WO2023029596A1 - 空调及其控制方法 - Google Patents
空调及其控制方法 Download PDFInfo
- Publication number
- WO2023029596A1 WO2023029596A1 PCT/CN2022/093439 CN2022093439W WO2023029596A1 WO 2023029596 A1 WO2023029596 A1 WO 2023029596A1 CN 2022093439 W CN2022093439 W CN 2022093439W WO 2023029596 A1 WO2023029596 A1 WO 2023029596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cross
- air
- air conditioner
- indoor
- temperature
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004378 air conditioning Methods 0.000 claims description 23
- 238000007664 blowing Methods 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 9
- 238000005485 electric heating Methods 0.000 claims description 8
- 239000003507 refrigerant Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/64—Electronic processing using pre-stored data
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0025—Cross-flow or tangential fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F1/00—Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
- F24F1/0007—Indoor units, e.g. fan coil units
- F24F1/0018—Indoor units, e.g. fan coil units characterised by fans
- F24F1/0033—Indoor units, e.g. fan coil units characterised by fans having two or more fans
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/46—Improving electric energy efficiency or saving
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
- F24F11/65—Electronic processing for selecting an operating mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/70—Control systems characterised by their outputs; Constructional details thereof
- F24F11/72—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
- F24F11/74—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
- F24F11/77—Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/70—Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating
Definitions
- the present invention relates to the technical field of air conditioners, more specifically, to an air conditioner control method, and the present invention also relates to an air conditioner.
- the double cross-flow fan of the indoor unit of the air conditioner is used in conjunction with the same heat exchanger.
- the opening of the electronic expansion valve of the compressor is controlled according to the change of the indoor temperature, thereby controlling the amount of refrigerant and the flow rate of the refrigerant in the indoor evaporator.
- the cross-flow fan is running; in this way, the evaporator and the double cross-flow fan are always working, resulting in high power consumption, especially when the demand for heat exchange is small, which is not conducive to energy saving.
- the object of the present invention is to disclose an air conditioner control method to realize energy saving.
- the purpose of the present invention is to disclose an air conditioner to realize energy saving.
- a control method for an air conditioner comprising the following steps:
- the working mode includes cooling mode and heating mode
- the air conditioner indoor unit includes a casing, two air ducts and two indoor heat exchangers arranged in the casing, and two cross-flow fans arranged in the air passages in one-to-one correspondence; the casing Two air outlets communicated with the air ducts are arranged on the front panel of the housing, and two air inlets communicated with the air ducts one by one are arranged on the rear shell.
- the step 5) further includes: controlling the rotation speed of the cross-flow fan according to ⁇ T.
- step 5 controlling the speed of the cross-flow fan according to ⁇ T" in step 5) includes:
- ⁇ T1 is 3°C
- ⁇ T2 is 2°C
- ⁇ T3 is 1°C.
- the rotation speed of the cross-flow fan is controlled to a high wind speed.
- the step 4) simultaneously controls the electric heating tube of the air conditioner indoor unit to work.
- the step 5) when the obtained working mode is the cooling mode, the step 5) further includes obtaining the target blowing mode;
- the air blowing mode of the air conditioner includes a blowing blowing mode following people and a blowing blowing mode avoiding people.
- the air-conditioning control method provided by the present invention controls the operation of the two cross-flow fans and the two indoor heat exchangers of the air-conditioning indoor unit according to the temperature difference ⁇ T between the indoor temperature and the target comfortable temperature; when ⁇ T is greater than the target temperature When the difference ⁇ T1, the two cross-flow fans and the two indoor heat exchangers are controlled to operate, and the air is blown to the room through the two air outlets, which improves the heat exchange efficiency; when ⁇ T is not greater than the target temperature difference ⁇ T1, Control the operation of one of the cross-flow fans and the indoor heat exchanger that works with the cross-flow fan, and blow air to the room through one air outlet to meet the heat exchange demand, reduce power consumption, achieve energy saving, and improve comfort sex.
- the present invention also provides an air conditioner, comprising:
- An air-conditioning indoor unit includes a casing, two air ducts and two indoor heat exchangers arranged in the casing, and two cross-flow fans arranged in the air ducts in one-to-one correspondence;
- the front panel of the casing is provided with two air outlets communicating with the air duct one by one, and the rear shell is provided with two air inlets communicating with the air duct one by one;
- a controller connected to the temperature sensor the controller is used to acquire the working mode of the air conditioner and the target comfort temperature, calculate the temperature difference ⁇ T between the indoor temperature and the target comfort temperature, and determine whether ⁇ T is greater than the target temperature The difference ⁇ T1, if yes, control the two cross-flow fans and the two indoor heat exchangers to operate; if not, control one of the cross-flow fans and cooperate with the cross-flow fan
- the indoor heat exchanger is running.
- the axis of the cross-flow fan is along the vertical direction, and the two cross-flow fans are arranged side by side along the width direction of the casing, and the two indoor heat exchangers are symmetrically arranged on The two cross-flow fans form the left and right sides of the whole.
- the indoor heat exchanger is a micro-channel evaporator
- the micro-channel evaporator has an angle with the front panel of the casing, and the micro-channel evaporator is inclined from front to back ;
- microchannel evaporator and the air duct meet the condition of complete coincidence in the thickness direction
- the air conditioner indoor unit also includes an electric heating tube arranged in the air duct.
- the air conditioner disclosed in the present invention includes an air conditioner indoor unit, the air conditioner indoor unit includes a casing, and the two air ducts and the two indoor heat exchangers arranged in the casing are arranged in a one-to-one correspondence.
- Two cross-flow fans in the air duct the front panel of the casing is provided with two air outlets connected with the air duct one by one, and the rear shell is provided with two air inlets connected with the air duct one by one; it is used for testing indoor
- the temperature sensor the controller connected to the temperature sensor, the controller is used to obtain the working mode of the air conditioner and the target comfort temperature, and calculate the temperature difference ⁇ T between the indoor temperature and the target comfort temperature, and judge whether ⁇ T is greater than the target temperature difference ⁇ T1, if yes, control the operation of both the cross-flow fans and the two indoor heat exchangers; if not, control the operation of one of the cross-flow fans and the indoor heat exchanger that cooperates with the cross-flow fan.
- the controller When the air conditioner is working, the controller first obtains the working mode and target comfort temperature of the air conditioner; then the temperature sensor detects the indoor temperature, and the controller calculates the temperature difference ⁇ T between the indoor temperature and the target comfortable temperature; then the controller judges ⁇ T Whether it is greater than the target temperature difference ⁇ T1, if yes, control the two cross-flow fans of the air-conditioning indoor unit and the two indoor heat exchangers to run; if not, control one of the cross-flow fans of the air-conditioning indoor The flow fan operates in conjunction with the working indoor heat exchanger.
- the controller of the air conditioner controls the operation of the two cross-flow fans and the two indoor heat exchangers of the air conditioner indoor unit according to the temperature difference ⁇ T between the indoor temperature and the target comfort temperature; when ⁇ T is greater than the target temperature When the difference ⁇ T1, the two cross-flow fans and the two indoor heat exchangers are controlled to operate, and the air is blown to the room through the two air outlets, which improves the heat exchange efficiency; when ⁇ T is not greater than the target temperature difference ⁇ T1, Control the operation of one of the cross-flow fans and the indoor heat exchanger that works with the cross-flow fan, and blow air to the room through one air outlet to meet the heat exchange demand, reduce power consumption, achieve energy saving, and improve comfort sex.
- Fig. 1 is a schematic process flow diagram of an air-conditioning control method disclosed in an embodiment of the present invention
- Fig. 2 is a perspective view of an air conditioner indoor unit disclosed in an embodiment of the present invention.
- Fig. 3 is a front view of an air conditioner indoor unit disclosed in an embodiment of the present invention.
- Fig. 4 is a side view of the air conditioner indoor unit disclosed in the embodiment of the present invention.
- Fig. 5 is a rear view of the air conditioner indoor unit disclosed in the embodiment of the present invention.
- Fig. 6 is an exploded view of the air conditioner indoor unit disclosed in the embodiment of the present invention.
- Fig. 7 is a sectional view along line A-A in Fig. 3 .
- the embodiment of the invention discloses an air conditioner control method, which realizes energy saving.
- control method of the air conditioner disclosed in the embodiment of the present invention comprises the following steps:
- the working mode includes cooling mode and heating mode
- the air conditioner indoor unit includes a casing 1, two air ducts 5 and two indoor heat exchangers arranged in the casing 1, and two cross-flow fans 4 arranged in the air duct 5 in one-to-one correspondence;
- the front panel is provided with two air outlets 3 which communicate with the air duct 5 one by one, and the rear shell is provided with two air inlets 2 which are communicated with the air duct 5 one by one.
- the air-conditioning control method provided by the present invention controls the operation of the two cross-flow fans 4 and the two indoor heat exchangers of the air-conditioning indoor unit according to the temperature difference ⁇ T between the indoor temperature and the target comfort temperature; when ⁇ T is greater than the target When the temperature difference is ⁇ T1, control the two cross-flow fans 4 and the two indoor heat exchangers to operate, and blow air to the room through the two air outlets 3, which improves the heat exchange efficiency; when ⁇ T is not greater than the target temperature difference ⁇ At T1, control one of the cross-flow fans 4 and the indoor heat exchanger working with the cross-flow fan 4 to run, blowing air to the room through an air outlet 3 can meet the heat exchange demand, reduce power consumption, and realize Save energy and improve comfort.
- the outdoor unit of the air conditioner includes an outdoor heat exchanger and two electronic expansion valves, and the two electronic expansion valves are respectively connected to two pipelines connected in parallel between the outdoor heat exchanger and the two indoor heat exchangers.
- the expansion valves respectively control the amount of refrigerant and the flow rate of refrigerant in the connected indoor heat exchanger; when ⁇ T exceeds the target temperature difference ⁇ T1, open two electronic expansion valves to control the operation of two cross-flow fans 4 to increase the air output.
- step S5 also includes controlling the rotational speed of the cross-flow fan 4 according to ⁇ T.
- the present invention controls the cross-flow fan 4 to adopt different rotational speeds when controlling the operation of one of the cross-flow fans 4 and one indoor heat exchanger of the air-conditioning indoor unit;
- T is large, a higher speed is used;
- ⁇ T is small, a smaller speed is used, so as to meet the heat exchange demand and save energy at the same time.
- controlling the rotation speed of the cross-flow fan 4 according to ⁇ T includes: when ⁇ T2 ⁇ T ⁇ T1, controlling the rotation speed of the cross-flow fan 4 to be a high wind speed; when ⁇ T3 ⁇ When T ⁇ T2, the speed of the cross-flow fan 4 is controlled to be a medium wind speed; when 0 ⁇ T ⁇ T3, the speed of the cross-flow fan 4 is controlled to be a low wind speed; among them, ⁇ T1> ⁇ T2> ⁇ T3; Wind speed > medium wind speed > low wind speed.
- the rotational speed of the cross-flow fan 4 is divided into three grades, and the temperature difference ⁇ T between the temperature difference indoor temperature and the target comfortable temperature is divided into three ranges, and different wind speeds are used respectively, so that the comfort and energy saving are better. At different wind speeds, the opening of the corresponding electronic expansion valve is controlled to match the required heat transfer.
- the present invention can also divide the rotational speed into other grades such as two grades and four grades, and of course, a constant rotational speed can also be adopted.
- ⁇ T1 is 3°C
- ⁇ T2 is 2°C
- ⁇ T3 is 1°C.
- the speed of the cross-flow fan 4 is controlled to be a high wind speed
- 1°C ⁇ T ⁇ 2°C the speed of the cross-flow fan 4 is controlled to be a medium wind speed
- the rotating speed of the cross-flow fan 4 is controlled to be a low wind speed.
- 2°C and 1°C are taken as boundaries, and the ⁇ T not greater than 3°C is divided into three ranges, so as to facilitate the control of the rotational speed of the cross-flow fan 4 .
- other temperature values may also be used for the above-mentioned ⁇ T1, ⁇ T2, and ⁇ T3.
- step S4 the rotation speed of the cross-flow fan 4 is controlled to a high wind speed.
- ⁇ T is greater than the target temperature difference ⁇ T1
- the two cross-flow fans 4 are controlled to adopt relatively high wind speed, so that the air volume of the two air outlets 3 reaches the maximum, and the heat exchange efficiency is improved.
- the present invention can also divide the ⁇ T greater than 3°C into several ranges, and control the rotational speeds of the two cross-flow fans 4 according to different ranges.
- step S4 simultaneously controls the electric heating tube 7 of the air conditioner indoor unit to work. In colder seasons, the electric heating tube 7 and the indoor heat exchanger are used for heating at the same time, which improves the heating effect.
- step S5 when the acquired working mode is the cooling mode, step S5 further includes acquiring a target blowing mode; wherein, the blowing mode of the air conditioner includes a blowing mode following people and a blowing mode avoiding people.
- the cooling mode when ⁇ T is within 3°C, the present invention can select the blowing-following mode and the blowing-avoiding mode, so as to meet diverse demands.
- the target comfortable temperature in the cooling mode, set the target comfortable temperature to 23°C; when the detected indoor temperature is higher than 26°C, ⁇ T>3°C, control two cross-flow fans 4 and two indoor heat exchangers At the same time, the cross-flow fan 4 adopts high wind speed; when the detected indoor temperature is not higher than 26°C, ⁇ T ⁇ 3°C, control the operation of a single cross-flow fan 4 and a single indoor heat exchanger, and set the Set, choose the blowing mode following people or the blowing mode avoiding people, and at the same time, when 2°C ⁇ T ⁇ 3°C, control the speed of cross-flow fan 4 to high wind speed; when 1°C ⁇ T ⁇ 2°C, control cross-flow
- the rotating speed of the fan 4 is a medium wind speed; when 0 ⁇ T ⁇ 1°C, the rotating speed of the cross-flow fan 4 is controlled to be a low wind speed.
- the target comfortable temperature As 22°C.
- the two cross-flow fans 4 and the two indoor heat exchangers control the two cross-flow fans 4 and the two indoor heat exchangers to operate, and at the same time
- the cross-flow fan 4 adopts high wind speed, and the double air outlets 3 supply air; when the detected indoor temperature is not lower than 19°C, ⁇ T ⁇ 3°C, control the operation of a single cross-flow fan 4 and a single indoor heat exchanger, and at the same time
- 2°C ⁇ T ⁇ 3°C the speed of cross-flow fan 4 is controlled to be high wind speed; when 1°C ⁇ T ⁇ 2°C, the speed of cross-flow fan 4 is controlled to be medium wind speed; when 0 ⁇ T ⁇ 1 When °C, the rotating speed of control cross-flow fan 4 is low wind speed.
- the embodiment of the present invention also discloses an air conditioner, including an air conditioner indoor unit.
- the air conditioner indoor unit includes a casing 1, two air ducts 5 and two indoor heat exchangers arranged in the casing 1
- Two air inlets 2 connected one by one by channel 5; a temperature sensor used to detect the indoor temperature; a controller connected to the temperature sensor, the controller is used to obtain the working mode of the air conditioner and the target comfort temperature, and calculate the indoor temperature and the target comfort temperature
- the temperature difference ⁇ T judge whether ⁇ T is greater than the target temperature difference ⁇ T1, if so, control the two cross-flow fans 4 and the two indoor heat exchangers to run; if not, control one of the cross-flow fans 4 and The indoor heat exchanger that cooperates with this cross-flow fan 4 runs.
- the controller When the air conditioner is working, the controller first obtains the working mode and target comfort temperature of the air conditioner; then the temperature sensor detects the indoor temperature, and the controller calculates the temperature difference ⁇ T between the indoor temperature and the target comfortable temperature; then the controller judges ⁇ T Whether it is greater than the target temperature difference ⁇ T1, if so, control the two cross-flow fans 4 and the two indoor heat exchangers of the air-conditioning indoor unit to operate; if not, control one of the cross-flow fans 4 of the air-conditioning indoor unit and The cross-flow fan 4 cooperates with the working indoor heat exchanger to operate.
- the controller of the air conditioner controls the operation of the two cross-flow fans 4 and the two indoor heat exchangers of the air conditioner indoor unit according to the temperature difference ⁇ T between the indoor temperature and the target comfort temperature; when ⁇ T is greater than the target When the temperature difference is ⁇ T1, control the two cross-flow fans 4 and the two indoor heat exchangers to operate, and blow air to the room through the two air outlets 3, which improves the heat exchange efficiency; when ⁇ T is not greater than the target temperature difference ⁇ At T1, control one of the cross-flow fans 4 and the indoor heat exchanger working with the cross-flow fan 4 to run, blowing air to the room through an air outlet 3 can meet the heat exchange demand, reduce power consumption, and realize energy saving.
- the air conditioner outdoor unit of the air conditioner includes an outdoor heat exchanger and two electronic expansion valves, and the two electronic expansion valves are respectively connected to two pipelines connected in parallel between the outdoor heat exchanger and the two indoor heat exchangers.
- the opening of the electronic expansion valve By controlling the opening of the electronic expansion valve, the refrigerant volume and refrigerant flow rate of the connected indoor heat exchanger are respectively controlled; when ⁇ T exceeds the target temperature difference ⁇ T1, two electronic expansion valves are opened to control the operation of the two cross-flow fans 4 , to achieve the purpose of increasing the air volume and improving the heat exchange efficiency; when ⁇ T is within the target temperature difference ⁇ T1, an electronic expansion valve is opened to control the operation of a cross-flow fan 4, so as to achieve the purpose of saving energy and improving comfort.
- the axis of the cross-flow fan 4 is along the vertical direction, and the two cross-flow fans 4 are arranged side by side along the width direction of the casing 1, and the two indoor heat exchangers are symmetrically arranged on the integral body formed by the two cross-flow fans 4. left and right sides.
- the width direction of the casing 1 refers to the left-right direction of the casing 1 .
- the air-conditioning indoor unit of the present invention is an air-conditioning cabinet unit.
- Two cross-flow fans 4 are arranged side by side to supply air.
- the air volume is large, the wind speed is high, and the air supply distance is relatively long. Rapid cooling and heating can be realized, and the user experience is good.
- the left heat exchanger is located on the left side of the left cross-flow fan 4
- the right heat exchanger is located on the right side of the right cross-flow fan 4
- the heat exchanger is placed on the side of the whole machine.
- the air intake is from both sides, and there is no need to reserve an air intake gap on the rear side of the air-conditioning cabinet, which reduces the required thickness space.
- the air conditioner indoor unit can also be an on-hook air conditioner, and the axis of the heat exchange fan is arranged along the horizontal direction.
- the indoor heat exchanger is a microchannel evaporator 6, and the microchannel evaporator 6 has an angle with the front panel of the casing 1, and the microchannel evaporator 6 is inclined from front to back; at this time, the two microchannel evaporators 6 They are all flat and symmetrically arranged on the left and right sides of the air-conditioning cabinet.
- the heat exchange performance of the micro-channel evaporator 6 is better, and the micro-channel evaporator 6 is thinner, which is convenient for layout and further reduces the occupied space.
- the microchannel evaporator 6 and the air duct 5 meet the condition of complete coincidence in the thickness direction.
- the thickness direction of the casing 1 refers to the front and back of the casing 1 , that is, the depth direction. Satisfying the complete coincidence condition refers to complete coincidence or basic coincidence; at this time, the microchannel evaporator 6 and the air duct 5 occupy the same thickness space, and the occupied thickness space can be minimized on the basis of ensuring performance, and the produced
- the thickness of the air-conditioning cabinet can be 180-240mm, which is the first ultra-thin air-conditioning cabinet in the industry.
- microchannel evaporator 6 may overlap with the air duct 5 in the thickness direction.
- the micro-channel evaporator 6 may also be curved or bent, as long as it can be concave relative to the desired front panel.
- the above-mentioned heat exchanger may also adopt a shell-and-tube structure, a sleeve-and-tube structure or a plate heat exchanger.
- the angle between the microchannel evaporator 6 and the front panel of the casing 1 is 45°-65°, so that the heat exchange area of the microchannel evaporator 6, that is, the heat exchange efficiency, can be reduced while ensuring the heat exchange efficiency.
- the small thickness size can also avoid occupying too much width space and make the components more integrated.
- the above-mentioned included angle can also be other values.
- the air-conditioning indoor unit also includes an electric heating tube 7 arranged in the air duct 5.
- the electric heating tube 7 and the indoor heat exchanger are used for heating at the same time, which improves the heating effect.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Fluid Mechanics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
本发明公开一种空调及其控制方法,控制方法包括步骤1)获取空调的工作模式和目标舒适温度;2)检测室内温度,并计算所述室内温度与所述目标舒适温度的温度差△T;3)判断△T是否大于目标温度差值△T1,若是则进入步骤4),若否则进入步骤5);4)控制空调室内机的两个贯流风扇和两个室内换热器均运转;5)控制空调室内机的其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转。本发明根据室内温度与目标舒适温度的温度差△T控制空调室内机的两个贯流风扇和两个室内换热器的运转;当△T不大于目标温度差值△T1时,控制其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转,减小了耗电量,实现了节能,还能提高舒适性。
Description
本申请基于申请号为202111012562.4、申请日为2021年8月31日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及空调技术领域,更具体地说,涉及一种空调的控制方法,本发明还涉及一种空调。
目前,空调室内机的双贯流风扇与同一个换热器配合使用,工作时,根据室内温度变化控制压机电子膨胀阀开度,从而控制室内蒸发器的冷媒量和冷媒流速,同时控制双贯流风扇运转;这样一来,蒸发器和双贯流风扇始终工作,导致耗电量较大,特别是在换热量需求较小时,不利于节能。
发明内容
有鉴于此,本发明的目的在于公开一种空调的控制方法,以实现节能。
本发明的目的在于公开一种空调,以实现节能。
为了达到上述目的,本发明公开如下技术方案:
一种空调的控制方法,包括以下步骤:
1)获取空调的工作模式和目标舒适温度;
2)检测室内温度,并计算所述室内温度与所述目标舒适温度的温度差△T;
3)判断△T是否大于目标温度差值△T1,若是,则进入步骤4),若否,则进入步骤5);
4)控制空调室内机的两个贯流风扇和两个室内换热器均运转;
5)控制空调室内机的其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转;
其中,所述工作模式包括制冷模式和制热模式;
所述空调室内机包括机壳,设置在所述机壳内的两个风道和两个室内换热器,一 一对应地设置在所述风道内的两个贯流风扇;所述机壳的前面板上设置有与所述风道一一连通的两个出风口,后壳上设置有与所述风道一一连通的两个进风口。
优选的,上述控制方法中,所述步骤5)中还包括:根据△T控制所述贯流风扇的转速。
优选的,上述控制方法中,所述步骤5)中“根据△T控制所述贯流风扇的转速”包括:
当△T2≤△T≤△T1时,控制所述贯流风扇的转速为高风速;
当△T3≤△T<△T2时,控制所述贯流风扇的转速为中风速;
当0<△T<△T3时,控制所述贯流风扇的转速为低风速;
其中,△T1>△T2>△T3;所述高风速>所述中风速>所述低风速。
优选的,上述控制方法中,△T1为3℃,△T2为2℃,△T3为1℃。
优选的,上述控制方法中,所述步骤4)中,控制所述贯流风扇的转速为高风速。
优选的,上述控制方法中,当获取的工作模式为制热模式时,所述步骤4)同时控制所述空调室内机的电加热管工作。
优选的,上述控制方法中,当获取的工作模式为制冷模式时,所述步骤5)还包括获取目标吹风模式;
其中,所述空调的吹风模式包括随人吹风模式和避人吹风模式。
从上述的技术方案可以看出,本发明公开的空调的控制方法包括以下步骤:
S1、获取空调的工作模式和目标舒适温度;
S2、检测室内温度,并计算室内温度与目标舒适温度的温度差△T;
S3、判断△T是否大于目标温度差值△T1,若是,则进入步骤S4,若否,则进入步骤S5;
S4、控制空调室内机的两个贯流风扇和两个室内换热器均运转;
S5、控制空调室内机的其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转。
由此可见,本发明提供的空调的控制方法根据室内温度与目标舒适温度的温度差△T控制空调室内机的两个贯流风扇和两个室内换热器的运转;当△T大于目标温度差值△T1时,控制两个贯流风扇和两个室内换热器均运转,通过两个出风口向室内吹风,提高了换热效率;当△T不大于目标温度差值△T1时,控制其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转,通过一个出风口向室内吹风即可满足换热需求, 减小了耗电量,实现了节能,还能提高舒适性。
本发明还提供了一种空调,包括:
空调室内机,所述空调室内机包括机壳,设置在所述机壳内的两个风道和两个室内换热器,一一对应地设置在所述风道内的两个贯流风扇;所述机壳的前面板上设置有与所述风道一一连通的两个出风口,后壳上设置有与所述风道一一连通的两个进风口;
用于检测室内温度的温度传感器;
与所述温度传感器连接的控制器,所述控制器用于获取空调的工作模式和目标舒适温度,并计算所述室内温度与所述目标舒适温度的温度差△T,判断△T是否大于目标温度差值△T1,若是,则控制两个所述贯流风扇和两个所述室内换热器均运转;若否,则控制其中一个所述贯流风扇和与该所述贯流风扇配合工作的室内换热器运转。
优选的,上述空调中,所述贯流风扇的轴线沿竖直方向,且两个所述贯流风扇沿所述机壳的宽度方向并排布置,两个所述室内换热器分别对称布置在两个所述贯流风扇所形成整体的左右两侧。
优选的,上述空调中,所述室内换热器为微通道蒸发器,所述微通道蒸发器与所述机壳的前面板具有夹角,且所述微通道蒸发器自前向后向内倾斜;
且所述微通道蒸发器与所述风道在所述厚度方向上满足完全重合条件;
所述空调室内机还包括设置在所述风道内的电加热管。
从上述的技术方案可以看出,本发明公开的空调包括空调室内机,空调室内机包括机壳,设置在机壳内的两个风道和两个室内换热器,一一对应地设置在风道内的两个贯流风扇;机壳的前面板上设置有与风道一一连通的两个出风口,后壳上设置有与风道一一连通的两个进风口;用于检测室内温度的温度传感器;与温度传感器连接的控制器,控制器用于获取空调的工作模式和目标舒适温度,并计算室内温度与目标舒适温度的温度差△T,判断△T是否大于目标温度差值△T1,若是,则控制两个贯流风扇和两个室内换热器均运转;若否,则控制其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转。
该空调工作时,首先通过控制器获取空调的工作模式和目标舒适温度;接着通过温度传感器检测室内温度,并通过控制器计算室内温度与目标舒适温度的温度差△T;接着控制器判断△T是否大于目标温度差值△T1,若是,则控制空调室内机的两个贯流风扇和两个室内换热器均运转;若否,则控制空调室内机的其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转。
由此可见,本发明提供的空调的控制器根据室内温度与目标舒适温度的温度差△T控制空调室内机的两个贯流风扇和两个室内换热器的运转;当△T大于目标温度差值△T1时,控制两个贯流风扇和两个室内换热器均运转,通过两个出风口向室内吹风,提高了换热效率;当△T不大于目标温度差值△T1时,控制其中一个贯流风扇和与该贯流风扇配合工作的室内换热器运转,通过一个出风口向室内吹风即可满足换热需求,减小了耗电量,实现了节能,还能提高舒适性。
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例公开的空调的控制方法的工艺流程示意图;
图2是本发明实施例公开的空调室内机的立体图;
图3是本发明实施例公开的空调室内机的主视图;
图4是本发明实施例公开的空调室内机的侧视图;
图5是本发明实施例公开的空调室内机的后视图;
图6是本发明实施例公开的空调室内机的爆炸图;
图7是沿图3中A-A线的剖视图。
本发明实施例公开了一种空调的控制方法,实现了节能。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考附图1,本发明实施例公开的空调的控制方法,包括以下步骤:
S1、获取空调的工作模式和目标舒适温度;
S2、检测室内温度,并计算室内温度与目标舒适温度的温度差△T;
S3、判断△T是否大于目标温度差值△T1,若是,则进入步骤S4,若否,则进入步骤S5;
S4、控制空调室内机的两个贯流风扇4和两个室内换热器均运转;
S5、控制空调室内机的其中一个贯流风扇4和与该贯流风扇4配合工作的室内换热器运转;
其中,工作模式包括制冷模式和制热模式;
空调室内机包括机壳1,设置在机壳1内的两个风道5和两个室内换热器,一一对应地设置在风道5内的两个贯流风扇4;机壳1的前面板上设置有与风道5一一连通的两个出风口3,后壳上设置有与风道5一一连通的两个进风口2。
由此可见,本发明提供的空调的控制方法根据室内温度与目标舒适温度的温度差△T控制空调室内机的两个贯流风扇4和两个室内换热器的运转;当△T大于目标温度差值△T1时,控制两个贯流风扇4和两个室内换热器均运转,通过两个出风口3向室内吹风,提高了换热效率;当△T不大于目标温度差值△T1时,控制其中一个贯流风扇4和与该贯流风扇4配合工作的室内换热器运转,通过一个出风口3向室内吹风即可满足换热需求,减小了耗电量,实现了节能,还能提高舒适性。
具体的,空调的空调室外机包括室外换热器和两个电子膨胀阀,两个电子膨胀阀分别与设置在室外换热器与两个室内换热器并联连接的两个管路上,通过电子膨胀阀分别控制相连的室内换热器的冷媒量和冷媒流速;在△T超过目标温度差值△T1时,打开两个电子膨胀阀控制两个贯流风扇4运转,达到增大出风量,提高换热效率的目的;在△T位于目标温度差值△T1以内时,打开一个电子膨胀阀控制一个贯流风扇4运转,达到节能并且提高舒适性的目的。
优选的,步骤S5中还包括根据△T控制贯流风扇4的转速。本发明在控制空调室内机的其中一个贯流风扇4和一个室内换热器运转时,根据室内温度与目标舒适温度的温度差△T的不同,控制贯流风扇4采用不同的转速;在△T较大时,采用较大的转速;在△T较小时,采用较小的转速,从而在满足换热需求的同时节能。
进一步的技术方案中,步骤S5中“根据△T控制贯流风扇4的转速”包括:当△T2≤△T≤△T1时,控制贯流风扇4的转速为高风速;当△T3≤△T<△T2时,控制贯流风扇4的转速为中风速;当0<△T<△T3时,控制贯流风扇4的转速为低风速;其中,△T1>△T2>△T3;高风速>中风速>低风速。
本实施例将贯流风扇4的转速分为三个等级,将温差室内温度与目标舒适温度的 温度差△T分为三个范围,分别采用不同的风速,舒适性和节能性更好,采用不同的风速的同时通过控制相应的电子膨胀阀的开度,以匹配所需的换热量。当然,本发明还可以将转速分为其他等级如两个等级和四个等级,当然,也可以采用恒定的转速。
优选的,△T1为3℃,△T2为2℃,△T3为1℃。当2℃≤△T≤3℃时,控制贯流风扇4的转速为高风速;当1℃≤△T<2℃时,控制贯流风扇4的转速为中风速;当0<△T<1℃时,控制贯流风扇4的转速为低风速。本实施例以2℃、1℃为界限,将不大于3℃的△T划分为三个范围,方便控制贯流风扇4的转速。当然,上述△T1、△T2、△T3还可以采用其他的温度值。
步骤S4中,控制贯流风扇4的转速为高风速。当△T大于目标温度差值△T1时,控制两个贯流风扇4采用较大的高风速,使两个出风口3的出风量达到最大,提高了换热效率。当然,本发明还可以将大于3℃的△T划分几个范围,根据范围的不同,来控制两个贯流风扇4的转速。
为了进一步优化上述技术方案,当获取的工作模式为制热模式时,步骤S4同时控制空调室内机的电加热管7工作。在偏冷的季节,利用电加热管7和室内换热器同时进行制热,提高了制热效果。
上述控制方法中,当获取的工作模式为制冷模式时,步骤S5还包括获取目标吹风模式;其中,空调的吹风模式包括随人吹风模式和避人吹风模式。本发明在制冷模式,△T位于3℃以内时,可以选择随人吹风模式和避人吹风模式,从而满足多样性需求。
具体的应用方案中,在制冷模式下,设置目标舒适温度为23℃;当检测到的室内温度高于26℃时,△T>3℃,控制两个贯流风扇4和两个室内换热器均运转,同时贯流风扇4采用高风速;当检测到的室内温度不高于26℃时,△T≤3℃,控制单个贯流风扇4和单个室内换热器运转,并根据用户设定,选择随人吹风模式或避人吹风模式,同时在2℃≤△T≤3℃时,控制贯流风扇4的转速为高风速;在1℃≤△T<2℃时,控制贯流风扇4的转速为中风速;在0<△T<1℃时,控制贯流风扇4的转速为低风速。
在制热模式下,设置目标舒适温度为22℃,当检测到的室内温度低于19℃时,△T>3℃,控制两个贯流风扇4和两个室内换热器均运转,同时贯流风扇4采用高风速,双出风口3送风;当检测到的室内温度不低于19℃时,△T≤3℃,控制单个贯流风扇4和单个室内换热器运转,同时在2℃≤△T≤3℃时,控制贯流风扇4的转速为高风速;在1℃≤△T<2℃时,控制贯流风扇4的转速为中风速;在0<△T<1℃时,控制贯流风扇4的转速为低风速。
如图2-7所示,本发明实施例还公开了一种空调,包括空调室内机,空调室内机包括机壳1,设置在机壳1内的两个风道5和两个室内换热器,一一对应地设置在风道5内的两个贯流风扇4;机壳1的前面板上设置有与风道5一一连通的两个出风口3,后壳上设置有与风道5一一连通的两个进风口2;用于检测室内温度的温度传感器;与温度传感器连接的控制器,控制器用于获取空调的工作模式和目标舒适温度,并计算室内温度与目标舒适温度的温度差△T,判断△T是否大于目标温度差值△T1,若是,则控制两个贯流风扇4和两个室内换热器均运转;若否,则控制其中一个贯流风扇4和与该贯流风扇4配合工作的室内换热器运转。
该空调工作时,首先通过控制器获取空调的工作模式和目标舒适温度;接着通过温度传感器检测室内温度,并通过控制器计算室内温度与目标舒适温度的温度差△T;接着控制器判断△T是否大于目标温度差值△T1,若是,则控制空调室内机的两个贯流风扇4和两个室内换热器均运转;若否,则控制空调室内机的其中一个贯流风扇4和与该贯流风扇4配合工作的室内换热器运转。
由此可见,本发明提供的空调的控制器根据室内温度与目标舒适温度的温度差△T控制空调室内机的两个贯流风扇4和两个室内换热器的运转;当△T大于目标温度差值△T1时,控制两个贯流风扇4和两个室内换热器均运转,通过两个出风口3向室内吹风,提高了换热效率;当△T不大于目标温度差值△T1时,控制其中一个贯流风扇4和与该贯流风扇4配合工作的室内换热器运转,通过一个出风口3向室内吹风即可满足换热需求,减小了耗电量,实现了节能。
具体的,空调的空调室外机包括室外换热器和两个电子膨胀阀,两个电子膨胀阀分别与设置在室外换热器与两个室内换热器并联连接的两个管路上,控制器通过控制电子膨胀阀的开度,分别控制相连的室内换热器的冷媒量和冷媒流速;在△T超过目标温度差值△T1时,打开两个电子膨胀阀控制两个贯流风扇4运转,达到增大出风量,提高换热效率的目的;在△T位于目标温度差值△T1以内时,打开一个电子膨胀阀控制一个贯流风扇4运转,达到节能并且提高舒适性的目的。
优选的,贯流风扇4的轴线沿竖直方向,且两个贯流风扇4沿机壳1的宽度方向并排布置,两个室内换热器分别对称布置在两个贯流风扇4所形成整体的左右两侧。机壳1的宽度方向指的是,机壳1的左右方向。本发明的空调室内机为空调柜机,采用两个贯流风扇4并排送风,风量较大,风速较高,送风距离较远,可以实现快速制冷制热,用户体验佳。
如图7所示,左侧的换热器位于左侧的贯流风扇4左侧,右侧的换热器位于右侧的贯流风扇4右侧,换热器位于整机侧边放置,两侧进风,空调柜机后侧无需预留进风间隙,减小了所需要占用的厚度空间。
可以理解的是,空调室内机还可以为空调挂机,换热风扇的轴线沿水平方向布置。
室内换热器为微通道蒸发器6,微通道蒸发器6与机壳1的前面板具有夹角,且微通道蒸发器6自前向后向内倾斜;此时,两个微通道蒸发器6均为平板状,对称布置在空调柜机的左右两侧,微通道蒸发器6的换热性能更佳,而且微通道蒸发器6更薄,方便布局,同时进一步减少占用空间。
同时,微通道蒸发器6与风道5在厚度方向上满足完全重合条件。需要说明的是,机壳1的厚度方向指的是,机壳1的前后即深度方向。满足完全重合条件指的是,完全重合或者基本重合;此时,微通道蒸发器6与风道5占用同样的厚度空间,在保证性能基础上能够最大程度地减小占用的厚度空间,生产的空调柜机厚度可以为做到180-240mm,在行业上首创超薄空调柜机。
当然,微通道蒸发器6也可以只有一部分与风道5在厚度方向上重合。
可替换的,微通道蒸发器6还可以为弧形或者弯折状,只要能够相对于即可的前面板内凹均可。上述换热器还可以采用壳管式结构、套管式结构或者板式换热器。
具体的,微通道蒸发器6与机壳1的前面板之间的夹角为45°-65°,这样一来,能够在保证微通道蒸发器6的换热面积即换热效率的同时减小厚度尺寸,还能避免占用的宽度空间过大,使部件集成度更高。当然,根据实际换热需求,上述夹角还可以为其他值。
空调室内机还包括设置在风道5内的电加热管7,在偏冷的季节,利用电加热管7和室内换热器同时进行制热,提高了制热效果。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种空调的控制方法,其特征在于,包括以下步骤:1)获取空调的工作模式和目标舒适温度;2)检测室内温度,并计算所述室内温度与所述目标舒适温度的温度差△T;3)判断△T是否大于目标温度差值△T1,若是,则进入步骤4),若否,则进入步骤5);4)控制空调室内机的两个贯流风扇(4)和两个室内换热器均运转;5)控制空调室内机的其中一个贯流风扇(4)和与该贯流风扇(4)配合工作的室内换热器运转;其中,所述工作模式包括制冷模式和制热模式;所述空调室内机包括机壳(1),设置在所述机壳(1)内的两个风道(5)和两个室内换热器,一一对应地设置在所述风道(5)内的两个贯流风扇(4);所述机壳(1)的前面板上设置有与所述风道(5)一一连通的两个出风口(3),后壳上设置有与所述风道(5)一一连通的两个进风口(2)。
- 根据权利要求1所述的控制方法,其特征在于,所述步骤5)中还包括:根据△T控制所述贯流风扇(4)的转速。
- 根据权利要求2所述的控制方法,其特征在于,所述步骤5)中“根据△T控制所述贯流风扇(4)的转速”包括:当△T2≤△T≤△T1时,控制所述贯流风扇(4)的转速为高风速;当△T3≤△T<△T2时,控制所述贯流风扇(4)的转速为中风速;当0<△T<△T3时,控制所述贯流风扇(4)的转速为低风速;其中,△T1>△T2>△T3;所述高风速>所述中风速>所述低风速。
- 根据权利要求3所述的控制方法,其特征在于,△T1为3℃,△T2为2℃,△T3为1℃。
- 根据权利要求1所述的控制方法,其特征在于,所述步骤4)中,控制所述贯流风扇(4)的转速为高风速。
- 根据权利要求5所述的控制方法,其特征在于,当获取的工作模式为制热模式时,所述步骤4)同时控制所述空调室内机的电加热管(7)工作。
- 根据权利要求1所述的控制方法,其特征在于,当获取的工作模式为制冷模式时,所述步骤5)还包括获取目标吹风模式;其中,所述空调的吹风模式包括随人吹风模式和避人吹风模式。
- 一种空调,其特征在于,包括:空调室内机,所述空调室内机包括机壳(1),设置在所述机壳(1)内的两个风道(5)和两个室内换热器,一一对应地设置在所述风道(5)内的两个贯流风扇(4);所述机壳(1)的前面板上设置有与所述风道(5)一一连通的两个出风口(3),后壳上设置有与所述风道(5)一一连通的两个进风口(2);用于检测室内温度的温度传感器;与所述温度传感器连接的控制器,所述控制器用于获取空调的工作模式和目标舒适温度,并计算所述室内温度与所述目标舒适温度的温度差△T,判断△T是否大于目标温度差值△T1,若是,则控制两个所述贯流风扇(4)和两个所述室内换热器均运转;若否,则控制其中一个所述贯流风扇(4)和与该所述贯流风扇(4)配合工作的室内换热器运转。
- 根据权利要求8所述的空调,其特征在于,所述贯流风扇(4)的轴线沿竖直方向,且两个所述贯流风扇(4)沿所述机壳(1)的宽度方向并排布置,两个所述室内换热器分别对称布置在两个所述贯流风扇(4)所形成整体的左右两侧。
- 根据权利要求9所述的空调,其特征在于,所述室内换热器为微通道蒸发器(6),所述微通道蒸发器(6)与所述机壳(1)的前面板具有夹角,且所述微通道蒸发器(6)自前向后向内倾斜;且所述微通道蒸发器(6)与所述风道(5)在所述厚度方向上满足完全重合条件;所述空调室内机还包括设置在所述风道(5)内的电加热管(7)。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111012562.4 | 2021-08-31 | ||
CN202111012562.4A CN113834199A (zh) | 2021-08-31 | 2021-08-31 | 空调及其控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023029596A1 true WO2023029596A1 (zh) | 2023-03-09 |
Family
ID=78961798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/093439 WO2023029596A1 (zh) | 2021-08-31 | 2022-05-18 | 空调及其控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113834199A (zh) |
WO (1) | WO2023029596A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113834199A (zh) * | 2021-08-31 | 2021-12-24 | 青岛海尔空调器有限总公司 | 空调及其控制方法 |
WO2023029682A1 (zh) * | 2021-08-31 | 2023-03-09 | 青岛海尔空调器有限总公司 | 一种空调柜机 |
CN115682114A (zh) * | 2022-11-08 | 2023-02-03 | 珠海格力电器股份有限公司 | 一种空调器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107514742A (zh) * | 2017-07-27 | 2017-12-26 | 青岛海尔空调器有限总公司 | 一种分区送风空调器电加热控制方法及空调器 |
CN107917468A (zh) * | 2017-12-12 | 2018-04-17 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN108087972A (zh) * | 2017-12-12 | 2018-05-29 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN108105863A (zh) * | 2017-12-12 | 2018-06-01 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN207936275U (zh) * | 2018-01-29 | 2018-10-02 | 青岛海尔空调器有限总公司 | 立式空调室内机 |
CN113834199A (zh) * | 2021-08-31 | 2021-12-24 | 青岛海尔空调器有限总公司 | 空调及其控制方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103196214B (zh) * | 2013-04-08 | 2015-05-06 | 青岛海信日立空调系统有限公司 | 控制空调室内机的方法及空调室内机 |
KR101948100B1 (ko) * | 2017-08-18 | 2019-02-14 | 엘지전자 주식회사 | 공기조화기 및 그 제어방법 |
CN109751665A (zh) * | 2018-12-20 | 2019-05-14 | 珠海格力电器股份有限公司 | 一种双贯流空调器的控制方法 |
-
2021
- 2021-08-31 CN CN202111012562.4A patent/CN113834199A/zh active Pending
-
2022
- 2022-05-18 WO PCT/CN2022/093439 patent/WO2023029596A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107514742A (zh) * | 2017-07-27 | 2017-12-26 | 青岛海尔空调器有限总公司 | 一种分区送风空调器电加热控制方法及空调器 |
CN107917468A (zh) * | 2017-12-12 | 2018-04-17 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN108087972A (zh) * | 2017-12-12 | 2018-05-29 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN108105863A (zh) * | 2017-12-12 | 2018-06-01 | 广东美的制冷设备有限公司 | 空调挂机及其控制方法 |
CN207936275U (zh) * | 2018-01-29 | 2018-10-02 | 青岛海尔空调器有限总公司 | 立式空调室内机 |
CN113834199A (zh) * | 2021-08-31 | 2021-12-24 | 青岛海尔空调器有限总公司 | 空调及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113834199A (zh) | 2021-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023029596A1 (zh) | 空调及其控制方法 | |
WO2019011178A1 (zh) | 立式空调的控制方法 | |
WO2014067129A1 (zh) | 多联机热泵空调系统及控制多联机热泵空调系统的方法 | |
CN108426315B (zh) | 一种空调壁挂机和空调器以及壁挂机的出风控制方法 | |
WO2023098243A1 (zh) | 空调室内机 | |
CN110043953B (zh) | 空调室内机 | |
WO2019052540A1 (zh) | 变频空调的制热控制方法与装置 | |
WO2023246706A1 (zh) | 立式空调室内机 | |
WO2018045942A1 (zh) | 一种出风装置及空调柜机 | |
CN115264621A (zh) | 一种空调室内机、空调室内机的控制方法和空调器 | |
CN218119933U (zh) | 立式空调室内机 | |
CN214949402U (zh) | 空调器室内机 | |
CN209944526U (zh) | 一种上下出风的壁挂机和空调器 | |
WO2021103827A1 (zh) | 换热器组件和具有其的空调室内机 | |
CN218721861U (zh) | 立式空调室内机 | |
CN216346773U (zh) | 一种空调系统 | |
CN217235772U (zh) | 壁挂式空调室内机 | |
CN215001914U (zh) | 空调器室内机 | |
CN212299347U (zh) | 全热交换器 | |
CN216897624U (zh) | 空调式油烟机及其空调模块 | |
CN205690553U (zh) | 一种空调室外机及空调 | |
CN211316353U (zh) | 一种带贯流风机的蓄能辐射末端及辐射换热设备 | |
CN113310112A (zh) | 空调器室内机 | |
CN214275952U (zh) | 空调室内机 | |
CN216244600U (zh) | 空调器室内机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22862738 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22862738 Country of ref document: EP Kind code of ref document: A1 |