Nothing Special   »   [go: up one dir, main page]

WO2023090941A1 - 전력변환장치 - Google Patents

전력변환장치 Download PDF

Info

Publication number
WO2023090941A1
WO2023090941A1 PCT/KR2022/018322 KR2022018322W WO2023090941A1 WO 2023090941 A1 WO2023090941 A1 WO 2023090941A1 KR 2022018322 W KR2022018322 W KR 2022018322W WO 2023090941 A1 WO2023090941 A1 WO 2023090941A1
Authority
WO
WIPO (PCT)
Prior art keywords
auxiliary power
voltage
unit
output
power supply
Prior art date
Application number
PCT/KR2022/018322
Other languages
English (en)
French (fr)
Inventor
이승민
윤동근
장성재
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of WO2023090941A1 publication Critical patent/WO2023090941A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other DC sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other DC sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/10Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from AC or DC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of DC power input into DC power output
    • H02M3/02Conversion of DC power input into DC power output without intermediate conversion into AC
    • H02M3/04Conversion of DC power input into DC power output without intermediate conversion into AC by static converters
    • H02M3/10Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of DC power input into DC power output without intermediate conversion into AC by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a power converter, and more particularly, to an auxiliary power converter that efficiently generates auxiliary power for the power converter and a power converter including the same.
  • Photovoltaic power generation is widely used as an eco-friendly energy generation method to replace existing chemical power generation or nuclear power generation.
  • an inverter that converts power is used to provide power generated from a photovoltaic panel to a power grid, but an auxiliary power source for driving the inverter is required.
  • Auxiliary power for driving the inverter must be supplied regardless of whether or not the photovoltaic panel generates power.
  • a technique for efficiently generating auxiliary power is needed in a situation where solar power is not generated, such as at night.
  • a technical problem to be solved by the present invention is to provide an auxiliary power supply device that efficiently generates auxiliary power of the power conversion device and a power conversion device including the same.
  • an auxiliary power supply device for generating auxiliary power of a power conversion device, wherein the first step is to generate auxiliary power by receiving power from a photovoltaic module.
  • auxiliary power unit a second auxiliary power unit generating auxiliary power by receiving power from the grid; and a driving unit outputting a driving signal to the second auxiliary power unit according to a voltage level of the photovoltaic module.
  • the drive unit operates the second auxiliary power source when the voltage of the photovoltaic module is equal to or less than the first voltage, and operates the second auxiliary power source when the voltage of the photovoltaic module is equal to or greater than the second voltage.
  • the first voltage may be lower than the second voltage.
  • the driving unit may include a sensing unit sensing a voltage of the photovoltaic module; a comparator comparing the sensed voltage of the photovoltaic module with a reference voltage; It may include a driving signal output unit for outputting a driving signal to the second auxiliary power unit according to the output of the comparator.
  • the comparator may compare the voltage of the photovoltaic module with a first voltage or a second voltage.
  • the comparator may output a first signal when the voltage of the photovoltaic module is equal to or less than the first voltage, and output a second signal when the voltage of the photovoltaic module exceeds the second voltage.
  • the drive signal output unit includes a first photo coupler, and outputs a first drive signal when the output of the comparator is a first signal when the first photo coupler does not operate, and outputs a first drive signal when the output of the comparator is a second signal.
  • the first photo coupler may operate to output a second driving signal.
  • it may include a feedback voltage unit for lowering the output of the second auxiliary power supply unit to a third voltage or less according to the output of the comparator.
  • the feedback voltage unit may include a second photo coupler, and when an output of the comparator is a first signal, the second photo coupler may operate to lower an output of the second auxiliary power unit to a third voltage or less.
  • the first auxiliary power unit may receive power from a battery and generate auxiliary power.
  • a power conversion device includes a power conversion unit that converts power input from a photovoltaic module and outputs it to a grid or charges a battery; and an auxiliary power unit generating auxiliary power for operating the power conversion unit, wherein the auxiliary power unit includes one of the above-described auxiliary power devices.
  • auxiliary power unit not in use, so that auxiliary power can be efficiently generated and EMI characteristics can be improved.
  • FIG. 1 is a block diagram of an auxiliary power supply according to an embodiment of the present invention.
  • FIG. 2 shows a comparative example of an auxiliary power supply according to an embodiment of the present invention.
  • 3 to 9 are views for explaining an auxiliary power supply device according to an embodiment of the present invention.
  • FIG. 10 is a block diagram of a power converter according to an embodiment of the present invention.
  • the technical idea of the present invention is not limited to some of the described embodiments, but may be implemented in a variety of different forms, and if it is within the scope of the technical idea of the present invention, one or more of the components among the embodiments can be selectively implemented. can be used in combination or substitution.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when described as "at least one (or more than one) of A and (and) B and C", A, B, and C are combined. may include one or more of all possible combinations.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the term is not limited to the nature, order, or order of the corresponding component.
  • a component when a component is described as being 'connected', 'coupled', or 'connected' to another component, the component is directly 'connected', 'coupled', or 'connected' to the other component. In addition to the case, it may include cases where the component is 'connected', 'combined', or 'connected' due to another component between the component and the other component.
  • Modifications according to this embodiment may include some configurations of each embodiment and some configurations of other embodiments. That is, the modified example may include one embodiment among various embodiments, but some components may be omitted and some configurations of other corresponding embodiments may be included. Or, it may be the other way around.
  • Features, structures, effects, etc. to be described in the embodiments are included in at least one embodiment, and are not necessarily limited to only one embodiment.
  • the features, structures, and effects illustrated in each embodiment can be combined or modified with respect to other embodiments by those skilled in the art in the field to which the embodiments belong. Therefore, contents related to these combinations and variations should be interpreted as being included in the scope of the embodiments.
  • FIG. 1 is a block diagram of an auxiliary power supply according to an embodiment of the present invention.
  • An auxiliary power supply device 100 is composed of a first auxiliary power supply unit 110, a second auxiliary power supply unit 120, and a driving unit 130.
  • a power conversion device for supplying auxiliary power from an auxiliary power supply device may be a device that converts power generated from a photovoltaic panel into power suitable for a load or a battery.
  • Photovoltaic panels generate photovoltaic power (PV), which generates electricity using the photoelectric effect.
  • the photoelectric effect is the emission of electrons when light of a certain frequency or higher hits a specific metal material.
  • a pn junction is formed using a p-type semiconductor and an n-type semiconductor, and electric power is generated by using electrons generated by the photoelectric effect to generate current.
  • generate A photovoltaic panel includes a plurality of photovoltaic cells, and the photovoltaic cells are formed using silicon or the like and may be formed in a wafer form.
  • the photovoltaic power generation panel is located in a field that can receive sunlight well, an outer wall of a building, or a rooftop, and generates electric power using sunlight. At this time, the photovoltaic panel may be formed of BIPV (building-integrated photovoltaic power generation) formed integrally with the building.
  • BIPV building-integrated photovoltaic power generation
  • the power generated by the photovoltaic panel is converted into power suitable for a grid, which is a power system, and transmitted to the grid.
  • a power conversion device is used.
  • auxiliary power In order for the power conversion device to be driven to convert power, auxiliary power must be supplied.
  • the power conversion device may include one or more switching elements, and in order for the switch elements to operate, auxiliary power, which is a different power from the main power to which power is converted, must be supplied.
  • An auxiliary power supply includes a first auxiliary power unit and a second auxiliary power unit when generating auxiliary power.
  • the first auxiliary power unit 110 receives power from the photovoltaic module 210 and generates auxiliary power.
  • auxiliary power is generated using power applied from the photovoltaic module 210 .
  • the photovoltaic module 210 may include a photovoltaic panel, and may include a converter that converts power generated from the photovoltaic panel, a maximum power point tracking controller that performs MPPT, and the like.
  • Power generated by the solar power generation module 210 may be applied to the first auxiliary power unit 110 through a DC link.
  • the first auxiliary power unit 110 converts the power applied from the photovoltaic power generation module 210 into a voltage or current of auxiliary power and transfers it to a load requiring auxiliary power.
  • the load is an element for operating the power conversion device, and may include a switching element, a controller, and the like.
  • the first auxiliary power unit 110 may include a power conversion circuit that generates auxiliary power using DC power.
  • the first auxiliary power supply 110 may include a bootstrap circuit.
  • a buck converter, a boost converter, or a buck-boost converter may be included.
  • the first auxiliary power source 110 may receive power from the battery 230 . Power generated by the photovoltaic module 210 may be applied to the battery through a DC link to charge the battery 230 . The first auxiliary power unit 110 may generate auxiliary power by receiving power from the photovoltaic module 210 or the battery 230 .
  • the first auxiliary power supply unit 110 may be a hybrid auxiliary power supply unit.
  • the second auxiliary power source 120 receives power from the grid 220 and generates auxiliary power.
  • the second auxiliary power unit 120 receives power from the grid 220 and generates auxiliary power.
  • the power conversion device not only provides the converted power to the grid 220, which is a power system, but also receives power from the grid 220 and enables bi-directional power conversion. Power applied from grid 220 may be used to charge battery 230 .
  • the second auxiliary power supply unit 120 may receive power from the grid 220 and use it to generate auxiliary power. Since the power applied from the grid 220 is AC power, the second auxiliary power supply unit 120 may include a power conversion circuit that generates auxiliary power using AC power.
  • the second auxiliary power supply 120 may include a bootstrap circuit. Alternatively, a buck converter, a boost converter, or a buck-boost converter may be included.
  • the driving unit 130 outputs a driving signal to the second auxiliary power supply unit 120 according to the magnitude of the voltage of the photovoltaic module 210 .
  • the driving unit 130 may operate or stop the second auxiliary power supply unit 120 according to the magnitude of the voltage applied from the photovoltaic module 210 .
  • auxiliary power When auxiliary power is generated by receiving power from a photovoltaic power generation module or grid, two types of auxiliary power may be used using diodes as shown in FIG. 2 .
  • Auxiliary power 1 (Aux1 DC) connected to the PV module or battery can output a voltage of 14V
  • auxiliary power 2 (Aux2 AC) connected to the grid can also output 14V. voltage can be output.
  • auxiliary power source 1 can be used as the main auxiliary power source, and when there is no photovoltaic power generation, such as at night (night mode), auxiliary power source 2 can be used as the main auxiliary power source.
  • auxiliary power 2 it is possible to provide only one auxiliary power output to a load by connecting two diodes to auxiliary power 2 and one diode to auxiliary power 1 to configure ORing of two output voltages.
  • diodes when diodes are used, a voltage drop of about 0.7V per diode occurs, resulting in loss, and auxiliary power 2 operates in burst mode (intermittent operation mode) even during photovoltaic power generation, so auxiliary power 2 is intermittent. It can be vulnerable to loss and EMI according to operation.
  • the driving unit 130 may operate or stop the second auxiliary power supply unit 120 according to the level of voltage applied from the photovoltaic power generation module 210, so that the second auxiliary power supply unit 120 needs to operate. In the absence condition, the operation of the second auxiliary power supply unit 120 may be stopped.
  • the driver 130 uses the voltage of the photovoltaic module 210 as a condition for determining whether the second auxiliary power source 120 operates.
  • the driving unit 130 operates the second auxiliary power supply unit 120 when the voltage of the photovoltaic module 210 is less than or equal to the first voltage, and the voltage of the photovoltaic module 210 is greater than or equal to the second voltage. At this time, the operation of the second auxiliary power supply unit 120 may be stopped.
  • the first voltage is a reference voltage at which the second auxiliary power supply unit 120 operates
  • the second voltage is a reference voltage at which the second auxiliary power supply unit 120 stops operation.
  • the first voltage may be lower than the second voltage. That is, in a situation where the first auxiliary power unit 110 generates auxiliary power, the amount of power generated by the photovoltaic module 210 is reduced according to obstacles such as sunset or shade, so that the first auxiliary power unit 110 sufficiently supplies auxiliary power.
  • the second auxiliary power supply unit 120 instead of the first auxiliary power supply unit 110 may generate auxiliary power.
  • the reference voltage at which the second auxiliary power supply unit 120 operates may be set as the first voltage.
  • the first voltage may be a voltage at which the first auxiliary power supply unit 110 cannot generate auxiliary power, and may be set by a user.
  • the first auxiliary power unit 110 may generate auxiliary power.
  • the second auxiliary power supply 120 does not need to operate, so the second auxiliary power supply 120 may stop operating and be turned off.
  • the reference voltage at which the second auxiliary power supply unit 120 is turned off may be set as the second voltage.
  • the second voltage may be a voltage at which the first auxiliary power supply unit 110 generates auxiliary power, and may be set by a user.
  • the first voltage may be set lower than the second voltage to have hysteresis characteristics as shown in FIG. 3 .
  • the operation of the second auxiliary power supply unit 120 is determined by only one voltage, a problem in that the second auxiliary power supply unit 120 repeatedly turns on and off occurs due to fluctuations in the voltage near the corresponding voltage, resulting in increased loss.
  • the difference between the first voltage and the second voltage is set to have a hysteresis characteristic as shown in FIG. 3 , it is possible to prevent repetition of on-off with a small difference in voltage.
  • the first voltage may be 110 V and the second voltage may be 150 V. With a gap of 40 V, it is possible to have hysteresis characteristics.
  • the driving unit 130 In order to output a driving signal to the second auxiliary power supply unit 120 according to the magnitude of the voltage of the photovoltaic module 210, the driving unit 130, as shown in FIG. A driving signal output unit 133 may be included, and as shown in FIG. 4 , a feedback voltage unit 134 may be included.
  • the sensing unit 131 may sense the voltage of the photovoltaic module 210 .
  • the sensing unit 131 may sense a voltage of a DC link through which power of the photovoltaic module 210 is applied to the power converter. That is, the DC voltage applied to the power converter may be sensed.
  • the comparator 132 may compare the sensed voltage of the photovoltaic module 210 with a reference voltage. At this time, the comparator 132 may compare the voltage of the photovoltaic module 210 with the first voltage or the second voltage.
  • the reference voltage may include a first voltage and a second voltage higher than the first voltage to have a hysteresis characteristic. That is, the comparator 132 may compare whether the sensed voltage of the photovoltaic module 210 is lower than the first voltage in a situation higher than the second voltage or higher than the second voltage in a situation lower than the first voltage. there is.
  • the comparator 132 outputs a first signal when the voltage of the photovoltaic module 210 is less than or equal to the first voltage, and outputs a second signal when the voltage of the photovoltaic module 210 exceeds the second voltage.
  • the first signal may be low or 0, and the second signal may be high or 1.
  • the first signal may be high and the second signal may be low.
  • the driving signal output unit 133 may output a driving signal to the second auxiliary power supply unit 120 according to the output of the comparator 132 .
  • the drive signal output unit 133 A driving signal for turning on the second auxiliary power supply 120 may be output to the second auxiliary power supply 120 .
  • the voltage of the photovoltaic module 210 according to the comparison result of the comparator 132 may generate auxiliary power by the first auxiliary power unit 110.
  • the driving signal output unit 133 may output a driving signal for turning off the second auxiliary power supply unit 120 to the second auxiliary power supply unit 120 .
  • the output of the driving signal to the second auxiliary power supply unit 120 may be blocked.
  • the driving signal output unit 133 may output a first driving signal for driving the second auxiliary power supply unit 120 and a second driving signal for stopping driving of the second auxiliary power supply unit 120 .
  • the driving signal output unit 133 may include an enable/disable circuit.
  • the first drive signal may be a disable signal and the second drive signal may be an enable signal.
  • the first drive signal may be an enable signal and the second drive signal may be a disable signal.
  • the driving signal output unit 133 may include a first photo coupler 820 .
  • the photo coupler is an optical composite device that includes a light emitting element and a light receiving element, the light emitting element operates to generate light, and the light receiving element receives light generated from the light emitting element to operate.
  • the light emitting element includes a light emitting diode, A transistor may be included as a light receiving element.
  • the first photo coupler 820 may operate to output a second driving signal.
  • the feedback voltage unit 134 may lower the output of the second auxiliary power supply unit to a third voltage or less according to the output of the comparator.
  • the level of the voltage generated by the second auxiliary power unit 120 is lowered to a third voltage lower than the voltage of the auxiliary power generated by the first auxiliary power unit 110 or less.
  • the voltage of the auxiliary power generated by the first auxiliary power unit 110 is 20 V
  • the voltage of the auxiliary power generated by the second auxiliary power unit 120 may be controlled to 18 V.
  • the feedback voltage unit 134 includes a second photo coupler 920, and when the output of the comparator 132 is a first signal, the second photo coupler 920 operates to convert the output of the second auxiliary power supply to a third signal. voltage can be lowered.
  • the first auxiliary power supply unit 110 receives power from the battery 230 to generate auxiliary power.
  • the battery 230 The first auxiliary power unit 110 connected to may generate auxiliary power using the power charged in the battery 230 . Through this, the auxiliary power can be always turned on.
  • An auxiliary power supply device may be implemented as shown in FIG. 6 .
  • the first auxiliary power unit 110, Aux1 DC is connected to the photovoltaic module 210, the PV module and the battery, and generates auxiliary power required for the load 240 using DC power, and the second auxiliary power unit 120 ) Aux2 AC may be connected to the grid 220 to generate auxiliary power.
  • the second auxiliary power unit 120 outputs a driving signal according to the output of the sensing unit 131 that senses the voltage of the photovoltaic module 210, the comparator 132 that compares the voltage with the reference voltage, and the comparator 132.
  • It may include an Enable & Disable circuit, which is a driving signal output unit 133, and a Feedback voltage circuit, which is a feedback voltage unit that controls the output voltage of the second auxiliary power supply unit 120 according to the output of the comparator 132.
  • the sensing unit 131 and the comparator 132 may be implemented as shown in FIG. 7 .
  • the sensing unit 131 may sense the voltage of the photovoltaic module 210 as the voltage (V_DC-link, 710) of the DC link. It can be sensed using resistor divider and op-amp.
  • the comparator 132 compares the sensing voltage (V_SEN, 720) with the reference voltage (V_REF, 730) and outputs the result (AUX2_EN, 740).
  • the driving signal output unit 133 may be implemented as shown in FIG. 8 .
  • the result of the comparator (AUX2_EN, 810) is received, the first photo coupler 820 operates according to the value, and the driving signal 830 may be output depending on whether the first photo coupler 820 operates.
  • the result 810 of the comparator is the first signal (low), the first photo coupler 820 does not operate, the first drive signal (disable) is output, and the result 810 of the comparator is the second signal ( high), the first photo coupler 820 operates, and a second driving signal (enable) may be output.
  • the feedback voltage unit 134 may be implemented as shown in FIG. 9 .
  • the result of the comparator (AUX2_EN, 910) is input, the second photo coupler 920 operates according to the value, and the output of the second auxiliary power supply unit 120 is controlled according to whether the second photo coupler 920 operates. can do.
  • the result 810 of the comparator is the first signal (low)
  • the second photo coupler 920 operates
  • the feedback voltage increases to control the output of the second auxiliary power supply unit 120
  • the result of the comparator 810 is the second signal (high)
  • the second photo coupler 920 does not operate, and the feedback voltage decreases, so that output control of the second auxiliary power supply unit 120 may be stopped.
  • the auxiliary power supply 100 when the voltage of the photovoltaic module 210 is lower than the first voltage, the output of the comparator 132 is the first signal is output , The first photo coupler 820 of the drive signal output unit 133 does not operate, and the first drive signal is output to operate the second auxiliary power supply unit 120 .
  • the second photo coupler 920 of the feedback voltage unit 134 operates so that the output voltage of the second auxiliary power supply unit 120 can be controlled to be equal to or less than the third voltage.
  • the output of the comparator 132 outputs a second signal, and the first photo coupler 820 of the driving signal output unit 133 operates.
  • the second driving signal is output so that the second auxiliary power source 120 may be turned off.
  • the second photo coupler 920 of the feedback voltage unit 134 may not operate.
  • the first auxiliary power unit 110 can be turned on and off, so that the auxiliary power unit does not operate unnecessarily, and thus, auxiliary power can be efficiently generated without loss and EMI characteristics can be improved.
  • FIG. 10 is a block diagram of a power converter according to an embodiment of the present invention.
  • the power conversion device 300 converts power input from the photovoltaic power generation module 210 and outputs it to the grid 220 or charges the battery 230.
  • the power conversion unit 310 and It includes an auxiliary power supply unit 320 generating auxiliary power for operating the power conversion unit 310 .
  • the power converter 310 converts the voltage of power input from the photovoltaic module 210 into a voltage suitable for the grid 220 and outputs the converted voltage.
  • the power conversion unit 310 may convert an input voltage into a high voltage or a low voltage. Alternatively, the input current may be converted into a high current or a low current.
  • the power converter 310 may include an inverter that converts power.
  • the auxiliary power supply unit 320 supplies power necessary for the power conversion unit 310 to perform an operation for converting power.
  • the power conversion unit 310 may include an inverter and a control unit for operating the inverter, and the switching elements included in the inverter require power to operate, and the auxiliary power supply unit 320 is the power required to operate the corresponding elements. can supply A detailed description of the auxiliary power unit 320 of the power conversion device according to an embodiment of the present invention corresponds to the detailed description of the auxiliary power device of FIGS. 1 to 9, and thus, redundant descriptions will be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 전력변환장치의 보조전원을 생성하는 보조전원장치에 관한 것으로, 태양광 발전 모듈로부터 전원을 인가받아 보조전원을 생성하는 제1 보조전원부, 그리드로부터 전원을 인가받아 보조전원을 생성하는 제2 보조전원부, 및 태양광 발전 모듈의 전압의 크기에 따라 제2 보조전원부를 선택적으로 동작시킬 수 있는 구동부를 포함하여, 태양광발전이 이루어지지 않는 환경에서도 보조전원이 정상적으로 동작할 수 있는 효과를 가진다.

Description

전력변환장치
본 발명은 전력변환장치에 관한 것으로, 보다 구체적으로 전력변환장치의 보조전원을 효율적으로 생성하는 보조전원장치 및 이를 포함하는 전력변환장치에 관한 발명이다.
태양광 발전은 친환경 에너지 발전 방식으로 기존 화학발전이나 원자력 발전을 대체하여 널리 보급되고 있다. 태양광 발전은 컨버터에 배터리가 접속되는 독립형과 전력계통과 연계되는 연계형태가 있고, 일반적으로 독립형 발전은 태양전지, 축전지, 전력변환 장치 등으로 구성되고 전력계통 연계형 시스템은 상용 전원과 연결하여 부하계통선과 전력을 상호 교류할 수 있도록 구성된다.
전력계통 연계형 시스템에 있어서, 태양광 발전 패널에서 생성되는 전력을 전력계통으로 제공하기 위하여, 전력을 변환하는 인버터를 이용하는데, 인버터를 구동하기 위한 보조전원이 필요하다. 인버터를 구동하기 위한 보조전원은 태양광 발전 패널의 발전여부와 상관없이 공급되어야 하는데, 밤과 같이, 태양광 발전이 이루어지지 않는 상황에서 효율적으로 보조전원을 생성하기 위한 기술이 필요하다.
본 발명이 해결하고자 하는 기술적 과제는, 전력변환장치의 보조전원을 효율적으로 생성하는 보조전원장치 및 이를 포함하는 전력변환장치를 제공하는 것이다.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 보조전원장치는 전력변환장치의 보조전원을 생성하는 보조원장치에 있어서, 태양광 발전 모듈로부터 전원을 인가받아 보조전원을 생성하는 제1 보조전원부; 그리드로부터 전원을 인가받아 보조전원을 생성하는 제2 보조전원부; 및 상기 태양광 발전 모듈의 전압의 크기에 따라 상기 제2 보조전원부에 구동신호를 출력하는 구동부를 포함한다.
또한, 상기 구동부는, 상기 태양광 발전 모듈의 전압이 제1 전압 이하일 때, 상기 제2 보조전원부를 동작시키고, 상기 태양광 발전 모듈의 전압이 제2 전압 이상일 때, 상기 제2 보조전원부의 동작을 정지시킬 수 있다.
또한, 상기 제1 전압은 상기 제2 전압보다 낮을 수 있다.
또한, 상기 구동부는, 상기 태양광 발전 모듈의 전압을 센싱하는 센싱부; 상기 센싱한 태양광 발전 모듈의 전압을 기준전압과 비교하는 비교기; 상기 비교기의 출력에 따라 상기 제2 보조전원부에 구동신호를 출력하는 구동신호 출력부를 포함할 수 있다.
또한, 상기 비교기는 상기 태양광 발전 모듈의 전압을 제1 전압 또는 제2 전압과 비교할 수 있다.
또한, 상기 비교기는, 상기 태양광 발전 모듈의 전압이 제1 전압 이하이면 제1 신호를 출력하고, 상기 태양광 발전 모듈의 전압이 제2 전압 초과이면, 제2 신호를 출력할 수 있다.
또한, 상기 구동신호 출력부는 제1 포토 커플러를 포함하고, 상기 비교기의 출력이 제1 신호이면 상기 제1 포토 커플러가 동작하지 않아 제1 구동신호를 출력하고, 상기 비교기의 출력이 제2 신호이면 상기 제1 포토 커플러가 동작하여 제2 구동신호를 출력할 수 있다.
또한, 상기 비교기의 출력에 따라 상기 제2 보조전원부의 출력을 제3 전압 이하로 낮추는 피드백 전압부를 포함할 수 있다.
또한, 상기 피드백 전압부는 제2 포토 커플러를 포함하고, 상기 비교기의 출력이 제1 신호이면 상기 제2 포토 커플러가 동작하여 제2 보조전원부의 출력을 제3 전압 이하로 낮출 수 있다.
또한, 상기 태양광 발전 모듈 및 상기 그리드의 입력전압이 임계치 이하인 경우, 상기 제1 보조전원부가 배터리로부터 전원을 입력받아 보조전원을 생성할 수 있다.
상기 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 전력변환장치는 태양광 발전 모듈로부터 입력된 전원을 변환하여 그리드로 출력하거나 배터리를 충전하는 전력변환부; 및 상기 전력변환부를 동작시키는 보조전원을 생성하는 보조전원부를 포함하고, 상기 보조전원부는 상기 기재한 보조전원장치 중 하나를 포함한다.
본 발명의 실시예들에 따르면, 사용하지 않는 보조전원부를 오프시킬 수 있어, 효율적으로 보조전원을 생성할 수 있고, EMI 특성을 개선할 수 있다.
도 1은 본 발명의 일 실시예에 따른 보조전원장치의 블록도이다.
도 2는 본 발명의 실시예에 따른 보조전원장치의 비교예를 도시한 것이다.
도 3 내지 도 9는 본 발명의 실시예에 따른 보조전원장치를 설명하기 위한 도면이다.
도 10는 본 발명의 일 실시예에 따른 전력변환장치의 블록도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합 또는 치환하여 사용할 수 있다.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.
또한, 본 발명의 실시 예의 구성 요소를 설명하는데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.
그리고, 어떤 구성 요소가 다른 구성 요소에 '연결', '결합', 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 '연결', '결합', 또는 '접속'되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합', 또는 '접속'되는 경우도 포함할 수 있다.
또한, 각 구성 요소의 "상(위)" 또는 "하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, "상(위)" 또는 "하(아래)"는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라, 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위)" 또는 "하(아래)"로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함될 수 있다.
본 실시예에 따른 변형례는 각 실시예 중 일부 구성과 다른 실시예 중 일부 구성을 함께 포함할 수 있다. 즉, 변형례는 다양한 실시예 중 하나 실시예를 포함하되 일부 구성이 생략되고 대응하는 다른 실시예의 일부 구성을 포함할 수 있다. 또는, 반대일 수 있다. 실시예들에 설명할 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다
도 1은 본 발명의 일 실시예에 따른 보조전원장치의 블록도이다.
본 발명의 일 실시예에 따른 보조전원장치(100)는 제1 보조전원부(110), 제2 보조전원부(120), 및 구동부(130)로 구성된다.
본 발명의 실시예에 따른 보조전원장치에서 보조전원을 공급하는 전력변환장치는 태양광 발전 패널에서 생성되는 전력을 부하 또는 배터리에 적합한 전력으로 변환하는 장치일 수 있다.
태양광 발전 패널은 광전효과를 이용하여 전력을 생성하는 태양광 발전(PV, Photovoltaic)을 한다. 광전효과는 특정 주파수 이상의 빛이 특정 금속 물질에 부딪히면 전자 방출하는 것으로, P형 반도체와 n형 반도체를 이용하여 pn 접합을 형성하고, 광전효과에 의해 발생하는 전자를 이용하여 전류를 생성함으로써 전력을 생성한다. 태양광 발전 패널은 복수의 태양광 셀을 포함하며, 태양광 셀은 실리콘 등을 이용하여 형성되며, 웨이퍼 형태로 형성될 수 있다. 태양광 발전 패널은 태양광을 잘 받을 수 있는 야지나 건물의 외벽, 옥상 등에 위치하여, 태양광을 이용하여 전력을 생성한다. 이때, 태양광 발전 패널은 건물과 일체형으로 형성되는 BIPV(건물 일체형 태양광 발전)로 형성될 수 있다.
태양광 발전 패널에서 생성된 전력은 전력계통인 그리드에 적합한 전력으로 변환되어 그리드로 전송되는데, 이때, 전력변환장치를 이용한다. 전력변환장치가 전력을 변환하기 위해 구동되기 위해 보조전원이 공급되어야 한다. 예를 들어, 전력변환장치는 하나 이상의 스위칭 소자를 포함할 수 있고, 스위치 소자가 동작하기 위해, 전력이 변환되는 주전원과 다른 전원인 보조전원이 공급되어야 한다.
본 발명의 실시예에 따른 보조전원장치는 보조전원을 생성함에 있어서, 제1 보조전원부 및 제2 보조전원부를 포함한다.
제1 보조전원부(110)는 태양광 발전 모듈(210)로부터 전원을 인가받아 보조전원을 생성한다.
보다 구체적으로, 태양광 발전 모듈(210)로부터 인가되는 전원을 이용하여 보조전원을 생성한다. 여기서, 태양광 발전 모듈(210)은 태양광 발전 패널을 포함할 수 있고, 태양광 발전 패널에서 생성되는 전력을 변환하는 컨버터, 최대전력점 추종(MPPT)을 수행하는 최대전력점 추종제어부 등을 포함할 수 있다. 태양광 발전 모듈(210)에서 발전되어 생성된 전원은 DC 링크를 통해 제1 보조전원부(110)로 인가될 수 있다. 제1 보조전원부(110)는 태양광 발전 모듈(210)로부터 인가되는 전원을 보조전원의 전압 또는 전류로 변환하여 보조전원이 필요한 부하에 전달한다. 여기서, 부하는 전력변환장치가 동작하기 위한 소자들로, 스위칭소자, 제어부 등을 포함할 수 있다.
태양광 발전 모듈(210)로부터 인가되는 전원은 DC 전원인바, 제1 보조전원부(110)는 DC 전원을 이용하여 보조전원을 생성하는 전력변환회로를 포함할 수 있다. 제1 보조전원부(110)는 부트스트랩 회로를 포함할 수 있다. 또는, 벅 컨버터 또는 부스트 컨버터, 벅-부스트 컨버터 등을 포함할 수 있다.
제1 보조전원부(110)는 배터리(230)로부터 전원을 인가받을 수 있다. 태양광 발전 모듈(210)에서 생성된 전원은 DC 링크를 통해 배터리로 인가되어 배터리(230)를 충전할 수 있다. 제1 보조전원부(110)는 태양광 발전 모듈(210) 또는 배터리(230)로부터 전원을 인가받아 보조전원을 생성할 수 있다. 여기서, 제1 보조전원부(110)는 하이브리드(hybrid) 보조전원부일 수 있다.
제2 보조전원부(120)는 그리드(220)로부터 전원을 인가받아 보조전원을 생성한다.
보다 구체적으로, 태양광 발전 모듈(210)로부터 전원을 인가받아 보조전원을 생성하는 제1 보조전원부(110)와 달리, 제2 보조전원부(120)는 그리드(220)로부터 전원을 인가받아 보조전원을 생성한다. 태양광 발전 시스템에서 전력변환장치는 변환된 전력을 전력계통인 그리드(220)로 제공할 뿐만 아니라, 그리드(220)로부터 전력을 인가받는 양방향 전력변환이 가능하다. 그리드(220)로부터 인가된 전력은 배터리(230)를 충전하는데 이용될 수 있다. 또한, 그리드(220)로부터 전원을 인가받아 제2 보조전원부(120)가 보조전원을 생성하는데 이용할 수 있다. 그리드(220)로부터 인가받는 전원은 AC 전원인바, 제2 보조전원부(120)는 AC 전원을 이용하여 보조전원을 생성하는 전력변환회로를 포함할 수 있다. 제2 보조전원부(120)는 부트스트랩 회로를 포함할 수 있다. 또는, 벅 컨버터 또는 부스트 컨버터, 벅-부스트 컨버터 등을 포함할 수 있다.
구동부(130)는 상기 태양광 발전 모듈(210)의 전압의 크기에 따라 상기 제2 보조전원부(120)에 구동신호를 출력한다.
보다 구체적으로, 구동부(130)는 태양광 발전 모듈(210)로부터 인가되는 전압의 크기에 따라 제2 보조전원부(120)를 동작시키거나 동작을 정지시킬 수 있다.
태양광 발전 모듈 또는 그리드로부터 전원을 인가받아 보조전원을 생성하는 경우, 도 2와 같이, 다이오드를 이용하여 두 가지 보조전원을 이용할 수 있다. 태양광 발전 모듈(PV module) 또는 배터리(battery)와 연결되는 보조전원1(Aux1 DC)는 14V의 전압을 출력할 수 있고, 그리드(grid)와 연결되는 보조전원2(Aux2 AC)도 14V의 전압을 출력할 수 있다. 이때, 태양광 발전시, 보조전원1을 주 보조전원으로 사용할 수 있고, 밤과 같이, 태양광 발전이 없는 경우(나이트 모드(night mode)), 보조전원2를 주 보조전원을 사용할 수 있다. 이때, 보조전원1에 하나의 다이오드 보조전원2에 두 개의 다이오드를 연결하여 2 개의 출력전압을 ORing으로 구성하여 하나의 보조전원 출력만을 부하(Load)에 제공하도록 구현할 수 있다. 이때, 다이오드를 이용하는 경우, 하나의 다이오드 당 약 0.7V의 voltage drop이 발생하여 손실이 발생하고, 태양광 발전시에도 보조전원2가 burst mode(간헐적 동작 모드)로 동작하므로, 보조전원2의 간헐적 동작에 따른 손실 및 EMI에 취약할 수 있다.
구동부(130)는 태양광 발전 모듈(210)로부터 인가되는 전압의 크기에 따라 제2 보조전원부(120)를 동작시키거나 동작을 정지시킬 수 있어, 제2 보조전원부(120)가 동작할 필요가 없는 조건에서는 제2 보조전원부(120)의 동작을 정지시킬 수 있다. 구동부(130)는 제2 보조전원부(120)의 동작여부를 결정하기 위한 조건으로 태양광 발전 모듈(210)의 전압을 이용한다.
구동부(130)는, 상기 태양광 발전 모듈(210)의 전압이 제1 전압 이하일 때, 상기 제2 보조전원부(120)를 동작시키고, 상기 태양광 발전 모듈(210)의 전압이 제2 전압 이상일 때, 상기 제2 보조전원부(120)의 동작을 정지시킬 수 있다. 제1 전압은 제2 보조전원부(120)가 동작하는 기준전압이고, 제2 전압은 제2 보조전원부(120)가 동작을 정지하는 기준전압이다. 상기 제1 전압은 상기 제2 전압보다 낮을 수 있다. 즉, 제1 보조전원부(110)가 보조전원을 생성하는 상황에서 일몰이나, 그늘 등의 장애물에 따라 태양광 발전 모듈(210)의 발전량을 줄어들어, 제1 보조전원부(110)가 보조전원을 충분히 생성하기 어려워지는 경우, 제1 보조전원부(110)가 아닌 제2 보조전원부(120)가 보조전원을 생성하도록 할 수 있다. 제2 보조전원부(120)가 동작하는 기준전압을 제1 전압으로 설정할 수 있다. 제1 전압은 제1 보조전원부(110)가 보조전원을 생성하지 못하는 전압일 수 있고, 사용자에 의해 설정될 수 있다.
제2 보조전원부(120)가 보조전원을 생성하는 상황에서 일출 등에 의해 태양광 발전 모듈(210)의 발전량이 늘어나게 되어, 제1 보조전원부(110)가 보조전원을 충분히 생성할 수 있는 경우, 제2 보조전원부(120)가 아닌 제1 보조전원부(110)가 보조전원을 생성하도록 할 수 있다. 제1 보조전원부(110)가 보조전원을 생성시, 제2 보조전원부(120)가 동작할 필요가 없는바, 제2 보조전원부(120)는 동작을 정지하고 오프될 수 있다. 제2 보조전원부(120)가 오프되는 기준전압을 제2 전압으로 설정할 수 있다. 제2 전압은 제1 보조전원부(110)가 보조전원을 생성하는 전압일 수 있고, 사용자에 의해 설정될 수 있다.
이때, 제1 전압을 제2 전압보다 낮게 설정하여, 도 3과 같이 히스테리시스 특성을 가지도록 할 수 있다. 제2 보조전원부(120)의 동작여부를 하나의 전압으로만 결정하는 경우, 해당 전압 부근에서의 전압의 흔들림에 따라 제2 보조전원부(120)가 온오프를 반복하는 문제가 발생하여 손실이 커질 수 있다. 제1 전압과 제2 전압을 도 3과 같이, 히스테리시스 특성을 가지도록 차이를 둠으로써 전압의 작은 차이로 온오프가 반복되는 것을 방지할 수 있다. 예를 들어, 제1 전압은 110 V이고, 제2 전압은 150 V일 수 있다. 40 V의 갭을 두어, 히스테리시스 특성을 가지도록 할 수 있다.
구동부(130)는 태양광 발전 모듈(210)의 전압의 크기에 따라 제2 보조전원부(120)에 구동신호를 출력하기 위하여, 도 3과 같이, 센싱부(131), 비교기(132), 및 구동신호 출력부(133)를 포함할 수 있고, 도 4와 같이, 피드백 전압부(134)를 포함할 수 있다.
센싱부(131)는 상기 태양광 발전 모듈(210)의 전압을 센싱할 수 있다. 센싱부(131)는 태양광 발전 모듈(210)의 전력이 전력변환장치로 인가되는 DC 링크의 전압을 센싱할 수 있다. 즉, 전력변환장치로 인가되는 DC 전압을 센싱할 수 있다.
비교기(132)는 상기 센싱한 태양광 발전 모듈(210)의 전압을 기준전압과 비교할 수 있다. 이때, 비교기(132)는 상기 태양광 발전 모듈(210)의 전압을 제1 전압 또는 제2 전압과 비교할 수 있다. 여기서, 기준전압은 히스테리시스 특성을 가지도록 제1 전압 및 제1 전압보다 전압이 높은 제2 전압을 포함할 수 있다. 즉, 비교기(132)는 상기 센싱한 태양광 발전 모듈(210)의 전압이 제2 전압보다 높은 상황에서 제1 전압보다 낮아지는지, 또는 제1 전압보다 낮은 상황에서 제2 전압보다 높아지는지 비교할 수 있다.
비교기(132)는, 상기 태양광 발전 모듈(210)의 전압이 제1 전압 이하이면 제1 신호를 출력하고, 상기 태양광 발전 모듈(210)의 전압이 제2 전압 초과이면, 제2 신호를 출력할 수 있다. 여기서, 제1 신호는 로우(low) 또는 0 이고, 제2 신호는 하이(high) 또는 1 일 수 있다. 또는 제1 신호가 하이이고, 제2 신호가 로우일 수 있다.
구동신호 출력부(133)는 상기 비교기(132)의 출력에 따라 상기 제2 보조전원부(120)에 구동신호를 출력할 수 있다. 비교기(132)의 비교결과에 따라 태양광 발전 모듈(210)의 전압이 제2 보조전원부(120)로 보조전원을 생성할 기준전압인 제1 전압보다 낮은 경우, 구동신호 출력부(133)는 제2 보조전원부(120)을 온시키기 위한 구동신호를 제2 보조전원부(120)에 출력할 수 있다.
또한, 제2 보조전원부(120)로 보조전원을 생성하는 상황에서, 비교기(132)의 비교결과에 따라 태양광 발전 모듈(210)의 전압이 제1 보조전원부(110)로 보조전원을 생성할 기준전압인 제2 전압보다 높은 경우, 구동신호 출력부(133)는 제2 보조전원부(120)을 오프시키기 위한 구동신호를 제2 보조전원부(120)에 출력할 수 있다. 또는, 제2 보조전원부(120)에 대한 구동신호 출력을 차단할 수 있다.
구동신호 출력부(133)는 제2 보조전원부(120)을 구동시키는 제1 구동신호와 제2 보조전원부(120)의 구동을 정지시키는 제2 구동신호를 출력할 수 있다. 구동신호 출력부(133)는 Enable/Disable 회로를 포함할 수 있다. 제1 구동신호는 disable 신호이고, 제2 구동신호는 enable 신호일 수 있고, 반대로, 제1 구동신호는 enable 신호이고, 제2 구동신호는 disable 신호일 수 있다.
구동신호 출력부(133)는 제1 포토 커플러(820)를 포함할 수 있다. 포토 커플러는 발광소자와 수광소자를 포함하고, 발광소자가 동작하여 빛이 발생되고, 수광소자가 발광소자에서 발생된 빛을 수광하여 동작하는 광복합 소자로, 발광소자로 발광다이오드를 포함하고, 수광소자로 트랜지스터를 포함할 수 있다. 여기서, 상기 비교기(132)의 출력이 제1 신호이면 상기 제1 포토 커플러(820)가 동작하지 않아 제1 구동신호를 출력하고, 상기 비교기(132)의 출력이 제2 신호이면 상기 제1 포토 커플러(820)가 동작하여 제2 구동신호를 출력할 수 있다.
피드백 전압부(134)는 상기 비교기의 출력에 따라 상기 제2 보조전원부의 출력을 제3 전압 이하로 낮출 수 있다. 제2 보조전원부(120)가 턴온되어 동작하는 경우, 제2 보조전원부(120)에서 생성되는 전압의 크기를 제1 보조전원부(110)에서 생성되는 보조전원의 전압보다 낮은 제3 전압 이하로 낮출 수 있다. 예를 들어, 제1 보조전원부(110)에서 생성되는 보조전원의 전압이 20 V일 때, 제2 보조전원부(120)에서 생성되는 보조전원의 전압을 18 V로 제어할 수 있다.
피드백 전압부(134)는 제2 포토 커플러(920)를 포함하고, 상기 비교기(132)의 출력이 제1 신호이면 상기 제2 포토 커플러(920)가 동작하여 제2 보조전원부의 출력을 제3 전압 이하로 낮출 수 있다.
또한, 상기 태양광 발전 모듈(210) 및 상기 그리드(220)의 입력전압이 임계치 이하인 경우, 상기 제1 보조전원부(110)가 배터리(230)로부터 전원을 입력받아 보조전원을 생성할 수 있다. 태양광 발전 모듈(210) 및 그리드(220)의 입력전압이 임계치 이하인 경우, 즉, 태양광 발전 모듈(210) 및 그리드(220)를 이용하여 충분한 보조전원을 생성하기 어려운 경우, 배터리(230)와 연결된 제1 보조전원부(110)가 배터리(230)에 충전된 전원을 이용하여 보조전원을 생성할 수 있다. 이를 통해, 보조전원은 항시 켜져 있도록 할 수 있다.
본 발명의 실시예에 따른 보조전원장치는 도 6과 같이, 구현될 수 있다. 제1 보조전원부(110)인 Aux1 DC는 태양광 발전 모듈(210)인 PV 모듈 및 배터리와 연결되어, DC 전원을 이용하여 부하(240)에 필요한 보조전원을 생성하고, 제2 보조전원부(120)인 Aux2 AC는 그리드(220)와 연결되어 보조전원을 생성할 수 있다. 이때, 제2 보조전원부(120)는 태양광 발전 모듈(210)의 전압을 센싱하는 센싱부(131), 기준전압과 비교하는 비교기(132), 비교기(132)의 출력에 따라 구동신호를 출력하는 구동신호 출력부(133)인 Eable & Disable 회로, 및 비교기(132)의 출력에 따라 제2 보조전원부(120)의 출력전압을 제어하는 피드백 전압부인 Feedback voltage 회로를 포함할 수 있다.
센싱부(131) 및 비교기(132)는 도 7과 같이 구현될 수 있다. 센싱부(131)는 태양광 발전 모듈(210)의 전압을 DC 링크의 전압(V_DC-link, 710)으로 센싱할 수 있다. 저항 분배 및 op-amp를 이용하여 센싱할 수 있다. 비교기(132)는 센싱 전압(V_SEN, 720)을 기준전압(V_REF, 730)과 비교하여 그 결과(AUX2_EN, 740)를 출력한다.
구동신호 출력부(133)는 도 8과 같이 구현될 수 있다. 비교기의 결과(AUX2_EN, 810)을 입력받고, 그 값에 따라 제1 포토 커플러(820)가 동작하고, 제1 포토 커플러(820)의 동작여부에 따라 구동신호(830)가 출력될 수 있다. 비교기의 결과(810)가 제1 신호(로우)인 경우, 제1 포토 커플러(820)가 동작하지 않아, 제1 구동신호(disable)가 출력되고, 비교기의 결과(810)가 제2 신호(하이)인 경우, 제1 포토 커플러(820)가 동작하여, 제2 구동신호(enable)가 출력될 수 있다.
피드백 전압부(134)는 도 9와 같이 구현될 수 있다. 비교기의 결과(AUX2_EN, 910)을 입력받고, 그 값에 따라 제2 포토 커플러(920)가 동작하고, 제2 포토 커플러(920)의 동작여부에 따라 제2 보조전원부(120)의 출력을 제어할 수 있다. 비교기의 결과(810)가 제1 신호(로우)인 경우, 제2 포토 커플러(920)가 동작하여, 피드백 전압이 증가하여 제2 보조전원부(120)의 출력을 제어되고, 비교기의 결과(810)가 제2 신호(하이)인 경우, 제2 포토 커플러(920)가 동작하지 않아, 피드백 전압이 낮아져 제2 보조전원부(120)의 출력제어가 멈출 수 있다.
상기와 같이, 본 발명의 실시예에 따른 보조전원장치(100)에 따라, 태양광 발전 모듈(210)의 전압이 제1 전압보다 낮은 경우, 비교기(132)의 출력은 제1 신호가 출력되고, 구동신호 출력부(133)의 제1 포토 커플러(820)는 동작하지 않아 제1 구동신호가 출력되어 제2 보조전원부(120)를 동작할 수 있다. 이때, 피드백 전압부(134)의 제2 포토 커플러(920)는 동작하여 제2 보조전원부(120)의 출력전압은 제3 전압 이하로 제어될 수 있다. 또한, 태양광 발전 모듈(210)의 전압이 제2 전압보다 높은 경우, 비교기(132)의 출력은 제2 신호가 출력되고, 구동신호 출력부(133)의 제1 포토 커플러(820)는 동작하여 제2 구동신호가 출력되어 제2 보조전원부(120)가 오프될 수 있다. 이때, 피드백 전압부(134)의 제2 포토 커플러(920)는 동작하지 않을 수 있다. 이를 통해, 제1 보조전원부(110)를 온오프할 수 있어 보조전원부가 불필요하게 동작하지 않아, 손실없이 효율적으로 보조전원을 생성할 수 있고, EMI 특성을 개선할 수 있다.
도 10는 본 발명의 일 실시예에 따른 전력변환장치의 블록도이다.
본 발명의 일 실시예에 따른 전력변환장치(300)는 태양광 발전 모듈(210)로부터 입력된 전원을 변환하여 그리드(220)로 출력하거나 배터리(230)를 충전하는 전력변환부(310) 및 상기 전력변환부(310)를 동작시키는 보조전원을 생성하는 보조전원부(320)를 포함한다.
전력변환부(310)는 태양광 발전 모듈(210)로부터 입력되는 전원의 전압을 그리드(220)에 적합한 전압으로 변환하여 출력한다. 전력변환부(310)는 입력되는 전압을 높은 전압 또는 낮은 전압으로 변환할 수 있다. 또는 입력되는 전류를 높은 전류 또는 낮은 전류로 변환할 수 있다. 전력변환부(310)는 전력을 변환하는 인버터를 포함할 수 있다.
보조전원부(320)는 전력변환부(310)가 전력을 변환하기 위한 동작을 수행함에 필요한 전원을 공급한다. 전력변환부(310)는 인버터 및 인버터를 동작시키기 위한 제어부 등을 포함할 수 있고, 인버터에 포함되는 스위칭 소자 등이 동작하는데 전원이 필요하고, 보조전원부(320)는 해당 소자들이 동작하는데 필요한 전원을 공급할 수 있다. 본 발명의 일 실시예에 따른 전력변환장치의 보조전원부(320)에 대한 상세한 설명은 도 1 내지 도 9의 보조전원장치에 대한 상세한 설명에 대응되는바, 이하 중복되는 설명은 생략하도록 한다.
본 실시 예와 관련된 기술 분야에서 통상의 지식을 가진 자는 상기된 기재의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 방법들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 전력변환장치의 보조전원을 생성하는 보조원장치에 있어서,
    태양광 발전 모듈로부터 전원을 인가받아 보조전원을 생성하는 제1 보조전원부;
    그리드로부터 전원을 인가받아 보조전원을 생성하는 제2 보조전원부; 및
    상기 태양광 발전 모듈의 전압의 크기에 따라 상기 제2 보조전원부에 구동신호를 출력하는 구동부를 포함하는 보조전원장치.
  2. 제1항에 있어서,
    상기 구동부는,
    상기 태양광 발전 모듈의 전압이 제1 전압 이하일 때, 상기 제2 보조전원부를 동작시키고,
    상기 태양광 발전 모듈의 전압이 제2 전압 이상일 때, 상기 제2 보조전원부의 동작을 정지시키는 보조전원장치.
  3. 제2항에 있어서,
    상기 제1 전압은 상기 제2 전압보다 낮은 보조전원장치.
  4. 제1항에 있어서,
    상기 구동부는,
    상기 태양광 발전 모듈의 전압을 센싱하는 센싱부;
    상기 센싱한 태양광 발전 모듈의 전압을 기준전압과 비교하는 비교기; 및
    상기 비교기의 출력에 따라 상기 제2 보조전원부에 구동신호를 출력하는 구동신호 출력부를 포함하는 보조전원장치.
  5. 제4항에 있어서,
    상기 비교기는 상기 태양광 발전 모듈의 전압을 제1 전압 또는 제2 전압과 비교하는 보조전원장치.
  6. 제4항에 있어서,
    상기 비교기는,
    상기 태양광 발전 모듈의 전압이 제1 전압 이하이면 제1 신호를 출력하고,
    상기 태양광 발전 모듈의 전압이 제2 전압 초과이면, 제2 신호를 출력하는 보조전원장치.
  7. 제6항에 있어서,
    상기 구동신호 출력부는
    제1 포토 커플러를 포함하고,
    상기 비교기의 출력이 제1 신호이면 상기 제1 포토 커플러가 동작하지 않아 제1 구동신호를 출력하고,
    상기 비교기의 출력이 제2 신호이면 상기 제1 포토 커플러가 동작하여 제2 구동신호를 출력하는 보조전원장치.
  8. 제4항에 있어서,
    상기 비교기의 출력에 따라 상기 제2 보조전원부의 출력을 제3 전압 이하로 낮추는 피드백 전압부를 포함하는 보조전원 장치.
  9. 제8항에 있어서,
    상기 피드백 전압부는
    제2 포토 커플러를 포함하고,
    상기 비교기의 출력이 제1 신호이면 상기 제2 포토 커플러가 동작하여 제2 보조전원부의 출력을 제3 전압 이하로 낮추는 보조전원장치.
  10. 제1항에 있어서,
    상기 태양광 발전 모듈 및 상기 그리드의 입력전압이 임계치 이하인 경우, 상기 제1 보조전원부가 배터리로부터 전원을 입력받아 보조전원을 생성하는 보조전원장치.
PCT/KR2022/018322 2021-11-18 2022-11-18 전력변환장치 WO2023090941A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210159090A KR20230072637A (ko) 2021-11-18 2021-11-18 전력변환장치
KR10-2021-0159090 2021-11-18

Publications (1)

Publication Number Publication Date
WO2023090941A1 true WO2023090941A1 (ko) 2023-05-25

Family

ID=86397493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018322 WO2023090941A1 (ko) 2021-11-18 2022-11-18 전력변환장치

Country Status (2)

Country Link
KR (1) KR20230072637A (ko)
WO (1) WO2023090941A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184083A (ja) * 1991-12-27 1993-07-23 Sony Corp 電源装置
JPH08308247A (ja) * 1995-04-28 1996-11-22 Yaskawa Electric Corp 太陽光発電用電力変換装置の起動方法および太陽光発電用電力変換装置
JP2009033892A (ja) * 2007-07-27 2009-02-12 Panasonic Corp 独立電源システム
CN201436775U (zh) * 2008-12-19 2010-04-07 中兴通讯股份有限公司 一种超低待机功耗的通讯电源
US20120235486A1 (en) * 2011-03-16 2012-09-20 Li sheng-hua Photovoltaic inverter and method for controlling photovoltaic inverter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184083A (ja) * 1991-12-27 1993-07-23 Sony Corp 電源装置
JPH08308247A (ja) * 1995-04-28 1996-11-22 Yaskawa Electric Corp 太陽光発電用電力変換装置の起動方法および太陽光発電用電力変換装置
JP2009033892A (ja) * 2007-07-27 2009-02-12 Panasonic Corp 独立電源システム
CN201436775U (zh) * 2008-12-19 2010-04-07 中兴通讯股份有限公司 一种超低待机功耗的通讯电源
US20120235486A1 (en) * 2011-03-16 2012-09-20 Li sheng-hua Photovoltaic inverter and method for controlling photovoltaic inverter

Also Published As

Publication number Publication date
KR20230072637A (ko) 2023-05-25

Similar Documents

Publication Publication Date Title
WO2022203475A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
US20210351592A1 (en) Converter, method, and system applied to photovoltaic power generation system
WO2010147420A9 (ko) 직교 섭동 신호를 사용하는 최대 전력 추종기 및 그것의 최대 전력 추종 제어 방법
WO2011139023A2 (ko) 태양광 발전을 위한 dc/dc 컨버터 장치, 인버터 시스템 및 이를 포함하는 태양광 발전 시스템
KR20220074229A (ko) 태양광 발전 시스템
WO2022203473A1 (ko) Dc-dc 컨버터, 전력변환장치, 및 태양광 발전 시스템
CN109245711B (zh) 一种光伏系统安全保护设备
WO2019107891A1 (en) Photovoltaic module and photovoltaic system including the same
WO2021141238A1 (ko) 태양광 발전 시스템
WO2023090941A1 (ko) 전력변환장치
WO2017191986A1 (ko) 태양광 모듈, 및 이를 구비하는 태양광 시스템
WO2022203474A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2022203484A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2023277672A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2017191981A1 (ko) 태양광 모듈, 및 이를 구비하는 태양광 시스템
WO2023277653A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2010074397A2 (ko) 계통연계 출력전압 제어장치 및 제어방법
WO2024101956A1 (ko) 전력변환장치
WO2024177408A1 (ko) 전력 전송 장치
WO2024228575A1 (ko) 배터리 모듈
WO2024158204A1 (ko) 광발전 모듈
WO2022203476A1 (ko) 멀티레벨 구조를 가지는 전력변환장치
WO2024128777A1 (ko) 광발전 모듈
WO2024128778A1 (ko) 광발전 모듈
WO2024072174A1 (ko) 광발전 모듈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22896138

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18711196

Country of ref document: US