Nothing Special   »   [go: up one dir, main page]

WO2023032733A1 - ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置 - Google Patents

ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置 Download PDF

Info

Publication number
WO2023032733A1
WO2023032733A1 PCT/JP2022/031557 JP2022031557W WO2023032733A1 WO 2023032733 A1 WO2023032733 A1 WO 2023032733A1 JP 2022031557 W JP2022031557 W JP 2022031557W WO 2023032733 A1 WO2023032733 A1 WO 2023032733A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power transmission
authentication
signal
circuit
Prior art date
Application number
PCT/JP2022/031557
Other languages
English (en)
French (fr)
Inventor
紀和 坂本
達也 細谷
裕人 安井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2023545462A priority Critical patent/JPWO2023032733A1/ja
Publication of WO2023032733A1 publication Critical patent/WO2023032733A1/ja
Priority to US18/590,231 priority patent/US20240204581A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00045Authentication, i.e. circuits for checking compatibility between one component, e.g. a battery or a battery charger, and another component, e.g. a power source
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type

Definitions

  • the present invention relates to a wireless power supply system that authenticates a power transmission device and a power reception device, and to a power transmission device and a power reception device used in this wireless power supply system.
  • Patent Document 1 describes an electronic device that wirelessly receives power from a power supply device.
  • the power supply device transmits an authentication request command to the electronic device.
  • the electronic device transmits an authentication response signal to the power supply device through the modulation/demodulation circuit in response to the authentication request command.
  • Patent Document 2 describes a wireless power receiver that receives power from a wireless power transmitter and transmits it to a load circuit.
  • the wireless power receiver described in Patent Document 2 sets a predetermined threshold for rectified DC power, and controls propagation of power to a load circuit based on this threshold.
  • the power transmission device intentionally falsifies and transmits power at a predetermined frequency, for example, the power receiving circuit may operate and erroneously supply power to the load circuit. There is Such erroneous power supply to the load circuit causes unnecessary operation of the load circuit. It leads to adverse effects and unfair acquisition of biometric information.
  • an object of the present invention is to provide a wireless power supply system capable of achieving secure authentication and suppressing a decrease in power reception efficiency.
  • a wireless power supply system of the present invention includes a power transmission device and a power reception device.
  • the power transmission device includes a power transmission circuit that commonly generates both AC power to be transmitted and a transmission signal from a DC voltage, and a power transmission coil that wirelessly transmits the AC power and wirelessly transmits the transmission signal.
  • a power receiving device includes a power receiving coil that is electromagnetically coupled to a power transmitting coil, and a power receiving circuit that rectifies AC power received together with the power receiving coil and converts it into a DC voltage.
  • the power transmission circuit includes a power transmission side control circuit that generates an interrupt signal for power transmission authentication, and a power transmission side switching circuit that adjusts the output of the power transmission signal to the power transmission coil by the interrupt signal.
  • the power receiving circuit determines an interrupt signal for power transmission authentication corresponding to the power transmission device from the power transmission signal, performs power transmission authentication for the power transmission device using the power transmission authentication interrupt signal, and transmits power to the load circuit after performing the authentication. It has a power receiving side control circuit that starts supplying or charging the secondary battery.
  • the control circuit on the power transmitting side and the control circuit on the power receiving side insert a signal to locally insert an interrupt signal for power transmission authentication into the power transmission/reception period mainly during the power-only period in which the interrupt signal for power transmission authentication is not used in the power transmission/reception period. Set a period.
  • a dedicated power period that is not used for authentication is set within the time period during which power transmission is performed, and the dedicated power period is set significantly longer than the signal insertion period used for authentication. Then, in the authentication, the authentication of the power transmitting device becomes possible.
  • the interrupt signal for power transmission authentication is used to perform power transmission authentication of the power transmission apparatus to realize secure authentication, and at the same time, the signal for locally inserting the interrupt signal mainly during the power-only period in the power transmission/reception period. It is possible to provide a wireless power supply system that sets an insertion period and suppresses a decrease in power reception efficiency.
  • FIG. 1 is a functional block diagram showing a schematic configuration of a wireless power supply system according to an embodiment of the invention.
  • FIG. 2 is a functional block diagram of the power transmission device according to the embodiment of the invention.
  • FIG. 3 is a functional block diagram of the power receiving device according to the embodiment of the invention.
  • FIG. 4 is a diagram showing an example of a device code used for authentication.
  • FIG. 5(A) is a diagram showing an example of transmission voltage transition when the device code is authenticated, and
  • FIG. 5(B) is an enlarged diagram of the signal insertion period of FIG. 5(A).
  • FIG. 5(D) is a diagram showing an example of the received power voltage transition when the device code is authenticated, and
  • FIG. 5(C) is an enlarged diagram of the signal insertion period of FIG.
  • FIG. 5(D). 6A is an enlarged view of the interrupt signal period in FIG. 5B
  • FIG. 6B is an enlarged view of the interrupt signal period in FIG. 5D
  • FIG. 7 is a further enlarged view of the signal waveform during the interrupt signal period of FIG. 6(A).
  • FIG. 8(A) is a diagram showing an example of transmission voltage transition when the device code is not authenticated
  • FIG. 8(B) is an enlarged diagram of the signal insertion period of FIG. 8(A).
  • FIG. 8(D) is a diagram showing an example of the received voltage transition when the device code is not authenticated
  • FIG. 8(C) is an enlarged diagram of the signal insertion period of FIG. 8(D).
  • 9A is an enlarged view of the interrupt signal period in FIG.
  • FIG. 8B, and FIG. 9B is an enlarged view of the interrupt signal period in FIG. 8D.
  • FIG. 10 is a graph showing an example of the relationship between the length of the power reception period and the received power.
  • FIG. 11 is a flow chart showing the first mode of authentication.
  • FIG. 12 is a flow chart of power transmission control for transmission of the power transmission device code shown in FIG.
  • FIG. 13 is a flow chart of detecting the power transmitting device code shown in FIG.
  • FIG. 14 is a flow chart showing a second aspect of authentication.
  • FIG. 15 is a flowchart of processing in the power transmission device in the third mode of authentication.
  • FIG. 16 is a flowchart of processing in the power receiving device in the third mode of authentication.
  • FIG. 17 is a flowchart of processing in the power transmission device in the fourth mode of authentication.
  • FIG. 18 is a flowchart of processing in the power receiving device in the fourth mode of authentication.
  • FIG. 19 is a diagram showing an example of an operation code.
  • FIG. 20 is a flowchart for motion control.
  • FIG. 1 is a functional block diagram showing a schematic configuration of a wireless power supply system according to an embodiment of the invention.
  • FIG. 2 is a functional block diagram of the power transmission device according to the embodiment of the invention.
  • FIG. 3 is a functional block diagram of the power receiving device according to the embodiment of the invention.
  • the wireless power supply system 1 includes a power transmission device 20 and a power reception device 30 .
  • a DC power supply 901 is connected to the power transmission device 20 .
  • a load circuit 99 is connected to the power receiving device 30 .
  • the load circuit 99 is a sensing circuit, a wireless communication circuit, or the like.
  • the sensing circuit senses various biological information (such as temperature) of the living body.
  • a wireless communication circuit communicates the acquired biometric information.
  • the load circuit 99 may be a secondary battery for charging.
  • power transmission device 20 includes power transmission circuit 21 , voltage conversion circuit 22 , and power transmission coil 29 .
  • the power transmission circuit 21 includes a filter 211, a power transmission side control circuit 212, a regulator 213, an EMI filter 214, a resonance adjustment circuit 215, a detector 216, a switching element QH, and a switching element QL.
  • the power transmission side control circuit 212 includes an MPU 212M and a driver IC 212D.
  • the input terminal of the voltage conversion circuit 22 is connected to the DC power supply 901 .
  • the output terminal of voltage conversion circuit 22 is connected to the input terminal of filter 211 .
  • the high potential side output terminal of the filter 211 is connected to the drain of the switching element QH.
  • a low potential side output terminal of the filter 211 is connected to the source of the switching element QL.
  • the source of the switching element QH and the drain of the switching element QL are connected. These switching element QH and switching element QL constitute a power transmission side switching circuit.
  • the MPU 212M connects to the driver IC 212D.
  • Driver IC 212D connects to the gate of switching element QH and the gate of switching element QL.
  • the detector 216 is connected between the high potential side output terminal of the filter 211 and the drain of the switching element QH.
  • the regulator 213 is connected to the high potential line connecting the high potential output terminal of the filter 211 and the drain of the switching element QH, and is connected to the MPU 212M of the power transmission control circuit 212 .
  • the input terminal of the EMI filter 214 is connected to the node between the source of the switching element QH and the drain of the switching element QL, the source of the switching element QL and the low potential side output terminal of the filter 211 .
  • the output terminal of the EMI filter 214 is connected to the input terminal of the resonance adjustment circuit 215.
  • An output terminal of the resonance adjustment circuit 215 is connected to the power transmission coil 29 .
  • the voltage conversion circuit 22 is a so-called DCDC converter, converts the DC voltage from the DC power supply 901 into a predetermined voltage, and outputs the voltage to the filter 211 .
  • the filter 211 performs filter processing (for example, noise suppression processing) on the DC voltage (DC current) from the voltage conversion circuit 22 .
  • the DC voltage (DC current) filtered by the filter 211 is supplied to a switching circuit consisting of a switching element QH and a switching element QL.
  • the DC voltage after filtering by the filter 211 is supplied to the regulator 213 .
  • the regulator 213 generates a power supply voltage for the MPU 212M from the input DC voltage and supplies it to the MPU 212M.
  • the MPU 212M generates control signals for controlling switching of the switching elements QH and QL.
  • the control signal is based on a square-wave clock signal at a predetermined clock frequency (for example, 6.78 MHz or 13.56 MHz in the ISM band) that defines the start and end of power transmission.
  • a predetermined clock frequency for example, 6.78 MHz or 13.56 MHz in the ISM band
  • the control signal is a signal obtained by performing interrupt processing for power transmission authentication on this clock signal.
  • the signal of the period during which the interrupt process is performed in the control signal corresponds to the "interrupt signal for power transmission authentication" of the present invention.
  • the MPU 212M outputs control signals to the driver IC 212D.
  • the driver IC 212D generates a Hi-side switching control signal for the switching element QH and a Low-side switching control signal for the switching element QL based on the control signal.
  • the Hi-side switching control signal and the Low-side switching control signal are signals whose voltages are mutually inverted. That is, when the Hi-side switching control signal is at high potential, the Low-side switching control signal is at low potential, and when the Hi-side switching control signal is at low potential, the Low-side switching control signal is at high potential.
  • the driver IC 212D applies a Hi side switching control signal to the switching element QH and a Low side switching control signal to the switching element QL. At this time, the driver IC 212D synchronizes the Hi-side switching control signal and the Low-side switching control signal and supplies them to the switching element QH and the switching element QL.
  • the switching element QH is on/off controlled according to the Hi-side switching control signal.
  • the switching element QL is on/off controlled according to the Low-side switching control signal.
  • an AC signal in which a high potential and a low potential are alternately repeated basically according to the frequency of the clock signal is output from the switching circuit to the EMI filter 214 .
  • the AC signal changes its waveform according to the interrupt process during the period of the interrupt process for power transmission authentication.
  • This AC signal is filtered by the EMI filter 214 and input to the resonance adjustment circuit 215 .
  • the resonance adjustment circuit 215 includes at least one capacitor, and together with the power transmission coil 29 constitutes a power transmission resonance circuit.
  • the resonance frequency of the power transmission resonance circuit is set equal to the frequency of the clock signal.
  • the power transmission coil 29 generates an alternating magnetic field in response to the AC signal.
  • the power receiving device 30 includes a power receiving circuit 31 and a power receiving coil 39 .
  • the power receiving circuit 31 includes a resonance adjustment circuit 311 , a rectification/smoothing circuit 312 , a regulator 313 , an MPU 314 , a trigger generation circuit 315 , a modulation control circuit 316 and a voltage control circuit 317 .
  • the MPU 314, the trigger generation circuit 315, and the modulation control circuit 316 constitute the "power receiving side control circuit" of the present invention.
  • the input terminal of the resonance adjustment circuit 311 is connected to the receiving coil 39 .
  • An output terminal of the resonance adjustment circuit 311 is connected to an input terminal of the rectifying/smoothing circuit 312 .
  • the output terminal of the rectifying/smoothing circuit 312 is connected to the input terminal of the voltage control circuit 317 .
  • An output terminal of the voltage control circuit 317 is an output terminal as the power receiving device 30 and is connected to the load circuit 99 .
  • the regulator 313 is connected to the rectifying/smoothing circuit 312 and also to the MPU 314 .
  • the MPU 314 is connected to the modulation control circuit 316 and the voltage control circuit 317 .
  • Resonance adjustment circuit 311 includes at least one capacitor, and forms a power receiving resonance circuit together with power receiving coil 39 .
  • the resonance frequency of the power receiving resonance circuit is set to the frequency of the alternating magnetic field, that is, the resonance frequency of the power transmission resonance circuit.
  • the power receiving coil 39 When the power receiving coil 39 is arranged so as to be electromagnetically coupled with the power transmitting coil 29, the power receiving coil 39 is coupled to the alternating magnetic field and generates an alternating current. At this time, as described above, since the resonance frequency of the power receiving resonance circuit and the resonance frequency of the power transmission resonance circuit are set to be the same, an alternating current can be generated from the alternating magnetic field with low loss.
  • the resonance adjustment circuit 311 outputs this alternating current to the rectifying/smoothing circuit 312 .
  • the rectifying/smoothing circuit 312 is composed of, for example, a full-wave rectifying circuit using a rectifying element and a smoothing circuit using an inductor.
  • the rectifying/smoothing circuit 312 converts the AC current input from the resonance adjustment circuit 311 into a DC voltage. Rectifying and smoothing circuit 312 outputs a DC voltage to voltage control circuit 317 .
  • the voltage control circuit 317 is a so-called DCDC converter or the like, and converts the DC voltage input from the rectifying/smoothing circuit 312 into a DC output voltage corresponding to the load circuit 99 .
  • the voltage control circuit 317 supplies a DC output voltage (DC output current) to the load circuit 99 .
  • the DC voltage output from the rectifying/smoothing circuit 312 is supplied to the regulator 313 .
  • the regulator 313 generates a power supply voltage for the MPU 314 from the input DC voltage and supplies it to the MPU 314 .
  • the MPU 314 drives and controls the voltage control circuit 317 .
  • the MPU 314 observes the output voltage of the rectifying/smoothing circuit 312 and controls the driving/stopping of the voltage control circuit 317 according to the observation result. Further, the MPU 314 controls driving and stopping of the voltage control circuit 317 according to an instruction to supply power to the load circuit 99 from the power transmission device 20, which will be described later.
  • the MPU 212M of the power transmission device 20 generates an interrupt signal (an interrupt signal for power transmission authentication) reflecting the power transmission device code of the power transmission device 20, and gives it to the driver IC 212D.
  • the driver IC 212D controls on/off of the switching elements QH and QL according to the interrupt signal.
  • the power transmission coil 29 is supplied with a signal obtained by waveform-shaping the AC signal for power transmission described above by the interrupt signal for power transmission authentication.
  • the AC current output from the resonance adjustment circuit 311 of the power reception device 30 has the same waveform as the AC signal for power transmission, and the waveform is changed by the interrupt signal for power transmission authentication. maintained in a tidy state.
  • the power transmitting device code of the power transmitting device 20 is transmitted from the power transmitting device 20 to the power receiving device 30 as an interrupt signal for power transmission authentication using an AC signal for power transmission and reception.
  • the trigger generation circuit 315 of the power receiving device 30 is connected to the resonance adjustment circuit 311, and is realized by, for example, a resistive voltage dividing circuit.
  • the trigger generation circuit 315 converts the alternating current flowing through the resonance adjustment circuit 311 into a voltage signal, and outputs the voltage signal to the MPU 314 as an interrupt detection signal.
  • the MPU 314 determines an interrupt signal for power transmission authentication from the interrupt detection signal.
  • the MPU 314 demodulates the power transmission device code from the power transmission authentication interrupt signal and authenticates the power transmission device 20 .
  • the MPU 314 controls the voltage control circuit 317 to start driving. For example, MPU 314 outputs an enable signal to voltage control circuit 317 . Thereby, power is supplied to the load circuit 99 . If the authentication is NG, the MPU 314 does not control the voltage control circuit 317 to start driving or controls the voltage control circuit 317 to stop driving. For example, the MPU 314 stops outputting the enable signal to the voltage control circuit 317 . As a result, power is not supplied to the load circuit 99 .
  • the wireless power supply system 1 can authenticate the power transmission device 20 with the power reception device 30 . Thereby, the wireless power supply system 1 can realize a secure system.
  • MPU 314 (Authentication of power receiving device 30 by power transmitting device 20) MPU 314 generates a power receiver code and provides it to modulation control circuit 316 .
  • the modulation control circuit 316 adjusts the impedance of the resonance adjustment circuit 311 according to the power receiving device code. As the impedance of the resonance adjustment circuit 311 changes, the coupling state between the power receiving coil 39 and the power transmitting coil 29 changes, and the load modulation level changes.
  • the load modulation level changes, the current value of the direct current flowing through the power transmission circuit 21 changes.
  • the power receiving device code from the power receiving device 30 is transmitted from the power receiving device 30 to the power transmitting device 20 using the AC signal for power transmission and reception.
  • the detector 216 voltage-converts this DC current, generates a power receiving device code detection signal, and outputs it to the MPU 212M.
  • the MPU 212M demodulates the power receiving device code from the power receiving device code detection signal and determines whether authentication is OK or NG.
  • the MPU 212M performs power transmission control (continuous power transmission control) to the switching circuit through the driver IC 212D. As a result, power is continuously supplied from the power transmitting device 20 to the power receiving device 30 . If the authentication is NG, the MPU 314 controls the switching circuit to stop power transmission through the driver IC 212D. As a result, power is not supplied from the power transmitting device 20 to the power receiving device 30 .
  • the wireless power supply system 1 can authenticate the power receiving device 30 with the power transmitting device 20 . Thereby, the wireless power supply system 1 can realize a secure system.
  • the wireless power supply system 1 can realize a more secure system.
  • FIG. 4 is a diagram showing an example of a device code used for authentication.
  • FIG. 5(A) is a diagram showing an example of transmission voltage transition when the device code is authenticated, and FIG. 5(B) is an enlarged diagram of the signal insertion period of FIG. 5(A).
  • FIG. 5(D) is a diagram showing an example of the received power voltage transition when the device code is authenticated, and FIG. 5(C) is an enlarged diagram of the signal insertion period of FIG. 5(D).
  • FIG. 6(A) is an enlarged view of the interrupt signal period in FIG. 5(B), and FIG. 6(B) is an enlarged view of the interrupt signal period in FIG. 5(C).
  • FIG. 7 is a further enlarged view of the signal waveform during the interrupt signal period of FIG. 6(A).
  • FIG. 8(A) is a diagram showing an example of transmission voltage transition when the device code is not authenticated
  • FIG. 8(B) is an enlarged diagram of the signal insertion period of FIG. 8(A).
  • FIG. 8(D) is a diagram showing an example of the received voltage transition when the device code is not authenticated
  • FIG. 8(C) is an enlarged diagram of the signal insertion period of FIG. 8(D).
  • FIG. 9(A) is an enlarged view of the interrupt signal period in FIG. 8(B), and FIG. 9(B) is an enlarged view of the interrupt signal period in FIG. 8(D).
  • the power transmission device code consists of 4 bits.
  • the transmitting device code consists of a start bit of '1', a 2-bit device ID, and an end bit of '1'.
  • the power transmitting device 20 and the power receiving device 30 set a repetition period Tc, and transmit and receive data according to the repetition period Tc. Signals are exchanged between them.
  • the power transmission device 20 sets the signal insertion period Ts and the power-only period Tp for the repetition period Tc.
  • the power transmission device 20 sets the signal insertion period Ts and the power-only period Tp in order from the first time of the repetition period Tc.
  • the signal insertion period Ts is set to approximately 10% or less of the repetition period Tc.
  • the power transmission device 20 sets the power transmission side interrupt signal period Tt and the data reception period Tdsr for the signal insertion period Ts.
  • the power transmission device 20 sequentially sets the power transmission side interrupt signal period Tt and the data reception period Tdsr from the first time of the signal insertion period Ts.
  • the power transmission side interrupt signal period Tt is set to approximately 20% of the signal insertion period Ts.
  • the power transmission device 20 sets the preliminary power supply period Tpre and the actual insertion period TD for the power transmission side interrupt signal period Tt. Within the power transmission side interrupt signal period Tt, the power transmission device 20 sets the preliminary power supply period Tpre and the actual insertion period TD in this order from the first time of the power transmission side interrupt signal period Tt.
  • the pre-power-supply period Tpre is set to a length of time that allows power to be supplied to the power receiving device 30 so that the authentication process can be performed.
  • the actual insertion period TD is set to a length of time during which the power transmission device code (4-bit data in the above case) can be inserted.
  • the power receiving device 30 sets the signal insertion period Ts and the power-only period Tp for the repetition period Tc.
  • the power receiving device 30 sets the signal insertion period Ts and the power-only period Tp in order from the first time of the repetition period Tc within the repetition period Tc.
  • the signal insertion period Ts is set to approximately 10% or less of the repetition period Tc. That is, in the power receiving device 30 and the power transmitting device 20, the signal insertion period Ts and the power-only period Tp are set to have the same configuration and the same time length with respect to the repetition period Tc.
  • the first time of the repetition period Tc of the power receiving device 30 is synchronized with the first time of the repetition period Tc of the power transmission device 20 .
  • This synchronization is possible, for example, by detecting the time when the power receiving device 30 first receives power supply. Also, this synchronization is possible by referring to the detection time of the interrupt signal.
  • the power receiving device 30 sets the power receiving side interrupt signal period Tr and the data transmission period Tdst for the signal insertion period Ts.
  • the power receiving device 30 sets the power receiving side interrupt signal period Tr and the data transmission period Tdst in this order from the first time of the signal insertion period Ts.
  • the power receiving side interrupt signal period Tr is set to about 40% of the signal insertion period Ts. That is, the power receiving side interrupt signal period Tr is set longer than the power transmitting side interrupt signal period Tt. This allows the power receiving device 30 to more reliably receive the interrupt signal, ie, the device code.
  • the power transmission device 20 first performs power transmission control so as to continue to supply power to the power reception device 30 during the signal insertion period Ts from the beginning of the repetition period Tc. More specifically, as shown in FIG. 7, the power transmission device 20 performs interrupt signal control so as to continuously output a rectangular wave having a clock period TCL corresponding to the clock frequency described above.
  • the power transmission device 20 generates an interrupt signal corresponding to the power transmission device code during the power transmission side interrupt signal period Tt in the signal insertion period Ts, and performs on/off control (switching control) of the switching circuit.
  • the MPU 212M of the power transmission device 20 does not perform interrupt processing using an interrupt signal during the preliminary power supply period Tpre, and maintains the high potential for power supply. As a result, power for authentication can be supplied to the power receiving device 30 .
  • the MPU 212M of the power transmission device 20 sets the “1” bit in the power transmission device code to a low potential, and the “0” bit to a high potential (for power supply). maintain a high potential), generate an interrupt signal and provide it to driver IC 212D.
  • the MPU 212M sets the individual bit period Tit with a time length obtained by dividing the power transmission side interrupt signal period Tt by the number of bits of the device code. The MPU 212M allocates each bit of the device code for each individual bit period Tit.
  • the MPU 212M forms a "1" bit waveform by maintaining the low potential for a time length Tb shorter than the individual bit period Tit. That is, in the individual bit period Tit, the bit of "1" first has a low potential period with a time length Tb, and then has a high potential period.
  • this time length Tb is set longer than the clock cycle TCL, and preferably equal to or more than two cycles of the clock cycle TCL. As a result, it is possible to more reliably discriminate between a waveform representing a "1" bit due to the low potential time in the time length Tb and a rectangular wave due to the clock period TCL.
  • the MPU 212M forms a "0" bit waveform by maintaining a high potential for power supply during the individual bit period Tit.
  • the device code is "1111", as shown in FIGS. 5B, 6A, and 7, the low potential period and the high A waveform is obtained in which the potential periods are alternately repeated four times in this order.
  • the low potential period and the high potential period alternate from the first time of the actual insertion period TD. This order is repeated three times, and the waveform between the second low potential period and the third low potential period is longer than the individual bit period Tit.
  • the power transmitting device 20 can transmit the power transmitting device code to the power receiving device 30 using the change in the amplitude of the power transmission voltage.
  • the power receiving device 30 detects the reception of power from the power transmitting device 20 and detects the first time of the repetition period Tc. Then, the power receiving device 30 continues to receive power supply from the power transmitting device 20 during the signal insertion period Ts from the beginning of the repetition cycle Tc.
  • the power receiving device 30 first receives power supply and activates the MPU 314 during the power receiving side interrupt signal period Tr of the signal insertion period Ts. More specifically, the power receiving device 30 receives power for a period corresponding to the preliminary power supply period Tpre of the power transmitting device 20 . This power activates the MPU 314 .
  • the trigger generation circuit 315 of the power receiving device 30 converts the received alternating current into a voltage signal and generates an interrupt detection signal in the power receiving side interrupt signal period Tr of the signal insertion period Ts.
  • the MPU 314 detects changes in the amplitude of the interrupt detection signal.
  • the MPU 314 detects the time when the amplitude of the interrupt detection signal first becomes low, and sets it as the detection reference time t0 of the interrupt signal.
  • the MPU 314 sets a plurality of individual bit periods Tir based on the detection reference time t0.
  • the same number of individual bit periods Tir as the number of bits of the device code is set.
  • the plurality of individual bit periods Tir are set with the same time length as the individual bit periods Tit of the power transmission device 20 .
  • the MPU 314 detects changes in the amplitude of the interrupt detection signal for each individual bit period Tir. When the MPU 314 detects an individual bit period Tir that includes a low potential period, it detects it as a "1" bit. If it detects an individual bit period Tir that does not include a low potential period, it detects it as a "0" bit.
  • the MPU 314 demodulates the device ID from the detected bit string. For example, if it is “1111”, the MPU 314 demodulates “11” excluding the start bit “1” and the end bit “1” as the device ID. Also, if it is “1101”, the MPU 314 demodulates "10” excluding the start bit "1” and the end bit “1” as the device ID.
  • the MPU 314 of the power receiving device 30 can identify the device ID of the power transmitting device 20 using the amplitude of the received power voltage.
  • the MPU 314 authenticates the power transmission device 20 using the identified device ID. More specifically, the MPU 314 preliminarily stores the device ID of authentication OK in a memory or the like. The MPU 314 determines that the authentication is successful (OK) if the identified device ID is a device ID for which authentication is OK. On the other hand, the MPU 314 determines that the authentication has failed (NG) if the identified device ID is not among the authentication OK device IDs.
  • the power receiving device 30 can authenticate the power transmitting device 20 .
  • the wireless power supply system 1 performs authentication using the amplitude of the voltage for power transmission/reception, there is no need to provide a circuit configuration for authentication separate from that for power transmission/reception. Thereby, the wireless power supply system 1 can realize a secure system with a simple configuration.
  • the signal insertion period Ts used for authentication is 10% or less of the repetition period Tc, and the power-only period Tp, that is, the period during which authentication interruption is not performed, is 90% or more of the repetition period Tc. be.
  • the wireless power supply system 1 mainly performs power supply and interrupt processing for authentication in a local period. Therefore, the wireless power supply system 1 can suppress a decrease in power reception efficiency due to authentication. That is, the wireless power supply system 1 can realize a secure system with high power reception efficiency.
  • the wireless power supply system 1 can further suppress a decrease in power reception efficiency due to authentication.
  • FIG. 10 is a graph showing an example of the relationship between the length of the power reception period and the power received.
  • the horizontal axis indicates the ratio of the power reception period (power-only period Tp) in the repetition cycle
  • the vertical axis indicates the normalized value of the received power.
  • the vertical axis is a value with 1 when the power receiving period is 100%.
  • the received power decreases as the power receiving period (power-only period Tp) becomes shorter.
  • the received power increases as the power receiving period (power-only period Tp) increases.
  • the power receiving period (power-only period Tp) By setting the power receiving period (power-only period Tp) to 90% or more, the received power can be made 0.9 or more when the power-receiving period (power-only period Tp) in which no authentication is performed is 100%. Therefore, by setting the power receiving period (power-only period Tp) to 90% or more, the decrease in the received power can be suppressed to the degree of installation error of the power receiving coil 39 with respect to the power transmitting coil 29, and a system with better power receiving efficiency can be realized.
  • the power receiving period it is also possible to set the power receiving period lower than 90%. However, by setting at least the power receiving period to 70% or more, the decrease in power receiving efficiency can be suppressed to a practical level.
  • the power receiving device 30 and the power transmitting device 20 perform the following processing according to the authentication result of the MPU 314.
  • (A) Power Supply Control to Load Circuit 99 in Power Receiving Device 30 If the authentication is OK, the MPU 314 controls the voltage control circuit 317 to supply power to the load circuit 99 . On the other hand, if the authentication is NG, the MPU 314 controls the voltage control circuit 317 to stop power supply to the load circuit 99 .
  • the modulation control circuit 316 adjusts the impedance of the resonance adjustment circuit 311 according to the authentication code.
  • a change in the impedance of the resonance adjustment circuit 311 changes the coupling state between the power receiving coil 39 and the power transmitting coil 29, thereby changing the load modulation level.
  • the current value of the direct current flowing through the power transmission circuit 21 changes as the load modulation level changes.
  • the authentication code from the power receiving device 30 is transmitted from the power receiving device 30 to the power transmitting device 20 using the AC signal for power transmission and reception.
  • the detector 216 voltage-converts this direct current to generate an authentication code detection signal and outputs it to the MPU 212M.
  • the MPU 212M demodulates the authentication code from the authentication code detection signal and determines whether the authentication is OK or NG. When the MPU 212M determines that the authentication is OK, the MPU 212M continues the power transmission operation. Accordingly, as shown in FIGS. 5A and 5D, power is continuously supplied from the power transmission device 20 to the power reception device 30 during the power-only period Tp. On the other hand, when the MPU 212M determines that the authentication is NG, the MPU 212M stops power transmission. Accordingly, as shown in FIGS. 8A and 8D , power is not supplied from the power transmitting device 20 to the power receiving device 30 during the power-only period Tp.
  • the power transmitting device 20 can realize power transmission to the power receiving device 30 to which power should be transmitted, and more reliably suppress power transmission to the power receiving device 30 to which power should not be transmitted.
  • the power reception device 30 can receive power from the power transmission device 20 that should receive power, and can prevent power reception from the power transmission device 20 that should not receive power.
  • Such transmission processing of the authentication code from the power receiving device 30 to the power transmitting device 20 is performed during the signal insertion period as shown in FIGS. It is performed by a data transmission period Tdst and a data reception period Tdsr in Ts. That is, the authentication code transmission process is also performed in a time different from the power-only period Tp.
  • the signal insertion period Ts is significantly shorter than the power-only period Tp. Therefore, the signal insertion period for locally inserting the interrupt signal is set mainly during the power-only period in the power transmission/reception period.
  • the system 1 can also suppress a decrease in power reception efficiency due to transmission/reception of the authentication code.
  • the period during which the authentication code is actually transmitted and received is part of the signal insertion period Ts. Therefore, the wireless power supply system 1 can further suppress a decrease in power reception efficiency due to transmission/reception of the authentication code.
  • the power receiving device 30 authenticates the power transmitting device 20 and returns the authentication result to the power transmitting device 20 .
  • FIG. 11 is a flow chart showing the first mode of authentication.
  • FIG. 12 is a flow chart of power transmission control for transmission of the power transmission device code shown in FIG.
  • FIG. 13 is a flow chart of detecting the power transmitting device code shown in FIG.
  • the power transmission device 20 when the power transmission device 20 starts power transmission (S11), it performs a power transmission operation for transmitting a power transmission device code (S12).
  • the power transmission device 20 continues only power transmission for power supply until the control start timing for code transmission (the start timing of the actual insertion period TD) (S121: NO). .
  • the control start timing for code transmission comes (S121: YES)
  • the power transmission device 20 starts timing for code transmission (S122).
  • the power transmission device 20 refers to the measured time and performs amplitude control of the power transmission voltage for each individual bit period Tit so as to implement the power transmission device code (S123).
  • the power transmitting device 20 repeats this amplitude control until the code transmission period (actual insertion period TD) ends (S124: NO).
  • the power transmission device 20 ends the power transmission operation for transmitting the power transmission device code (S125).
  • the power transmission device 20 continues the power transmission operation of only transmitting power (S13).
  • the continuation of the power transmission operation performed in step S13 is limited to the signal insertion period Ts (see FIG. 8A), and the operations of steps S12 and S13 are repeated until an authentication code, which will be described later, is obtained. conduct.
  • the power receiving device 30 When the power receiving device 30 starts receiving power (S21), it detects a power transmitting device code (power transmitting device code) (S22).
  • a power transmitting device code power transmitting device code
  • the power receiving device 30 continues detecting the authentication trigger (S221: NO) until it detects the authentication trigger (the phenomenon that the amplitude of the above-described interrupt detection signal first becomes low),
  • the trigger for authentication is detected (S221: YES)
  • time measurement for authentication is started (S222).
  • the power receiving device 30 refers to the measured time, detects the amplitude change of the interrupt detection signal based on the power reception voltage for each individual bit period Tir, and detects the bit (S223). The power receiving device 30 repeats this bit detection until the bit detection period ends (S224: NO).
  • the bit detection period is set, for example, by the length of time obtained by multiplying the number of bits of the power transmission device code stored in advance by the individual bit period Tir.
  • the power receiving device 30 demodulates the power transmitting device code (power transmitting device code) (S225).
  • the power receiving device 30 authenticates the power transmitting device 20 using the power transmitting device code. If the power transmitting device 20 is authenticated (S23: OK), the power receiving device 30 performs impedance control for the authentication OK code (S24). Then, the power receiving device 30 continues to receive power (S25) and supplies power to the load circuit 99 (S26).
  • the power transmitting device 20 If the power transmitting device 20 is not authenticated (S23: NG), the power receiving device 30 performs impedance control for the authentication NG code (S27).
  • the power transmission device 20 detects a change in transmission current that changes due to impedance control of the power reception device 30, and detects an authentication code (S14). Note that the power transmission device 20 continues power transmission (S13) until the authentication code is detected (S14: NO).
  • the power transmission device 20 continues power transmission (S16). If the code is an authentication NG code (S15: NO), the power transmission device 20 stops power transmission (S17).
  • the power receiving device 30 authenticates the power transmitting device 20 and does not return the authentication result to the power transmitting device 20 .
  • the power transmission control for transmission of the power transmission device code by the power transmission device 20 and the detection of the power transmission device code by the power reception device 30 are the same as those in the first mode, and the description thereof will be omitted.
  • FIG. 14 is a flow chart showing the second mode of authentication.
  • the power transmission device 20 when the power transmission device 20 starts power transmission (S11), it performs a power transmission operation for transmitting a power transmission device code (S12). Then, the power transmission device 20 continues the power transmission operation of only transmitting power (S13).
  • the power receiving device 30 When the power receiving device 30 starts receiving power (S21), it detects a power transmitting device code (power transmitting device code) (S22).
  • a power transmitting device code power transmitting device code
  • the power receiving device 30 authenticates the power transmitting device 20 using the power transmitting device code. If the power transmitting device 20 is authenticated (S23: OK), the power receiving device 30 performs impedance control for the authentication OK code (S24). Then, the power receiving device 30 continues to receive power (S25) and supplies power to the load circuit 99 (S26).
  • the power transmission device 20 detects a change in transmission current that changes due to impedance control of the power reception device 30, and detects an authentication code (S14). It should be noted that the power transmission device 20 cannot detect the authentication code (S14: NO), and continues power transmission (S13) until a predetermined time elapses (S18: NO).
  • the power transmission device 20 cannot detect the authentication code (S14: NO), and when a predetermined period of time elapses (S18: YES), it stops power transmission (S17).
  • the third mode is a mode in which the power receiving device 30 and the power transmitting device 20 authenticate each other.
  • the power receiving device 30 authenticates the power transmitting device 20 after the power receiving device 30 is authenticated by the power transmitting device 20 .
  • the third mode differs from the first mode in that authentication of the power receiving device is added, and subsequent processing is the same. Therefore, description of the same parts is omitted.
  • FIG. 15 is a flowchart of processing in the power transmission device in the third mode of authentication.
  • FIG. 16 is a flowchart of processing in the power receiving device in the third mode of authentication.
  • the power receiving device 30 when the power receiving device 30 starts receiving power (S21), it performs impedance control for the power receiving device code (S41). That is, the power receiving device 30 performs impedance control of the power receiving resonance circuit using the power receiving device code.
  • the power transmitting device 20 detects the amplitude change of the transmitted current and demodulates the power receiving device code (S31).
  • the power transmitting device 20 authenticates the power receiving device 30 using the power receiving device code.
  • the power transmitting device 20 performs authentication processing for the power transmitting device 20 in the same manner as in the first aspect described above.
  • the power transmitting device 20 stops power transmission (S17).
  • the fourth mode is a mode in which the power receiving device 30 and the power transmitting device 20 authenticate each other.
  • the power receiving device 30 is authenticated by the power transmitting device 20 after the power receiving device 30 authenticates the power transmitting device 20 .
  • the fourth mode differs from the first mode in that authentication of the power receiving device is added as in the third mode, and the subsequent processing is the same. Therefore, description of the same parts is omitted.
  • FIG. 17 is a flowchart of processing in the power transmission device in the fourth mode of authentication.
  • FIG. 18 is a flowchart of processing in the power receiving device in the fourth mode of authentication.
  • the power transmitting device 20 is authenticated (S23: OK)
  • the power receiving device 30 performs impedance control for the authentication OK code (S24), and performs impedance control for the power receiving device code (S41). ).
  • the power transmission device 20 detects the amplitude change of the power transmission current and detects the authentication OK code from the power reception device 30 for its own device (S15: YES), the power transmission device 20 demodulates the power reception device code (S31 ). The power transmitting device 20 authenticates the power receiving device 30 using the power receiving device code.
  • the power transmitting device 20 measures power transmission (S16). If the power receiving device 30 is not authenticated (S32: NG), the power transmitting device 20 stops power transmission (S17).
  • An operation code is a code that defines an operation command signal for operation transition of the power receiving device 30 .
  • FIG. 19 is a diagram showing an example of an operation code. As shown in FIG. 19, the operation code consists of 4 bits. The operation code consists of a start bit "1", a 2-bit operation ID, and an end bit "1".
  • the operation ID is associated with an operation (power supply control, etc.) performed by the power receiving device 30 and is stored in the power transmitting device 20 and the power receiving device 30 .
  • FIG. 20 is a flowchart for motion control.
  • the power transmission device 20 when the power transmission device 20 starts power transmission (S51), it performs an authentication process (S52) according to one of the above modes.
  • the power transmission device 20 performs the power transmission operation for transmitting the operation code (S53), and continues power transmission (S54).
  • the power transmission operation for transmitting the operation code is control in which the power transmission device code in the power transmission operation for transmitting the power transmission device code described above is replaced with the operation code.
  • the power transmitting device 20 repeats the power transmitting operation for transmitting the operation code every time it performs operation control on the power receiving device 30 .
  • the power receiving device 30 When the power receiving device 30 starts receiving power (S61), the power receiving device 30 performs authentication processing according to one of the above-described modes (S62).
  • the power receiving device 30 detects the operation code (S63), demodulates the operation code (S64), and continues power reception (S65).
  • the operation code detection and demodulation are the same processes as the power transmission device code detection and demodulation described above.
  • the power receiving device 30 generates an operation command signal for operation transition according to the operation code, and executes control using the operation command signal (S66). As a result, the operation of the power receiving device 30 transitions. Each time the power receiving device 30 detects and demodulates an operation code from the power transmitting device 20, it executes control according to the demodulated operation code.
  • the wireless power supply system 1 not only authentication but also operation control can be realized using the voltage for power transmission.
  • the operation code is also transmitted during the signal insertion period Ts, which is different from the power-only period Tp, as in the case of authentication. Therefore, the wireless power supply system 1 can suppress a decrease in power receiving efficiency while wirelessly controlling the operation of the power receiving device 30 .
  • the power receiving device 30 in the power receiving device 30, a mode in which the voltage control circuit 317 is used to supply power to the load circuit 99 is shown.
  • the power supply to load circuit 99 may be a regulator circuit.
  • Wireless power supply system 20 Power transmission device 21: Power transmission circuit 22: Voltage conversion circuit 29: Power transmission coil 30: Power reception device 31: Power reception circuit 39: Power reception coil 99: Load circuit 211: Filter 212: Power transmission side control circuit 212M: MPU 212D: Driver IC 213: Regulator 214: EMI filter 215: Resonance adjustment circuit 216: Detector 311: Resonance adjustment circuit 312: Rectifying and smoothing circuit 313: Regulator 314: MPU 315: Trigger generation circuit 316: Modulation control circuit 317: Voltage control circuit 901: DC power supply QH: Switching element QL: Switching element

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

ワイヤレス給電システム(1)は、送電装置(20)と受電装置(30)とを備える。送電装置(20)は、送電回路(21)と送電コイル(29)とを備える。受電装置(30)は、受電回路(31)と受電コイル(39)とを備える。受電装置(30)は、受電コイル(39)が送電コイル(29)に電磁界結合するように、送電装置(20)に対して配置される。送電回路(21)と受電回路(31)は、送受電の繰り返し周期(Tc)における送電認証用の割り込み信号を用いない電力専用期間(Tp)を主として、繰り返し周期(Tc)に対して局所的に送電認証用の割り込み信号を挿入する信号挿入期間(Ts)を設定する。

Description

ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置
 本発明は、送電装置や受電装置の認証を行うワイヤレス給電システム、このワイヤレス給電システムに用いる送電装置および受電装置に関する。
 特許文献1には、給電装置から無線で電力を受ける電子機器が記載されている。特許文献1に記載の構成では、給電装置は、電子機器に認証要求コマンドを送信する。電子機器は、認証要求コマンドに応じて、変復調回路を通じて認証応答信号を、給電装置に送信する。
 特許文献2には、無線電力送信装置から電力を受けて負荷回路に伝達する無線電力受信装置が記載されている。特許文献2に記載の無線電力受信装置は、整流した直流電力に対して所定のしきい値を設定し、このしきい値に基づいて、負荷回路への電力の伝搬を制御する。
特許第6278687号明細書
 しかしながら、特許文献1、2に記載の構成では、送電装置が意図的に偽証して、例えば所定周波数で送電を行えば、受電回路は動作し、負荷回路へ誤った電力供給してしまう可能性がある。そして、このような負荷回路への誤った電力供給は、負荷回路の不必要な動作を引き起こし、例えば、負荷回路が生体への計側や所定の処理を行うものであった場合、生体への悪影響や生体情報の不当な取得に繋がってしまう。
 また、電力供給を受けるコイルを認証用にも用いようとした場合、受電効率の低下を招いてしまうことがある。
 したがって、本発明の目的は、セキュアな認証を実現し、且つ、受電効率の低下を抑制できるワイヤレス給電システムを提供することにある。
 この発明のワイヤレス給電システムは、送電装置および受電装置を備える。送電装置は、送電する交流電力および送電信号の双方を直流電圧から共通して生成する送電回路と、交流電力をワイヤレスで送電し、かつ、送電信号をワイヤレスで送信する送電コイルと、を備える。受電装置は、送電コイルに電磁界結合する受電コイルと、受電コイルとともに受電した交流電力を整流し、直流電圧へ変換する受電回路と、を備える。
 送電回路は、送電認証用の割り込み信号を生成する送電側制御回路と、割り込み信号によって送電信号の送電コイルへの出力を調整する送電側スイッチング回路と、を備える。
 受電回路は、送電信号から送電装置に応じた送電認証用の割り込み信号を判別し、送電認証用の割り込み信号を用いて送電装置を送電認証し、該認証を行った後に、負荷回路への電力供給または二次電池への充電を開始する受電側制御回路を備える。
 送電側制御回路と受電側制御回路は、送受電期間における送電認証用の割り込み信号を用いない電力専用期間を主として、送受電期間に対して局所的に送電認証用の割り込み信号を挿入する信号挿入期間を設定する。
 この構成では、電力伝送を行う時間内において、認証に用いない電力専用期間が設定され、電力専用期間は、認証に用いる信号挿入期間よりも大幅に長く設定される。そして、認証においては、送電装置の認証が可能になる。
 この発明によれば、送電認証用の割り込み信号を用いて送電装置を送電認証して、セキュアな認証を実現し、同時に、送受電期間における電力専用期間を主として局所的に割り込み信号を挿入する信号挿入期間を設定して、受電効率の低下を抑制するワイヤレス給電システムを提供できる。
図1は、本発明の実施形態に係るワイヤレス給電システムの概略構成を示す機能ブロック図である。 図2は、本発明の実施形態に係る送電装置の機能ブロック図である。 図3は、本発明の実施形態に係る受電装置の機能ブロック図である。 図4は、認証に用いる装置コードの一例を示す図である。 図5(A)は、装置コードが認証された場合の送電電圧遷移の一例を示す図であり、図5(B)は、図5(A)の信号挿入期間を拡大した図である。図5(D)は、装置コードが認証された場合の受電電圧遷移の一例を示す図であり、図5(C)は、図5(D)の信号挿入期間を拡大した図である。 図6(A)は、図5(B)における割り込み信号期間を拡大した図であり、図6(B)は、図5(D)における割り込み信号期間を拡大した図である。 図7は、図6(A)の割り込み信号期間の信号波形をさらに拡大した図である。 図8(A)は、装置コードが認証されなかった場合の送電電圧遷移の一例を示す図であり、図8(B)は、図8(A)の信号挿入期間を拡大した図である。図8(D)は、装置コードが認証されなかった場合の受電電圧遷移の一例を示す図であり、図8(C)は、図8(D)の信号挿入期間を拡大した図である。 図9(A)は、図8(B)における割り込み信号期間を拡大した図であり、図9(B)は、図8(D)における割り込み信号期間を拡大した図である。 図10は、受電期間の長さと受電電力との関係の一例を示すグラフである。 図11は、認証の第1態様を示すフローチャートである。 図12は、図11に示した送電装置コード送信用の送電制御のフローチャートである。 図13は、図11に示す送電装置コードの検知のフローチャートである。 図14は、認証の第2態様を示すフローチャートである。 図15は、認証の第3態様における送電装置での処理のフローチャートである。 図16は、認証の第3態様における受電装置での処理のフローチャートである。 図17は、認証の第4態様における送電装置での処理のフローチャートである。 図18は、認証の第4態様における受電装置での処理のフローチャートである。 図19は、動作コードの一例を示す図である。 図20は、動作制御用のフローチャートである。
 本発明の実施形態に係るワイヤレス給電システムについて、図を参照して説明する。図1は、本発明の実施形態に係るワイヤレス給電システムの概略構成を示す機能ブロック図である。図2は、本発明の実施形態に係る送電装置の機能ブロック図である。図3は、本発明の実施形態に係る受電装置の機能ブロック図である。
 (ワイヤレス給電システム1の構成)
 図1に示すように、ワイヤレス給電システム1は、送電装置20、および、受電装置30を備える。送電装置20には直流電源901が接続される。受電装置30には負荷回路99が接続される。
 受電装置30および負荷99回路は、生体情報センシングに用いられる場合、負荷回路99は、センシング回路や無線通信回路などである。センシング回路は、生体の各種生体情報(温度等)をセンシングする。無線通信回路は取得した生体情報を通信する。なお、負荷回路99は、充電をおこなうための二次電池であってもよい。
 (送電装置20の構成)
 図1、図2に示すように、送電装置20は、送電回路21、電圧変換回路22、および、送電コイル29を備える。送電回路21は、フィルタ211、送電側制御回路212、レギュレータ213、EMIフィルタ214、共振調整回路215、検出器216、スイッチング素子QH、および、スイッチング素子QLを備える。送電側制御回路212は、MPU212M、および、ドライバIC212Dを備える。
 電圧変換回路22の入力端子は、直流電源901に接続する。電圧変換回路22の出力端子は、フィルタ211の入力端子に接続する。
 フィルタ211の高電位側出力端子は、スイッチング素子QHのドレインに接続する。フィルタ211の低電位側出力端子は、スイッチング素子QLのソースに接続する。
 スイッチング素子QHのソースとスイッチング素子QLのドレインとは、接続する。これら、スイッチング素子QHとスイッチング素子QLとによって、送電側スイッチング回路が構成される。
 MPU212Mは、ドライバIC212Dに接続する。ドライバIC212Dは、スイッチング素子QHのゲートおよびスイッチング素子QLのゲートに接続する。
 検出器216は、フィルタ211の高電位側出力端子とスイッチング素子QHのドレインとの間に接続される。レギュレータ213は、フィルタ211の高電位側出力端子とスイッチング素子QHのドレインとが接続される高電位側ラインに接続するとともに、送電側制御回路212のMPU212Mに接続する。
 EMIフィルタ214の入力端子は、スイッチング素子QHのソースとスイッチング素子QLのドレインとのノードと、スイッチング素子QLのソースおよびフィルタ211の低電位側出力端子に接続する。
 EMIフィルタ214の出力端子は、共振調整回路215の入力端子に接続する。共振調整回路215の出力端子は、送電コイル29に接続する。
 (送電装置20の基本的な送電時の動作)
 電圧変換回路22は、所謂DCDCコンバータであり、直流電源901から直流電圧を所定電圧に電圧変換してフィルタ211に出力する。フィルタ211は、電圧変換回路22からの直流電圧(直流電流)に対してフィルタ処理(例えば、ノイズ抑圧処理)を行う。
 フィルタ211でのフィルタ処理後の直流電圧(直流電流)は、スイッチング素子QHおよびスイッチング素子QLからなるスイッチング回路に供給される。
 また、フィルタ211でのフィルタ処理後の直流電圧は、レギュレータ213に供給される。レギュレータ213は、入力された直流電圧からMPU212Mの電源電圧を生成し、MPU212Mに供給する。
 MPU212Mは、スイッチング素子QHおよびスイッチング素子QLをスイッチング制御するための制御信号を生成する。制御信号は、送電の開始および終了を規定する所定のクロック周波数(例えば、ISMバンドの6.78MHzや13.56MHz)で矩形波のクロック信号をベース信号とする。そして、詳細は後述するが、制御信号は、このクロック信号に送電認証用の割り込み処理を行った信号である。制御信号における割り込み処理を行った期間の信号が、本発明の「送電認証用の割り込み信号」に対応する。
 MPU212Mは、制御信号をドライバIC212Dに出力する。
 ドライバIC212Dは、制御信号に基づいて、スイッチング素子QH用のHi側スイッチング制御信号と、スイッチング素子QL用のLow側スイッチング制御信号とを生成する。Hi側スイッチング制御信号とLow側スイッチング制御信号は、電圧が互いに反転した信号である。すなわち、Hi側スイッチング制御信号が高電位のとき、Low側スイッチング制御信号は低電位であり、Hi側スイッチング制御信号が低電位のとき、Low側スイッチング制御信号は高電位である。
 ドライバIC212Dは、Hi側スイッチング制御信号をスイッチング素子QHに与え、Low側スイッチング制御信号をスイッチング素子QLに与える。この際、ドライバIC212Dは、Hi側スイッチング制御信号とLow側スイッチング制御信号を同期させて、スイッチング素子QHおよびスイッチング素子QLに与える。
 スイッチング素子QHは、Hi側スイッチング制御信号に応じてオンオフ制御される。スイッチング素子QLは、Low側スイッチング制御信号に応じてオンオフ制御される。
 これにより、基本的にはクロック信号の周波数に応じて高電位と低電位とが交互に繰り返される交流信号が、スイッチング回路からEMIフィルタ214に出力される。なお、詳細は後述するが、この際、交流信号は、送電認証用の割り込み処理の期間では、この割り込み処理に応じた波形変化を生じる。
 この交流信号は、EMIフィルタ214でフィルタ処理され、共振調整回路215に入力される。
 共振調整回路215は、少なくとも1つのキャパシタを含み、送電コイル29とともに送電共振回路を構成する。送電共振回路の共振周波数は、クロック信号の周波数と同じに設定される。
 送電コイル29は、交流信号に応じて交番磁界を発生する。
 (受電装置30の構成)
 図1、図3に示すように、受電装置30は、受電回路31、受電コイル39を備える。受電回路31は、共振調整回路311、整流平滑回路312、レギュレータ313、MPU314、トリガ生成回路315、変調制御回路316、および、電圧制御回路317を備える。MPU314、トリガ生成回路315、および、変調制御回路316によって、本発明の「受電側制御回路」が構成される。
 共振調整回路311の入力端子は、受電コイル39に接続する。共振調整回路311の出力端子は、整流平滑回路312の入力端子に接続する。整流平滑回路312の出力端子は、電圧制御回路317の入力端子に接続する。電圧制御回路317の出力端子は、受電装置30としての出力端子であり、負荷回路99に接続する。
 レギュレータ313は、整流平滑回路312に接続するとともに、MPU314に接続する。MPU314は、変調制御回路316に接続するとともに、電圧制御回路317に接続する。
 (受電装置30の基本的な受電時の動作)
 共振調整回路311は、少なくとも1つのキャパシタを含み、受電コイル39とともに受電共振回路を構成する。受電共振回路の共振周波数は、交番磁界の周波数、すなわち、送電共振回路の共振周波数と同じに設定される。
 受電コイル39が送電コイル29と電磁界結合するように配置されると、受電コイル39は、交番磁界に結合して、交流電流を発生する。この際、上述のように、受電共振回路の共振周波数と送電共振回路の共振周波数とが同じに設定されていることによって、交番磁界から交流電流を低損失に発生できる。
 共振調整回路311は、この交流電流を整流平滑回路312に出力する。
 整流平滑回路312は、例えば、整流素子を用いた全波整流回路と、インダクタを用いた平滑回路とによって構成される。整流平滑回路312は、共振調整回路311から入力された交流電流を直流電圧に変換する。整流平滑回路312は、直流電圧を電圧制御回路317に出力する。
 電圧制御回路317は、所謂DCDCコンバータ等であり、整流平滑回路312から入力された直流電圧を、負荷回路99に応じた直流出力電圧に変換する。電圧制御回路317は、直流出力電圧(直流出力電流)を負荷回路99に供給する。
 整流平滑回路312から出力された直流電圧は、レギュレータ313に供給される。レギュレータ313は、入力された直流電圧からMPU314用の電源電圧を生成し、MPU314に供給する。
 MPU314は、電圧制御回路317の駆動制御を行う。例えば、MPU314は、整流平滑回路312の出力電圧を観測し、その観測結果に応じて電圧制御回路317の駆動、停止を制御する。また、MPU314は、後述する送電装置20からの負荷回路99への電力供給指示に応じて電圧制御回路317の駆動、停止を制御する。
 (認証に用いられる構成、動作の概略的な説明)
 (受電装置30による送電装置20の認証)
 送電装置20のMPU212Mは、送電装置20の送電装置コードを反映した割り込み信号(送電認証用の割り込み信号)を生成し、ドライバIC212Dに与える。ドライバIC212Dは、割り込み信号に応じて、スイッチング素子QH、QLのオンオフを制御する。
 これにより、上述する送電用の交流信号を送電認証用の割り込み信号によって波形整形した信号が送電コイル29に供給される。
 送電コイル29と受電コイル39とが電磁界結合することで、受電装置30の共振調整回路311から出力される交流電流は、送電用の交流信号を同じ波形となり、送電認証用の割り込み信号によって波形整形された状態が維持されている。これにより、送電装置20の送電装置コードは、送受電用の交流信号を用いて、送電認証用の割り込み信号として送電装置20から受電装置30に伝送される。
 受電装置30のトリガ生成回路315は、共振調整回路311に接続しており、例えば、抵抗分圧回路によって実現される。トリガ生成回路315は、共振調整回路311を流れる交流電流を電圧信号の変換し、割り込み検出用信号として、MPU314に出力する。
 MPU314は、割り込み検出用信号から送電認証用の割り込み信号を判別する。MPU314は、送電認証用の割り込み信号から送電装置コードを復調し、送電装置20の認証を行う。
 MPU314は、認証OKなら、電圧制御回路317に対して駆動開始制御を行う。例えば、MPU314は、電圧制御回路317へのイネーブル信号を出力する。これにより、負荷回路99には電力が供給される。MPU314は、認証NGなら、電圧制御回路317に対して駆動開始制御を行わない、または、電圧制御回路317に対して駆動停止制御を行う。例えば、MPU314は、電圧制御回路317へのイネーブル信号の出力を停止する。これにより、負荷回路99には電力が供給されない。
 このように、ワイヤレス給電システム1は、受電装置30で送電装置20の認証を行うことができる。これにより、ワイヤレス給電システム1は、セキュアなシステムを実現できる。
 (送電装置20による受電装置30の認証)
 MPU314は、受電装置コードを生成し、変調制御回路316に与える。
 変調制御回路316は、受電装置コードに応じて共振調整回路311のインピーダンスを調整する。共振調整回路311のインピーダンスが変化することで、受電コイル39と送電コイル29との結合状態が変化し、負荷変調レベルが変化する。
 負荷変調レベルが変化することで、送電回路21を流れる直流電流の電流値が変化する。これにより、受電装置30からの受電装置コードは、送受電用の交流信号を用いて、受電装置30から送電装置20に伝送される。
 検出器216は、この直流電流を電圧変換して、受電装置コード検出用信号を生成し、MPU212Mに出力する。
 MPU212Mは、受電装置コード検出用信号から受電装置コードを復調し、認証OK、認証NGを判別する。
 MPU212Mは、認証OKなら、ドライバIC212Dを通じスイッチング回路に対して送電制御(送電継続制御)を行う。これにより、送電装置20から受電装置30には電力が継続して供給される。MPU314は、認証NGなら、ドライバIC212Dを通じスイッチング回路に対して送電停止制御を行う。これにより、送電装置20から受電装置30には電力が供給されない。
 このように、ワイヤレス給電システム1は、送電装置20で受電装置30の認証を行うことができる。これにより、ワイヤレス給電システム1は、セキュアなシステムを実現できる。
 そして、受電装置30による送電装置20の認証と、送電装置20による受電装置30の認証とを行うことで、ワイヤレス給電システム1は、さらにセキュアなシステムを実現できる。
 (受電装置30による送電装置20の認証のより具体的な説明)
 図4は、認証に用いる装置コードの一例を示す図である。図5(A)は、装置コードが認証された場合の送電電圧遷移の一例を示す図であり、図5(B)は、図5(A)の信号挿入期間を拡大した図である。図5(D)は、装置コードが認証された場合の受電電圧遷移の一例を示す図であり、図5(C)は、図5(D)の信号挿入期間を拡大した図である。
 図6(A)は、図5(B)における割り込み信号期間を拡大した図であり、図6(B)は、図5(C)における割り込み信号期間を拡大した図である。図7は、図6(A)の割り込み信号期間の信号波形をさらに拡大した図である。
 図8(A)は、装置コードが認証されなかった場合の送電電圧遷移の一例を示す図であり、図8(B)は、図8(A)の信号挿入期間を拡大した図である。図8(D)は、装置コードが認証されなかった場合の受電電圧遷移の一例を示す図であり、図8(C)は、図8(D)の信号挿入期間を拡大した図である。
 図9(A)は、図8(B)における割り込み信号期間を拡大した図であり、図9(B)は、図8(D)における割り込み信号期間を拡大した図である。
 例えば図4に示すように、送電装置コードは、4ビットからなる。送電装置コードは、スタートビット「1」、2ビットの装置ID、エンドビット「1」によって構成される。
 なお、以下では、装置IDが「11」の場合に認証がOKとなり、装置IDが「10」の場合に認証がNGとなる場合を例として説明する。
 図5(A)、図5(D)、図8(A)、図8(D)に示すように、送電装置20および受電装置30は、繰り返し周期Tcを設定し、この繰り返し周期Tcによって送受間で信号のやり取りを繰り返す。
 図5(A)、図8(A)に示すように、送電装置20は、繰り返し周期Tcに対して、信号挿入期間Tsと電力専用期間Tpを設定する。送電装置20は、繰り返し周期Tc内において、繰り返し周期Tcの最初の時間から信号挿入期間Ts、電力専用期間Tpの順に設定する。信号挿入期間Tsは、繰り返し周期Tcの10%程度以下に設定される。
 図5(B)、図8(B)に示すように、送電装置20は、信号挿入期間Tsに対して、送電側割り込み信号期間Tt、データ受信期間Tdsrを設定する。送電装置20は、信号挿入期間Ts内において、信号挿入期間Tsの最初の時間から送電側割り込み信号期間Tt、データ受信期間Tdsrの順に設定する。送電側割り込み信号期間Ttは、信号挿入期間Tsの20%程度に設定される。
 送電装置20は、送電側割り込み信号期間Ttに対して、事前電力供給期間Tpreと実挿入期間TDを設定する。送電装置20は、送電側割り込み信号期間Tt内において、送電側割り込み信号期間Ttの最初の時間から事前電力供給期間Tpre、実挿入期間TDの順に設定する。事前電力供給期間Tpreは、認証処理が実現可能な電力を受電装置30に供給できる程度の時間長に設定される。実挿入期間TDは、送電装置コード(上述の場合4ビットデータ)が挿入可能な時間長に設定される。
 図5(D)、図8(D)に示すように、受電装置30は、繰り返し周期Tcに対して、信号挿入期間Tsと電力専用期間Tpを設定する。受電装置30は、繰り返し周期Tc内において、繰り返し周期Tcの最初の時間から信号挿入期間Ts、電力専用期間Tpの順に設定する。信号挿入期間Tsは、繰り返し周期Tcの10%程度以下に設定される。すなわち、受電装置30と送電装置20とで、繰り返し周期Tcに対して、信号挿入期間Tsと電力専用期間Tpとは同じ構成、同じ時間長で設定されている。
 受電装置30の繰り返し周期Tcの最初の時間は、送電装置20の繰り返し周期Tcの最初の時間に同期されている。この同期は、例えば、受電装置30が電力供給を最初に受けた時間を検出することで可能である。また、この同期は、割り込み信号の検出時間を参照することで可能である。
 図5(C)、図8(C)に示すように、受電装置30は、信号挿入期間Tsに対して、受電側割り込み信号期間Tr、データ送信期間Tdstを設定する。受電装置30は、信号挿入期間Ts内において、信号挿入期間Tsの最初の時間から受電側割り込み信号期間Tr、データ送信期間Tdstの順に設定する。
 受電側割り込み信号期間Trは、信号挿入期間Tsの40%程度に設定される。すなわち、受電側割り込み信号期間Trは、送電側割り込み信号期間Ttよりも長く設定されている。これにより、受電装置30は、割り込み信号すなわち装置コードをより確実に受信できる。
 このように各期間が設定された状態で、送電装置20は、まず、繰り返し周期Tcの初めから信号挿入期間Tsの間、受電装置30に電力を供給し続けるように送電制御を行う。より具体的には、送電装置20は、図7に示すように、上述のクロック周波数に応じたクロック周期TCLからなる矩形波を継続的に出力するように割り込み信号制御を行う。
 さらに、送電装置20は、信号挿入期間Tsにおいて送電側割り込み信号期間Ttでは、送電装置コードに応じた割り込み信号を生成し、スイッチング回路のオンオフ制御(スイッチング制御)を行う。
 より具体的には、送電装置20のMPU212Mは、事前電力供給期間Tpreでは、割り込み信号による割り込み処理を行わず、電力供給用の高電位を維持する。これにより、受電装置30に対して、認証用の電力供給を行うことができる。
 そして、送電装置20のMPU212Mは、実挿入期間TDになると、送電装置コードにおける「1」のビットで低電位となるように、「0」のビットで高電位となるように(電力供給用の高電位を維持するように)、割り込み信号を生成し、ドライバIC212Dに与える。この際、図6(A)、図7に示すように、MPU212Mは、送電側割り込み信号期間Ttを装置コードのビット数で除算した時間長で個別ビット期間Titを設定する。MPU212Mは、個別ビット期間Tit毎に装置コードの各ビットを割り当てる。
 そして、MPU212Mは、個別ビット期間Titよりも短い時間長Tbで低電位を維持することで、「1」のビットの波形を形成する。すなわち、「1」のビットでは、個別ビット期間Tit内において、まず時間長Tbで低電位の期間が存在し、その後に高電位の期間が存在する。
 なお、図7に示すように、この時間長Tbは、クロック周期TCLよりも長く設定されており、クロック周期TCLの二周期分以上であることが好ましい。これにより、時間長Tbにおける低電位の時間によって「1」のビットを表している波形と、クロック周期TCLによる矩形波とを、より確実に判別できる。
 一方、図9(B)の三ビット目に示すように、MPU212Mは、個別ビット期間Titの間、電力供給用の高電位を維持することで、「0」のビットの波形を形成する。
 これにより、例えば、装置コードが「1111」であれば、図5(B)、図6(A)、図7に示すように、実挿入期間TDの最初の時間から、低電位の期間と高電位の期間が交互にこの順で4回繰り返し現れる波形となる。
 一方、装置コードが「1101」であれば、図8(B)、図9(A)に示すように、実挿入期間TDの最初の時間から、低電位の期間と高電位の期間が交互にこの順で3回繰り返し、2回目の低電位の期間と3回目の低電位の期間との間が個別ビット期間Titよりも長い波形となる。
 これにより、送電装置20は、送電電圧の振幅の変化を利用して、送電側装置コードを受電装置30に伝送できる。
 受電装置30は、送電装置20からの電力の受電を検出し、繰り返し周期Tcの最初の時間を検出する。そして、受電装置30は、繰り返し周期Tcの初めから信号挿入期間Tsの間、送電装置20からの電力供給を受け続ける。
 受電装置30は、信号挿入期間Tsの受電側割り込み信号期間Trにおいて、まず、電力供給を受け、MPU314を起動させる。より具体的には、受電装置30は、送電装置20の事前電力供給期間Tpreに対応する期間で電力供給をうける。この電力によって、MPU314が起動する。
 受電装置30のトリガ生成回路315は、信号挿入期間Tsの受電側割り込み信号期間Trにおいて、受電した交流電流を電圧信号に変換して割り込み検出用信号を生成する。MPU314は、割り込み検出用信号の振幅変化を検出する。
 図6(B)、図9(B)に示すように、MPU314は、割り込み検出用信号の振幅が最初に低くなる時間を検出し、割り込み信号の検出基準時間t0に設定する。MPU314は、検出基準時間t0を基準にして、複数の個別ビット期間Tirを設定する。複数の個別ビット期間Tirは、装置コードのビット数と同じ個数設定される。複数の個別ビット期間Tirは、送電装置20の個別ビット期間Titと同じ時間長で設定される。
 MPU314は、個別ビット期間Tir毎に、割り込み検出用信号の振幅の変化を検出する。MPU314は、低電位の期間を含む個別ビット期間Tirを検出すると、「1」のビットとして検出し、低電位の期間を含まない個別ビット期間Tirを検出すると、「0」のビットとして検出する。
 例えば、図6(B)に示すように、検出基準時間t0から連続する4つの個別ビット期間Tirでそれぞれに低電位の期間を検出すると、「1111」のビット列として検出する。一方、図9(B)に示すように、検出基準時間t0から連続する2つの個別ビット期間Tirでそれぞれに低電位の期間を検出し、1つの個別ビット期間Tirで低電位の期間を検出せず、次の1つの個別ビット期間Tirで低電位の期間を検出すると、「1101」のビット列として検出する。
 MPU314は、検出したビット列から装置IDを復調する。例えば、MPU314は、「1111」であれば、スタートビット「1」とエンドビット「1」を除いた「11」を装置IDとして復調する。また、MPU314は、「1101」であれば、スタートビット「1」とエンドビット「1」を除いた「10」を装置IDとして復調する。
 このような処理によって、受電装置30のMPU314は、受電電圧の振幅を利用して、送電装置20の装置IDを識別できる。
 MPU314は、識別した装置IDを用いて、送電装置20の認証を行う。より具体的には、MPU314は、認証OKの装置IDをメモリ等に予め記憶している。MPU314は、識別した装置IDが認証OKの装置IDであれば、認証合格(OK)と判断する。一方、MPU314は、識別した装置IDが認証OKの装置IDになければ、認証不合格(NG)と判断する。
 このように、ワイヤレス給電システム1では、受電装置30によって送電装置20を認証できる。この際、ワイヤレス給電システム1は、送受電する電圧の振幅を用いて認証を行うので、送受電用とは別に認証用の回路構成を備えなくてもよい。これにより、ワイヤレス給電システム1は、セキュアなシステムを簡素な構成で実現できる。
 また、上述の構成および処理では、認証に用いる信号挿入期間Tsが繰り返し周期Tcの10%以下であり、電力専用期間Tp、すなわち認証用の割り込みを行わない期間が繰り返し周期Tcの90%以上である。これにより、ワイヤレス給電システム1は、電力供給を主として、局所的な期間で認証用の割り込み処理を行う。したがって、ワイヤレス給電システム1は、認証を行うことによる受電効率の低下を抑制できる。すなわち、ワイヤレス給電システム1は、セキュアで且つ受電効率が高いシステムを実現できる。
 さらに、信号挿入期間Tsにおいても、ビット「1」を表す個別ビット期間Tit、Tirの一部の低電位期間と除き、電力供給用の高電位が維持されている。これにより、ワイヤレス給電システム1は、認証を行うことによる受電効率の低下をさらに抑制できる。
 図10は、受電期間の長さと受電電力との関係の一例を示すグラフである。図10において、横軸は繰り返し周期における受電期間(電力専用期間Tp)の割合を示し、縦軸は受電電力の正規化値を示す。縦軸は、受電期間が100%の時を1とした値である。
 図10に示すように、受電電力は、受電期間(電力専用期間Tp)が短くなるほど低下する。言い換えれば、受電電力は、受電期間(電力専用期間Tp)が長くなるほど高くなる。そして、受電期間(電力専用期間Tp)を90%以上とすることで、受電電力は、認証を行わない受電期間(電力専用期間Tp)が100%のときの0.9以上にできる。したがって、受電期間(電力専用期間Tp)を90%以上とすることで、受電電力の低下が送電コイル29に対する受電コイル39の設置誤差程度に抑制でき、受電効率のより良いシステムを実現できる。
 なお、受電期間は90%より低く設定することも可能である。しかしながら、少なくとも受電期間は70%以上とすることで、受電効率の低下を実用レベルに抑えることができる。
 なお、受電装置30および送電装置20は、MPU314での認証結果に応じて、次に示すような処理を行う。
 (A)受電装置30での負荷回路99への電力供給制御
 MPU314は、認証OKであれば、電圧制御回路317を制御して負荷回路99に電力を供給する。一方、MPU314は、認証NGであれば、電圧制御回路317を制御して負荷回路99への電力供給を停止する。
 (B)送電装置20への認証結果の返信および送電装置20での送電動作
 MPU314は、認証結果に応じて認証コードを生成する。MPU314は、認証コードを変調制御回路316に与える。
 変調制御回路316は、認証コードに応じて共振調整回路311のインピーダンスを調整する。
 上述の受電装置30の認証と同様に、共振調整回路311のインピーダンスが変化することで、受電コイル39と送電コイル29との結合状態が変化し、負荷変調レベルが変化する。
 送電装置20では、負荷変調レベルが変化することで、送電回路21を流れる直流電流の電流値が変化する。これにより、受電装置30からの認証コードは、送受電用の交流信号を用いて、受電装置30から送電装置20に伝送される。
 検出器216は、この直流電流を電圧変換して、認証コード検出用信号を生成し、MPU212Mに出力する。
 MPU212Mは、認証コード検出用信号から認証コードを復調し、認証OK、認証NGを判別する。MPU212Mは、認証OKを判別すると、送電動作を継続する。これにより、図5(A)、図5(D)に示すように、送電装置20から受電装置30に、電力専用期間Tpにて電力が継続的に供給される。一方、MPU212Mは、認証NGを判別すると、送電停止を行う。これにより、図8(A)、図8(D)に示すように、電力専用期間Tpでは、送電装置20から受電装置30に電力が供給されない。
 これにより、送電装置20は、送電すべき受電装置30への送電を実現し、送電すべきでない受電装置30への送電をより確実に抑制できる。そして、この結果、受電装置30は、電力を受けるべき送電装置20から受電し、電力を受けるべきでない送電装置20からの受電を防止できる。
 このような受電装置30から送電装置20への認証コードの伝送処理は、図5(C)、図5(B)や図8(C)、図8(B)に示すように、信号挿入期間Tsにおけるデータ送信期間Tdstとデータ受信期間Tdsrとによって行われる。すなわち、認証コードの伝送処理も電力専用期間Tpと異なる時間で行われる。上述のように、信号挿入期間Tsは、電力専用期間Tpよりも大幅に短いしたがって、送受電期間における電力専用期間を主として局所的に割り込み信号を挿入する信号挿入期間が設定されるので、ワイヤレス給電システム1は、認証コードの送受信による受電効率の低下も抑制できる。さらに、実際に認証コードが送受信される期間は、信号挿入期間Tsの一部である。したがって、ワイヤレス給電システム1は、認証コードの送受信による受電効率の低下をさらに抑制できる。
 (認証の各種態様の説明)
 上述の説明では、送電装置20と受電装置30との認証を、送電装置20および受電装置30の具体的な構成を用いて説明した。以下では、制御の流れをより分かり易くするため、送電装置20と受電装置30の認証を、フローチャートを用いて説明する。
 (第1態様)
 第1態様では、受電装置30が送電装置20を認証し、認証結果を送電装置20に返信する態様である。
 図11は、認証の第1態様を示すフローチャートである。図12は、図11に示した送電装置コード送信用の送電制御のフローチャートである。図13は、図11に示す送電装置コードの検知のフローチャートである。
 図11に示すように、送電装置20は、送電を開始すると(S11)、送電装置コード送信用の送電動作を行う(S12)。
 送電装置コード送信用の送電動作では、送電装置20は、コード送信用の制御開始タイミング(実挿入期間TDの開始タイミング)になるまでは(S121:NO)、電力供給用の送電のみを継続する。送電装置20は、コード送信用の制御開始タイミングになると(S121:YES)、コード送信用計時を開始する(S122)。
 送電装置20は、計時した時間を参照し、送電装置コードを実現するように、個別ビット期間Tit毎に送電電圧の振幅制御を行う(S123)。送電装置20は、コード送信期間(実挿入期間TD)が終了するまで(S124:NO)、この振幅制御を繰り返す。送電装置20は、コード送信期間(実挿入期間TD)が終了すると(S124:YES)、送電装置コード送信用の送電動作を終了する(S125)。そして、送電装置20は、送電のみを行う送電動作を継続する(S13)。なお、このステップS13で行われる送電動作の継続は、信号挿入期間Tsに限るものであり(図8(A)参照)、後述の認証コードが得られるまでは、ステップS12、S13の動作を繰り返し行う。
 受電装置30は、受電を開始すると(S21)、送電装置コード(送電装置コード)を検知する(S22)。
 送電装置コードの検知では、受電装置30は、認証用トリガ(上述の割り込み検出用信号の振幅が最初に低くなる現象)を検出するまで(S221:NO)、認証用トリガの検出を継続し、認証用トリガを検出すると(S221:YES)、認証用計時を開始する(S222)。
 受電装置30は、計時した時間を参照し、個別ビット期間Tir毎に受電電圧に基づく割り込み検出用信号の振幅変化を検知し、ビットを検出する(S223)。受電装置30は、ビット検出期間が終了するまで(S224:NO)、このビット検出を繰り返す。ビット検出期間は、例えば、予め記憶されている送電装置コードのビット数に個別ビット期間Tirを乗算した時間長で設定される。
 受電装置30は、ビット検出期間が終了すると(S224:YES)、送電装置コード(送電装置コード)を復調する(S225)。
 受電装置30は、送電装置コードを用いて、送電装置20の認証を行う。受電装置30は、送電装置20が認証OKならば(S23:OK)、認証OKコード用のインピーダンス制御を行う(S24)。そして、受電装置30は、受電を継続し(S25)、負荷回路99へ電力供給を行う(S26)。
 受電装置30は、送電装置20が認証NGならば(S23:NG)、認証NGコード用のインピーダンス制御を行う(S27)。
 送電装置20は、受電装置30のインピーダンス制御によって変化する送信電流の変化を検出し、認証コードを検出する(S14)。なお、送電装置20は、認証コードを検出するまでは(S14:NO)、送電を継続する(S13)。
 送電装置20は、認証OKコードであれば(S15:YES)、送電を継続する(S16)。送電装置20は、認証NGコードであれば(S15:NO)、送電を停止する(S17)。
 (第2態様)
 第2態様では、受電装置30が送電装置20を認証し、認証結果を送電装置20に返信しない態様である。なお、送電装置20での送電装置コード送信用の送電制御、および、受電装置30での送電装置コードの検知は、第1態様と同じであり、説明は省略する。
 図14は、認証の第2態様を示すフローチャートである。
 図14に示すように、送電装置20は、送電を開始すると(S11)、送電装置コード送信用の送電動作を行う(S12)。そして、送電装置20は、送電のみを行う送電動作を継続する(S13)。
 受電装置30は、受電を開始すると(S21)、送電装置コード(送電装置コード)を検知する(S22)。
 受電装置30は、送電装置コードを用いて送電装置20の認証を行う。受電装置30は、送電装置20が認証OKならば(S23:OK)、認証OKコード用のインピーダンス制御を行う(S24)。そして、受電装置30は、受電を継続し(S25)、負荷回路99へ電力供給を行う(S26)。
 送電装置20は、受電装置30のインピーダンス制御によって変化する送信電流の変化を検出し、認証コードを検出する(S14)。なお、送電装置20は、認証コードを検出できず(S14:NO)、所定時間経過するまでは(S18:NO)、送電を継続する(S13)。
 送電装置20は、認証コード(認証OKコード)を検出すると(S14:YES)、送電を継続する(S16)。
 送電装置20は、認証コードを検出できず(S14:NO)、所定時間経過すると(S18:YES)、送電を停止する(S17)。
 (第3態様)
 第3態様では、受電装置30と送電装置20とがそれぞれを認証する態様である。第3態様では、送電装置20による受電装置30の認証後に、受電装置30による送電装置20の認証を行う。なお、第3態様は、受電装置の認証を追加した点で第1態様と異なり、後の処理は同じである。したがって、同じ箇所の説明は省略する。
 図15は、認証の第3態様における送電装置での処理のフローチャートである。図16は、認証の第3態様における受電装置での処理のフローチャートである。
 図16に示すように、受電装置30は、受電を開始すると(S21)、受電装置コード用のインピーダンス制御を行う(S41)。すなわち、受電装置30は、受電装置コードを用いて、受電共振回路のインピーダンス制御を行う。
 図15に示すように、送電装置20は、送電電流の振幅変化を検出して、受電装置コードを復調する(S31)。送電装置20は、受電装置コードを用いて、受電装置30の認証を行う。
 送電装置20は、受電装置30が認証OKならば(S32:OK)、上述の第1態様と同様に送電装置20の認証用の処理を行う。
 送電装置20は、受電装置30が認証NGならば(S32:NG)、送電を停止する(S17)。
 (第4態様)
 第4態様では、受電装置30と送電装置20とがそれぞれを認証する態様である。第4態様では、受電装置30による送電装置20の認証後に、送電装置20による受電装置30の認証を行う。なお、第4態様は、第3態様と同様に、受電装置の認証を追加した点で第1態様と異なり、後の処理は同じである。したがって、同じ箇所の説明は省略する。
 図17は、認証の第4態様における送電装置での処理のフローチャートである。図18は、認証の第4態様における受電装置での処理のフローチャートである。
 図18に示すように、受電装置30は、送電装置20が認証OKならば(S23:OK)、認証OKコード用のインピーダンス制御を行い(S24)、受電装置コード用のインピーダンス制御を行う(S41)。
 図17に示すように、送電装置20は、送電電流の振幅変化を検出して、自装置に対する受電装置30からの認証OKコードを検出すると(S15:YES)、受電装置コードを復調する(S31)。送電装置20は、受電装置コードを用いて、受電装置30の認証を行う。
 送電装置20は、受電装置30が認証OKならば(S32:OK)、送電を計測する(S16)。送電装置20は、受電装置30が認証NGならば(S32:NG)、送電を停止する(S17)。
 (動作コードを送受信する態様)
 上述の説明では、装置コードまたは認証コードを、電力伝送用の電圧の振幅変化を用いて伝送する態様を示した。しかしながら、動作コードを、電力伝送用の電圧の振幅変化を用いて伝送することもできる。動作コードとは、受電装置30の動作遷移用の動作コマンド信号を規定するコードである。
 図19は、動作コードの一例を示す図である。図19に示すように、動作コードは、4ビットからなる。動作コードは、スタートビット「1」、2ビットの動作ID、エンドビット「1」によって構成される。
 動作IDには、受電装置30が行う動作(電力供給制御等)が関連付けされており、送電装置20および受電装置30で記憶されている。
 図20は、動作制御用のフローチャートである。
 図20に示すように、送電装置20は、送電を開始すると(S51)、上述のいずれかの態様によって、認証処理を行う(S52)。
 そして、送電装置20は、認証OKであれば、動作コード送信用の送電動作を行い(S53)、送電を継続する(S54)。なお、動作コード送信用の送電動作は、上述の送電装置コード送信用の送電動作における送電装置コードを動作コードに置き換えた制御である。
 送電装置20は、受電装置30に対して動作制御を行う毎に、動作コード送信用の送電動作を繰り返す。
 受電装置30は、受電を開始すると(S61)、上述のいずれかの態様によって、認証処理を行う(S62)。
 受電装置30は、動作コードを検出し(S63)、動作コードを復調する(S64)とともに、受電を継続する(S65)。なお、動作コードの検出、復調は、上述の送電装置コードの検出、復調と同じ処理である。
 受電装置30は、動作コードに応じた動作遷移用の動作コマンド信号を生成し、動作コマンド信号を用いた制御を実行する(S66)。これにより、受電装置30の動作が遷移する。受電装置30は、送電装置20からの動作コードを検出、復調する毎に、この復調した動作コードに応じた制御を実行する。
 このように、ワイヤレス給電システム1では、認証のみでなく、動作制御についても、電力伝送用の電圧を用いて実現できる。そして、動作コードの伝送についても、認証の場合同様に、電力専用期間Tpとは異なる信号挿入期間Tsで行われる。したがって、ワイヤレス給電システム1は、ワイヤレスによって受電装置30の動作を制御しながら、受電効率の低下を抑制できる。
 なお、上述の説明では、受電装置30において、負荷回路99への電力供給に電圧制御回路317を用いる態様を示した。しかしながら、負荷回路99への電力供給は、レギュレータ回路であってもよい。
1:ワイヤレス給電システム
20:送電装置
21:送電回路
22:電圧変換回路
29:送電コイル
30:受電装置
31:受電回路
39:受電コイル
99:負荷回路
211:フィルタ
212:送電側制御回路
212M:MPU
212D:ドライバIC
213:レギュレータ
214:EMIフィルタ
215:共振調整回路
216:検出器
311:共振調整回路
312:整流平滑回路
313:レギュレータ
314:MPU
315:トリガ生成回路
316:変調制御回路
317:電圧制御回路
901:直流電源
QH:スイッチング素子
QL:スイッチング素子

Claims (13)

  1.  送電する交流電力および送電信号の双方を直流電圧から共通して生成する送電回路と、前記交流電力をワイヤレスで送電し、かつ、前記送電信号をワイヤレスで送信する送電コイルと、を備える送電装置と、
     前記送電コイルに電磁界結合する受電コイルと、前記受電コイルとともに受電した交流電力を整流し、直流電圧へ変換する受電回路と、を備えた受電装置と、
     を備える、ワイヤレス給電システムであって、
     前記送電回路は、
     送電認証用の割り込み信号を生成する送電側制御回路と、
     前記割り込み信号によって前記送電信号の前記送電コイルへの出力を調整する送電側スイッチング回路と、
     を備え、
     前記受電回路は、
     前記送電信号から前記送電装置に応じた前記送電認証用の割り込み信号を判別し、前記送電認証用の割り込み信号を用いて前記送電装置を送電認証し、該送電認証を行った後に、負荷回路への電力供給または二次電池への充電を開始する受電側制御回路を備え、
     前記送電側制御回路と前記受電側制御回路は、送受電期間における前記送電認証用の割り込み信号を用いない電力専用期間を主として、前記送受電期間に対して局所的に前記送電認証用の割り込み信号を挿入する信号挿入期間を設定する、
     ワイヤレス給電システム。
  2.  前記送受電期間における90%以上の期間を、前記電力専用期間とし、
     前記送受電期間における前記電力専用期間以外の期間を、前記信号挿入期間とする、
     請求項1に記載のワイヤレス給電システム。
  3.  前記送電認証用の割り込み信号の前記信号挿入期間は、前記送電側制御回路および前記受電側制御回路において予め設定されており、
     前記受電側制御回路は、
      前記信号挿入期間の開始を検出し、
      前記信号挿入期間の前記開始の時間を基準とした所定時間間隔の受電信号の振幅情報を用いて、前記送電認証を行う、
     請求項1または請求項2に記載のワイヤレス給電システム。
  4.  前記受電側制御回路は、
      前記受電装置の受電認証用に、前記受電コイルと前記受電回路とによって決まるインピーダンスの変化を制御し、
     前記送電側制御回路は、
      前記受電装置側のインピーダンスの変化による前記送電回路における電流の変化から前記受電装置の受電認証を行い、
      前記受電装置を受電認証した後に、前記送電認証用の割り込み信号を生成する、
     請求項1乃至請求項3のいずれかに記載のワイヤレス給電システム。
  5.  前記送電側制御回路は、
      前記送電装置の送電認証用に、前記送電コイルと前記送電回路とによって決まるスイッチング動作の変化を制御し、
     前記受電側制御回路は、
      前記送電装置側のスイッチング動作の変化による前記受電回路における電流の変化から前記送電装置の送電認証を行い、
      前記送電装置を送電認証した後に、受電認証用のインピーダンスの変化を生成する、
     請求項1乃至請求項3のいずれかに記載のワイヤレス給電システム。
  6.  前記送電側制御回路は、
      前記信号挿入期間に、受電側の動作遷移用の動作コマンド信号を生成し、
     前記受電側制御回路は、
      前記動作コマンド信号を検出すると、前記受電装置の動作を遷移させる、
     請求項1乃至請求項5のいずれかに記載のワイヤレス給電システム。
  7.  前記送電側制御回路は、
      前記動作コマンド信号の信号挿入期間を、それぞれに時間間隔を空けて複数回設定し、
      複数の信号挿入期間毎に、前記動作コマンド信号を生成し、
     前記受電側制御回路は、
      前記動作コマンド信号を検出する毎に、前記受電装置の動作を遷移させる、
     請求項6に記載のワイヤレス給電システム。
  8.  前記受電回路は、
      前記負荷回路または前記二次電池への電力供給を行うための電圧変換回路、または、受電側レギュレータ回路を備え、
     前記受電側制御回路は、
      受電認証の結果によって、前記電圧変換回路へのイネーブル信号の出力制御、または、前記受電側レギュレータ回路の制御を行う、
     請求項1乃至請求項7のいずれかに記載のワイヤレス給電システム。
  9.  前記負荷回路は、センシング回路または無線通信回路を含む、
     請求項1乃至請求項7のいずれかに記載のワイヤレス給電システム。
  10.  送電する交流電力および送電信号の双方を直流電圧から生成する送電回路と、
     前記交流電力をワイヤレスで送電する送電コイルと、
     を備えるワイヤレス給電システムの送電装置であって、
     前記送電回路は、
      送電認証用の割り込み信号を生成する送電側制御回路と、
      前記割り込み信号によって前記送電信号の前記送電コイルへの出力を調整する送電側スイッチング回路と、
     を備え、
     前記送電側制御回路は、送受電期間における前記送電認証用の割り込み信号を用いない電力専用期間を主として、前記送受電期間に対して局所的に前記送電認証用の割り込み信号を挿入する信号挿入期間を設定する。
     ワイヤレス給電システムの送電装置。
  11.  前記送電側制御回路は、
      前記送電コイルが電磁界結合する受電コイルを備える受電装置の受電認証を行った後に、前記送電認証用の割り込み信号を出力する、
     請求項10に記載のワイヤレス給電システムの送電装置。
  12.  送電装置の送電コイルに電磁界結合する受電コイルと、
     前記受電コイルとともに受電した交流電力を整流し、直流電圧への変換を実現する受電回路と、
     を備える、ワイヤレス給電システムの受電装置であって、
     前記受電回路は、
     送電信号から、前記送電装置に応じた送電認証用の割り込み信号を判別し、前記送電認証用の割り込み信号を用いて前記送電装置を送電認証し、該送電認証を行った後に、負荷回路への電力供給または二次電池への充電を開始する受電側制御回路を備える、
     ワイヤレス給電システムの受電装置。
  13.  送受電期間における前記送電認証用の割り込み信号の信号挿入期間は予め設定されており、
     前記受電側制御回路は、
      前記信号挿入期間の開始を検出し、
      前記信号挿入期間の前記開始の時間を基準とした所定時間間隔の受電信号の振幅情報を用いて、前記送電認証を行う、
     請求項12に記載のワイヤレス給電システムの受電装置。
PCT/JP2022/031557 2021-08-30 2022-08-22 ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置 WO2023032733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023545462A JPWO2023032733A1 (ja) 2021-08-30 2022-08-22
US18/590,231 US20240204581A1 (en) 2021-08-30 2024-02-28 Wireless power transfer system, power transmission device of wireless power transfer system, and power reception device of wireless power transfer system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-139589 2021-08-30
JP2021139589 2021-08-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/590,231 Continuation US20240204581A1 (en) 2021-08-30 2024-02-28 Wireless power transfer system, power transmission device of wireless power transfer system, and power reception device of wireless power transfer system

Publications (1)

Publication Number Publication Date
WO2023032733A1 true WO2023032733A1 (ja) 2023-03-09

Family

ID=85412543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031557 WO2023032733A1 (ja) 2021-08-30 2022-08-22 ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置

Country Status (3)

Country Link
US (1) US20240204581A1 (ja)
JP (1) JPWO2023032733A1 (ja)
WO (1) WO2023032733A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060721A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 無線電力伝送システム、該システムの送電装置および受電装置
WO2013094463A1 (ja) * 2011-12-21 2013-06-27 ソニー株式会社 給電装置、給電システムおよび電子機器
JP2019193533A (ja) * 2018-04-27 2019-10-31 キヤノン株式会社 受電装置、送電装置、無線で送電するシステム、受電装置の制御方法、送電装置の制御方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060721A (ja) * 2010-09-07 2012-03-22 Toshiba Corp 無線電力伝送システム、該システムの送電装置および受電装置
WO2013094463A1 (ja) * 2011-12-21 2013-06-27 ソニー株式会社 給電装置、給電システムおよび電子機器
JP2019193533A (ja) * 2018-04-27 2019-10-31 キヤノン株式会社 受電装置、送電装置、無線で送電するシステム、受電装置の制御方法、送電装置の制御方法及びプログラム

Also Published As

Publication number Publication date
US20240204581A1 (en) 2024-06-20
JPWO2023032733A1 (ja) 2023-03-09

Similar Documents

Publication Publication Date Title
US11715982B2 (en) Wireless power transmission method and device therefor
KR102203183B1 (ko) 무선 전력 통신
US8198754B2 (en) Power transmission control device, power transmitting device, electronic instrument, and non-contact power transmission system
US8427012B2 (en) Non resonant inductive power transmission system and method
US9791888B2 (en) Power reception device and power transmission system
US8004118B2 (en) Power transmission control device, power transmitting device, electronic instrument, and non-contact power transmission system
US9006937B2 (en) System and method for enabling ongoing inductive power transmission
CN109417309B (zh) 电子设备和在无线功率接收与传输设备之间通信的方法
US10714976B2 (en) Wireless power receiver
US9106269B2 (en) System and method for providing communications in a wireless power supply
CN110224448A (zh) 无线电力传送方法、装置以及系统
JP2015111998A (ja) 無線送電装置及び無線電力伝送システム
JP2011155793A (ja) 電力供給システム
CN108574346B (zh) 无线电力发射器和无线电力发射方法
US12136834B2 (en) Wireless power transfer
US10153699B2 (en) Control method for power transmitter, power transmitter and noncontact power transfer apparatus
WO2023032733A1 (ja) ワイヤレス給電システム、ワイヤレス給電システムの送電装置、および、ワイヤレス給電システムの受電装置
TW201705650A (zh) 驅動電路及應用其的無線電能發射端
EP3182551A1 (en) Contactless power transfer system and method for controlling the same
KR20150057951A (ko) 비접촉 방식 전력 공급 장치 및 비접촉 방식 전력 공급 방법
KR20210105588A (ko) 무선 전력 전송 장치 및 방법
JPH08316889A (ja) 非接触通信装置及びこれに用いられるデータキャリア
CN118402159A (zh) 无线功率传输

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864317

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023545462

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864317

Country of ref document: EP

Kind code of ref document: A1