Nothing Special   »   [go: up one dir, main page]

WO2023000376A1 - 一种多级行星齿轮结构动态特性的分析方法 - Google Patents

一种多级行星齿轮结构动态特性的分析方法 Download PDF

Info

Publication number
WO2023000376A1
WO2023000376A1 PCT/CN2021/110006 CN2021110006W WO2023000376A1 WO 2023000376 A1 WO2023000376 A1 WO 2023000376A1 CN 2021110006 W CN2021110006 W CN 2021110006W WO 2023000376 A1 WO2023000376 A1 WO 2023000376A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
gear
planetary gear
planetary
meshing
Prior art date
Application number
PCT/CN2021/110006
Other languages
English (en)
French (fr)
Inventor
楼佩煌
陈贻平
钱晓明
张颖
宋允辉
季飞飞
宋凯
Original Assignee
南京航空航天大学
上海振华重工集团(南通)传动机械有限公司
南京航空航天大学苏州研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学, 上海振华重工集团(南通)传动机械有限公司, 南京航空航天大学苏州研究院 filed Critical 南京航空航天大学
Publication of WO2023000376A1 publication Critical patent/WO2023000376A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/11Complex mathematical operations for solving equations, e.g. nonlinear equations, general mathematical optimization problems
    • G06F17/12Simultaneous equations, e.g. systems of linear equations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the invention relates to the field of planetary gears, in particular to an analysis method for the structural dynamic characteristics of multi-stage planetary gears.
  • planetary gear transmission Due to its compact structure, strong bearing capacity and low bearing load, planetary gear transmission is widely used in various fields such as aviation, ships, automobiles, military and machinery. In the field of heavy-duty transmission, in order to achieve large transmission ratio and high output torque, multi-stage planetary gear transmission is usually required.
  • the present invention provides a method capable of analyzing the dynamic characteristics of multi-stage planetary gears.
  • the present invention provides a method for analyzing the dynamic characteristics of a multi-stage planetary gear structure, comprising the following steps:
  • Step S1 Establishing a nonlinear dynamic model of a single-stage spur gear transmission system according to the lumped mass method
  • Step S2 Analyze the relative displacement relationship and motion transmission relationship between two adjacent components, and establish the dynamic equation of the three-stage planetary gear transmission system based on the Lagrange equation;
  • Step S3 Establishing a nonlinear dynamic equation of three-stage planetary gear transmission based on time-varying mesh stiffness, dynamic transmission error, and mesh phase;
  • Step S4 Analyze the dynamic characteristics of the three-stage planetary gear transmission system based on the Runger-Kutta method.
  • step S1 the specific steps of establishing a nonlinear dynamic model of a single-stage spur gear transmission system according to the lumped mass method are as follows:
  • Step S11 Establish a dynamic coordinate system fixed to the planet carrier, convert the displacement, velocity, acceleration and other motion quantities of each component under the generalized coordinates into the velocity, displacement, acceleration and other motion quantities under the dynamic coordinates, and the vector r is in the planet carrier dynamic coordinates
  • the components of are x c , y c
  • the components in the fixed coordinate system are x s , y s respectively.
  • the acceleration expression of each component of the planetary gear system in the generalized coordinate system can be obtained through coordinate transformation.
  • the sun gear-planet gear-ring gear meshing exists in the fixed coordinate system oij and the rotating coordinate system o ⁇ .
  • the position vector of each component of the planetary gear system in the fixed coordinate system is expressed as:
  • Step S12 According to the geometric position and motion relationship between the various components of the planetary gear train, analyze the relative displacement relationship of each component as follows:
  • ⁇ sn (x n -x s )sin ⁇ sn +(y s -y n )cos ⁇ sn +u s +u n
  • x s , y s , u s are the linear displacement of the sun gear in the x direction, y direction, and meshing line direction respectively;
  • x n , y n , u n are the planetary gears in the x direction, y direction, and the meshing line direction respectively Linear displacement;
  • ⁇ n is the position angle of the planetary gear, and
  • ⁇ s is the meshing angle of the sun gear and the planetary gear.
  • ⁇ rn (x n -x r )sin ⁇ rn +(y r -y n )cos ⁇ rn +u r -u n
  • ⁇ rn ⁇ n - ⁇ r
  • x r , y r , and u r are the linear displacements of the ring gear in the x direction, y direction, and meshing line direction respectively;
  • ⁇ r is the meshing angle of the ring gear and the planetary gear.
  • ⁇ cnu (x n -x c )sin ⁇ n +(y c -y n )cos ⁇ n +u c
  • x c , y c , u c are the displacements of the planet carrier in the x direction, y direction and tangential line respectively
  • Step S13 Establishing the differential equation of motion of the planetary gear train, the specific steps are as follows:
  • k i is The translational support stiffness of each member;
  • k sn and k rn are the meshing stiffness of sun gear-planetary gear and planetary gear-ring gear respectively;
  • k st , k ct and k rt are tangential directions of sun gear, planetary carrier and ring gear respectively Support stiffness
  • Step S21 Analyze the coupling relationship between the three-stage planetary gear trains, that is, the first-stage planetary carrier and the second-stage There is interaction between the first-stage sun gear, the first-stage ring gear and the second-stage ring gear, and Moment, get its relative displacement relationship:
  • Step S22 According to the Lagrange equation, the kinetic energy and potential energy equations of the system and the dynamic model of the three-stage planetary gear transmission system are respectively established, and the expressions are as follows:
  • the superscripts I, II, and III of each parameter are the first stage, the second stage and the third stage of the three-stage planetary gear train respectively;
  • I c , I r , I s , I p are the , the moment of inertia of the sun gear and the planet gear
  • m p is the mass of the planet gear
  • r r , r s , r p are the base circle radii of the ring gear, the sun gear and the planet gear respectively
  • r c is the equivalent radius of the planet carrier
  • u c , u r , u s are the displacements of the planet carrier, the ring gear and the sun gear respectively
  • u n is the displacement of the nth planetary gear
  • k sn , k rn are the displacements of the nth planetary gear, the sun gear and the inner ring gear respectively
  • ⁇ s , ⁇ r are the meshing angles
  • ⁇ rn -u c cos ⁇ r -u n
  • ⁇ sn and ⁇ rn are the displacement components of the nth planetary gear, the sun gear and the ring gear along the meshing line direction respectively. are the coupled relative displacements between 1-2 and 2-3 respectively; k 12 and k 23 are the coupling stiffnesses between 1-2 and 2-3, are the radii of couplings between stages 1-2 and stage 2-3 respectively, k r is the tangential support stiffness of the ring gear, T r , T c , T s are the torques of the ring gear, the planet carrier and the sun gear.
  • step S3 based on the time-varying meshing stiffness, dynamic transmission error, and meshing phase, the specific steps of modeling the dynamic model of the three-stage gear transmission system are as follows:
  • Step S31 The dynamic model of the three-stage gear transmission system established based on the time-varying meshing stiffness, dynamic transmission error, and meshing phase:
  • M is the equivalent mass matrix
  • q is the generalized coordinate matrix
  • C is the damping matrix
  • K(t) is the time-varying stiffness matrix
  • e(t) is the static transfer error matrix
  • F is the load matrix.
  • I, II, and III of each parameter are the first stage, the second stage and the third stage of the three-stage planetary gear train
  • I c , I r , I s , and I p are the planet carrier, ring gear, sun moment of inertia of the gear and the planetary gear
  • m p is the mass of the planetary gear
  • r r , rs s , r p are the base circle radii of the ring gear, sun gear and planetary gear respectively
  • r c is the equivalent radius of the planetary carrier
  • u c , u r , u s are the displacements of the planetary carrier, the ring gear and the sun gear respectively
  • u n is the displacement of the
  • Step S32 Calculate the time-varying meshing stiffness, the calculation formula is:
  • T m is the meshing period
  • ⁇ sr is the phase difference between the internal and external meshing, and when the number of teeth of the planetary gears is odd and even ⁇ sr is taken as 1/2 and 0 respectively
  • ⁇ r , ⁇ s are the coincidence degree of internal and external meshing respectively.
  • Step S33 Calculate the meshing phase, the calculation formula is:
  • ⁇ sn is the external meshing phase of the nth planetary gear
  • ⁇ rn is the internal meshing phase of the nth planetary gear
  • ⁇ n is the circumferential angle between the nth planetary gear and planetary gear 1
  • the planet carrier is counterclockwise Rotate is +, clockwise is -.
  • Step S34 Calculating the dynamic transmission error, the calculation formula is:
  • e(t) is the static transmission error of the gear
  • ⁇ f and ⁇ f are the rotation frequency and initial phase of the gear respectively
  • e rn (t) and e sn (t) are the transmission errors of the internal and external meshing of the gear, respectively, and E sn and E rn are the amplitudes of the cumulative total deviation of the internal and external meshing pitch; are the amplitudes of the meshing tangential deviation of the inner and outer meshing single tooth pairs; ⁇ s and ⁇ m are the rotation frequency and meshing frequency of the sun gear, respectively; is the initial phase of internal and external meshing; ⁇ s is the initial phase of sun gear rotation; is the phase difference between inside and outside.
  • the step S4 is based on the Runger-Kutta method to solve the dynamic characteristics of the three-stage planetary gear transmission system, the specific method is as follows:
  • the fourth-order Runger-Kutta algorithm is:
  • the dynamic response of planetary gear system is analyzed by numerical integration method.
  • the beneficial effect of the present invention is: the analysis method provided by the present invention fully considers nonlinear influence factors such as time-varying meshing stiffness and dynamic transmission error, and combines lumped mass method, Lagrangian equation and Runger-Kutta method , is applied to the solution of the dynamic characteristics of the three-stage planetary gear transmission system, which improves the accuracy and efficiency of the multi-stage planetary gear transmission system, and is of great significance for improving the meshing stability, carrying capacity and reducing friction loss of the gear transmission system.
  • nonlinear influence factors such as time-varying meshing stiffness and dynamic transmission error
  • Lagrangian equation and Runger-Kutta method is applied to the solution of the dynamic characteristics of the three-stage planetary gear transmission system, which improves the accuracy and efficiency of the multi-stage planetary gear transmission system, and is of great significance for improving the meshing stability, carrying capacity and reducing friction loss of the gear transmission system.
  • Fig. 1 is a flowchart of a method for analyzing the dynamic characteristics of a multi-stage planetary gear structure provided by an embodiment of the present invention
  • Fig. 2 is a schematic diagram of coordinate transformation provided by an embodiment of the present invention.
  • Fig. 3 is an analysis model diagram of a planetary gear train provided by an embodiment of the present invention.
  • Fig. 4 is a three-stage planetary gear transmission coupling relationship diagram provided by an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a three-stage transmission system provided by an embodiment of the present invention.
  • Fig. 6 is a torsional dynamics model diagram of a planetary gear train provided by an embodiment of the present invention.
  • the embodiment provides a method for analyzing the dynamic characteristics of a multistage planetary gear structure: comprising the following steps:
  • the structure of the planetary gear system is relatively complex.
  • the single-stage planetary gear transmission system is composed of internal ring gear, planetary carrier, sun gear, planetary gear and other components. It is difficult to analyze the relative movement and position relationship between each component.
  • the dynamic model of the spur planetary transmission in this embodiment adopts a pure torsion model.
  • step S101 establishing a planetary gear follow-up coordinate system
  • FIG. 2 is a schematic diagram of coordinate transformation.
  • the components of the vector r in the moving coordinates of the planet carrier are x c , y c , and the components in the fixed coordinate system are x s , y s respectively .
  • the rotational angular velocity of the moving coordinate system on the frame, then ⁇ ⁇ c t, according to the geometric relationship in the figure, the following relationship can be obtained:
  • the acceleration expression of each component of the planetary gear system in the generalized coordinate system can be obtained through coordinate transformation.
  • Fig. 3 is a dynamic analysis model of the planetary gear train, and the sun gear-planet gear-ring gear meshing exists in the fixed coordinate system oij and the rotating coordinate system o ⁇ .
  • the position vector of each component of the planetary gear system in the fixed coordinate system is expressed as:
  • Step S102 Analysis of the relative displacement of each component of the planetary gear train
  • Analyzing the relative displacement relationship of each component is to determine the elastic force between each component and also the premise of establishing the motion equation of each component. Specifically, the relative displacement between each component is as follows:
  • ⁇ sn (x n -x s )sin ⁇ sn +(y s -y n )cos ⁇ sn +u s +u n
  • x s , y s , u s are the linear displacement of the sun gear in the x direction, y direction, and meshing line direction respectively;
  • x n , y n , u n are the planetary gears in the x direction, y direction, and the meshing line direction respectively Linear displacement;
  • ⁇ n is the position angle of the planetary gear, and
  • ⁇ s is the meshing angle of the sun gear and the planetary gear.
  • ⁇ rn (x n -x r )sin ⁇ rn +(y r -y n )cos ⁇ rn +u r -u n
  • ⁇ rn ⁇ n - ⁇ r
  • x r , y r , and u r are the linear displacements of the ring gear in the x direction, y direction, and meshing line direction respectively;
  • ⁇ r is the meshing angle of the ring gear and the planetary gear.
  • ⁇ cnu (x n -x c )sin ⁇ n +(y c -y n )cos ⁇ n +u c
  • x c , y c , u c are the displacements of the planet carrier in the x direction, y direction and tangential line respectively
  • Step S103 Establishing the motion differential equation of the planetary gear train
  • k i is The translational support stiffness of each member;
  • k sn and k rn are the meshing stiffness of the sun gear-planetary gear and planetary gear-ring gear respectively;
  • k st , k ct , k rt are the tangential directions of the sun gear, planet carrier and ring gear Support stiffness.
  • M is the generalized mass matrix of the system
  • K b is the support stiffness matrix
  • K m is the gear meshing stiffness matrix
  • q is the system generalized coordinate array, as follows:
  • G ⁇ and K ⁇ are the gyro matrix and diagonal matrix caused by acceleration; when the rotation speed of the planetary carrier is not very high, G ⁇ and K ⁇ are smaller than other parameter matrices and can be ignored.
  • Step S201 Analysis of Relative Displacement Relationship
  • the coupling relationship between the three-stage planetary gear train must be considered, that is, the first-stage planet carrier and the second-stage sun gear, the first-stage ring gear and the second-stage There are mutual forces and moments between the second-stage planetary carrier of the inner ring gear and the third-stage sun gear, and between the second-stage ring gear and the third-stage ring gear.
  • Step S202 Establishment of the torsional dynamics model of the three-stage planetary gear transmission system
  • the gear body of the planetary gear train is a rigid body
  • the response can be set to 0 or the corresponding motion equation can be removed when calculating the solution, and the vibration differential equations of the gear transmission system can be established as follows .
  • k 12 is a matrix with 6 rows and 6 columns, the elements of the 1st row and 3rd column are The remaining elements are 0;
  • k 13 is a zero matrix with 6 rows and 7 columns;
  • k 21 is a matrix with 6 rows and 6 columns, and the elements of the 3rd row and 1st column are The remaining elements are 0;
  • k 23 is a matrix with 6 rows and 7 columns, the elements of the 1st row and 3rd column are The remaining elements are 0;
  • k 31 is a zero matrix with 7 rows and 6 columns;
  • k 32 is a matrix with 7 rows and 6 columns, and the elements of the 3rd row and 1st column are The remaining elements are 0.
  • the superscripts I, II, and III of each parameter are the first stage, the second stage and the third stage of the three-stage planetary gear train;
  • I c , I r , I s , and I p are the planet carrier, ring gear, sun moment of inertia of the gear and the planetary gear
  • m p is the mass of the planetary gear
  • r r , rs s , r p are the base circle radii of the ring gear, sun gear and planetary gear respectively
  • r c is the equivalent radius of the planetary carrier
  • u c , u r , u s are the displacements of the planetary carrier, the ring gear and the sun gear respectively
  • u n is the displacement of the nth planetary gear
  • k sn , k rn are the meshing stiffnesses of the nth planetary gear with the sun gear and the inner ring gear respectively
  • ⁇ rn -u c cos ⁇ r -u n
  • ⁇ sn and ⁇ rn are the displacement components of the nth planetary gear, the sun gear and the ring gear along the meshing line direction respectively. are the coupled relative displacements between 1-2 and 2-3 respectively; k 12 and k 23 are the coupling stiffnesses between 1-2 and 2-3, are the radii of couplings between stages 1-2 and stage 2-3 respectively, k r is the tangential support stiffness of the ring gear, T r , T c , T s are the torques of the ring gear, the planet carrier and the sun gear.
  • the gear transmission error is approximated as the harmonic function of the superimposed shaft frequency and tooth frequency, and the trapezoidal wave is used to represent the time-varying characteristics of the gear meshing stiffness.
  • the time-varying stiffness and transmission error of each gear mesh are determined, and the dynamic model of the three-stage planetary gear system is established based on the Lagrange equation by using the lumped parameter method.
  • Fig. 5 The structure diagram of the three-stage transmission system is shown in Fig. 5.
  • the torsional dynamics analysis model is shown in Fig. 6, regardless of the translational degrees of freedom of the system components. Variable stiffness.
  • the following assumptions are made when establishing the torsional dynamics model of the planetary gear transmission system:
  • the gear body and the planet carrier are rigid bodies
  • the gear meshing elasticity is represented by a spring
  • the system damping is linear viscous damping.
  • M is the equivalent mass matrix
  • q is the generalized coordinate matrix
  • C is the damping matrix
  • K(t) is the time-varying stiffness matrix
  • e(t) is the static transfer error matrix
  • F is the load matrix.
  • I, II, and III of each parameter are the first stage, the second stage and the third stage of the three-stage planetary gear train
  • I c , I r , I s , and I p are the planet carrier, ring gear, sun moment of inertia of the gear and the planetary gear
  • m p is the mass of the planetary gear
  • r r , rs s , r p are the base circle radii of the ring gear, sun gear and planetary gear respectively
  • r c is the equivalent radius of the planetary carrier
  • u c , u r , u s are the displacements of the planetary carrier, the ring gear and the sun gear respectively
  • u n is the displacement of the
  • e sn (t), e rn (t) and ⁇ sn , ⁇ rn are the transmission error and displacement components of the nth planetary gear, the sun gear and the ring gear along the meshing line direction, respectively. are the coupled relative displacements between 1-2 and 2-3 respectively; k 12 and k 23 are the coupling stiffnesses between 1-2 and 2-3, are the radii of couplings between stages 1-2 and stage 2-3 respectively, k r is the tangential support stiffness of the ring gear, T r , T c , T s are the torques of the ring gear, the planet carrier and the sun gear.
  • Step S302 Determine the meshing phase relationship
  • the meshing phase relationship of the planetary gears can be determined by the number of teeth of the gears and the position of the planetary gears. As shown in Figure 4, when the planetary carrier rotates counterclockwise by an angle ⁇ , the planetary gear 1 moves to the position of the planetary gear 2, and the number of meshes completed between each gear is ⁇ Z r /2 ⁇ , so the meshing phase relationship of the planetary gears is:
  • ⁇ sn is the external meshing phase of the nth planetary gear
  • ⁇ rn is the internal meshing phase of the nth planetary gear
  • ⁇ n is the circumferential angle between the nth planetary gear and planetary gear 1
  • the planet carrier is counterclockwise Rotate is +, clockwise is -.
  • Step S303 Calculate meshing stiffness
  • the time-varying characteristics of meshing stiffness are represented by trapezoidal wave, and the dynamic response of the system with trapezoidal wave time-varying stiffness can be obtained by numerical method.
  • the time-varying phase of the internal and external meshing stiffness is considered to be the same; when the number of teeth of the planetary gear is odd, the time-varying phase of the external meshing stiffness differs by half a meshing cycle.
  • the time-varying stiffness of the internal and external meshes of each planetary gear is:
  • k rn (t) k r1 (t-( ⁇ sn + ⁇ sr )T m )
  • T m is the meshing period
  • ⁇ sr is the phase difference between the internal and external meshing, and when the number of teeth of the planetary gears is odd and even ⁇ sr is taken as 1/2 and 0 respectively
  • ⁇ r , ⁇ s are the coincidence degree of internal and external meshing respectively.
  • Error excitation is one of the main internal motivating factors in the gear system. If there are errors in gear machining and assembly, the gear mesh will deviate from the theoretical ideal position. Due to the time-varying line of error, this deviation forms a displacement-type excitation in the meshing process. Gear errors can be divided into tooth profile errors and tooth pitch errors. The total gear tangential deviation is the sum of the cumulative total deviation of the tooth pitch and the single tooth tangential deviation. Gear tolerances are determined through gear booklets.
  • the radial error of the gear can be ignored in the study of the torsional dynamics of the gear, so the static transmission error of the gear is the total tangential deviation of the gear, and the time-varying nature of the gear transmission error can be approximated as the superposition of the harmonic functions of the shaft frequency and the tooth frequency:
  • e(t) is the static transmission error of the gear
  • ⁇ f and ⁇ f are the rotation frequency and initial phase of the gear respectively
  • e rn (t) and e sn (t) are the transmission errors of the internal and external meshing of the gear, respectively, and E sn and E rn are the amplitudes of the cumulative total deviation of the internal and external meshing pitch; are the amplitudes of the meshing tangential deviation of the inner and outer meshing single tooth pairs; ⁇ s and ⁇ m are the rotation frequency and meshing frequency of the sun gear, respectively; is the initial phase of internal and external meshing; ⁇ s is the initial phase of sun gear rotation; is the phase difference between inside and outside.
  • Runger-Kutta uses the linear combination of values at a certain point to construct a formula, so that after it is expanded according to the Taylor formula, there are as many items as possible that are exactly the same as the Taylor expansion of the initial value problem solution, so as to determine
  • the parameters in it ensure the higher precision of the formula, and its fourth-order Runger-Kutta algorithm is as follows:
  • the dynamic differential equation of the three-stage series planetary gear system established in the present invention belongs to the second-order nonlinear differential equation containing time-varying parameters, which must be solved in order to solve the time-varying parameters and reduce the price of the equation, and turn it into a first-order derivative.
  • the numerical integration method is used to solve the dynamic response of the planetary gear system.
  • the 4-5th order Runge-Kutta numerical integration method with variable step size in Matlab is used to directly call the ode45 function to solve the differential equations, which has high calculation accuracy.
  • an embodiment of the present invention also provides a computer-readable storage medium, wherein the computer-readable storage medium can store a program, and when the program is executed, it includes the dynamic characteristics of any multi-stage planetary gear structure described in the above-mentioned method embodiments. Some or all steps of an analytical method.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable memory.
  • the essence of the technical solution of the present invention or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory.
  • a computer device which may be a personal computer, server or network device, etc.
  • the aforementioned memory includes: various media that can store program codes such as U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Data Mining & Analysis (AREA)
  • Operations Research (AREA)
  • Algebra (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Retarders (AREA)

Abstract

一种多级行星齿轮结构动态特性的分析方法,包括以下步骤:根据集中质量法分别建立单级直齿轮传动系统非线性动力学模型;分析相邻两构件之间的相对位移关系和运动传递关系,基于Lagrange方程建立三级行星齿轮传动系统动力学方程;基于时变啮合刚度、动态传递误差、啮合相位建立三级行星齿轮传动非线性动力学方程;基于Runger-Kutta法分析三级行星齿轮传动系统动态特性;该分析方法全面考虑时变啮合刚度和动态传递误差等非线性影响因素,将集中质量法、Lagrange方程和Runger-Kutta法相结合,应用于三级行星齿轮传动系统动态特性求解,提高了多级行星齿轮传动系统的求解准确性和效率,对提高齿轮传动系统的啮合平稳性、承载能力和降低摩擦损耗具有重要意义。

Description

一种多级行星齿轮结构动态特性的分析方法 技术领域
本发明涉及行星齿轮领域,特别涉及一种多级行星齿轮结构动态特性的分析方法。
背景技术
行星齿轮传动由于结构紧凑、承载能力强以及较低的轴承载荷而广泛应用于航空、船舶、汽车、军事、机械等各个领域。在重载传动领域,为实现大传动比、高输出转矩,通常需要采用多级行星齿轮传动。
由于多级行星齿轮系统结构复杂,耦合因素较多,动力学建模非常复杂,针对多级行星齿轮动力学理论分析的深度和广度还很欠缺。相比于单级行星齿轮传动,多级行星齿轮系统的动力学行为更复杂,现有技术中,没有合适的分析方法能够抓住系统主要矛盾表征其动态耦合关系,以建立适用的多级行星齿轮动力学模型,并研究其动力表现。
发明内容
为了解决上述问题,本发明提供一种能够对多级行星齿轮进行动态特性分析的方法。
为了实现上述目的,本发明提供一种多级行星齿轮结构动态特性的分析方法,包括以下步骤:
步骤S1:根据集中质量法分别建立单级直齿轮传动系统非线性动力学模型;
步骤S2:分析相邻两构件之间的相对位移关系和运动传递关系,基于Lagrange方程建立三级行星齿轮传动系统动力学方程;
步骤S3:基于时变啮合刚度、动态传递误差、啮合相位建立三级行星齿轮传动非线性动力学方程;
步骤S4:基于Runger-Kutta法分析三级行星齿轮传动系统动态特性。
作为优选的一种技术方案,在所述步骤S1中根据集中质量法建立单级直齿轮传动系统非线性动力学模型的具体步骤如下:
步骤S11:建立与行星架固接的动坐标系,将广义坐标下各构件的位移、速度、加速度等运动量转换为动坐标下的速度、位移、加速度等运动量,矢量r在行星架动坐标中的分量为x c,y c,在固定坐标系中的分量分别为x s,y s,ω c表示固接在行星架上动坐标系的转动角速度,则θ=ω ct,依据图中几何关系,其关系表示为:
Figure PCTCN2021110006-appb-000001
对上式进行一阶求导,得到广义坐标下速度的表达式:
Figure PCTCN2021110006-appb-000002
对上式再求一阶导数,并进行参数代换,可得到广义坐标下加速度的表达式:
Figure PCTCN2021110006-appb-000003
因此,在行星架随动坐标系中,可通过坐标变换获得行星轮系各构件在广义坐标系下的加速度表达。在行星轮系动力学分析模型种,太阳轮-行星轮-齿圈啮合存在于固定坐标系oij和旋转坐标系oξη。行星轮系各构件在固定坐标系中位置矢量表示为:
r i=x ii+y ij,i=s,c,r,1,...,n
依据坐标变换,则可得到广义坐标下行星轮系各构件的加速度:
Figure PCTCN2021110006-appb-000004
步骤S12:根据行星轮系各构件间的几何位置及运动关系,分析各构件的相对位移关系为:
太阳轮-行星轮在啮合线方向的相对位移:
δ sn=(x n-x s)sinψ sn+(y s-y n)cosψ sn+u s+u n
ψ sn=ψ ns
式中,x s、y s、u s分别为太阳轮在x向、y向、啮合线方向线位移;x n、y n、u n分别为行星轮在x向、y向、啮合线方向线位移;ψ n为行星轮位置角,α s为太阳轮-行星轮啮合角。
内齿圈-行星轮在啮合线方向的相对位移:
δ rn=(x n-x r)sinψ rn+(y r-y n)cosψ rn+u r-u n
ψ rn=ψ nr
式中,x r、y r、u r分别为内齿圈在x向、y向、啮合线方向线位移;α r为内齿圈-行星轮啮合角。
行星架-行星轮在x向、y向、行星架切向(u c)相对位移:
x向:δ cnx=x c-x n-u ccosψ n
y向:δ cny=y c-y n+u ccosψ n
u c向:δ cnu=(x n-x c)sinψ n+(y c-y n)cosψ n+u c
式中,x c、y c、u c分别为行星架在x向、y向、切向线位移
步骤S13:建立行星轮系运动微分方程,其具体步骤如下:
太阳轮运动方程:
Figure PCTCN2021110006-appb-000005
行星架运动方程:
Figure PCTCN2021110006-appb-000006
齿圈运动方程:
Figure PCTCN2021110006-appb-000007
第n个行星齿轮运动方程:
Figure PCTCN2021110006-appb-000008
式中,m i、I i、r i(i=s,c,r,1,...,n)为各构件质量、转动惯量和基圆半径(行星架为中心半径);k i为各构件平动支撑刚度;k sn、k rn分别为太阳轮-行星轮、行星轮-齿圈的啮合刚度;k st、k ct、k rt分别为太阳轮、行星架、齿圈的切向支撑刚度
作为优选的一种技术方案,在所述步骤S2建立三级传动系统动力学模型的具体步骤如下:步骤S21:分析三级行星轮系之间的耦合关系,即第一级行星架与第二级太阳轮、第一级内齿圈与第二级内齿圈第二级行星架与第三级太阳轮、第二级内齿圈与第三级内齿圈之间存在相互的作用力与力矩,得到其相对位移关系:
(17)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000009
方向的投影为:
Figure PCTCN2021110006-appb-000010
(18)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000011
方向的投影为:
Figure PCTCN2021110006-appb-000012
(19)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000013
方向的投影为:
Figure PCTCN2021110006-appb-000014
(20)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000015
方向的投影为:
Figure PCTCN2021110006-appb-000016
(21)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000017
方向的投影为:
Figure PCTCN2021110006-appb-000018
(22)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000019
方向的投影为:
Figure PCTCN2021110006-appb-000020
(23)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000021
方向的投影为:
Figure PCTCN2021110006-appb-000022
(24)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000023
方向的投影为:
Figure PCTCN2021110006-appb-000024
(25)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000025
方向的投影为:
Figure PCTCN2021110006-appb-000026
(26)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000027
方向的投影为:
Figure PCTCN2021110006-appb-000028
(27)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000029
方向的投影为:
Figure PCTCN2021110006-appb-000030
(28)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000031
方向的投影为:
Figure PCTCN2021110006-appb-000032
(29)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000033
方向的投影为:
Figure PCTCN2021110006-appb-000034
(30)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000035
方向的投影为:
Figure PCTCN2021110006-appb-000036
(31)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000037
方向的投影为:
Figure PCTCN2021110006-appb-000038
(32)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000039
方向的投影为:
Figure PCTCN2021110006-appb-000040
步骤S22:根据Lagrange方程,分别建立系统的动能、势能方程及三级行星齿轮传动系统的动力学模型,其表达式如下:
动能方程:
Figure PCTCN2021110006-appb-000041
势能方程:
Figure PCTCN2021110006-appb-000042
第一级行星架的动力学方程:
Figure PCTCN2021110006-appb-000043
第一级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000044
第一级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000045
第一级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000046
第二级行星架的动力学方程:
Figure PCTCN2021110006-appb-000047
第二级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000048
第二级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000049
第二级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000050
第三级行星架的动力学方程:
Figure PCTCN2021110006-appb-000051
第三级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000052
第三级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000053
第三级第n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000054
整理后得到矩阵形式的无阻尼系统动力学方程:
Figure PCTCN2021110006-appb-000055
其中,各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角,且
δ sn=u s-u ccosα s+u n
δ rn=-u ccosα r-u n
δ sn、δ rn分别为第n个行星轮与太阳轮及内齿圈沿啮合线方向的位移分量。
Figure PCTCN2021110006-appb-000056
分别为1-2级,2-3级间的耦合相对位移;k 12,k 23为1-2级、2-3级间的耦合刚度,
Figure PCTCN2021110006-appb-000057
分别为1-2级,2-3级间的联轴器半径,k r为齿圈切向支撑刚度,T r,T c,T s为齿圈、行星架和太阳轮的扭矩。
作为优选的一种技术方案,在所述步骤S3基于时变啮合刚度、动态传递误差、啮合相位建立三级齿轮传动系统动力学模型的建模具体步骤如下:
步骤S31:基于时变啮合刚度、动态传递误差、啮合相位建立的三级齿轮传动系统的动力学模型:
第一级行星架的动力学方程:
Figure PCTCN2021110006-appb-000058
第一级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000059
第一级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000060
第一级i个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000061
第二级行星架的动力学方程:
Figure PCTCN2021110006-appb-000062
第二级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000063
第二级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000064
第二级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000065
第三级行星架的动力学方程:
Figure PCTCN2021110006-appb-000066
第三级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000067
第三级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000068
第三级第n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000069
系统振动微分方程组整理为矩阵形式:
Figure PCTCN2021110006-appb-000070
上式中,M为当量质量矩阵,q为广义坐标矩阵,C为阻尼矩阵,K(t)为时变刚度矩阵,e(t)为静态传递误差矩阵,F为载荷矩阵。各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角。
步骤S32:计算时变啮合刚度,其计算公式为:
Figure PCTCN2021110006-appb-000071
式中,T m为啮合周期,γ sn为第n个行星轮与第一个行星轮的相位(γ s1=0),γ sr为内外啮合的相位差,行星轮齿数分别为奇数和偶数时γ sr分别取1/2和0,ε rs分别为内外啮合重合度。
步骤S33:计算啮合相位,其计算公式为:
γ sn=γ rn=ψ nZ r/2π
其中,γ sn为第n个行星齿轮的外啮合相位,γ rn为第n个行星齿轮的内啮合相位,ψ n为第n个行星齿轮与行星轮1的周向夹角,行星架逆时针旋转为+,顺时针旋转为-。
步骤S34:计算动态传递误差,其计算公式为:
Figure PCTCN2021110006-appb-000072
式中,e(t)为齿轮静态传递误差,ω f和ψ f分别为齿轮转动频率和初相位,ω m
Figure PCTCN2021110006-appb-000073
分别为啮合频率和啮合初相位。对于行星齿轮其内外啮合误差可表示为:
Figure PCTCN2021110006-appb-000074
式中,e rn(t)、e sn(t)分别为齿轮内外啮合传递误差,E sn、E rn分别为内外啮合齿距累积总偏差的幅值;
Figure PCTCN2021110006-appb-000075
分别为内外啮合单齿对啮合切向偏差的幅值;ω s、ω m分别为太阳轮转频和啮合频率;
Figure PCTCN2021110006-appb-000076
为内外啮合初相位;ψ s为太阳轮回转初相位;
Figure PCTCN2021110006-appb-000077
为内外相位差。
作为优选的一种技术方案,所述步骤S4基于Runger‐Kutta法求解三级行星齿轮传动系统动态特性,具体方法如下:
四阶Runger-Kutta算法为:
Figure PCTCN2021110006-appb-000078
对动力学方程:
Figure PCTCN2021110006-appb-000079
将其转换为如下形式:
Figure PCTCN2021110006-appb-000080
Figure PCTCN2021110006-appb-000081
I为与M阶数相同的单位矩阵,可将上式写成矩阵形式:
Figure PCTCN2021110006-appb-000082
Figure PCTCN2021110006-appb-000083
Figure PCTCN2021110006-appb-000084
将上式写成:
Figure PCTCN2021110006-appb-000085
利用数值积分方法分析行星齿轮系统的动态响应。
本发明相对于现有技术的有益效果是:本发明提供的分析方法全面考虑时变啮合刚度和动态传递误差等非线性影响因素,将集中质量法、拉格朗日方程和Runger-Kutta法相结合, 应用于三级行星齿轮传动系统动态特性求解,提高了多级行星齿轮传动系统的求解准确性和效率,对提高齿轮传动系统的啮合平稳性、承载能力和降低摩擦损耗具有重要意义。
附图说明
图1是本发明一实施例提供的一种多级行星齿轮结构动态特性的分析方法的流程图;
图2是本发明一实施例提供的坐标变换示意图;
图3是本发明一实施例提供的行星轮系分析模型图;
图4是本发明一实施例提供的三级行星齿轮传动耦合关系图;
图5是本发明一实施例提供的三级传动系统结构简图;
图6是本发明一实施例提供的行星轮系扭转动力学模型图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1,实施例提供一种多级行星齿轮结构动态特性的分析方法:包括以下步骤:
S10:根据集中质量法分别建立单级直齿轮传动系统非线性动力学模型;
应当理解的是,行星齿轮系统结构比较复杂,单级行星齿轮传动系统由内齿圈、行星架、太阳轮、行星轮等构件组成,各构件间的相对运动和位置关系分析有一定难度。依据行星齿轮系统的复杂程度和具体的分析要求,在本实施例中直齿行星传动的动力学模型采用纯扭转模型。
具体的,步骤S101:建立行星齿轮随动坐标系;
行星齿轮动力学分析采用的广义坐标是与行星架固接的动坐标系,为在广义坐标下表示各构件位移、速度、加速度等运动量,则需进行坐标变换。参照图2,图2为坐标变换示意图,矢量r在行星架动坐标中的分量为x c,y c,在固定坐标系中的分量分别为x s,y s,ω c表示固接在行星架上动坐标系的转动角速度,则θ=ω ct,依据图中几何关系,可获得如下关系式:
Figure PCTCN2021110006-appb-000086
对上式进行一阶求导,得到广义坐标下速度的表达式:
Figure PCTCN2021110006-appb-000087
对上式再求一阶导数,并进行参数代换,可得到广义坐标下加速度的表达式:
Figure PCTCN2021110006-appb-000088
因此,在行星架随动坐标系中,可通过坐标变换获得行星轮系各构件在广义坐标系下的加速度表达。
参照图3,图3为行星轮系动力学分析模型,太阳轮-行星轮-齿圈啮合存在于固定坐标系oij和旋转坐标系oξη。行星轮系各构件在固定坐标系中位置矢量表示为:
r i=x ii+y ij,i=s,c,r,1,...,n
依据坐标变换,则可得到广义坐标下行星轮系各构件的加速度:
Figure PCTCN2021110006-appb-000089
步骤S102:行星轮系各构件相对位移分析
分析各构件的相对位移关系,是为确定各构件间的弹性力,也是建立各构件运动方程的前提。具体的,各构件间的相对位移如下:
太阳轮-行星轮在啮合线方向的相对位移:
δ sn=(x n-x s)sinψ sn+(y s-y n)cosψ sn+u s+u n
ψ sn=ψ ns
式中,x s、y s、u s分别为太阳轮在x向、y向、啮合线方向线位移;x n、y n、u n分别为行星轮在x向、y向、啮合线方向线位移;ψ n为行星轮位置角,α s为太阳轮-行星轮啮合角。
内齿圈-行星轮在啮合线方向的相对位移:
δ rn=(x n-x r)sinψ rn+(y r-y n)cosψ rn+u r-u n
ψ rn=ψ nr
式中,x r、y r、u r分别为内齿圈在x向、y向、啮合线方向线位移;α r为内齿圈-行星轮啮合角。
行星架-行星轮在x向、y向、行星架切向(u c)相对位移:
x向:δ cnx=x c-x n-u ccosψ n
y向:δ cny=y c-y n+u ccosψ n
u c向:δ cnu=(x n-x c)sinψ n+(y c-y n)cosψ n+u c
式中,x c、y c、u c分别为行星架在x向、y向、切向线位移
步骤S103:建立行星轮系运动微分方程
太阳轮运动方程:
Figure PCTCN2021110006-appb-000090
行星架运动方程:
Figure PCTCN2021110006-appb-000091
齿圈运动方程:
Figure PCTCN2021110006-appb-000092
第n个行星齿轮运动方程:
Figure PCTCN2021110006-appb-000093
式中,m i、I i、r i(i=s,c,r,1,...,n)为各构件质量、转动惯量和基圆半径(行星架为中心半径);k i为各构件平动支撑刚度;k sn、k rn分别为太阳轮-行星轮、行星轮-齿圈的啮合刚度;k st、k ct、k rt分别为太阳轮、行星架、齿圈的切向支撑刚度。
表达为矩阵形式:
Figure PCTCN2021110006-appb-000094
式中,M为系统广义质量矩阵,K b为支承刚度矩阵,K m为齿轮啮合刚度矩阵,q为系统广义坐标列阵,如下表示:
q=(x s,y s,u s,x c,y c,u c,x r,y r,u r,x 1,y 1,u 1,...x N,y N,u N)
G ω、K ω为加速度引起的陀螺矩阵和斜对角线矩阵;当行星架转速不是很高时,G ω、K ω相对其他参数矩阵较小,可以忽略不计。
S20:建立三级行星齿轮传动系统扭转动力学模型
对齿轮传动系统动力学模型构建集中参数模型:将模型离散化,将齿轮传动系统的各构件进行质量集中,并将各构件间的作用关系转化为弹性力,运用力学思想,将原有模型转化为相对比较简单便于计算的离散的质量弹簧振动系统。对于三级行星齿轮系统,前级行星架 与后级太阳轮的联接可采用扭转弹簧来表示。因此,多级行星轮系扭转动力学模型的建立可以在单级行星轮系扭转动力学模型的基础上,采用级间耦合的方法得到,如图4所示。
步骤S201:相对位移关系分析
为准确分析三级行星齿轮传动系统的动力学特性,必须考虑三级行星轮系之间的耦合关系,即第一级行星架与第二级太阳轮、第一级内齿圈与第二级内齿圈第二级行星架与第三级太阳轮、第二级内齿圈与第三级内齿圈之间存在相互的作用力与力矩。
根据级间耦合关系可得以下相对位移关系:
(33)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000095
方向的投影为:
Figure PCTCN2021110006-appb-000096
(34)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000097
方向的投影为:
Figure PCTCN2021110006-appb-000098
(35)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000099
方向的投影为:
Figure PCTCN2021110006-appb-000100
(36)第一级齿圈与第二级齿圈相对位移沿
Figure PCTCN2021110006-appb-000101
方向的投影为:
Figure PCTCN2021110006-appb-000102
(37)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000103
方向的投影为:
Figure PCTCN2021110006-appb-000104
(38)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000105
方向的投影为:
Figure PCTCN2021110006-appb-000106
(39)第一级行星架与第二级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000107
方向的投影为:
Figure PCTCN2021110006-appb-000108
(40)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000109
方向的投影为:
Figure PCTCN2021110006-appb-000110
(41)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000111
方向的投影为:
Figure PCTCN2021110006-appb-000112
(42)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000113
方向的投影为:
Figure PCTCN2021110006-appb-000114
(43)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000115
方向的投影为:
Figure PCTCN2021110006-appb-000116
(44)第二级齿圈与第三级齿圈相对位移沿
Figure PCTCN2021110006-appb-000117
方向的投影为:
Figure PCTCN2021110006-appb-000118
(45)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000119
方向的投影为:
Figure PCTCN2021110006-appb-000120
(46)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000121
方向的投影为:
Figure PCTCN2021110006-appb-000122
(47)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000123
方向的投影为:
Figure PCTCN2021110006-appb-000124
(48)第二级行星架与第三级太阳轮相对位移沿
Figure PCTCN2021110006-appb-000125
方向的投影为:
Figure PCTCN2021110006-appb-000126
步骤S202:三级行星齿轮传动系统扭转动力学模型建立
为简化问题,建立三级行星齿轮传动系统,做出以下假设:
1.行星轮系的齿轮本体为刚体;
2.啮合齿轮见的弹性用弹簧表示,忽略阻尼;
3.忽略啮合齿面间摩擦力的影响;
4.各级齿圈为刚性支撑。
对于三级行星齿轮传动系统,考虑各级齿圈本体为刚体且为刚性支撑时,计算求解时可设其响应为0或去除相应的运动方程,则可建立其齿轮传动系统振动微分方程组如下。
第一级行星架的动力学方程:
Figure PCTCN2021110006-appb-000127
第一级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000128
第一级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000129
第一级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000130
第二级行星架的动力学方程:
Figure PCTCN2021110006-appb-000131
第二级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000132
第二级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000133
第二级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000134
第三级行星架的动力学方程:
Figure PCTCN2021110006-appb-000135
第三级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000136
第三级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000137
第三级第n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000138
整理后得到矩阵形式的无阻尼系统动力学方程:
Figure PCTCN2021110006-appb-000139
其中,M为当量质量矩阵,M=diag(M 1,M 2,M 3);x为广义坐标列阵,x=[x Ι,x ,x ];F为载荷列阵,F=[F Ι,F ,F ]。
Figure PCTCN2021110006-appb-000140
Figure PCTCN2021110006-appb-000141
Figure PCTCN2021110006-appb-000142
Figure PCTCN2021110006-appb-000143
Figure PCTCN2021110006-appb-000144
Figure PCTCN2021110006-appb-000145
Figure PCTCN2021110006-appb-000146
Figure PCTCN2021110006-appb-000147
Figure PCTCN2021110006-appb-000148
Figure PCTCN2021110006-appb-000149
Figure PCTCN2021110006-appb-000150
Figure PCTCN2021110006-appb-000151
Figure PCTCN2021110006-appb-000152
k 12为6行6列矩阵,其第1行第3列元素为
Figure PCTCN2021110006-appb-000153
其余元素为0;
k 13为6行7列零矩阵;
k 21为6行6列矩阵,其第3行第1列元素为
Figure PCTCN2021110006-appb-000154
其余元素为0;
k 23为6行7列矩阵,其第1行第3列元素为
Figure PCTCN2021110006-appb-000155
其余元素为0;
k 31为7行6列零矩阵;
k 32为7行6列矩阵,其第3行第1列元素为
Figure PCTCN2021110006-appb-000156
其余元素为0。
各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角,且
δ sn=u s-u ccosα s+u n
δ rn=-u ccosα r-u n
δ sn、δ rn分别为第n个行星轮与太阳轮及内齿圈沿啮合线方向的位移分量。
Figure PCTCN2021110006-appb-000157
分别为1-2级,2-3级间的耦合相对位移;k 12,k 23为1-2级、2-3级间的耦合刚度,
Figure PCTCN2021110006-appb-000158
分别为1-2级,2-3级间的联轴器半径,k r为齿圈切向支撑刚度,T r,T c,T s为齿圈、行星架和太阳轮的扭矩。
S30:基于时变啮合刚度、动态传递误差、啮合相位建立三级行星齿轮传动系统非线性动力学方程;
步骤S301:动力学方程建模
根据齿轮误差分析,将齿轮传递误差近似成轴频和齿频叠加的谐波函数,同时采用梯形波表示齿轮啮合刚度的时变特征。在此基础上,根据三级行星齿轮系统啮合相位关系,确定各齿轮啮合的时变刚度和传递误差,并运用集中参数法,基于Lagrange方程建立三级行星齿轮系统动力学模型。
三级传动系统结构简图如图5所示,对于直齿行星传动系统,不考虑系统各构件的平移自由度,其扭转动力学分析模型如图6所示,该模型中考虑了误差、时变刚度。为使问题合理简化,在建立行星齿轮传动系统的扭转动力学模型时作出如下假设:
1.齿轮本体及行星架为刚体;
2.齿轮啮合弹性用弹簧表示;
3.各行星轮参数相同,圆周等距分布;
4.忽略齿面啮合摩擦力的影响;
5.各级齿圈为刚性支撑
6.系统阻尼为线性粘性阻尼。
对于多自由度系统,运用Lagrange方程建立动力学模型:
Figure PCTCN2021110006-appb-000159
Figure PCTCN2021110006-appb-000160
L=T-U
根据Lagrange方程:
Figure PCTCN2021110006-appb-000161
其中,
Figure PCTCN2021110006-appb-000162
为广义坐标。将其带入得到系统振动微分方程。
第一级行星架的动力学方程:
Figure PCTCN2021110006-appb-000163
第一级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000164
第一级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000165
第一级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000166
第二级行星架的动力学方程:
Figure PCTCN2021110006-appb-000167
第二级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000168
第二级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000169
第二级n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000170
第三级行星架的动力学方程:
Figure PCTCN2021110006-appb-000171
第三级内齿圈的动力学方程:
Figure PCTCN2021110006-appb-000172
第三级太阳轮的动力学方程:
Figure PCTCN2021110006-appb-000173
第三级第n个行星轮的动力学方程:
Figure PCTCN2021110006-appb-000174
系统振动微分方程组整理为矩阵形式:
Figure PCTCN2021110006-appb-000175
上式中,M为当量质量矩阵,q为广义坐标矩阵,C为阻尼矩阵,K(t)为时变刚度矩阵,e(t)为静态传递误差矩阵,F为载荷矩阵。各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个 行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角,且
δ sn=u s-u ccosα s+u n+e sn(t)
δ rn=-u ccosα r-u n+e rn(t)
e sn(t)、e rn(t)和δ sn、δ rn分别为第n个行星轮与太阳轮及内齿圈沿啮合线方向的传递误差和位移分量。
Figure PCTCN2021110006-appb-000176
分别为1-2级,2-3级间的耦合相对位移;k 12,k 23为1-2级、2-3级间的耦合刚度,
Figure PCTCN2021110006-appb-000177
分别为1-2级,2-3级间的联轴器半径,k r为齿圈切向支撑刚度,T r,T c,T s为齿圈、行星架和太阳轮的扭矩。
步骤S302:确定啮合相位关系
行星齿轮啮合相位关系可由齿轮齿数和行星轮位置确定。如图4所示,当行星架逆时针转动角度ψ时,行星轮1运行到行星轮2的位置,各齿轮间完成的啮合次数为ψZ r/2π,由此行星轮啮合相位关系为:
γ sn=γ rn=ψ nZ r/2π
其中,γ sn为第n个行星齿轮的外啮合相位,γ rn为第n个行星齿轮的内啮合相位,ψ n为第n个行星齿轮与行星轮1的周向夹角,行星架逆时针旋转为+,顺时针旋转为-。
步骤S303:计算啮合刚度
啮合刚度的时变特征采用梯形波来表示,运用数值方法求解可得到梯形波时变刚度系统的动态响应。当行星轮齿数为偶数时,内外啮合刚度时变相位认为时相同的;当行星轮齿数为奇数时,则外啮合刚度时变相位相差半个啮合周期。各行星齿轮内外啮合时变刚度为:
k sn(t)=k s1(t-γ snT m)
k rn(t)=k r1(t-(γ snsr)T m)
式中,T m为啮合周期,γ sn为第n个行星轮与第一个行星轮的相位(γ s1=0),γ sr为内外啮合的相位差,行星轮齿数分别为奇数和偶数时γ sr分别取1/2和0,ε rs分别为内外啮合重合度。
步骤S304:误差分析
误差激励是齿轮系统中主要的内部激励因素之一,齿轮加工和装配存在误差,齿轮啮合就会偏离理论的理想位置。由于误差的时变行,这种偏离就形成了啮合过程中的一种位移型激励。齿轮的误差可分为齿廓误差和齿距误差,齿轮切向总偏差为齿距累计总偏差和单齿切向偏差之和。齿轮公差通过齿轮手册确定。
研究齿轮扭转动力学可忽略齿轮径向误差,则齿轮静态传递误差为齿轮切向总偏差,齿轮传递误差时时变性可近似成轴频和齿频谐波函数的叠加:
Figure PCTCN2021110006-appb-000178
式中,e(t)为齿轮静态传递误差,ω f和ψ f分别为齿轮转动频率和初相位,ω m
Figure PCTCN2021110006-appb-000179
分别 为啮合频率和啮合初相位。对于行星齿轮其内外啮合误差可表示为:
Figure PCTCN2021110006-appb-000180
式中,e rn(t)、e sn(t)分别为齿轮内外啮合传递误差,E sn、E rn分别为内外啮合齿距累积总偏差的幅值;
Figure PCTCN2021110006-appb-000181
分别为内外啮合单齿对啮合切向偏差的幅值;ω s、ω m分别为太阳轮转频和啮合频率;
Figure PCTCN2021110006-appb-000182
为内外啮合初相位;ψ s为太阳轮回转初相位;
Figure PCTCN2021110006-appb-000183
为内外相位差。
S40:基于Runger-Kutta法求解三级行星齿轮传动系统动态特性;
Runger-Kutta法的基本思想是利用某点处的值的线性组合构造公式,使其按照泰勒公式展开后,与初值问题解的泰勒展开式比较,有尽可能多的项完全相同,以确定其中的参数,从而保证算式的较高精度,其四阶Runger-Kutta算法如下:
Figure PCTCN2021110006-appb-000184
本发明中建立的三级串联行星齿轮系统动力学微分方程属于含有时变参量的二阶非线性微分方程,必须在求解钱对时变参量求解和对方程进行降价处理,化为一阶导数的标准常微分方程初值问题。
对动力学方程:
Figure PCTCN2021110006-appb-000185
将其转换为如下形式:
Figure PCTCN2021110006-appb-000186
Figure PCTCN2021110006-appb-000187
I为与M阶数相同的单位矩阵,可将上式写成矩阵形式:
Figure PCTCN2021110006-appb-000188
Figure PCTCN2021110006-appb-000189
Figure PCTCN2021110006-appb-000190
将上式写成:
Figure PCTCN2021110006-appb-000191
利用数值积分方法求解行星齿轮系统的动态响应。在本实施例中,利用Matlab中的4-5阶Runge-Kutta变步长数值积分法,直接调用ode45函数求解微分方程组,具有较高的计算精度。
另外,本发明实施例还提供一种计算机可读存储介质,其中,该计算机可读存储介质可存储有程序,该程序执行时包括上述方法实施例中记载的任何多级行星齿轮结构动态特性的分析方法的部分或全部步骤。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read‐Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上参照附图描述了根据本发明的实施例的用于实现分析多级行星齿轮结构动态特性的示例性流程图。应指出的是,以上描述中包括的大量细节仅是对本发明的示例性说明,而不是对本发明的限制。在本发明的其他实施例中,该方法可具有更多、更少或不同的步骤,且各步骤之间的顺序、包含、功能等关系可以与所描述和图示的不同。

Claims (6)

  1. 一种多级行星齿轮结构动态特性的分析方法,其特征在于,包括以下步骤:
    步骤S1:根据集中质量法分别建立单级直齿轮传动系统非线性动力学模型;
    步骤S2:分析相邻两构件之间的相对位移关系和运动传递关系,基于Lagrange方程建立三级行星齿轮传动系统动力学方程;
    步骤S3:基于时变啮合刚度、动态传递误差、啮合相位建立三级行星齿轮传动非线性动力学方程;
    步骤S4:基于Runger-Kutta法分析三级行星齿轮传动系统动态特性。
  2. 根据权利要求1所述的分析方法,其特征在于,所述步骤S1中根据集中质量法建立单级直齿轮传动系统非线性动力学模型的具体步骤如下:
    步骤S11:建立与行星架固接的动坐标系,将广义坐标下各构件的位移、速度、加速度等运动量转换为动坐标下的速度、位移、加速度等运动量,矢量r在行星架动坐标中的分量为x c,y c,在固定坐标系中的分量分别为x s,y s,ω c表示固接在行星架上动坐标系的转动角速度,则θ=ω ct,其关系表示为:
    Figure PCTCN2021110006-appb-100001
    对上式进行一阶求导,得到广义坐标下速度的表达式:
    Figure PCTCN2021110006-appb-100002
    对上式再求一阶导数,并进行参数代换,可得到广义坐标下加速度的表达式:
    Figure PCTCN2021110006-appb-100003
    因此,在行星架随动坐标系中,可通过坐标变换获得行星轮系各构件在广义坐标系下的加速度表达。在行星轮系动力学分析模型种,太阳轮-行星轮-齿圈啮合存在于固定坐标系oij和旋转坐标系oξη;行星轮系各构件在固定坐标系中位置矢量表示为:
    r i=x ii+y ij,i=s,c,r,1,...,n
    依据坐标变换,则可得到广义坐标下行星轮系各构件的加速度:
    Figure PCTCN2021110006-appb-100004
    步骤S12:根据行星轮系各构件间的几何位置及运动关系,分析各构件的相对位移关系为:
    太阳轮-行星轮在啮合线方向的相对位移:
    δ sn=(x n-x s)sinψ sn+(y s-y n)cosψ sn+u s+u n
    ψ sn=ψ ns
    式中,x s、y s、u s分别为太阳轮在x向、y向、啮合线方向线位移;x n、y n、u n分别为行星轮在x向、y向、啮合线方向线位移;ψ n为行星轮位置角,α s为太阳轮-行星轮啮合角;
    内齿圈-行星轮在啮合线方向的相对位移:
    δ rn=(x n-x r)sinψ rn+(y r-y n)cosψ rn+u r-u n
    ψ rn=ψ nr
    式中,x r、y r、u r分别为内齿圈在x向、y向、啮合线方向线位移;α r为内齿圈-行星轮啮合角;
    行星架-行星轮在x向、y向、行星架切向(u c)相对位移:
    x向:δ cnx=x c-x n-u ccosψ n
    y向:δ cny=y c-y n+u ccosψ n
    u c向:δ cnu=(x n-x c)sinψ n+(y c-y n)cosψ n+u c
    式中,x c、y c、u c分别为行星架在x向、y向、切向线位移
    步骤S13:建立行星轮系运动微分方程,其具体步骤如下:
    太阳轮运动方程:
    Figure PCTCN2021110006-appb-100005
    行星架运动方程:
    Figure PCTCN2021110006-appb-100006
    齿圈运动方程:
    Figure PCTCN2021110006-appb-100007
    第n个行星齿轮运动方程:
    Figure PCTCN2021110006-appb-100008
    式中,m i、I i、r i(i=s,c,r,1,...,n)为各构件质量、转动惯量和基圆半径;k i为各构件平动支撑刚度;k sn、k rn分别为太阳轮-行星轮、行星轮-齿圈的啮合刚度;k st、k ct、k rt分别为太阳轮、行星架、齿圈的切向支撑刚度。
  3. 根据权利要求1所述的分析方法,其特征在于,所述步骤S2建立三级传动系统动力学模型的具体步骤如下:
    步骤S21:分析三级行星轮系之间的耦合关系,即第一级行星架与第二级太阳轮、第一级内齿圈与第二级内齿圈第二级行星架与第三级太阳轮、第二级内齿圈与第三级内齿圈之间存在相互的作用力与力矩,得到其相对位移关系:
    (1)第一级齿圈与第二级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100009
    方向的投影为:
    Figure PCTCN2021110006-appb-100010
    (2)第一级齿圈与第二级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100011
    方向的投影为:
    Figure PCTCN2021110006-appb-100012
    (3)第一级齿圈与第二级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100013
    方向的投影为:
    Figure PCTCN2021110006-appb-100014
    (4)第一级齿圈与第二级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100015
    方向的投影为:
    Figure PCTCN2021110006-appb-100016
    (5)第一级行星架与第二级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100017
    方向的投影为:
    Figure PCTCN2021110006-appb-100018
    (6)第一级行星架与第二级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100019
    方向的投影为:
    Figure PCTCN2021110006-appb-100020
    (7)第一级行星架与第二级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100021
    方向的投影为:
    Figure PCTCN2021110006-appb-100022
    (8)第二级行星架与第三级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100023
    方向的投影为:
    Figure PCTCN2021110006-appb-100024
    (9)第二级齿圈与第三级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100025
    方向的投影为:
    Figure PCTCN2021110006-appb-100026
    (10)第二级齿圈与第三级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100027
    方向的投影为:
    Figure PCTCN2021110006-appb-100028
    (11)第二级齿圈与第三级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100029
    方向的投影为:
    Figure PCTCN2021110006-appb-100030
    (12)第二级齿圈与第三级齿圈相对位移沿
    Figure PCTCN2021110006-appb-100031
    方向的投影为:
    Figure PCTCN2021110006-appb-100032
    (13)第二级行星架与第三级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100033
    方向的投影为:
    Figure PCTCN2021110006-appb-100034
    (14)第二级行星架与第三级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100035
    方向的投影为:
    Figure PCTCN2021110006-appb-100036
    (15)第二级行星架与第三级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100037
    方向的投影为:
    Figure PCTCN2021110006-appb-100038
    (16)第二级行星架与第三级太阳轮相对位移沿
    Figure PCTCN2021110006-appb-100039
    方向的投影为:
    Figure PCTCN2021110006-appb-100040
    步骤S22:根据Lagrange方程,分别建立系统的动能、势能方程及三级行星齿轮传动系统的动力学模型,其表达式如下:
    动能方程:
    Figure PCTCN2021110006-appb-100041
    势能方程:
    Figure PCTCN2021110006-appb-100042
    第一级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100043
    第一级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100044
    第一级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100045
    第一级n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100046
    第二级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100047
    第二级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100048
    第二级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100049
    第二级n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100050
    第三级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100051
    第三级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100052
    第三级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100053
    第三级第n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100054
    整理后得到矩阵形式的无阻尼系统动力学方程:
    Figure PCTCN2021110006-appb-100055
    其中,各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角,且
    δ sn=u s-u ccosα s+u n
    δ rn=-u ccosα r-u n
    δ sn、δ rn分别为第n个行星轮与太阳轮及内齿圈沿啮合线方向的位移分量。
    Figure PCTCN2021110006-appb-100056
    分别为1-2级,2-3级间的耦合相对位移;k 12,k 23为1-2级、2-3级间的耦合刚度,
    Figure PCTCN2021110006-appb-100057
    分别为1-2级,2-3级间的联轴器半径,k r为齿圈切向支撑刚度,T r,T c,T s为齿圈、行星架和太阳轮的扭矩。
  4. 根据权利要求1所述的分析方法,其特征在于,所述步骤S3基于时变啮合刚度、动态传递误差、啮合相位建立三级齿轮传动系统动力学模型的建模具体步骤如下:
    步骤S31:基于时变啮合刚度、动态传递误差、啮合相位建立的三级齿轮传动系统的动力学模型:
    第一级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100058
    第一级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100059
    第一级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100060
    第一级n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100061
    第二级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100062
    第二级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100063
    第二级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100064
    第二级n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100065
    第三级行星架的动力学方程:
    Figure PCTCN2021110006-appb-100066
    第三级内齿圈的动力学方程:
    Figure PCTCN2021110006-appb-100067
    第三级太阳轮的动力学方程:
    Figure PCTCN2021110006-appb-100068
    第三级第n个行星轮的动力学方程:
    Figure PCTCN2021110006-appb-100069
    系统振动微分方程组整理为矩阵形式:
    Figure PCTCN2021110006-appb-100070
    上式中,M为当量质量矩阵,q为广义坐标矩阵,C为阻尼矩阵,K(t)为时变刚度矩阵,e(t)为静态传递误差矩阵,F为载荷矩阵。各参量的上标Ⅰ、Ⅱ、Ⅲ分别为三级行星轮系的第1级、第2级和第3级;I c,I r,I s,I p分别为行星架、齿圈、太阳轮和行星轮的转动惯量,m p为行星轮质量,r r,r s,r p分别为齿圈、太阳轮和行星轮的基圆半径,r c为行星架的当量半径,u c,u r,u s分别为行星架、齿圈、太阳轮的位移,u n为第n个行星轮位移,k sn,k rn分别为第n个 行星轮与太阳轮、内齿圈的啮合刚度,α sr分别为太阳轮与行星轮、内齿圈与行星轮的啮合角。
    步骤S32:计算时变啮合刚度,其计算公式为:
    Figure PCTCN2021110006-appb-100071
    式中,T m为啮合周期,γ sn为第n个行星轮与第一个行星轮的相位(γ s1=0),γ sr为内外啮合的相位差,行星轮齿数分别为奇数和偶数时γ sr分别取1/2和0,ε rs分别为内外啮合重合度;
    步骤S33:计算啮合相位,其计算公式为:
    γ sn=γ rn=ψ nZ r/2π
    其中,γ sn为第n个行星齿轮的外啮合相位,γ rn为第n个行星齿轮的内啮合相位,ψ n为第n个行星齿轮与行星轮1的周向夹角,行星架逆时针旋转为+,顺时针旋转为-;
    步骤S34:计算动态传递误差,其计算公式为:
    Figure PCTCN2021110006-appb-100072
    式中,e(t)为齿轮静态传递误差,ω f和ψ f分别为齿轮转动频率和初相位,ω m
    Figure PCTCN2021110006-appb-100073
    分别为啮合频率和啮合初相位。对于行星齿轮其内外啮合误差可表示为:
    Figure PCTCN2021110006-appb-100074
    式中,e rn(t)、e sn(t)分别为齿轮内外啮合传递误差,E sn、E rn分别为内外啮合齿距累积总偏差的幅值;
    Figure PCTCN2021110006-appb-100075
    分别为内外啮合单齿对啮合切向偏差的幅值;ω s、ω m分别为太阳轮转频和啮合频率;
    Figure PCTCN2021110006-appb-100076
    为内外啮合初相位;ψ s为太阳轮回转初相位;
    Figure PCTCN2021110006-appb-100077
    为内外相位差。
  5. 根据权利要求1所述的分析方法,其特征在于,所述步骤S4基于Runger‐Kutta法求解三级行星齿轮传动系统动态特性,具体方法如下:
    四阶Runger-Kutta算法为:
    Figure PCTCN2021110006-appb-100078
    对动力学方程:
    Figure PCTCN2021110006-appb-100079
    将其转换为如下形式:
    Figure PCTCN2021110006-appb-100080
    Figure PCTCN2021110006-appb-100081
    I为与M阶数相同的单位矩阵,可将上式写成矩阵形式:
    Figure PCTCN2021110006-appb-100082
    Figure PCTCN2021110006-appb-100083
    Figure PCTCN2021110006-appb-100084
    将上式写成:
    Figure PCTCN2021110006-appb-100085
    利用数值积分方法分析行星齿轮系统的动态响应。
  6. 一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5任一项所述的一种多级行星齿轮结构动态特性的分析方法的步骤。
PCT/CN2021/110006 2021-07-23 2021-08-02 一种多级行星齿轮结构动态特性的分析方法 WO2023000376A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110835819.XA CN113609609A (zh) 2021-07-23 2021-07-23 一种多级行星齿轮结构动态特性的分析方法
CN202110835819.X 2021-07-23

Publications (1)

Publication Number Publication Date
WO2023000376A1 true WO2023000376A1 (zh) 2023-01-26

Family

ID=78338177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110006 WO2023000376A1 (zh) 2021-07-23 2021-08-02 一种多级行星齿轮结构动态特性的分析方法

Country Status (2)

Country Link
CN (1) CN113609609A (zh)
WO (1) WO2023000376A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341105A (zh) * 2023-03-13 2023-06-27 江苏省金象传动设备股份有限公司 多源激励下人字齿行星传动系统动力学的建模方法
CN116611190A (zh) * 2023-07-20 2023-08-18 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116663328A (zh) * 2023-07-26 2023-08-29 河北工业大学 齿轮箱均载特性计算方法、装置、设备及介质
CN116701828A (zh) * 2023-08-04 2023-09-05 宁波东力传动设备有限公司 一种不确定性变负载齿轮传动系统动力学响应求解方法
CN117330297A (zh) * 2023-08-29 2024-01-02 大连海事大学 行星轮偏心误差作用下的太阳轮浮动轨迹测试评价方法
CN117807721A (zh) * 2023-12-11 2024-04-02 中南大学 一种考虑锥齿轮啮合点变化的动力学建模方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115470584B (zh) * 2022-09-14 2024-04-16 重庆电子工程职业学院 应用于行星齿轮与滚动轴承耦合系统的动力学建模方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069380A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 車両用遊星歯車式多段変速機
US7991598B1 (en) * 2005-08-01 2011-08-02 The Mathworks, Inc. Method and system for modeling a mechanical system
CN102968537A (zh) * 2012-11-30 2013-03-13 北京航空航天大学 一种行星齿轮传动系统扭转振动固有特性分析方法
CN109241553A (zh) * 2018-07-18 2019-01-18 北京空间飞行器总体设计部 一种机械臂关节实时动力学建模方法
CN110083994A (zh) * 2019-05-31 2019-08-02 吉林大学 一种行星混联式混合动力系统扭振优化方法
CN110162909A (zh) * 2019-05-30 2019-08-23 东北大学 一种渐开线直齿轮传动系统动态特性求解方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171238A (ja) * 1998-12-08 2000-06-23 Harmonic Drive Syst Ind Co Ltd 遊星歯車装置の性能予測方法
JP4916761B2 (ja) * 2006-05-02 2012-04-18 Ntn株式会社 遊星運動下の転がり軸受の動力学解析方法
CN106704491A (zh) * 2015-11-17 2017-05-24 黑龙江恒能自控科技有限公司 一种基于啮合相位分析的盾构机减速器设计方法
CN107341313B (zh) * 2017-07-10 2020-06-23 浙江理工大学 基于adams的行星轮系非线性动力学建模方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069380A (ja) * 2003-08-25 2005-03-17 Toyota Motor Corp 車両用遊星歯車式多段変速機
US7991598B1 (en) * 2005-08-01 2011-08-02 The Mathworks, Inc. Method and system for modeling a mechanical system
CN102968537A (zh) * 2012-11-30 2013-03-13 北京航空航天大学 一种行星齿轮传动系统扭转振动固有特性分析方法
CN109241553A (zh) * 2018-07-18 2019-01-18 北京空间飞行器总体设计部 一种机械臂关节实时动力学建模方法
CN110162909A (zh) * 2019-05-30 2019-08-23 东北大学 一种渐开线直齿轮传动系统动态特性求解方法
CN110083994A (zh) * 2019-05-31 2019-08-02 吉林大学 一种行星混联式混合动力系统扭振优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO YICONG, FENG YIXIONG, TAN JIANRONG, SHI JIAN: "Dynamic Characteristics of Multi-stage Planetary Gears of Shield Tunnelling Machine Based on Planet Mesh Phasing Analysis", JIXIE GONEHENG XUEBAI - CHINESE JOURNAL OF MECHANICAL ENGINEERING, JIXIE GONGYE CHUBANCHE, BEIJING, CN, vol. 47, no. 23, 31 December 2011 (2011-12-31), CN , pages 144, XP093027409, ISSN: 0577-6686, DOI: 10.3901/JME.2011.23.144 *
YUMIN PENG; ZHONGQUAN LUAN; CHAO MA; SHAOHONG WANG: "Nonlinear dynamics analysis of planetary gear systemin large-scale wind power generation equipment", 2017 13TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), IEEE, 20 October 2017 (2017-10-20), pages 63 - 68, XP033305252, DOI: 10.1109/ICEMI.2017.8265714 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116341105A (zh) * 2023-03-13 2023-06-27 江苏省金象传动设备股份有限公司 多源激励下人字齿行星传动系统动力学的建模方法
CN116611190A (zh) * 2023-07-20 2023-08-18 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116611190B (zh) * 2023-07-20 2023-10-03 宁波东力传动设备有限公司 一种轻量化的多级减速器设计方法
CN116663328A (zh) * 2023-07-26 2023-08-29 河北工业大学 齿轮箱均载特性计算方法、装置、设备及介质
CN116663328B (zh) * 2023-07-26 2023-10-20 河北工业大学 齿轮箱均载特性计算方法、装置、设备及介质
CN116701828A (zh) * 2023-08-04 2023-09-05 宁波东力传动设备有限公司 一种不确定性变负载齿轮传动系统动力学响应求解方法
CN116701828B (zh) * 2023-08-04 2023-10-31 宁波东力传动设备有限公司 一种不确定性变负载齿轮传动系统动力学响应求解方法
CN117330297A (zh) * 2023-08-29 2024-01-02 大连海事大学 行星轮偏心误差作用下的太阳轮浮动轨迹测试评价方法
CN117807721A (zh) * 2023-12-11 2024-04-02 中南大学 一种考虑锥齿轮啮合点变化的动力学建模方法

Also Published As

Publication number Publication date
CN113609609A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
WO2023000376A1 (zh) 一种多级行星齿轮结构动态特性的分析方法
Lin et al. Design of a two-stage cycloidal gear reducer with tooth modifications
Abousleiman et al. Modeling of spur and helical gear planetary drives with flexible ring gears and planet carriers
Freudenstein An application of Boolean algebra to the motion of epicyclic drives
Hu et al. A load distribution model for planetary gear sets
CN107341313B (zh) 基于adams的行星轮系非线性动力学建模方法
Zhai et al. Influences of carrier assembly errors on the dynamic characteristics for wind turbine gearbox
CN116992702B (zh) 内齿轮副齿背侧啮合刚度的确定方法、装置、设备及介质
CN113276118A (zh) 一种机器人低速运动非线性动力学特性分析与建模方法
Liu et al. Dynamic modeling and analysis of high-speed flexible planetary gear transmission systems
Zhang et al. Three‐Dimensional Modeling and Structured Vibration Modes of Two‐Stage Helical Planetary Gears Used in Cranes
Qiu et al. Design and free vibration characteristics of linkage planetary gear trains
Brassitos et al. Dynamics of integrated planetary geared bearings
Wei et al. Modeling and dynamic characteristics of planetary gear transmission in non-inertial system of aerospace environment
Nelson et al. Similarity and equivalence of nutating mechanisms to bevel epicyclic gear trains for modeling and analysis
Dashen et al. Singularities in Forward Multiparticle Scattering Amplitudes and the S‐Matrix Interpretation of Higher Virial Coefficients
Xue et al. Vibration response from the planetary gear with flexible ring gear
Dong et al. Dynamic modeling of planetary gear train for vibration characteristic analysis
CN116127669A (zh) 一种基于超参数单元的管路系统结构评估方法
Guan et al. Dynamic analysis of spur gear pair established by flexible ring and time-varying mesh model
CN110866316B (zh) 基于六自由度齿轮啮合模型的减速器键合图模型优化方法
Huo et al. Torsional vibration modelling of a two-stage closed differential planetary gear train
Chen et al. Dynamic response investigation of high-speed structural redundant parallel manipulator considering multiple spatial revolute joints with radial and axial clearances
Cao et al. Dynamic transmission accuracy analysis of an RV reducer rigid-flexible coupled effect
CN113326579B (zh) 谐波传动系统动力学模型的建立方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950621

Country of ref document: EP

Kind code of ref document: A1