WO2024111381A1 - Hydraulic pressure circuit - Google Patents
Hydraulic pressure circuit Download PDFInfo
- Publication number
- WO2024111381A1 WO2024111381A1 PCT/JP2023/039702 JP2023039702W WO2024111381A1 WO 2024111381 A1 WO2024111381 A1 WO 2024111381A1 JP 2023039702 W JP2023039702 W JP 2023039702W WO 2024111381 A1 WO2024111381 A1 WO 2024111381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pressure
- oil
- valve
- control valve
- oil passage
- Prior art date
Links
- 239000012530 fluid Substances 0.000 claims abstract description 84
- 230000008929 regeneration Effects 0.000 claims abstract description 8
- 238000011069 regeneration method Methods 0.000 claims abstract description 8
- 230000001172 regenerating effect Effects 0.000 claims description 19
- 230000004043 responsiveness Effects 0.000 abstract description 5
- 230000007935 neutral effect Effects 0.000 description 17
- 230000004044 response Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B21/00—Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
- F15B21/14—Energy-recuperation means
Definitions
- the present invention relates to a fluid pressure circuit, for example a fluid pressure circuit that controls a fluid actuator in response to an operation command.
- Fluid pressure circuits that control fluid actuators in response to operation commands are used in automobiles, construction machinery, loading and unloading vehicles, industrial machinery, etc.
- the fluid pressure circuit in a hydraulic excavator rotates a hydraulic motor by supplying pressurized fluid from a hydraulic pump.
- a fluid pressure circuit such as that in Patent Document 1 rotates an upper structure using a swing motor, which is a hydraulic motor, and is mainly composed of a pump, a swing motor, a control valve, an adjustment valve, and an accumulator.
- the swing motor is rotated by oil discharged from the pump.
- the control valve is provided between the pump and the swing motor. The control valve can switch the direction in which the oil discharged from the pump passes through the swing motor. Depending on this flow direction, the rotation direction of the swing motor is switched.
- the control valve can also be switched to a neutral position in which no oil is supplied to either the first or second port of the swing motor. For example, when the control valve is switched to the neutral position while the swing motor is being driven, the oil pressure in the motor pipe fluidly connecting the downstream side of the swing motor to the control valve increases. This allows the rotation of the swing motor to be stopped.
- An accumulator pipe is branched off and connected to the motor pipe.
- a control valve and an accumulator are fluidly connected to the accumulator pipe.
- the control valve is a proportional flow control valve. When the control valve is switched to the neutral position, the opening of the control valve is adjusted, allowing some of the oil in the motor pipe to be stored in the accumulator.
- JP2011-514954A (Pages 5 to 8, Figure 2)
- the opening of the control valve is adjusted according to the pressure of the accumulator. This allows the hydraulic circuit to store an appropriate amount of oil in the accumulator.
- the opening momentarily widens, causing a large deviation from the target flow rate, and there is a risk that the fluid pressure used to stop the rotation of the swing motor will be lost.
- the opening degree of the control valve when determining the opening degree of the control valve, there are also known devices that detect not only the pressure on the accumulator side, but also the pressure on the swing motor side that rises when the swing motor is stopped. With this configuration, the opening degree of the control valve can be adjusted using the pressure on the accumulator side and the pressure on the swing motor side. This makes it possible to reliably secure the fluid pressure required to stop the rotation of the swing motor.
- the present invention was developed to address these problems, and aims to provide a fluid pressure circuit that can responsively supply fluid to the regenerative system.
- the fluid pressure circuit of the present invention comprises: A pressure source; an actuator device actuated by fluid from the pressure source; a directional control valve provided in a main flow path between the pressure supply source and the actuator device; a regeneration system connected to the main flow path via a branch flow path; a control valve for controlling a flow rate from the main flow path to the branch flow path, A throttle that throttles a fluid from the main flow path is disposed in the branch flow path, The control valve receives the fluid pressure in the main flow passage and the fluid pressure in the branch flow passage obtained by the restriction, and is controlled by the differential pressure therebetween. According to this, the control valve is controlled by utilizing the differential pressure between the pressure in the main flow passage and the pressure in the branch flow passage, and therefore the fluid pressure circuit can supply fluid to the regenerative system with good responsiveness.
- the throttle may be a variable throttle that is controlled based on information obtained from the regenerative system. This allows the fluid pressure circuit to supply an appropriate amount of fluid to the regenerative system.
- the information obtained from the regenerative system may be an electrical signal obtained from a sensor on the regenerative system side. According to this, the opening degree of the variable throttle is controlled in response to an electrical signal from a sensor on the regenerative system side, resulting in a simple configuration.
- the throttle may be provided at the operating position of a three-port two-position type solenoid valve.
- the fluid pressure circuit can smoothly operate the actuator device, and can supply fluid to the regeneration system with good responsiveness during regeneration.
- FIG. 1 is a diagram showing a hydraulic excavator incorporating a hydraulic circuit according to an embodiment of the present invention.
- FIG. 2 is a diagram showing a hydraulic circuit in the embodiment.
- 4 is a graph showing the relationship between the lever operation amount and the electrical signal output to the switching valve.
- 4 is a graph showing the relationship between the lever operation amount and the opening area of the switching valve.
- 5 is a graph showing the relationship between the lever operation amount and the flow rate of fluid supplied to the hydraulic motor.
- 4 is a graph showing the relationship between the lever operation amount and the opening characteristic of the solenoid proportional valve.
- 4 is a graph showing the relationship between the pressure acting on a relief valve and the flow rate of a fluid passing through the relief valve.
- FIG. 5 is a schematic diagram showing the relationship between an electrical signal input to a flow control valve and a priority flow rate.
- FIG. 4 is an enlarged view of a control valve and a throttle.
- FIG. 4 is a diagram for explaining the movement of a control valve.
- FIG. 4 is a diagram for explaining the movement of a control valve.
- the hydraulic circuit as a fluid pressure circuit in the embodiment is a hydraulic circuit that controls the rotation of a hydraulic motor in response to an operation command for a work machine, construction machine, cargo handling vehicle, automobile, etc., and is incorporated, for example, in the swing device 101 of a hydraulic excavator 100 shown in FIG. 1.
- a running body 102 and a rotating body 103 are connected via a rotating device 101.
- the rotating body 103 can rotate in response to the rotation of a hydraulic motor 4 (see FIG. 2) in the rotating device 101.
- the hydraulic motor 4 is driven by a hydraulic circuit 110 (see FIG. 2).
- the hydraulic circuit 110 will be described below.
- the hydraulic circuit 110 is composed of a hydraulic pump 2 as a fluid supply source driven by a drive mechanism 1 such as an engine or an electric motor, a directional control valve 3, a hydraulic motor 4, a remote control 5, flow divider valves 6, 7, an electromagnetic proportional valve 8, relief valves 9, 10, pressure sensors 11-13, an accumulator 14 as an auxiliary device, a controller 15, a tank 16, check valves 17-20, shuttle valves 21, 22, oil passages 23-45, and electrical signal lines 46-52.
- a drive mechanism 1 such as an engine or an electric motor
- a directional control valve 3 a hydraulic motor 4
- a remote control 5 flow divider valves 6, 7, an electromagnetic proportional valve 8, relief valves 9, 10, pressure sensors 11-13
- an accumulator 14 as an auxiliary device
- a controller 15 a tank 16, check valves 17-20, shuttle valves 21, 22, oil passages 23-45, and electrical signal lines 46-52.
- the accumulator 14 is shown as an example of an auxiliary device, this is not limited to this.
- the hydraulic pump 2 is connected to a drive mechanism 1 such as an internal combustion engine, and is rotated by the power from the drive mechanism 1 to supply pressurized oil downstream through an oil passage 23.
- a drive mechanism 1 such as an internal combustion engine
- Directional control valve 3 is a 6-port, 3-position type, closed-center type electromagnetic directional control valve, and when the spool is in the neutral position, all ports are closed.
- the remote control 5 is an electric joystick. When the operating lever 5-1 is operated to the right A or to the left B, the remote control 5 outputs an electric signal proportional to the amount of operation. This electric signal is input to the controller 15 via the electric signal line 46.
- the arithmetic circuit of the controller 15 outputs an electrical signal corresponding to the electrical signal input from the remote control 5 to the electrical signal line 47 or the electrical signal line 48. As shown in FIG. 3, the electrical signal output from the controller 15 to the electrical signal line 47 or the electrical signal line 48 is proportional to the amount of operation of the operating lever 5-1.
- the electrical signal output from the controller 15 is applied to the solenoid 3-1 of the directional control valve 3 through the electrical signal line 47.
- This causes the spool of the directional control valve 3 to move, and the directional control valve 3 switches to the first rotation position 3-3.
- the pressurized oil delivered from the hydraulic pump 2 flows into the hydraulic motor 4 through the directional control valve 3 and oil passages 25 and 26, and after passing through the hydraulic motor 4, it is discharged into the tank 16 through oil passages 27 and 28, the directional control valve 3, and oil passage 29. At this time, the hydraulic motor 4 is rotated clockwise.
- the electrical signal output from the controller 15 is applied to the solenoid 3-2 of the directional control valve 3 through the electrical signal line 48.
- This causes the spool of the directional control valve 3 to move, and the directional control valve 3 switches to the second rotation position 3-4.
- the pressurized oil delivered from the hydraulic pump 2 flows into the hydraulic motor 4 through the directional control valve 3 and oil passages 28 and 27, and after passing through the hydraulic motor 4, it is discharged into the tank 16 through oil passages 26 and 25, the directional control valve 3, and oil passage 29. At this time, the hydraulic motor 4 is rotated in the counterclockwise direction.
- the oil passages 23 to 29 through which the pressurized oil passes to rotate the hydraulic motor 4 are the main flow paths in this embodiment.
- the directional control valve 3 is configured so that the spool strokes approximately in proportion to the electrical signal input from the controller 15 via the electrical signal line 47 or the electrical signal line 48. As a result, the directional control valve 3 increases the P-M (pump ⁇ hydraulic motor) opening area and the M-T (hydraulic motor ⁇ tank) opening area according to the spool stroke.
- the arithmetic circuit of the controller 15 also outputs an electrical signal to the electrical signal line 52 in response to the electrical signal input from the remote control 5.
- the hydraulic pump 2 is configured so that the amount of pressurized oil discharged varies variably in approximate proportion to the electrical signal input from the controller 15 via the electrical signal line 52.
- oil passages 30, 33, and 34 are branched and connected to oil passage 26.
- Oil passages 31, 32, and 36 are branched and connected to oil passage 27.
- a relief valve 10 is provided between oil passage 30 and oil passage 31.
- the relief valve 10 opens when the pressure in oil passage 30 reaches or exceeds a predetermined pressure, allowing communication between oil passages 30 and 31.
- a relief valve 9 is provided between oil passage 32 and oil passage 33.
- the relief valve 9 opens when the pressure in oil passage 32 reaches or exceeds a predetermined pressure, allowing communication between oil passages 32 and 33.
- Oil passage 34 is connected to oil passage 35 via check valve 19.
- Check valve 19 is configured to allow oil to pass from oil passage 35 to oil passage 34.
- Oil passage 36 is connected to oil passage 35 via check valve 20.
- Check valve 20 is configured to allow oil to pass from oil passage 35 to oil passage 36.
- Oil passage 35 is connected to tank 16.
- pressure sensor 11 is connected to oil passage 26.
- Pressure sensor 12 is connected to oil passage 27.
- Pressure sensors 11 and 12 are capable of inputting the detected pressure value Pv or pressure value Pw to controller 15 as an electrical signal.
- the hydraulic circuit 110 is also connected to the regenerative system R via a branch flow path that branches off from oil paths 25, 26, 27, and 28, which are part of the main flow path.
- the branch flow path is made up of diverter valves 6 and 7, shuttle valves 21 and 22, and oil paths 37, 41, 44, and 45.
- the regenerative system R is mainly made up of the solenoid proportional valve 8, pressure sensor 13, accumulator 14, check valves 17 and 18, and oil paths 38 to 40, 42, and 43.
- the flow dividing valve 6 is provided between the oil passages 25 and 26.
- the flow dividing valve 6 is also connected to the oil passage 41.
- the flow dividing valve 6 can switch between passing pressurized oil only between the oil passages 25 and 26, or passing pressurized oil between the oil passages 25 and 26 and also allowing the pressurized oil to flow into the oil passage 41. This flow dividing valve 6 will be described later.
- the flow dividing valve 7 is provided between the oil passages 27 and 28.
- the flow dividing valve 7 is also connected to the oil passage 37.
- the flow dividing valve 7 can switch between passing pressurized oil only between the oil passages 27 and 28, or passing pressurized oil between the oil passages 25 and 26 as well as flowing into the oil passage 37. This flow dividing valve 7 will be described later.
- Oil passages 37 and 41 are connected in parallel to shuttle valve 21.
- oil passage 38 is connected to shuttle valve 21.
- Shuttle valve 21 is configured so that the oil passage with the higher internal pressure out of oil passages 37 and 41 can be connected to oil passage 38.
- Oil passage 38 is connected to oil passage 39 via check valve 17.
- Check valve 17 is configured to allow pressurized oil to pass from oil passage 38 to oil passage 39.
- accumulator 14, pressure sensor 13, and solenoid proportional valve 8 are connected to oil passage 39.
- Pressure sensor 13 is capable of inputting the detected pressure value Px to controller 15 as an electrical signal.
- the solenoid proportional valve 8 is also connected to the shuttle valve 22 via an oil passage 42, a check valve 18, and an oil passage 43.
- the check valve 18 is configured to allow pressurized oil to pass from the oil passage 42 to the oil passage 43.
- the shuttle valve 22 is also connected to oil passages 44 and 45 in parallel.
- the shuttle valve 22 is configured to allow the oil passage 44, 45, whichever has the higher internal pressure, to communicate with the oil passage 43.
- the electromagnetic proportional valve 8 is a two-port, two-position type electromagnetic proportional flow control valve.
- the calculation circuit of the controller 15 also outputs an electrical signal corresponding to the electrical signal input from the remote control 5 to the electrical signal line 51.
- the solenoid proportional valve 8 is configured so that the opening area changes variably in approximate proportion to the electrical signal input from the controller 15 via the electrical signal line 51.
- the controller 15 When the remote control 5 is being operated and the pressure value Px input from the pressure sensor 13 is equal to or greater than a predetermined value, the controller 15 outputs an electrical signal to the solenoid proportional valve 8 according to the amount of operation of the remote control 5. This adjusts the opening of the solenoid proportional valve 8 so that the opening area corresponds to the electrical signal, allowing pressure oil to be supplied from the accumulator 14 to the oil passage 44 or oil passage 45. This allows the pressure oil in the T portion shown by the diagonal lines in Figure 5 to be supplied from the accumulator 14 to the hydraulic motor 4.
- controller 15 when the controller 15 outputs an electrical signal to the electromagnetic proportional valve 8, it also outputs an electrical signal to the hydraulic pump 2, reducing the amount of pressurized oil delivered from the hydraulic pump 2. This makes it possible to reduce the energy required to drive the hydraulic pump 2.
- Fluid storage in the accumulator 14 is performed by utilizing the fluid pressure P1 that rises in the oil passages 25, 26 or the oil passages 27, 28 when the operating lever 5-1 is suddenly returned to the neutral position, i.e., a sudden stop operation is performed.
- P1 fluid pressure
- the directional control valve 3 is switched from the second rotation position 3-4 to the neutral position 3-5. This stops the supply of pressurized oil from the hydraulic pump 2 to the oil passage 28, and also stops the discharge of pressurized oil from the oil passage 25 to the tank 16.
- the internal fluid pressure decreases as pressurized oil is sucked in in response to the rotation of the hydraulic motor 4.
- the internal pressure falls below the pressure of the oil in the tank 16
- the oil in the tank 16 is sucked up into the oil passages 28, 27 through the oil passages 35, 36. This prevents cavitation from occurring in the oil passages 28, 27.
- the relief valves 9 and 10 have pressure override characteristics shown by curve C1 in Figure 7. To explain this, we will first explain the pressure override characteristics shown by curve C0 in Figure 7. Curve C0 shows the flow rate Q that passes through the relief valve in approximate proportion to the increase in fluid pressure P1, and the relief valve begins to open at cracking pressure Pcr and can pass flow rate Q1 at set pressure Pst.
- the flow rate Q1 is the total flow rate of pressurized oil discharged by the hydraulic motor 4 through pump action due to the inertial force acting on the rotating body 103 when the operating lever 5-1 is quickly returned to the neutral position from the state in which it is operated to the maximum extent.
- the set pressure Pst is the pressure required to stop the rotating body 103 within a specified angle centered on the axis of the hydraulic motor 4. This prevents accidents due to excessive rotation flow, such as the risk of the rotating body 103 rotating excessively after the operating lever 5-1 is operated to the neutral position or the risk of the hydraulic circuit being damaged due to an excessive pressure rise.
- the hydraulic circuit 110 can store the excess oil volume ⁇ Q in the accumulator 14 by controlling either the flow divider valve 6 or 7, which is located downstream of the hydraulic motor 4 in the flow direction of the pressurized oil. This allows the hydraulic circuit 110 to prevent accidents caused by excessive flow during rotation.
- the flow dividing valve 6 includes a flow control valve 60, a pressure compensation valve 61 as a control valve, and oil passages 62 to 66.
- the flow control valve 60 is a three-port, two-position type electromagnetic proportional flow control valve.
- the solenoid 60-1 of the flow control valve 60 is connected to the controller 15 via an electrical signal line 49.
- Flow control valve 60 is connected to oil passage 26 via oil passage 62.
- oil passages 63 and 64 are connected in parallel to flow control valve 60.
- oil passages 63 and 64 are also connected in parallel to pressure compensation valve 61.
- oil passage 63 can be communicated with oil passage 65 via pressure compensation valve 61.
- oil passage 65 is communicated and connected to oil passage 25.
- Oil passage 64 is connected to oil passage 66 via pressure compensation valve 61.
- oil passage 66 is communicated with oil passage 41.
- the flow control valve 60 When no electrical signal is input from the controller 15 to the solenoid 60-1, the flow control valve 60 is in the neutral position 60-3. In the neutral position 60-3, the oil passages 62 and 63 are connected, and the oil passages 62 and 64 are not connected. Therefore, in the neutral position 60-3, pressurized oil can flow between the oil passages 25 and 26.
- the flow control valve 60 switches to the operating position 60-2 when an electrical signal is input from the controller 15 to the solenoid 60-1.
- oil passages 60-4, 60-5, variable throttle 60-6, and 60-7 are provided.
- oil passage 60-4 is connected to oil passage 62 and oil passage 63.
- oil passage 60-5 is branched and connected to oil passage 60-4.
- Oil passage 60-5 is connected to oil passage 60-7 via variable throttle 60-6.
- oil passage 60-7 is connected to oil passage 64.
- oil passage 62 and oil passage 63 are connected to each other, and oil passage 64 is also connected to them.
- the flow control valve 60 variably changes the priority flow rate approximately in proportion to the electrical signal from the controller 15.
- the priority flow rate is the amount of pressurized oil that passes through the variable throttle 60-6 and is supplied to the oil passage 64.
- the flow control valve 60 variably changes the opening area of the variable throttle 60-6 approximately in proportion to the electrical signal from the controller 15.
- the pressure compensation valve 61 has an oil passage 61-1, an oil passage 61-2, and a spring 61-3.
- Oil passage 61-1 communicates with oil passage 63 and a back pressure chamber (not shown) defined on the lower side of the spool in pressure compensation valve 61.
- Oil passage 61-2 communicates with oil passage 64 and a back pressure chamber (not shown) defined on the upper side of the spool.
- fluid pressure P1 acts on the pressure receiving surface (not shown) on the lower side of the spool as the so-called pilot pressure of the pressurized oil supplied from oil passage 63 through oil passage 61-1.
- Fluid pressure P2 acts on the pressure receiving surface (not shown) on the upper side of the spool as the so-called pilot pressure of the pressurized oil that has passed through variable throttle 60-6 and is supplied from oil passage 64 through oil passage 61-2.
- the spring 61-3 is located above the spool (not shown) on the page, and biases the spool toward the bottom of the page.
- the pressure compensating valve 61 changes the opening between oil passages 63 and 65 and the opening between oil passages 64 and 66. More specifically, referring to FIG. 10, the further the spool moves downward on the page, the wider the opening between oil passages 63 and 65 becomes, and the narrower the opening between oil passages 64 and 66 becomes. Also, referring to FIG. 11, the further the spool moves upward on the page, the narrower the opening between oil passages 63 and 65 becomes, and the wider the opening between oil passages 64 and 66 becomes. Note that FIGS. 10 and 11 are schematic diagrams showing the operation of the pressure compensating valve 61.
- the controller 15 detects that the control lever 5-1, which had been operated to the maximum extent in the left direction B, has been returned to the neutral position in one go, it switches the directional control valve 3 to the neutral position 3-5, closes the solenoid proportional valve 8, and determines the opening degree Ax of the variable throttle 60-6 in the flow control valve 60 by referring to the pressure value Px input from the pressure sensor 13.
- the opening degree Ax of the variable throttle 60-6 is determined in this embodiment by the override characteristics of the relief valves 9 and 10, respectively, in which the excess oil amount ⁇ Q and the set pressure Pst are preset.
- the calculation circuit of the controller 15 is preset with an electrical signal for each pressure value Px of the accumulator 14 that allows the excess oil amount ⁇ Q to flow to the accumulator 14 side while leaving pressure oil to ensure the set pressure Pst. Therefore, the controller 15 in this embodiment can output an electrical signal for controlling the opening degree Ax to an appropriate value based only on the pressure value Px of the accumulator 14.
- the controller 15 outputs a smaller electrical signal the smaller the pressure value Px of the accumulator 14 is, and outputs a larger electrical signal the larger the pressure value Px of the accumulator 14 is.
- the variable throttle 60-6 narrows the opening Ax the smaller the pressure value Px of the accumulator 14 is, and widens the opening Ax the larger the pressure value Px of the accumulator 14 is.
- the differential pressure ⁇ P according to the opening degree Ax of the variable throttle 60-6 can be adjusted to a constant differential pressure ⁇ P10 or differential pressure ⁇ P20, regardless of whether the differential pressure ⁇ P is ⁇ P10 or ⁇ P20.
- the hydraulic circuit 110 can prevent more than the excess oil volume ⁇ Q from passing between the oil passages 64, 66, and can maintain the amount of oil in the oil passages 25, 26 required to obtain the set pressure Pst.
- the differential pressure ⁇ P according to the opening degree Ax of the variable throttle 60-6 can be adjusted to a constant differential pressure ⁇ P10 or differential pressure ⁇ P20, regardless of whether the differential pressure ⁇ P is ⁇ P10 or ⁇ P20.
- the hydraulic circuit 110 is able to prevent more pressurized oil than necessary from being discharged from the relief valve 10 to the oil passage 27 side, allowing excess oil volume ⁇ Q to pass between the oil passages 64 and 66.
- the flow dividing valve 7 includes a flow control valve 70 and a pressure compensation valve 71 as a control valve, and the flow control valve 70 is connected to the controller 15 via an electrical signal line 50.
- the rest of the configuration is the same as that of the flow dividing valve 6, so a duplicated description will be omitted.
- the pressure compensation valve 61 is controlled using the differential pressure ⁇ P between the fluid pressure P1 in the oil passages 25 and 26 and the fluid pressure P2 in the oil passage 64. This allows the hydraulic circuit 110 to responsively supply pressurized oil to the regenerative system R.
- the hydraulic circuit 110 uses a variable throttle 60-6 to control the amount of oil from the oil passages 25 and 26 to the oil passage 64. Therefore, the hydraulic circuit 110 can supply an appropriate amount of pressurized oil to the regenerative system R while maintaining the amount of oil in the oil passages 25 and 26 required to obtain the set pressure Pst.
- the hydraulic circuit 110 also has a simple configuration, since an electrical signal corresponding to the pressure value Px on the accumulator 14 side is input from the pressure sensor 13 to the controller 15, and the opening Ax of the variable throttle 60-6 is controlled accordingly.
- the flow control valve 60 is a three-port two-position type solenoid valve. Therefore, the hydraulic circuit 110 can prevent inflow into the regenerative system R by placing the flow control valve 60 in the neutral position 60-3 when rotating the hydraulic motor 4. This allows the hydraulic circuit 110 to operate the hydraulic motor 4 smoothly. Furthermore, during regeneration, the flow control valve 60 is switched to the operating position 60-2 by inputting an electrical signal. This allows the hydraulic circuit 110 to supply fluid to the regenerative system R with good responsiveness.
- the fluid pressure circuit is described as being a hydraulic circuit in which oil is pumped, but this is not limited thereto and may be a fluid other than oil, and the fluid applied may be changed as appropriate.
- the actuator is described as being a hydraulic motor, but this is not limited to this and may be a hydraulic cylinder or may be modified as appropriate.
- control valve is described as being a pressure compensation valve, but this is not limited thereto, and may be changed as appropriate as long as it is a valve that operates based on a pilot differential pressure.
- control valve may be configured to be capable of adjusting the opening of the branch flow passage, but not involved in adjusting the opening of the main flow passage, and in such a configuration, the opening of the main flow passage may be maintained at a constant opening that allows the fluid to flow freely.
- the aperture is described as being variable, but this is not limited thereto and may be a fixed aperture.
- the remote control is described as being an electric joystick, but this is not limited thereto, and it may be, for example, a remote control valve for variably controlling the pilot pressure acting on the directional control valve. In this way, fluid pressure may be used as appropriate instead of an electrical signal for control by the controller.
- variable throttle is described as being part of a three-port two-position type solenoid valve, but this is not limited thereto, and the on-off valve and the variable throttle may be arranged in series, or may be separate. Furthermore, if the throttle is a variable throttle, the on-off valve may be omitted.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Fluid-Pressure Circuits (AREA)
- Operation Control Of Excavators (AREA)
Abstract
Provided is a hydraulic pressure circuit capable of supplying a fluid to a regeneration system with good responsiveness. A hydraulic pressure circuit 110 comprises a pressure supply source 2, an actuator device 4 that is actuated by means of a fluid from the pressure supply source 2, a direction switching valve 3 provided in a main flow passage 23 to 29 between the pressure supply source 2 and the actuator device 4, a regeneration system R connected to the main flow passage 25, 26 via a branch flow passage 6, 41, and a control valve 61 for controlling a flow rate from the main flow passage 25, 26 to the branch flow passage 41, wherein: a throttle 60-6 that throttles the fluid from the main flow passage 25, 26 is disposed in the branch flow passage 110; and the control valve 61 accepts a hydraulic pressure P1 of the main flow passage 63 and a hydraulic pressure P2 of the branch flow passage 64 obtained by means of the throttle 60-6, and is controlled by means of a differential pressure ΔP therebetween.
Description
本発明は、流体圧回路、例えば操作指令に応じて流体アクチュエータを制御する流体圧回路に関する。
The present invention relates to a fluid pressure circuit, for example a fluid pressure circuit that controls a fluid actuator in response to an operation command.
自動車、建設機械、荷役運搬車両、産業用機械等に操作指令に応じて流体アクチュエータを制御する流体圧回路が用いられている。例えば、油圧ショベルにおける流体圧回路は、油圧ポンプから圧力流体を供給することにより油圧モータを回転させるようになっている。
Fluid pressure circuits that control fluid actuators in response to operation commands are used in automobiles, construction machinery, loading and unloading vehicles, industrial machinery, etc. For example, the fluid pressure circuit in a hydraulic excavator rotates a hydraulic motor by supplying pressurized fluid from a hydraulic pump.
例えば、特許文献1のような流体圧回路は、上部構造体を油圧モータである旋回モータによって旋回させるものであって、ポンプと、旋回モータと、制御弁と、調節弁と、アキュムレータから主に構成されている。旋回モータは、ポンプから送出された油によって回転される。制御弁は、ポンプと旋回モータとの間に設けられている。制御弁は、ポンプから送出された油が旋回モータを通過する方向を切り換えることができる。この流れ方向に応じて、旋回モータはその回転方向が切り換えられる。
For example, a fluid pressure circuit such as that in Patent Document 1 rotates an upper structure using a swing motor, which is a hydraulic motor, and is mainly composed of a pump, a swing motor, a control valve, an adjustment valve, and an accumulator. The swing motor is rotated by oil discharged from the pump. The control valve is provided between the pump and the swing motor. The control valve can switch the direction in which the oil discharged from the pump passes through the swing motor. Depending on this flow direction, the rotation direction of the swing motor is switched.
また、制御弁は、旋回モータの第1のポートにも第2のポートにも油を供給しない中立位置に切り換えることができる。例えば、旋回モータを駆動させている状態で制御弁が中立位置に切り換えられると、旋回モータの下流側と制御弁とを流体接続しているモータ管内の油の圧力が上昇する。これにより、旋回モータの回転を停止させることができる。
The control valve can also be switched to a neutral position in which no oil is supplied to either the first or second port of the swing motor. For example, when the control valve is switched to the neutral position while the swing motor is being driven, the oil pressure in the motor pipe fluidly connecting the downstream side of the swing motor to the control valve increases. This allows the rotation of the swing motor to be stopped.
モータ管には、アキュムレータ管が分岐接続されている。アキュムレータ管には、調節弁と、アキュムレータが流体接続されている。調節弁は、比例流量制御弁である。これにより、制御弁が中立位置に切り換えられた際に、調節弁の開度が調節されることで、モータ管内の油の一部をアキュムレータに蓄液することができる。
An accumulator pipe is branched off and connected to the motor pipe. A control valve and an accumulator are fluidly connected to the accumulator pipe. The control valve is a proportional flow control valve. When the control valve is switched to the neutral position, the opening of the control valve is adjusted, allowing some of the oil in the motor pipe to be stored in the accumulator.
特許文献1のような流体圧回路においては、調節弁はアキュムレータの圧力に応じてその開度が調節される。これにより、油圧回路はアキュムレータに適切量の油を蓄液することができる。一方、旋回モータの回転を停止させ、調節弁が非常に高い圧力を受けると、その開度が瞬間的に広がり目標流量とのズレが大きくなり、旋回モータの回転を停止させるための流体圧が損なわれる虞があった。
In a fluid pressure circuit such as that described in Patent Document 1, the opening of the control valve is adjusted according to the pressure of the accumulator. This allows the hydraulic circuit to store an appropriate amount of oil in the accumulator. However, when the rotation of the swing motor is stopped and the control valve receives very high pressure, the opening momentarily widens, causing a large deviation from the target flow rate, and there is a risk that the fluid pressure used to stop the rotation of the swing motor will be lost.
そこで、調節弁の開度を決定するにあたって、アキュムレータ側の圧力ばかりでなく、旋回モータ停止時に上昇する旋回モータ側の圧力も検知するものも知られている。このような構成であれば、アキュムレータ側の圧力と、旋回モータ側の圧力を用いて調節弁の開度を調節することができる。これにより、旋回モータの回転を停止させるための流体圧を確実に確保することができる。
Therefore, when determining the opening degree of the control valve, there are also known devices that detect not only the pressure on the accumulator side, but also the pressure on the swing motor side that rises when the swing motor is stopped. With this configuration, the opening degree of the control valve can be adjusted using the pressure on the accumulator side and the pressure on the swing motor side. This makes it possible to reliably secure the fluid pressure required to stop the rotation of the swing motor.
しかしながら、アキュムレータ側の圧力と、旋回モータ側の圧力をもとに調節弁の開度を調節するためには、各圧力が検知され、これらの圧力から調節弁の開度が算出され、調節弁に入力する電気信号を決定し、この電気信号を出力する必要がある。このことから応答性に改善の余地があった。
However, to adjust the opening of the control valve based on the pressure on the accumulator side and the pressure on the swing motor side, it is necessary to detect each pressure, calculate the opening of the control valve from these pressures, determine the electrical signal to be input to the control valve, and output this electrical signal. This left room for improvement in responsiveness.
本発明は、このような問題点に着目してなされたもので、応答性よく流体を回生系に供給することができる流体圧回路を提供することを目的とする。
The present invention was developed to address these problems, and aims to provide a fluid pressure circuit that can responsively supply fluid to the regenerative system.
前記課題を解決するために、本発明の流体圧回路は、
圧力供給源と、
前記圧力供給源からの流体によって作動するアクチュエータ装置と、
前記圧力供給源と前記アクチュエータ装置との間の主流路に設けられている方向切換弁と、
前記主流路に分岐流路を介して接続されている回生系と、
前記主流路から前記分岐流路への流量を制御する制御弁と、を備える流体圧回路であって、
前記分岐流路には、前記主流路からの流体を絞る絞りが配置されており、
前記制御弁は、前記主流路の流体圧と前記絞りによって得られる前記分岐流路の流体圧を受けこれらの差圧で制御されるようになっている。
これによれば、制御弁は、主流路の圧力と分岐流路の圧力との差圧を利用して制御される。このことから、流体圧回路は、応答性よく流体を回生系に供給することができる。 In order to solve the above problems, the fluid pressure circuit of the present invention comprises:
A pressure source;
an actuator device actuated by fluid from the pressure source;
a directional control valve provided in a main flow path between the pressure supply source and the actuator device;
a regeneration system connected to the main flow path via a branch flow path;
a control valve for controlling a flow rate from the main flow path to the branch flow path,
A throttle that throttles a fluid from the main flow path is disposed in the branch flow path,
The control valve receives the fluid pressure in the main flow passage and the fluid pressure in the branch flow passage obtained by the restriction, and is controlled by the differential pressure therebetween.
According to this, the control valve is controlled by utilizing the differential pressure between the pressure in the main flow passage and the pressure in the branch flow passage, and therefore the fluid pressure circuit can supply fluid to the regenerative system with good responsiveness.
圧力供給源と、
前記圧力供給源からの流体によって作動するアクチュエータ装置と、
前記圧力供給源と前記アクチュエータ装置との間の主流路に設けられている方向切換弁と、
前記主流路に分岐流路を介して接続されている回生系と、
前記主流路から前記分岐流路への流量を制御する制御弁と、を備える流体圧回路であって、
前記分岐流路には、前記主流路からの流体を絞る絞りが配置されており、
前記制御弁は、前記主流路の流体圧と前記絞りによって得られる前記分岐流路の流体圧を受けこれらの差圧で制御されるようになっている。
これによれば、制御弁は、主流路の圧力と分岐流路の圧力との差圧を利用して制御される。このことから、流体圧回路は、応答性よく流体を回生系に供給することができる。 In order to solve the above problems, the fluid pressure circuit of the present invention comprises:
A pressure source;
an actuator device actuated by fluid from the pressure source;
a directional control valve provided in a main flow path between the pressure supply source and the actuator device;
a regeneration system connected to the main flow path via a branch flow path;
a control valve for controlling a flow rate from the main flow path to the branch flow path,
A throttle that throttles a fluid from the main flow path is disposed in the branch flow path,
The control valve receives the fluid pressure in the main flow passage and the fluid pressure in the branch flow passage obtained by the restriction, and is controlled by the differential pressure therebetween.
According to this, the control valve is controlled by utilizing the differential pressure between the pressure in the main flow passage and the pressure in the branch flow passage, and therefore the fluid pressure circuit can supply fluid to the regenerative system with good responsiveness.
前記絞りは、前記回生系から得られる情報に基づいて制御される可変絞りであってもよい。
これによれば、流体圧回路は、回生系に適切量の流体を供給することができる。 The throttle may be a variable throttle that is controlled based on information obtained from the regenerative system.
This allows the fluid pressure circuit to supply an appropriate amount of fluid to the regenerative system.
これによれば、流体圧回路は、回生系に適切量の流体を供給することができる。 The throttle may be a variable throttle that is controlled based on information obtained from the regenerative system.
This allows the fluid pressure circuit to supply an appropriate amount of fluid to the regenerative system.
前記回生系から得られる情報は、前記回生系側にあるセンサから得られる電気信号であってもよい。
これによれば、可変絞りが回生系側にあるセンサからの電気信号に応じて、開度が制御されるものであるから、簡素な構成である。 The information obtained from the regenerative system may be an electrical signal obtained from a sensor on the regenerative system side.
According to this, the opening degree of the variable throttle is controlled in response to an electrical signal from a sensor on the regenerative system side, resulting in a simple configuration.
これによれば、可変絞りが回生系側にあるセンサからの電気信号に応じて、開度が制御されるものであるから、簡素な構成である。 The information obtained from the regenerative system may be an electrical signal obtained from a sensor on the regenerative system side.
According to this, the opening degree of the variable throttle is controlled in response to an electrical signal from a sensor on the regenerative system side, resulting in a simple configuration.
前記絞りは、3ポート2位置タイプの電磁弁における作動位置に設けられていてもよい。
これによれば、流体圧回路は、アクチュエータ装置を円滑に作動させつつ、回生時には回生系に応答性よく流体を供給することができる。 The throttle may be provided at the operating position of a three-port two-position type solenoid valve.
With this, the fluid pressure circuit can smoothly operate the actuator device, and can supply fluid to the regeneration system with good responsiveness during regeneration.
これによれば、流体圧回路は、アクチュエータ装置を円滑に作動させつつ、回生時には回生系に応答性よく流体を供給することができる。 The throttle may be provided at the operating position of a three-port two-position type solenoid valve.
With this, the fluid pressure circuit can smoothly operate the actuator device, and can supply fluid to the regeneration system with good responsiveness during regeneration.
本発明に係る流体圧回路を実施するための形態を実施例に基づいて以下に説明する。
The following describes an embodiment of the fluid pressure circuit according to the present invention.
本発明の実施例に係る流体圧回路につき、図1から図11を参照して説明する。
The fluid pressure circuit according to the embodiment of the present invention will be described with reference to Figures 1 to 11.
実施例に係る流体圧回路としての油圧回路は、作業機械、建設機械、荷役運搬車両、自動車等に操作指令に応じて油圧モータの回転を制御する油圧回路であり、例えば図1に示す油圧ショベル100の旋回装置101に組み込まれている。
The hydraulic circuit as a fluid pressure circuit in the embodiment is a hydraulic circuit that controls the rotation of a hydraulic motor in response to an operation command for a work machine, construction machine, cargo handling vehicle, automobile, etc., and is incorporated, for example, in the swing device 101 of a hydraulic excavator 100 shown in FIG. 1.
油圧ショベル100は、走行体102と旋回体103が旋回装置101を介して接続されている。旋回体103は、旋回装置101における油圧モータ4(図2参照)の回転に応じて旋回可能となっている。油圧モータ4は、油圧回路110(図2参照)によって駆動される。以降、油圧回路110について説明する。
In the hydraulic excavator 100, a running body 102 and a rotating body 103 are connected via a rotating device 101. The rotating body 103 can rotate in response to the rotation of a hydraulic motor 4 (see FIG. 2) in the rotating device 101. The hydraulic motor 4 is driven by a hydraulic circuit 110 (see FIG. 2). The hydraulic circuit 110 will be described below.
図2に示されるように、油圧回路110は、エンジンや電動モータといった駆動機構1により駆動される流体供給源としての油圧ポンプ2と、方向切換弁3と、油圧モータ4と、リモコン5と、分流弁6,7と、電磁比例弁8と、リリーフ弁9,10と、圧力センサ11~13と、補機としてのアキュムレータ14と、コントローラ15と、タンク16と、チェック弁17~20と、シャトル弁21,22と、さらには油路23~45と、電気信号ライン46~52から構成されている。なお、補機としてアキュムレータ14を例示しているが、この限りではない。
As shown in FIG. 2, the hydraulic circuit 110 is composed of a hydraulic pump 2 as a fluid supply source driven by a drive mechanism 1 such as an engine or an electric motor, a directional control valve 3, a hydraulic motor 4, a remote control 5, flow divider valves 6, 7, an electromagnetic proportional valve 8, relief valves 9, 10, pressure sensors 11-13, an accumulator 14 as an auxiliary device, a controller 15, a tank 16, check valves 17-20, shuttle valves 21, 22, oil passages 23-45, and electrical signal lines 46-52. Note that although the accumulator 14 is shown as an example of an auxiliary device, this is not limited to this.
油圧ポンプ2は、内燃機関等の駆動機構1と連結され、駆動機構1からの動力によって回転することにより油路23を通して下流側へ圧油を供給している。
The hydraulic pump 2 is connected to a drive mechanism 1 such as an internal combustion engine, and is rotated by the power from the drive mechanism 1 to supply pressurized oil downstream through an oil passage 23.
油圧ポンプ2から吐出された圧油は油路24を通って方向切換弁3に流入する。方向切換弁3は6ポート3位置タイプのクローズドセンタ型電磁式方向切換弁で、スプールが中立位置にある状態では、すべてのポートが閉塞されている。
Pressurized oil discharged from hydraulic pump 2 flows into directional control valve 3 through oil passage 24. Directional control valve 3 is a 6-port, 3-position type, closed-center type electromagnetic directional control valve, and when the spool is in the neutral position, all ports are closed.
リモコン5は、電気式ジョイスティックである。リモコン5は、操作レバー5-1が右方向Aまたは左方向Bに操作されると、その操作量に比例した電気信号を出力する。この電気信号は、電気信号ライン46を通じてコントローラ15に入力される。
The remote control 5 is an electric joystick. When the operating lever 5-1 is operated to the right A or to the left B, the remote control 5 outputs an electric signal proportional to the amount of operation. This electric signal is input to the controller 15 via the electric signal line 46.
コントローラ15の演算回路は、リモコン5より入力された電気信号に応じた電気信号を電気信号ライン47または電気信号ライン48に出力する。図3に示されるように、コントローラ15より電気信号ライン47または電気信号ライン48に出力される電気信号は、操作レバー5-1の操作量に比例する。
The arithmetic circuit of the controller 15 outputs an electrical signal corresponding to the electrical signal input from the remote control 5 to the electrical signal line 47 or the electrical signal line 48. As shown in FIG. 3, the electrical signal output from the controller 15 to the electrical signal line 47 or the electrical signal line 48 is proportional to the amount of operation of the operating lever 5-1.
リモコン5の操作レバー5-1が右方向Aに操作されると、コントローラ15より出力された電気信号は、電気信号ライン47を通じて方向切換弁3のソレノイド3-1に印加される。これにより、方向切換弁3のスプールが移動して、方向切換弁3は、第1旋回位置3-3に切り換わる。油圧ポンプ2から送出された圧油は、方向切換弁3、油路25,26を通じて油圧モータ4に流入し、油圧モータ4を通過すると、油路27,28、方向切換弁3、油路29を通じてタンク16に排出される。このとき、油圧モータ4は時計回り方向に回転される。
When the operating lever 5-1 of the remote control 5 is operated to the right direction A, the electrical signal output from the controller 15 is applied to the solenoid 3-1 of the directional control valve 3 through the electrical signal line 47. This causes the spool of the directional control valve 3 to move, and the directional control valve 3 switches to the first rotation position 3-3. The pressurized oil delivered from the hydraulic pump 2 flows into the hydraulic motor 4 through the directional control valve 3 and oil passages 25 and 26, and after passing through the hydraulic motor 4, it is discharged into the tank 16 through oil passages 27 and 28, the directional control valve 3, and oil passage 29. At this time, the hydraulic motor 4 is rotated clockwise.
同様に、リモコン5の操作レバー5-1が左方向Bに操作されると、コントローラ15より出力された電気信号は、電気信号ライン48を通じて方向切換弁3のソレノイド3-2に印加される。これにより、方向切換弁3のスプールが移動して、方向切換弁3は、第2旋回位置3-4に切り換わる。油圧ポンプ2から送出された圧油は、方向切換弁3、油路28,27を通じて油圧モータ4に流入し、油圧モータ4を通過すると、油路26,25、方向切換弁3、油路29を通じてタンク16に排出される。このとき、油圧モータ4は反時計回り方向に回転される。
Similarly, when the operating lever 5-1 of the remote control 5 is operated to the left direction B, the electrical signal output from the controller 15 is applied to the solenoid 3-2 of the directional control valve 3 through the electrical signal line 48. This causes the spool of the directional control valve 3 to move, and the directional control valve 3 switches to the second rotation position 3-4. The pressurized oil delivered from the hydraulic pump 2 flows into the hydraulic motor 4 through the directional control valve 3 and oil passages 28 and 27, and after passing through the hydraulic motor 4, it is discharged into the tank 16 through oil passages 26 and 25, the directional control valve 3, and oil passage 29. At this time, the hydraulic motor 4 is rotated in the counterclockwise direction.
このように、油圧モータ4を回転させるにあたって圧油が通過する油路23~29は、本実施例における主流路である。
In this way, the oil passages 23 to 29 through which the pressurized oil passes to rotate the hydraulic motor 4 are the main flow paths in this embodiment.
図4に示されるように、方向切換弁3は、コントローラ15より電気信号ライン47または電気信号ライン48を通じて入力された電気信号に略比例して、スプールがストロークするように構成されている。これにより、方向切換弁3は、スプールストロークに応じてP-M(ポンプ→油圧モータ)開口面積とM-T(油圧モータ→タンク)開口面積が増加する。
As shown in Figure 4, the directional control valve 3 is configured so that the spool strokes approximately in proportion to the electrical signal input from the controller 15 via the electrical signal line 47 or the electrical signal line 48. As a result, the directional control valve 3 increases the P-M (pump → hydraulic motor) opening area and the M-T (hydraulic motor → tank) opening area according to the spool stroke.
また、コントローラ15の演算回路は、リモコン5より入力された電気信号に応じた電気信号を電気信号ライン52にも出力する。
The arithmetic circuit of the controller 15 also outputs an electrical signal to the electrical signal line 52 in response to the electrical signal input from the remote control 5.
図5に示されるように、油圧ポンプ2は、コントローラ15より電気信号ライン52を通じて入力された電気信号に略比例して、圧油の送出量が可変的に変化するように構成されている。
As shown in FIG. 5, the hydraulic pump 2 is configured so that the amount of pressurized oil discharged varies variably in approximate proportion to the electrical signal input from the controller 15 via the electrical signal line 52.
これらにより、リモコン5の操作量が増すことにより、P-M(ポンプ→油圧モータ)開口面積の増加と、油圧ポンプ2から送出される圧油量の増加に伴い油圧モータ4への圧油の供給油量が増え、油圧モータ4の回転スピードが増すようになっている。つまり、操作レバー5-1の傾きに応じて油圧モータ4の回転スピードを制御することができるようになっている。
As a result, as the amount of operation of the remote control 5 increases, the P-M (pump → hydraulic motor) opening area increases, and as the amount of pressurized oil sent from the hydraulic pump 2 increases, the amount of pressurized oil supplied to the hydraulic motor 4 increases, and the rotation speed of the hydraulic motor 4 increases. In other words, it is possible to control the rotation speed of the hydraulic motor 4 according to the inclination of the operating lever 5-1.
図2に戻って、油路26には、油路30,33,34が分岐接続されている。油路27には、油路31,32,36が分岐接続されている。
Returning to FIG. 2, oil passages 30, 33, and 34 are branched and connected to oil passage 26. Oil passages 31, 32, and 36 are branched and connected to oil passage 27.
油路30と油路31の間にはリリーフ弁10が設けられている。リリーフ弁10は、油路30内の圧力が所定圧以上となることで開放され、油路30,31を連通可能となっている。
A relief valve 10 is provided between oil passage 30 and oil passage 31. The relief valve 10 opens when the pressure in oil passage 30 reaches or exceeds a predetermined pressure, allowing communication between oil passages 30 and 31.
油路32と油路33の間にはリリーフ弁9が設けられている。リリーフ弁9は、油路32内の圧力が所定圧以上となることで開放され、油路32,33を連通可能となっている。
A relief valve 9 is provided between oil passage 32 and oil passage 33. The relief valve 9 opens when the pressure in oil passage 32 reaches or exceeds a predetermined pressure, allowing communication between oil passages 32 and 33.
油路34はチェック弁19を介して油路35に接続されている。チェック弁19は油路35から油路34に油を通過可能に構成されている。油路36は、チェック弁20を介して油路35に接続されている。チェック弁20は油路35から油路36に油を通過可能に構成されている。油路35はタンク16に連通している。
Oil passage 34 is connected to oil passage 35 via check valve 19. Check valve 19 is configured to allow oil to pass from oil passage 35 to oil passage 34. Oil passage 36 is connected to oil passage 35 via check valve 20. Check valve 20 is configured to allow oil to pass from oil passage 35 to oil passage 36. Oil passage 35 is connected to tank 16.
また、油路26には圧力センサ11が接続されている。油路27には圧力センサ12が接続されている。圧力センサ11,12は、コントローラ15に検出した圧力値Pvまたは圧力値Pwを電気信号として入力可能となっている。
In addition, pressure sensor 11 is connected to oil passage 26. Pressure sensor 12 is connected to oil passage 27. Pressure sensors 11 and 12 are capable of inputting the detected pressure value Pv or pressure value Pw to controller 15 as an electrical signal.
また、油圧回路110には、主流路の一部である油路25,26,27,28から分岐する分岐流路を介して回生系Rが接続されている。分岐流路は分流弁6,7と、シャトル弁21,22と、油路37,41,44,45とから構成されている。回生系Rは、電磁比例弁8と、圧力センサ13と、アキュムレータ14と、チェック弁17,18と、油路38~40,42,43から主に構成されている。
The hydraulic circuit 110 is also connected to the regenerative system R via a branch flow path that branches off from oil paths 25, 26, 27, and 28, which are part of the main flow path. The branch flow path is made up of diverter valves 6 and 7, shuttle valves 21 and 22, and oil paths 37, 41, 44, and 45. The regenerative system R is mainly made up of the solenoid proportional valve 8, pressure sensor 13, accumulator 14, check valves 17 and 18, and oil paths 38 to 40, 42, and 43.
分流弁6は、油路25,26の間に設けられている。分流弁6は、油路41にも接続されている。分流弁6は、油路25,26間のみ圧油を通過させるか、油路25,26間の通過に加え、油路41にも圧油を流入させるかを切り換えることができる。この分流弁6については後述する。
The flow dividing valve 6 is provided between the oil passages 25 and 26. The flow dividing valve 6 is also connected to the oil passage 41. The flow dividing valve 6 can switch between passing pressurized oil only between the oil passages 25 and 26, or passing pressurized oil between the oil passages 25 and 26 and also allowing the pressurized oil to flow into the oil passage 41. This flow dividing valve 6 will be described later.
分流弁7は、油路27,28の間に設けられている。分流弁7は、油路37にも接続されている。分流弁7は、油路27,28間のみ圧油を通過させるか、油路25,26間の通過に加え、油路37にも圧油を流入させるかを切り換えることができる。この分流弁7については後述する。
The flow dividing valve 7 is provided between the oil passages 27 and 28. The flow dividing valve 7 is also connected to the oil passage 37. The flow dividing valve 7 can switch between passing pressurized oil only between the oil passages 27 and 28, or passing pressurized oil between the oil passages 25 and 26 as well as flowing into the oil passage 37. This flow dividing valve 7 will be described later.
油路37,41は、シャトル弁21に並列に接続されている。また、シャトル弁21には油路38が接続されている。シャトル弁21は、油路37,41のうち内部圧力が高いほうの油路を油路38に連通可能に構成されている。
Oil passages 37 and 41 are connected in parallel to shuttle valve 21. In addition, oil passage 38 is connected to shuttle valve 21. Shuttle valve 21 is configured so that the oil passage with the higher internal pressure out of oil passages 37 and 41 can be connected to oil passage 38.
油路38はチェック弁17を介して油路39に接続されている。チェック弁17は油路38から油路39に圧油を通過可能に構成されている。また、油路39には、アキュムレータ14と、圧力センサ13と、電磁比例弁8が接続されている。圧力センサ13は、コントローラ15に検出した圧力値Pxを電気信号として入力可能となっている。
Oil passage 38 is connected to oil passage 39 via check valve 17. Check valve 17 is configured to allow pressurized oil to pass from oil passage 38 to oil passage 39. In addition, accumulator 14, pressure sensor 13, and solenoid proportional valve 8 are connected to oil passage 39. Pressure sensor 13 is capable of inputting the detected pressure value Px to controller 15 as an electrical signal.
また、電磁比例弁8には、油路42、チェック弁18、油路43を介してシャトル弁22が接続されている。チェック弁18は、油路42から油路43に圧油を通過可能に構成されている。また、シャトル弁22には油路44,45が並列に接続されている。シャトル弁22は、油路44,45のうち内部圧力が高いほうの油路を油路43に連通可能に構成されている。
The solenoid proportional valve 8 is also connected to the shuttle valve 22 via an oil passage 42, a check valve 18, and an oil passage 43. The check valve 18 is configured to allow pressurized oil to pass from the oil passage 42 to the oil passage 43. The shuttle valve 22 is also connected to oil passages 44 and 45 in parallel. The shuttle valve 22 is configured to allow the oil passage 44, 45, whichever has the higher internal pressure, to communicate with the oil passage 43.
電磁比例弁8は、2ポート2位置タイプの電磁比例流量制御弁である。コントローラ15の演算回路によりリモコン5より入力された電気信号に応じた電気信号を電気信号ライン51にも出力する。
The electromagnetic proportional valve 8 is a two-port, two-position type electromagnetic proportional flow control valve. The calculation circuit of the controller 15 also outputs an electrical signal corresponding to the electrical signal input from the remote control 5 to the electrical signal line 51.
図6に示されるように、電磁比例弁8は、コントローラ15より電気信号ライン51を通じて入力された電気信号に略比例して、開口面積が可変的に変化するように構成されている。
As shown in FIG. 6, the solenoid proportional valve 8 is configured so that the opening area changes variably in approximate proportion to the electrical signal input from the controller 15 via the electrical signal line 51.
コントローラ15は、リモコン5が操作されている状態において、圧力センサ13から入力された圧力値Pxが所定以上であると、リモコン5の操作量に応じた電気信号を電磁比例弁8に出力する。これにより、電気信号に応じた開口面積となるように電磁比例弁8の開度が調節され、アキュムレータ14から油路44または油路45に圧油を供給することができる。これにより、図5にて斜線を掛けて示すT部分の圧油をアキュムレータ14より油圧モータ4に供給することができる。
When the remote control 5 is being operated and the pressure value Px input from the pressure sensor 13 is equal to or greater than a predetermined value, the controller 15 outputs an electrical signal to the solenoid proportional valve 8 according to the amount of operation of the remote control 5. This adjusts the opening of the solenoid proportional valve 8 so that the opening area corresponds to the electrical signal, allowing pressure oil to be supplied from the accumulator 14 to the oil passage 44 or oil passage 45. This allows the pressure oil in the T portion shown by the diagonal lines in Figure 5 to be supplied from the accumulator 14 to the hydraulic motor 4.
また、コントローラ15は、電磁比例弁8に電気信号を出力するにあたり、油圧ポンプ2にも電気信号を出力し、油圧ポンプ2から送出される圧油の量を低減させる。これにより、油圧ポンプ2の駆動に必要なエネルギを低減することができる。
In addition, when the controller 15 outputs an electrical signal to the electromagnetic proportional valve 8, it also outputs an electrical signal to the hydraulic pump 2, reducing the amount of pressurized oil delivered from the hydraulic pump 2. This makes it possible to reduce the energy required to drive the hydraulic pump 2.
次に、回生系Rにおけるアキュムレータ14への蓄液制御について説明する。アキュムレータ14への蓄液は、操作されている操作レバー5-1が一気に中立位置に戻される、いわゆる急停止操作がなされることで油路25,26または油路27,28内で上昇する流体圧P1を利用して行われる。まずはこの流体圧P1の上昇について説明する。
Next, we will explain the control of fluid storage in the accumulator 14 in the regenerative system R. Fluid storage in the accumulator 14 is performed by utilizing the fluid pressure P1 that rises in the oil passages 25, 26 or the oil passages 27, 28 when the operating lever 5-1 is suddenly returned to the neutral position, i.e., a sudden stop operation is performed. First, we will explain the rise in this fluid pressure P1.
例えば、操作レバー5-1が左方向Bに最大量操作されている状態から一気に中立位置に戻されると、方向切換弁3は第2旋回位置3-4から中立位置3-5に切り換えられる。これにより、油圧ポンプ2から油路28への圧油の供給が停止されるとともに、油路25からタンク16への圧油の排出も停止される。
For example, when the operating lever 5-1 is moved from its maximum position in the left direction B to its neutral position in one go, the directional control valve 3 is switched from the second rotation position 3-4 to the neutral position 3-5. This stops the supply of pressurized oil from the hydraulic pump 2 to the oil passage 28, and also stops the discharge of pressurized oil from the oil passage 25 to the tank 16.
一方、直前まで油圧モータ4の回転力を受けて旋回されていた旋回体103は慣性力により旋回し続けようとする。この慣性力は油圧モータ4にも作用し、油圧モータ4を回転させる。油圧モータ4が回転すると、ポンプ作用が生じて油路27から油路26に圧油が圧送され、油路26,25内の流体圧P1は上昇する。油路26,25内にて上昇する流体圧P1は、油圧モータ4の回転、言い換えると油路26へ圧油の圧送に対する抵抗として作用する。これにより、油圧モータ4の回転スピードは減衰され、最終的に停止に至る。
Meanwhile, the rotating body 103, which had been rotating under the rotational force of the hydraulic motor 4 until just before, tries to continue rotating due to inertial force. This inertial force also acts on the hydraulic motor 4, causing it to rotate. When the hydraulic motor 4 rotates, a pumping action occurs and pressure oil is pumped from oil passage 27 to oil passage 26, causing the fluid pressure P1 in oil passages 26 and 25 to rise. The fluid pressure P1 rising in oil passages 26 and 25 acts as resistance to the rotation of the hydraulic motor 4, in other words, the pressure of the pressure oil being pumped to oil passage 26. This causes the rotational speed of the hydraulic motor 4 to decrease, eventually coming to a stop.
他方、油路28,27では、油圧モータ4の回転に応じて圧油が吸入されることで、内部の流体圧が低下する。これにより、同内部圧力がタンク16内の油の圧力以下になると、タンク16内の油は油路35,36を通じて油路28,27内に吸い上げられる。これにより、油路28,27内におけるキャビテーションの発生が抑止されている。
On the other hand, in the oil passages 28, 27, the internal fluid pressure decreases as pressurized oil is sucked in in response to the rotation of the hydraulic motor 4. As a result, when the internal pressure falls below the pressure of the oil in the tank 16, the oil in the tank 16 is sucked up into the oil passages 28, 27 through the oil passages 35, 36. This prevents cavitation from occurring in the oil passages 28, 27.
なお、操作レバー5-1が右方向Aに操作されて中立位置に戻された場合には、上述したように流れ方向が変化する以外は、操作レバー5-1が左方向Bに操作されて中立位置に戻された場合と略同一であるため、説明を省略する。
When the operating lever 5-1 is operated to the right A and returned to the neutral position, the process is substantially the same as when the operating lever 5-1 is operated to the left B and returned to the neutral position, except for the change in flow direction as described above, so a detailed explanation will be omitted.
リリーフ弁9,10は、図7にてカーブC1で示される圧力オーバーライド特性を有している。これについて説明するにあたり、さきに図7にてカーブC0で示される圧力オーバーライド特性について説明する。カーブC0は、流体圧P1の増加に略比例してリリーフ弁を通過する流量Qを示すものであり、クラッキング圧Pcrにてリリーフ弁が開放され始め、セット圧Pstにて流量Q1を通過させることができる。
The relief valves 9 and 10 have pressure override characteristics shown by curve C1 in Figure 7. To explain this, we will first explain the pressure override characteristics shown by curve C0 in Figure 7. Curve C0 shows the flow rate Q that passes through the relief valve in approximate proportion to the increase in fluid pressure P1, and the relief valve begins to open at cracking pressure Pcr and can pass flow rate Q1 at set pressure Pst.
流量Q1とは、操作レバー5-1を最大量操作している状態から一気に中立位置に戻した場合に、旋回体103に働く慣性力により油圧モータ4がポンプ作用で吐出する圧油の全流量である。また、セット圧Pstとは、旋回体103を停止させるにあたって、油圧モータ4の軸を中心とした所定角度以内で停止させるために必要な圧力である。これにより、操作レバー5-1を中立に操作後、旋回体103が過剰に旋回する虞または過剰な圧力上昇により油圧回路の破損の虞、いわゆる旋回過大流れによる事故防止がなされている。
The flow rate Q1 is the total flow rate of pressurized oil discharged by the hydraulic motor 4 through pump action due to the inertial force acting on the rotating body 103 when the operating lever 5-1 is quickly returned to the neutral position from the state in which it is operated to the maximum extent. The set pressure Pst is the pressure required to stop the rotating body 103 within a specified angle centered on the axis of the hydraulic motor 4. This prevents accidents due to excessive rotation flow, such as the risk of the rotating body 103 rotating excessively after the operating lever 5-1 is operated to the neutral position or the risk of the hydraulic circuit being damaged due to an excessive pressure rise.
これらのことから、カーブC0で示される圧力オーバーライド特性を有するリリーフ弁が適用されている油圧回路は、セット圧Pstを保持するために必要な圧油量を超える圧油については、セット圧Pstが発生するリリーフ弁を備えた油路外に排出する必要がある。
For these reasons, in a hydraulic circuit that uses a relief valve with the pressure override characteristics shown by curve C0, any pressurized oil that exceeds the amount required to maintain the set pressure Pst must be discharged outside the oil passage that is equipped with the relief valve that generates the set pressure Pst.
本実施例のリリーフ弁9,10の圧力オーバーライド特性は、カーブC1に示されるように、セット圧Pstにて流量Q1よりも少ない流量Q2を通過させるように設定されている。そのため、本実施例の油圧回路110では、カーブC0で示される圧力オーバーライド特性のリリーフ弁が適用されている油圧回路と比較して、油圧モータ4よりも圧油の流れ方向下流側の流体圧P1がセット圧Pstに到達すると同下流側に余剰油量ΔQ(ΔQ=Q1-Q2)が生じ得ることとなる。
The pressure override characteristics of the relief valves 9, 10 in this embodiment are set to pass a flow rate Q2 that is less than the flow rate Q1 at the set pressure Pst, as shown by curve C1. Therefore, in the hydraulic circuit 110 of this embodiment, compared to a hydraulic circuit in which a relief valve with the pressure override characteristics shown by curve C0 is used, when the fluid pressure P1 downstream of the hydraulic motor 4 in the flow direction of the pressurized oil reaches the set pressure Pst, an excess oil amount ΔQ (ΔQ = Q1 - Q2) can be generated on the downstream side.
油圧回路110は、油圧モータ4よりも圧油の流れ方向下流側に位置する分流弁6,7のいずれかを制御することで、余剰油量ΔQをアキュムレータ14に蓄液させることができる。これにより、油圧回路110は、旋回過大流れによる事故防止がなされている。
The hydraulic circuit 110 can store the excess oil volume ΔQ in the accumulator 14 by controlling either the flow divider valve 6 or 7, which is located downstream of the hydraulic motor 4 in the flow direction of the pressurized oil. This allows the hydraulic circuit 110 to prevent accidents caused by excessive flow during rotation.
図9に示されるように、分流弁6は、流量制御弁60と、制御弁としての圧力補償弁61と、油路62~66を備えている。
As shown in FIG. 9, the flow dividing valve 6 includes a flow control valve 60, a pressure compensation valve 61 as a control valve, and oil passages 62 to 66.
流量制御弁60は、3ポート2位置タイプの電磁比例流量制御弁である。流量制御弁60のソレノイド60-1は電気信号ライン49を通じてコントローラ15に接続されている。
The flow control valve 60 is a three-port, two-position type electromagnetic proportional flow control valve. The solenoid 60-1 of the flow control valve 60 is connected to the controller 15 via an electrical signal line 49.
流量制御弁60は、油路62を介して油路26と接続されている。また、流量制御弁60には、油路63,64が並列に接続されている。また、油路63,64は、圧力補償弁61にも並列に接続されている。また、油路63は、圧力補償弁61を介して油路65に連通可能となっている。また、油路65は、油路25と連通接続されている。油路64は、圧力補償弁61を介して油路66に接続される。また、油路66は、油路41と連通している。
Flow control valve 60 is connected to oil passage 26 via oil passage 62. In addition, oil passages 63 and 64 are connected in parallel to flow control valve 60. In addition, oil passages 63 and 64 are also connected in parallel to pressure compensation valve 61. In addition, oil passage 63 can be communicated with oil passage 65 via pressure compensation valve 61. In addition, oil passage 65 is communicated and connected to oil passage 25. Oil passage 64 is connected to oil passage 66 via pressure compensation valve 61. In addition, oil passage 66 is communicated with oil passage 41.
流量制御弁60は、コントローラ15からソレノイド60-1に電気信号が入力されていない状態では、中立位置60-3にある。中立位置60-3では、油路62と油路63が連通され、油路62と油路64が非連通となる。そのため、中立位置60-3では、油路25,26間を圧油が流通可能となっている。
When no electrical signal is input from the controller 15 to the solenoid 60-1, the flow control valve 60 is in the neutral position 60-3. In the neutral position 60-3, the oil passages 62 and 63 are connected, and the oil passages 62 and 64 are not connected. Therefore, in the neutral position 60-3, pressurized oil can flow between the oil passages 25 and 26.
図10に示されるように、流量制御弁60は、コントローラ15からソレノイド60-1に電気信号が入力されることで、作動位置60-2に切り換わる。作動位置60-2には、油路60-4と、油路60-5と、可変絞り60-6と、油路60-7が設けられている。
As shown in FIG. 10, the flow control valve 60 switches to the operating position 60-2 when an electrical signal is input from the controller 15 to the solenoid 60-1. In the operating position 60-2, oil passages 60-4, 60-5, variable throttle 60-6, and 60-7 are provided.
作動位置60-2において、油路60-4は油路62と油路63に接続される。また、油路60-4には、油路60-5が分岐接続されている。油路60-5には、可変絞り60-6を介して油路60-7が接続されている。作動位置60-2において、油路60-7は、油路64に接続される。これにより、作動位置60-2では、油路62と油路63が連通され、これらに油路64も連通される。
In the operating position 60-2, oil passage 60-4 is connected to oil passage 62 and oil passage 63. In addition, oil passage 60-5 is branched and connected to oil passage 60-4. Oil passage 60-5 is connected to oil passage 60-7 via variable throttle 60-6. In the operating position 60-2, oil passage 60-7 is connected to oil passage 64. As a result, in the operating position 60-2, oil passage 62 and oil passage 63 are connected to each other, and oil passage 64 is also connected to them.
図8に示されるように、流量制御弁60は、コントローラ15からの電気信号に略比例して、優先流量を可変的に変化させる。優先流量は、可変絞り60-6を通過して油路64に供給される圧油の量である。すなわち、流量制御弁60は、コントローラ15からの電気信号に略比例して、可変絞り60-6の開口面積が可変的に変化する。
As shown in FIG. 8, the flow control valve 60 variably changes the priority flow rate approximately in proportion to the electrical signal from the controller 15. The priority flow rate is the amount of pressurized oil that passes through the variable throttle 60-6 and is supplied to the oil passage 64. In other words, the flow control valve 60 variably changes the opening area of the variable throttle 60-6 approximately in proportion to the electrical signal from the controller 15.
そのため、作動位置60-2では、油路25,26間を圧油が流通可能となっているばかりでなく、主流路を構成する油路25,26から分岐して油路41に圧油が流通可能となっている。
As a result, in the operating position 60-2, not only is pressurized oil able to flow between the oil passages 25 and 26, but pressurized oil can also flow through oil passage 41, branching off from the oil passages 25 and 26 that form the main flow path.
圧力補償弁61は、油路61-1と、油路61-2と、スプリング61-3を備えている。
The pressure compensation valve 61 has an oil passage 61-1, an oil passage 61-2, and a spring 61-3.
油路61-1は、圧力補償弁61におけるスプールの紙面下側に画成される背圧室(図示略)と油路63を連通接続している。油路61-2は、スプールの紙面上側に画成される背圧室(図示略)と油路64を連通接続している。これにより、スプールの紙面下側の受圧面(図示略)には、油路63から油路61-1を通じて供給される圧油のいわゆるパイロット圧として流体圧P1が作用する。スプールの紙面上側の受圧面(図示略)には、油路64から油路61-2を通じて供給される可変絞り60-6を通過した圧油のいわゆるパイロット圧として流体圧P2が作用する。なお、スプールの紙面下側の受圧面積S1と、紙面上側の受圧面積S2は略同一である(S1=S2)。
Oil passage 61-1 communicates with oil passage 63 and a back pressure chamber (not shown) defined on the lower side of the spool in pressure compensation valve 61. Oil passage 61-2 communicates with oil passage 64 and a back pressure chamber (not shown) defined on the upper side of the spool. As a result, fluid pressure P1 acts on the pressure receiving surface (not shown) on the lower side of the spool as the so-called pilot pressure of the pressurized oil supplied from oil passage 63 through oil passage 61-1. Fluid pressure P2 acts on the pressure receiving surface (not shown) on the upper side of the spool as the so-called pilot pressure of the pressurized oil that has passed through variable throttle 60-6 and is supplied from oil passage 64 through oil passage 61-2. The pressure receiving area S1 on the lower side of the spool and the pressure receiving area S2 on the upper side of the spool are approximately the same (S1 = S2).
また、スプリング61-3は、スプール(図示略)の紙面上側に配置されており、スプールを紙面下側に向かって付勢している。
The spring 61-3 is located above the spool (not shown) on the page, and biases the spool toward the bottom of the page.
これらにより、圧力補償弁61におけるスプールは、流体圧P1が受圧面積S1に作用して生じる力F1(F1=P1×S1)と、流体圧P2が受圧面積S2に作用して生じる力F2(F2=P2×S2)にスプリング61-3の付勢力Fspを加算した力Fp(Fp=F2+Fsp)とに応じて移動し、力F1と力Fpが釣り合ったバランス位置に静止する(F1=Fp)。このときの力関係を整理すると、力F1と力F2との差は一定である(P1×S1=P2×S2+Fsp=一定 P1-P2=Fsp/S1=一定)。
As a result, the spool in the pressure compensation valve 61 moves in response to a force Fp (Fp = F2 + Fsp) obtained by adding the biasing force Fsp of the spring 61-3 to the force F1 (F1 = P1 x S1) generated by the fluid pressure P1 acting on the pressure receiving area S1 and the force F2 (F2 = P2 x S2) generated by the fluid pressure P2 acting on the pressure receiving area S2, and comes to rest at a balanced position where the forces F1 and Fp are in equilibrium (F1 = Fp). The force relationship at this time is summarized as follows: the difference between the forces F1 and F2 is constant (P1 x S1 = P2 x S2 + Fsp = constant P1 - P2 = Fsp/S1 = constant).
このスプールの移動に応じて、圧力補償弁61は、油路63,65間の開度と、油路64,66間の開度が変位する。より詳しくは、図10を参照して、スプールが紙面下側に移動するほど油路63,65間の開度は広がり、油路64,66間の開度は狭まる。また、図11を参照して、スプールが紙面上側に移動するほど油路63,65間の開度は狭まり、油路64,66間の開度は広がる。なお、図10,図11は、圧力補償弁61の動作を模式的に示したものである。
In response to this movement of the spool, the pressure compensating valve 61 changes the opening between oil passages 63 and 65 and the opening between oil passages 64 and 66. More specifically, referring to FIG. 10, the further the spool moves downward on the page, the wider the opening between oil passages 63 and 65 becomes, and the narrower the opening between oil passages 64 and 66 becomes. Also, referring to FIG. 11, the further the spool moves upward on the page, the narrower the opening between oil passages 63 and 65 becomes, and the wider the opening between oil passages 64 and 66 becomes. Note that FIGS. 10 and 11 are schematic diagrams showing the operation of the pressure compensating valve 61.
次に、アキュムレータ14への蓄圧制御がなされるときの分流弁6について説明する。コントローラ15は、左方向Bに最大量操作されていた操作レバー5-1が一気に中立位置に戻されたことを検知すると、方向切換弁3を中立位置3-5に切り換え、電磁比例弁8を閉状態とし、圧力センサ13から入力される圧力値Pxを参照して流量制御弁60における可変絞り60-6の開度Axを決定する。
Next, the flow dividing valve 6 when pressure accumulation control to the accumulator 14 is performed will be described. When the controller 15 detects that the control lever 5-1, which had been operated to the maximum extent in the left direction B, has been returned to the neutral position in one go, it switches the directional control valve 3 to the neutral position 3-5, closes the solenoid proportional valve 8, and determines the opening degree Ax of the variable throttle 60-6 in the flow control valve 60 by referring to the pressure value Px input from the pressure sensor 13.
この可変絞り60-6の開度Axの決定について詳しくは、本実施例において余剰油量ΔQとセット圧Pstはリリーフ弁9,10それぞれのオーバーライド特性によって予め設定されたものである。このことから、コントローラ15の演算回路には、セット圧Pstを確保するための圧油を残しつつ、余剰油量ΔQをアキュムレータ14側に流通可能な電気信号が、アキュムレータ14の圧力値Px毎に予め設定されている。そのため、本実施例のコントローラ15は、アキュムレータ14の圧力値Pxのみで適切な開度Axに制御するための電気信号を出力することができる。
In detail, the opening degree Ax of the variable throttle 60-6 is determined in this embodiment by the override characteristics of the relief valves 9 and 10, respectively, in which the excess oil amount ΔQ and the set pressure Pst are preset. For this reason, the calculation circuit of the controller 15 is preset with an electrical signal for each pressure value Px of the accumulator 14 that allows the excess oil amount ΔQ to flow to the accumulator 14 side while leaving pressure oil to ensure the set pressure Pst. Therefore, the controller 15 in this embodiment can output an electrical signal for controlling the opening degree Ax to an appropriate value based only on the pressure value Px of the accumulator 14.
コントローラ15は、アキュムレータ14の圧力値Pxが小さいほど出力する電気信号を小さくし、アキュムレータ14の圧力値Pxが大きいほど出力する電気信号を大きくする。言い換えれば、可変絞り60-6は、アキュムレータ14の圧力値Pxが小さいほど開度Axが狭くなり、アキュムレータ14の圧力値Pxが大きいほど開度Axが広くなる。
The controller 15 outputs a smaller electrical signal the smaller the pressure value Px of the accumulator 14 is, and outputs a larger electrical signal the larger the pressure value Px of the accumulator 14 is. In other words, the variable throttle 60-6 narrows the opening Ax the smaller the pressure value Px of the accumulator 14 is, and widens the opening Ax the larger the pressure value Px of the accumulator 14 is.
可変絞り60-6の開度Axが狭い開度Ax1の場合には、流体圧P1と流体圧P2との差圧ΔPが大きい差圧ΔP10(ΔP10=P1-P2)となる。すなわち、流体圧P2は低くなる(P2<<P1)。
When the opening Ax of the variable throttle 60-6 is a narrow opening Ax1, the pressure difference ΔP between the fluid pressure P1 and the fluid pressure P2 is a large pressure difference ΔP10 (ΔP10 = P1 - P2). In other words, the fluid pressure P2 is low (P2 << P1).
また、上述したように、圧力補償弁61におけるシリンダがバランス位置に静止した状態における差圧ΔP10は一定に保たれる(ΔP10=P1-P2=Fsp/S1=一定)。
As described above, the pressure difference ΔP10 in the pressure compensation valve 61 when the cylinder is stationary in the balance position is kept constant (ΔP10 = P1 - P2 = Fsp/S1 = constant).
これにより、セット圧Pstとアキュムレータ14側の圧力値Pxとの差圧が大きくても、アキュムレータ14側に余剰油量ΔQを蓄液させることができる(ΔQ=K×Ax1×√ΔP10 (Kは定数))。また、流体圧P1と流体圧P2との差圧ΔPが大きいほど油路64,66間の開度は広くなる。
As a result, even if the pressure difference between the set pressure Pst and the pressure value Px on the accumulator 14 side is large, it is possible to store an excess amount of oil ΔQ on the accumulator 14 side (ΔQ = K x Ax1 x √ΔP10 (K is a constant)). Also, the larger the pressure difference ΔP between the fluid pressures P1 and P2, the wider the opening between the oil passages 64, 66 becomes.
また、可変絞り60-6の開度Axが広い開度Ax2の場合には、流体圧P1と流体圧P2との差圧ΔPが小さい差圧ΔP20(ΔP20=P1-P2)となる。すなわち、流体圧P2は高くなる(P2<P1)。
In addition, when the opening degree Ax of the variable throttle 60-6 is a wide opening degree Ax2, the pressure difference ΔP between the fluid pressure P1 and the fluid pressure P2 becomes a small pressure difference ΔP20 (ΔP20 = P1 - P2). In other words, the fluid pressure P2 becomes high (P2 < P1).
また、上述したように、圧力補償弁61におけるシリンダがバランス位置に静止した状態における差圧ΔP20は一定に保たれる(ΔP20=P1-P2=Fsp/S1=一定)。
As described above, the pressure difference ΔP20 in the pressure compensation valve 61 when the cylinder is stationary in the balance position is kept constant (ΔP20 = P1 - P2 = Fsp/S1 = constant).
これにより、セット圧Pstとアキュムレータ14側の圧力値Pxとの差圧が小さくても、アキュムレータ14側に余剰油量ΔQを蓄液させることができる(ΔQ=K×Ax2×√ΔP20 (Kは定数))。また、流体圧P1と流体圧P2との差圧ΔPが小さいほど油路64,66間の開度は狭くなる。
As a result, even if the pressure difference between the set pressure Pst and the pressure value Px on the accumulator 14 side is small, it is possible to store an excess amount of oil ΔQ on the accumulator 14 side (ΔQ = K x Ax2 x √ΔP20 (K is a constant)). Also, the smaller the pressure difference ΔP between the fluid pressures P1 and P2, the narrower the opening between the oil passages 64, 66.
圧力補償弁61の動きについてより詳しくは、例えば図10に示されるように、スプールがバランス位置で静止した状態において、可変絞り60-6に高い圧力が作用してその開度Axが瞬間的に広がるなどにより、可変絞り60-6を通過する流量が増加すると、油路64内の流体圧P2が上昇する。
For more details on the movement of the pressure compensation valve 61, for example, as shown in FIG. 10, when the spool is stationary in the balance position, high pressure acts on the variable throttle 60-6, causing its opening Ax to momentarily widen, and as a result, the flow rate passing through the variable throttle 60-6 increases, and the fluid pressure P2 in the oil passage 64 rises.
これにより、流体圧P2が上昇した分スプールが紙面下方側に移動して、油路63,65間の開度が広げられ、油路64,66間の開度が狭められる。そのため、瞬間的に流体圧P2が上昇し、流体圧P1と流体圧P2との差圧ΔPが小さくなり、油路25,26側から油路64への圧油の流入を減少させることができる。
As a result, the spool moves downward on the page by the amount of increase in fluid pressure P2, widening the opening between oil passages 63 and 65 and narrowing the opening between oil passages 64 and 66. As a result, fluid pressure P2 rises instantaneously, the differential pressure ΔP between fluid pressures P1 and P2 becomes smaller, and the inflow of pressurized oil from oil passages 25 and 26 into oil passage 64 can be reduced.
その後、流体圧P2が減少または流体圧P1が上昇することで、可変絞り60-6の開度Axに応じた差圧ΔPが差圧ΔP10であっても差圧ΔP20であっても、一定の差圧ΔP10または差圧ΔP20に調節することができる。
Then, by decreasing the fluid pressure P2 or increasing the fluid pressure P1, the differential pressure ΔP according to the opening degree Ax of the variable throttle 60-6 can be adjusted to a constant differential pressure ΔP10 or differential pressure ΔP20, regardless of whether the differential pressure ΔP is ΔP10 or ΔP20.
このことから、油圧回路110は、油路64,66間を圧油が余剰油量ΔQ以上通過することを防止して、セット圧Pstを得るために必要な油路25,26内の油量を保持することができる。
As a result, the hydraulic circuit 110 can prevent more than the excess oil volume ΔQ from passing between the oil passages 64, 66, and can maintain the amount of oil in the oil passages 25, 26 required to obtain the set pressure Pst.
また、例えば図11に示されるように、スプールがバランス位置で静止した状態において、可変絞り60-6を通過する流量が減少すると、油路64内の流体圧P2が減少する。
Also, as shown in FIG. 11, for example, when the spool is stationary in the balance position, if the flow rate passing through the variable throttle 60-6 decreases, the fluid pressure P2 in the oil passage 64 decreases.
これにより、流体圧P2が減少した分、スプールが紙面上方側に移動して、油路63,65間の開度が狭められ、油路64,66間の開度が広げられる。そのため、瞬間的に流体圧P2が減少し、流体圧P1と流体圧P2との差圧ΔPが大きくなるため油路25,26側から油路64への圧油の流入を増加させることができる。
As a result, the spool moves upward on the page by the amount of the decrease in fluid pressure P2, narrowing the opening between oil passages 63 and 65 and widening the opening between oil passages 64 and 66. As a result, fluid pressure P2 decreases instantaneously, and the differential pressure ΔP between fluid pressures P1 and P2 increases, allowing the flow of pressurized oil from oil passages 25 and 26 into oil passage 64 to increase.
その後、流体圧P1が減少または流体圧P2が上昇することで、可変絞り60-6の開度Axに応じた差圧ΔPが差圧ΔP10であっても差圧ΔP20であっても、一定の差圧ΔP10または差圧ΔP20に調節することができる。
Then, by decreasing the fluid pressure P1 or increasing the fluid pressure P2, the differential pressure ΔP according to the opening degree Ax of the variable throttle 60-6 can be adjusted to a constant differential pressure ΔP10 or differential pressure ΔP20, regardless of whether the differential pressure ΔP is ΔP10 or ΔP20.
このことから、油圧回路110は、リリーフ弁10より油路27側に圧油が必要以上に排出されることを抑制して、油路64,66間に余剰油量ΔQを通過させることができる。
As a result, the hydraulic circuit 110 is able to prevent more pressurized oil than necessary from being discharged from the relief valve 10 to the oil passage 27 side, allowing excess oil volume ΔQ to pass between the oil passages 64 and 66.
分流弁7は、流量制御弁70と、制御弁としての圧力補償弁71を備え、流量制御弁70は電気信号ライン50を通じてコントローラ15に接続されている。それ以外の構成は、分流弁6と同一構成であるため、重複する説明を省略する。
The flow dividing valve 7 includes a flow control valve 70 and a pressure compensation valve 71 as a control valve, and the flow control valve 70 is connected to the controller 15 via an electrical signal line 50. The rest of the configuration is the same as that of the flow dividing valve 6, so a duplicated description will be omitted.
以上説明したように、本実施例の油圧回路110は、圧力補償弁61が油路25,26の流体圧P1と油路64の流体圧P2との差圧ΔPを利用して制御される。このことから、油圧回路110は、応答性よく圧油を回生系Rに供給することができる。
As described above, in the hydraulic circuit 110 of this embodiment, the pressure compensation valve 61 is controlled using the differential pressure ΔP between the fluid pressure P1 in the oil passages 25 and 26 and the fluid pressure P2 in the oil passage 64. This allows the hydraulic circuit 110 to responsively supply pressurized oil to the regenerative system R.
また、油圧回路110は、油路25,26から油路64への油量の制御に可変絞り60-6を用いている。そのため、油圧回路110は、セット圧Pstを得るために必要な油路25,26内の油量を保持しつつ、回生系Rに適切量の圧油を供給することができる。
In addition, the hydraulic circuit 110 uses a variable throttle 60-6 to control the amount of oil from the oil passages 25 and 26 to the oil passage 64. Therefore, the hydraulic circuit 110 can supply an appropriate amount of pressurized oil to the regenerative system R while maintaining the amount of oil in the oil passages 25 and 26 required to obtain the set pressure Pst.
また、油圧回路110は、圧力センサ13よりアキュムレータ14側の圧力値Pxに応じた電気信号がコントローラ15に入力され、これに応じて可変絞り60-6の開度Axが制御されるものであるから、簡素な構成である。
The hydraulic circuit 110 also has a simple configuration, since an electrical signal corresponding to the pressure value Px on the accumulator 14 side is input from the pressure sensor 13 to the controller 15, and the opening Ax of the variable throttle 60-6 is controlled accordingly.
また、流量制御弁60は3ポート2位置タイプの電磁弁である。そのため、油圧回路110は、油圧モータ4を回転させるにあたって流量制御弁60を中立位置60-3に配置することで、回生系Rへの流入を防止することができる。このことから、油圧回路110は、油圧モータ4を円滑に作動させることができる。また、流量制御弁60は、回生時に、電気信号の入力により作動位置60-2に切り替えられる。このことから、油圧回路110は、回生系Rに応答性よく流体を供給することができる。
Furthermore, the flow control valve 60 is a three-port two-position type solenoid valve. Therefore, the hydraulic circuit 110 can prevent inflow into the regenerative system R by placing the flow control valve 60 in the neutral position 60-3 when rotating the hydraulic motor 4. This allows the hydraulic circuit 110 to operate the hydraulic motor 4 smoothly. Furthermore, during regeneration, the flow control valve 60 is switched to the operating position 60-2 by inputting an electrical signal. This allows the hydraulic circuit 110 to supply fluid to the regenerative system R with good responsiveness.
以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
Although the embodiments of the present invention have been described above with reference to the drawings, the specific configuration is not limited to these embodiments, and the present invention also includes modifications and additions that do not deviate from the gist of the present invention.
例えば、前記実施例では、流体圧回路は、油が圧送される油圧回路である構成として説明したが、これに限られず、油以外の流体であってもよく、適用される流体については適宜変更されてもよい。
For example, in the above embodiment, the fluid pressure circuit is described as being a hydraulic circuit in which oil is pumped, but this is not limited thereto and may be a fluid other than oil, and the fluid applied may be changed as appropriate.
また、前記実施例では、アクチュエータは、油圧モータであるとして説明したが、これに限られず、油圧シリンダであってもよく、適宜変更されてもよい。
In addition, in the above embodiment, the actuator is described as being a hydraulic motor, but this is not limited to this and may be a hydraulic cylinder or may be modified as appropriate.
また、前記実施例では、回生系にはアキュムレータが適用されている構成として説明したが、これに限られず、発電機が適用されていてもよく、流体の流れによるエネルギを回生できる構成であれば適宜変更されてもよい。
In addition, in the above embodiment, an accumulator is used in the regeneration system, but this is not limited to this, and a generator may be used, and any other suitable configuration may be used as long as it is capable of regenerating energy from the flow of fluid.
また、前記実施例では、制御弁は、圧力補償弁である構成として説明したが、これに限られず、パイロット差圧によって動作する弁であれば適宜変更されてもよい。このことから、制御弁は、分流流路側の開度調節が可能である一方で、主流流路側の開度調節には関与しない構成であってもよく、このような構成であれば主流路側の開度は流体の流通自在な一定の開度に保たれていてもよい。
In addition, in the above embodiment, the control valve is described as being a pressure compensation valve, but this is not limited thereto, and may be changed as appropriate as long as it is a valve that operates based on a pilot differential pressure. For this reason, the control valve may be configured to be capable of adjusting the opening of the branch flow passage, but not involved in adjusting the opening of the main flow passage, and in such a configuration, the opening of the main flow passage may be maintained at a constant opening that allows the fluid to flow freely.
また、前記実施例では、絞りは可変絞りである構成として説明したが、これに限られず、固定絞りであってもよい。
In addition, in the above embodiment, the aperture is described as being variable, but this is not limited thereto and may be a fixed aperture.
また、前記実施例では、リモコンは、電気式ジョイスティックである構成として説明したが、これに限られず、例えば方向切換弁に作用するパイロット圧を可変制御するためのリモコン弁であってもよい。このように、コントローラによる制御についても電気信号の代わりに流体圧が適宜利用されてもよい。
In the above embodiment, the remote control is described as being an electric joystick, but this is not limited thereto, and it may be, for example, a remote control valve for variably controlling the pilot pressure acting on the directional control valve. In this way, fluid pressure may be used as appropriate instead of an electrical signal for control by the controller.
また、前記実施例では、可変絞りは、3ポート2位置タイプの電磁弁の一部である構成として説明したが、これに限られず、開閉弁と、可変絞りとが直列に配置されていればよく、別体であってもよい。さらに、絞りが可変絞りであれば、開閉弁は省略されてもよい。
In addition, in the above embodiment, the variable throttle is described as being part of a three-port two-position type solenoid valve, but this is not limited thereto, and the on-off valve and the variable throttle may be arranged in series, or may be separate. Furthermore, if the throttle is a variable throttle, the on-off valve may be omitted.
1 駆動機構
2 油圧ポンプ(圧力供給源)
3 方向切換弁
4 油圧モータ(アクチュエータ)
6,7 分流弁
13 圧力センサ(回生系側にあるセンサ)
14 アキュムレータ
23~29 油路(主流路)
37,41,44,45 油路(分岐流路)
60 流量制御弁(3ポート2位置タイプの電磁弁)
60-2 作動位置
60-6 可変絞り
61 圧力補償弁(制御弁)
70 流量制御弁(3ポート2位置タイプの電磁弁)
71 圧力補償弁(制御弁)
110 油圧回路(流体圧回路) 1 Drivemechanism 2 Hydraulic pump (pressure supply source)
3 Directional switching valve 4 Hydraulic motor (actuator)
6, 7Diverter valve 13 Pressure sensor (sensor on the regenerative system side)
14 Accumulator 23-29 Oil passage (main passage)
37, 41, 44, 45 Oil passage (branch passage)
60 Flow control valve (3-port 2-position solenoid valve)
60-2 Operating position 60-6Variable throttle 61 Pressure compensation valve (control valve)
70 Flow control valve (3-port 2-position solenoid valve)
71 Pressure compensation valve (control valve)
110 Hydraulic circuit (fluid pressure circuit)
2 油圧ポンプ(圧力供給源)
3 方向切換弁
4 油圧モータ(アクチュエータ)
6,7 分流弁
13 圧力センサ(回生系側にあるセンサ)
14 アキュムレータ
23~29 油路(主流路)
37,41,44,45 油路(分岐流路)
60 流量制御弁(3ポート2位置タイプの電磁弁)
60-2 作動位置
60-6 可変絞り
61 圧力補償弁(制御弁)
70 流量制御弁(3ポート2位置タイプの電磁弁)
71 圧力補償弁(制御弁)
110 油圧回路(流体圧回路) 1 Drive
3 Directional switching valve 4 Hydraulic motor (actuator)
6, 7
14 Accumulator 23-29 Oil passage (main passage)
37, 41, 44, 45 Oil passage (branch passage)
60 Flow control valve (3-port 2-position solenoid valve)
60-2 Operating position 60-6
70 Flow control valve (3-port 2-position solenoid valve)
71 Pressure compensation valve (control valve)
110 Hydraulic circuit (fluid pressure circuit)
Claims (4)
- 圧力供給源と、
前記圧力供給源からの流体によって作動するアクチュエータ装置と、
前記圧力供給源と前記アクチュエータ装置との間の主流路に設けられている方向切換弁と、
前記主流路に分岐流路を介して接続されている回生系と、
前記主流路から前記分岐流路への流量を制御する制御弁と、を備える流体圧回路であって、
前記分岐流路には、前記主流路からの流体を絞る絞りが配置されており、
前記制御弁は、前記主流路の流体圧と前記絞りによって得られる前記分岐流路の流体圧を受けこれらの差圧で制御される流体圧回路。 A pressure source;
an actuator device actuated by fluid from the pressure source;
a directional control valve provided in a main flow path between the pressure supply source and the actuator device;
a regeneration system connected to the main flow path via a branch flow path;
a control valve for controlling a flow rate from the main flow path to the branch flow path,
A throttle that throttles a fluid from the main flow path is disposed in the branch flow path,
The control valve is a fluid pressure circuit that receives fluid pressure in the main flow path and fluid pressure in the branch flow path obtained by the restriction and is controlled by the differential pressure between them. - 前記絞りは、前記回生系から得られる情報に基づいて制御される可変絞りである請求項1に記載の流体圧回路。 The fluid pressure circuit according to claim 1, wherein the throttle is a variable throttle that is controlled based on information obtained from the regenerative system.
- 前記回生系から得られる情報は、前記回生系側にあるセンサから得られる電気信号である請求項2に記載の流体圧回路。 The fluid pressure circuit according to claim 2, wherein the information obtained from the regenerative system is an electrical signal obtained from a sensor on the regenerative system side.
- 前記絞りは、3ポート2位置タイプの電磁弁における作動位置に設けられている請求項1ないし3のいずれかに記載の流体圧回路。 The fluid pressure circuit according to any one of claims 1 to 3, wherein the throttle is provided at the operating position of a 3-port 2-position type solenoid valve.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022187166 | 2022-11-24 | ||
JP2022-187166 | 2022-11-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111381A1 true WO2024111381A1 (en) | 2024-05-30 |
Family
ID=91195569
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/039702 WO2024111381A1 (en) | 2022-11-24 | 2023-11-02 | Hydraulic pressure circuit |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024111381A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173902A (en) * | 1992-12-02 | 1994-06-21 | Kayaba Ind Co Ltd | Oil pressure regenerating circuit |
JP2004116656A (en) * | 2002-09-26 | 2004-04-15 | Komatsu Ltd | Pressure oil energy recovery/regeneration device |
JP2015025475A (en) * | 2013-07-24 | 2015-02-05 | 日立建機株式会社 | Energy regenerating system for construction machine |
EP3822492A1 (en) * | 2019-11-13 | 2021-05-19 | Walvoil S.p.A. | Hydraulic circuit having a combined compensation and energy recovery function |
-
2023
- 2023-11-02 WO PCT/JP2023/039702 patent/WO2024111381A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06173902A (en) * | 1992-12-02 | 1994-06-21 | Kayaba Ind Co Ltd | Oil pressure regenerating circuit |
JP2004116656A (en) * | 2002-09-26 | 2004-04-15 | Komatsu Ltd | Pressure oil energy recovery/regeneration device |
JP2015025475A (en) * | 2013-07-24 | 2015-02-05 | 日立建機株式会社 | Energy regenerating system for construction machine |
EP3822492A1 (en) * | 2019-11-13 | 2021-05-19 | Walvoil S.p.A. | Hydraulic circuit having a combined compensation and energy recovery function |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5873245A (en) | Hydraulic drive system | |
KR101213313B1 (en) | Control device for hybrid construction machine | |
JP5489563B2 (en) | Control device for hybrid construction machine | |
WO2007040835A1 (en) | Hydraulic system having augmented pressure compensation | |
JP6793849B2 (en) | Hydraulic drive for construction machinery | |
JP2017226492A (en) | Hydraulic drive system | |
JP4976920B2 (en) | Pump discharge control device | |
JPWO2020067084A1 (en) | Fluid circuit | |
WO2006006448A1 (en) | Hydraulic drive device for working vehicle | |
JP7210553B2 (en) | hydraulic circuit | |
WO2018021288A1 (en) | Excavator, and control valve for excavator | |
JP3625149B2 (en) | Hydraulic control circuit for construction machinery | |
JP7550671B2 (en) | Hydraulic Drive System | |
JP2000213644A (en) | Engine stall preventive device for hst vehicle | |
WO2024111381A1 (en) | Hydraulic pressure circuit | |
JP5622243B2 (en) | Fluid pressure control circuit and work machine | |
US20190017247A1 (en) | Excavator and control valve for excavator | |
JP7274887B2 (en) | Control devices and construction machinery | |
KR20200103537A (en) | Driver and construction machine | |
JP4926627B2 (en) | Electric oil system | |
JP6427221B2 (en) | Fluid pressure control device and work machine equipped with the same | |
WO2023162884A1 (en) | Fluid pressure circuit | |
JP2000240604A (en) | Revolving controller in construction machine | |
JP7418278B2 (en) | hydraulic control circuit | |
WO2024111448A1 (en) | Hydraulic pressure circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894393 Country of ref document: EP Kind code of ref document: A1 |