Nothing Special   »   [go: up one dir, main page]

WO2023095739A1 - Hydraulic system for industrial vehicle - Google Patents

Hydraulic system for industrial vehicle Download PDF

Info

Publication number
WO2023095739A1
WO2023095739A1 PCT/JP2022/042973 JP2022042973W WO2023095739A1 WO 2023095739 A1 WO2023095739 A1 WO 2023095739A1 JP 2022042973 W JP2022042973 W JP 2022042973W WO 2023095739 A1 WO2023095739 A1 WO 2023095739A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
steering
cargo handling
valve
line
Prior art date
Application number
PCT/JP2022/042973
Other languages
French (fr)
Japanese (ja)
Inventor
裕康 小寺
政浩 松尾
崇 三木
祐介 藤本
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to CN202280067083.9A priority Critical patent/CN118103573A/en
Publication of WO2023095739A1 publication Critical patent/WO2023095739A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/07Supply of pressurised fluid for steering also supplying other consumers ; control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/20Means for actuating or controlling masts, platforms, or forks
    • B66F9/22Hydraulic devices or systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member

Definitions

  • This disclosure relates to hydraulic systems for industrial vehicles.
  • Industrial vehicles such as wheel loaders and forklifts are equipped with a hydraulic system that includes a steering circuit for changing the direction of travel and a cargo handling circuit for moving the bucket and forks.
  • Patent Document 1 discloses a hydraulic system for a forklift in which a variable displacement steering pump is used in the steering circuit and a variable displacement cargo handling pump is used in the cargo handling circuit.
  • hydraulic fluid is supplied from the steering pump to the steering actuator via the steering supply line and steering valve, and in the cargo handling circuit, the cargo handling pump supplies the cargo handling supply line and two cargo handling control valves to the two cargo handling actuators. oil is supplied.
  • a merging line branches off from the steering supply line, and this merging line is connected to the cargo handling supply line.
  • a switching valve is provided in the merging line. The switching valve shuts off the merging line when a cargo handling operation is not performed, and opens the merging line when a cargo handling operation is performed. That is, when the merging line is released by the switching valve, the hydraulic oil discharged from the steering pump is combined with the hydraulic oil discharged from the cargo handling pump and supplied to the cargo handling actuator.
  • hydraulic fluid discharged from the steering pump is supplied to both the steering actuator and the cargo handling actuator.
  • the displacement of the steering pump is changed by the steering regulator, and the capacity of the cargo handling pump is changed by the cargo handling regulator. From the viewpoint of joining the hydraulic fluid discharged from the steering pump to the hydraulic fluid discharged from the cargo handling pump as described above, the displacement of the steering pump and the displacement of the cargo handling pump are controlled in the same manner.
  • load sensing control is adopted as the control method.
  • the maximum load pressure which is the higher of the load pressures of the two cargo handling actuators, is input to the cargo handling regulator as the load sensing pressure.
  • the cargo handling regulator controls the displacement of the cargo handling pump so that the differential pressure between the load sensing pressure and the discharge pressure of the cargo handling pump is constant.
  • the higher of the load pressure of the steering actuator and the maximum load pressure of the cargo handling actuator is input to the steering regulator as the load sensing pressure.
  • the steering regulator controls the displacement of the steering pump so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump is constant. Therefore, when steering operation and cargo handling operation are performed at the same time, the displacement of the steering pump changes according to the higher demand.
  • an object of the present disclosure is to provide a hydraulic system for an industrial vehicle that can control the displacement of a cargo handling pump by positive control and appropriately control the displacement of a steering pump.
  • the present disclosure provides a variable displacement steering pump that supplies hydraulic fluid to a steering actuator via a steering supply line and a steering valve, and hydraulic fluid to at least one cargo handling actuator via a cargo handling supply line and at least one cargo handling control valve.
  • a variable displacement cargo handling pump that supplies the cargo handling supply line, a junction line branched from the steering supply line and connected to the cargo handling supply line, and a junction line provided in the junction line that shuts off the junction line when no cargo handling operation is performed. Then, a priority valve for opening the merging line when a cargo handling operation is performed, and a cargo handling request command pressure that indicates a positive correlation with the operation amount of the cargo handling operation are input.
  • a steering load pressure that is the pressure downstream of a throttle that determines the amount of hydraulic fluid supplied to the steering actuator in the steering valve; and the at least one cargo handling in the cargo handling supply line.
  • the higher one of the cargo handling load pressures which are the pressures on the upstream side of the control valve, is input as the load sensing pressure, and the pressure difference between the load sensing pressure and the discharge pressure of the steering pump is kept constant. and a steering regulator for controlling displacement.
  • the displacement of the cargo handling pump can be positively controlled, and the displacement of the steering pump can be appropriately controlled.
  • FIG. 1 is a schematic configuration diagram of a hydraulic system of an industrial vehicle according to one embodiment
  • FIG. 4 is an enlarged view of a steering circuit of the hydraulic system
  • FIG. 4 is an enlarged view of a cargo handling circuit of the hydraulic system
  • FIG. It is an operation system circuit diagram of the said cargo-handling circuit.
  • FIG. 1 shows a hydraulic system 1 for an industrial vehicle according to one embodiment.
  • the industrial vehicle is a wheel loader that includes a hoist (also called an arm or boom) and a bucket.
  • the industrial vehicle may be a forklift or the like.
  • the hydraulic system 1 includes a steering circuit 2 for changing the direction of travel and a cargo handling circuit 3 for moving the bucket.
  • a front vehicle body including front wheels and a rear vehicle body including rear wheels are connected so as to be able to swing horizontally.
  • a hoist is connected to the front vehicle body so as to be able to swing in the vertical direction, and a bucket is connected to the tip of the hoist so as to be able to swing in the vertical direction.
  • the steering circuit 2 includes a steering pump 21, a steering valve 23 and a steering actuator 11, as shown in FIG.
  • the steering pump 21 supplies hydraulic fluid to the steering actuator 11 via a steering supply line 22 and a steering valve 23 .
  • the steering actuator 11 is composed of a pair of hydraulic cylinders provided on both left and right sides of the connecting portion between the front vehicle body and the rear vehicle body.
  • the steering actuator 11 may be composed of a single hydraulic cylinder. If the industrial vehicle is a forklift, the steering actuator 11 is composed of a single double-rod hydraulic cylinder.
  • the steering pump 21 is connected to the steering valve 23 by a steering supply line 22, and the steering valve 23 is connected to the steering actuator 11 by a pair of supply/discharge lines 24. Also, the steering valve 23 is connected to the tank by a tank line 25 .
  • the steering valve 23 has a throttle portion 23 a that determines the amount of hydraulic oil supplied to the steering actuator 11 . Both ends of an intermediate line 27 interposed between the steering supply line 22 and the supply/discharge line 24 are also connected to the steering valve 23 . A check valve 28 is provided in the intermediate line 27 .
  • the steering valve 23 shifts from the neutral position to the right turning position or the left turning position when a handle provided in the driver's cab of the industrial vehicle is operated.
  • the steering supply line 22 both ends of the intermediate line 27, the pair of supply/discharge lines 24 and the tank line 25 are all blocked.
  • the steering supply line 22 communicates with one supply/discharge line 24 via the intermediate line 27
  • the other supply/discharge line 24 communicates with the tank line 25 .
  • the opening area of the throttle portion 23a increases as the amount of operation of the handle increases.
  • the steering valve 23 has a pair of pilot ports, and these pilot ports are connected to the Orbitroll (registered trademark) 26 by pilot lines 26a and 26b.
  • the orbit roll 26 is connected to the steering wheel, and outputs a pilot pressure corresponding to the amount of operation of the steering wheel to the pilot port of the steering valve 23 through a pilot line 26a or 26b in the rotating direction of the steering wheel.
  • a load pressure line 64 and a tank line 68 are also connected to the steering valve 23 .
  • the load pressure line 64 communicates with the tank line 68 when the steering valve 23 is in the neutral position.
  • the steering load pressure which is the pressure on the downstream side of the throttle portion 23a, is introduced to the load pressure line 64 .
  • a compensator 61 is provided in the steering supply line 22 .
  • the compensator 61 opens the steering supply line 22 at the neutral position, and the opening area of the compensator 61 decreases as the compensator 61 shifts from the neutral position.
  • the pressure on the upstream side of the throttle portion 23a of the steering valve 23 and the above-described steering load pressure act on the compensator 61 so as to oppose each other.
  • the steering load pressure is guided to the compensator 61 through the load pressure line 64 described above, and acts on the compensator 61 so as to shift in the direction of increasing the opening area.
  • the pressure on the upstream side of the throttle portion 23a in the steering valve 23 is guided to the compensator 61 through the supply pressure line 62, and acts on the compensator 61 so as to shift the opening area in the direction of decreasing.
  • the supply pressure line 62 branches off from the steering supply line 22 downstream of the compensator 61 .
  • the supply pressure line 62 and the load pressure line 64 are provided with the throttles 63 and 65, respectively, but the throttles 63 and 65 can be omitted.
  • the opening area of the compensator 61 decreases as the differential pressure between the pressure on the upstream side of the throttle portion 23a of the steering valve 23 and the steering load pressure increases.
  • a relief line 66 branches from the load pressure line 64, and a relief valve 67 provided in the relief line 66 keeps the pressure of the load pressure line 64 below a predetermined value.
  • the steering pump 21 described above is driven by the prime mover.
  • the prime mover is, for example, an internal combustion engine or an electric motor.
  • the prime mover also drives a cargo handling pump 31 and a sub-pump 15, which will be described later.
  • the steering pump 21 is a variable displacement pump.
  • the steering pump 21 is a swash plate pump having a swash plate 21a.
  • the steering pump 21 may be a tilted shaft pump.
  • the relief line 17 branches off from a portion of the confluence line 71 on the upstream side of the priority valve 72, which will be described later. kept below.
  • the relief line 17 may branch off from the steering supply line 22 .
  • the displacement of the steering pump 21 is changed by the steering regulator 4.
  • a load sensing pressure is input to the steering regulator 4 through a load sensing line 99 .
  • the steering regulator 4 controls the displacement of the steering pump 21 so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump 21 is constant.
  • the steering regulator 4 is configured as shown in FIG. 2, but the configuration of the steering regulator 4 is not limited to this and can be changed as appropriate.
  • the steering regulator 4 includes a spring 41 that biases the swash plate 21a in the capacity increasing direction, and a piston 42 that presses the swash plate 21a against the spring 41 in the capacity decreasing direction.
  • a pressure receiving chamber 43 for applying control pressure to the piston 42 is formed in the steering regulator 4 .
  • the steering regulator 4 includes a load sensing valve 45 connected to the pressure receiving chamber 43 by a control pressure line 44 and a cutoff valve 48 provided on the control pressure line 44 .
  • the cutoff valve 48 can be omitted.
  • the load sensing valve 45 is connected to the steering supply line 22 by a pump pressure line 46 and is connected to the tank by a tank line 47 . Further, the load sensing pressure and the discharge pressure of the steering pump 21 act on the load sensing valve 45 so as to oppose each other.
  • the load sensing valve 45 operates so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump 21 is constant, and the control pressure thus adjusted is introduced into the pressure receiving chamber 43 through the control pressure line 44. .
  • the cut-off valve 48 introduces the discharge pressure of the steering pump 21 into the pressure receiving chamber 43 to minimize the displacement of the steering pump 21 when the discharge pressure of the steering pump 21 exceeds a set value.
  • the cargo handling circuit 3 includes a cargo handling pump 31, two cargo handling control valves 33, and two cargo handling actuators 12, as shown in FIG.
  • the cargo handling pump 31 supplies hydraulic oil to the two cargo handling actuators 12 via the cargo handling supply line 32 and the two cargo handling control valves 33 .
  • the two cargo handling actuators 12 are the bucket actuator 13 and the hoist actuator 14 .
  • the bucket actuator 13 is composed of a single hydraulic cylinder
  • the hoist actuator 14 is composed of a pair of hydraulic cylinders.
  • the bucket actuator 13 may be composed of a pair of hydraulic cylinders.
  • the two cargo control valves 33 are a bucket control valve 34 and a hoist control valve 35 .
  • the cargo handling pump 31 is connected to the bucket control valve 34 and the hoist control valve 35 by the cargo handling supply line 32 .
  • the cargo handling supply line 32 includes a common passage 32 a extending from the cargo handling pump 31 , a bucket branch passage 32 b extending from the downstream end of the common passage 32 a to the bucket control valve 34 , and extending from the downstream end of the common passage 32 a to the hoist control valve 35 .
  • hoist branch 32c includes hoist branch 32c.
  • the bucket branch passage 32b and the hoist branch passage 32c are provided with check valves 32d and 32e, respectively.
  • the hoist branch passage 32c is provided with a bucket priority valve 32f for limiting the supply of hydraulic oil to the hoist actuator 14 when the bucket operation and the hoist operation are performed simultaneously.
  • the bucket priority valve 32f opens the hoist branch passage 32c at the neutral position, and the opening area of the bucket priority valve 32f decreases as the bucket priority valve 32f shifts from the neutral position.
  • the bucket priority valve 32f is of a pilot type and has a pilot port. As the pilot pressure introduced to the pilot port of the bucket priority valve 32f increases, the opening area of the bucket priority valve 32f decreases.
  • the bucket priority valve 32f may be of an electromagnetic type.
  • the bucket control valve 34 described above is connected to the bucket actuator 13 by a pair of supply/discharge lines 36 , and the hoist control valve 35 is connected to the hoist actuator 14 by a pair of supply/discharge lines 37 . Also, the bucket control valve 34 and the hoist control valve 35 are connected to the tank by a tank line 38 .
  • the bucket control valve 34 shifts from the neutral position to the first operating position or the second operating position.
  • the cargo handling supply line 32, the pair of supply and discharge lines 36 and the tank line 38 are all blocked.
  • the cargo handling supply line 32 communicates with one supply/discharge line 36
  • the other supply/discharge line 36 communicates with the tank line 38 .
  • the bucket control valve 34 is of a pilot type and has a pair of pilot ports. When the pilot pressure is introduced into one of the pilot ports, the bucket control valve 34 shifts from the neutral position to the first operating position, and the opening area of the bucket control valve 34 increases as the pilot pressure increases. Conversely, when pilot pressure is introduced to the other pilot port, bucket control valve 34 shifts from the neutral position to the second operating position, and the opening area of bucket control valve 34 increases as the pilot pressure increases.
  • the bucket control valve 34 may be of an electromagnetic type.
  • the hoist control valve 35 shifts from the neutral position to the first operating position or the second operating position. Additionally, the hoist control valve 35 also shifts between the second and third operating positions. In the neutral position, the cargo handling supply line 32, the pair of supply and discharge lines 37 and the tank line 38 are all blocked. At the first operating position or the second operating position, the cargo handling supply line 32 communicates with one supply/discharge line 37 , and the other supply/discharge line 37 communicates with the tank line 38 . In the third operating position, the supply and discharge lines 37 communicate with each other within the hoist control valve 35 .
  • the hoist control valve 35 is of a pilot type and has a pair of pilot ports.
  • pilot pressure is introduced into one of the pilot ports, the hoist control valve 35 shifts from the neutral position to the first operating position, and the opening area of the hoist control valve 35 increases as the pilot pressure increases.
  • pilot pressure is introduced into the other pilot port, the hoist control valve 35 shifts from the neutral position to the second operating position, and the opening area of the hoist control valve 35 increases as the pilot pressure increases.
  • the hoist control valve 35 may be electromagnetic.
  • a center bypass line 39 branches off from the common path 32a of the cargo handling supply line 32, and this center bypass line 39 passes through the bucket control valve 34 and the hoist control valve 35 and extends to the tank. .
  • the bucket control valve 34 and the hoist control valve 35 decrease the opening area on the center bypass line 39 as they shift from the neutral position to the first operating position or the second operating position.
  • the pilot port of the bucket control valve 34 is connected via a pair of pilot lines to a pair of proportional bucket solenoid valves 94 and 95
  • the pilot port of the hoist control valve 35 is connected via a pair of pilot lines to a pair of proportional bucket valves 94 and 95.
  • hoist electromagnetic proportional valves 96 and 97 are connected by the primary pressure line 16 to the auxiliary pump 15 (see FIGS. 1 and 3).
  • a relief line branches off from the primary pressure line 16, and the discharge pressure of the auxiliary pump 15 is maintained at a predetermined value by a relief valve provided in this relief line.
  • the primary pressure line 16 may be connected to the steering supply line 22 instead of the sub-pump 15, and a pressure reducing valve may be provided in the primary pressure line 16 to reduce the discharge pressure of the steering pump 21 and use it as the primary pressure.
  • each of the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 is a direct proportional type in which the command current and the secondary pressure exhibit a positive correlation.
  • each of the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 may be of the inverse proportional type in which the command current and the secondary pressure exhibit a negative correlation.
  • the driver's cab of the industrial vehicle is provided with a bucket operating device 92 and a hoist operating device 93 in addition to the steering wheel described above.
  • the bucket operation device 92 includes an operation lever for bucket operation
  • the hoist operation device 93 includes an operation lever for hoist operation.
  • each of the bucket operation device 92 and the hoist operation device 93 is an electric joystick that outputs an electric signal according to the tilting direction and tilting angle of the control lever (that is, the amount of bucket operation or hoist operation). . Electrical signals output from the bucket operation device 92 and the hoist operation device 93 are input to the control device 91 .
  • each of the bucket operation device 92 and the hoist operation device 93 may be a pilot operation valve that outputs a pilot pressure corresponding to the tilting direction and tilting angle of the operation lever.
  • the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 are omitted, and the pilot port of the bucket control valve 34 is connected by a pair of pilot lines to the bucket operation device 92, which is a pilot operation valve.
  • a pilot port of the hoist control valve 35 may be connected to a hoist operating device 93, which is a pilot operated valve, via a pair of pilot lines.
  • the control device 91 supplies a command current to the bucket electromagnetic proportional valve 94 or 95 corresponding to the tilting direction of the operation lever. Further, the control device 91 increases the command current as the operation amount of the bucket operation increases.
  • the secondary pressure output from one of the bucket solenoid proportional valves 94 (the one that swings the bucket upward) is also guided to the pilot port of the above-described bucket priority valve 32f as shown in FIG.
  • the control device 91 sends a command current to the hoist electromagnetic proportional valve 96 or 97 corresponding to the tilting direction of the operation lever. Further, the control device 91 increases the command current as the operation amount of the hoist operation increases.
  • the functions of the elements disclosed herein can be general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, configured or programmed to perform the functions disclosed. and/or combinations thereof.
  • a processor is considered a processing circuit or circuit because it includes transistors and other circuits.
  • a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions.
  • the hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions.
  • a circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
  • the cargo handling pump 31 described above is a variable displacement pump.
  • the cargo handling pump 31 is a swash plate pump having a swash plate 31a.
  • the cargo handling pump 31 may be a bent shaft pump.
  • a relief line 18 branches from the cargo handling supply line 32, and a relief valve 18a provided in the relief line 18 keeps the discharge pressure of the cargo handling pump 31 at a predetermined value or less.
  • the relief valve 18a also serves to keep the discharge pressure of the steering pump 21 below a predetermined value.
  • the capacity of the cargo handling pump 31 is changed by the cargo handling regulator 5 .
  • the cargo handling regulator 5 performs flow control using the flow control piston 56 and horsepower control using the horsepower control piston 57 .
  • the cargo handling regulator 5 may perform only flow rate control.
  • a cargo handling request command pressure is input to the cargo handling regulator 5 for flow rate control.
  • the cargo handling request command pressure will be described later in detail.
  • the cargo handling regulator 5 increases the displacement of the cargo handling pump 31 as the required cargo handling command pressure increases.
  • the cargo handling regulator 5 is configured as shown in FIG. 3, but the configuration of the cargo handling regulator 5 is not limited to this, and can be changed as appropriate.
  • the cargo handling regulator 5 includes a servo piston 51 connected to the swash plate 31a of the cargo handling pump 31 and an adjustment valve 52 for driving the servo piston 51, in addition to the flow control piston 56 and the horsepower control piston 57.
  • the cargo handling regulator 5 also includes a housing that slidably holds the flow control piston 56, the horsepower control piston 57, and the servo piston 51. As shown in FIG. Part of the housing may be integrated with the casing of the cargo pump 31 .
  • the cargo handling regulator 5 is formed with a first pressure receiving chamber 5a into which the discharge pressure of the cargo handling pump 31 is introduced and a second pressure receiving chamber 5b into which the control pressure is introduced.
  • the servo piston 51 has a first end exposed in the first pressure receiving chamber 5a and a second end exposed in the second pressure receiving chamber 5b and having a larger diameter than the first end.
  • the adjustment valve 52 is for adjusting the control pressure introduced into the second pressure receiving chamber 5b.
  • the regulating valve 52 includes a spool 53 that moves in a direction of decreasing the control pressure (capacity increasing direction, leftward in FIG. 3) and a direction of increasing the control pressure (capacity decreasing direction, rightward in FIG. 3), and a spool It includes a sleeve 54 that accommodates 53 .
  • the spool 53 is connected to the flow rate control piston 56 via a lever 56a, and is connected to the horsepower control piston 57 via a lever 57a.
  • the spool 53 moves in the capacity increasing direction as the flow control piston 56 moves forward, and moves in the capacity decreasing direction as the flow control piston 56 moves backward. Further, the spool 53 moves in the capacity decreasing direction as the horsepower control piston 57 advances, and moves in the capacity increasing direction as the flow rate control piston 56 moves backward.
  • the flow rate control piston 56 and the horsepower control piston 57 are configured so that the one that restricts the capacity to a small value (that is, the one that commands a smaller capacity) preferentially moves the spool 53 .
  • the sleeve 54 is connected with the servo piston 51 by a feedback lever 55 .
  • the sleeve 54 is formed with a pump port, a tank port, and an output port (the output port communicates with the second pressure receiving chamber 5b). port, or the output port is in communication with either the pump port or the tank port.
  • the cargo handling regulator 5 is formed with an operation chamber 5c for applying the cargo handling request command pressure to the flow rate control piston 56 .
  • the flow rate control piston 56 advances when the required cargo handling command pressure increases, and moves backward when the required cargo handling command pressure decreases.
  • the cargo handling regulator 5 is formed with an operating chamber 5 d for applying the discharge pressure of the cargo handling pump 31 to the horsepower control piston 57 . That is, the horsepower control piston 57 moves forward when the discharge pressure of the cargo handling pump 31 increases, and moves backward when the discharge pressure decreases.
  • the working chamber 5c is connected to the electromagnetic proportional valve 81 through the command pressure line 82.
  • the electromagnetic proportional valve 81 is connected to the sub-pump 15 (the steering supply line 22 in the case of the modified example described above) through the primary pressure line 16 described above.
  • the proportional solenoid valve 81 is of a direct proportional type in which the command current and the secondary pressure exhibit a positive correlation.
  • the electromagnetic proportional valve 81 may be of an inverse proportional type in which the command current and the secondary pressure exhibit a negative correlation.
  • the electromagnetic proportional valve 81 is controlled by the control device 91 described above, and outputs the secondary pressure to the working chamber 5c as the cargo handling request command pressure.
  • the control device 91 sends a command current to the electromagnetic proportional valve 81 when a cargo handling operation (bucket operation or hoist operation) is performed.
  • the control device 91 increases the command current as the operation amount of the cargo handling operation increases. That is, the cargo handling request command pressure exhibits a positive correlation with the manipulated variable of the cargo handling operation.
  • the load sensing line 99 described above is connected to the output port of the high pressure selection valve 98, as shown in FIG.
  • One of the pair of input ports of the high pressure selection valve 98 is connected to the load pressure line 64 by an input line 88, and the other is connected to the cargo handling/supply line 32 by an input line 89 (see FIG. 3).
  • the high pressure selection valve 98 selects the higher one of the cargo handling load pressure, which is the pressure on the upstream side of the cargo handling control valve 33 in the cargo handling supply line 32 and the steering load pressure, and outputs it to the steering regulator 4 .
  • the higher one of the cargo handling load pressure and the steering request command pressure is input to the steering regulator 4 as the aforementioned load sensing pressure.
  • a junction line 71 branches off from the steering supply line 22 upstream of the compensator 61, and the junction line 71 is connected to the cargo handling supply line 32.
  • a priority valve 72 is provided in the merge line 71 .
  • the priority valve 72 shuts off the merging line 71 when cargo handling operations are not performed, and opens the merging line 71 when cargo handling operations are performed.
  • the priority valve 72 is piloted and has a first pilot port 72a and a second pilot port 72b.
  • the priority valve 72 may be of an electromagnetic type.
  • the priority valve 72 blocks the confluence line 71 at the neutral position, and the opening area of the priority valve 72 increases as the priority valve 72 shifts from the neutral position.
  • the priority valve 72 has a spring 72c (see FIG. 2) for maintaining the priority valve 72 in a neutral position.
  • the first pilot port 72a is connected to the tank by a pilot line 73. As shown in FIG.
  • the pilot line 73 is provided with a check valve 74 and is connected to a bypass line 75 that bypasses the check valve 74 .
  • a throttle 76 is provided in the bypass line 75 .
  • the second pilot port 72b is for shifting the priority valve 72 in the direction of increasing the opening area.
  • a second pilot port 72 b of the priority valve 72 is connected to the switching valve 84 by a pilot line 77 .
  • the switching valve 84 is connected to the command pressure line 82 by a pilot line 83 and is connected to the tank by a tank line 85 .
  • the pilot line 83 may be connected to the working chamber 5 c of the cargo handling regulator 5 instead of the command pressure line 82 .
  • the switching valve 84 switches whether or not to output the cargo handling request command pressure, which is the secondary pressure of the electromagnetic proportional valve 81 , to the second pilot port 72 b of the priority valve 72 .
  • the switching valve 84 is of a pilot type and has a first pilot port 84a and a second pilot port 84b.
  • the switching valve 84 may be of an electromagnetic type.
  • the switching valve 84 shifts between a neutral position in which the pilot line 77 communicates with the tank line 85 and an operating position in which the pilot line 77 communicates with the pilot line 83 .
  • the switching valve 84 has a spring 84c for maintaining the switching valve 84 in a neutral position.
  • the first pilot port 84a is located on the same side as the spring 84c and the second pilot port 84b is located on the opposite side of the spring 84c.
  • the first pilot port 84 a is connected to the load pressure line 64 by a pilot line 86 . That is, the steering load pressure is introduced to the first pilot port 84a. In this embodiment, a portion of the pilot line 86 and a portion of the input line 88 described above form a common flow path.
  • the second pilot port 84 b is connected to the cargo handling/supply line 32 by a pilot line 87 . That is, cargo handling load pressure is introduced to the second pilot port 84b. In this embodiment, a portion of the pilot line 87 and a portion of the input line 89 described above form a common flow path.
  • the switching valve 84 When the cargo handling load pressure is smaller than the reference pressure obtained by adding a predetermined value (pressure corresponding to the biasing force of the spring 84c) to the steering load pressure, the switching valve 84 is positioned at the neutral position to set the cargo handling request command pressure to the second pilot. No output to port 84b. On the other hand, when the cargo handling request command pressure is higher than the reference pressure, the switching valve 84 shifts to the operating position to output the cargo handling request command pressure to the second pilot port 84b.
  • the cargo handling demand command pressure that exhibits a positive correlation with the operation amount of the cargo handling operation is input to the cargo handling regulator 5, so the displacement of the cargo handling pump 31 is controlled by positive control. can do.
  • the higher one of the steering load pressure and the cargo handling load pressure is input to the steering regulator 4 as the load sensing pressure.
  • the steering load pressure is input to the steering regulator 4, so the displacement of the steering pump 21 changes according to the steering load pressure.
  • the cargo handling load pressure is input to the steering regulator 4, so that the displacement of the steering pump 21 changes according to the cargo handling load pressure. Hydraulic oil is supplied to the cargo handling actuator 12 .
  • the displacement of the steering pump 21 changes according to the higher demand. Therefore, the displacement of the steering pump 21 can be appropriately controlled.
  • the priority valve 72 provided in the merging line 71 is of a pilot type, so the priority valve 72 can be mechanically operated. Moreover, since the load-handling request command pressure output to the second pilot port 82b of the priority valve 72 has a positive correlation with the amount of load-handling operation, the opening area of the priority valve 72 increases as the load-handling operation amount decreases. becomes smaller. Therefore, the hydraulic oil discharged from the steering pump 21 can be preferentially supplied to the steering actuator 11 .
  • the number of cargo handling actuators 12 and the number of cargo handling control valves 33 in the cargo handling circuit 3 of the hydraulic system 1 may be one, or three or more.
  • each of the bucket operation device 92 and the hoist operation device 93 is a pilot operation valve
  • the electromagnetic proportional valve 81 may be omitted, and the pilot pressure output from the bucket operation device 92 and the pilot pressure output from the hoist operation device 93 may be omitted.
  • the highest pilot pressure among the pressures may be guided to the working chamber 5c of the cargo handling regulator 5 as the cargo handling demand command pressure.
  • the switching valve 84 does not necessarily have to be an on-off valve, and may have a function of a pressure reducing valve capable of reducing the cargo handling operation request command pressure.
  • variable displacement steering pump that supplies hydraulic fluid to a steering actuator via a steering supply line and a steering valve, and hydraulic fluid to at least one cargo handling actuator via a cargo handling supply line and at least one cargo handling control valve.
  • a variable displacement cargo handling pump that supplies the cargo handling supply line, a junction line branched from the steering supply line and connected to the cargo handling supply line, and a junction line provided in the junction line that shuts off the junction line when no cargo handling operation is performed. Then, a priority valve for opening the merging line when a cargo handling operation is performed, and a cargo handling request command pressure that indicates a positive correlation with the operation amount of the cargo handling operation are input.
  • a steering load pressure that is the pressure downstream of a throttle that determines the amount of hydraulic fluid supplied to the steering actuator in the steering valve; and the at least one cargo handling in the cargo handling supply line.
  • the higher one of the cargo handling load pressures which are the pressures on the upstream side of the control valve, is input as the load sensing pressure, and the pressure difference between the load sensing pressure and the discharge pressure of the steering pump is kept constant. and a steering regulator for controlling displacement.
  • the cargo handling demand command pressure that exhibits a positive correlation with the operation amount of the cargo handling operation is input to the cargo handling regulator, so the capacity of the cargo handling pump can be controlled by positive control.
  • the higher one of the steering load pressure and the cargo handling load pressure is input to the steering regulator as the load sensing pressure.
  • the steering load pressure is input to the steering regulator, so the displacement of the steering pump changes according to the steering load pressure.
  • the cargo handling load pressure is input to the steering regulator, so the displacement of the steering pump changes according to the cargo handling load pressure. oil is supplied.
  • the displacement of the steering pump changes according to the higher demand. Therefore, the displacement of the steering pump can be appropriately controlled.
  • the above hydraulic system may further include a high pressure selection valve that selects the higher one of the steering load pressure and the cargo handling load pressure and outputs it to the steering regulator.
  • the priority valve blocks the merging line at a neutral position, and has a pilot port that shifts the priority valve in a direction in which the opening area increases.
  • a switching valve for switching whether or not to output to a pilot port, wherein when the cargo handling load pressure is smaller than a reference pressure obtained by adding a predetermined value to the steering load pressure, the cargo handling request command pressure is not output and the cargo handling demand command pressure is not output.
  • a switching valve may be further provided for outputting the cargo handling request command pressure when the load pressure is higher than the reference pressure. According to this configuration, the priority valve can be mechanically operated.
  • the demand command pressure for cargo handling output to the pilot port of the priority valve shows a positive correlation with the amount of cargo handling operation. can be preferentially supplied to the steering actuator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Civil Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Power Steering Mechanism (AREA)

Abstract

A hydraulic system (1) includes: a variable-capacity type steering pump (21) which supplies working oil to a steering actuator (11); a variable-capacity type cargo pump (31) which supplies working oil to at least one cargo actuator (12); and a confluence line (71) which branches off from a steering supply line (22) and is connected to a cargo supply line (32). The hydraulic system (1) further includes: a cargo regulator (5) which receives input of a cargo demand command pressure and in which the capacity of the cargo pump (31) increases as the cargo demand command pressure increases; and a steering regulator (4) for receiving, as a load sensing pressure, input of one of a steering load pressure or a cargo load pressure that is higher than the other and for controlling the capacity of the steering pump (21) such that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump (21) becomes constant.

Description

産業車両の油圧システムIndustrial vehicle hydraulic system
 本開示は、産業車両の油圧システムに関する。 This disclosure relates to hydraulic systems for industrial vehicles.
 ホイールローダやフォークリフトなどの産業車両には、進行方向を変更するためのステアリング回路と、バケットやフォークを動かすための荷役回路を含む油圧システムが搭載される。 Industrial vehicles such as wheel loaders and forklifts are equipped with a hydraulic system that includes a steering circuit for changing the direction of travel and a cargo handling circuit for moving the bucket and forks.
 例えば、特許文献1には、ステアリング回路に可変容量型のステアリングポンプが用いられ、荷役回路に可変容量型の荷役ポンプが用いられた、フォークリフトの油圧システムが開示されている。ステアリング回路では、ステアリングポンプからステアリング供給ラインおよびステアリング弁を介してステアリングアクチュエータへ作動油が供給され、荷役回路では、荷役ポンプから荷役供給ラインおよび2つの荷役制御弁を介して2つの荷役アクチュエータへ作動油が供給される。 For example, Patent Document 1 discloses a hydraulic system for a forklift in which a variable displacement steering pump is used in the steering circuit and a variable displacement cargo handling pump is used in the cargo handling circuit. In the steering circuit, hydraulic fluid is supplied from the steering pump to the steering actuator via the steering supply line and steering valve, and in the cargo handling circuit, the cargo handling pump supplies the cargo handling supply line and two cargo handling control valves to the two cargo handling actuators. oil is supplied.
 さらに、特許文献1に開示された油圧システムでは、ステアリング供給ラインから合流ラインが分岐しており、この合流ラインが荷役供給ラインにつながっている。合流ラインには切換弁が設けられている。切換弁は、荷役操作が行われないときに合流ラインを遮断し、荷役操作が行われるときに合流ラインを開放する。つまり、切換弁によって合流ラインが解放されるときは、荷役ポンプから吐出された作動油にステアリングポンプから吐出された作動油が合流されて荷役アクチュエータへ供給される。なお、荷役操作がステアリング操作と同時に行われるときは、ステアリングポンプから吐出された作動油がステアリングアクチュエータと荷役アクチュエータの双方へ供給される。 Furthermore, in the hydraulic system disclosed in Patent Document 1, a merging line branches off from the steering supply line, and this merging line is connected to the cargo handling supply line. A switching valve is provided in the merging line. The switching valve shuts off the merging line when a cargo handling operation is not performed, and opens the merging line when a cargo handling operation is performed. That is, when the merging line is released by the switching valve, the hydraulic oil discharged from the steering pump is combined with the hydraulic oil discharged from the cargo handling pump and supplied to the cargo handling actuator. When the cargo handling operation is performed simultaneously with the steering operation, hydraulic fluid discharged from the steering pump is supplied to both the steering actuator and the cargo handling actuator.
 ステアリングポンプの容量はステアリングレギュレータにより変更され、荷役ポンプの容量は荷役レギュレータにより変更される。上述したように荷役ポンプから吐出された作動油にステアリングポンプから吐出された作動油を合流するという観点から、ステアリングポンプの容量と荷役ポンプの容量とは同じ方式で制御される。特許文献1では、その制御方式としてロードセンシング制御が採用されている。  The displacement of the steering pump is changed by the steering regulator, and the capacity of the cargo handling pump is changed by the cargo handling regulator. From the viewpoint of joining the hydraulic fluid discharged from the steering pump to the hydraulic fluid discharged from the cargo handling pump as described above, the displacement of the steering pump and the displacement of the cargo handling pump are controlled in the same manner. In Patent Document 1, load sensing control is adopted as the control method.
 より詳しくは、荷役レギュレータには2つの荷役アクチュエータの負荷圧のうちの高い方である最高負荷圧がロードセンシング圧として入力される。荷役レギュレータは、ロードセンシング圧と荷役ポンプの吐出圧との差圧が一定となるように荷役ポンプの容量を制御する。 More specifically, the maximum load pressure, which is the higher of the load pressures of the two cargo handling actuators, is input to the cargo handling regulator as the load sensing pressure. The cargo handling regulator controls the displacement of the cargo handling pump so that the differential pressure between the load sensing pressure and the discharge pressure of the cargo handling pump is constant.
 一方、ステアリングレギュレータにはステアリングアクチュエータの負荷圧と荷役アクチュエータの最高負荷圧のうちの高い方がロードセンシング圧として入力される。ステアリングレギュレータは、ロードセンシング圧とステアリングポンプの吐出圧との差圧が一定となるようにステアリングポンプの容量を制御する。このため、ステアリング操作と荷役操作が同時に行われるときは、要求が高い方に応じてステアリングポンプの容量が変化する。 On the other hand, the higher of the load pressure of the steering actuator and the maximum load pressure of the cargo handling actuator is input to the steering regulator as the load sensing pressure. The steering regulator controls the displacement of the steering pump so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump is constant. Therefore, when steering operation and cargo handling operation are performed at the same time, the displacement of the steering pump changes according to the higher demand.
特開2017-226492号公報JP 2017-226492 A
 ところで、荷役ポンプの容量の制御方式としては、ロードセンシング制御に代えて、荷役操作の操作量が大きくなるほど容量を増加させるポジティブ制御を採用したいという要望がある。しかし、この場合には、ステアリングポンプの容量をどのように制御するかが問題となる。 By the way, as a control method for the capacity of the cargo handling pump, instead of load sensing control, there is a demand to adopt positive control that increases the capacity as the amount of cargo handling operation increases. However, in this case, the problem is how to control the displacement of the steering pump.
 そこで、本開示は、荷役ポンプの容量をポジティブ制御で制御するとともにステアリングポンプの容量を適切に制御することができる産業車両の油圧システムを提供することを目的とする。 Therefore, an object of the present disclosure is to provide a hydraulic system for an industrial vehicle that can control the displacement of a cargo handling pump by positive control and appropriately control the displacement of a steering pump.
 本開示は、ステアリング供給ラインおよびステアリング弁を介してステアリングアクチュエータへ作動油を供給する可変容量型のステアリングポンプと、荷役供給ラインおよび少なくとも1つの荷役制御弁を介して少なくとも1つの荷役アクチュエータへ作動油を供給する可変容量型の荷役ポンプと、前記ステアリング供給ラインから分岐して前記荷役供給ラインにつながる合流ラインと、前記合流ラインに設けられた、荷役操作が行われないときに前記合流ラインを遮断し、荷役操作が行われるときに前記合流ラインを開放する優先弁と、前記荷役操作の操作量と正の相関を示す荷役要求指令圧が入力され、前記荷役要求指令圧が大きくなるほど前記荷役ポンプの容量を増加する荷役レギュレータと、前記ステアリング弁における前記ステアリングアクチュエータへの作動油の供給量を決定する絞り部の下流側の圧力であるステアリング負荷圧と、前記荷役供給ラインにおける前記少なくとも1つの荷役制御弁の上流側の圧力である荷役負荷圧のうちの高い方がロードセンシング圧として入力され、前記ロードセンシング圧と前記ステアリングポンプの吐出圧との差圧が一定となるように前記ステアリングポンプの容量を制御するステアリングレギュレータと、を備える、産業車両の油圧システムを提供する。 The present disclosure provides a variable displacement steering pump that supplies hydraulic fluid to a steering actuator via a steering supply line and a steering valve, and hydraulic fluid to at least one cargo handling actuator via a cargo handling supply line and at least one cargo handling control valve. a variable displacement cargo handling pump that supplies the cargo handling supply line, a junction line branched from the steering supply line and connected to the cargo handling supply line, and a junction line provided in the junction line that shuts off the junction line when no cargo handling operation is performed. Then, a priority valve for opening the merging line when a cargo handling operation is performed, and a cargo handling request command pressure that indicates a positive correlation with the operation amount of the cargo handling operation are input. a steering load pressure that is the pressure downstream of a throttle that determines the amount of hydraulic fluid supplied to the steering actuator in the steering valve; and the at least one cargo handling in the cargo handling supply line. The higher one of the cargo handling load pressures, which are the pressures on the upstream side of the control valve, is input as the load sensing pressure, and the pressure difference between the load sensing pressure and the discharge pressure of the steering pump is kept constant. and a steering regulator for controlling displacement.
 本開示によれば、荷役ポンプの容量をポジティブ制御で制御するとともにステアリングポンプの容量を適切に制御することができる。 According to the present disclosure, the displacement of the cargo handling pump can be positively controlled, and the displacement of the steering pump can be appropriately controlled.
一実施形態に係る産業車両の油圧システムの概略構成図である。1 is a schematic configuration diagram of a hydraulic system of an industrial vehicle according to one embodiment; FIG. 前記油圧システムのステアリング回路の拡大図である。4 is an enlarged view of a steering circuit of the hydraulic system; FIG. 前記油圧システムの荷役回路の拡大図である。4 is an enlarged view of a cargo handling circuit of the hydraulic system; FIG. 前記荷役回路の操作系回路図である。It is an operation system circuit diagram of the said cargo-handling circuit.
 図1に、一実施形態に係る産業車両の油圧システム1を示す。本実施形態では、産業車両がホイスト(アームまたはブームとも呼ばれる)およびバケットを含むホイールローダである。ただし、産業車両はフォークリフトなどであってもよい。 FIG. 1 shows a hydraulic system 1 for an industrial vehicle according to one embodiment. In this embodiment, the industrial vehicle is a wheel loader that includes a hoist (also called an arm or boom) and a bucket. However, the industrial vehicle may be a forklift or the like.
 油圧システム1は、進行方向を変更するためのステアリング回路2と、バケットを動かすための荷役回路3を含む。ホイールローダでは、前輪を含む前側車体と後輪を含む後側車体とが水平方向に揺動可能に連結される。また、前側車体にはホイストが鉛直方向に揺動可能に連結され、ホイストの先端にバケットが鉛直方向に揺動可能に連結される。 The hydraulic system 1 includes a steering circuit 2 for changing the direction of travel and a cargo handling circuit 3 for moving the bucket. In a wheel loader, a front vehicle body including front wheels and a rear vehicle body including rear wheels are connected so as to be able to swing horizontally. A hoist is connected to the front vehicle body so as to be able to swing in the vertical direction, and a bucket is connected to the tip of the hoist so as to be able to swing in the vertical direction.
 ステアリング回路2は、図2に示すように、ステアリングポンプ21、ステアリング弁23およびステアリングアクチュエータ11を含む。ステアリングポンプ21は、ステアリング供給ライン22およびステアリング弁23を介してステアリングアクチュエータ11へ作動油を供給する。本実施形態では、ステアリングアクチュエータ11が、上述した前側車体と後側車体との連結部の左右両側に設けられた一対の油圧シリンダで構成される。ただし、ホイールローダの大きさによっては、ステアリングアクチュエータ11が単一の油圧シリンダで構成されることもある。また、産業用車両がフォークリフトである場合はステアリングアクチュエータ11が単一の両ロッドの油圧シリンダで構成される。 The steering circuit 2 includes a steering pump 21, a steering valve 23 and a steering actuator 11, as shown in FIG. The steering pump 21 supplies hydraulic fluid to the steering actuator 11 via a steering supply line 22 and a steering valve 23 . In this embodiment, the steering actuator 11 is composed of a pair of hydraulic cylinders provided on both left and right sides of the connecting portion between the front vehicle body and the rear vehicle body. However, depending on the size of the wheel loader, the steering actuator 11 may be composed of a single hydraulic cylinder. If the industrial vehicle is a forklift, the steering actuator 11 is composed of a single double-rod hydraulic cylinder.
 具体的に、ステアリングポンプ21はステアリング供給ライン22によりステアリング弁23と接続されており、ステアリング弁23は一対の給排ライン24によりステアリングアクチュエータ11と接続されている。また、ステアリング弁23はタンクライン25によりタンクと接続されている。 Specifically, the steering pump 21 is connected to the steering valve 23 by a steering supply line 22, and the steering valve 23 is connected to the steering actuator 11 by a pair of supply/discharge lines 24. Also, the steering valve 23 is connected to the tank by a tank line 25 .
 ステアリング弁23は、ステアリングアクチュエータ11への作動油の供給量を決定する絞り部23aを有する。また、ステアリング弁23には、ステアリング供給ライン22と給排ライン24の間に介在する中間ライン27の両端も接続されている。中間ライン27には逆止弁28が設けられている。 The steering valve 23 has a throttle portion 23 a that determines the amount of hydraulic oil supplied to the steering actuator 11 . Both ends of an intermediate line 27 interposed between the steering supply line 22 and the supply/discharge line 24 are also connected to the steering valve 23 . A check valve 28 is provided in the intermediate line 27 .
 ステアリング弁23は、産業車両の運転室に設けられたハンドルが操作されると、中立位置から右旋回位置または左旋回位置へシフトする。中立位置では、ステアリング供給ライン22、中間ライン27の両端、一対の給排ライン24およびタンクライン25の全てがブロックされる。右旋回位置または左旋回位置では、ステアリング供給ライン22が中間ライン27を介して一方の給排ライン24と連通し、他方の給排ライン24がタンクライン25と連通する。右旋回位置または左旋回位置では、絞り部23aの開口面積が、ハンドルの操作量が大きくなるほど大きくなる。 The steering valve 23 shifts from the neutral position to the right turning position or the left turning position when a handle provided in the driver's cab of the industrial vehicle is operated. In the neutral position, the steering supply line 22, both ends of the intermediate line 27, the pair of supply/discharge lines 24 and the tank line 25 are all blocked. At the right turning position or the left turning position, the steering supply line 22 communicates with one supply/discharge line 24 via the intermediate line 27 , and the other supply/discharge line 24 communicates with the tank line 25 . At the right turn position or the left turn position, the opening area of the throttle portion 23a increases as the amount of operation of the handle increases.
 より詳しくは、ステアリング弁23は一対のパイロットポートを有し、これらのパイロットポートはパイロットライン26a,26bによりオービットロール(登録商標)26と接続されている。オービットロール26はハンドルに連結されており、ハンドルの操作量に応じたパイロット圧をハンドルの回転方向のパイロットライン26aまたは26bを通じてステアリング弁23のパイロットポートへ出力する。 More specifically, the steering valve 23 has a pair of pilot ports, and these pilot ports are connected to the Orbitroll (registered trademark) 26 by pilot lines 26a and 26b. The orbit roll 26 is connected to the steering wheel, and outputs a pilot pressure corresponding to the amount of operation of the steering wheel to the pilot port of the steering valve 23 through a pilot line 26a or 26b in the rotating direction of the steering wheel.
 さらに、ステアリング弁23には負荷圧ライン64およびタンクライン68も接続されている。ステアリング弁23が中立位置に位置するとき、負荷圧ライン64はタンクライン68と連通する。ステアリング弁23が右旋回位置または左旋回位置に位置するとき、負荷圧ライン64には絞り部23aの下流側の圧力であるステアリング負荷圧が導かれる。 Furthermore, a load pressure line 64 and a tank line 68 are also connected to the steering valve 23 . The load pressure line 64 communicates with the tank line 68 when the steering valve 23 is in the neutral position. When the steering valve 23 is positioned at the right-turning position or the left-turning position, the steering load pressure, which is the pressure on the downstream side of the throttle portion 23a, is introduced to the load pressure line 64 .
 ステアリング供給ライン22には、コンペンセータ61が設けられている。コンペンセータ61は中立位置でステアリング供給ライン22を開放するものであり、コンペンセータ61が中立位置からシフトするにつれてコンペンセータ61の開口面積が減少する。コンペンセータ61には、互いに対向するようにステアリング弁23における絞り部23aの上流側の圧力と上述したステアリング負荷圧とが作用する。 A compensator 61 is provided in the steering supply line 22 . The compensator 61 opens the steering supply line 22 at the neutral position, and the opening area of the compensator 61 decreases as the compensator 61 shifts from the neutral position. The pressure on the upstream side of the throttle portion 23a of the steering valve 23 and the above-described steering load pressure act on the compensator 61 so as to oppose each other.
 ステアリング負荷圧は、上述した負荷圧ライン64を通じてコンペンセータ61へ導かれ、開口面積が増大する方向にシフトするようにコンペンセータ61に作用する。一方、ステアリング弁23における絞り部23aの上流側の圧力は、供給圧ライン62を通じてコンペンセータ61へ導かれ、開口面積が減少する方向にシフトするようにコンペンセータ61に作用する。供給圧ライン62はコンペンセータ61の下流側でステアリング供給ライン22から分岐している。本実施形態では、供給圧ライン62および負荷圧ライン64に絞り63,65がそれぞれ設けられているが、絞り63,65は省略可能である。 The steering load pressure is guided to the compensator 61 through the load pressure line 64 described above, and acts on the compensator 61 so as to shift in the direction of increasing the opening area. On the other hand, the pressure on the upstream side of the throttle portion 23a in the steering valve 23 is guided to the compensator 61 through the supply pressure line 62, and acts on the compensator 61 so as to shift the opening area in the direction of decreasing. The supply pressure line 62 branches off from the steering supply line 22 downstream of the compensator 61 . In this embodiment, the supply pressure line 62 and the load pressure line 64 are provided with the throttles 63 and 65, respectively, but the throttles 63 and 65 can be omitted.
 このような構成により、コンペンセータ61の開口面積は、ステアリング弁23における絞り部23aの上流側の圧力とステアリング負荷圧との差圧が大きくなるほど減少する。なお、負荷圧ライン64からはリリーフライン66が分岐しており、このリリーフライン66に設けられたリリーフ弁67によって負荷圧ライン64の圧力が所定値以下に保たれる。 With such a configuration, the opening area of the compensator 61 decreases as the differential pressure between the pressure on the upstream side of the throttle portion 23a of the steering valve 23 and the steering load pressure increases. A relief line 66 branches from the load pressure line 64, and a relief valve 67 provided in the relief line 66 keeps the pressure of the load pressure line 64 below a predetermined value.
 上述したステアリングポンプ21は、原動機により駆動される。原動機は、例えば内燃機関または電動機である。原動機は、後述する荷役ポンプ31および副ポンプ15も駆動する。 The steering pump 21 described above is driven by the prime mover. The prime mover is, for example, an internal combustion engine or an electric motor. The prime mover also drives a cargo handling pump 31 and a sub-pump 15, which will be described later.
 ステアリングポンプ21は、可変容量型のポンプである。本実施形態では、ステアリングポンプ21が斜板21aを有する斜板ポンプである。ただし、ステアリングポンプ21は、斜軸ポンプであってもよい。本実施形態では、後述する合流ライン71における優先弁72よりも上流側部分からリリーフライン17が分岐しており、このリリーフライン17に設けられたリリーフ弁17aによってステアリングポンプ21の吐出圧が所定値以下に保たれる。リリーフライン17は、ステアリング供給ライン22から分岐してもよい。 The steering pump 21 is a variable displacement pump. In this embodiment, the steering pump 21 is a swash plate pump having a swash plate 21a. However, the steering pump 21 may be a tilted shaft pump. In this embodiment, the relief line 17 branches off from a portion of the confluence line 71 on the upstream side of the priority valve 72, which will be described later. kept below. The relief line 17 may branch off from the steering supply line 22 .
 ステアリングポンプ21の容量は、ステアリングレギュレータ4により変更される。ステアリングレギュレータ4には、ロードセンシングライン99を通じてロードセンシング圧が入力される。ステアリングレギュレータ4は、ロードセンシング圧とステアリングポンプ21の吐出圧との差圧が一定となるようにステアリングポンプ21の容量を制御する。本実施形態では、ステアリングレギュレータ4が図2に示すように構成されているが、ステアリングレギュレータ4の構成はこれに限られず、適宜変更可能である。 The displacement of the steering pump 21 is changed by the steering regulator 4. A load sensing pressure is input to the steering regulator 4 through a load sensing line 99 . The steering regulator 4 controls the displacement of the steering pump 21 so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump 21 is constant. In this embodiment, the steering regulator 4 is configured as shown in FIG. 2, but the configuration of the steering regulator 4 is not limited to this and can be changed as appropriate.
 より詳しくは、ステアリングレギュレータ4は、斜板21aを容量増加方向に付勢するスプリング41と、斜板21aをスプリング41に抗して容量減少方向に押圧するピストン42を含む。ステアリングレギュレータ4には、ピストン42に制御圧を作用させるための受圧室43が形成されている。 More specifically, the steering regulator 4 includes a spring 41 that biases the swash plate 21a in the capacity increasing direction, and a piston 42 that presses the swash plate 21a against the spring 41 in the capacity decreasing direction. A pressure receiving chamber 43 for applying control pressure to the piston 42 is formed in the steering regulator 4 .
 さらに、ステアリングレギュレータ4は、制御圧ライン44により受圧室43と接続されたロードセンシング弁45と、制御圧ライン44上に設けられたカットオフ弁48を含む。ただし、カットオフ弁48は省略可能である。 Furthermore, the steering regulator 4 includes a load sensing valve 45 connected to the pressure receiving chamber 43 by a control pressure line 44 and a cutoff valve 48 provided on the control pressure line 44 . However, the cutoff valve 48 can be omitted.
 ロードセンシング弁45は、ポンプ圧ライン46によりステアリング供給ライン22と接続されるとともに、タンクライン47によりタンクと接続されている。また、ロードセンシング弁45には、上述したロードセンシング圧とステアリングポンプ21の吐出圧とが互いに対向するように作用する。ロードセンシング弁45はロードセンシング圧とステアリングポンプ21の吐出圧との差圧が一定となるように作動し、このようにして調整された制御圧が制御圧ライン44を通じて受圧室43に導入される。 The load sensing valve 45 is connected to the steering supply line 22 by a pump pressure line 46 and is connected to the tank by a tank line 47 . Further, the load sensing pressure and the discharge pressure of the steering pump 21 act on the load sensing valve 45 so as to oppose each other. The load sensing valve 45 operates so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump 21 is constant, and the control pressure thus adjusted is introduced into the pressure receiving chamber 43 through the control pressure line 44. .
 カットオフ弁48は、ステアリングポンプ21の吐出圧が設定値を超えたときに、受圧室43にステアリングポンプ21の吐出圧を導入し、ステアリングポンプ21の容量を最小とするためのものである。 The cut-off valve 48 introduces the discharge pressure of the steering pump 21 into the pressure receiving chamber 43 to minimize the displacement of the steering pump 21 when the discharge pressure of the steering pump 21 exceeds a set value.
 荷役回路3は、図3に示すように、荷役ポンプ31、2つの荷役制御弁33および2つの荷役アクチュエータ12を含む。荷役ポンプ31は、荷役供給ライン32および2つの荷役制御弁33を介して2つの荷役アクチュエータ12へ作動油を供給する。 The cargo handling circuit 3 includes a cargo handling pump 31, two cargo handling control valves 33, and two cargo handling actuators 12, as shown in FIG. The cargo handling pump 31 supplies hydraulic oil to the two cargo handling actuators 12 via the cargo handling supply line 32 and the two cargo handling control valves 33 .
 2つの荷役アクチュエータ12は、バケットアクチュエータ13とホイストアクチュエータ14である。本実施形態では、バケットアクチュエータ13が単一の油圧シリンダで構成され、ホイストアクチュエータ14が一対の油圧シリンダで構成される。ただし、バケットアクチュエータ13は一対の油圧シリンダで構成されることもある。2つの荷役制御弁33は、バケット制御弁34とホイスト制御弁35である。 The two cargo handling actuators 12 are the bucket actuator 13 and the hoist actuator 14 . In this embodiment, the bucket actuator 13 is composed of a single hydraulic cylinder, and the hoist actuator 14 is composed of a pair of hydraulic cylinders. However, the bucket actuator 13 may be composed of a pair of hydraulic cylinders. The two cargo control valves 33 are a bucket control valve 34 and a hoist control valve 35 .
 具体的に、荷役ポンプ31は、荷役供給ライン32によりバケット制御弁34およびホイスト制御弁35と接続されている。つまり、荷役供給ライン32は、荷役ポンプ31から延びる共通路32aと、共通路32aの下流端からバケット制御弁34まで延びるバケット分岐路32bと、共通路32aの下流端からホイスト制御弁35まで延びるホイスト分岐路32cを含む。バケット分岐路32bおよびホイスト分岐路32cには、逆止弁32d,32eがそれぞれ設けられている。 Specifically, the cargo handling pump 31 is connected to the bucket control valve 34 and the hoist control valve 35 by the cargo handling supply line 32 . That is, the cargo handling supply line 32 includes a common passage 32 a extending from the cargo handling pump 31 , a bucket branch passage 32 b extending from the downstream end of the common passage 32 a to the bucket control valve 34 , and extending from the downstream end of the common passage 32 a to the hoist control valve 35 . Includes hoist branch 32c. The bucket branch passage 32b and the hoist branch passage 32c are provided with check valves 32d and 32e, respectively.
 さらに、ホイスト分岐路32cには、バケット操作とホイスト操作が同時に行われるときにホイストアクチュエータ14への作動油の供給を制限するためのバケット優先弁32fが設けられている。バケット優先弁32fは中立位置でホイスト分岐路32cを開放するものであり、バケット優先弁32fが中立位置からシフトするにつれてバケット優先弁32fの開口面積が減少する。本実施形態では、バケット優先弁32fがパイロット式であり、パイロットポートを有する。バケット優先弁32fのパイロットポートに導入されるパイロット圧が上昇するほどバケット優先弁32fの開口面積が減少する。ただし、バケット優先弁32fは電磁式であってもよい。 Further, the hoist branch passage 32c is provided with a bucket priority valve 32f for limiting the supply of hydraulic oil to the hoist actuator 14 when the bucket operation and the hoist operation are performed simultaneously. The bucket priority valve 32f opens the hoist branch passage 32c at the neutral position, and the opening area of the bucket priority valve 32f decreases as the bucket priority valve 32f shifts from the neutral position. In this embodiment, the bucket priority valve 32f is of a pilot type and has a pilot port. As the pilot pressure introduced to the pilot port of the bucket priority valve 32f increases, the opening area of the bucket priority valve 32f decreases. However, the bucket priority valve 32f may be of an electromagnetic type.
 上述したバケット制御弁34は一対の給排ライン36によりバケットアクチュエータ13と接続されており、ホイスト制御弁35は一対の給排ライン37によりホイストアクチュエータ14と接続されている。また、バケット制御弁34およびホイスト制御弁35はタンクライン38によりタンクと接続されている。 The bucket control valve 34 described above is connected to the bucket actuator 13 by a pair of supply/discharge lines 36 , and the hoist control valve 35 is connected to the hoist actuator 14 by a pair of supply/discharge lines 37 . Also, the bucket control valve 34 and the hoist control valve 35 are connected to the tank by a tank line 38 .
 バケット制御弁34は、中立位置から第1作動位置または第2作動位置へシフトする。中立位置では、荷役供給ライン32、一対の給排ライン36およびタンクライン38の全てがブロックされる。第1作動位置または第2作動位置では、荷役供給ライン32が一方の給排ライン36と連通し、他方の給排ライン36がタンクライン38と連通する。 The bucket control valve 34 shifts from the neutral position to the first operating position or the second operating position. In the neutral position, the cargo handling supply line 32, the pair of supply and discharge lines 36 and the tank line 38 are all blocked. In the first operating position or the second operating position, the cargo handling supply line 32 communicates with one supply/discharge line 36 , and the other supply/discharge line 36 communicates with the tank line 38 .
 本実施形態では、バケット制御弁34がパイロット式であり、一対のパイロットポートを有する。一方のパイロットポートへパイロット圧が導入されるとバケット制御弁34が中立位置から第1作動位置へシフトし、そのパイロット圧が上昇するほどバケット制御弁34の開口面積が増大する。逆に、他方のパイロットポートへパイロット圧が導入されるとバケット制御弁34が中立位置から第2作動位置へシフトし、そのパイロット圧が上昇するほどバケット制御弁34の開口面積が増大する。ただし、バケット制御弁34は電磁式であってもよい。 In this embodiment, the bucket control valve 34 is of a pilot type and has a pair of pilot ports. When the pilot pressure is introduced into one of the pilot ports, the bucket control valve 34 shifts from the neutral position to the first operating position, and the opening area of the bucket control valve 34 increases as the pilot pressure increases. Conversely, when pilot pressure is introduced to the other pilot port, bucket control valve 34 shifts from the neutral position to the second operating position, and the opening area of bucket control valve 34 increases as the pilot pressure increases. However, the bucket control valve 34 may be of an electromagnetic type.
 ホイスト制御弁35は、中立位置から第1作動位置または第2作動位置へシフトする。さらに、ホイスト制御弁35は、第2作動位置と第3作動位置との間でもシフトする。中立位置では、荷役供給ライン32、一対の給排ライン37およびタンクライン38の全てがブロックされる。第1作動位置または第2作動位置では、荷役供給ライン32が一方の給排ライン37と連通し、他方の給排ライン37がタンクライン38と連通する。第3作動位置では、給排ライン37同士がホイスト制御弁35内で連通する。 The hoist control valve 35 shifts from the neutral position to the first operating position or the second operating position. Additionally, the hoist control valve 35 also shifts between the second and third operating positions. In the neutral position, the cargo handling supply line 32, the pair of supply and discharge lines 37 and the tank line 38 are all blocked. At the first operating position or the second operating position, the cargo handling supply line 32 communicates with one supply/discharge line 37 , and the other supply/discharge line 37 communicates with the tank line 38 . In the third operating position, the supply and discharge lines 37 communicate with each other within the hoist control valve 35 .
 本実施形態では、ホイスト制御弁35がパイロット式であり、一対のパイロットポートを有する。一方のパイロットポートへパイロット圧が導入されるとホイスト制御弁35が中立位置から第1作動位置へシフトし、そのパイロット圧が上昇するほどホイスト制御弁35の開口面積が増大する。逆に、他方のパイロットポートへパイロット圧が導入されるとホイスト制御弁35が中立位置から第2作動位置へシフトし、そのパイロット圧が上昇するほどホイスト制御弁35の開口面積が増大する。他方のパイロットポートへ導入されるパイロット圧がさらに上昇すると、ホイスト制御弁35は第2作動位置から第3作動位置へシフトする。ただし、ホイスト制御弁35は電磁式であってもよい。  In this embodiment, the hoist control valve 35 is of a pilot type and has a pair of pilot ports. When pilot pressure is introduced into one of the pilot ports, the hoist control valve 35 shifts from the neutral position to the first operating position, and the opening area of the hoist control valve 35 increases as the pilot pressure increases. Conversely, when pilot pressure is introduced into the other pilot port, the hoist control valve 35 shifts from the neutral position to the second operating position, and the opening area of the hoist control valve 35 increases as the pilot pressure increases. As the pilot pressure introduced to the other pilot port further increases, the hoist control valve 35 shifts from the second operating position to the third operating position. However, the hoist control valve 35 may be electromagnetic.
 さらに、本実施形態では、荷役供給ライン32の共通路32aからセンターバイパスライン39が分岐しており、このセンターバイパスライン39がバケット制御弁34およびホイスト制御弁35を通過してタンクまで延びている。バケット制御弁34およびホイスト制御弁35は、中立位置から第1作動位置または第2作動位置へシフトするにつれてセンターバイパスライン39上の開口面積を小さくする。 Furthermore, in this embodiment, a center bypass line 39 branches off from the common path 32a of the cargo handling supply line 32, and this center bypass line 39 passes through the bucket control valve 34 and the hoist control valve 35 and extends to the tank. . The bucket control valve 34 and the hoist control valve 35 decrease the opening area on the center bypass line 39 as they shift from the neutral position to the first operating position or the second operating position.
 図4に示すように、バケット制御弁34のパイロットポートは一対のパイロットラインにより一対のバケット用電磁比例弁94,95と接続されており、ホイスト制御弁35のパイロットポートは一対のパイロットラインにより一対のホイスト用電磁比例弁96,97と接続されている。バケット用電磁比例弁94,95およびホイスト用電磁比例弁96,97は一次圧ライン16により副ポンプ15(図1および図3参照)と接続されている。なお、図示は省略するが、一次圧ライン16からはリリーフラインが分岐しており、このリリーフラインに設けられたリリーフ弁によって副ポンプ15の吐出圧が所定値に保たれる。一次圧ライン16が副ポンプ15の代わりにステアリング供給ライン22に接続されるとともに一次圧ライン16に減圧弁が設けられ、ステアリングポンプ21の吐出圧が減圧されて一次圧として用いられてもよい。 As shown in FIG. 4, the pilot port of the bucket control valve 34 is connected via a pair of pilot lines to a pair of proportional bucket solenoid valves 94 and 95, and the pilot port of the hoist control valve 35 is connected via a pair of pilot lines to a pair of proportional bucket valves 94 and 95. hoist electromagnetic proportional valves 96 and 97. The bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 are connected by the primary pressure line 16 to the auxiliary pump 15 (see FIGS. 1 and 3). Although not shown, a relief line branches off from the primary pressure line 16, and the discharge pressure of the auxiliary pump 15 is maintained at a predetermined value by a relief valve provided in this relief line. The primary pressure line 16 may be connected to the steering supply line 22 instead of the sub-pump 15, and a pressure reducing valve may be provided in the primary pressure line 16 to reduce the discharge pressure of the steering pump 21 and use it as the primary pressure.
 本実施形態では、バケット用電磁比例弁94,95およびホイスト用電磁比例弁96,97のそれぞれが、指令電流と二次圧が正の相関を示す正比例型である。ただし、バケット用電磁比例弁94,95およびホイスト用電磁比例弁96,97のそれぞれは、指令電流と二次圧が負の相関を示す逆比例型であってもよい。 In this embodiment, each of the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 is a direct proportional type in which the command current and the secondary pressure exhibit a positive correlation. However, each of the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 may be of the inverse proportional type in which the command current and the secondary pressure exhibit a negative correlation.
 図3に戻って、産業車両の運転室には、上述したハンドルの他に、バケット操作装置92およびホイスト操作装置93が設けられている。バケット操作装置92はバケット操作を受ける操作レバーを含み、ホイスト操作装置93はホイスト操作を受ける操作レバーを含む。 Returning to FIG. 3, the driver's cab of the industrial vehicle is provided with a bucket operating device 92 and a hoist operating device 93 in addition to the steering wheel described above. The bucket operation device 92 includes an operation lever for bucket operation, and the hoist operation device 93 includes an operation lever for hoist operation.
 本実施形態では、バケット操作装置92およびホイスト操作装置93のそれぞれが、操作レバーの傾倒方向および傾倒角(すなわち、バケット操作またはホイスト操作の操作量)に応じた電気信号を出力する電気ジョイスティックである。バケット操作装置92およびホイスト操作装置93から出力される電気信号は制御装置91に入力される。 In this embodiment, each of the bucket operation device 92 and the hoist operation device 93 is an electric joystick that outputs an electric signal according to the tilting direction and tilting angle of the control lever (that is, the amount of bucket operation or hoist operation). . Electrical signals output from the bucket operation device 92 and the hoist operation device 93 are input to the control device 91 .
 ただし、バケット操作装置92およびホイスト操作装置93のそれぞれは、操作レバーの傾倒方向および傾倒角に応じたパイロット圧を出力するパイロット操作弁であってもよい。この場合、バケット用電磁比例弁94,95およびホイスト用電磁比例弁96,97が省略され、バケット制御弁34のパイロットポートが一対のパイロットラインによりパイロット操作弁であるバケット操作装置92と接続され、ホイスト制御弁35のパイロットポートが一対のパイロットラインによりパイロット操作弁であるホイスト操作装置93と接続されてもよい。 However, each of the bucket operation device 92 and the hoist operation device 93 may be a pilot operation valve that outputs a pilot pressure corresponding to the tilting direction and tilting angle of the operation lever. In this case, the bucket electromagnetic proportional valves 94, 95 and the hoist electromagnetic proportional valves 96, 97 are omitted, and the pilot port of the bucket control valve 34 is connected by a pair of pilot lines to the bucket operation device 92, which is a pilot operation valve. A pilot port of the hoist control valve 35 may be connected to a hoist operating device 93, which is a pilot operated valve, via a pair of pilot lines.
 制御装置91は、バケット操作装置92の操作レバーがバケット操作を受けると、操作レバーの傾倒方向に対応するバケット用電磁比例弁94または95へ指令電流を送給する。また、制御装置91は、バケット操作の操作量が大きくなるほど指令電流を大きくする。なお、一方(バケットを上向きに揺動させる方)のバケット用電磁比例弁94から出力される二次圧は、図4に示すように上述したバケット優先弁32fのパイロットポートにも導かれる。 When the operation lever of the bucket operation device 92 receives a bucket operation, the control device 91 supplies a command current to the bucket electromagnetic proportional valve 94 or 95 corresponding to the tilting direction of the operation lever. Further, the control device 91 increases the command current as the operation amount of the bucket operation increases. The secondary pressure output from one of the bucket solenoid proportional valves 94 (the one that swings the bucket upward) is also guided to the pilot port of the above-described bucket priority valve 32f as shown in FIG.
 同様に、ホイスト操作装置93の操作レバーがホイスト操作を受けると、制御装置91は、操作レバーの傾倒方向に対応するホイスト用電磁比例弁96または97へ指令電流を送給する。また、制御装置91は、ホイスト操作の操作量が大きくなるほど指令電流を大きくする。 Similarly, when the operation lever of the hoist operation device 93 receives a hoist operation, the control device 91 sends a command current to the hoist electromagnetic proportional valve 96 or 97 corresponding to the tilting direction of the operation lever. Further, the control device 91 increases the command current as the operation amount of the hoist operation increases.
 制御装置91に関し、本明細書で開示する要素の機能は、開示された機能を実行するよう構成またはプログラムされた汎用プロセッサ、専用プロセッサ、集積回路、ASIC(Application Specific Integrated Circuits)、従来の回路、および/または、それらの組み合わせ、を含む回路または処理回路を使用して実行できる。プロセッサは、トランジスタやその他の回路を含むため、処理回路または回路と見なされる。本開示において、回路、ユニット、または手段は、列挙された機能を実行するハードウエアであるか、または、列挙された機能を実行するようにプログラムされたハードウエアである。ハードウエアは、本明細書に開示されているハードウエアであってもよいし、あるいは、列挙された機能を実行するようにプログラムまたは構成されているその他の既知のハードウエアであってもよい。ハードウエアが回路の一種と考えられるプロセッサである場合、回路、手段、またはユニットはハードウエアとソフトウエアの組み合わせであり、ソフトウエアはハードウエアおよび/またはプロセッサの構成に使用される。 With respect to the controller 91, the functions of the elements disclosed herein can be general purpose processors, special purpose processors, integrated circuits, Application Specific Integrated Circuits (ASICs), conventional circuits, configured or programmed to perform the functions disclosed. and/or combinations thereof. A processor is considered a processing circuit or circuit because it includes transistors and other circuits. In this disclosure, a circuit, unit, or means is hardware that performs or is programmed to perform the recited functions. The hardware may be the hardware disclosed herein, or other known hardware programmed or configured to perform the recited functions. A circuit, means or unit is a combination of hardware and software where the hardware is a processor which is considered a type of circuit, the software being used to configure the hardware and/or the processor.
 上述した荷役ポンプ31は、可変容量型のポンプである。本実施形態では、荷役ポンプ31が斜板31aを有する斜板ポンプである。ただし、荷役ポンプ31は、斜軸ポンプであってもよい。荷役供給ライン32からはリリーフライン18が分岐しており、このリリーフライン18に設けられたリリーフ弁18aによって荷役ポンプ31の吐出圧が所定値以下に保たれる。後述する優先弁72が開かれるとき、リリーフ弁18aはステアリングポンプ21の吐出圧を所定値以下に保つ役割も果たす。 The cargo handling pump 31 described above is a variable displacement pump. In this embodiment, the cargo handling pump 31 is a swash plate pump having a swash plate 31a. However, the cargo handling pump 31 may be a bent shaft pump. A relief line 18 branches from the cargo handling supply line 32, and a relief valve 18a provided in the relief line 18 keeps the discharge pressure of the cargo handling pump 31 at a predetermined value or less. When a priority valve 72, which will be described later, is opened, the relief valve 18a also serves to keep the discharge pressure of the steering pump 21 below a predetermined value.
 荷役ポンプ31の容量は、荷役レギュレータ5により変更される。本実施形態では、荷役レギュレータ5が流量制御ピストン56を用いた流量制御および馬力制御ピストン57を用いた馬力制御を行う。ただし、荷役レギュレータ5は流量制御のみを行ってもよい。 The capacity of the cargo handling pump 31 is changed by the cargo handling regulator 5 . In this embodiment, the cargo handling regulator 5 performs flow control using the flow control piston 56 and horsepower control using the horsepower control piston 57 . However, the cargo handling regulator 5 may perform only flow rate control.
 荷役レギュレータ5には流量制御用として荷役要求指令圧が入力される。荷役要求指令圧については後述にて詳しく説明する。荷役レギュレータ5は、荷役要求指令圧が大きくなるほど荷役ポンプ31の容量を増加する。本実施形態では、荷役レギュレータ5が図3に示すように構成されているが、荷役レギュレータ5の構成はこれに限られず、適宜変更可能である。 A cargo handling request command pressure is input to the cargo handling regulator 5 for flow rate control. The cargo handling request command pressure will be described later in detail. The cargo handling regulator 5 increases the displacement of the cargo handling pump 31 as the required cargo handling command pressure increases. In this embodiment, the cargo handling regulator 5 is configured as shown in FIG. 3, but the configuration of the cargo handling regulator 5 is not limited to this, and can be changed as appropriate.
 より詳しくは、荷役レギュレータ5は、流量制御ピストン56および馬力制御ピストン57に加えて、荷役ポンプ31の斜板31aと連結されたサーボピストン51と、サーボピストン51を駆動するための調整弁52を含む。また、荷役レギュレータ5は、流量制御ピストン56、馬力制御ピストン57およびサーボピストン51を摺動可能に保持するハウジングを含む。ハウジングの一部は、荷役ポンプ31のケーシングと一体となってもよい。 More specifically, the cargo handling regulator 5 includes a servo piston 51 connected to the swash plate 31a of the cargo handling pump 31 and an adjustment valve 52 for driving the servo piston 51, in addition to the flow control piston 56 and the horsepower control piston 57. include. The cargo handling regulator 5 also includes a housing that slidably holds the flow control piston 56, the horsepower control piston 57, and the servo piston 51. As shown in FIG. Part of the housing may be integrated with the casing of the cargo pump 31 .
 荷役レギュレータ5には、荷役ポンプ31の吐出圧が導入される第1受圧室5aと、制御圧が導入される第2受圧室5bが形成されている。サーボピストン51は、第1受圧室5aに露出する第1端部と、第2受圧室5bに露出する、第1端部よりも大径の第2端部を有している。 The cargo handling regulator 5 is formed with a first pressure receiving chamber 5a into which the discharge pressure of the cargo handling pump 31 is introduced and a second pressure receiving chamber 5b into which the control pressure is introduced. The servo piston 51 has a first end exposed in the first pressure receiving chamber 5a and a second end exposed in the second pressure receiving chamber 5b and having a larger diameter than the first end.
 調整弁52は、第2受圧室5bに導入される制御圧を調整するためのものである。具体的に、調整弁52は、制御圧を低下させる方向(容量増加方向、図3では左向き)および制御圧を上昇させる方向(容量減少方向、図3では右向き)に移動するスプール53と、スプール53を収容するスリーブ54を含む。 The adjustment valve 52 is for adjusting the control pressure introduced into the second pressure receiving chamber 5b. Specifically, the regulating valve 52 includes a spool 53 that moves in a direction of decreasing the control pressure (capacity increasing direction, leftward in FIG. 3) and a direction of increasing the control pressure (capacity decreasing direction, rightward in FIG. 3), and a spool It includes a sleeve 54 that accommodates 53 .
 スプール53は、レバー56aを介して流量制御ピストン56と連結されるとともに、レバー57aを介して馬力制御ピストン57と連結されている。スプール53は、流量制御ピストン56の前進に伴って容量増加方向に移動し、流量制御ピストン56の後進に伴って容量減少方向に移動する。また、スプール53は、馬力制御ピストン57の前進に伴って容量減少方向に移動し、流量制御ピストン56の後進に伴って容量増加方向に移動する。なお、流量制御ピストン56と馬力制御ピストン57は、そのうちの容量を小さく制限する方(すなわち、少ない容量を指令する方)が優先してスプール53を移動させるように構成される。 The spool 53 is connected to the flow rate control piston 56 via a lever 56a, and is connected to the horsepower control piston 57 via a lever 57a. The spool 53 moves in the capacity increasing direction as the flow control piston 56 moves forward, and moves in the capacity decreasing direction as the flow control piston 56 moves backward. Further, the spool 53 moves in the capacity decreasing direction as the horsepower control piston 57 advances, and moves in the capacity increasing direction as the flow rate control piston 56 moves backward. The flow rate control piston 56 and the horsepower control piston 57 are configured so that the one that restricts the capacity to a small value (that is, the one that commands a smaller capacity) preferentially moves the spool 53 .
 スリーブ54は、フィードバックレバー55によりサーボピストン51と連結されている。スリーブ54には、ポンプポート、タンクポートおよび出力ポート(出力ポートは第2受圧室5bと連通する)が形成されており、スリーブ54とスプール53との相対位置によって、出力ポートがポンプポートおよびタンクポートの双方から遮断されるか、出力ポートがポンプポートおよびタンクポートのどちらかと連通される。そして、スプール53が容量増加方向または容量減少方向に移動されると、サーボピストン51の両側から作用する力(圧力×サーボピストン受圧面積)が釣り合うようにスプール53とスリーブ54との相対位置が定まり、制御圧が調整される。 The sleeve 54 is connected with the servo piston 51 by a feedback lever 55 . The sleeve 54 is formed with a pump port, a tank port, and an output port (the output port communicates with the second pressure receiving chamber 5b). port, or the output port is in communication with either the pump port or the tank port. When the spool 53 is moved in the capacity increasing direction or the capacity decreasing direction, the relative positions of the spool 53 and the sleeve 54 are determined so that the forces acting from both sides of the servo piston 51 (pressure×servo piston pressure receiving area) are balanced. , the control pressure is adjusted.
 さらに、荷役レギュレータ5には、流量制御ピストン56に上述した荷役要求指令圧を作用させる作動室5cが形成されている。つまり、流量制御ピストン56は、荷役要求指令圧が高くなると前進し、荷役要求指令圧が低くなると後進する。 Further, the cargo handling regulator 5 is formed with an operation chamber 5c for applying the cargo handling request command pressure to the flow rate control piston 56 . In other words, the flow rate control piston 56 advances when the required cargo handling command pressure increases, and moves backward when the required cargo handling command pressure decreases.
 また、荷役レギュレータ5には、馬力制御ピストン57に荷役ポンプ31の吐出圧を作用させる作動室5dが形成されている。つまり、馬力制御ピストン57は、荷役ポンプ31の吐出圧が高くなると前進し、吐出圧が低くなると後進する。 Further, the cargo handling regulator 5 is formed with an operating chamber 5 d for applying the discharge pressure of the cargo handling pump 31 to the horsepower control piston 57 . That is, the horsepower control piston 57 moves forward when the discharge pressure of the cargo handling pump 31 increases, and moves backward when the discharge pressure decreases.
 本実施形態では、作動室5cが指令圧ライン82により電磁比例弁81と接続されている。電磁比例弁81は上述した一次圧ライン16により副ポンプ15(上述した変形例の場合はステアリング供給ライン22)と接続されている。本実施形態では、電磁比例弁81が、指令電流と二次圧が正の相関を示す正比例型である。ただし、電磁比例弁81は、指令電流と二次圧が負の相関を示す逆比例型であってもよい。 In this embodiment, the working chamber 5c is connected to the electromagnetic proportional valve 81 through the command pressure line 82. The electromagnetic proportional valve 81 is connected to the sub-pump 15 (the steering supply line 22 in the case of the modified example described above) through the primary pressure line 16 described above. In this embodiment, the proportional solenoid valve 81 is of a direct proportional type in which the command current and the secondary pressure exhibit a positive correlation. However, the electromagnetic proportional valve 81 may be of an inverse proportional type in which the command current and the secondary pressure exhibit a negative correlation.
 電磁比例弁81は、上述した制御装置91により制御され、荷役要求指令圧として二次圧を作動室5cへ出力する。制御装置91は、荷役操作(バケット操作またはホイスト操作)が行われると、電磁比例弁81へ指令電流を送給する。また、制御装置91は、荷役操作の操作量が大きくなるほど指令電流を大きくする。つまり、荷役要求指令圧は荷役操作の操作量と正の相関を示す。 The electromagnetic proportional valve 81 is controlled by the control device 91 described above, and outputs the secondary pressure to the working chamber 5c as the cargo handling request command pressure. The control device 91 sends a command current to the electromagnetic proportional valve 81 when a cargo handling operation (bucket operation or hoist operation) is performed. In addition, the control device 91 increases the command current as the operation amount of the cargo handling operation increases. That is, the cargo handling request command pressure exhibits a positive correlation with the manipulated variable of the cargo handling operation.
 次に、ステアリングレギュレータ4に入力されるロードセンシング圧について説明する。上述したロードセンシングライン99は、図2に示すように、高圧選択弁98の出力ポートと接続されている。高圧選択弁98の一対の入力ポートのうちの一方は入力ライン88により上述した負荷圧ライン64と接続され、他方は入力ライン89により荷役供給ライン32と接続されている(図3参照)。 Next, the load sensing pressure input to the steering regulator 4 will be explained. The load sensing line 99 described above is connected to the output port of the high pressure selection valve 98, as shown in FIG. One of the pair of input ports of the high pressure selection valve 98 is connected to the load pressure line 64 by an input line 88, and the other is connected to the cargo handling/supply line 32 by an input line 89 (see FIG. 3).
 高圧選択弁98は、荷役供給ライン32における荷役制御弁33の上流側の圧力である荷役負荷圧とステアリング負荷圧のうちの高い方を選択してステアリングレギュレータ4へ出力する。換言すれば、荷役負荷圧とステアリング要求指令圧のうちの高い方が上述したロードセンシング圧としてステアリングレギュレータ4へ入力される。 The high pressure selection valve 98 selects the higher one of the cargo handling load pressure, which is the pressure on the upstream side of the cargo handling control valve 33 in the cargo handling supply line 32 and the steering load pressure, and outputs it to the steering regulator 4 . In other words, the higher one of the cargo handling load pressure and the steering request command pressure is input to the steering regulator 4 as the aforementioned load sensing pressure.
 図1~図3に示すように、ステアリング供給ライン22からはコンペンセータ61よりも上流側で合流ライン71が分岐しており、この合流ライン71は荷役供給ライン32につながっている。合流ライン71には優先弁72が設けられている。 As shown in FIGS. 1 to 3, a junction line 71 branches off from the steering supply line 22 upstream of the compensator 61, and the junction line 71 is connected to the cargo handling supply line 32. A priority valve 72 is provided in the merge line 71 .
 優先弁72は、荷役操作が行われないときに合流ライン71を遮断し、荷役操作が行われるときに合流ライン71を開放する。本実施形態では、優先弁72がパイロット式であり、第1パイロットポート72aおよび第2パイロットポート72bを有する。ただし、優先弁72は電磁式であってもよい。 The priority valve 72 shuts off the merging line 71 when cargo handling operations are not performed, and opens the merging line 71 when cargo handling operations are performed. In this embodiment, the priority valve 72 is piloted and has a first pilot port 72a and a second pilot port 72b. However, the priority valve 72 may be of an electromagnetic type.
 より詳しくは、優先弁72は中立位置で合流ライン71を遮断するものであり、優先弁72が中立位置からシフトするにつれて優先弁72の開口面積が増大する。優先弁72は当該優先弁72を中立位置に維持するためのスプリング72c(図2参照)を有する。第1パイロットポート72aは、パイロットライン73によりタンクと接続されている。パイロットライン73には逆止弁74が設けられているとともに、逆止弁74をバイパスするバイパスライン75が接続されている。バイパスライン75には絞り76が設けられている。第2パイロットポート72bは優先弁72を開口面積が増大する方向にシフトさせるためのものである。 More specifically, the priority valve 72 blocks the confluence line 71 at the neutral position, and the opening area of the priority valve 72 increases as the priority valve 72 shifts from the neutral position. The priority valve 72 has a spring 72c (see FIG. 2) for maintaining the priority valve 72 in a neutral position. The first pilot port 72a is connected to the tank by a pilot line 73. As shown in FIG. The pilot line 73 is provided with a check valve 74 and is connected to a bypass line 75 that bypasses the check valve 74 . A throttle 76 is provided in the bypass line 75 . The second pilot port 72b is for shifting the priority valve 72 in the direction of increasing the opening area.
 つまり、優先弁72が中立位置からシフトするときは、絞り76によって第1パイロットポート72aからの作動油の流出が制限されるために、優先弁72がゆっくりと作動する。逆に、優先弁72が中立位置へ戻るときは、逆止弁74を介して第1パイロットポート72aへ作動油がスムーズに流入するため、優先弁72が迅速に作動する。なお、逆止弁74、バイパスライン75および絞り76は省略可能である。 That is, when the priority valve 72 shifts from the neutral position, the throttle 76 restricts the outflow of hydraulic oil from the first pilot port 72a, so the priority valve 72 operates slowly. Conversely, when the priority valve 72 returns to the neutral position, hydraulic fluid smoothly flows into the first pilot port 72a via the check valve 74, so the priority valve 72 operates quickly. The check valve 74, bypass line 75 and throttle 76 can be omitted.
 優先弁72の第2パイロットポート72bは、パイロットライン77により切換弁84と接続されている。切換弁84は、パイロットライン83により指令圧ライン82と接続されているとともに、タンクライン85によりタンクと接続されている。なお、パイロットライン83は、指令圧ライン82ではなく、荷役レギュレータ5の作動室5cにつながってもよい。 A second pilot port 72 b of the priority valve 72 is connected to the switching valve 84 by a pilot line 77 . The switching valve 84 is connected to the command pressure line 82 by a pilot line 83 and is connected to the tank by a tank line 85 . Note that the pilot line 83 may be connected to the working chamber 5 c of the cargo handling regulator 5 instead of the command pressure line 82 .
 切換弁84は、電磁比例弁81の二次圧である荷役要求指令圧を優先弁72の第2パイロットポート72bへ出力するか否かを切り換える。本実施形態では、切換弁84がパイロット式であり、第1パイロットポート84aおよび第2パイロットポート84bを有する。ただし、切換弁84は電磁式であってもよい。 The switching valve 84 switches whether or not to output the cargo handling request command pressure, which is the secondary pressure of the electromagnetic proportional valve 81 , to the second pilot port 72 b of the priority valve 72 . In this embodiment, the switching valve 84 is of a pilot type and has a first pilot port 84a and a second pilot port 84b. However, the switching valve 84 may be of an electromagnetic type.
 より詳しくは、切換弁84は、パイロットライン77をタンクライン85と連通させる中立位置と、パイロットライン77をパイロットライン83と連通させる作動位置との間でシフトする。切換弁84は当該切換弁84を中立位置に維持するためのスプリング84cを有する。第1パイロットポート84aはスプリング84cと同じ側に位置しており、第2パイロットポート84bはスプリング84cと反対側に位置している。 More specifically, the switching valve 84 shifts between a neutral position in which the pilot line 77 communicates with the tank line 85 and an operating position in which the pilot line 77 communicates with the pilot line 83 . The switching valve 84 has a spring 84c for maintaining the switching valve 84 in a neutral position. The first pilot port 84a is located on the same side as the spring 84c and the second pilot port 84b is located on the opposite side of the spring 84c.
 第1パイロットポート84aは、パイロットライン86により負荷圧ライン64と接続されている。つまり、第1パイロットポート84aには、ステアリング負荷圧が導入される。本実施形態では、パイロットライン86の一部と上述した入力ライン88の一部とが共通の流路となっている。第2パイロットポート84bは、パイロットライン87により荷役供給ライン32と接続されている。つまり、第2パイロットポート84bには、荷役負荷圧が導入される。本実施形態では、パイロットライン87の一部と上述した入力ライン89の一部とが共通の流路となっている。 The first pilot port 84 a is connected to the load pressure line 64 by a pilot line 86 . That is, the steering load pressure is introduced to the first pilot port 84a. In this embodiment, a portion of the pilot line 86 and a portion of the input line 88 described above form a common flow path. The second pilot port 84 b is connected to the cargo handling/supply line 32 by a pilot line 87 . That is, cargo handling load pressure is introduced to the second pilot port 84b. In this embodiment, a portion of the pilot line 87 and a portion of the input line 89 described above form a common flow path.
 切換弁84は、荷役負荷圧がステアリング負荷圧に所定値(スプリング84cの付勢力に対応する圧力)を加算した基準圧よりも小さいときは中立位置に位置して荷役要求指令圧を第2パイロットポート84bへ出力しない。一方、荷役要求指令圧が前記基準圧よりも大きいときは、切換弁84は作動位置にシフトして荷役要求指令圧を第2パイロットポート84bへ出力する。 When the cargo handling load pressure is smaller than the reference pressure obtained by adding a predetermined value (pressure corresponding to the biasing force of the spring 84c) to the steering load pressure, the switching valve 84 is positioned at the neutral position to set the cargo handling request command pressure to the second pilot. No output to port 84b. On the other hand, when the cargo handling request command pressure is higher than the reference pressure, the switching valve 84 shifts to the operating position to output the cargo handling request command pressure to the second pilot port 84b.
 以上説明したように、本実施形態の油圧システム1では、荷役レギュレータ5に荷役操作の操作量と正の相関を示す荷役要求指令圧が入力されるため、荷役ポンプ31の容量をポジティブ制御で制御することができる。一方、ステアリングレギュレータ4にはステアリング負荷圧と荷役負荷圧のうちの高い方がロードセンシング圧として入力される。ステアリング操作が単独で行われるときは、ステアリング負荷圧がステアリングレギュレータ4に入力されるため、ステアリングポンプ21の容量がステアリング負荷圧に応じて変化する。また、荷役操作が単独で行われるときは、荷役負荷圧がステアリングレギュレータ4に入力されるため、ステアリングポンプ21の容量が荷役負荷圧に応じて変化し、荷役ポンプ31とステアリングポンプ21の双方から荷役アクチュエータ12へ作動油が供給される。ステアリング操作と荷役操作が同時に行われるときは、要求が高い方に応じてステアリングポンプ21の容量が変化する。従って、ステアリングポンプ21の容量を適切に制御することができる。 As described above, in the hydraulic system 1 of the present embodiment, the cargo handling demand command pressure that exhibits a positive correlation with the operation amount of the cargo handling operation is input to the cargo handling regulator 5, so the displacement of the cargo handling pump 31 is controlled by positive control. can do. On the other hand, the higher one of the steering load pressure and the cargo handling load pressure is input to the steering regulator 4 as the load sensing pressure. When the steering operation is performed alone, the steering load pressure is input to the steering regulator 4, so the displacement of the steering pump 21 changes according to the steering load pressure. Further, when the cargo handling operation is performed alone, the cargo handling load pressure is input to the steering regulator 4, so that the displacement of the steering pump 21 changes according to the cargo handling load pressure. Hydraulic oil is supplied to the cargo handling actuator 12 . When the steering operation and the cargo handling operation are performed simultaneously, the displacement of the steering pump 21 changes according to the higher demand. Therefore, the displacement of the steering pump 21 can be appropriately controlled.
 さらに、本実施形態では合流ライン71に設けられた優先弁72がパイロット式であるので、優先弁72を機械的に作動させることができる。しかも、優先弁72の第2パイロットポート82bに出力される荷役要求指令圧は荷役操作の操作量と正の相関を示すものであるので、荷役操作の操作量が小さいほど優先弁72の開口面積が小さくなる。従って、ステアリングポンプ21から吐出される作動油をステアリングアクチュエータ11へ優先して供給することができる。 Furthermore, in this embodiment, the priority valve 72 provided in the merging line 71 is of a pilot type, so the priority valve 72 can be mechanically operated. Moreover, since the load-handling request command pressure output to the second pilot port 82b of the priority valve 72 has a positive correlation with the amount of load-handling operation, the opening area of the priority valve 72 increases as the load-handling operation amount decreases. becomes smaller. Therefore, the hydraulic oil discharged from the steering pump 21 can be preferentially supplied to the steering actuator 11 .
 (変形例)
 本開示は上述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲で種々の変形が可能である。
(Modification)
The present disclosure is not limited to the embodiments described above, and various modifications are possible without departing from the gist of the present disclosure.
 例えば、産業車両の種類によっては、油圧システム1の荷役回路3における荷役アクチュエータ12の数および荷役制御弁33の数がそれぞれ1つであってもよいし、3つ以上であってもよい。 For example, depending on the type of industrial vehicle, the number of cargo handling actuators 12 and the number of cargo handling control valves 33 in the cargo handling circuit 3 of the hydraulic system 1 may be one, or three or more.
 また、バケット操作装置92およびホイスト操作装置93のそれぞれがパイロット操作弁である場合、電磁比例弁81が省略されて、バケット操作装置92から出力されるパイロット圧とホイスト操作装置93から出力されるパイロット圧のうちの最も高いパイロット圧が荷役要求指令圧として荷役レギュレータ5の作動室5cへ導かれてもよい。 Further, when each of the bucket operation device 92 and the hoist operation device 93 is a pilot operation valve, the electromagnetic proportional valve 81 may be omitted, and the pilot pressure output from the bucket operation device 92 and the pilot pressure output from the hoist operation device 93 may be omitted. The highest pilot pressure among the pressures may be guided to the working chamber 5c of the cargo handling regulator 5 as the cargo handling demand command pressure.
 また、切換弁84は、かならずしもオンオフ弁である必要はなく、荷役操作要求指令圧を減圧可能な減圧弁の機能を有してもよい。 Also, the switching valve 84 does not necessarily have to be an on-off valve, and may have a function of a pressure reducing valve capable of reducing the cargo handling operation request command pressure.
 (まとめ)
 本開示は、ステアリング供給ラインおよびステアリング弁を介してステアリングアクチュエータへ作動油を供給する可変容量型のステアリングポンプと、荷役供給ラインおよび少なくとも1つの荷役制御弁を介して少なくとも1つの荷役アクチュエータへ作動油を供給する可変容量型の荷役ポンプと、前記ステアリング供給ラインから分岐して前記荷役供給ラインにつながる合流ラインと、前記合流ラインに設けられた、荷役操作が行われないときに前記合流ラインを遮断し、荷役操作が行われるときに前記合流ラインを開放する優先弁と、前記荷役操作の操作量と正の相関を示す荷役要求指令圧が入力され、前記荷役要求指令圧が大きくなるほど前記荷役ポンプの容量を増加する荷役レギュレータと、前記ステアリング弁における前記ステアリングアクチュエータへの作動油の供給量を決定する絞り部の下流側の圧力であるステアリング負荷圧と、前記荷役供給ラインにおける前記少なくとも1つの荷役制御弁の上流側の圧力である荷役負荷圧のうちの高い方がロードセンシング圧として入力され、前記ロードセンシング圧と前記ステアリングポンプの吐出圧との差圧が一定となるように前記ステアリングポンプの容量を制御するステアリングレギュレータと、を備える、産業車両の油圧システムを提供する。
(summary)
The present disclosure provides a variable displacement steering pump that supplies hydraulic fluid to a steering actuator via a steering supply line and a steering valve, and hydraulic fluid to at least one cargo handling actuator via a cargo handling supply line and at least one cargo handling control valve. a variable displacement cargo handling pump that supplies the cargo handling supply line, a junction line branched from the steering supply line and connected to the cargo handling supply line, and a junction line provided in the junction line that shuts off the junction line when no cargo handling operation is performed. Then, a priority valve for opening the merging line when a cargo handling operation is performed, and a cargo handling request command pressure that indicates a positive correlation with the operation amount of the cargo handling operation are input. a steering load pressure that is the pressure downstream of a throttle that determines the amount of hydraulic fluid supplied to the steering actuator in the steering valve; and the at least one cargo handling in the cargo handling supply line. The higher one of the cargo handling load pressures, which are the pressures on the upstream side of the control valve, is input as the load sensing pressure, and the pressure difference between the load sensing pressure and the discharge pressure of the steering pump is kept constant. and a steering regulator for controlling displacement.
 上記の構成によれば、荷役レギュレータに荷役操作の操作量と正の相関を示す荷役要求指令圧が入力されるため、荷役ポンプの容量をポジティブ制御で制御することができる。一方、ステアリングレギュレータにはステアリング負荷圧と荷役負荷圧のうちの高い方がロードセンシング圧として入力される。ステアリング操作が単独で行われるときは、ステアリング負荷圧がステアリングレギュレータに入力されるため、ステアリングポンプの容量がステアリング負荷圧に応じて変化する。また、荷役操作が単独で行われるときは、荷役負荷圧がステアリングレギュレータに入力されるため、ステアリングポンプの容量が荷役負荷圧に応じて変化し、荷役ポンプとステアリングポンプの双方から荷役アクチュエータへ作動油が供給される。ステアリング操作と荷役操作が同時に行われるときは、要求が高い方に応じてステアリングポンプの容量が変化する。従って、ステアリングポンプの容量を適切に制御することができる。 According to the above configuration, the cargo handling demand command pressure that exhibits a positive correlation with the operation amount of the cargo handling operation is input to the cargo handling regulator, so the capacity of the cargo handling pump can be controlled by positive control. On the other hand, the higher one of the steering load pressure and the cargo handling load pressure is input to the steering regulator as the load sensing pressure. When the steering operation is performed alone, the steering load pressure is input to the steering regulator, so the displacement of the steering pump changes according to the steering load pressure. Also, when the cargo handling operation is performed independently, the cargo handling load pressure is input to the steering regulator, so the displacement of the steering pump changes according to the cargo handling load pressure. oil is supplied. When steering operation and cargo handling operation are performed at the same time, the displacement of the steering pump changes according to the higher demand. Therefore, the displacement of the steering pump can be appropriately controlled.
 例えば、上記の油圧システムは、前記ステアリング負荷圧と前記荷役負荷圧のうちの高い方を選択して前記ステアリングレギュレータへ出力する高圧選択弁をさらに備えてもよい。 For example, the above hydraulic system may further include a high pressure selection valve that selects the higher one of the steering load pressure and the cargo handling load pressure and outputs it to the steering regulator.
 前記優先弁は、中立位置で前記合流ラインを遮断するものであり、当該優先弁を開口面積が増大する方向にシフトさせるパイロットポートを有し、上記の油圧システムは、前記荷役要求指令圧を前記パイロットポートへ出力するか否かを切り換える切換弁であって、前記荷役負荷圧が前記ステアリング負荷圧に所定値を加算した基準圧よりも小さいときは前記荷役要求指令圧を出力せず、前記荷役負荷圧が前記基準圧よりも大きいときは前記荷役要求指令圧を出力する切換弁をさらに備えてもよい。この構成によれば、優先弁を機械的に作動させることができる。しかも優先弁のパイロットポートに出力される荷役要求指令圧は荷役操作の操作量と正の相関を示すものであるので、荷役操作の操作量が小さいほど優先弁の開口面積が小さくなり、ステアリングポンプから吐出される作動油をステアリングアクチュエータへ優先して供給することができる。 The priority valve blocks the merging line at a neutral position, and has a pilot port that shifts the priority valve in a direction in which the opening area increases. A switching valve for switching whether or not to output to a pilot port, wherein when the cargo handling load pressure is smaller than a reference pressure obtained by adding a predetermined value to the steering load pressure, the cargo handling request command pressure is not output and the cargo handling demand command pressure is not output. A switching valve may be further provided for outputting the cargo handling request command pressure when the load pressure is higher than the reference pressure. According to this configuration, the priority valve can be mechanically operated. Moreover, the demand command pressure for cargo handling output to the pilot port of the priority valve shows a positive correlation with the amount of cargo handling operation. can be preferentially supplied to the steering actuator.
 1  油圧システム
 11 ステアリングアクチュエータ
 12 荷役アクチュエータ
 2  ステアリング回路
 21 ステアリングポンプ
 22 ステアリング供給ライン
 23 ステアリング弁
 23a 絞り部
 3  荷役回路
 31 荷役ポンプ
 32 荷役供給ライン
 33 荷役制御弁
 4  ステアリングレギュレータ
 5  荷役レギュレータ
 71 合流ライン
 72 優先弁
 72a 第1パイロットポート
 72b 第2パイロットポート
 84 切換弁
 98 高圧選択弁
 
Reference Signs List 1 hydraulic system 11 steering actuator 12 cargo handling actuator 2 steering circuit 21 steering pump 22 steering supply line 23 steering valve 23a throttle section 3 cargo handling circuit 31 cargo handling pump 32 cargo handling supply line 33 cargo handling control valve 4 steering regulator 5 cargo handling regulator 71 merging line 72 priority Valve 72a First pilot port 72b Second pilot port 84 Switching valve 98 High pressure selection valve

Claims (3)

  1.  ステアリング供給ラインおよびステアリング弁を介してステアリングアクチュエータへ作動油を供給する可変容量型のステアリングポンプと、
     荷役供給ラインおよび少なくとも1つの荷役制御弁を介して少なくとも1つの荷役アクチュエータへ作動油を供給する可変容量型の荷役ポンプと、
     前記ステアリング供給ラインから分岐して前記荷役供給ラインにつながる合流ラインと、
     前記合流ラインに設けられた、荷役操作が行われないときに前記合流ラインを遮断し、荷役操作が行われるときに前記合流ラインを開放する優先弁と、
     前記荷役操作の操作量と正の相関を示す荷役要求指令圧が入力され、前記荷役要求指令圧が大きくなるほど前記荷役ポンプの容量を増加する荷役レギュレータと、
     前記ステアリング弁における前記ステアリングアクチュエータへの作動油の供給量を決定する絞り部の下流側の圧力であるステアリング負荷圧と、前記荷役供給ラインにおける前記少なくとも1つの荷役制御弁の上流側の圧力である荷役負荷圧のうちの高い方がロードセンシング圧として入力され、前記ロードセンシング圧と前記ステアリングポンプの吐出圧との差圧が一定となるように前記ステアリングポンプの容量を制御するステアリングレギュレータと、
    を備える、産業車両の油圧システム。
    a variable displacement steering pump that supplies hydraulic fluid to a steering actuator via a steering supply line and a steering valve;
    a variable displacement cargo handling pump that supplies hydraulic oil to at least one cargo handling actuator via a cargo handling supply line and at least one cargo handling control valve;
    a confluence line branched from the steering supply line and connected to the cargo handling supply line;
    a priority valve provided in the merging line for blocking the merging line when a cargo handling operation is not performed and opening the merging line when a cargo handling operation is performed;
    a cargo handling regulator to which a cargo handling command pressure that is positively correlated with the manipulated variable of the cargo handling operation is input, and that increases the capacity of the cargo handling pump as the cargo handling command pressure increases;
    A steering load pressure, which is a downstream pressure of a throttle portion that determines the amount of hydraulic oil supplied to the steering actuator in the steering valve, and a pressure upstream of the at least one cargo handling control valve in the cargo handling supply line. a steering regulator that receives the higher one of the cargo handling load pressures as a load sensing pressure and controls the displacement of the steering pump so that the differential pressure between the load sensing pressure and the discharge pressure of the steering pump is constant;
    A hydraulic system of an industrial vehicle, comprising:
  2.  前記ステアリング負荷圧と前記荷役負荷圧のうちの高い方を選択して前記ステアリングレギュレータへ出力する高圧選択弁をさらに備える、請求項1に記載の産業車両の油圧システム。 The hydraulic system for an industrial vehicle according to claim 1, further comprising a high-pressure selection valve that selects the higher one of the steering load pressure and the cargo handling load pressure and outputs it to the steering regulator.
  3.  前記優先弁は、中立位置で前記合流ラインを遮断するものであり、当該優先弁を開口面積が増大する方向にシフトさせるパイロットポートを有し、
     前記荷役要求指令圧を前記パイロットポートへ出力するか否かを切り換える切換弁であって、前記荷役負荷圧が前記ステアリング負荷圧に所定値を加算した基準圧よりも小さいときは前記荷役要求指令圧を出力せず、前記荷役負荷圧が前記基準圧よりも大きいときは前記荷役要求指令圧を出力する切換弁をさらに備える、請求項1または2に記載の産業車両の油圧システム。
     
    The priority valve blocks the merging line at a neutral position, and has a pilot port that shifts the priority valve in a direction in which the opening area increases,
    A switching valve for switching whether or not to output the cargo-handling request command pressure to the pilot port, wherein when the cargo-handling load pressure is smaller than a reference pressure obtained by adding a predetermined value to the steering load pressure, the cargo-handling request command pressure is output. 3. The hydraulic system for an industrial vehicle according to claim 1, further comprising a switching valve that does not output the cargo handling load pressure and outputs the cargo handling request command pressure when the cargo handling load pressure is greater than the reference pressure.
PCT/JP2022/042973 2021-11-24 2022-11-21 Hydraulic system for industrial vehicle WO2023095739A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280067083.9A CN118103573A (en) 2021-11-24 2022-11-21 Hydraulic system for industrial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-189936 2021-11-24
JP2021189936A JP2023076907A (en) 2021-11-24 2021-11-24 Hydraulic system of industrial vehicle

Publications (1)

Publication Number Publication Date
WO2023095739A1 true WO2023095739A1 (en) 2023-06-01

Family

ID=86539398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042973 WO2023095739A1 (en) 2021-11-24 2022-11-21 Hydraulic system for industrial vehicle

Country Status (3)

Country Link
JP (1) JP2023076907A (en)
CN (1) CN118103573A (en)
WO (1) WO2023095739A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970245A (en) * 1982-10-13 1984-04-20 Daikin Ind Ltd Oil pressure circuit for car
JPH06301Y2 (en) * 1987-10-15 1994-01-05 株式会社神戸製鋼所 Hydraulic circuit for vehicle-based construction machinery
JPH07172328A (en) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd Fluid pressure circuit in cargo handling vehicle
US20080104953A1 (en) * 2005-02-17 2008-05-08 Volvo Construction Equipment Holding Sweden Ab Arrangement And A Method For Controlling A Work Vehicle
JP2011047460A (en) * 2009-08-26 2011-03-10 Kcm:Kk Fluid pressure circuit and construction machine equipped with the same
JP2016114142A (en) * 2014-12-15 2016-06-23 株式会社Kcm Hydraulic drive system
JP2017226492A (en) * 2016-06-20 2017-12-28 川崎重工業株式会社 Hydraulic drive system
US20210309287A1 (en) * 2014-11-24 2021-10-07 Parker-Hannifin Corporation System architectures for steering and work functions in a wheel loader
JP2022123288A (en) * 2021-02-12 2022-08-24 川崎重工業株式会社 hydraulic drive system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970245A (en) * 1982-10-13 1984-04-20 Daikin Ind Ltd Oil pressure circuit for car
JPH06301Y2 (en) * 1987-10-15 1994-01-05 株式会社神戸製鋼所 Hydraulic circuit for vehicle-based construction machinery
JPH07172328A (en) * 1993-12-21 1995-07-11 Nissan Motor Co Ltd Fluid pressure circuit in cargo handling vehicle
US20080104953A1 (en) * 2005-02-17 2008-05-08 Volvo Construction Equipment Holding Sweden Ab Arrangement And A Method For Controlling A Work Vehicle
JP2011047460A (en) * 2009-08-26 2011-03-10 Kcm:Kk Fluid pressure circuit and construction machine equipped with the same
US20210309287A1 (en) * 2014-11-24 2021-10-07 Parker-Hannifin Corporation System architectures for steering and work functions in a wheel loader
JP2016114142A (en) * 2014-12-15 2016-06-23 株式会社Kcm Hydraulic drive system
JP2017226492A (en) * 2016-06-20 2017-12-28 川崎重工業株式会社 Hydraulic drive system
JP2022123288A (en) * 2021-02-12 2022-08-24 川崎重工業株式会社 hydraulic drive system

Also Published As

Publication number Publication date
JP2023076907A (en) 2023-06-05
CN118103573A (en) 2024-05-28

Similar Documents

Publication Publication Date Title
US7891458B2 (en) Steering system for engineering vehicle
US5446979A (en) Hydraulic circuit system for civil engineering and construction machines
US9309646B2 (en) Steering device for wheel loader
US7597168B2 (en) Low engine speed steering performance
WO2017221758A1 (en) Hydraulic drive system
CN111094111B (en) Wheel loader
JP2017226492A5 (en)
WO2021039285A1 (en) Hydraulic system for construction machine
WO2019054366A1 (en) Hydraulic drive system for construction machine
WO2020031816A1 (en) Construction-machinery hydraulic circuit
JP2022123288A (en) hydraulic drive system
WO2019064688A1 (en) Hydraulic drive device of construction machine
WO2020162353A1 (en) Hydraulic drive system
JP4493205B2 (en) Fluid pressure transmission device
WO2023095739A1 (en) Hydraulic system for industrial vehicle
WO2023080108A1 (en) Hydraulic system for industrial vehicle
JP3081968B2 (en) Cutoff cancellation mechanism in load sensing system
JP2017026085A (en) Hydraulic control device of work machine
CN108779786B (en) Work vehicle and hydraulic control method
JP3095240B2 (en) Hydraulic working circuit
JP4926627B2 (en) Electric oil system
JP3511500B2 (en) Hydraulic circuit of construction machinery
JPH04285303A (en) Hydraulic circuit for improving operability in load sensing system
JP2758335B2 (en) Hydraulic circuit structure of construction machinery
JP7392600B2 (en) Hydraulic control device for industrial vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898522

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280067083.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE