剤と反応し得るイソシアネート化合物としては、例えば、上述のポリイソシアネート化合物等が挙げられる。イソシアネートブロック剤としては、例えば、フェノール系ブロック剤;ラクタム系ブロック剤;活性メチレン系ブロック剤;アルコール系ブロック剤;オキシム系ブロック剤;メルカプタン系ブロック剤;酸アミド系ブロック剤;イミド系ブロック剤;アミン系ブロック剤;イミダゾール系ブロック剤;イミン系ブロック剤等が挙げられる。
 本発明において、硬化性樹脂は、パターニングする場合、現像できる点において、アルカリ可溶性樹脂であることが好ましい。硬化性樹脂組成物中にアルカリ可溶性樹脂を含む場合、その他の成分として、光重合性モノマーや光重合開始剤を含むことが好ましい。
 アルカリ可溶性樹脂は、アルカリ水溶液に溶解する樹脂であれば何れでもよく、公知慣用のものが使用される。アルカリ可溶性樹脂は、1種を単独でまたは2種以上を組み合わせて用いることができる。例示としては、カルボキシル基含有樹脂や、フェノール性水酸基含有樹脂のような水溶性樹脂等が挙げられる。なかでも現像性に優れることより、カルボキシル基含有樹脂やフェノール性水酸基含有樹脂が好ましく、カルボキシル基含有樹脂がより好ましい。カルボキシル基含有樹脂が、カルボキシル基を含むことにより、アルカリ現像性とすることができる。また、感光性の観点から、カルボキシル基の他に、分子内にエチレン性不飽和二重結合を有することが好ましいが、エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを使用してもよい。エチレン性不飽和二重結合は、アクリル酸もしくはメタクリル酸またはそれらの誘導体由来であることが好ましい。エチレン性不飽和二重結合を有さないカルボキシル基含有樹脂のみを用いる場合、組成物を光硬化性とするためには、分子中に複数のエチレン性不飽和基を有する化合物、即ち光重合性モノマーを併用する必要がある。カルボキシル基含有樹脂の具体例としては、以下のような化合物(オリゴマーおよびポリマーのいずれでもよい)を挙げることができる。なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で他の類似の表現についても同様である。
 (1)(メタ)アクリル酸等の不飽和カルボン酸と、スチレン、α-メチルスチレン、低級アルキル(メタ)アクリレート、イソブチレン等の不飽和基含有化合物との共重合により得られるカルボキシル基含有樹脂。
 (2)脂肪族ジイソシアネート、分岐脂肪族ジイソシアネート、脂環式ジイソシアネート、芳香族ジイソシアネート等のジイソシアネートと、ジメチロールプロピオン酸、ジメチロールブタン酸等のカルボキシル基含有ジアルコール化合物およびポリカーボネート系ポリオール、ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリオレフィン系ポリオール、アクリル系ポリオール、ビスフェノールA系アルキレンオキサイド付加体ジオール、フェノール性ヒドロキシル基およびアルコール性ヒドロキシル基を有する化合物等のジオール化合物の重付加反応によるカルボキシル基含有ウレタン樹脂。
 (3)ジイソシアネートと、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビキシレノール型エポキシ樹脂、ビフェノール型エポキシ樹脂等の2官能エポキシ樹脂と(メタ)アクリル酸等のエチレン性不飽和二重結合を有するモノカルボン酸化合物との反応物の部分酸無水物変性物、カルボキシル基含有ジアルコール化合物およびジオール化合物の重付加反応によるカルボキシル基含有感光性ウレタン樹脂。
 (4)前記(2)または(3)の樹脂の合成中に、ヒドロキシアルキル(メタ)アクリレート等の分子内に1つの水酸基と1つ以上の(メタ)アクリロイル基を有する化合物を加え、末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (5)前記(2)または(3)の樹脂の合成中に、イソホロンジイソシアネートとペンタエリスリトールトリアクリレートの等モル反応物など、分子内に1つのイソシアネート基と1つ以上の(メタ)アクリロイル基を有する化合物を加え末端(メタ)アクリル化したカルボキシル基含有感光性ウレタン樹脂。
 (6)2官能またはそれ以上の多官能(固形)エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (7)2官能(固形)エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂。
 (8)2官能オキセタン樹脂にアジピン酸、フタル酸、ヘキサヒドロフタル酸等のジカルボン酸を反応させ、生じた1級の水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸等の2塩基酸無水物を付加させたカルボキシル基含有ポリエステル樹脂。
 (9)1分子中に複数のエポキシ基を有するエポキシ化合物に、p-ヒドロキシフェネチルアルコール等の1分子中に少なくとも1個のアルコール性水酸基と1個のフェノール性水酸基を有する化合物と、(メタ)アクリル酸等の不飽和基含有モノカルボン酸とを反応させ、得られた反応生成物のアルコール性水酸基に対して、無水マレイン酸、テトラヒドロ無水フタル酸、無水トリメリット酸、無水ピロメリット酸、アジピン酸等の多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
 (10)1分子中に複数のフェノール性水酸基を有する化合物とエチレンオキサイド、プロピレンオキサイド等のアルキレンオキサイドとを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
 (11)1分子中に複数のフェノール性水酸基を有する化合物とエチレンカーボネート、プロピレンカーボネート等の環状カーボネート化合物とを反応させて得られる反応生成物に不飽和基含有モノカルボン酸を反応させ、得られる反応生成物に多塩基酸無水物を反応させて得られるカルボキシル基含有感光性樹脂。
 (12)前記(1)~(11)の樹脂にさらに1分子内に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語で、他の類似の表現についても同様である。
 上記したカルボキシル基含有感光性樹脂のなかでも、(6)の感光性樹脂においてエポキシ樹脂としてノボラック型エポキシ樹脂を使用したもの、(7)エポキシ樹脂としてビスフェノール型エポキシ樹脂を使用したもの、および(12)の感光性樹脂を好ましく使用することができ、特に前述した(6)、(7)、(12)のうち、少なくとも2種を使用したものをより好ましく使用でき、3種を使用したものをさらに好ましく使用することができる。
 前述した(6)は、カルボキシル基含有樹脂全体に対して、10~80質量%の割合で含まれることが好ましく、10~60質量%の割合で含まれることがより好ましく、10~40質量%の割合で含まれることがさらに好ましい。
 前述した(7)は、カルボキシル基含有樹脂全体に対して、20~70質量%の割合で含まれることが好ましく、30~60質量%の割合で含まれることがより好ましく、40~55質量%の割合で含まれることがさらに好ましい。
 前述した(12)は、カルボキシル基含有樹脂全体に対して、20~40質量%の割合で含まれることが好ましく、25~40質量%の割合で含まれることがより好ましい。
 これらカルボキシル基含有樹脂は、前記列挙したもの限らず使用することができ、1種類を単独で用いてもよく、複数種を混合して用いてもよい。
 カルボキシル基含有樹脂の酸価は、40~150mgKOH/gであることが好ましい。カルボキシル基含有樹脂の酸価が40mgKOH/g以上とすることにより、アルカリ現像が良好になる。また、酸価を150mgKOH/gを以下とすることで、良好なレジストパターンの描画をし易くできる。より好ましくは、50~130mgKOH/gである。
 カルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、一般的に2,000~150,000であることが好ましい。重量平均分子量が2,000以上とすることにより、タックフリー性能や解像度を向上させることができる。また、重量平均分子量が150,000以下とすることで、現像性や貯蔵安定性を向上させることができる。より好ましくは、5,000~30,000である。なお、重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。
 カルボキシル基含有樹脂の配合量は、硬化性樹脂組成物中において、固形分換算で、20~60質量%であることが好ましい。20質量%以上とすることにより塗膜強度を向上させることができる。また60質量%以下とすることで粘性が適当となり印刷性が向上する。より好ましくは、25~50質量%である。
 硬化性樹脂組成物における硬化性樹脂全体の配合量は、マーキングインキの印刷性や密着性の観点から、固形分換算で、硬化性樹脂組成物全体に対して、20~80質量%であることが好ましく、30~70質量%であることがより好ましい。
 本発明の硬化物を形成するための硬化性樹脂組成物に、カルボキシル基含有樹脂や光重合性モノマー、オリゴマーが含まれる場合は、露光により反応させるため光重合開始剤が含まれていてもよい。光重合開始剤としては、公知のものをいずれも用いることができる。
 光重合開始剤としては、例えば、ビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド類;2,6-ジメトキシベンゾイルジフェニルフォスフィンオキサイド、2,6-ジクロロベンゾイルジフェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイルフェニルフォスフィン酸メチルエステル、2-メチルベンゾイルジフェニルフォスフィンオキサイド、ピバロイルフェニルフォスフィン酸イソプロピルエステル、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド等のモノアシルフォスフィンオキサイド類;フェニル(2,4,6-トリメチルベンゾイル)フォスフィン酸エチル、1-ヒドロキシ-シクロヘキシルフェニルケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等のヒドロキシアセトフェノン類;ベンゾイン、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類;ベンゾインアルキルエーテル類;ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル)-1-[4-(4-モルホリニル)フェニル]-1-ブタノン、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;エチル-4-ジメチルアミノベンゾエート、2-(ジメチルアミノ)エチルベンゾエート、p-ジメチル安息香酸エチルエステル等の安息香酸エステル類;1,2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)等のオキシムエステル類;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(シクロペンタジエニル)-ビス[2,6-ジフルオロ-3-(2-(1-ピル-1-イル)エチル)フェニル]チタニウム等のチタノセン類;フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル、テトラメチルチウラムジスルフィド等を挙げることができる。これら光重合開始剤は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 α-アミノアセトフェノン系光重合開始剤の市販品としては、IGM Resins社製のOmnirad 907、369、369E、 379等が挙げられる。また、アシルフォスフィンオキサイド系光重合開始剤の市販品としては、IGM Resins社製のOmnirad 819等が挙げられる。オキシムエステル系光重合開始剤の市販品としては、BASFジャパン株式会社製のIrgacure OXE01、OXE02、株式会社ADEKA製N-1919、アデカアークルズ NCI-831、NCI-831E、常州強力電子新材料社製TR-PBG-304などが挙げられる。
 その他、特開2004-359639号公報、特開2005-097141号公報、特開2005-220097号公報、特開2006-160634号公報、特開2008-094770号公報、特表2008-509967号公報、特表2009-040762号公報、特開2011-80036号公報記載のカルバゾールオキシムエステル化合物等を挙げることができる。
 光重合開始剤の配合量は、硬化性樹脂組成物にカルボキシル基含有樹脂が含まれる場合、固形分換算で、カルボキシル基含有樹脂100質量部に対して、1~30質量部であることが好ましい。1質量部以上の場合、硬化性樹脂組成物の光硬化性が良好となり、耐薬品性等の被膜特性も良好となる。また、30質量部以下の場合、アウトガスの低減効果が得られ、さらに硬化被膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは2~25質量部である。
 また、本発明においては、光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、ベンゾイン化合物、アントラキノン化合物、チオキサントン化合物、ケタール化合物、ベンゾフェノン化合物、3級アミン化合物、およびキサントン化合物などを挙げることができる。特に、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン等のチオキサントン化合物を用いることが好ましい。チオキサントン化合物が含まれることにより、深部硬化性を向上させることができる。これらの化合物は、光重合開始剤として用いることができる場合もあるが、光重合開始剤と併用して用いることが好ましい。また、光開始助剤または増感剤は1種類を単独で用いてもよく、2種以上を併用してもよい。
 これら光重合開始剤、光開始助剤、および増感剤は、特定の波長を吸収するため、場合によっては感度が低くなり、紫外線吸収剤として機能することがある。しかしながら、これらは硬化性樹脂組成物の感度を向上させることだけの目的に用いられるものではない。必要に応じて特定の波長の光を吸収させて、表面の光反応性を高め、レジストパターンのライン形状および開口を垂直、テーパー状、逆テーパー状に変化させるとともに、ライン幅や開口径の精度を向上させることができる。
 また、本発明の硬化物を形成するための硬化性樹脂組成物に熱硬化性樹脂が含まれる場合は、その硬化を促進するための熱硬化触媒が含まれていてもよい。熱硬化触媒としては、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物等が挙げられる。また、市販されているものとしては、例えば四国化成工業株式会社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT 3513N(ジメチルアミン系化合物の商品名)、DBU、DBN、U-CAT SA 102(いずれも二環式アミジン化合物およびその塩)などが挙げられる。
 上記した化合物に限られるものではなく、エポキシ樹脂やオキセタン化合物の熱硬化触媒となるもの、もしくはエポキシ基およびオキセタニル基の少なくとも何れか1種とカルボキシル基との反応を促進するものであればよく、単独でまたは2種以上を混合して使用してもよい。また、グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体を用いることもでき、好ましくはこれら密着性付与剤としても機能する化合物を熱硬化触媒と併用する。
 上記した熱硬化触媒は、1種を単独で、または2種以上を組み合わせて用いることができる。熱硬化触媒の配合量は、感光性樹脂組成物の保存安定性や硬化被膜の耐熱性の観点から、硬化性樹脂組成物にカルボキシル基含有樹脂が含まれる場合、固形分換算で、カルボキシル基含有樹脂100質量部に対して0.01~8質量部であることが好ましく、0.05~5質量部であることがさらに好ましい。
<無機フィラー>
 本発明の硬化物は、無機フィラーとして非晶質シリカを含む硬化性樹脂組成物を硬化させたものである。非晶質シリカを含有することで、硬化物表面にマーキングインキを印刷する際の印刷性や、印刷後のマーカーの密着性やその視認性が大きく向上する。この理由は明らかではないが以下のように考えられる。すなわち、非晶質シリカは、結晶質シリカに比べて表面の平滑性が低いため、そのアンカー効果により印刷性や密着性が向上するものと考えられる。なお、本発明における非晶質シリカとは、結晶質シリカ(結晶質シリカは微細なものも含む)以外のシリカであって、結晶質シリカのような長距離秩序はないが、短距離秩序はある物質の状態のシリカをいう。これは熱力学的には、非平衡な準安定状態である。非晶質シリカは、公知慣用のものが使用でき、シリカゲル、珪藻土などが挙げられる。また、非晶質シリカは非晶質であれば、合成シリカであってもよい。
 マーキングインキの塗布性や硬化時のマーキングインキとの密着性の観点において、非晶質シリカは、吸油量が180~350ml/100gであることが好ましい。このような非晶質シリカは多孔質であり、硬化や乾燥の際における有機溶剤等の吸油により、非晶質シリカや他の体質顔料がより密な状態になる結果、マーキングインキの塗布性や密着性が向上するものと推測できる。吸油量は200~300ml/100gであることがより好ましい。なお、本発明において吸油量は、「JIS K5101-13-1:2004 顔料試験方法-第13部:吸油量-第1節:精製あまに油法」に準拠して測定したものをいう。
 非晶質シリカは公知慣用のものを用いることができ、合成であっても天然であってもよい。また、表面処理を行っていても行っていなくてもよい。表面処理の種類は、前記体質顔料と同様である。製品としては、ACEMATT 82、ACEMATT 790、ACEMATT OK 412、ACEMATT OK 500(いずれもEVONIK DEGUSSA社製)等が挙げられる。
 上記した非晶質シリカは、硬化性樹脂組成物中での分散性を高めるために表面処理されたものであってもよい。表面処理がされている非晶質シリカを使用することで、凝集を抑制することができる。表面処理方法は特に限定されず、公知慣用の方法を用いればよいが、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で非晶質シリカの表面を処理することが好ましい。
 カップリング剤としては、シラン系、チタネート系、アルミネート系およびジルコアルミネート系等のカップリング剤が使用できる。中でもシラン系カップリング剤が好ましい。かかるシラン系カップリング剤の例としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノメチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アニリノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン等を挙げることができ、これらは単独で、あるいは併用して使用することができる。これらのシラン系カップリング剤は、あらかじめフィラーの表面に吸着あるいは反応により固定化されていることが好ましい。
 非晶質シリカの平均粒子径(D50)は、0.1~10μmのものを好ましく用いることができ、1~5μmのものをより好ましく用いることができる。なお、平均粒子径とは、レーザー回折散乱式粒度分布測定法を用いて得られる体積累積50%における粒径を意味する。また、非晶質シリカの平均粒子径は、硬化性樹脂組成物を調製(予備攪拌、混練)する前のシリカを上記のようにして測定した値をいうものとする。
 硬化性樹脂組成物における非晶質シリカの配合量は、マーキングインキの印刷性や密着性の観点から、固形分換算で、硬化性樹脂組成物全体に対して、2~30質量%であることが好ましく、5~20質量%であることがより好ましい。
 硬化性樹脂組成物には、上記した非晶質シリカ以外にも、硬化物の物理的強度等を上げるために、必要に応じてその他の無機フィラーを配合することができる。無機フィラーとしては、公知のものを使用でき、特に、タルク、マイカ、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、炭酸カルシウム、炭酸マグネシウム、フライアッシュ、脱水汚泥、カオリン、クレー、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、ハイドロタルサイト、珪酸アルミニウム、珪酸マグネシウム、ケイ酸カルシウム、ウォラストナイト、チタン酸カリウム、硫酸マグネシウム、硫酸カルシウム、燐酸マグネシウム、セピオライト、ゾノライト、窒化ホウ素、ホウ酸アルミニウム、シリカバルーン、ガラスフレーク、ガラスバルーン、製鉄スラグ、銅、鉄、酸化鉄、センダスト、アルニコ磁石、各種フェライト等の磁性粉、セメント、ガラス粉末、ノイブルグ珪土、三酸化アンチモン、マグネシウムオキシサルフェイト、水和アルミニウム、水和石膏、ミョウバンおよび硫酸バリウム等が挙げられる。その他の無機充填剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記した無機フィラーも、分散性等の観点から、平均粒子径(D50)が0.1~200μmであることが好ましく、1~10μmであることがより好ましい。また、非晶質シリカと同様に、分散性の観点から表面処理がされていてもよい。
 非晶質シリカと合わせた無機フィラー全体の配合量は、固形分換算で、硬化性樹脂組成物全体に対して、20~70質量%であることが好ましく、40~60質量%であることがより好ましい。これにより、硬化性樹脂組成物の密着力低下防止性および冷熱サイクル耐性が向上し、その結果、マーキングインキとの密着性がより向上できる。
<その他の成分>
 本発明による硬化性樹脂組成物は、上記した成分以外にも必要に応じて、着色剤、エラストマー、メルカプト化合物、ウレタン化触媒、チキソ化剤、密着促進剤、ブロック共重合体、連鎖移動剤、重合禁止剤、銅害防止剤、酸化防止剤、防錆剤、有機ベントナイト、モンモリロナイト等の増粘剤、シリコーン系、フッ素系、高分子系等の消泡剤およびレベリング剤の少なくともいずれか1種、フォスフィン酸塩、燐酸エステル誘導体、フォスファゼン化合物等のリン化合物等の難燃剤などの成分を配合することができる。これらは、電子材料の分野において公知の物を使用することができる。
 硬化性樹脂組成物には、調製のし易さや塗布性の観点から有機溶剤を配合してもよい。有機溶剤としては、メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン、テトラメチルベンゼン等の芳香族炭化水素類;セロソルブ、メチルセロソルブ、ブチルセロソルブ、カルビトール、メチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテルアセテート、トリプロピレングリコールモノメチルエーテル等のグリコールエーテル類;酢酸エチル、酢酸ブチル、乳酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、炭酸プロピレン等のエステル類;オクタン、デカン等の脂肪族炭化水素類;石油エーテル、石油ナフサ、ソルベントナフサ等の石油系溶剤など、公知慣用の有機溶剤が使用できる。これらの有機溶剤は、1種を単独または2種以上を組み合わせて用いることができる。
 硬化性樹脂組成物における有機溶剤の配合量は、硬化性樹脂組成物を構成する材料に応じ適宜変更することができ、例えば、硬化性樹脂組成物中にカルボキシル基含有樹脂が含まれる場合、カルボキシル基含有樹脂(固形分)100質量部に対して、20~300質量部とすることができる。
 硬化性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。また、液状として用いる場合は、1液性でも2液性以上でもよい。
[感光性樹脂組成物]
 本発明による感光性樹脂組成物は、(A)カルボキシル基含有樹脂、(B)光重合性モノマー、および(C)熱硬化性成分を必須成分として含むものである。以下、本発明による感光性樹脂組成物を構成する各成分について説明する。
<(A)カルボキシル基含有樹脂>
 本発明による感光性樹脂組成物は、(A)カルボキシル基含有樹脂として、(A1)ノボラック骨格を有するカルボキシル基含有樹脂と、(A2)ビスフェノール骨格を有するカルボキシル基含有樹脂と、(A3)不飽和塩基酸共重合型のカルボキシル基含有樹脂との3種のカルボキシル基含有樹脂を特定の割合で含む。本発明においては、カルボキシル基含有樹脂として上記した特定の3種の感光性樹脂を特定の割合で含有することにより、耐熱性、絶縁信頼性といったソルダーレジストに要求される特性を満たしながらも、めっき液の汚染を抑制でき、且つめっき不良も抑制し得る感光性樹脂組成物とすることができる。その理由は定かではないが、以下のように推認できる。
 上記した特許文献4に記載されているように、感光性樹脂として、ビスフェノール骨格を有するカルボキシル基含有樹脂と不飽和塩基酸共重合型のカルボキシル基含有樹脂とを併用した場合、樹脂の疎水性が高くまた分子量も大きいため、PCBT等の絶縁信頼性や耐熱性が優れる反面、現像液中に溶解した未硬化の樹脂成分のうち共重合樹脂成分が、現像処理後の洗浄工程において水槽に析出し、基板の導体部分(銅)に再付着する。この付着物が、後のめっき処理でのめっき不良を引き起こす原因と考えられる。一方、感光性樹脂として特許文献3に記載されているような耐熱性やクラック耐性に優れる感光性樹脂(ビスフェノール骨格やノボラック骨格を有するカルボキシル基含有樹脂)を使用した場合、上記したような現像残渣の水槽への析出はほとんどないものの、感光性樹脂組成物の硬化被膜中に含まれている未硬化の樹脂成分や未反応の光重合性モノマー等が無電解めっき浴に溶出し、めっき浴を汚染する。そこで、上記した3種のカルボキシル基含有樹脂を特定の割合で併用することで、感光性樹脂全体の疎水性(水槽への析出抑制)とめっき浴への溶出の抑制とを高次元で両立させることができ、その結果、耐熱性、絶縁信頼性といったソルダーレジストに要求される特性を満たしながらも、めっき不良の発生とめっき液の汚染との両方を抑制できるものと考えられる。
 (A1)ノボラック骨格を有するカルボキシル基含有樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンクレゾールノボラック型エポキシ樹脂などの多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、側鎖に存在する水酸基に無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸などの2塩基酸無水物を付加させたカルボキシル基含有感光性樹脂(A1a)、上記多官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に多塩基酸無水物を付加させたカルボキシル基含有感光性樹脂(A1b)、ノボラック樹脂などの多官能フェノール化合物にエチレンオキサイドなどの環状エーテルまたはプロピレンカーボネートなどの環状カーボネートを付加させ、得られた水酸基を(メタ)アクリル酸で部分エステル化し、残りの水酸基に多塩基酸無水物を反応させたカルボキシル基含有感光性樹脂(A1c)、上記A1a~A1cのいずれかの樹脂に、さらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレートなどの分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂などが挙げられる。本発明においては、クレゾールノボラック型カルボキシル基含有樹脂は、フェノールノボラック型カルボキシル基含有樹脂よりもはんだ耐熱性に優れるため好ましい。なお、本明細書において、「(メタ)アクリレート」とは、アクリレート、メタクリレートおよびそれらの混合物を総称する用語として用い、他の類似の表現についても同様である。また、「(メタ)アクリロイル基」とは、アクリロイル基、メタクリロイル基およびそれらの両者を総称する用語として用い、他の類似の表現についても同様である。
 (A2)ビスフェノール骨格を有するカルボキシル基含有樹脂としては、ビスフェノールA型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などの2官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に多塩基酸無水物を付加させたカルボキシル基含有感光性樹脂(A2a)、上記2官能エポキシ樹脂の水酸基をさらにエピクロロヒドリンでエポキシ化した多官能エポキシ樹脂に(メタ)アクリル酸を反応させ、生じた水酸基に多塩基酸無水物を付加させたカルボキシル基含有感光性樹脂(A2b)、上記A2aまたはA2bの樹脂に、さらにグリシジル(メタ)アクリレート、α-メチルグリシジル(メタ)アクリレートなどの分子中に1つのエポキシ基と1つ以上の(メタ)アクリロイル基を有する化合物を付加してなるカルボキシル基含有感光性樹脂などが挙げられる。
 上記した(A1)および(A2)の各カルボキシル基含有樹脂は、バックボーン・ポリマーの側鎖に多数の遊離のカルボキシル基を有するため、アルカリ水溶液による現像が可能となる。これら(A1)および(A2)のカルボキシル基含有樹脂の酸価は、好ましくは40~200mgKOH/gである。A1およびA2のカルボキシル基含有樹脂の酸価が40~200mgKOH/gであると、アルカリ現像が容易となり、現像液による露光部の溶解が抑えられ、精細なレジストパターンの描画が容易となる。より好ましくは45~120mgKOH/gである。
 上記した(A1)および(A2)のカルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、露光後の塗膜の耐湿性(水への溶解性)、解像性、現像性等の観点から、一般的に2,000~150,000であることが好ましく、より好ましくは5,000~100,000である。なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定された標準ポリスチレン換算値を意味する。
 次に、(A3)不飽和塩基酸共重合型のカルボキシル基含有樹脂について説明する。(A3)のカルボキシル基含有樹脂は、(メタ)アクリル酸エステルと、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基を有する化合物とを共重合させて得られるものである。(メタ)アクリル酸エステルとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル類、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシブチル(メタ)アクリレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート等の水酸基含有(メタ)アクリル酸エステル類、メトキシジエチレングリコール(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、イソオクチルオキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート等のグリコール変性(メタ)アクリレート類などが挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。
 また、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基を有する化合物としては、アクリル酸、メタクリル酸、不飽和基とカルボン酸の間が鎖延長された変性不飽和モノカルボン酸、例えばβ-カルボキシエチル(メタ)アクリレート、2-アクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、ラクトン変性等によりエステル結合を有する不飽和モノカルボン酸、エーテル結合を有する変性不飽和モノカルボン酸、さらにはマレイン酸等のカルボキシル基を分子中に2個以上含むものなどが挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。
 本発明においては、(A3)不飽和塩基酸共重合型のカルボキシル基含有樹脂として、上記した不飽和塩基酸共重合樹脂(即ち、(メタ)アクリル酸エステルと、1分子中に1個の不飽和基と少なくとも1個のカルボキシル基を有する化合物とを共重合させて得られる共重合樹脂)の酸基の一部に、脂環式エポキシ基含有不飽和化合物のエポキシ基とを反応させて樹脂に不飽和基を導入した樹脂を好ましく用いることができる。不飽和塩基酸共重合型のカルボキシル基含有樹脂を上記した(A1)および(A2)のカルボキシル基含有樹脂と特定の割合で併用することにより、PCBT特性がより一層向上する。
 上記した不飽和塩基酸共重合樹脂の酸基の一部と反応する脂環式エポキシ基含有不飽和化合物としては、一分子中に1個のラジカル重合性不飽和基と脂環式エポキシ基を有する化合物、例えば、脂環式エポキシ基とアクリル基を同時に有する化合物が好ましく、例えば、3,4-エポキシシクロヘキシルメチルアクリレート、3,4-エポキシシクロヘキシルエチルアクリレート、3,4-エポキシシクロヘキシルブチルアクリレート等が挙げられる。これらは単独で用いても、2種以上を混合して用いてもよい。
 また、上記した脂環式エポキシ基とアクリル基を同時に有する化合物以外にも、例えばグリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテル等の脂肪族エポキシ基含有不飽和化合物を併用してもよい。
 上記(A3)のカルボキシル基含有樹脂の重量平均分子量は、樹脂骨格により異なるが、露光後の塗膜の耐湿性(水への溶解性)、解像性、現像性等の観点から、一般的に3,000~100,000であることが好ましく、より好ましくは5,000~50,000である。
 本発明の感光性樹脂組成物は、(A1)のカルボキシル基含有樹脂と(A2)のカルボキシル基含有樹脂との合計配合量は、(A)カルボキシル基含有樹脂全体に対して60~80質量%である。また、(A3)のカルボキシル基含有樹脂の配合量は、(A)カルボキシル基含有樹脂全体に対して40~20質量%である。これら3種のカルボキシル基含有樹脂が特定の割合で含有されていることにより、絶縁信頼性等のソルダーレジストに要求される特性を満たしながらも、めっき液の汚染とめっき不良の両方を抑制することができる。なお、各カルボキシル基含有樹脂の配合量とは固形分換算した配合量である(以下、同様)。
 (A1)のカルボキシル基含有樹脂と(A2)のカルボキシル基含有樹脂と合計配合量は、金めっき耐性の観点から、(A)カルボキシル基含有樹脂全体に対して65~75質量%であることが好ましい。
 上記(A1)~(A3)の各カルボキシル基含有樹脂の配合割合に関して、(A1)のカルボキシル基含有樹脂の配合量は、金めっきの未着抑制の観点から、(A)カルボキシル基含有樹脂全体に対して、10~60質量%の割合で含まれることが好ましく、10~40質量%の割合で含まれることがより好ましい。
 また、(A2)のカルボキシル基含有樹脂の配合量は、現像残渣が基板に再付着するのを抑制する観点から、(A)カルボキシル基含有樹脂全体に対して、20~60質量%であることが好ましく、40~60質量%であることがより好ましい。
 また、(A3)のカルボキシル基含有樹脂の配合量は、PCT耐性や金めっき異常を抑制する観点から、(A)カルボキシル基含有樹脂全体に対して、40~20質量%であることが好ましい。
 (A)カルボキシル基含有樹脂の配合量は、感光性樹脂組成物全体に対して20~60質量%であることが好ましい。20質量%以上とすることにより塗膜強度を向上させることができる。また60質量%以下とすることで粘性が適当となり加工性が向上する。より好ましくは、25~50質量%である。
<(B)光重合性モノマー>
 感光性樹脂組成物に含まれる(B)光重合性モノマーは、エチレン性不飽和二重結合を有するモノマーである。(B)光重合性モノマーとしては、上述した硬化性樹脂組成物で示したものを用いることができる。
 感光性樹脂組成物における(B)光重合性モノマーの配合量は、固形分換算で、カルボキシル基含有樹脂100質量部に対して、1~50質量部であることが好ましく、5~40質量部であることがより好ましい。
<光重合開始剤>
 本発明による感光性樹脂組成物は、上記した(A)カルボキシル基含有樹脂や(B)光重合性モノマーを露光により反応させるため光重合開始剤が含まれていてもよい。光重合開始剤としては、上述した硬化性樹脂組成物で示したものを用いることができる。
 光重合開始剤の配合量は、固形分換算で、(A)カルボキシル基含有樹脂100質量部に対して、1~20質量部であることが好ましい。1質量部以上の場合、感光性樹脂組成物の光硬化性が良好となり、耐薬品性等の被膜特性も良好となる。また、20質量部以下の場合、アウトガスの低減効果が得られ、さらに硬化被膜表面での光吸収が良好となり、深部硬化性が低下しにくい。より好ましくは2~15質量部である。
 また、本発明においては、光重合開始剤と併用して、光開始助剤または増感剤を用いてもよい。光開始助剤または増感剤としては、上述した硬化性樹脂組成物で示したものを用いることができる。
<(C)熱硬化性成分>
 本発明による感光性樹脂組成物は、(A)カルボキシル基含有樹脂および(B)光重合性モノマーに加え、(C)熱硬化性成分を含む。熱硬化性成分を含むことにより、後工程での硬化被膜のバリアー性(例えば、エッチング耐性等)が向上するとともに、解像性と剥離性とを高次元で両立させることができる。(C)熱硬化性成分としては、上述した硬化性樹脂組成物で「硬化性樹脂」として示したものを用いることができる。
 なお、本発明による感光性樹脂組成物は、エポキシ樹脂のなかでも、解像性と剥離性との両立の観点から、イソシアヌル環を有するエポキシ樹脂を好ましく使用することができる。イソシアヌル環を有するエポキシ樹脂としては、例えば、1,3-ビス(2,3-エポキシプロピル)-5-(2-プロペニル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等の二官能エポキシイソシアヌラートエステル化合物;1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(2,3-エポキシ-2-メチルプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(3,4-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(4,5-エポキシペンチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等の三官能エポキシイソシアヌラートエステル化合物;1,3,5-トリス{2-[2,2-ビス(2,3-エポキシプロピルオキシメチル)ブチルオキシカルボニル]エチル}-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン等の四官能以上の多官能エポキシイソシアヌラートエステル化合物等を含むものが挙げられ、三官能エポキシイソシアヌラートエステル化合物を含むものが好ましく、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、1,3,5-トリス(3,4-エポキシブチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、又は1,3,5-トリス(4,5-エポキシペンチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオンを含むものが特に好ましい。
 市販されるイソシアヌル環を有するエポキシ樹脂としては、例えば、日産化学株式会社製のTEPIC-PAS B26L、TEPIC-PAS B22、TEPIC-VL、TEPIC-UC、TEPIC-G、TEPIC-S、TEPIC-SP、TEPIC-SS等が挙げられる。
 (C)熱硬化性成分の配合量は、(A)カルボキシル基含有樹脂の含有するカルボキシル基1.0molあたりに対し、反応する(C)熱硬化性成分の官能基数が0.8~2.5molが好ましく、より好ましくは1.0~2.0molである。
 特に、(C)熱硬化性成分としてエポキシ樹脂を使用する場合は、エポキシ樹脂のエポキシ基は、(A)カルボキシル基含有樹脂のカルボキシル基1.0molあたり1.0~2.0molであることが好ましい。1mol以上とすることで、硬化被膜におけるカルボキシル基の残存を防止して、良好な耐熱性や耐アルカリ性、電気絶縁性等を得ることができる。また、上記配合量を2mol以下とすることで、低分子量の環状(チオ)エーテル基が乾燥塗膜に残存することを防止して、硬化被膜の強度等を良好に確保することができる。
<熱硬化触媒>
 感光性樹脂組成物には、上記した(C)熱硬化性成分の硬化を促進するための熱硬化触媒を含んでいてもよい。熱硬化触媒としては、上述した硬化性樹脂組成物で示したものを用いることができる。
 上記した熱硬化触媒は、1種を単独で、または2種以上を組み合わせて用いることができる。熱硬化触媒の配合量は、感光性樹脂組成物の保存安定性や硬化被膜の耐熱性の観点から、固形分換算で、(A)カルボキシル基含有樹脂100質量部に対して0.01~8質量部であることが好ましく、0.05~5質量部であることがより好ましい。
<(D)無機フィラー>
 本発明による感光性樹脂組成物は、硬化被膜の物理的強度等を上げるために、必要に応じて(D)無機フィラーを配合することができる。無機フィラーとしては、公知のフィラーが使用でき、特に、シリカ、タルク、マイカ、酸化アルミニウム、酸化カルシウム、酸化マグネシウム、酸化亜鉛、炭酸カルシウム、炭酸マグネシウム、フライアッシュ、脱水汚泥、カオリン、クレー、水酸化カルシウム、水酸化アルミニウム、水酸化マグネシウム、ハイドロタルサイト、珪酸アルミニウム、珪酸マグネシウム、ケイ酸カルシウム、ウォラストナイト、チタン酸カリウム、硫酸マグネシウム、硫酸カルシウム、燐酸マグネシウム、セピオライト、ゾノライト、窒化ホウ素、ホウ酸アルミニウム、シリカバルーン、ガラスフレーク、ガラスバルーン、製鉄スラグ、銅、鉄、酸化鉄、センダスト、アルニコ磁石、各種フェライト等の磁性粉、セメント、ガラス粉末、ノイブルグ珪土、珪藻土、三酸化アンチモン、マグネシウムオキシサルフェイト、水和アルミニウム、水和石膏、ミョウバンおよび硫酸バリウム等が挙げられる。その他の無機充填剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 上記したなかでも、シリカ、タルクおよび硫酸バリウムが好ましい。シリカとしては、非晶質、結晶質のいずれであってもよく、これらの混合物でもよい。特に非晶質(溶融)シリカが好ましい。
 使用する無機フィラーは、分散性等の観点から、平均粒径(D50)が0.1~100μmであることが好ましく、0.1~50μmであることがより好ましい。なお、平均粒径は、レーザー回折散乱式粒度分布測定法を用いて得られる体積累積50%における粒径を意味する。また、フィラーの平均粒径は、感光性樹脂組成物を調製(予備攪拌、混練)する前のフィラーを上記のようにして測定した値をいうものとする。
 感光性樹脂組成物における無機フィラーの配合量は、固形分換算で、カルボキシル基含有樹脂100質量部に対して、1~500質量部であることが好ましく、10~300質量部であることがより好ましい。これにより、感光性樹脂組成物の密着力低下防止性および冷熱サイクル耐性をより向上できる。
 上記した無機フィラーは、感光性樹脂組成物中での分散性を高めるために表面処理されたものであってもよい。表面処理がされている無機フィラーを使用することで、凝集を抑制することができる。表面処理方法は特に限定されず、公知慣用の方法を用いればよいが、硬化性反応基を有する表面処理剤、例えば、硬化性反応基を有機基として有するカップリング剤等で無機フィラーの表面を処理することが好ましい。
 カップリング剤としては、上述した硬化性樹脂組成物で示したものを用いることができる。これらのシラン系カップリング剤は、あらかじめ無機フィラーの表面に吸着あるいは反応により固定化されていることが好ましい。ここで、無機フィラー100質量部に対するカップリング剤の処理量は、0.5~10質量部であることが好ましい。
<その他の成分>
 本発明による感光性樹脂組成物は、上記した成分以外にも必要に応じて、上述した硬化性樹脂組成物で「その他の成分」として示したものを用いることができる。
 本発明の感光性樹脂組成物には、調製のし易さや塗布性の観点から有機溶剤を配合してもよい。有機溶剤としては、上述した硬化性樹脂組成物で示したものを用いることができる。
 感光性樹脂組成物における有機溶剤の配合量は、感光性樹脂組成物を構成する材料に応じ適宜変更することができ、例えば、(A)カルボキシル基含有樹脂(固形分)100質量部に対して30~300質量部とすることができる。なお、ここでの有機溶媒の配合量には、(A)カルボキシル基含有樹脂等の樹脂をワニスとして使用する場合にワニスに含まれる有機溶剤も含まれるものとする。
 本発明の感光性樹脂組成物は、ドライフィルム化して用いても液状として用いてもよい。また、液状として用いる場合は、1液性でも2液性以上でもよい。
<ドライフィルム>
 上述した硬化性樹脂組成物、および本発明の感光性樹脂組成物は、第1のフィルムと、当該第1のフィルム上に形成された上記硬化性樹脂組成物もしくは上記感光性樹脂組成物からなる樹脂層とを備えたドライフィルムの形態とすることもできる。本発明によるドライフィルムにおける第1のフィルムとは、基板等の基材上に、ドライフィルム上に形成された硬化性樹脂組成物もしくは感光性樹脂組成物からなる樹脂層側が接するように加熱等によりラミネートして一体成形する際には少なくとも樹脂層に接着しているものをいう。第1のフィルムは、ラミネート後の工程において、樹脂層から剥離してもよい。特に、本発明においては露光後の工程において、樹脂層から剥離することが好ましい。
 ドライフィルムを作製するには、上記硬化性樹脂組成物もしくは上記感光性樹脂組成物を有機溶剤で希釈して適切な粘度に調整し、コンマコーター、ブレードコーター、リップコーター、ロッドコーター、スクイズコーター、リバースコーター、トランスファロールコーター、グラビアコーター、スプレーコーター等で第1のフィルム上に均一な厚さに塗布し、通常、50~130℃の温度で1~30分間乾燥して膜を得ることができる。塗布膜厚については特に制限はないが、一般に、乾燥後の膜厚で、1~150μm、好ましくは10~60μmの範囲で適宜選択される。
 第1のフィルムとしては、公知のものであれば特に制限なく使用することができ、例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステルフィルム、ポリイミドフィルム、ポリアミドイミドフィルム、ポリプロピレンフィルム、ポリスチレンフィルム等の熱可塑性樹脂からなるフィルムを好適に使用することができる。これらの中でも、耐熱性、機械的強度、取扱性等の観点から、ポリエステルフィルムが好ましい。また、これらフィルムの積層体を第1のフィルムとして使用することもできる。
 また、上記したような熱可塑性樹脂フィルムは、機械的強度向上の観点から、一軸方向または二軸方向に延伸されたフィルムであることが好ましい。
 第1のフィルムの厚さは、特に制限されるものではないが、例えば、10μm~150μmとすることができる。
 第1のフィルム上に上記硬化性樹脂組成物もしくは上記感光性樹脂組成物の樹脂層を形成した後、さらに、樹脂層の表面に塵が付着するのを防ぐなどの目的で、樹脂層の表面に剥離可能な第2のフィルムを積層することが好ましい。本発明によるドライフィルムにおける第2のフィルムとは、基板等の基材上にドライフィルムの樹脂層側が接するように加熱等によりラミネートして一体成形する際、ラミネート前に樹脂層から剥離するものをいう。
 樹脂層から剥離可能な第2のフィルムとしては、例えば、ポリエチレンフィルム、ポリテトラフルオロエチレンフィルム、ポリプロピレンフィルム、表面処理した紙等を用いることができ、第2のフィルムを剥離するときに樹脂層と第1のフィルムとの接着力よりも樹脂層と第2のフィルムとの接着力がより小さいものであればよい。
 第2のフィルムの厚さは、特に限定されるものではないが、例えば、10μm~150μmとすることができる。
<硬化物の製造方法>
 本発明の硬化物は、上記した硬化性樹脂組成物、またはドライフィルムの樹脂層を硬化させることにより得ることができる。例えば、硬化性樹脂組成物を、上記有機溶剤を用いて塗布方法に適した粘度に調整して、基材上に、ディップコート法、フローコート法、ロールコート法、バーコート法、スクリーン印刷法、カーテンコート法等の方法により基板等の表面に塗布した後、60~100℃の温度で組成物中に含まれる有機溶剤を揮発乾燥(仮乾燥)させることで、タックフリーの樹脂層を形成する。また、ドライフィルムの場合、ラミネーター等により樹脂層が基材と接触するように基材上に貼り合わせた後、キャリアフィルムを剥がすことにより、基材上に樹脂層を形成する。
 上記基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。
 ドライフィルムの形態である場合には、基材上への貼合は、真空ラミネーター等を用いて、加圧および加熱下で行うことが好ましい。このような真空ラミネーターを使用することにより、回路形成された基板を用いた場合に、回路基板表面に凹凸があっても、ドライフィルムが回路基板に密着するため、気泡の混入がなく、また、基板表面の凹部の穴埋め性も向上する。加圧条件は、0.1~2.0MPa程度であることが好ましく、また、加熱条件は、40~120℃であることが好ましい。
 硬化物樹脂組成物が有機溶剤を含む場合、基材表面に硬化物樹脂組成物を塗布した後、揮発乾燥を行うことが好ましい。揮発乾燥は、熱風循環式乾燥炉、IR炉、ホットプレート、コンベクションオーブン等(蒸気による空気加熱方式の熱源を備えたものを用いて乾燥機内の熱風を向流接触せしめる方法およびノズルより基材に吹き付ける方式)を用いて行うことができる。
 基材上に樹脂層を形成後、所定のパターンを形成したフォトマスクを通して選択的に活性エネルギー線により露光し、未露光部を希アルカリ水溶液(例えば、0.3~3質量%炭酸ソーダ水溶液)により現像して硬化物のパターンを形成する。ドライフィルムの場合には、露光後、ドライフィルムから第1のフィルムを剥離して現像を行うことにより、基材上にパターニングされた硬化物を形成する。なお、ドライフィルムの形態である場合、特性を損なわない範囲であれば、露光前にドライフィルムから第1のフィルムを剥離して、露出した樹脂層を露光および現像してもよい。
 上記活性エネルギー線照射に用いられる露光機としては、高圧水銀灯ランプ、超高圧水銀灯ランプ、メタルハライドランプ、水銀ショートアークランプ等を搭載し、350~450nmの範囲で紫外線を照射する装置であればよく、さらに、直接描画装置(例えば、コンピューターからのCADデータにより直接レーザーで画像を描くレーザーダイレクトイメージング装置)も用いることができる。直描機のランプ光源またはレーザー光源としては、最大波長が350~450nmの範囲にあるものでよい。画像形成のための露光量は膜厚等によって異なるが、一般には10~1000mJ/cm、好ましくは20~800mJ/cmの範囲内とすることができる。
 上記現像方法としては、ディッピング法、シャワー法、スプレー法、ブラシ法等によることができ、現像液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類等のアルカリ水溶液が使用できる。
 本発明の硬化物は、上記した露光、現像の後、加熱硬化(例えば、100~220℃)することで得ることができる(本硬化)。その際、平均線膨張率を70~100ppm/℃の範囲内とするため、加熱硬化後、硬化物に活性エネルギー線を照射することが好ましい。加熱硬化後に再度活性エネルギー線を照射することで、硬化性樹脂組成物の組成によっては光重合性モノマー等がさらに硬化して、所望の平均線膨張率に調整することが可能となり、その結果、マーキングインキ硬化後の密着性にも優れる。
 加熱硬化後の活性エネルギー線照射は、硬化性樹脂組成物の組成にもよるが、好ましくは500~2000mJ/cmの露光量で行うことが好ましい。装置としては、高圧水銀灯(80W/cmの3灯)等が挙げられる。
 本発明の硬化物は、例えば、プリント配線板等の電子部品のソルダーレジストまたはカバーレイまたは層間絶縁層を形成するために使用される。また、プリント配線板のソルダーダムを形成するために使用してもよい。それらのなかでも、ソルダーレジストを形成するために用いられることが好ましい。本発明の硬化物によれば、後述するプリント配線板に、硬化物を形成した場合に、その表面にマーキングインキを塗布しやすく、硬化後のマーキングインキとの密着性に優れ、さらに表面に文字や記号の視認性に優れたマーカーを形成できる。
 なお、本発明の感光性樹脂組成物またはそのドライフィルムの樹脂層から硬化物を形成する方法についても、上述した本発明の硬化物の製造方法と同様の方法を用いることができる。
 また、本発明の感光性樹脂組成物またはそのドライフィルムの樹脂層から得られる硬化物では、露光、現像して基材上に硬化物のパターンを形成した後、さらに、硬化物に活性エネルギー線を照射後に加熱硬化(例えば、100~220℃)、もしくは加熱硬化後に活性エネルギー線を照射、または、加熱硬化のみで最終仕上げ硬化(本硬化)させることにより、密着性、硬度等の諸特性に優れた硬化物からなる被膜(硬化被膜)を形成することができる。
[プリント配線板]
 本発明のプリント配線板は、本発明の硬化物、あるいは本発明の感光性樹脂組成物またはそのドライフィルムから得られる硬化物を有するものである。硬化物の製造方法については、前述のとおりである。
 プリント配線板を形成する基材としては、あらかじめ銅等により回路形成されたプリント配線板やフレキシブルプリント配線板の他、紙フェノール、紙エポキシ、ガラス布エポキシ、ガラスポリイミド、ガラス布/不繊布エポキシ、ガラス布/紙エポキシ、合成繊維エポキシ、フッ素樹脂・ポリエチレン・ポリフェニレンエーテル,ポリフェニレンオキサイド・シアネート等を用いた高周波回路用銅張積層板等の材質を用いたもので、全てのグレード(FR-4等)の銅張積層板、その他、金属基板、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレート(PEN)フィルム、ガラス基板、セラミック基板、ウエハ板等を挙げることができる。
 なお、本発明のプリント配線板では、上記のようにして基材上に硬化被膜を形成した後、基材上に電子素子等の部品がはんだリフロー処理により実装される。はんだリフロー処理は従来公知の方法により行うことができる。また、はんだリフローは、例えば245~260℃で5~10秒の処理条件により行うのが一般的である。
 本発明の感光性樹脂組成物またはそのドライフィルムは、プリント配線板等の電子部品製造用として好適に使用され、より好適には、永久被膜を形成するために使用される。その際、本発明の感光性樹脂組成物またはそのドライフィルムを用いて、上記した方法等により硬化物を形成する。本発明の感光性樹脂組成物またはそのドライフィルムの樹脂層が絶縁性である場合、好適には、ソルダーレジストまたはカバーレイまたは層間絶縁層を形成するために使用される。なお、本発明による感光性樹脂組成物は、ソルダーダムを形成するために使用してもよい。
 次に実施例を挙げて、本発明をさらに詳細に説明するが、本発明は、これら実施例に限定されるものではない。なお、以下において「部」および「%」とあるのは、特に断りのない限り全て質量基準である。
<合成例1(カルボキシル基含有樹脂ワニスA1-1の合成)>
 オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、EPICLON N-695、エポキシ当量:214、平均官能基数7.6)220部を撹拌機および還流冷却器の付いた四つ口フラスコに入れ、カルビトールアセテート214部を加え、加熱溶解した。次に、重合禁止剤としてハイドロキノン0.1部と、反応触媒としてジメチルベンジルアミン2.0部を加えた。この混合物を95~105℃に加熱し、アクリル酸72部を徐々に滴下し、16時間反応させた。この反応生成物を80~90℃まで冷却し、テトラヒドロフタル酸無水物106部を加え、8時間反応させ、冷却後、取り出した。このようにして得られたカルボキシル基含有樹脂溶液は、固形分が65%、固形物の酸価が85mgKOH/g、重量平均分子量が10,000であった。以下、この樹脂溶液をワニスA1-1と呼称する。
<合成例2(カルボキシル基含有樹脂A1-2の合成)>
 温度計、攪拌器、滴下ロート、および還流冷却器を備えたフラスコに、フェノールノボラック型エポキシ樹脂(日本化薬株式会社製P-201、エポキシ当量=200)200部と、溶媒としてのカルビトールアセテート96.4部とを加え、加熱溶解させた。続いて、重合禁止剤としてハイドロキノン0.1部、反応触媒としてトリフェニルフォスフィン2.0部を加えた。この混合物を95~105℃に加熱し、アクリル酸72部を徐々に滴下し、酸価が3.0mgKOH/g以下となるまで、約16時間反応させた。この反応生成物を、80~90℃にまで冷却した後、テトラヒドロフタル酸無水物76.1部を加え、赤外吸光分析により、酸無水物の吸収ピーク(1780cm-1)が無くなるまで、約6時間反応させた。この反応溶液に、出光石油化学株式会社製の芳香族系溶剤イプゾール#150を96.4部加え、希釈した後取り出した。このようにして得られたカルボキシル基含有樹脂溶液は、固形分が65%、固形分の酸価が78mgKOH/g、重量平均分子量が8,000であった。以下、この樹脂溶液をワニスA1-2と呼称する。
<合成例3(カルボキシル基含有樹脂ワニスA2-1の合成)>
 平均の重合度nが3.3であるビスフェノールA型エポキシ樹脂(エポキシ当量650g/eq、軟化点81.1℃)371部とエピクロルヒドリン925部をジメチルスルホキシド462.5部に溶解させた後、攪拌下70℃で98.5%水酸化ナトリウム52.8部を100分かけて添加した。添加後さらに70℃で3時間反応を行った。反応終了後、水250部を加え水洗を行った。油水分離後、油層よりジメチルスルホキシドの大半および過剰の未反応エピクロルヒドリンを減圧下に蒸留回収し、残留した副製塩とジメチルスルホキシドを含む反応生成物をメチルイソブチルケトン750部に溶解させ、さらに30%水酸化ナトリウム10部を加え、70℃で1時間反応させた。反応終了後、水200部で2回水洗を行った。油水分離後、油層よりメチルイソブチルケトンを蒸留回収して、エポキシ当量287g/eq、軟化点64.2℃のエポキシ樹脂を得た。得られたエポキシ樹脂は、エポキシ当量から計算すると、前記出発物質ビスフェノールA型エポキシ樹脂におけるアルコール性水酸基3.3個のうち約3.1個がエポキシ化されたものであった。
 得られたエポキシ樹脂310部およびカルビトールアセテート282部をフラスコに仕込み、90℃に加熱、攪拌し、溶解した。得られた溶液を一旦60℃まで冷却し、アクリル酸72部(1モル)、メチルハイドロキノン0.5部、トリフェニルフォスフィン2部を加え、100℃に加熱し、約60時間反応させ、酸価が0.2mgKOH/gの反応物を得た。これにテトラヒドロ無水フタル酸140部(0.92モル)を加え、90℃に加熱し、カルボキシル基含有樹脂溶液を得た。このようにして得られたカルボキシル基含有樹脂溶液は、固形分が64.0%、固形分の酸価が100mgKOH/g、重量平均分子量が15,000であった。以下、この樹脂溶液をワニスA2-1と呼称する。
<合成例4(カルボキシル基含有樹脂ワニスA2-2の合成)>
 平均の重合度nが6.2であるビスフェノールF型エポキシ樹脂(エポキシ当量950g/eq、軟化点85℃)380部とエピクロルヒドリン925部をジメチルスルホキシド462.5部に溶解させた後、攪拌下70℃で98.5%水酸化ナトリウム60.9部(1.5モル)を100分かけて添加した。添加後さらに70℃で3時間反応を行った。反応終了後、水250部を加え水洗を行った。油水分離後、油層よりジメチルスルホキシドの大半および過剰の未反応エピクロルヒドリンを減圧下に蒸留回収し、残留した副製塩とジメチルスルホキシドを含む反応生成物をメチルイソブチルケトン750部に溶解させ、さらに30%水酸化ナトリウム10部を加え、70℃で1時間反応させた。反応終了後、水200部で2回水洗を行った。油水分離後、油層よりメチルイソブチルケトンを蒸留回収して、エポキシ当量310g/eq、軟化点69℃のエポキシ樹脂を得た。得られたエポキシ樹脂は、エポキシ当量から計算すると、前記出発物質ビスフェノールF型エポキシ樹脂におけるアルコール性水酸基6.2個のうち約5個がエポキシ化されたものであった。
 得られたエポキシ樹脂310部およびカルビトールアセテート282部をフラスコに仕込み、90℃に加熱・攪拌し、溶解した。得られた溶液を一旦60℃まで冷却し、アクリル酸72部(1モル)、メチルハイドロキノン0.5部、トリフェニルフォスフィン2部を加え、100℃に加熱し、約60時間反応させ、酸価が0.2mgKOH/gの反応物を得た。これにテトラヒドロ無水フタル酸140部(0.92モル)を加え、90℃に加熱し、カルボキシル基含有樹脂溶液を得た。このようにして得られたカルボキシル基含有樹脂溶液は、固形分が65.0%、固形分の酸価が100mgKOH/g、重量平均分子量が15,000であった。以下、この樹脂溶液をワニスA2-2と呼称する。
<合成例5(カルボキシル基含有樹脂ワニスA3-1の合成)>
 攪拌機、温度計、還流冷却器、滴下ロートおよび窒素導入管を備えた2リットルセパラブルフラスコに、溶媒としてジエチレングリコールジメチルエーテル900部を加えて90℃に加熱した。加熱後、ここに、メタクリル酸309.9部、メタクリル酸メチル116.4部、およびラクトン変性2-ヒドロキシエチルメタクリレート(株式会社ダイセル製、プラクセルFM1)109.8部を、重合開始剤であるビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート(日本油脂株式会社製、パーロイルTCP)21.4部と共に3時間かけて滴下して加え、さらに6時間熟成することにより生成物を得た。なお、反応は、窒素雰囲気下で行った。
 次いで、得られた生成物に、3,4-エポキシシクロヘキシルメチルアクリレート(株式会社ダイセル製、サイクロマーA200)363.9部、開環触媒としてジメチルベンジルアミン3.6部、重合抑制剤としてハイドロキノンモノメチルエーテル1.80部を加え、100℃に加熱し、攪拌することによりエポキシの開環付加反応を行った。16時間後、固形分が53.8%、固形分の酸価が108.9mgKOH/g、重量平均分子量が25,000のカルボキシル基含有樹脂を得た。以下、この樹脂溶液をワニスA3-1と呼称する。
<合成例6(カルボキシル基含有樹脂A3-2の合成)>
 還流冷却器、温度計、窒素置換用ガラス管および撹拌機を取り付けた四ツ口フラスコに、メタクリル酸42部、メチルメタクリレート43部、スチレン35部、カルビトールアセテート100部、ラウリルメルカプタン0.5部およびアゾビスイソブチロニトリル4部を加え、窒素気流下、75℃で5時間加熱して重合反応を進行させて、固形分が50%、固形分の酸価が120mgKOH/g、重量平均分子量が25,000のカルボキシル基含有樹脂溶液を得た。以下、この樹脂溶液をワニスA3-2と呼称する。
<合成例7(カルボキシル基含有樹脂ワニスB1の合成)>
 温度計、窒素導入装置兼アルキレンオキシド導入装置および撹拌装置を備えたオートクレーブに、ノボラック型クレゾール樹脂(アイカ工業株式会社製ショーノールCRG951、OH当量:119.4)119.4部、水酸化カリウム1.19部およびトルエン119.4部を仕込み、撹拌しつつ系内を窒素置換し、加熱昇温した。次に、プロピレンオキシド63.8部を徐々に滴下し、125~132℃、0~4.8kg/cmで16時間反応させた。その後、室温まで冷却し、この反応溶液に89%リン酸1.56部を添加混合して水酸化カリウムを中和し、固形分62.1%、水酸基価が182.2g/eq.であるノボラック型クレゾール樹脂のプロピレンオキシド反応溶液を得た。これは、フェノール性水酸基1当量当りアルキレンオキシドが平均1.08モル付加しているものであった。
 次いで、得られたノボラック型クレゾール樹脂のアルキレンオキシド反応溶液293.0部、アクリル酸43.2部、メタンスルホン酸11.53g、メチルハイドロキノン0.18部およびトルエン252.9部を、撹拌機、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、110℃で12時間反応させた。反応により生成した水は、トルエンとの共沸混合物として、12.6部の水が留出した。その後、室温まで冷却し、得られた反応溶液を15%水酸化ナトリウム水溶液35.35部で中和し、次いで水洗した。その後、エバポレーターにてトルエンをカルビトールアセテート118.1部で置換しつつ留去し、ノボラック型アクリレート樹脂溶液を得た。
 続いて、得られたノボラック型アクリレート樹脂溶液332.5部およびトリフェニルフォスフィン1.22部を、撹拌器、温度計および空気吹き込み管を備えた反応器に仕込み、空気を10ml/分の速度で吹き込み、撹拌しながら、テトラヒドロフタル酸無水物60.8部を徐々に加え、95~101℃で6時間反応させた。このようにして、固形分が71%、固形分の酸価が88mgKOH/g、重量平均分子量が2,500のカルボキシル基含有感光性樹脂の樹脂溶液を得た。以下、この樹脂溶液をワニスB1と呼称する。
<合成例8(カルボキシル基含有樹脂ワニスB2の合成)>
 クレゾールノボラック型エポキシ樹脂(日本化薬株式会社製、EOCN-104S、軟化点92℃、エポキシ当量220)220部、ジメチロールプロピオン酸40.2部を撹拌装置、冷却管および温度計を備えたフラスコに入れ、カルビトールアセテート260部を加え、90℃で加熱溶解した。次いで、この樹脂溶液を60℃に冷却し、トリフェニルフォスフィン0.7部を仕込み、100℃に加熱し、約32時間反応し、固形分50%、エポキシ当量371g/当量の樹脂溶液を得た。
 次に、ガス導入管、撹拌装置、冷却管、温度計およびアルカリ金属水酸化物水溶液の連続滴下用の滴下ロートを備えた反応容器に水酸基当量80g/当量の1,5-ジヒドロキシナフタレン203部とビスフェノールA型エポキシ樹脂のエピクロン-840(DIC株式会社製、エポキシ当量180)1097部を仕込み、窒素雰囲気下にて、撹拌下120℃で溶解させた。その後、トリフェニルフォスフィン0.65部を添加し、フラスコ内の温度を150℃まで昇温し、温度を150℃で保持しながら、約90分間反応させ、エポキシ当量365g/当量のエポキシ化合物を得た。その後、フラスコ内の温度を70℃以下まで冷却し、エピクロルヒドリン2058部、ジメチルスルホキシド1690部を加え、撹拌下70℃まで昇温し保持した。その後、48%水酸化ナトリウム244部を90分間かけて連続滴下し、その後、さらに3時間反応させた。反応終了後、過剰のエピクロルヒドリンおよびジメチルスルホキシドの大半を減圧蒸留して回収し、副生塩とジメチルスルホキシドを含む反応生成物をメチルイソブチルケトンに溶解させ水洗した。有機溶媒層と水層を分離後、有機溶媒層よりメチルイソブチルケトンを減圧蒸留して留去し、エポキシ当量275g/当量の多核エポキシ化合物(アルコ-ル性水酸基のエポキシ化率は約48%)を得た。
 次に、上記のようにして調製した樹脂溶液371部と多核エポキシ化合物137.5部とを撹拌装置、冷却管および温度計を備えたフラスコに入れ、カルビトールアセテート137部を加え、加熱溶解し、メチルハイドロキノン0.46部と、トリフェニルフォスフィン1.38部を加え、95~105℃に加熱し、アクリル酸72部を徐々に滴下し、16時間反応させた。この反応生成物を、80~90℃まで冷却し、テトラヒドロフタル酸無水物146部を加え、8時間反応させた。この反応は、電位差滴定による反応液の酸化、全酸化測定を行ない、得られる付加率にて追跡し、反応率95%以上を終点とした。このようにして、固形分が62%、固形分の酸価が102mgKOH/g、重量平均分子量が10,000のカルボキシル基含有樹脂の樹脂溶液を得た。以下、この樹脂溶液をワニスB2と呼称する。
<合成例9(カルボキシル基含有樹脂ワニスB3の合成)>
 カルビトールアセテート650部にオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製、EPICLON N-695、軟化点95℃、エポキシ当量214、平均官能基数7.6)1070部、アクリル酸360部、およびハイドロキノン1.5部を仕込み、100℃に加熱攪拌し、均一溶解した。次いで、トリフェニルフォスフィン4.3部を仕込み、110℃に加熱して2時間反応後、更にトリフェニルフォスフィン1.6部を追加し、120℃に昇温してさらに12時間反応を行った。
 得られた反応液に、芳香族系炭化水素(株式会社スタンダード石油大阪発売所製、ティーソル150)525部、テトラヒドロ無水フタル酸608部(4.0モル)を仕込み、110℃で4時間反応を行った。さらに、得られた反応液にグリシジルメタクリレート142.0gを仕込み、115℃で4時間反応を行った。このようにして、固形分が65%、固形分の酸価が77mgKOH/g、重量平均分子量が11,000~12,000のカルボキシル基含有樹脂の樹脂溶液を得た。以下、この樹脂溶液をワニスB3と呼称する。
<硬化性樹脂組成物の調製>
 下記表1に記載の各成分を配合し、3本ロールミルを用いて室温にて混合することにより、同表に記載の各硬化性樹脂組成物を得た。なお、表中の各数値は質量部を示す。また、各成分の配合量(数値)は固形分の配合量(表中に記載の有機溶剤(カルビトールアセテート)は実際の配合量)を示す。
 なお、下記表1中の各成分*1~*18は、以下のとおりである。
*1:ジペンタエリスリトールペンタおよびヘキサアクリレート、光重合性モノマー(DPHA、共栄社化学株式会社製)
*2:ウレタンアクリレート、オリゴマー(CN9178、アルケマ社(サートマー社)製)
*3:クレゾールノボラック型エポキシ樹脂(RN-695、DIC株式会社製)
*4:イソシアヌル環を有するトリエポキシ樹脂(TEPIC-S、日産化学株式会社製)
*5:ビスフェノールA型エポキシ樹脂(jER 828、三菱ケミカル株式会社製)
*6:ジシクロペンタジエン骨格含有多官能固形エポキシ樹脂(HP-7200、DIC株式会社製)
*7:ビフェニルアラルキル型エポキシ樹脂(YX-4000、日本化薬株式会社製)
*8:ビフェニルアラルキル型エポキシ樹脂(NC3000H、三菱ケミカル株式会社製)
*9:α-アミノアセトフェノン系光重合開始剤(Omnirad 907、IGM Resins社製)
*10:アシルフォスフィンオキサイド系光重合開始剤(Omnirad 819、IGM Resins社製)
*11:α-アミノアセトフェノン系光重合開始剤(Omnirad 369、IGM Resins社製)
*12:チタノセン系光重合開始剤(JMT-784、Yueyang Kimoutain Sci-tech Co.Ltd.製)
*13:非晶質シリカ(FS-3DC、デンカ株式会社製、D50=2.9μm)
*14:非晶質シリカ(HS-311、日鉄ケミカル&マテリアル株式会社製、D50=2.2μm)
*15:タルク(LMP-100、富士タルク工業株式会社製)
*16:硫酸バリウム(B-100、堺化学工業株式会社製)
*17:2,4-ジエチルチオキサントン(KAYACURE DETX-S、日本化薬株式会社製)
*18:2-イソプロピルチオキサントン(KAYACURE ITX、日本化薬株式会社製)
*19:メラミン(日産化学株式会社製、D50=0.5μm)
<硬化物の作製>
 実施例および比較例の硬化性樹脂組成物をプリント配線板用銅張積層板(FR-4、厚み1.6mm、大きさ150×95mm)にスクリーン印刷にて乾燥塗膜が20μmになるようにベタ印刷し、80℃で30分間乾燥して塗膜を形成した。
 次いで、塗膜が全面に残るようなパターンにて、塗膜を露光し、これを30℃で1wt%のNaCO溶液にて60秒現像した。露光量としては、乾燥後、メタルハライドランプ搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、現像(30℃、0.2MPa、30℃、1wt%NaCO溶液)を60秒で行った際残存するステップタブレットのパターンが7段の時を最適露光量とした。さらに、露光、現像後に150℃で30分間硬化させた。硬化後、実施例1、2、比較例2については、さらに高圧水銀灯(80W/cmの3灯1000mJ/cm)を用いて塗膜表面を照射し、硬化物(硬化被膜)を形成した試験基板1を得た。
<硬化物の物性評価>
 得られた硬化物の0~180℃の平均線膨張率およびガラス転移温度(Tg)を以下のようにして測定した。
 上記のようにして得られた硬化物を、幅3mm、長さ30mmに切り出して試験片とし、熱機械分析装置(TMA/SS6000、セイコー・インスツルメンツ株式会社製)を用いて、引張りモードでの熱膨張係数の測定を行った。引張りの最大荷重は50N/m、スパン(チャック間距離)は10mm、昇温速度は10℃/分とした。試験片を熱機械分析装置に装着し、30℃から200℃まで加熱し、10分間放置した後、降温速度-10℃/分の条件で-30℃まで冷却し、-30℃から250℃まで昇温速度10℃/分の条件で測定を行い、0℃および180℃での各測定値を読み取り、下記式により平均線膨張率(α)を算出した。
  α=(1/LS)×[{L(180)-L(0)}/(T(180)-T(0)]
(なお、式中、
 LS:測定前の試験片(硬化物)長さ(測定値)
 L(0):0℃における試験片(硬化物)長さの変化量(測定値)
 L(180):180℃における試験片(硬化物)長さの変化量(測定値)
 T(0):0(℃)
 T(180):180(℃)
である。)
 また、得られたTMA曲線から、0℃と30℃の2点を通る直線A、150℃と180℃の2点を通る直線Bをそれぞれ引いて、直線Aと直線Bとが交差する点(外挿点)の温度を本発明の硬化物のTgとした。
 測定結果は下記表1に示されるとおりであった。







































Figure JPOXMLDOC01-appb-T000001
<マーキング評価>
(1)印刷性
 上記のようにして得られた試験基板の硬化塗膜表面に、マーキングインキ(PMR-6000 W30、太陽インキ製造株式会社製)を用いて、10×20mmの大きさの長方形で硬化後の膜厚が20μmになるように印刷した。これを80℃で30分乾燥してマーカーを形成した。マーカー部分の印刷状態を目視にて確認し、下記の評価基準によりマーキング印刷性の評価を行った。
 ○:滲みやかすれが見られない
 ×:滲みやかすれが見られる
 評価結果は下記表2に示されるとおりであった。
(2)密着性
 上記のようにして得られた試験基板の硬化塗膜表面に、マーキングインキ(PMR-6000 W30、太陽インキ製造株式会社製)を用いて、10×20mmの大きさの長方形で硬化後の膜厚が20μmになるように印刷した。これを80℃で30分乾燥した後、印刷部分に、おおよそ10~20μmの文字・記号が残るようなパターンにて露光し、これを30℃で1wt%NaCOで60秒間現像した。露光量としては、乾燥後、メタルハライドランプ搭載の露光装置を用いてステップタブレット(Kodak No.2)を介して露光し、現像(30℃、0.2MPa、30℃、1wt%NaCO溶液)を60秒で行った際残存するステップタブレットのパターンが8段の時を最適露光量とした。さらに、現像後の塗膜を10℃の水で60秒間洗浄し、これを180℃で45分間硬化させてマーカーを形成した。
 次いで、粘着テープをマーカー部分に貼り付け、ピーリング試験を実施した。評価基準は以下のとおりとした。
 ◎:剥がれ無し
 ○:一部に若干の剥がれが認められる
 ×:全面的に剥がれが認められる
 評価結果は下記表2に示されるとおりであった。
(3)マーカーの視認性
 上記(2)の密着性評価を行った評価試料について、マーカー部分の文字、記号が判読可能か目視にて確認した。マーカーの視認性の評価基準は以下のとおりとした。
 ◎:全ての文字、記号が判読できる
 ○:判読しにくい文字、記号が一部にある
 ×:全体にわたって、文字、記号が判読しにくい
 評価結果は下記表2に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000002
 表1からも明らかなように、0℃から180℃に温度変化した際の平均線膨張率が70~100ppm/℃の範囲内にある硬化物(実施例1~3)では、マーキングインキの印刷性が良好であり、マーキングインキとの密着性に優れ、かつ文字や記号の視認性にも優れたマーカーを形成できることがわかる。
 これに対して、平均線膨張率が70ppm/℃未満であったり、100ppm/℃を超える場合(比較例2および3)は、マーキングインキの印刷性が良好ではなく、またマーキングインキとの密着性も不十分であることがわかる。
 また、0℃から180℃に温度変化した際の平均線膨張率が70~100ppm/℃の範囲内にあっても、非晶質シリカを含まない硬化性樹脂組成物を用いて形成された硬化物は、他の比較例と同様にマーキングインキの印刷性が良好ではなく、またマーキングインキとの密着性も不十分であることがわかる。
<感光性樹脂組成物の調製>
 下記表3に記載の各成分を配合し、3本ロールミルを用いて室温にて混合することにより、同表に記載の各感光性樹脂組成物を得た。なお、表中の各数値は質量部を示す。また、表中の各カルボキシル基含有樹脂の配合量は、上記のようにして得られたワニスでの配合量を表す。なお、下記表3中の各成分*1~*19は、上述したとおりである。
<感光性樹脂組成物の評価>
(1)現像残渣の再付着の評価
 めっき不良抑制を評価する項目として、本評価を行った。具体的には、上記のようにして得られた各感光性樹脂組成物を、バフで研磨された0.5m×0.5m×1.6mmのPad部を有する櫛形L/S=100μm/100μmパターンの基板に、現像後の膜厚が20μmの厚みとなるように両面スクリーン印刷により塗膜を形成した。
 次いで、塗膜を形成した基板を10分間保持した後、熱風循環式乾燥炉にて80℃、40分間乾燥させた。塗膜を乾燥させた基板を室温にて30分放置したのち、1%のNaCO水溶液(液温30℃)を入れた現像機(東京化工機株式会社製、ソルダーレジスト現像装置(150L槽))を用いて100枚現像し、現像残渣の再付着の個数を目視にて確認した。評価基準は以下のとおりとした。
 ○:再付着は0個であった
 △:再付着は1~9個であった
 ×:再付着は10個以上であった
 評価結果は下記表3に示されるとおりであった。
(2)PCBT(プレッシャークッカーバイアステスト)
 ソルダーレジストに要求される特性(絶縁信頼性)を評価する項目として、本評価を行った。具体的には、各感光性樹脂組成物を、Pad部を有する櫛形L/S=100μm/100μmパターンの基板に、現像後の膜厚が20μmの厚みとなるように両面スクリーン印刷により塗膜を形成した。
 次いで、塗膜を形成した基板を熱風循環式乾燥炉にて80℃、40分間乾燥させた。塗膜を乾燥させた基板を室温にて30分放置したのち、400mJ/cmの露光量にて露光し、1%のNaCO水溶液(液温30℃)を入れた現像機(東京化工機株式会社製、ソルダーレジスト現像装置(150L槽))を用いて60秒間の現像を行った。続いて、150℃で60分間のポストキュア処理を行い、塗膜を硬化させて、硬化被膜を備えた基板(以下、「試験基板」という)を作製した。
 得られた試験基板の絶縁信頼性を、絶縁劣化評価試験器(IMV株式会社製 MIG-8600B)を用いて、121℃、湿度97%の印加電圧30Vにおいて槽内測定を継続して実施し、抵抗値が10Ω以下になり絶縁性が失われる時間を測定した。評価基準は以下のとおりとした。
 ◎:150時間以上
 ○:100~149時間
 △:50~99時間
 ×:49時間以下
 評価結果は下記表3に示されるとおりであった。
(3)めっき評価
 めっき不良抑制を評価する項目として、次の評価を行った。具体的には、上記の試験基板を、30℃の酸性脱脂液(株式会社日本マクダーミッド製、Metex L-5Bの20vol%水溶液)に3分間浸漬して脱脂し、次いで流水中に3分間浸漬して水洗した。
 次に、試験基板を14.3wt%過硫酸アンモニウム水溶液に室温で3分間浸漬し、ソフトエッチを行い、次いで流水中に3分間浸漬して水洗した。10vol%硫酸水溶液に室温で試験基板を1分間浸漬した後、流水中に30秒~1分間浸漬して水洗した。
 続いて、試験基板を30℃の触媒液(株式会社メルテックス製、メタルプレートアクチベーター350の10vol%水溶液)に7分間浸漬し、触媒付与を行った後、流水中に3分間浸漬して水洗した。
 触媒付与を行った試験基板を、85℃のニッケルめっき液(株式会社メルテックス製、メルプレートNi-865Mの20vol%水溶液、pH4.6)に30分間浸漬して、無電解ニッケルめっきを行った。10vol%硫酸水溶液に室温で試験基板を1分間浸漬した後、流水中に30秒~1分間浸漬して水洗した。
 次いで、試験基板を95℃の金めっき液(株式会社メルテックス製、オウロレクトロレスUP15vol%とシアン化金カリウム3vol%の水溶液、pH6)に30分間浸漬し、Ni5μm、Au0.05μmの厚みとなるように無電解金めっきを行った後、流水中に3分間浸漬して水洗し、また60℃の温水に3分間浸漬して湯洗した。十分に水洗後、水をよくきり、乾燥し、無電解金めっきした試験基板を得た。
 上記のようにして無電解金めっき処理を行った試験基板のPad部分について、めっきがされているか目視にて確認を行い、下記基準によりめっき未着の有無についての評価を行った。
 ○:めっきの未着は認められなかった
 △:めっきの未着が1箇所観察された
 ×:めっきの未着が多数箇所観察された
 評価結果は下記表3に示されるとおりであった。
 また、めっき液の汚染抑制を評価する項目として、次の評価を行った。具体的には、試験基板のPad部分について、めっきされている表面に異常がないか目視にて確認を行い、下記基準によりめっき表面異常の有無についての評価を行った。
 ○:異常箇所が0箇所
 △:異常箇所が1箇所
 ×:異常箇所が多数箇所
 評価結果は下記表3に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000003
 表3からも明らかなように、カルボキシル基含有樹脂として、特定の3種を特定の割合で組み合わせた感光性樹脂組成物(実施例4~8)は、絶縁信頼性等のソルダーレジストに要求される特性を満たしながらも、めっき液の汚染やめっき不良の発生を抑制できていることがわかる。
 一方、カルボキシル基含有樹脂として、ノボラック骨格を有するカルボキシル基含有樹脂のみを使用した感光性樹脂組成物(比較例4)では、めっき液の汚染やめっき不良の発生は抑制できるものの、絶縁信頼性等のソルダーレジストに要求される特性が不十分である。
 また、カルボキシル基含有樹脂として、ノボラック骨格を有するカルボキシル基含有樹脂とビスフェノール骨格を有するカルボキシル基含有樹脂の2種を併用した感光性樹脂組成物(比較例5)やビスフェノール骨格を有するカルボキシル基含有樹脂と不飽和塩基酸共重合型のカルボキシル基含有樹脂の2種を併用した感光性樹脂組成物(比較例6)では、めっき表面に異常が生じめっき液の汚染が生じているものと思われる。
 また、カルボキシル基含有樹脂として、ノボラック骨格を有するカルボキシル基含有樹脂と不飽和塩基酸共重合型のカルボキシル基含有樹脂の2種を併用した感光性樹脂組成物(比較例7)では、現像液中の残渣の影響によりめっき未着といった不良が発生することがわかる。
 さらに、カルボキシル基含有樹脂として、特定の3種を組み合わせた場合であっても、各成分が所定割合範囲外である感光性樹脂組成物(比較例8)は、絶縁信頼性等のソルダーレジストに要求される特性は満たすものの、現像液中の残渣の影響によりめっき未着といった不良が発生するとともに、めっき表面に異常が生じめっき液の汚染が生じていることがわかる。

Claims (16)

  1.  硬化性樹脂および無機フィラーを含む硬化性樹脂組成物からなる硬化物であって、
     無機フィラーが非晶質シリカを含み、
     前記硬化物の、0℃から180℃に温度変化した際の平均線膨張率が70~100ppm/℃であることを特徴とする、硬化物。
  2.  ガラス転移点(Tg)が100~120℃の範囲内である、請求項1に記載の硬化物。
  3.  前記硬化物の、0℃から180℃に温度変化した際の平均線膨張率が70~85ppm/℃である、請求項1に記載の硬化物。
  4.  前記硬化性樹脂が、熱硬化性樹脂および光硬化性樹脂を含む、請求項1に記載の硬化物。
  5.  前記非晶質シリカが、固形分換算で、前記硬化性樹脂組成物全体に対して2~30質量%含まれる、請求項1に記載に硬化物。
  6.  (A)カルボキシル基含有樹脂、(B)光重合性モノマー、および(C)熱硬化性成分を含んでなる感光性樹脂組成物であって、
     (A)カルボキシル基含有樹脂が、
      (A1)ノボラック骨格を有するカルボキシル基含有樹脂と、
      (A2)ビスフェノール骨格を有するカルボキシル基含有樹脂と、
      (A3)不飽和塩基酸共重合型のカルボキシル基含有樹脂と、
    を含み、
     前記(A1)のカルボキシル基含有樹脂と、前記(A2)のカルボキシル基含有樹脂との合計配合量が、前記(A)カルボキシル基含有樹脂全体に対して60~80質量%であり、
     前記(A3)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して40~20質量%である、ことを特徴とする、感光性樹脂組成物。
  7.  前記(A3)のカルボキシル基含有樹脂が、不飽和塩基酸共重合樹脂と脂環式エポキシ基含有不飽和化合物との反応物である、請求項6に記載の感光性樹脂組成物。
  8.  前記(A1)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して10~60質量%である、請求項6に記載の感光性樹脂組成物。
  9.  前記(A2)のカルボキシル基含有樹脂の配合量が、前記(A)カルボキシル基含有樹脂全体に対して20~50質量%である、請求項6に記載の感光性樹脂組成物。
  10.  前記(C)熱硬化性成分が、イソシアヌル環を有するエポキシ樹脂を含む、請求項6に記載の感光性樹脂組成物。
  11.  (D)無機フィラーをさらに含む、請求項6に記載の感光性樹脂組成物。
  12.  前記(D)無機フィラーが溶融シリカを含む、請求項11に記載の感光性樹脂組成物。
  13.  請求項6に記載の感光性樹脂組成物を第1のフィルムに塗布、乾燥して得られる樹脂層を有する、ドライフィルム。
  14.  請求項6に記載の感光性樹脂組成物または請求項13に記載のドライフィルムの樹脂層を硬化させて得られる硬化物。
  15.  ソルダーレジストに用いられる、請求項1または14に記載の硬化物。
  16.  基板上に、請求項1または請求項14に記載の硬化物を備える、プリント配線板。
PCT/JP2023/012395 2022-03-31 2023-03-28 硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板 WO2023190456A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022060828 2022-03-31
JP2022-060828 2022-03-31
JP2022-060840 2022-03-31
JP2022060840 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023190456A1 true WO2023190456A1 (ja) 2023-10-05

Family

ID=88202438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012395 WO2023190456A1 (ja) 2022-03-31 2023-03-28 硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板

Country Status (1)

Country Link
WO (1) WO2023190456A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210141A (zh) * 2023-11-07 2023-12-12 明士(北京)新材料开发有限公司 一种耐显影的光敏胶膜及其制备与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032089A1 (fr) * 2001-09-28 2003-04-17 Taiyo Ink Mfg. Co., Ltd. Composition de resine photosensible et carte a circuit imprime
JP2009275110A (ja) * 2008-05-14 2009-11-26 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
WO2014175196A1 (ja) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 ソルダーレジスト組成物およびそれを用いたプリント配線板
WO2014200112A1 (ja) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
JP2017529551A (ja) * 2014-07-31 2017-10-05 太陽油墨(蘇州)有限公司Taiyo Ink(Suzhou)Co.,Ltd. 光硬化性熱硬化性樹脂組成物、ドライフィルム、硬化物、及びプリント配線板
WO2017168699A1 (ja) * 2016-03-31 2017-10-05 日立化成株式会社 感光性樹脂組成物、感光性樹脂フィルム、硬化物の製造方法、積層体、及び電子部品

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032089A1 (fr) * 2001-09-28 2003-04-17 Taiyo Ink Mfg. Co., Ltd. Composition de resine photosensible et carte a circuit imprime
JP2009275110A (ja) * 2008-05-14 2009-11-26 Nitto Denko Corp 半導体封止用樹脂組成物およびそれを用いた半導体装置
WO2014175196A1 (ja) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 ソルダーレジスト組成物およびそれを用いたプリント配線板
WO2014200112A1 (ja) * 2013-06-14 2014-12-18 東レ・ダウコーニング株式会社 反応性シリコーン組成物、反応性熱可塑体、硬化物、および光半導体装置
JP2017529551A (ja) * 2014-07-31 2017-10-05 太陽油墨(蘇州)有限公司Taiyo Ink(Suzhou)Co.,Ltd. 光硬化性熱硬化性樹脂組成物、ドライフィルム、硬化物、及びプリント配線板
WO2017168699A1 (ja) * 2016-03-31 2017-10-05 日立化成株式会社 感光性樹脂組成物、感光性樹脂フィルム、硬化物の製造方法、積層体、及び電子部品

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117210141A (zh) * 2023-11-07 2023-12-12 明士(北京)新材料开发有限公司 一种耐显影的光敏胶膜及其制备与应用
CN117210141B (zh) * 2023-11-07 2024-01-26 明士(北京)新材料开发有限公司 一种耐显影的光敏胶膜及其制备与应用

Similar Documents

Publication Publication Date Title
KR101361753B1 (ko) 광경화성 및 열경화성을 갖는 수지 조성물과, 드라이 필름 솔더 레지스트
JP2008294406A (ja) プリント配線板の製造方法およびプリント配線板
KR20110102193A (ko) 내열성 및 기계적 성질이 우수한 감광성 수지 조성물 및 인쇄회로기판용 보호필름
KR20120060938A (ko) 감광성 수지 조성물, 드라이 필름 솔더 레지스트 및 회로 기판
KR102167486B1 (ko) 경화성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
CN113614131A (zh) 感光性树脂组合物、感光性树脂膜、印刷配线板和半导体封装体、以及印刷配线板的制造方法
WO2023190456A1 (ja) 硬化物、感光性樹脂組成物、ドライフィルムおよびプリント配線板
TWI814952B (zh) 硬化性樹脂組成物、乾薄膜、硬化物及電子零件
KR20150139284A (ko) 광경화성 및 열경화성을 갖는 수지 조성물 및 드라이 필름 솔더 레지스트
JP2019179232A (ja) ドライフィルム、硬化物およびプリント配線板
JP7339103B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物、および、電子部品
WO2021157282A1 (ja) 硬化性組成物、そのドライフィルムおよび硬化物
JP7445095B2 (ja) 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
KR102543365B1 (ko) 경화성 조성물, 드라이 필름, 경화물 및 프린트 배선판
WO2023190455A1 (ja) 感光性樹脂組成物、硬化物、プリント配線板およびプリント配線板の製造方法
WO2023190393A1 (ja) 硬化物およびプリント配線板
KR20240054181A (ko) 감광성 수지 조성물, 드라이 필름, 경화물 및 프린트 배선판
JP2024161097A (ja) 硬化物およびプリント配線板
TW202433167A (zh) 感光性樹脂組成物、乾膜、硬化物及印刷配線板
JP6742796B2 (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板
WO2024204720A1 (ja) 硬化性樹脂組成物、硬化物、該硬化物を備えるプリント配線板
JP2024146161A (ja) 感光性樹脂組成物、ドライフィルム、硬化物、およびプリント配線板
CN118974656A (zh) 固化物及印刷线路板
JP2024065105A (ja) 硬化性樹脂組成物、該硬化性樹脂組成物の硬化物の製造方法、ならびに該硬化物を備えるプリント配線板の製造方法
JP2024054101A (ja) 硬化性樹脂組成物、ドライフィルム、硬化物およびプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780465

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024512529

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401006533

Country of ref document: TH