Nothing Special   »   [go: up one dir, main page]

WO2023089900A1 - Multi-cap with flange for tube - Google Patents

Multi-cap with flange for tube Download PDF

Info

Publication number
WO2023089900A1
WO2023089900A1 PCT/JP2022/032405 JP2022032405W WO2023089900A1 WO 2023089900 A1 WO2023089900 A1 WO 2023089900A1 JP 2022032405 W JP2022032405 W JP 2022032405W WO 2023089900 A1 WO2023089900 A1 WO 2023089900A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange
cap
tube
peripheral portion
support
Prior art date
Application number
PCT/JP2022/032405
Other languages
French (fr)
Japanese (ja)
Inventor
梨香子 平戸
清文 手塚
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202280053443.XA priority Critical patent/CN117751080A/en
Publication of WO2023089900A1 publication Critical patent/WO2023089900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D39/00Closures arranged within necks or pouring openings or in discharge apertures, e.g. stoppers
    • B65D39/04Cup-shaped plugs or like hollow flanged members

Definitions

  • the present invention relates to a flanged multi-cap for tubes.
  • Non-Patent Document 1 a cap that can be attached to tubes of multiple diameters (herein referred to as a "multi-cap”) has been proposed (for example, Non-Patent Document 1).
  • Test tube cap/flange plug https://wexer-store.com/fisher_product/cap_flange_plug/165>
  • the cap head and downward from the cap head (in this specification, the vertical direction means the direction in which the tube extends, and the tube side is the lower side when viewed from the multi-cap). ) and flanges projecting laterally from the sides of the post.
  • Such multi-caps are referred to herein as "flanged multi-caps.”
  • the flanged multi-cap is attached to the tube in such a manner that the support and the flange are inserted into the tube through the opening of the tube, and the flange abuts against the inner wall of the tube.
  • a flanged multi-cap that can accommodate a wider range of diameters (herein referred to as "range”) may be desired.
  • range of the flanged multi-cap shown in Non-Patent Document 1 is 1 mm, but there are cases where a flanged multi-cap capable of supporting a range of 2 mm or more is desired.
  • a flanged multi-cap that can handle a wide range. Designing a flanged multi-cap to fit a wide diameter tube may not fit a narrow diameter tube, and conversely, designing a flanged multi-cap to fit a narrow diameter tubing may not fit a wide diameter tube. It may not be compatible with tube diameters. More specifically, to realize a multi-cap with a flange that can be suitably inserted into a tube with a narrow diameter within the range while being adaptable to a tube with a wide diameter within the range, and that does not undergo unexpected deformation when inserted. was not easy.
  • it is a multi-cap with a flange that can be used in a wide range, and prevents the liquid sample contained in the tube from leaking out from the opening of the tube when it is inserted into any tube within the compatible range.
  • a multi-cap with a flange that can appropriately exhibit a water stopping function, which is a function, is desired.
  • An object of the present invention is to provide a multi-cap with a flange that is compatible with a wide range and that can appropriately exhibit a water stop function when inserted into a tube within the compatible range.
  • the present invention provides a support that extends downward from a cap head and has a circular outer shape in a cross section perpendicular to the direction of elongation, the support being hollow and elastically deformable by a force applied from the side; A first flange that protrudes laterally from the side surface of the column and contacts the inner wall of the tube, and a second flange that is below the first flange and protrudes laterally from the side surface of the support column and contacts the inner wall of the tube. and a second flange that extends upward from the column side toward the side and has a bowl shape as a whole.
  • FIG. 1 is a perspective view of a multi-cap according to this embodiment
  • FIG. FIG. 4 is a vertical cross-sectional view of the multi-cap according to the present embodiment
  • FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 4 is a cross-sectional view taken along the line BB in FIG. 3
  • 3 is an enlarged view of region C of FIG. 2
  • FIG. It is a schematic side view showing a multi-cap attached to a compatible maximum diameter tube. It is a side schematic diagram which shows the multi-cap attached to the correspondence minimum diameter tube.
  • FIG. 11 is a bottom view of the multi-cap attached to the smallest compatible tube.
  • FIG. 1 is a perspective view of a multi-cap 10 according to this embodiment. Also, in FIG. 1, a tube T is shown below the multi-cap 10. As shown in FIG. Furthermore, FIG. 2 is a vertical sectional view of the multi-cap 10. As shown in FIG. As described above, in this specification, the extending direction of the tube T is described as the vertical direction, and the direction perpendicular to the vertical direction is described as the horizontal direction.
  • the multi-cap 10 includes a cap head 12, a support 14 extending downward from the cap head 12, a first flange 16 projecting laterally from the side of the support 14, and a support 14 below the first flange 16. and a second flange 18 projecting laterally from the side surface of the housing.
  • the multi-cap 10 is a cap attached to the tube T so as to close the opening O of the tube T that opens upward.
  • the multi-cap 10 is attached to the tube T by inserting the support 14, the first flange 16, and the second flange 18 into the tube T through the opening O.
  • the tips of the first flange 16 and the second flange 18 contact the inner wall I of the tube T in the attached state.
  • the cap head 12 is not inserted into the tube T, and the lower surface 12a of the cap head 12 contacts the upper surface U of the tube T. As shown in FIG.
  • the multi-cap 10 can be attached to tubes T of a plurality of diameters, specifically, tubes T ranging from a predetermined minimum diameter to a maximum diameter.
  • multi-cap 10 is adapted to a wide range of tubes T (eg, 2 mm or more) due to the features described below.
  • the multi-cap 10 is a flanged multi-cap for tubes. Due to the features described below, the multi-cap 10 can assume a proper posture by properly deforming (especially the first flange 16) when attached to a tube T within the corresponding range. It has become. In addition, the multi-cap 10 suppresses leakage of the liquid sample contained in the tube T to the outside from the opening O by properly deforming (especially the second flange 18) due to the features described below. It is possible to suitably exhibit the water stopping function. In addition, the multi-cap 10 is prevented from floating upward when inserted into the tube T due to the features described below. Further, the multi-cap 10 has a reduced insertion force, which is the force required to insert the strut 14, the first flange 16 and the second flange 18 into the tube T due to the features described below.
  • the cap head 12 has a cylindrical outer shape.
  • attachment of the multi-cap 10 to the tube T and removal of the multi-cap 10 from the tube T are performed by a manipulator, which is a mechanical device.
  • the side surface 12b of the cap head 12 is gripped by a plurality of claws of the manipulator, and the support 14, the first flange 16, and the second flange 18 are inserted into the tube T through the opening O.
  • the multi-cap 10 is attached to the tube T.
  • the multi-cap 10 is removed from the tube T by pulling the multi-cap 10 upward while twisting the cap head 12 so as to rotate the cap head 12 in the horizontal plane with a plurality of claws of the manipulator gripping the side 12b.
  • the shape of the cap head 12 may be any shape as long as the side 12b can be gripped by the manipulator.
  • the strut 14 is a member extending downward from the cap head 12 .
  • the strut 14 functions as a base (base) for the first flange 16 and the second flange 18 .
  • the strut 14 has a circular outer shape in a vertical cross section (that is, a horizontal cross section) with respect to the extension direction (vertical direction).
  • the diameter of the strut 14 is relatively large and is about 70 to 86% of the diameter of the corresponding tube.
  • the struts 14 are preferably made of a soft, deformable, and water-resistant material.
  • struts 14 are made of a polymeric compound.
  • the struts 14 are made of LDPE (Low Density Polyethylene).
  • the strut 14 preferably has an internal space 14a.
  • the strut 14 is preferably hollow.
  • the support 14 is hollow and has a downwardly open shape. Therefore, the strut 14 has a cylindrical shape.
  • an internal space 12c that opens downward is formed in the radially central portion of the cap head 12, and the internal space 12c and the internal space 14a of the strut 14 communicate with each other. form a space open to
  • the thickness of the side wall 14b of the column 14 is preferably thin, approximately several millimeters or less.
  • the sidewall 14b may be 1.0 mm or less, preferably about 0.5 mm.
  • the side wall 14b is preferably thinner toward the lower end side.
  • slopes 14c are formed at the lower ends of the side walls 14b to face the sides and downwards of the columns 14, and the slopes 14c gradually approach the lower ends of the side walls 14b.
  • the thickness of the side wall 14b is made thinner.
  • the root portion 14d that is the end portion of the side wall 14b on the side of the cap head 12 in other words, the root portion 14d that is the connecting portion between the cap head 12 and the support 14, is thicker than the other portions of the side wall 14b. It should be thick. As a result, when the manipulator twists the cap head portion 12 when removing the multi-cap 10, deformation of the base portion 14d is suppressed, thereby making the multi-cap 10 easier to remove. Alternatively, the possibility of breaking the root portion 14d when removing the multi-cap 10 is reduced.
  • the first flange 16 is a member that protrudes laterally from the side surface of the support 14 .
  • the first flange 16 can be integrally formed with the strut 14 .
  • the first flange 16 is also made of a soft, easily deformable, and water-resistant polymer compound, and is made of LDPE in this embodiment.
  • the first flange 16 has a flat plate shape and is provided so as to protrude from the column 14 in a substantially horizontal direction.
  • the first flange 16 protrudes laterally from the support 14 over the entire circumference of the support 14, and has a circular outer shape in plan view. Therefore, the first flange 16 has a flat ring shape as a whole.
  • FIG. 3 is a cross-sectional view (plan view of the first flange 16) seen from the AA direction in FIG.
  • the first flange 16 has a slit 30 which is notched so as to extend in its radial direction and penetrates in the vertical direction.
  • the slit 30 has a shape such that the width of the slit 30 increases toward the outer side in the radial direction of the first flange 16 in plan view.
  • a plurality of slits 30 are preferably provided at regular intervals along the circumferential direction of the first flange 16 . As shown in FIG. 3, in this embodiment, two slits 30 are provided at equal intervals along the circumferential direction of the first flange 16 . Of course, three or more slits 30 may be provided at regular intervals along the circumferential direction of the first flange 16 .
  • FIG. 4 is a cross-sectional view (side view of the first flange 16) seen from the BB direction in FIG.
  • the slit 30 is preferably provided so as to extend in a direction that is not parallel to the vertical direction in side view. That is, as shown in FIG. 4, it is preferable that there is an angle ⁇ ( ⁇ 0°) between the extending direction S of the slit 30 and the vertical direction V.
  • is 45°.
  • FIG. 5 is an enlarged view of area C in FIG.
  • a groove 32 along the circumferential direction of the support 14 may be provided on the side surface of the support 14 (the outer surface of the side wall 14 b ) at a position adjacent to the upper side of the connecting position of the first flange 16 .
  • the side outer surface 16a of the first flange 16 is preferably formed as a slope facing sideways and downward in a natural state (a state in which no external force is applied to the first flange 16).
  • the diameter L1 of the first flange 16 is preferably larger than the diameter L2 of the second flange 18.
  • the first flange 16 has the largest diameter among the portions (the strut 14, the first flange 16, and the second flange 18) that are inserted inside the tube T in the attached state.
  • the diameter L1 of the first flange 16 in this specification is the horizontal distance from the outer surface of the support 14 to the lateral side end point of the first flange 16
  • the diameter L2 of the second flange 18 is the distance from the support 14 is the horizontal distance from the outer surface of the second flange 18 to the lateral end point of the second flange 18.
  • the diameter L1 of the first flange 16 and the diameter L2 of the second flange 18 are each uniform over the entire circumference of the column 14 .
  • the second flange 18 is a member that protrudes laterally from the side surface of the column 14 below the first flange 16 .
  • the second flange 18 can also be formed integrally with the strut 14.
  • the second flange 18 is also made of a soft, easily deformable, and water-resistant polymer compound, and is made of LDPE in this embodiment.
  • the second flange 18 has a shape that extends upward from the support 14 side toward the side. Like the first flange 16, the second flange 18 also protrudes laterally from the column 14 over the entire circumference of the column 14, and has a circular outer shape in plan view. Therefore, the second flange 18 has a bowl shape as a whole.
  • the second flange 18 has an inner peripheral portion 40 that is a portion on the support 14 side, and an outer peripheral portion 42 that is a portion on the lateral side of the inner peripheral portion 40.
  • the inner peripheral portion 40 extends laterally from the strut 14 toward the first direction D1 slightly upward from the horizontal direction in the radial cross section.
  • the first direction D1 in which the inner peripheral portion 40 extends may be a horizontal direction.
  • the outer peripheral portion 42 is connected to a side end of the inner peripheral portion 40 and extends laterally in the second direction D2 in a radial cross section.
  • the second direction D2 in which the outer peripheral portion 42 extends is a direction bent upward with respect to the first direction D1, which is the extending direction of the inner peripheral portion 40 . That is, the second direction D2 is a direction that faces further upward than the first direction D1. Therefore, it can be said that the outer peripheral portion 42 is more easily deformed to be displaced upward than the inner peripheral portion 40 .
  • the lateral outer surface 42a of the outer peripheral portion 42 is a surface parallel to the vertical direction in a natural state (a state in which no external force is applied to the second flange 18). good.
  • the tip of the outer peripheral portion 42 is formed with a sloped surface 42b communicating with the upper side of the side outer surface 42a and facing sideways and upward.
  • the diameter L2 of the second flange 18 is slightly larger than the diameter of the maximum diameter tube T that the multi-cap 10 supports (referred to herein as the "supported maximum diameter tube").
  • the diameter L2 is approximately 0.1 mm larger than the diameter of the corresponding maximum diameter tube.
  • the diameter L1 of the first flange 16 is larger than the diameter L2 of the second flange 18, the diameter L1 of the first flange 16 is also larger than the corresponding maximum diameter tube.
  • the diameter L3 of the inner peripheral portion 40 is preferably smaller than the diameter of the minimum diameter tube T that the multi-cap 10 supports (referred to herein as the "supported minimum diameter tube”). Note that the diameter L3 of the inner peripheral portion 40 is the horizontal distance from the outer surface of the support 14 to the side end point of the inner peripheral portion 40 (connection point with the outer peripheral portion 42). The diameter L3 of the inner peripheral portion 40 is also uniform over the entire circumference of the strut 14 .
  • FIG. 6 is a schematic side view showing the multi-cap 10 attached to the corresponding maximum diameter tube Tmax
  • FIG. 7 is a side schematic view showing the multi-cap 10 attached to the corresponding minimum diameter tube Tmin.
  • each part of the multi-cap 10 when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax and when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin will be described.
  • the action of each part of the multi-cap 10 may differ between when it is attached to the corresponding maximum diameter tube Tmax and when it is attached to the corresponding minimum diameter tube Tmin.
  • the action of each part of the multi-cap 10 changes from the action when it is attached to the corresponding maximum diameter tube Tmax. It should be understood that there is a gradual change towards the action when attached to the corresponding maximum diameter tube Tmax.
  • the multi-cap 10 has only the second flange 18 (without the first flange 16), the contact position between the second flange 18 and the inner wall I is used as a fulcrum, and the cap head is pushed (in the manner of a lever). In some cases, the multi-cap 10 moves relative to the tube T so that the portion 12 is displaced laterally, and the attitude of the multi-cap 10 cannot be maintained. In this embodiment, the multi-cap 10 has a first flange 16 as well as a second flange 18 , the two flanges abutting the inner wall I . Therefore, the movement of the multi-cap 10 with the second flange 18 as a fulcrum is restrained by the contact of the first flange 16 with the inner wall I.
  • the diameter L1 of the first flange 16 is larger than the diameter L2 of the second flange 18 (see FIG. 5).
  • the first flange 16 can more strongly suppress the change in posture of the multi-cap 10 with the contact position between the second flange 18 and the inner wall I as the fulcrum.
  • the first flange 16 cooperates with the second flange 18 to exhibit a posture holding function of holding the posture of the multi-cap 10 with respect to the tube T.
  • the multi-cap 10 when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, if the first flange 16 is deformed unexpectedly, at least a part of the first flange 16 will properly contact the inner wall I. As a result, the multi-cap 10 may not be able to maintain its posture.
  • the assumed deformation of the first flange 16 means that, as shown in FIG. This is the upward deformation (this is called “upward deformation").
  • deformation in which the side end portion is downward compared to the root portion this is called “downward deformation” is an unexpected deformation.
  • the first flange 16 When the first flange 16 is inserted into the corresponding minimum diameter tube Tmin, the first flange 16 is deformed by the force received from the inner wall I.
  • the first flange 16 may be displaced and wrinkled in the circumferential direction of the first flange 16 . If the first flange 16 were not provided with the slit 30, it would not be possible to absorb the strain caused by the displacement of the first flange 16 in the circumferential direction, and a part of the first flange 16 might be unexpectedly deformed downward. There is In this case, the side end of the first flange 16 becomes extremely wavy when viewed from the side, and there may be a portion where the side end of the first flange 16 cannot properly contact the inner wall I.
  • the slits 30 (see FIG. 3) provided in the first flange 16 are closed (the inner side surfaces 30a (see FIG. 4) of the slits 30 facing each other move toward each other), so that the first It is possible to absorb the wrinkling of the displacement of the flange 16 in the circumferential direction.
  • the slit 30 functions as an escape for displacement of the first flange 16 in the circumferential direction.
  • Unexpected deformation of the first flange 16 is suppressed by closing the slit 30 and absorbing the wrinkling of the displacement of the first flange 16 in the circumferential direction. In this way, the action of the slit 30 enables the first flange 16 to exhibit the posture holding function.
  • a groove 32 is provided on the side surface of the strut 14 at a position adjacent to the upper side of the connection position of the first flange 16 .
  • the groove 32 exhibits a function of assisting (promoting) upward deformation of the first flange 16 . That is, the groove 32 suppresses downward deformation of at least a portion of the first flange 16 . In this way, the action of the groove 32 also enables the first flange 16 to exhibit the posture holding function.
  • the second flange 18 mainly exhibits a waterproof function.
  • the diameter L2 of the second flange 18 is slightly larger than the diameter of the corresponding maximum diameter tube Tmax. Therefore, when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the side end abuts against the inner wall I over the entire circumferential direction of the second flange 18 . This suppresses leakage of the liquid sample placed in the corresponding maximum diameter tube Tmax.
  • the diameter L2 of the second flange 18 is 0.1 mm larger than the diameter of the corresponding maximum diameter tube Tmax. be.
  • the minimum size for exhibiting the water stopping function may vary depending on the material of the second flange 18 and the like.
  • the side outer surface 42a of the second flange 18 is a surface parallel to the vertical direction in the natural state. Since the diameter L2 of the second flange 18 is slightly larger than the diameter of the corresponding maximum diameter tube Tmax, even if the second flange 18 is inserted into the corresponding maximum diameter tube Tmax, the second flange 18 does not deform so much.
  • the lateral outer surface 42a abuts the inner wall I. As shown in FIG. That is, the lateral outer surface 42a and the inner wall I contact each other in a substantially parallel state, and the contact area between the lateral outer surface 42a and the inner wall I can be increased. As a result, the water stopping performance of the second flange 18 is improved. Specifically, the amount of the liquid sample leaking from the gap between the lateral outer surface 42a and the inner wall I is reduced.
  • the water stopping function is exhibited also when the lower surface 12a of the cap head 12 abuts against the upper surface U of the tube T (see FIG. 1).
  • the second flange 18 mainly exhibits the water stop function.
  • Flange 16 also performs an auxiliary water stop function.
  • the second flange 18 comes into contact with the inner wall I, as in the case when it is attached to the corresponding maximum diameter tube Tmax, and the water stop function is exhibited according to the above principle. be done.
  • the multi-cap 10 When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, if the second flange 18 undergoes unexpected deformation, at least a portion of the second flange 18 cannot properly abut against the inner wall I. As a result, the water stopping function may not be properly exhibited.
  • the assumed deformation of the second flange 18 is upward deformation over the entire circumferential direction of the second flange 18, as shown in FIG. A downward deformation of at least a portion of the second flange 18 results in an unexpected deformation.
  • the second flange 18 has a bowl shape as a whole, unexpected deformation of the second flange 18 when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin is suppressed. That is, since the second flange 18 has a shape that extends upward as it goes to the side in a natural state, when the second flange 18 is inserted into the opening O from above, the second flange 18 18 is suppressed from deforming downward.
  • FIG. 8 is a bottom view of the multi-cap 10 attached to the compatible minimum diameter tube Tmin.
  • the second flange 18 When the second flange 18 is deformed by receiving force from the inner wall I of the corresponding minimum diameter tube Tmin, the force is propagated to the strut 14 and the strut 14 also receives force from the side.
  • the support 14, which is hollow receives a force from the side, it elastically deforms so that the horizontal cross-sectional shape becomes an elliptical shape as shown in FIG. This elastic deformation of the strut 14 suppresses unexpected deformation of the second flange 18 .
  • the strut 14 is elastically deformed, and the space between the strut 14 and the inner wall I is widened in a part of the circumferential direction. That is, a difference is generated in the distance from the support 14 to the inner wall I along the circumferential direction.
  • the inner peripheral portion 40 of the second flange 18 which is less prone to upward deformation than the outer peripheral portion 42, deforms following the elastic deformation of the strut 14 (of course, the inner peripheral portion 40 is also deformed by the force from the inner wall I).
  • the strut 14 is deformed so as to be displaced toward the center in the radial direction in a part of its circumferential direction (the upper and lower sides of the strut 14 in the example of FIG. 8).
  • the outer peripheral portion 42 can escape in the vertical direction, and unexpected deformation of the outer peripheral portion 42 is suppressed.
  • the side end of the second flange 18 undulates somewhat in a side view due to the elastic deformation of the strut 14, but this is an expected deformation.
  • the strut 14 has a downwardly open shape.
  • the support 14 is more elastically deformable on the lower side than on the upper side.
  • the second flange 18 is below the column 14, at least below the first flange 16, the column 14 has a downwardly open shape, so that the column 14 is positioned near the second flange 18. It can be said that it is easy to elastically deform. This further suppresses unexpected deformation of the second flange 18 .
  • the sidewall 14b of the column 14 becomes thinner toward the lower end side. Therefore, it can be said that the support 14 is more likely to be elastically deformed on the lower side than on the upper side. In this way, the sidewall 14b becomes thinner toward the lower end side, so that unexpected deformation of the second flange 18 is further suppressed.
  • the slit 30 provided in the first flange 16 is closed and the side end of the first flange 16 contacts the inner wall I.
  • the 1st flange 16 also exhibits a waterproofing function auxiliary.
  • the slit 30 is provided so as to extend in a direction that is not parallel to the vertical direction when viewed from the side.
  • the contact surfaces of the inner side surfaces 30a form an angle with respect to the vertical direction in a side view. Therefore, the liquid sample cannot flow vertically through at least the gap between the contact surfaces of the inner surfaces 30a.
  • the liquid sample in order for the liquid sample to leak above the first flange 16, the liquid sample must advance through the gap between the contact surfaces of the inner surfaces 30a in an oblique direction with an angle to the vertical direction. Gone.
  • the slit 30 is provided to extend at least in the vertical direction, by providing the slit 30 so as to extend in a direction not parallel to the vertical direction, the water stop by the first flange 16 Performance is improved.
  • the multi-cap 10 attached to the tube T may be lifted.
  • the multi-cap 10 (especially the first flange 16 or the second flange 18) undergoes unexpected deformation, which causes the first flange 16 or the second flange 16 to deform. 2, the flange 18 pushes back the inner wall I, and an upward force may be applied to the multi-cap 10 .
  • another cause of floating is internal pressure due to compressed air that can be generated by air being compressed and sealed inside the tube T when the multi-cap 10 is attached to the tube T.
  • the taper may also cause the floating.
  • the column 14 has an internal space 14a (hollow) and is open downward (see FIG. 2). Therefore, when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the space inside the corresponding maximum diameter tube Tmax communicates with the internal space 14a. That is, when the multi-cap 10 is attached, the volume of the space inside the corresponding maximum diameter tube Tmax increases at least as compared to the case where the strut 14 is not open downward. As a result, the internal pressure of the corresponding maximum diameter tube Tmax is reduced and the floating of the multi-cap 10 is suppressed, at least compared to the case where the strut 14 is not open downward.
  • the cap head 12 also has an internal space 12c, and the internal space 12c communicates with the internal space 14a of the strut 14.
  • the volume of the space inside the corresponding maximum diameter tube Tmax increases by the amount of the internal space 12c, so the internal pressure of the corresponding maximum diameter tube Tmax is further reduced, is further suppressed.
  • the side outer surface 16a of the first flange 16 forms a slope facing sideways and downward in the natural state.
  • the lateral end of the first flange 16 comes into contact with the inner wall I, and the lateral end is slightly displaced upward. Due to this displacement, the lateral outer surface 16a and the inner wall I come into contact with each other in a substantially parallel state, and the contact area between the lateral outer surface 16a and the inner wall I can be increased. As a result, the frictional force between the side outer surface 16a and the inner wall I is improved, and the multi-cap 10 is prevented from floating.
  • the lateral outer surface 42a of the second flange 18 is a surface parallel to the vertical direction in the natural state, and as described above, the second flange 18 is inserted into the corresponding maximum diameter tube Tmax. Then, the side outer surface 42a and the inner wall I abut each other in a state of being substantially parallel. As a result, the frictional force between the side outer surface 42a and the inner wall I is improved, and the multi-cap 10 is prevented from floating.
  • the tip of the second flange 18 is formed with an inclined surface 42b that communicates with the upper side of the lateral outer surface 42a and faces laterally and upward (see FIG. 5).
  • the tube T is provided with a protrusion that protrudes inward from the inner wall I.
  • the protruding part may be a ridge extending all the way around the inner wall I of the tube T.
  • the second flange 18 is provided with the inclined surface 42b, the side end of the second flange 18 is more likely to be caught by the protrusion provided on the inner wall I.
  • the multi-cap 10 is prevented from floating by the second flange 18 being caught by the protruding portion.
  • the first flange 16 is protected by the action of the slit 30 or the groove 32.
  • Unexpected deformation is suppressed, and the unexpected deformation of the second flange 18 is suppressed by the bowl shape as a whole or by the elastic deformation of the strut 14 .
  • the multi-cap 10 is suppressed from floating.
  • the insertion force of the multi-cap 10 is determined by how easily the first flange 16 and the second flange 18 deform.
  • the slit 30 reduces the insertion force of the multi-cap 10 .
  • the groove 32 promotes upward deformation of the first flange 16 . That is, since the first flange 16 is easily deformed by the grooves 32, the insertion force of the multi-cap 10 is reduced by the grooves 32 as well.
  • the inner peripheral portion 40 of the second flange 18 is more difficult to deform upward than the outer peripheral portion 42 due to its extension direction. Therefore, if the inner circumferential portion 40 needs to be largely deformed upward in order to attach the multi-cap 10 to the corresponding minimum diameter tube Tmin, it can be said that a large insertion force is required.
  • the diameter L3 (see FIG. 5) of the inner peripheral portion 40 of the second flange 18 is smaller than the diameter of the corresponding minimum diameter tube Tmin.
  • the inner peripheral portion 40 does not reach the inner wall I, and even if the inner peripheral portion 40 does not largely deform upward, the multi-cap 10 can be moved to the corresponding minimum diameter tube. It can be attached to the tube Tmin.
  • the force for inserting the multi-cap 10 is also reduced because the diameter L3 of the inner peripheral portion 40 is smaller than the diameter of the corresponding minimum diameter tube Tmin.
  • the multi-cap 10 exhibits functions other than those described above.
  • the multi-cap 10 exhibits a centering function of bringing the multi-cap 10 closer to the center of the tube T in plan view.
  • the second flange 18 has a bowl shape as a whole, the centering function is exhibited.
  • the second flange 18 is inserted into the tube T through the opening O in a state where the second flange 18 is shifted from the center, the lower surface of the second flange 18 contacts the edge of the opening O. As shown in FIG.
  • the second flange 18 since the second flange 18 has a bowl shape, the second flange 18 receives a force from the edge of the opening O toward the center of the tube T. As shown in FIG. The multi-cap 10 is pushed toward the center of the tube T by this force.
  • the various configurations of the multi-cap 10 suppress unexpected deformation of the multi-cap 10 .
  • This exerts an individual difference suppressing function that absorbs individual differences in deformation of the multi-cap 10 due to dimensional variations among individual multi-caps 10 .
  • the first flange 16 can be deformed as expected in any multi-cap 10.
  • the second flange 18 has the above-described shape and that the dimension of the diameter L2 of the second flange 18 has some variation due to deformation in conjunction with the support 14.
  • any multi-cap 10 can cause the second flange 18 to deform as expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Closures For Containers (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

Provided is a multi-cap with a flange that is capable of corresponding to wide ranges and properly exhibiting a water stop function when inserted into a tube within a corresponding range. A multi-cap 10 comprises: a cap head part 12; a column 14 that extends downward from the cap head part 12 and has a circular shape as a horizontal section outer shape thereof; a ring-shaped first flange 16 that protrudes to a lateral side from a lateral surface of the column 14; and a second flange 18 that protrudes to the lateral side from the lateral surface of the column 14 below the first flange 16. When the multi-cap 10 is attached to a tube T, the lateral ends of the first flange 16 and the second flange 18 contact an inner wall I of the tube T. The second flange 18 extends to an upper side from a column 14 side to the lateral side and shows a cup shape as a whole.

Description

チューブ用フランジ付きマルチキャップMulti-cap with flange for tube
 本発明は、チューブ用フランジ付きマルチキャップに関する。 The present invention relates to a flanged multi-cap for tubes.
 従来、チューブ(試験管)に入れられた液体試料がチューブの開口から外へ漏れ出すことを抑制するため、あるいは、チューブの開口からチューブ内に異物が混入することを抑制するために、チューブの開口を塞ぐようにチューブに取り付けられるキャップ(栓)が提案されている(例えば特許文献1~3)。 Conventionally, in order to prevent a liquid sample placed in a tube (test tube) from leaking out from the opening of the tube, or to prevent foreign matter from entering the tube from the opening of the tube, A cap (stopper) that is attached to the tube so as to close the opening has been proposed (for example, Patent Documents 1 to 3).
 また、従来、複数の径のチューブに取り付けることが可能なキャップ(本明細書では「マルチキャップ」と呼ぶ)が提案されている(例えば非特許文献1)。 Also, conventionally, a cap that can be attached to tubes of multiple diameters (herein referred to as a "multi-cap") has been proposed (for example, Non-Patent Document 1).
特開2003-12010号公報Japanese Patent Application Laid-Open No. 2003-12010 特開2017-88216号公報JP 2017-88216 A 特開2020-36568号公報Japanese Patent Application Laid-Open No. 2020-36568
 非特許文献1に示されるように、キャップ頭部と、キャップ頭部から下方(本明細書においては、上下方向とはチューブの伸長方向を意味し、マルチキャップから見てチューブ側が下側であるとする)に伸長する支柱と、支柱の側面から側方に突出するフランジとを備えるマルチキャップがある。本明細書では、このようなマルチキャップを「フランジ付きマルチキャップ」と呼ぶ。フランジ付きマルチキャップは、チューブの開口からチューブ内へ支柱及びフランジが挿入され、フランジがチューブの内壁に当接する姿勢でチューブへ取り付けられる。 As shown in Non-Patent Document 1, the cap head and downward from the cap head (in this specification, the vertical direction means the direction in which the tube extends, and the tube side is the lower side when viewed from the multi-cap). ) and flanges projecting laterally from the sides of the post. Such multi-caps are referred to herein as "flanged multi-caps." The flanged multi-cap is attached to the tube in such a manner that the support and the flange are inserted into the tube through the opening of the tube, and the flange abuts against the inner wall of the tube.
 ここで、より広い範囲の径(本明細書では「レンジ」と呼ぶ)に対応可能なフランジ付きマルチキャップが望まれる場合がある。例えば、非特許文献1に示されたフランジ付きマルチキャップのレンジは1mmであるが、2mmあるいはそれ以上のレンジに対応可能なフランジ付きマルチキャップが望まれる場合がある。 Here, a flanged multi-cap that can accommodate a wider range of diameters (herein referred to as "range") may be desired. For example, the range of the flanged multi-cap shown in Non-Patent Document 1 is 1 mm, but there are cases where a flanged multi-cap capable of supporting a range of 2 mm or more is desired.
 広いレンジに対応可能なフランジ付きマルチキャップを実現するのは容易ではない。広い径のチューブに適合するようにフランジ付きマルチキャップを設計すると、狭い径のチューブに適合しなくなる場合があり、逆に、狭い径のチューブに適合するようにフランジ付きマルチキャップを設計すると、広い径のチューブに適合しなくなる場合がある。詳しくは、レンジ内における広い径のチューブにも適合可能でありながら、レンジ内における狭い径に好適に挿入可能であり、且つ、挿入された際に不測の変形をしないフランジ付きマルチキャップを実現するのは容易ではなかった。 It is not easy to realize a flanged multi-cap that can handle a wide range. Designing a flanged multi-cap to fit a wide diameter tube may not fit a narrow diameter tube, and conversely, designing a flanged multi-cap to fit a narrow diameter tubing may not fit a wide diameter tube. It may not be compatible with tube diameters. More specifically, to realize a multi-cap with a flange that can be suitably inserted into a tube with a narrow diameter within the range while being adaptable to a tube with a wide diameter within the range, and that does not undergo unexpected deformation when inserted. was not easy.
 特に、広いレンジに対応可能なフランジ付きマルチキャップであって、対応レンジ内のどのチューブに挿入されたときにも、チューブに入れられた液体試料がチューブの開口から外へ漏れ出すことを抑制する機能である止水機能を適切に発揮可能なフランジ付きマルチキャップ望まれる場合がある。 In particular, it is a multi-cap with a flange that can be used in a wide range, and prevents the liquid sample contained in the tube from leaking out from the opening of the tube when it is inserted into any tube within the compatible range. There is a case where a multi-cap with a flange that can appropriately exhibit a water stopping function, which is a function, is desired.
 本発明の目的は、広いレンジに対応可能であり、対応レンジ内のチューブに挿入されたときに止水機能を適切に発揮可能なフランジ付きマルチキャップを提供することにある。 An object of the present invention is to provide a multi-cap with a flange that is compatible with a wide range and that can appropriately exhibit a water stop function when inserted into a tube within the compatible range.
 本発明は、キャップ頭部から下方へ向かって伸長し、伸長方向に対する垂直断面の外形が円形である支柱であって、中空であり、側方からの力によって弾性変形可能な支柱と、前記支柱の側面から側方に突出してチューブの内壁に当接する第1フランジと、前記第1フランジよりも下方において、前記支柱の側面から側方に突出して前記チューブの内壁に当接する第2フランジであって、前記支柱側から側方へ向かうにつれて上側に伸びて、全体としてお椀形状を呈する第2フランジと、を備えることを特徴とするチューブ用フランジ付きマルチキャップである。 The present invention provides a support that extends downward from a cap head and has a circular outer shape in a cross section perpendicular to the direction of elongation, the support being hollow and elastically deformable by a force applied from the side; A first flange that protrudes laterally from the side surface of the column and contacts the inner wall of the tube, and a second flange that is below the first flange and protrudes laterally from the side surface of the support column and contacts the inner wall of the tube. and a second flange that extends upward from the column side toward the side and has a bowl shape as a whole.
 本発明によれば、広いレンジに対応可能であり、対応レンジ内のチューブに挿入されたときに止水機能を適切に発揮可能なフランジ付きマルチキャップを提供することができる。 According to the present invention, it is possible to provide a multi-cap with a flange that is compatible with a wide range and that can appropriately exhibit a water stop function when inserted into a tube within the compatible range.
本実施形態に係るマルチキャップの斜視図である。1 is a perspective view of a multi-cap according to this embodiment; FIG. 本実施形態に係るマルチキャップの上下方向断面図である。FIG. 4 is a vertical cross-sectional view of the multi-cap according to the present embodiment; 図2のA-A方向からみた断面図である。FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2; 図3のB-B方向からみた断面図である。FIG. 4 is a cross-sectional view taken along the line BB in FIG. 3; 図2の領域Cの拡大図である。3 is an enlarged view of region C of FIG. 2; FIG. 対応最大径チューブに取り付けられたマルチキャップを示す側面模式図である。It is a schematic side view showing a multi-cap attached to a compatible maximum diameter tube. 対応最小径チューブに取り付けられたマルチキャップを示す側面模式図である。It is a side schematic diagram which shows the multi-cap attached to the correspondence minimum diameter tube. 対応最小径チューブに取り付けられたマルチキャップの底面図である。FIG. 11 is a bottom view of the multi-cap attached to the smallest compatible tube.
 <マルチキャップの概要>
 図1は、本実施形態に係るマルチキャップ10の斜視図である。また、図1において、マルチキャップ10の下方にチューブTが示されている。さらに、図2は、マルチキャップ10の上下方向断面図である。上述の通り、本明細書では、チューブTの伸長方向を上下方向と記載し、上下方向に垂直な方向を水平方向と記載する。マルチキャップ10は、キャップ頭部12と、キャップ頭部12から下方に伸長する支柱14と、支柱14の側面から側方に突出する第1フランジ16と、第1フランジ16よりも下方において支柱14の側面から側方に突出する第2フランジ18とを含んで構成される。
<Overview of Multicap>
FIG. 1 is a perspective view of a multi-cap 10 according to this embodiment. Also, in FIG. 1, a tube T is shown below the multi-cap 10. As shown in FIG. Furthermore, FIG. 2 is a vertical sectional view of the multi-cap 10. As shown in FIG. As described above, in this specification, the extending direction of the tube T is described as the vertical direction, and the direction perpendicular to the vertical direction is described as the horizontal direction. The multi-cap 10 includes a cap head 12, a support 14 extending downward from the cap head 12, a first flange 16 projecting laterally from the side of the support 14, and a support 14 below the first flange 16. and a second flange 18 projecting laterally from the side surface of the housing.
 マルチキャップ10は、上方に開口するチューブTの開口部Oを塞ぐようにチューブTに取り付けられるキャップである。具体的には、支柱14、第1フランジ16、及び第2フランジ18が開口部OからチューブT内に挿入されることで、マルチキャップ10がチューブTに取り付けられる。取付状態において、第1フランジ16及び第2フランジ18の先端がチューブTの内壁Iに当接する。また、取付状態において、キャップ頭部12はチューブT内には挿入されず、キャップ頭部12の下面12aがチューブTの上面Uに当接する。 The multi-cap 10 is a cap attached to the tube T so as to close the opening O of the tube T that opens upward. Specifically, the multi-cap 10 is attached to the tube T by inserting the support 14, the first flange 16, and the second flange 18 into the tube T through the opening O. As shown in FIG. The tips of the first flange 16 and the second flange 18 contact the inner wall I of the tube T in the attached state. Further, in the attached state, the cap head 12 is not inserted into the tube T, and the lower surface 12a of the cap head 12 contacts the upper surface U of the tube T. As shown in FIG.
 マルチキャップ10は、複数の径のチューブT、具体的には、所定の最小径から最大径までのレンジのチューブTに取り付けることが可能となっている。特に、マルチキャップ10は、後述する特徴により、広いレンジ(例えば2mmあるいはそれ以上)のチューブTに適合するものとなっている。 The multi-cap 10 can be attached to tubes T of a plurality of diameters, specifically, tubes T ranging from a predetermined minimum diameter to a maximum diameter. In particular, multi-cap 10 is adapted to a wide range of tubes T (eg, 2 mm or more) due to the features described below.
 このように、マルチキャップ10は、チューブ用フランジ付きマルチキャップである。マルチキャップ10は、以下に説明する特徴により、対応レンジ内のチューブTに取り付けられたときに、(特に第1フランジ16が)適正な形で変形することで適正な姿勢を取ることができるようになっている。また、マルチキャップ10は、以下に説明する特徴により、(特に第2フランジ18が)適正な形で変形することでチューブTに入れられた液体試料が開口部Oから外へ漏れ出すことを抑制する止水機能を好適に発揮可能となっている。また、マルチキャップ10は、以下に説明する特徴により、チューブT内に挿入されたマルチキャップ10が上方に浮き上がってしまう浮き上がりが抑制されている。さらに、マルチキャップ10は、以下に説明する特徴により、支柱14、第1フランジ16、及び第2フランジ18をチューブT内に挿入するために必要な力である挿入力が低減されている。 Thus, the multi-cap 10 is a flanged multi-cap for tubes. Due to the features described below, the multi-cap 10 can assume a proper posture by properly deforming (especially the first flange 16) when attached to a tube T within the corresponding range. It has become. In addition, the multi-cap 10 suppresses leakage of the liquid sample contained in the tube T to the outside from the opening O by properly deforming (especially the second flange 18) due to the features described below. It is possible to suitably exhibit the water stopping function. In addition, the multi-cap 10 is prevented from floating upward when inserted into the tube T due to the features described below. Further, the multi-cap 10 has a reduced insertion force, which is the force required to insert the strut 14, the first flange 16 and the second flange 18 into the tube T due to the features described below.
 <マルチキャップの各部の構造の詳細>
 <<キャップ頭部>>
 本実施形態では、キャップ頭部12は外形が円柱形状となっている。本実施形態では、機械装置であるマニピュレータによって、チューブTへのマルチキャップ10の取り付け、及び、チューブTからのマルチキャップ10の取り外しが行われる。具体的には、マニピュレータが有する複数の爪によってキャップ頭部12の側面12bが把持され、開口部Oから支柱14、第1フランジ16、及び第2フランジ18がチューブT内に挿入されることにより、チューブTにマルチキャップ10が取り付けられる。また、マニピュレータの複数の爪が側面12bを把持して、水平面においてキャップ頭部12を回転させるように捻りながらマルチキャップ10を上方へ引き抜くことで、チューブTからマルチキャップ10が取り外される。なお、キャップ頭部12の形状は、マニピュレータにより側面12bが把持されることが可能であればどのような形状であってもよい。
<Details of the structure of each part of the multi-cap>
<< cap head >>
In this embodiment, the cap head 12 has a cylindrical outer shape. In this embodiment, attachment of the multi-cap 10 to the tube T and removal of the multi-cap 10 from the tube T are performed by a manipulator, which is a mechanical device. Specifically, the side surface 12b of the cap head 12 is gripped by a plurality of claws of the manipulator, and the support 14, the first flange 16, and the second flange 18 are inserted into the tube T through the opening O. , the multi-cap 10 is attached to the tube T. Moreover, the multi-cap 10 is removed from the tube T by pulling the multi-cap 10 upward while twisting the cap head 12 so as to rotate the cap head 12 in the horizontal plane with a plurality of claws of the manipulator gripping the side 12b. The shape of the cap head 12 may be any shape as long as the side 12b can be gripped by the manipulator.
 マニピュレータによってマルチキャップ10をチューブTへ取り付ける場合、マニピュレータによるマルチキャップ10のチューブTへの押し込み力には限界がある。したがって、マニピュレータによってマルチキャップ10をチューブTへ取り付ける場合、マルチキャップ10のチューブTへの挿入力を低減することは、人間が取り付ける場合に比してより意義があるものとなる。また、マニピュレータは、人間に比して、挿入時に細かい制御ができない場合が多い。したがって、マルチキャップ10がチューブTに取り付けられたときに、想定外の変形をして不適正な姿勢とならないようにすることも、人間が取り付ける場合に比してより意義があるものとなる。マルチキャップ10が不適切な姿勢でチューブTに取り付けられた場合、マルチキャップ10を取り外す際に、マニピュレータがキャップ頭部12の側面12bを適切に把持できなくなってしまう場合も考えられる。 When attaching the multi-cap 10 to the tube T with a manipulator, there is a limit to the force with which the manipulator can push the multi-cap 10 into the tube T. Therefore, when attaching the multi-cap 10 to the tube T with a manipulator, reducing the force for inserting the multi-cap 10 into the tube T is more meaningful than when attaching by a human. In addition, manipulators often cannot perform fine control at the time of insertion compared to humans. Therefore, when the multi-cap 10 is attached to the tube T, it is more meaningful to prevent it from being deformed unexpectedly and in an inappropriate posture, as compared to the case of attachment by a human. If the multi-cap 10 is attached to the tube T in an inappropriate posture, the manipulator may not be able to properly grip the side surface 12b of the cap head 12 when removing the multi-cap 10 .
 <<支柱>>
 支柱14は、キャップ頭部12から下方へ向かって伸長する部材である。支柱14は、第1フランジ16及び第2フランジ18の基部(土台)としての機能を発揮する。支柱14は、伸長方向(上下方向)に対する垂直断面(すなわち水平断面)の外形が円形となっている。支柱14の径は比較的大きくなっており、対応チューブの径の70~86%程度の径となっている。
<<Struts>>
The strut 14 is a member extending downward from the cap head 12 . The strut 14 functions as a base (base) for the first flange 16 and the second flange 18 . The strut 14 has a circular outer shape in a vertical cross section (that is, a horizontal cross section) with respect to the extension direction (vertical direction). The diameter of the strut 14 is relatively large and is about 70 to 86% of the diameter of the corresponding tube.
 支柱14は、軟質で変形し易く耐水性のある材質で形成されるとよい。例えば、支柱14は高分子化合物で形成される。本実施形態では、支柱14はLDPE(Low Density Polyethylene;低密度ポリエチレン)で形成される。支柱14が上記のような材質で形成されることにより、支柱14は、側方からの力によって弾性変形可能となる。具体的には、支柱14は、側方からの力によって、水平断面が楕円形となるように弾性変形可能となる。 The struts 14 are preferably made of a soft, deformable, and water-resistant material. For example, struts 14 are made of a polymeric compound. In this embodiment, the struts 14 are made of LDPE (Low Density Polyethylene). By forming the support 14 from the above material, the support 14 can be elastically deformed by a force from the side. Specifically, the strut 14 can be elastically deformed by a force from the side so that the horizontal cross section is elliptical.
 支柱14は、内部空間14aを有しているとよい。すなわち、支柱14は中空であるとよい。図2に示される通り、本実施形態では、支柱14は、中空であり、且つ、下方に開放した形状を有している。したがって、支柱14は円筒形状となっている。図2に示される通り、キャップ頭部12の径方向中央部には、下方に開放した内部空間12cが形成されており、内部空間12cと、支柱14の内部空間14aとが連通して、下方に開放した1つの空間を形成している。 The strut 14 preferably has an internal space 14a. In other words, the strut 14 is preferably hollow. As shown in FIG. 2, in this embodiment, the support 14 is hollow and has a downwardly open shape. Therefore, the strut 14 has a cylindrical shape. As shown in FIG. 2, an internal space 12c that opens downward is formed in the radially central portion of the cap head 12, and the internal space 12c and the internal space 14a of the strut 14 communicate with each other. form a space open to
 支柱14の側壁14bの厚みは、数ミリ以下程度の薄肉であるとよい。例えば、側壁14bは1.0mm以下、好ましくは0.5mm程度であるとよい。また、側壁14bは、下端側に近づく程肉薄となっているとよい。本実施形態では、図2に示される通り、側壁14bの下端部において、支柱14の側方及び下方を向く斜面14cが形成されており、斜面14cにより、側壁14bの下端部に近づくにつれ徐々に側壁14bの肉厚が薄くなっていくようになっている。 The thickness of the side wall 14b of the column 14 is preferably thin, approximately several millimeters or less. For example, the sidewall 14b may be 1.0 mm or less, preferably about 0.5 mm. Moreover, the side wall 14b is preferably thinner toward the lower end side. In the present embodiment, as shown in FIG. 2, slopes 14c are formed at the lower ends of the side walls 14b to face the sides and downwards of the columns 14, and the slopes 14c gradually approach the lower ends of the side walls 14b. The thickness of the side wall 14b is made thinner.
 一方、側壁14bのキャップ頭部12側端部である根元部分14d、換言すれば、キャップ頭部12と支柱14の接続部分である根元部分14dは、側壁14bのその他の部分に比して肉厚となっているとよい。これにより、マルチキャップ10を取り外す際、マニピュレータがキャップ頭部12を捻ったときに、根元部分14dの変形を抑制することでマルチキャップ10がより取り外しやすくなる。あるいは、マルチキャップ10を取り外す際に根元部分14dの破損の可能性が低減される。 On the other hand, the root portion 14d that is the end portion of the side wall 14b on the side of the cap head 12, in other words, the root portion 14d that is the connecting portion between the cap head 12 and the support 14, is thicker than the other portions of the side wall 14b. It should be thick. As a result, when the manipulator twists the cap head portion 12 when removing the multi-cap 10, deformation of the base portion 14d is suppressed, thereby making the multi-cap 10 easier to remove. Alternatively, the possibility of breaking the root portion 14d when removing the multi-cap 10 is reduced.
 <<第1フランジ>>
 第1フランジ16は、支柱14の側面から側方に突出する部材である。第1フランジ16は、支柱14と一体成型で形成することができる。したがって、第1フランジ16も、軟質で変形し易く耐水性のある高分子化合物で形成され、本実施形態ではLDPEで形成される。
<<First Flange>>
The first flange 16 is a member that protrudes laterally from the side surface of the support 14 . The first flange 16 can be integrally formed with the strut 14 . Accordingly, the first flange 16 is also made of a soft, easily deformable, and water-resistant polymer compound, and is made of LDPE in this embodiment.
 図2に示される通り、本実施形態では、第1フランジ16は平板状であり、支柱14から略水平方向に突出するように設けられている。また、第1フランジ16は、支柱14の全周に亘って支柱14から側方に突出し、その外形は平面視で円形となっている。したがって、第1フランジ16は、全体として平板リング状の形状を呈している。 As shown in FIG. 2, in this embodiment, the first flange 16 has a flat plate shape and is provided so as to protrude from the column 14 in a substantially horizontal direction. The first flange 16 protrudes laterally from the support 14 over the entire circumference of the support 14, and has a circular outer shape in plan view. Therefore, the first flange 16 has a flat ring shape as a whole.
 図3は、図2のA-A方向からみた断面図(第1フランジ16の平面図)である。第1フランジ16は、その径方向に延びるように切り欠かれ上下方向に貫通したスリット30を有する。本実施形態では、スリット30は、平面視において、第1フランジ16の径方向外側程、その幅が広くなるような形状となっている。 FIG. 3 is a cross-sectional view (plan view of the first flange 16) seen from the AA direction in FIG. The first flange 16 has a slit 30 which is notched so as to extend in its radial direction and penetrates in the vertical direction. In the present embodiment, the slit 30 has a shape such that the width of the slit 30 increases toward the outer side in the radial direction of the first flange 16 in plan view.
 スリット30は、第1フランジ16の周方向に沿って等間隔に複数設けられるとよい。図3に示すように、本実施形態では、第1フランジ16の周方向に沿って等間隔に2つのスリット30が設けられている。もちろん、第1フランジ16の周方向に沿って等間隔に3つ以上のスリット30が設けられてもよい。 A plurality of slits 30 are preferably provided at regular intervals along the circumferential direction of the first flange 16 . As shown in FIG. 3, in this embodiment, two slits 30 are provided at equal intervals along the circumferential direction of the first flange 16 . Of course, three or more slits 30 may be provided at regular intervals along the circumferential direction of the first flange 16 .
 図4は、図3のB-B方向から見た断面図(第1フランジ16の側面図)である。スリット30は、側面視において上下方向とは平行な方向でない方向に延びるように設けられるとよい。すなわち、図4に示す通り、スリット30の延伸方向Sと上下方向Vとの間に角度θ(θ≠0°)を有しているとよい。換言すれば、互いに対向するスリット30の内側面30aが上下方向とは非平行となるように形成される。本実施形態では、θは45°となっている。 FIG. 4 is a cross-sectional view (side view of the first flange 16) seen from the BB direction in FIG. The slit 30 is preferably provided so as to extend in a direction that is not parallel to the vertical direction in side view. That is, as shown in FIG. 4, it is preferable that there is an angle θ (θ≠0°) between the extending direction S of the slit 30 and the vertical direction V. In other words, the inner side surfaces 30a of the slits 30 facing each other are formed so as not to be parallel to the vertical direction. In this embodiment, θ is 45°.
 図5は、図2の領域Cの拡大図である。支柱14の側面(側壁14bの外側面)であって、第1フランジ16の接続位置の上側に隣接する位置には、支柱14の周方向に沿った溝32が設けられるとよい。 FIG. 5 is an enlarged view of area C in FIG. A groove 32 along the circumferential direction of the support 14 may be provided on the side surface of the support 14 (the outer surface of the side wall 14 b ) at a position adjacent to the upper side of the connecting position of the first flange 16 .
 また、第1フランジ16の側方外側面16aは、自然状態(第1フランジ16に外力が掛かていない状態)において側方及び下方を向く斜面となっているとよい。 In addition, the side outer surface 16a of the first flange 16 is preferably formed as a slope facing sideways and downward in a natural state (a state in which no external force is applied to the first flange 16).
 また、第1フランジ16の径L1は、第2フランジ18の径L2よりも大きいとよい。特に、取付状態においてチューブTの内部に挿入される部分(支柱14、第1フランジ16、及び第2フランジ18)のうち、第1フランジ16が最も径が大きい部材となる。なお、本明細書における第1フランジ16の径L1は、支柱14の外側面から第1フランジ16の側方側端点までの間の水平距離であり、第2フランジ18の径L2は、支柱14の外側面から第2フランジ18の側方側端点までの間の水平距離である。第1フランジ16の径L1及び第2フランジ18の径L2は、それぞれ、支柱14の全周に亘って均一である。 Also, the diameter L1 of the first flange 16 is preferably larger than the diameter L2 of the second flange 18. In particular, the first flange 16 has the largest diameter among the portions (the strut 14, the first flange 16, and the second flange 18) that are inserted inside the tube T in the attached state. In addition, the diameter L1 of the first flange 16 in this specification is the horizontal distance from the outer surface of the support 14 to the lateral side end point of the first flange 16, and the diameter L2 of the second flange 18 is the distance from the support 14 is the horizontal distance from the outer surface of the second flange 18 to the lateral end point of the second flange 18. The diameter L1 of the first flange 16 and the diameter L2 of the second flange 18 are each uniform over the entire circumference of the column 14 .
 <<第2フランジ>>
 第2フランジ18は、第1フランジ16の下方において支柱14の側面から側方に突出する部材である。第2フランジ18も、第1フランジ16同様、支柱14と一体成型で形成することができる。したがって、第2フランジ18も、軟質で変形し易く耐水性のある高分子化合物で形成され、本実施形態ではLDPEで形成される。
<<Second flange>>
The second flange 18 is a member that protrudes laterally from the side surface of the column 14 below the first flange 16 . Like the first flange 16, the second flange 18 can also be formed integrally with the strut 14. As shown in FIG. Accordingly, the second flange 18 is also made of a soft, easily deformable, and water-resistant polymer compound, and is made of LDPE in this embodiment.
 図5に示される通り、第2フランジ18は、支柱14側から側方へ向かうにつれて上側に伸びる形状を有している。第1フランジ16同様、第2フランジ18も、支柱14の全周に亘って支柱14から側方に突出し、その外形は平面視で円形となっている。したがって、第2フランジ18は、全体としてお椀形状を呈している。 As shown in FIG. 5, the second flange 18 has a shape that extends upward from the support 14 side toward the side. Like the first flange 16, the second flange 18 also protrudes laterally from the column 14 over the entire circumference of the column 14, and has a circular outer shape in plan view. Therefore, the second flange 18 has a bowl shape as a whole.
 より詳しくは、本実施形態では、第2フランジ18は、支柱14側の部分である内周部40、及び、内周部40よりも側方側の部分である外周部42を有している。本実施形態では、内周部40は、径方向断面において、支柱14から水平方向よりもやや上方に向いた第1方向D1に向かって側方に伸長している。なお、内周部40が伸長する第1方向D1は水平方向であってもよい。外周部42は、内周部40の側方端に接続され、径方向断面において、第2方向D2に向かって側方に伸長している。外周部42が伸長する第2方向D2は、内周部40の伸長方向である第1方向D1に対して上側に折れ曲がった方向である。つまり第2方向D2は、第1方向D1よりもさらに上側を向く方向である。したがって、外周部42は、内周部40に比して、より上方に変位するように変形し易いと言える。 More specifically, in this embodiment, the second flange 18 has an inner peripheral portion 40 that is a portion on the support 14 side, and an outer peripheral portion 42 that is a portion on the lateral side of the inner peripheral portion 40. . In the present embodiment, the inner peripheral portion 40 extends laterally from the strut 14 toward the first direction D1 slightly upward from the horizontal direction in the radial cross section. Note that the first direction D1 in which the inner peripheral portion 40 extends may be a horizontal direction. The outer peripheral portion 42 is connected to a side end of the inner peripheral portion 40 and extends laterally in the second direction D2 in a radial cross section. The second direction D2 in which the outer peripheral portion 42 extends is a direction bent upward with respect to the first direction D1, which is the extending direction of the inner peripheral portion 40 . That is, the second direction D2 is a direction that faces further upward than the first direction D1. Therefore, it can be said that the outer peripheral portion 42 is more easily deformed to be displaced upward than the inner peripheral portion 40 .
 外周部42の側方外側面42a(換言すれば第2フランジ18の側方外側面)は、自然状態(第2フランジ18に外力が掛かていない状態)において上下方向に平行な面であるとよい。また、外周部42の先端部(換言すれば第2フランジ18の先端部)には、側方外側面42aの上側に連通し、側方及び上方を向く斜面42bが形成されているとよい。 The lateral outer surface 42a of the outer peripheral portion 42 (in other words, the lateral outer surface of the second flange 18) is a surface parallel to the vertical direction in a natural state (a state in which no external force is applied to the second flange 18). good. In addition, it is preferable that the tip of the outer peripheral portion 42 (in other words, the tip of the second flange 18) is formed with a sloped surface 42b communicating with the upper side of the side outer surface 42a and facing sideways and upward.
 第2フランジ18の径L2は、マルチキャップ10が対応する最大径のチューブT(本明細書では「対応最大径チューブ」と呼ぶ)の径よりもわずかに大きくなっている。例えば、径L2は、対応最大径チューブの径よりも0.1mm程度大きくなっている。なお、上述の通り、第1フランジ16の径L1は第2フランジ18の径L2よりも大きいから、当然に、第1フランジ16の径L1も対応最大径チューブの径よりも大きくなる。 The diameter L2 of the second flange 18 is slightly larger than the diameter of the maximum diameter tube T that the multi-cap 10 supports (referred to herein as the "supported maximum diameter tube"). For example, the diameter L2 is approximately 0.1 mm larger than the diameter of the corresponding maximum diameter tube. As described above, since the diameter L1 of the first flange 16 is larger than the diameter L2 of the second flange 18, the diameter L1 of the first flange 16 is also larger than the corresponding maximum diameter tube.
 また、内周部40の径L3は、マルチキャップ10が対応する最小径のチューブT(本明細書では「対応最小径チューブ」と呼ぶ)の径よりも小さいとよい。なお、内周部40の径L3は、支柱14の外側面から内周部40の側方側端点(外周部42との接続点)までの間の水平距離である。内周部40の径L3も支柱14の全周に亘って均一である。 Also, the diameter L3 of the inner peripheral portion 40 is preferably smaller than the diameter of the minimum diameter tube T that the multi-cap 10 supports (referred to herein as the "supported minimum diameter tube"). Note that the diameter L3 of the inner peripheral portion 40 is the horizontal distance from the outer surface of the support 14 to the side end point of the inner peripheral portion 40 (connection point with the outer peripheral portion 42). The diameter L3 of the inner peripheral portion 40 is also uniform over the entire circumference of the strut 14 .
 以下、図6及び図7、並びに、適宜図1~5を参照しながら、上述したマルチキャップ10の各部の作用(マルチキャップ10が発揮する各機能)について説明する。図6は、対応最大径チューブTmaxに取り付けられたマルチキャップ10を示す側面模式図であり、図7は、対応最小径チューブTminに取り付けられたマルチキャップ10を示す側面模式図である。  Hereafter, with reference to FIGS. 6 and 7, and FIGS. FIG. 6 is a schematic side view showing the multi-cap 10 attached to the corresponding maximum diameter tube Tmax, and FIG. 7 is a side schematic view showing the multi-cap 10 attached to the corresponding minimum diameter tube Tmin.
 以下においては、マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合と、マルチキャップ10が対応最小径チューブTminに取り付けられた場合におけるマルチキャップ10の各部の作用について説明する。ここで、同一の機能についてみた場合でも、対応最大径チューブTmaxに取り付けられた場合と、対応最小径チューブTminに取り付けられた場合とで、マルチキャップ10の各部の作用が異なる場合がある。その場合、マルチキャップ10が取り付けられるチューブTの径が対応最大径から対応最小径に向かって小さくなるにつれ、マルチキャップ10の各部の作用が、対応最大径チューブTmaxに取り付けられた場合の作用から対応最大径チューブTmaxに取り付けられた場合の作用へ向かって徐々に変化していくと理解されたい。 Below, the action of each part of the multi-cap 10 when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax and when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin will be described. Here, even when looking at the same function, the action of each part of the multi-cap 10 may differ between when it is attached to the corresponding maximum diameter tube Tmax and when it is attached to the corresponding minimum diameter tube Tmin. In that case, as the diameter of the tube T to which the multi-cap 10 is attached decreases from the corresponding maximum diameter to the corresponding minimum diameter, the action of each part of the multi-cap 10 changes from the action when it is attached to the corresponding maximum diameter tube Tmax. It should be understood that there is a gradual change towards the action when attached to the corresponding maximum diameter tube Tmax.
 <マルチキャップの作用(姿勢保持機能)>
 <<対応最大径チューブTmaxに取り付けられた場合>>
 上述の通り、第1フランジ16の径L1及び第2フランジ18の径L2は、いずれも対応最大径チューブTmaxの径よりも大きい。したがって、マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合(図6参照)、第1フランジ16の側方端(側方外側面16a)及び第2フランジ18の側方端(側方外側面42a)の両方が対応最大径チューブTmaxの内壁Iに当接する。これにより、マルチキャップ10の姿勢が保持される。
<Function of multi-cap (posture retention function)>
<<When attached to the compatible maximum diameter tube Tmax>>
As described above, both the diameter L1 of the first flange 16 and the diameter L2 of the second flange 18 are larger than the diameter of the corresponding maximum diameter tube Tmax. Therefore, when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax (see FIG. 6), the lateral end (lateral outer surface 16a) of the first flange 16 and the lateral end (lateral outer surface 16a) of the second flange 18 Both sides 42a) abut the inner wall I of the corresponding maximum diameter tube Tmax. Thereby, the posture of the multi-cap 10 is held.
 仮に、マルチキャップ10が第2フランジ18しか有していない場合(第1フランジ16が無い場合)、第2フランジ18と内壁Iとの当接位置を支点として、(梃子の要領で)キャップ頭部12が側方に変位するようにチューブTに対してマルチキャップ10が動いてしまい、マルチキャップ10の姿勢が保持されない場合がある。本実施形態では、マルチキャップ10は、第2フランジ18のみならず第1フランジ16を有しており、当該2つのフランジが内壁Iに当接している。したがって、第2フランジ18を支点とする上記マルチキャップ10の動きは、第1フランジ16が内壁Iに当接していることで抑制される。 If the multi-cap 10 has only the second flange 18 (without the first flange 16), the contact position between the second flange 18 and the inner wall I is used as a fulcrum, and the cap head is pushed (in the manner of a lever). In some cases, the multi-cap 10 moves relative to the tube T so that the portion 12 is displaced laterally, and the attitude of the multi-cap 10 cannot be maintained. In this embodiment, the multi-cap 10 has a first flange 16 as well as a second flange 18 , the two flanges abutting the inner wall I . Therefore, the movement of the multi-cap 10 with the second flange 18 as a fulcrum is restrained by the contact of the first flange 16 with the inner wall I.
 特に、本実施形態では、第1フランジ16の径L1が第2フランジ18の径L2よりも大きくなっている(図5参照)。これにより、第1フランジ16は、第2フランジ18と内壁Iとの当接位置を支点とするマルチキャップ10の姿勢変動をより強く抑制することが可能となっている。 Especially in this embodiment, the diameter L1 of the first flange 16 is larger than the diameter L2 of the second flange 18 (see FIG. 5). As a result, the first flange 16 can more strongly suppress the change in posture of the multi-cap 10 with the contact position between the second flange 18 and the inner wall I as the fulcrum.
 このように、第1フランジ16は、第2フランジ18との協働により、チューブTに対するマルチキャップ10の姿勢を保持する姿勢保持機能を発揮する。 In this way, the first flange 16 cooperates with the second flange 18 to exhibit a posture holding function of holding the posture of the multi-cap 10 with respect to the tube T.
 <<対応最小径チューブTminに取り付けられた場合>>
 マルチキャップ10が対応最小径チューブTminに取り付けられた場合(図7参照)、対応最大径チューブTmaxに取り付けられた場合と同様、第1フランジ16及び第2フランジ18が内壁Iに当接することから、上述の原理によってマルチキャップ10の姿勢が保持される。つまり、この場合も、第1フランジ16は、第2フランジ18との協働により、チューブTに対するマルチキャップ10の姿勢を保持する姿勢保持機能を発揮する。
<<When attached to the compatible minimum diameter tube Tmin>>
When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin (see FIG. 7), the first flange 16 and the second flange 18 are in contact with the inner wall I as in the case of being attached to the corresponding maximum diameter tube Tmax. , the posture of the multi-cap 10 is held by the above-described principle. In other words, in this case as well, the first flange 16 cooperates with the second flange 18 to exhibit a posture holding function of holding the posture of the multi-cap 10 with respect to the tube T.
 一方、マルチキャップ10が対応最小径チューブTminに取り付けられた場合には、仮に、第1フランジ16が想定外の変形をしてしまうと、第1フランジ16の少なくとも一部分が適切に内壁Iに当接できなくなって、マルチキャップ10の姿勢が保持できなくなり得る。ここで、第1フランジ16についての想定される変形とは、図7に示すように、第1フランジ16の周方向全体に亘って、根元部分(支柱14側)に比して側端部分が上側となる変形(これを「上方変形」と呼ぶ)である。第1フランジ16の少なくとも一部分において、根元部分に比して側端部分が下方となる変形(これを「下方変形」と呼ぶ)は、想定外の変形となる。 On the other hand, when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, if the first flange 16 is deformed unexpectedly, at least a part of the first flange 16 will properly contact the inner wall I. As a result, the multi-cap 10 may not be able to maintain its posture. Here, the assumed deformation of the first flange 16 means that, as shown in FIG. This is the upward deformation (this is called "upward deformation"). In at least a portion of the first flange 16, deformation in which the side end portion is downward compared to the root portion (this is called "downward deformation") is an unexpected deformation.
 第1フランジ16が対応最小径チューブTminに挿入されると、第1フランジ16は内壁Iから受ける力により変形させられることになる。ここで、対応最小径チューブTminのように、支柱14と内壁Iとの間に狭いスペースしかない場合、第1フランジ16の変位のしわ寄せが第1フランジ16の周方向に生じる場合がある。仮に、第1フランジ16にスリット30が設けられない場合、第1フランジ16の周方向における変位のしわ寄せを吸収することができず、第1フランジ16の一部分において不意に下方変形が生じてしまうおそれがある。この場合、側面視において第1フランジ16の側方端が極端に波打つような形状となり、第1フランジ16の側方端が適切に内壁Iに当接できなくなる部分が生じ得る。 When the first flange 16 is inserted into the corresponding minimum diameter tube Tmin, the first flange 16 is deformed by the force received from the inner wall I. Here, when there is only a narrow space between the strut 14 and the inner wall I as in the corresponding minimum diameter tube Tmin, the first flange 16 may be displaced and wrinkled in the circumferential direction of the first flange 16 . If the first flange 16 were not provided with the slit 30, it would not be possible to absorb the strain caused by the displacement of the first flange 16 in the circumferential direction, and a part of the first flange 16 might be unexpectedly deformed downward. There is In this case, the side end of the first flange 16 becomes extremely wavy when viewed from the side, and there may be a portion where the side end of the first flange 16 cannot properly contact the inner wall I.
 本実施形態では、第1フランジ16に設けられたスリット30(図3参照)が閉じる(互いに対向するスリット30の内側面30a(図4参照)が接近する方向に移動する)ことで、第1フランジ16の周方向における変位のしわ寄せを吸収することができる。換言すれば、スリット30は、第1フランジ16の周方向における変位の逃げ場として機能する。スリット30が閉じて第1フランジ16の周方向における変位のしわ寄せを吸収することで、第1フランジ16の想定外の変形が抑制される。このように、スリット30の作用により、第1フランジ16による姿勢保持機能を発揮することを可能としている。 In the present embodiment, the slits 30 (see FIG. 3) provided in the first flange 16 are closed (the inner side surfaces 30a (see FIG. 4) of the slits 30 facing each other move toward each other), so that the first It is possible to absorb the wrinkling of the displacement of the flange 16 in the circumferential direction. In other words, the slit 30 functions as an escape for displacement of the first flange 16 in the circumferential direction. Unexpected deformation of the first flange 16 is suppressed by closing the slit 30 and absorbing the wrinkling of the displacement of the first flange 16 in the circumferential direction. In this way, the action of the slit 30 enables the first flange 16 to exhibit the posture holding function.
 また、本実施形態では、支柱14の側面であって、第1フランジ16の接続位置の上側に隣接する位置に溝32が設けられている。溝32は、第1フランジ16の上方変形を補助する(促す)機能を発揮する。すなわち、溝32により、第1フランジ16の少なくとも一部分が下方変形することが抑制される。このように、溝32の作用によっても、第1フランジ16による姿勢保持機能を発揮することを可能としている。 In addition, in this embodiment, a groove 32 is provided on the side surface of the strut 14 at a position adjacent to the upper side of the connection position of the first flange 16 . The groove 32 exhibits a function of assisting (promoting) upward deformation of the first flange 16 . That is, the groove 32 suppresses downward deformation of at least a portion of the first flange 16 . In this way, the action of the groove 32 also enables the first flange 16 to exhibit the posture holding function.
 <マルチキャップの作用(止水機能)>
 <<対応最大径チューブTmaxに取り付けられた場合>>
 マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合、第2フランジ18が主に止水機能を発揮する。上述の通り、第2フランジ18の径L2は、対応最大径チューブTmaxの径よりもわずかに大きくなっている。したがって、マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合、第2フランジ18の周方向全体に亘って、その側方端が内壁Iに当接する。これにより、対応最大径チューブTmaxに入れられた液体試料の漏れが抑制される。なお、本実施形態では、第2フランジ18の径L2は、対応最大径チューブTmaxの径より0.1mm大きくなっているが、これは、止水機能を発揮するための最低限の大きさである。尤も、止水機能を発揮するための最低限の大きさは、第2フランジ18の材質などによって変動し得る。
<Function of multi-cap (water stop function)>
<<When attached to the compatible maximum diameter tube Tmax>>
When the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the second flange 18 mainly exhibits a waterproof function. As described above, the diameter L2 of the second flange 18 is slightly larger than the diameter of the corresponding maximum diameter tube Tmax. Therefore, when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the side end abuts against the inner wall I over the entire circumferential direction of the second flange 18 . This suppresses leakage of the liquid sample placed in the corresponding maximum diameter tube Tmax. In this embodiment, the diameter L2 of the second flange 18 is 0.1 mm larger than the diameter of the corresponding maximum diameter tube Tmax. be. Of course, the minimum size for exhibiting the water stopping function may vary depending on the material of the second flange 18 and the like.
 本実施形態では、第2フランジ18の側方外側面42aが、自然状態において上下方向に平行な面となっている。第2フランジ18の径L2は、対応最大径チューブTmaxの径よりわずかに大きい程度であるから、第2フランジ18が対応最大径チューブTmaxに挿入されても、第2フランジ18はそれほど変形せずに、側方外側面42aが内壁Iに当接する。つまり、側方外側面42aと内壁Iとが略平行となる状態で互いに当接することとなり、側方外側面42aと内壁Iとの接触面積を広くすることができる。これにより、第2フランジ18による止水性能が向上する。詳しくは、側方外側面42aと内壁Iとの隙間から漏れ出る液体試料の量が低減される。 In this embodiment, the side outer surface 42a of the second flange 18 is a surface parallel to the vertical direction in the natural state. Since the diameter L2 of the second flange 18 is slightly larger than the diameter of the corresponding maximum diameter tube Tmax, even if the second flange 18 is inserted into the corresponding maximum diameter tube Tmax, the second flange 18 does not deform so much. In addition, the lateral outer surface 42a abuts the inner wall I. As shown in FIG. That is, the lateral outer surface 42a and the inner wall I contact each other in a substantially parallel state, and the contact area between the lateral outer surface 42a and the inner wall I can be increased. As a result, the water stopping performance of the second flange 18 is improved. Specifically, the amount of the liquid sample leaking from the gap between the lateral outer surface 42a and the inner wall I is reduced.
 また、キャップ頭部12の下面12aがチューブTの上面Uに当接することでも(図1参照)、止水機能が発揮される。 In addition, the water stopping function is exhibited also when the lower surface 12a of the cap head 12 abuts against the upper surface U of the tube T (see FIG. 1).
 <<対応最小径チューブTminに取り付けられた場合>>
 マルチキャップ10が対応最小径チューブTminに取り付けられた場合、主に第2フランジ18が止水機能を発揮するが、仮に、第2フランジ18が液体試料の漏れを防ぎきれなかった場合、第1フランジ16も補助的な止水機能を発揮する。
<<When attached to the compatible minimum diameter tube Tmin>>
When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, the second flange 18 mainly exhibits the water stop function. Flange 16 also performs an auxiliary water stop function.
 マルチキャップ10が対応最小径チューブTminに取り付けられた場合、対応最大径チューブTmaxに取り付けられた場合と同様、第2フランジ18が内壁Iに当接することで、上述の原理によって止水機能が発揮される。 When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, the second flange 18 comes into contact with the inner wall I, as in the case when it is attached to the corresponding maximum diameter tube Tmax, and the water stop function is exhibited according to the above principle. be done.
 マルチキャップ10が対応最小径チューブTminに取り付けられた場合には、仮に、第2フランジ18が想定外の変形をしてしまうと、第2フランジ18の少なくとも一部分が適切に内壁Iに当接できなくなって、止水機能が好適に発揮できなくなり得る。ここで、第2フランジ18についての想定される変形とは、図7に示すように、第2フランジ18の周方向全体に亘る上方変形である。第2フランジ18の少なくとも一部分における下方変形は、想定外の変形となる。 When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, if the second flange 18 undergoes unexpected deformation, at least a portion of the second flange 18 cannot properly abut against the inner wall I. As a result, the water stopping function may not be properly exhibited. Here, the assumed deformation of the second flange 18 is upward deformation over the entire circumferential direction of the second flange 18, as shown in FIG. A downward deformation of at least a portion of the second flange 18 results in an unexpected deformation.
 まず、第2フランジ18が全体としてお椀形状を呈していることで、マルチキャップ10が対応最小径チューブTminに取り付けられた場合における第2フランジ18の想定外の変形が抑制される。すなわち、第2フランジ18は、自然状態において、側方に向かうにつれて上側に伸びるような形状を有しているから、上方から開口部Oに第2フランジ18が入れられたときに、第2フランジ18が下方変形することが抑制されている。 First, because the second flange 18 has a bowl shape as a whole, unexpected deformation of the second flange 18 when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin is suppressed. That is, since the second flange 18 has a shape that extends upward as it goes to the side in a natural state, when the second flange 18 is inserted into the opening O from above, the second flange 18 18 is suppressed from deforming downward.
 図8は、対応最小径チューブTminに取り付けられたマルチキャップ10の底面図である。対応最小径チューブTminの内壁Iから力を受けて第2フランジ18が変形すると、その力が支柱14に伝搬して支柱14も側方からの力を受けることになる。中空である支柱14は、側方からの力を受けると、図8に示すように水平断面形状が楕円形状となるように弾性変形する。この支柱14の弾性変形が、第2フランジ18の想定外の変形を抑制する。 FIG. 8 is a bottom view of the multi-cap 10 attached to the compatible minimum diameter tube Tmin. When the second flange 18 is deformed by receiving force from the inner wall I of the corresponding minimum diameter tube Tmin, the force is propagated to the strut 14 and the strut 14 also receives force from the side. When the support 14, which is hollow, receives a force from the side, it elastically deforms so that the horizontal cross-sectional shape becomes an elliptical shape as shown in FIG. This elastic deformation of the strut 14 suppresses unexpected deformation of the second flange 18 .
 具体的には、仮に支柱14が変形しない場合に、支柱14の外側面と対応最小径チューブTminの内壁Iとの間のスペースだけでは、第2フランジ18が収まるスペースとしては不十分である場合、第2フランジ18がいわば無理やり当該スペースに押し込まれ、これにより第2フランジ18が想定外の変形をしてしまう場合がある。本実施形態では、支柱14が弾性変形して、その周方向の一部分については、支柱14と内壁Iとの間のスペースが広く取られる。すなわち、周方向に沿って、支柱14から内壁Iまでの距離に差が生まれる。これにより、周方向に沿って、第2フランジ18の傾きにも差が生じ、第2フランジ18が上下方向に逃げることができるようになる。より詳しくは、第2フランジ18のうち、外周部42に比して上方変形し難い内周部40が支柱14の弾性変形に追従して変形する(もちろん内周部40も内壁Iからの力により上方変形可能である)、具体的には、支柱14が、その周方向の一部分(図8の例では支柱14の上側及び下側)において、径方向中心側に変位するように変形することで、上述のように、外周部42が上下方向に逃げることが可能となり、外周部42の想定外の変形が抑制される。なお、図7に示すように、支柱14の弾性変形に伴って、側面視において、第2フランジ18の側端部が多少波打つが、これは想定内の変形である。 Specifically, if the strut 14 is not deformed, the space between the outer surface of the strut 14 and the inner wall I of the corresponding minimum diameter tube Tmin is insufficient as a space for accommodating the second flange 18. , the second flange 18 is forcibly pushed into the space, so that the second flange 18 may be deformed unexpectedly. In this embodiment, the strut 14 is elastically deformed, and the space between the strut 14 and the inner wall I is widened in a part of the circumferential direction. That is, a difference is generated in the distance from the support 14 to the inner wall I along the circumferential direction. As a result, a difference in inclination of the second flange 18 is generated along the circumferential direction, and the second flange 18 can escape in the vertical direction. More specifically, the inner peripheral portion 40 of the second flange 18, which is less prone to upward deformation than the outer peripheral portion 42, deforms following the elastic deformation of the strut 14 (of course, the inner peripheral portion 40 is also deformed by the force from the inner wall I). Specifically, the strut 14 is deformed so as to be displaced toward the center in the radial direction in a part of its circumferential direction (the upper and lower sides of the strut 14 in the example of FIG. 8). Therefore, as described above, the outer peripheral portion 42 can escape in the vertical direction, and unexpected deformation of the outer peripheral portion 42 is suppressed. As shown in FIG. 7, the side end of the second flange 18 undulates somewhat in a side view due to the elastic deformation of the strut 14, but this is an expected deformation.
 本実施形態では、支柱14は、下方に開放した形状を有している。これにより、支柱14は、その上側に比して下側の方が弾性変形し易くなっていると言える。第2フランジ18は、支柱14の下側、少なくとも第1フランジ16よりも下方にあるから、支柱14が下方に開放した形状を有していることで、第2フランジ18の近傍において支柱14が弾性変形し易くなっていると言える。これにより、第2フランジ18の想定外の変形がより抑制される。 In this embodiment, the strut 14 has a downwardly open shape. As a result, it can be said that the support 14 is more elastically deformable on the lower side than on the upper side. Since the second flange 18 is below the column 14, at least below the first flange 16, the column 14 has a downwardly open shape, so that the column 14 is positioned near the second flange 18. It can be said that it is easy to elastically deform. This further suppresses unexpected deformation of the second flange 18 .
 また、本実施形態では、支柱14の側壁14bは、下端側に近づく程肉薄となっている。これによっても、支柱14は、その上側に比して下側の方が弾性変形し易くなっていると言える。このように、側壁14bは、下端側に近づく程肉薄となっていることで、さらに、第2フランジ18の想定外の変形が抑制される。 Also, in the present embodiment, the sidewall 14b of the column 14 becomes thinner toward the lower end side. Therefore, it can be said that the support 14 is more likely to be elastically deformed on the lower side than on the upper side. In this way, the sidewall 14b becomes thinner toward the lower end side, so that unexpected deformation of the second flange 18 is further suppressed.
 以上の通り、マルチキャップ10が対応最小径チューブTminに取り付けられた場合、第2フランジ18の想定外の変形が抑制されることによって、第2フランジ18による止水機能が好適に発揮される。 As described above, when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, unexpected deformation of the second flange 18 is suppressed, so that the water stop function of the second flange 18 is preferably exhibited.
 上述の通り、マルチキャップ10が対応最小径チューブTminに取り付けられると、第1フランジ16に設けられたスリット30が閉じた上で、第1フランジ16の側端部が内壁Iに当接する。これにより、第1フランジ16も補助的に止水機能を発揮する。 As described above, when the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, the slit 30 provided in the first flange 16 is closed and the side end of the first flange 16 contacts the inner wall I. Thereby, the 1st flange 16 also exhibits a waterproofing function auxiliary.
 特に、本実施形態では、スリット30は、側面視において上下方向とは平行な方向でない方向に延びるように設けられている。これにより、スリット30が閉じたとき、内側面30a(図4参照)同士の当接面が側面視において上下方向に対して角度を有することになる。したがって、当該液体試料は、少なくとも内側面30a同士の当接面の隙間を上下方向に流れることができない。換言すれば、液体試料が第1フランジ16の上方に漏れ出るには、液体試料は、内側面30a同士の当接面の隙間を上下方向に対して角度を有する斜め方向に進まなくてはならなくなる。このように、少なくともスリット30が上下方向に延びるように設けられた場合に比して、スリット30が上下方向とは平行な方向でない方向に延びるように設けることで、第1フランジ16による止水性能が向上される。 In particular, in this embodiment, the slit 30 is provided so as to extend in a direction that is not parallel to the vertical direction when viewed from the side. As a result, when the slit 30 is closed, the contact surfaces of the inner side surfaces 30a (see FIG. 4) form an angle with respect to the vertical direction in a side view. Therefore, the liquid sample cannot flow vertically through at least the gap between the contact surfaces of the inner surfaces 30a. In other words, in order for the liquid sample to leak above the first flange 16, the liquid sample must advance through the gap between the contact surfaces of the inner surfaces 30a in an oblique direction with an angle to the vertical direction. Gone. Thus, compared with the case where the slit 30 is provided to extend at least in the vertical direction, by providing the slit 30 so as to extend in a direction not parallel to the vertical direction, the water stop by the first flange 16 Performance is improved.
 また、キャップ頭部12の下面12aがチューブTの上面Uに当接することでも、止水機能が発揮される。 Also, when the lower surface 12a of the cap head 12 abuts against the upper surface U of the tube T, the waterproof function is exhibited.
 <マルチキャップの作用(浮き上がり防止機能)>
 チューブTに取り付けられたマルチキャップ10が浮き上がってしまう場合がある。その要因としては、マルチキャップ10をチューブTに取り付けた際に、マルチキャップ10(特に第1フランジ16又は第2フランジ18)が想定外の変形をしてしまい、それにより第1フランジ16又は第2フランジ18が内壁Iを押し返すことで、マルチキャップ10に上方への力がかかってしまう場合があることである。あるいは、浮き上がりの要因としては、マルチキャップ10をチューブTに取り付けた際にチューブT内に空気が圧縮されて密閉されることで発生し得る、圧縮空気による内圧もある。さらに、チューブTの開口部O付近にテーパが設けられている場合、当該テーパも浮き上がりの要因となり得る。
<Function of multi-cap (floating prevention function)>
The multi-cap 10 attached to the tube T may be lifted. The reason for this is that when the multi-cap 10 is attached to the tube T, the multi-cap 10 (especially the first flange 16 or the second flange 18) undergoes unexpected deformation, which causes the first flange 16 or the second flange 16 to deform. 2, the flange 18 pushes back the inner wall I, and an upward force may be applied to the multi-cap 10 . Alternatively, another cause of floating is internal pressure due to compressed air that can be generated by air being compressed and sealed inside the tube T when the multi-cap 10 is attached to the tube T. As shown in FIG. Furthermore, when a taper is provided near the opening O of the tube T, the taper may also cause the floating.
 <<対応最大径チューブTmaxに取り付けられた場合>>
 マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合、第1フランジ16及び第2フランジ18の変形量はそれほど大きくないため、第1フランジ16及び第2フランジ18の想定外の変形による浮き上がりが起きる可能性は低い。この場合、圧縮空気による内圧が浮き上がりの主要因となる。
<<When attached to the compatible maximum diameter tube Tmax>>
When the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the amount of deformation of the first flange 16 and the second flange 18 is not so large, so the first flange 16 and the second flange 18 are lifted due to unexpected deformation. unlikely to occur. In this case, the internal pressure due to the compressed air is the main cause of the lifting.
 本実施形態では、支柱14は、内部空間14aを有し(中空であり)、且つ、下方に開放されている(図2参照)。したがって、マルチキャップ10が対応最大径チューブTmaxに取り付けられたとき、対応最大径チューブTmax内の空間と内部空間14aが連通することになる。すなわち、マルチキャップ10が取り付けられたとき、少なくとも支柱14が下方に開放していない場合に比して、対応最大径チューブTmax内の空間の体積が増加することになる。これにより、少なくとも支柱14が下方に開放していない場合に比して、対応最大径チューブTmaxの内圧が低減され、マルチキャップ10の浮き上がりが抑制される。 In this embodiment, the column 14 has an internal space 14a (hollow) and is open downward (see FIG. 2). Therefore, when the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax, the space inside the corresponding maximum diameter tube Tmax communicates with the internal space 14a. That is, when the multi-cap 10 is attached, the volume of the space inside the corresponding maximum diameter tube Tmax increases at least as compared to the case where the strut 14 is not open downward. As a result, the internal pressure of the corresponding maximum diameter tube Tmax is reduced and the floating of the multi-cap 10 is suppressed, at least compared to the case where the strut 14 is not open downward.
 特に、本実施形態では、キャップ頭部12も内部空間12cを有し、内部空間12cは支柱14の内部空間14aと連通している。これにより、マルチキャップ10が取り付けられたとき、さらに、内部空間12cの分、対応最大径チューブTmax内の空間の体積が増加するから、対応最大径チューブTmaxの内圧がより低減され、マルチキャップ10の浮き上がりがより抑制される。 Particularly, in this embodiment, the cap head 12 also has an internal space 12c, and the internal space 12c communicates with the internal space 14a of the strut 14. As a result, when the multi-cap 10 is attached, the volume of the space inside the corresponding maximum diameter tube Tmax increases by the amount of the internal space 12c, so the internal pressure of the corresponding maximum diameter tube Tmax is further reduced, is further suppressed.
 また、本実施形態では、第1フランジ16の側方外側面16aが、自然状態において側方及び下方を向く斜面となっている。第1フランジ16が対応最大径チューブTmaxに挿入されると、第1フランジ16の側方端が内壁Iに当接することで、当該側方端が少し上側に変位する。当該変位により、側方外側面16aと内壁Iとが略平行となる状態で互いに当接することとなり、側方外側面16aと内壁Iとの接触面積をより広くすることができる。これにより、側方外側面16aと内壁Iとの間の摩擦力が向上し、マルチキャップ10の浮き上がりが抑制される。 In addition, in the present embodiment, the side outer surface 16a of the first flange 16 forms a slope facing sideways and downward in the natural state. When the first flange 16 is inserted into the corresponding maximum diameter tube Tmax, the lateral end of the first flange 16 comes into contact with the inner wall I, and the lateral end is slightly displaced upward. Due to this displacement, the lateral outer surface 16a and the inner wall I come into contact with each other in a substantially parallel state, and the contact area between the lateral outer surface 16a and the inner wall I can be increased. As a result, the frictional force between the side outer surface 16a and the inner wall I is improved, and the multi-cap 10 is prevented from floating.
 また、本実施形態では、第2フランジ18の側方外側面42aが、自然状態において上下方向に平行な面となっており、上述のように、第2フランジ18が対応最大径チューブTmaxに挿入されると、側方外側面42aと内壁Iとが略平行となる状態で互いに当接する。これにより、側方外側面42aと内壁Iとの間の摩擦力が向上し、マルチキャップ10の浮き上がりが抑制される。 In addition, in the present embodiment, the lateral outer surface 42a of the second flange 18 is a surface parallel to the vertical direction in the natural state, and as described above, the second flange 18 is inserted into the corresponding maximum diameter tube Tmax. Then, the side outer surface 42a and the inner wall I abut each other in a state of being substantially parallel. As a result, the frictional force between the side outer surface 42a and the inner wall I is improved, and the multi-cap 10 is prevented from floating.
 さらに、本実施形態では、第2フランジ18の先端部には、側方外側面42aの上側に連通し、側方及び上方を向く斜面42bが形成されている(図5参照)。チューブTの中には、内壁Iから内側に突出する突出部が設けられている場合がある。当該突出部は、チューブTの内壁Iの全周に亘って延びる突条部である場合もある。第2フランジ18に斜面42bが設けられることで、内壁Iに設けられた突出部に第2フランジ18の側方端がより引っ掛かりやすくなっている。第2フランジ18が突出部に引っ掛かることで、マルチキャップ10の浮き上がりが抑制される。 Furthermore, in the present embodiment, the tip of the second flange 18 is formed with an inclined surface 42b that communicates with the upper side of the lateral outer surface 42a and faces laterally and upward (see FIG. 5). In some cases, the tube T is provided with a protrusion that protrudes inward from the inner wall I. As shown in FIG. The protruding part may be a ridge extending all the way around the inner wall I of the tube T. As shown in FIG. Since the second flange 18 is provided with the inclined surface 42b, the side end of the second flange 18 is more likely to be caught by the protrusion provided on the inner wall I. As shown in FIG. The multi-cap 10 is prevented from floating by the second flange 18 being caught by the protruding portion.
 <<対応最小径チューブTminに取り付けられた場合>>
 マルチキャップ10が対応最小径チューブTminに取り付けられた場合、第1フランジ16及び第2フランジ18の想定外の変形、及び、圧縮空気による内圧が浮き上がりの要因となる。圧縮空気の内圧に対しては、支柱14の内部空間14a及びキャップ頭部12の内部空間12cにより、対応最小径チューブTmin内の空間の体積が増加し、対応最小径チューブTminの内圧が低減され、マルチキャップ10の浮き上がりが抑制されることは、マルチキャップ10が対応最大径チューブTmaxに取り付けられた場合と同様である。
<<When attached to the compatible minimum diameter tube Tmin>>
When the multi-cap 10 is attached to the corresponding minimum diameter tube Tmin, the unexpected deformation of the first flange 16 and the second flange 18 and the internal pressure due to the compressed air cause the lifting. With respect to the internal pressure of the compressed air, the internal space 14a of the strut 14 and the internal space 12c of the cap head 12 increase the volume of the space within the corresponding minimum diameter tube Tmin, thereby reducing the internal pressure of the corresponding minimum diameter tube Tmin. , the suppression of floating of the multi-cap 10 is the same as in the case where the multi-cap 10 is attached to the corresponding maximum diameter tube Tmax.
 第1フランジ16及び第2フランジ18の想定外の変形に対しては、姿勢保持機能及び止水機能の説明で述べた通り、第1フランジ16については、スリット30あるいは溝32の作用により、その想定外の変形が抑制され、第2フランジ18については、全体としてお椀形状を呈していること、あるいは支柱14の弾性変形によって、その想定外の変形が抑制される。このように第1フランジ16及び第2フランジ18の想定外の変形が抑制されることで、マルチキャップ10の浮き上がりが抑制される。 With respect to unexpected deformation of the first flange 16 and the second flange 18, as described in the explanation of the posture maintaining function and the water stopping function, the first flange 16 is protected by the action of the slit 30 or the groove 32. Unexpected deformation is suppressed, and the unexpected deformation of the second flange 18 is suppressed by the bowl shape as a whole or by the elastic deformation of the strut 14 . By suppressing unexpected deformation of the first flange 16 and the second flange 18 in this way, the multi-cap 10 is suppressed from floating.
 <マルチキャップの作用(挿入力低減)>
 マルチキャップ10をチューブTに取り付ける(支柱14、第1フランジ16、及び第2フランジ18をチューブT内に挿入する)際に挿入力が問題になるのは専ら比較的径が小さいチューブTにマルチキャップ10が取り付けられる場合である。したがって、ここでは、マルチキャップ10を対応最小径チューブTminに取り付ける場合について説明する。
<Function of multi-cap (reduction of insertion force)>
When attaching the multi-cap 10 to the tube T (inserting the strut 14, the first flange 16, and the second flange 18 into the tube T), the insertion force becomes a problem only when the tube T has a relatively small diameter. This is the case when the cap 10 is attached. Therefore, here, the case of attaching the multi-cap 10 to the corresponding minimum diameter tube Tmin will be described.
 マルチキャップ10の挿入力は、第1フランジ16及び第2フランジ18の変形のし易さによって決定される。 The insertion force of the multi-cap 10 is determined by how easily the first flange 16 and the second flange 18 deform.
 第1フランジ16については、スリット30の作用により、想定外の変形が抑制されつつ、より変形し易くなっている。すなわち、スリット30によってマルチキャップ10の挿入力が低減されている。また、溝32が第1フランジ16の上方変形を促している。すなわち、溝32により第1フランジ16が変形し易くなっているため、溝32によってもマルチキャップ10の挿入力が低減されている。 With regard to the first flange 16, due to the action of the slit 30, unexpected deformation is suppressed and it is easier to deform. That is, the slit 30 reduces the insertion force of the multi-cap 10 . Also, the groove 32 promotes upward deformation of the first flange 16 . That is, since the first flange 16 is easily deformed by the grooves 32, the insertion force of the multi-cap 10 is reduced by the grooves 32 as well.
 第2フランジ18の内周部40は、その伸長方向に起因して、外周部42よりも上方変形し難くなっている。したがって、マルチキャップ10を対応最小径チューブTminに取り付けるために、内周部40を大きく上方変形させる必要があるならば、大きい挿入力が必要となると言える。しかしながら、本実施形態では、第2フランジ18の内周部40の径L3(図5参照)は、対応最小径チューブTminの径よりも小さくなっている。したがって、第2フランジ18が対応最小径チューブTminに挿入された場合でも、内周部40は内壁Iまで達せず、内周部40が大きく上方変形しなくても、マルチキャップ10を対応最小径チューブTminに取り付けることができる。このように、内周部40の径L3が対応最小径チューブTminの径よりも小さいことによってもマルチキャップ10の挿入力が低減されている。 The inner peripheral portion 40 of the second flange 18 is more difficult to deform upward than the outer peripheral portion 42 due to its extension direction. Therefore, if the inner circumferential portion 40 needs to be largely deformed upward in order to attach the multi-cap 10 to the corresponding minimum diameter tube Tmin, it can be said that a large insertion force is required. However, in this embodiment, the diameter L3 (see FIG. 5) of the inner peripheral portion 40 of the second flange 18 is smaller than the diameter of the corresponding minimum diameter tube Tmin. Therefore, even when the second flange 18 is inserted into the corresponding minimum diameter tube Tmin, the inner peripheral portion 40 does not reach the inner wall I, and even if the inner peripheral portion 40 does not largely deform upward, the multi-cap 10 can be moved to the corresponding minimum diameter tube. It can be attached to the tube Tmin. Thus, the force for inserting the multi-cap 10 is also reduced because the diameter L3 of the inner peripheral portion 40 is smaller than the diameter of the corresponding minimum diameter tube Tmin.
 <マルチキャップの作用(その他の機能)>
 マルチキャップ10は、上述の構造を有していることで、上記の機能以外の機能も発揮する。例えば、マルチキャップ10は、平面視においてチューブTの中央にマルチキャップ10を寄せるセンタリング機能を発揮する。具体的には、第2フランジ18が全体としてお椀形状を有していることで、センタリング機能が発揮される。詳しくは、第2フランジ18がセンターずれした状態で開口部OからチューブT内に挿入されると、第2フランジ18の下面が開口部Oの縁に当接する。このとき、第2フランジ18がお椀形状を有しているから、第2フランジ18は、開口部Oの縁からチューブTの中心側へ向かう力を受けることになる。当該力によってマルチキャップ10がチューブTの中心側に寄せられる。
<Action of Multicap (other functions)>
By having the structure described above, the multi-cap 10 exhibits functions other than those described above. For example, the multi-cap 10 exhibits a centering function of bringing the multi-cap 10 closer to the center of the tube T in plan view. Specifically, since the second flange 18 has a bowl shape as a whole, the centering function is exhibited. Specifically, when the second flange 18 is inserted into the tube T through the opening O in a state where the second flange 18 is shifted from the center, the lower surface of the second flange 18 contacts the edge of the opening O. As shown in FIG. At this time, since the second flange 18 has a bowl shape, the second flange 18 receives a force from the edge of the opening O toward the center of the tube T. As shown in FIG. The multi-cap 10 is pushed toward the center of the tube T by this force.
 また、上述の通り、マルチキャップ10が有する種々の構成によって、マルチキャップ10の想定外の変形が抑制されている。これは、マルチキャップ10の個体差間の寸法ばらつきによる、マルチキャップ10の変形の個体差を吸収する個体差抑制機能を発揮することになる。例えば、第1フランジ16にスリット30が設けられていることで、第1フランジ16の径L1の寸法に多少ばらつきがあったとしても、どのマルチキャップ10でも第1フランジ16を想定内の変形をさせることができる。第2フランジ18についても、第2フランジ18が上述の形状を有しており、且つ、支柱14と連動して変形することで、第2フランジ18の径L2の寸法に多少ばらつきがあったとしても、どのマルチキャップ10でも第2フランジ18を想定内の変形をさせることができる。 Also, as described above, the various configurations of the multi-cap 10 suppress unexpected deformation of the multi-cap 10 . This exerts an individual difference suppressing function that absorbs individual differences in deformation of the multi-cap 10 due to dimensional variations among individual multi-caps 10 . For example, since the slit 30 is provided in the first flange 16, even if there is some variation in the diameter L1 of the first flange 16, the first flange 16 can be deformed as expected in any multi-cap 10. can be made Regarding the second flange 18 as well, it is assumed that the second flange 18 has the above-described shape and that the dimension of the diameter L2 of the second flange 18 has some variation due to deformation in conjunction with the support 14. Also, any multi-cap 10 can cause the second flange 18 to deform as expected.
 以上、本発明に係る実施形態を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments according to the present invention have been described above, the present invention is not limited to the above embodiments, and various modifications are possible without departing from the gist of the present invention.
 10 マルチキャップ、12 キャップ頭部、14 支柱、16 第1フランジ、18 第2フランジ、30 スリット、32 溝、40 内周部、42 外周部。 10 multi-cap, 12 cap head, 14 strut, 16 first flange, 18 second flange, 30 slit, 32 groove, 40 inner circumference, 42 outer circumference.

Claims (7)

  1.  キャップ頭部から下方へ向かって伸長し、伸長方向に対する垂直断面の外形が円形である支柱であって、中空であり、側方からの力によって弾性変形可能な支柱と、
     前記支柱の側面から側方に突出してチューブの内壁に当接する第1フランジと、
     前記第1フランジよりも下方において、前記支柱の側面から側方に突出して前記チューブの内壁に当接する第2フランジであって、前記支柱側から側方へ向かうにつれて上側に伸びて、全体としてお椀形状を呈する第2フランジと、
     を備えることを特徴とするチューブ用フランジ付きマルチキャップ。
    a support that extends downward from the cap head and has a circular outer shape in a cross section perpendicular to the direction of elongation, the support being hollow and elastically deformable by a force from the side;
    a first flange that protrudes laterally from the side surface of the support and contacts the inner wall of the tube;
    Below the first flange, a second flange that protrudes laterally from the side surface of the support and contacts the inner wall of the tube, and extends upward as it goes laterally from the support side to form a bowl as a whole. a shaped second flange;
    A flanged multi-cap for tubes, comprising:
  2.  前記支柱は、下方に開放した形状を有している、
     ことを特徴とする請求項1に記載のチューブ用フランジ付きマルチキャップ。
    The strut has a downwardly open shape,
    The flanged multi-cap for tubes according to claim 1, characterized in that:
  3.  前記支柱の側壁は、下端側に近づく程肉薄となっている、
     ことを特徴とする請求項2に記載のチューブ用フランジ付きマルチキャップ。
    The side wall of the support column becomes thinner toward the lower end side,
    The flanged multi-cap for tubes according to claim 2, characterized in that:
  4.  前記第2フランジは、前記支柱側の部分である内周部、及び、前記内周部よりも側方側の部分である外周部を有し、
     前記内周部は、径方向断面において第1方向に伸長し、
     前記外周部は、径方向断面において前記第1方向に対して上側に折れ曲がった第2方向に伸長する、
     ことを特徴とする請求項1に記載のチューブ用フランジ付きマルチキャップ。
    The second flange has an inner peripheral portion that is a portion on the support side and an outer peripheral portion that is a portion on the side of the inner peripheral portion,
    the inner peripheral portion extends in a first direction in a radial cross section;
    The outer peripheral portion extends in a second direction bent upward with respect to the first direction in a radial cross section,
    The flanged multi-cap for tubes according to claim 1, characterized in that:
  5.  前記外周部の側方外側面は、自然状態において上下方向に平行な面である、
     ことを特徴とする請求項4に記載のチューブ用フランジ付きマルチキャップ。
    The lateral outer surface of the outer peripheral portion is a surface parallel to the vertical direction in a natural state,
    The flanged multi-cap for tubes according to claim 4, characterized in that:
  6.  前記外周部の先端部には、前記側方外側面の上側に連通し、側方及び上方を向く斜面が形成されている、
     ことを特徴とする請求項5に記載のチューブ用フランジ付きマルチキャップ。
    At the tip of the outer peripheral portion, a slope communicating with the upper side of the side outer surface and facing sideways and upward is formed.
    The flanged multi-cap for tubes according to claim 5, characterized in that:
  7.  前記第2フランジは、前記チューブに注入された試料の漏れを抑制する止水機能を発揮する、
     ことを特徴とする請求項1に記載のチューブ用フランジ付きマルチキャップ。
    The second flange exhibits a water stop function that suppresses leakage of the sample injected into the tube,
    The flanged multi-cap for tubes according to claim 1, characterized in that:
PCT/JP2022/032405 2021-11-19 2022-08-29 Multi-cap with flange for tube WO2023089900A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280053443.XA CN117751080A (en) 2021-11-19 2022-08-29 Multifunctional cover with flange for pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021188945A JP2023075807A (en) 2021-11-19 2021-11-19 Multi-cap with flange for tube
JP2021-188945 2021-11-19

Publications (1)

Publication Number Publication Date
WO2023089900A1 true WO2023089900A1 (en) 2023-05-25

Family

ID=86396649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/032405 WO2023089900A1 (en) 2021-11-19 2022-08-29 Multi-cap with flange for tube

Country Status (3)

Country Link
JP (1) JP2023075807A (en)
CN (1) CN117751080A (en)
WO (1) WO2023089900A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535213A (en) * 1999-01-27 2002-10-22 コールター インターナショナル コーポレイション Sealing lid for multiple penetrations
JP2004189265A (en) * 2002-12-10 2004-07-08 Teruaki Ito Plug for tubelike specimen container
JP2009001289A (en) * 2007-06-19 2009-01-08 Kobe Bio Robotix Kk Container with lid and lid attaching/detaching system
JP2013507300A (en) * 2009-10-09 2013-03-04 キアゲン Closure and method of using the same
JP2014507342A (en) * 2011-01-19 2014-03-27 シュティバ ホルディンク ゲゼルシャフト ミット ベシュレンクテル ハフツング Universal closure device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535213A (en) * 1999-01-27 2002-10-22 コールター インターナショナル コーポレイション Sealing lid for multiple penetrations
JP2004189265A (en) * 2002-12-10 2004-07-08 Teruaki Ito Plug for tubelike specimen container
JP2009001289A (en) * 2007-06-19 2009-01-08 Kobe Bio Robotix Kk Container with lid and lid attaching/detaching system
JP2013507300A (en) * 2009-10-09 2013-03-04 キアゲン Closure and method of using the same
JP2014507342A (en) * 2011-01-19 2014-03-27 シュティバ ホルディンク ゲゼルシャフト ミット ベシュレンクテル ハフツング Universal closure device

Also Published As

Publication number Publication date
JP2023075807A (en) 2023-05-31
CN117751080A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
JP5775059B2 (en) Pipette tip
EP2341268A1 (en) Gasket
JP5554717B2 (en) Vial cap, tube member and fluid transfer system
US11367924B2 (en) Pressure-relief cover for reducing pressure arising in a cell-like cavity, such as a battery cell
US9426912B2 (en) Gasket
WO2023089900A1 (en) Multi-cap with flange for tube
WO2023089901A1 (en) Flanged multicap for tube
KR20140078703A (en) Hose clamp
WO2014008657A1 (en) T-style, push-on, non-contacting fiber optic connector dust cap
US11712101B2 (en) Replacement type container
US7675223B2 (en) Clip
JP5896906B2 (en) Plug
JP2020104911A (en) Cap for bottle mouth
KR100575259B1 (en) One touch-type stopper and a container having the same
CN110023200B (en) Cap for container
JP6022813B2 (en) Dispensing container
EP3842362A1 (en) Refillable container
JP3226342U (en) Seal cap
JP5479045B2 (en) Container with cap
JP7271974B2 (en) Separation vessel kit
JP4916004B2 (en) Powder injector
KR200362321Y1 (en) Cap for sharp pencil
JP2007313203A (en) Blood collection holder
JPH0143697Y2 (en)
KR200331125Y1 (en) One touch-type stopper and a container having the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053443.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE