Nothing Special   »   [go: up one dir, main page]

WO2022230601A1 - 超音波診断装置および超音波診断装置の制御方法 - Google Patents

超音波診断装置および超音波診断装置の制御方法 Download PDF

Info

Publication number
WO2022230601A1
WO2022230601A1 PCT/JP2022/016591 JP2022016591W WO2022230601A1 WO 2022230601 A1 WO2022230601 A1 WO 2022230601A1 JP 2022016591 W JP2022016591 W JP 2022016591W WO 2022230601 A1 WO2022230601 A1 WO 2022230601A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
transducers
patches
probe
scanning
Prior art date
Application number
PCT/JP2022/016591
Other languages
English (en)
French (fr)
Inventor
雅史 野口
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP22795517.6A priority Critical patent/EP4331498A4/en
Priority to JP2023517216A priority patent/JPWO2022230601A1/ja
Priority to CN202280030579.9A priority patent/CN117241736A/zh
Publication of WO2022230601A1 publication Critical patent/WO2022230601A1/ja
Priority to US18/496,812 priority patent/US20240050071A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8925Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being a two-dimensional transducer configuration, i.e. matrix or orthogonal linear arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/8927Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array using simultaneously or sequentially two or more subarrays or subapertures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • G01S7/52026Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52046Techniques for image enhancement involving transmitter or receiver
    • G01S7/52047Techniques for image enhancement involving transmitter or receiver for elimination of side lobes or of grating lobes; for increasing resolving power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • G01S7/5208Constructional features with integration of processing functions inside probe or scanhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences

Definitions

  • the present invention relates to an ultrasonic diagnostic apparatus that performs both two-dimensional scanning and three-dimensional scanning, and a control method for the ultrasonic diagnostic apparatus.
  • an ultrasonic diagnostic apparatus equipped with an ultrasonic probe that includes a two-dimensional transducer array in which a plurality of transducers are arranged in the so-called azimuth direction and the so-called elevation direction.
  • a two-dimensional transducer array includes a very large number of transducers, so it is difficult to draw out signal lines from all the transducers of the two-dimensional transducer array to the main body of the device.
  • a plurality of transducers constituting a two-dimensional transducer array are divided into a plurality of patches each having a plurality of transducers in the azimuth direction and the elevation direction. Forming is often performed, and this has been a factor in degrading the image quality of the two-dimensional ultrasound image obtained by two-dimensional scanning. Therefore, in order to improve the image quality of two-dimensional ultrasonic images, an ultrasonic diagnostic apparatus as disclosed in Patent Document 1 has been developed.
  • one row of transducers in the elevation direction of the two-dimensional transducer array that is, the number of transducers in the elevation direction of the two-dimensional transducer array is N, and 1 ⁇ N transducers are used as one patch. controlling.
  • the present invention has been made to solve such conventional problems, and an ultrasonic diagnostic apparatus and a control method for the ultrasonic diagnostic apparatus that can improve the image quality of two-dimensional ultrasonic images and three-dimensional ultrasonic images. intended to provide
  • an ultrasonic diagnostic apparatus that performs both two-dimensional scanning and three-dimensional scanning, comprising an ultrasonic probe and a device connected to the ultrasonic probe.
  • the ultrasonic probe includes a two-dimensional transducer array in which a plurality of transducers are arranged in elevation and azimuth directions, and at least one of the two-dimensional transducer array when two-dimensional scanning is performed.
  • a plurality of transducers in the section are divided into a plurality of patches in which two or more transducers are arranged in the elevation direction.
  • a patch division circuit that divides an element into a plurality of patches in which two or more transducers are arranged in the azimuth direction; and a plurality of probe beamformers corresponding to the plurality of patches divided by the patch division circuit.
  • the main beamformer is characterized by performing beamforming of transmitted and received signals for a plurality of patches.
  • the main body beamformer includes a transmitter circuit and a receiver circuit respectively connected to a plurality of probe beamformers, and the device main body includes an image generator connected to the receiver circuit for generating ultrasonic waves from at least a portion of the plurality of transducers.
  • a transmission signal is supplied from a transmission circuit to two or more transducers in a plurality of patches via a plurality of probe beamformers, and ultrasonic echoes are received by at least a portion of the plurality of transducers.
  • received signals are supplied to the image generator from two or more transducers in multiple patches via multiple probe beamformers and receiver circuits.
  • the image generator performs two-dimensional scanning to generate a two-dimensional ultrasonic image based on a received signal supplied via a receiving circuit of the main body beamformer, and performs three-dimensional scanning to perform reception of the main body beamformer.
  • a three-dimensional ultrasound image is preferably generated based on the received signals supplied via the circuit.
  • Transducers having a first number of transducers equal to or less than the number of transducers in the elevation direction of the two-dimensional transducer array are arranged in the elevation direction, and transducers in the azimuth direction of the two-dimensional transducer array are arranged in the azimuth direction.
  • a sweep circuit that selects, as at least a part of the plurality of transducers, a plurality of transducers included in the aperture in which the transducers having a second number of transducers smaller than the number of transducers are arranged; , two-dimensional scanning and three-dimensional scanning can be performed using the vibrator in the aperture while sweeping the aperture in the azimuth direction by a sweep circuit.
  • the patch dividing circuit divides the plurality of oscillators included in the opening into elevators when two-dimensional scanning is performed. is divided into a plurality of patches in which K transducers, which is a divisor of M, are arranged in the azimuth direction. It can be divided into a plurality of patches in which L oscillators, which are divisors, are arranged.
  • the plurality of probe beamformers are connected to the patch division circuit, the patch division circuit is connected to the sweep circuit, the sweep circuit is connected to the plurality of transducers of the two-dimensional transducer array, and from the plurality of transducers, the aperture You can directly select multiple oscillators included in .
  • the sweep circuit is connected to the plurality of probe beamformers, the plurality of probe beamformers are connected to the patch division circuit, the patch division circuit is connected to the plurality of transducers of the two-dimensional transducer array, and the sweep circuit is can select a plurality of transducers included in the aperture by selecting a part of probe beamformers from a plurality of probe beamformers.
  • the body beamformer applies transmit and receive signals to a plurality of patches so that ultrasonic waves transmitted and received from the two-dimensional transducer array are steered in the elevation direction when three-dimensional scanning is performed. Delayed beamforming can be performed. In this case, the body beamformer beamforms the transmit and receive signals for a plurality of patches so that the range of steering angles of the ultrasonic waves is asymmetrical in the elevation direction when three-dimensional scanning is performed. It can be performed.
  • the beamformer is configured to transmit and receive signals for a plurality of patches so as to change the distance between the steering angles of the ultrasonic waves according to the absolute value of the steering angle when three-dimensional scanning is performed. Forming can be done.
  • the apparatus main body can include a scanning control section that controls scanning so as to alternately perform two-dimensional scanning and three-dimensional scanning.
  • the scanning control unit arranges the plurality of scanning lines in the three-dimensional scanning into the plurality of groups so that the scanning lines adjacent in the azimuth direction of the three-dimensional scanning belong to different groups. and controlling a plurality of probe beamformers so that each divided group is scanned, and three-dimensional scanning is performed every time three-dimensional scanning of at least one divided group is completed. It is possible to switch to two-dimensional scanning.
  • the two-dimensional transducer array preferably has a width in the azimuth direction that is 2.5 times or more the width in the elevation direction.
  • the apparatus main body includes an input device for a user to perform an input operation, an observation target selection section for selecting an observation target based on the user's input operation via the input device, and a main body beamformer for performing three-dimensional scanning.
  • an observation target detection unit that detects the observation target selected by the observation target selection unit based on the received signal supplied via the observation target detection unit.
  • the image generation section can generate a three-dimensional ultrasound image of the observation target by performing volume rendering on the observation target detected by the observation target detection section.
  • the device body includes a monitor that displays the two-dimensional ultrasound image and the three-dimensional ultrasound image generated by the image generation unit, and the monitor can display the three-dimensional ultrasound image superimposed on the two-dimensional ultrasound image.
  • the image generation section can generate a three-dimensional ultrasound image by reducing the received signals of portions other than the portion corresponding to the observation target detected by the observation target detection section.
  • the multiple probe beamformers can beamform the transmitted signal by applying delays to the transmitted signal for two or more transducers in the multiple patches. Also, the plurality of probe beamformers can perform beamforming of transmission signals by transmitting transmission signals to which no delay is added to two or more transducers in a plurality of patches.
  • the plurality of probe beamformers can beamform received signals by applying delays to the received signals for two or more transducers in the plurality of patches. Further, the plurality of probe beamformers can perform beamforming of the received signals by transmitting to the body beamformer the undelayed received signals received from two or more transducers in the plurality of patches.
  • a control method for an ultrasonic diagnostic apparatus includes an ultrasonic probe including a two-dimensional transducer array in which a plurality of transducers are arranged in an elevation direction and an azimuth direction, respectively, and an apparatus body connected to the ultrasonic probe. and a control method for an ultrasonic diagnostic apparatus that performs both two-dimensional scanning and three-dimensional scanning, wherein when performing two-dimensional scanning, a plurality of transducers are arranged in the elevation direction by two or more transducers.
  • a plurality of transducers are divided into a plurality of patches in which two or more transducers are arranged in the azimuth direction, and in the ultrasonic probe, a plurality of beamforming of the transmission signal and the reception signal is performed for two or more transducers in the patch, and beamforming of the transmission signal and the reception signal is performed for the plurality of patches in the main body of the device.
  • an ultrasonic diagnostic apparatus is an ultrasonic diagnostic apparatus that performs both two-dimensional scanning and three-dimensional scanning, and includes an ultrasonic probe and a device main body connected to the ultrasonic probe.
  • the acoustic probe includes a two-dimensional transducer array in which a plurality of transducers are arranged in the elevation direction and the azimuth direction, respectively, and two or more transducers arranged in the elevation direction when performing two-dimensional scanning.
  • a patch dividing circuit that divides the plurality of transducers into a plurality of patches in which the transducers are arranged and, when three-dimensional scanning is performed, divides the plurality of transducers into a plurality of patches in which two or more transducers are arranged in the azimuth direction; and a plurality of probe beamformers corresponding to the plurality of patches divided by the patch division circuit, wherein the apparatus main body includes a main body beamformer connected to the plurality of probe beamformers of the ultrasonic probe, and the plurality of probe beamformers performs beamforming of transmission and reception signals for two or more transducers in a plurality of patches, and the main beamformer performs beamforming of transmission and reception signals for a plurality of patches.
  • the image quality of 1D ultrasound images and 3D ultrasound images can be improved.
  • FIG. 1 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to Embodiment 1 of the present invention
  • FIG. FIG. 4 is a diagram schematically showing an example of patches for two-dimensional scanning according to Embodiment 1 of the present invention
  • FIG. 4 is a diagram schematically showing an example of patches for three-dimensional scanning according to Embodiment 1 of the present invention
  • 2 is a block diagram showing the configuration of a transmission circuit according to Embodiment 1 of the present invention
  • FIG. 1 is a block diagram showing the configuration of a receiving circuit according to Embodiment 1 of the present invention
  • FIG. 3 is a block diagram showing the configuration of an image generator in Embodiment 1 of the present invention
  • FIG. 4 is a diagram schematically showing temporal timings of two-dimensional scanning and three-dimensional scanning in Embodiment 1 of the present invention;
  • FIG. 4 is a diagram schematically showing grouped scanning lines in Embodiment 1 of the present invention;
  • FIG. 3 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to Embodiment 2 of the present invention;
  • FIG. 10 is a diagram schematically showing openings in Embodiment 2 of the present invention;
  • 3 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to Embodiment 3 of the present invention;
  • FIG. FIG. 12 is a block diagram showing the configuration of an ultrasonic diagnostic apparatus according to Embodiment 4 of the present invention;
  • FIG. 1 shows the configuration of an ultrasonic diagnostic apparatus 1 according to an embodiment of the present invention.
  • An ultrasound diagnostic apparatus 1 includes an ultrasound probe 2 and an apparatus main body 3 connected to the ultrasound probe 2 .
  • the ultrasonic probe 2 and the device main body 3 are connected to each other by a cable.
  • the ultrasonic probe 2 has a two-dimensional transducer array 11, and a patch division circuit 12 is connected to the two-dimensional transducer array 11.
  • a plurality of probe beamformers 13 are connected to the patch division circuit 12 .
  • signal lines are drawn out from each of the plurality of probe beamformers 13 . These multiple signal lines pass through a cable connecting the ultrasonic probe 2 and the device main body 3 to each other and extend toward the device main body 3 side.
  • the device main body 3 includes a transmission/reception switching circuit 14 connected to a plurality of probe beamformers 13 of the ultrasonic probe 2 by a plurality of signal lines passing through cables connecting the ultrasonic probe 2 and the device main body 3 to each other. .
  • a transmission circuit 15 and a reception circuit 16 are connected to the transmission/reception switching circuit 14 .
  • the transmission/reception switching circuit 14, the transmission circuit 15, and the reception circuit 16 constitute a main body beamformer 25.
  • An image generator 17 , a display controller 18 and a monitor 19 are connected in sequence to the receiver circuit 16 .
  • a memory 24 is also connected to the receiving circuit 16 .
  • the apparatus main body 3 also includes a scan control section 20 connected to the patch division circuit 12 of the ultrasonic probe 2 , a plurality of probe beamformers 13 , and the main body beamformer 25 of the apparatus main body 3 .
  • a body control unit 21 is connected to the image generation unit 17 , the display control unit 18 and the scanning control unit 20 .
  • An input device 22 is also connected to the body control section 21 .
  • a processor 23 for the device main body 3 is configured by the image generation section 17, the display control section 18, the scanning control section 20, and the main body control section 21.
  • the two-dimensional transducer array 11 has a plurality of transducers 11A arranged in the elevation direction and the azimuth direction, respectively, as shown in FIGS. 2 and 3, for example. These transducers 11A transmit ultrasonic waves according to transmission signals supplied from the transmission circuit 15, receive ultrasonic echoes from the subject, and output signals based on the ultrasonic echoes.
  • the vibrator 11A includes, for example, a piezoelectric ceramic typified by PZT (Lead Zirconate Titanate), a polymeric piezoelectric element typified by PVDF (Poly Vinylidene Di Fluoride), and PMN-PT ( Lead Magnesium Niobate-Lead Titanate: a solid solution of lead magnesium niobate-lead titanate).
  • PZT Lead Zirconate Titanate
  • PVDF Poly Vinylidene Di Fluoride
  • PMN-PT Lead Magnesium Niobate-Lead Titanate: a solid solution of lead magnesium niobate-lead titanate
  • the azimuth direction is described as the X direction
  • the elevation direction is described as the Y direction.
  • the azimuth direction is sometimes called the X direction
  • the elevation direction is sometimes called the Y direction.
  • a direction orthogonal to both the azimuth direction and the elevation direction is sometimes called the Z direction.
  • the patch division circuit 12 divides the plurality of transducers 11A (sub-arrays), which are at least part of the transducers 11A of the two-dimensional transducer array 11, into two or more transducers in the elevation direction. 11A are divided into a plurality of patches. Further, when three-dimensional scanning is performed, the patch dividing circuit 12 divides at least a part of the plurality of transducers 11A (sub-arrays) out of the transducers 11A of the two-dimensional transducer array 11 by two or more in the azimuth direction. are divided into a plurality of patches in which the transducers 11A are arranged.
  • the patch dividing circuit 12 divides the plurality of transducers 11A into a plurality of patches P1 in which the plurality of transducers 11A are arranged in the elevation direction as shown in FIG. can. Also, when three-dimensional scanning is performed, the patch dividing circuit 12 can divide the plurality of transducers 11A into a plurality of patches P2 in which the plurality of transducers 11A are arranged in the azimuth direction, as shown in FIG. .
  • two-dimensional scanning is to obtain two-dimensional information about the tomographic plane of the observation target by scanning the tomographic plane of the observation target along one scanning plane, for example, as shown in FIG. .
  • three-dimensional scanning means that a plurality of tomographic planes of an observation target are scanned along a plurality of scanning planes while the scanning plane is steered in the elevation direction, that is, tilted in the elevation direction, as shown in FIG. to obtain three-dimensional information of the object to be observed.
  • a patch is a control unit for a plurality of transducers 11A.
  • a patch may include two or more transducers 11A.
  • the patch P1 for two-dimensional scanning shown in FIG. 11A can be controlled collectively.
  • the three-dimensional scanning patch P2 shown in FIG. 3 includes a plurality of transducers 11A arranged in a row in the azimuth direction in the two-dimensional transducer array 11, and the plurality of transducers 11A included in the patch P2. can be controlled collectively.
  • the ultrasonic probe 2 includes probe beamformers 13 whose number is smaller than the total number of transducers 11A that constitute the two-dimensional transducer array 11 .
  • the plurality of probe beamformers 13 correspond to the plurality of patches P1 and P2 divided by the patch division circuit 12, and the received signals received from the plurality of transducers 11A included in each of the patches P1 and P2 and the transmitted signals. Beamforming may be performed on the transmit signal provided from circuit 15 .
  • the plurality of probe beamformers 13 perform beamforming for each transmission signal so that ultrasonic beams are transmitted in a specific direction from the transducers 11A of the patches P1 and P2. A delay can be given.
  • the plurality of probe beamformers 13 perform beamforming on the transmission signal without adding a delay to the transmission signal, that is, by transmitting the transmission signal without delay to the plurality of transducers 11A of the patches P1 and P2. By transmitting to the transducers 11A of the patches P1 and P2, ultrasonic beams traveling straight in the Z direction can be transmitted from the transducers 11A of the patches P1 and P2.
  • the plurality of probe beamformers 13 perform beamforming on the received signals such that the transducers 11A of the patches P1 and P2 receive ultrasonic echoes propagating from specific directions. A delay can be given.
  • the plurality of probe beamformers 13 perform beamforming on the received signals without adding delays to the received signals, that is, without adding delays received from the plurality of transducers 11A in the patches P1 and P2. By transmitting the received signal to the main body beamformer 25 as it is, the transducers 11A of the respective patches P1 and P2 can receive ultrasonic echoes traveling straight in the Z direction.
  • the body beamformer 25 is connected to a plurality of probe beamformers 13 via a plurality of signal lines (not shown) passing through cables connecting the ultrasonic probe 2 and the device body 3 to each other, and is divided by the patch dividing circuit 12. Beamforming is performed on the transmit and receive signals of a plurality of patches P1 and P2.
  • the main body beamformer 25 includes a transmission/reception switching circuit 14, a transmission circuit 15, and a reception circuit 16, as shown in FIG.
  • the transmission circuit 15 performs beamforming on the transmission signals of the patches P1 and P2 under the control of the scanning control unit 20, and performs two-dimensional vibration through the transmission/reception switching circuit 14, the plurality of probe beamformers 13, and the patch division circuit 12.
  • a transmission signal is transmitted to the child array 11 .
  • the transmission circuit 15 has a transmission signal generation circuit 31 connected to the transmission/reception switching circuit 14 and a delay signal generation circuit 32 connected to the transmission signal generation circuit 31, as shown in FIG.
  • the delay signal generation circuit 32 is controlled by the scanning control unit 20 so as to converge the ultrasonic waves transmitted from the transducer array 11 to a position corresponding to the transmission focal length, that is, for beamforming of the transmission signal. Then, a transmission delay signal is generated for delaying the timing at which each transducer 11A of the transducer array 11 is driven.
  • the transmission signal generation circuit 31 includes, for example, a plurality of pulse generators, and under the control of the scanning control unit 20, based on transmission delay signals generated by the delay signal generation circuit 32, the plurality of transducers 11A.
  • a transmission signal is generated which is a drive signal for the .
  • the transmission signal generating circuit 31 generates a beam-formed transmission signal according to the transmission delay signal.
  • the transmission signal generation circuit 31 supplies transmission signals to the plurality of transducers 11A of the two-dimensional transducer array 11 via the transmission/reception switching circuit 14, the plurality of probe beamformers 13, and the patch division circuit 12.
  • the receiving circuit 16 beamforms the received signals of the patches P1 and P2, that is, the received signals received from the plurality of probe beamformers 13 via the transmission/reception switching circuit 14 under the control of the scanning control unit 20 .
  • the receiving circuit 16, as shown in FIG. It has a phasing addition circuit 35 .
  • the amplifier circuit 33 amplifies the reception signal input from each transducer 11A that configures the two-dimensional transducer array 11 and transmits the amplified reception signal to the AD conversion circuit 33 .
  • the AD converter circuit 34 converts the received signal transmitted from the amplifier circuit 32 into a digital format.
  • the phasing and counting circuit 35 converges the ultrasonic echoes reflected at the respective observation points within the subject. A delay is given to the received signal, and the delayed received signal is added and synthesized for each observation point. As a result, the received signals of patches P1 and P2 are beamformed.
  • the transmission/reception switching circuit 14 is configured such that the plurality of probe beamformers 13 and the transmission circuits 15 are connected to each other, and the plurality of probe beamformers 13 and the reception circuits 16 are connected to each other. Toggle between The transmission/reception switching circuit 14 connects the plurality of probe beamformers 13 and the transmission circuit 15 to each other when the transmission circuit 15 beamforms the transmission signals of the patches P1 and P2. and P2, the plurality of probe beamformers 13 and the receiving circuit 16 are connected to each other.
  • the total number of the plurality of probe beamformers 13 is less than the total number of transducers 11A forming the two-dimensional transducer array 11. Therefore, the number of signal lines connected to the main body beamformer 25 through cables is also smaller than the total number of transducers 11A forming the two-dimensional transducer array 11 . Further, the main body beamformer 25 may or may not add delay to the transmission signals when beamforming the transmission signals of the plurality of patches P1 and P2. Further, the main body beamformer 25 may or may not add a delay to the received signals when performing beamforming on the received signals of the plurality of patches P1 and P2.
  • a two-dimensional transducer array generally includes a very large number of transducers, it was difficult to draw out signal lines from all the transducers of the two-dimensional transducer array to the main body of the device. Therefore, in an ultrasonic diagnostic apparatus having a two-dimensional transducer array, a plurality of transducers constituting the two-dimensional transducer array can be divided into a plurality of patches each having a plurality of transducers in the azimuth direction and the elevation direction. There were many.
  • the number of patches in the azimuth direction is greater than the number of transducers in the azimuth direction included in the two-dimensional transducer array. Therefore, the image quality of the obtained two-dimensional ultrasound image is degraded compared to the case where beamforming is performed on the transmission and reception signals of all the transducers in the azimuth direction included in the two-dimensional transducer array. I had a problem with it.
  • the patch P1 for two-dimensional scanning divided by the patch dividing circuit 12 has one transducer 11A in the azimuth direction, and the elevation of the two-dimensional transducer array 11 in the elevation direction. It has the same number of transducers 11A as the number of transducers 11A in the direction. Therefore, the number of patches P1 in the azimuth direction is the same as the number of transducers 11A included in the two-dimensional transducer array 11 in the azimuth direction.
  • the main body beamformer 25 performs beamforming on the transmission signals and the reception signals of the plurality of patches P1
  • the transmission signals and the reception signals of the transducers 11A of the two-dimensional transducer array 11 in the azimuth direction are Beamforming will be performed. Therefore, even if all the transducers 11A of the two-dimensional transducer array 11 and the main body beamformer 25 cannot be directly connected by a plurality of signal lines, a high-quality two-dimensional ultrasound image can be obtained.
  • the pitch D between the transducers adjacent to each other in the elevation direction is the distance between the centers of a pair of transducers adjacent to each other in the elevation direction.
  • the steer angle of the scanning plane is the inclination angle of the scanning plane in the YZ plane with the XZ plane being 0 degrees. can be negative.
  • sin(A) is a sine function whose phase is angle A
  • sin(B) is a sine function whose phase is angle B
  • is an absolute value symbol.
  • each patch effectively functions as one transducer. treated. Therefore, the pitch between transducers adjacent to each other in the elevation direction can be considered as the pitch between patches adjacent to each other in the elevation direction.
  • the pitch D becomes long, grating lobes are likely to occur.
  • an image called a grating lobe artifact is included in the obtained three-dimensional ultrasonic image, which hinders the user's interpretation of the three-dimensional ultrasonic image.
  • the number of patches in the elevation direction is smaller than the number of transducers in the elevation direction included in the two-dimensional transducer array. Therefore, when three-dimensional scanning is performed by performing beamforming using such a patch, beamforming is performed for transmission signals and reception signals of all transducers in the elevation direction included in the two-dimensional transducer array. There is a problem that the image quality of the obtained three-dimensional ultrasonic image is deteriorated compared to the case where it is performed.
  • the patch P2 for three-dimensional scanning divided by the patch dividing circuit 12 has one transducer 11A in the elevation direction, and the azimuth direction of the two-dimensional transducer array 11 in the azimuth direction. has the same number of transducers 11A as the number of transducers 11A in . Therefore, the number of patches P2 in the elevation direction is the same as the number of transducers 11A included in the two-dimensional transducer array 11 in the elevation direction. Also, the pitch D between the patches P2 in the elevation direction is the same as the pitch between the vibrators 11A adjacent to each other in the elevation direction.
  • the two-dimensional transducer array 11 is composed of a very large number of transducers 11A, and the pitch D between patches P2 in the elevation direction is sufficiently short. Therefore, grating lobes are less likely to occur even if all the transducers 11A of the two-dimensional transducer array 11 and the main body beamformer 25 cannot be directly connected by a plurality of signal lines.
  • the transmission signals and the reception signals of the respective transducers 11A in the elevation direction of the two-dimensional transducer array 11 are Beamforming will be performed. Therefore, even if all the transducers 11A of the two-dimensional transducer array 11 and the main body beamformer 25 cannot be directly connected by a plurality of signal lines, a high-quality three-dimensional ultrasound image can be obtained.
  • the image generation unit 17 has a configuration in which a signal processing unit 36, a DSC (Digital Scan Converter) 37, and an image processing unit 38 are connected in series.
  • the signal processing unit 36 uses the sound velocity value set by the main body control unit 21 with respect to the received signal received from the receiving circuit 16 to calculate the distance according to the depth of the reflection position of the ultrasonic wave. Attenuation correction by After that, the signal processing unit 36 performs envelope detection processing to generate a B-mode image signal, which is tomographic image information related to tissue within the subject, as a two-dimensional ultrasound image signal.
  • the signal processing unit 36 corrects the attenuation of the received signal received from the receiving circuit 16 and converts the envelope curve to a plurality of scanning sections in the same manner as in the two-dimensional scanning. detection processing. Further, the signal processing unit 36 performs so-called volume rendering processing on the obtained received signal. Thereby, the signal processing unit 36 generates a three-dimensional ultrasound image signal.
  • the DSC 37 converts (raster-converts) the two-dimensional ultrasonic image signal and the three-dimensional ultrasonic image signal generated by the signal processing unit 36 into image signals in accordance with a normal television signal scanning method.
  • the image processing unit 38 performs various necessary image processing such as gradation processing on the two-dimensional ultrasonic image signal and the three-dimensional ultrasonic image signal input from the DSC 37, and then converts the two-dimensional ultrasonic image signal and the three-dimensional ultrasonic image signal into three-dimensional ultrasonic image signals.
  • An ultrasonic image signal is sent to the display control unit 18 .
  • the two-dimensional ultrasonic image signal subjected to image processing by the image processing unit 38 is simply referred to as a two-dimensional ultrasonic image
  • the three-dimensional ultrasonic image signal subjected to image processing by the image processing unit 38 is simply referred to as 3 It is called a dimensional ultrasound image.
  • the scanning control unit 20 controls two-dimensional scanning and three-dimensional scanning performed in the ultrasonic diagnostic apparatus 1 by controlling the patch division circuit 12, the plurality of probe beamformers 13, and the main body beamformer 25.
  • the scanning control unit 20 can control scanning so that two-dimensional scanning and three-dimensional scanning are alternately performed. For example, as shown in FIG. 7, the scanning control unit 20 performs two-dimensional scanning S1 for obtaining a received signal corresponding to one frame of two-dimensional ultrasonic image, and a receiving signal corresponding to one frame of three-dimensional ultrasonic image. The scanning can be controlled so as to alternate with the three-dimensional scanning S2 for obtaining the signal.
  • a received signal corresponding to one frame of a two-dimensional ultrasonic image is obtained in section T1
  • a received signal corresponding to one frame of three-dimensional ultrasonic image is obtained in section T2
  • a new signal is obtained in section T3.
  • Scanning is controlled so that a received signal corresponding to one frame of a two-dimensional ultrasonic image is obtained, and a new received signal corresponding to one frame of a three-dimensional ultrasonic image is obtained in the interval T4.
  • the scanning control unit 20 transmits to the patch dividing circuit 12, for example, a signal representing the two-dimensional scanning S1 and a signal representing the three-dimensional scanning S2.
  • the patch dividing circuit 12 divides the plurality of transducers 11A based on the signal transmitted from the scanning control unit 20 so as to switch between the patch P1 for the two-dimensional scanning S1 and the patch P2 for the three-dimensional scanning S2.
  • the main body control section 21 controls each section of the device main body 3 according to a prerecorded program or the like. Under the control of the body control unit 21 , the display control unit 18 performs predetermined processing on the two-dimensional ultrasound image and the three-dimensional ultrasound image generated by the image generation unit 17 and displays them on the monitor 19 . do.
  • the monitor 19 performs various displays under the control of the display control unit 18.
  • the monitor 19 includes, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display (Organic Electroluminescence Display).
  • the input device 22 is for the user to perform an input operation.
  • the input device 22 is composed of, for example, a device such as a keyboard, a mouse, a trackball, a touch pad, and a touch panel for a user to perform an input operation.
  • the memory 24 is for temporarily storing received signals beamformed by the main body beamformer 25 and the like.
  • Examples of the memory 24 include flash memory, HDD (Hard Disc Drive), SSD (Solid State Drive), FD (Flexible Disc), MO disc (Magneto-Optical disc). disc), MT (Magnetic Tape), RAM (Random Access Memory), CD (Compact Disc), DVD (Digital Versatile Disc), SD card (Secure Digital card: Secure Digital Card), USB memory (Universal Serial Bus memory), and other recording media may be used.
  • the processor 23 having the image generation unit 17, the display control unit 18, the scanning control unit 20, and the main body control unit 21 includes a CPU (Central Processing Unit) and a controller for causing the CPU to perform various processes. It consists of a control program, FPGA (Field Programmable Gate Array), DSP (Digital Signal Processor), ASIC (Application Specific Integrated Circuit), GPU (Graphics Processing Unit: graphics processing unit), another IC (Integrated Circuit: integrated circuit), or may be configured by combining them.
  • a CPU Central Processing Unit
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • GPU Graphics Processing Unit: graphics processing unit
  • another IC Integrated Circuit: integrated circuit
  • the image generation unit 17, the display control unit 18, the scanning control unit 20, and the main body control unit 21 of the processor 23 can be partially or wholly integrated into one CPU or the like.
  • the ultrasonic diagnostic apparatus 1 performs two-dimensional scanning S1 and three-dimensional scanning S2. , the operation up to displaying the
  • the user places the ultrasonic probe 2 on the body surface of the subject and inputs an instruction to start scanning via the input device 22 .
  • Information input by the user in this manner is transmitted from the body control section 21 to each section of the device body 3 .
  • two-dimensional scanning S1 and three-dimensional scanning S2 are performed under the control of the scanning control section 20.
  • FIG. An example in which scanning is started by two-dimensional scanning S1 in section T1 as shown in FIG. 7 will be described below.
  • the scanning control unit 20 When the scanning control unit 20 receives an instruction to start scanning from the main body control unit 21, the scanning control unit 20 transmits to the patch dividing circuit 12 information indicating that the two-dimensional scanning S1 is to be performed in the interval T1.
  • the patch division circuit 12 divides the plurality of transducers 11A of the two-dimensional transducer array 11 into a plurality of patches P1 for two-dimensional scanning S1 as shown in FIG. do.
  • the transmission circuit 15 of the main body beamformer 25 generates a transmission signal based on the instruction to start scanning received from the main body control unit 21, and transmits the generated transmission signal to a plurality of probe beamformers via the transmission/reception switching circuit 14. 13.
  • the transmission circuit 15 beamforms the transmission signals of the plurality of patches P1 for the two-dimensional scanning S1 divided by the patch division circuit 12 .
  • a transmission signal that has undergone beamforming in the transmission circuit 15 is sent to a plurality of probe beamformers 13 .
  • the plurality of probe beamformers 13 beamform the transmission signals in the respective patches P1 sent from the transmission circuit 15 of the main body beamformer 25 .
  • the transmission signals that have undergone beamforming in the main body beamformer 25 and the plurality of probe beamformers 13 are transmitted to the plurality of transducers 11A of the respective patches P1.
  • a plurality of transducers 11A in each patch P1 generate ultrasonic waves based on the received transmission signals.
  • the ultrasonic waves emitted from the plurality of transducers 11A in this manner propagate within the subject as ultrasonic beams, are reflected by tissues within the subject, and propagate toward the plurality of transducers 11A as ultrasonic echoes. do.
  • the ultrasonic echoes propagating in the subject in this way are received by the plurality of transducers 11A of the plurality of patches P1, and the plurality of transducers 11A generate received signals.
  • the generated received signals are sent to a plurality of probe beamformers 13 via the patch dividing circuit 12 .
  • the plurality of probe beamformers 13 perform beamforming on the received signals sent from the plurality of transducers 11A of each patch P1.
  • the received signals beamformed by the plurality of probe beamformers 13 are sent to the main body beamformer 25 of the device main body 3 .
  • the receiving circuit 16 of the main body beamformer 25 performs beamforming on the received signals of the plurality of patches P1 beamformed by the plurality of probe beamformers 13 . In this way, the received signals beamformed by the plurality of probe beamformers 13 and the main body beamformer 25 are sent to the image generator 17 .
  • the image generator 17 generates a two-dimensional ultrasound image based on the received signal sent from the receiver circuit 16 of the main body beamformer 25 .
  • the generated two-dimensional ultrasound image is displayed on the monitor 19 after being subjected to predetermined processing in the display control unit 18 .
  • a two-dimensional transducer array generally includes a very large number of transducers, it was difficult to draw out signal lines from all the transducers of the two-dimensional transducer array to the main body of the device. Therefore, in an ultrasonic diagnostic apparatus having a two-dimensional transducer array, a plurality of transducers constituting the two-dimensional transducer array can be divided into a plurality of patches each having a plurality of transducers in the azimuth direction and the elevation direction. There were many.
  • the number of patches in the azimuth direction is equal to the number of transducers in the azimuth direction included in the two-dimensional transducer array. less than Therefore, the image quality of the resulting two-dimensional ultrasound image is degraded compared to the case where beamforming is performed on the transmission and reception signals of all the transducers in the azimuth direction included in the two-dimensional transducer array. There was a problem.
  • the patch P1 for two-dimensional scanning S1 divided by the patch dividing circuit 12 in Embodiment 1 has one transducer 11A in the azimuth direction and two-dimensional vibration in the elevation direction. It has the same number of transducers 11A as the transducer array 11 in the elevation direction. Therefore, the number of patches P1 in the azimuth direction is the same as the number of transducers 11A included in the two-dimensional transducer array 11 in the azimuth direction.
  • the main body beamformer 25 performs beamforming on the transmission signals and the reception signals of the plurality of patches P1, beams are formed for the transmission signals and the reception signals of the respective transducers 11A in the azimuth direction of the two-dimensional transducer array 11. Since forming is performed, a high-quality two-dimensional ultrasound image can be obtained even if all the transducers 11A of the two-dimensional transducer array 11 and the main body beamformer 25 cannot be directly connected by a plurality of signal lines.
  • the scanning control unit 20 transmits to the patch dividing circuit 12 information indicating that the three-dimensional scanning S2 is to be performed in the interval T2 shown in FIG.
  • the patch dividing circuit 12 divides the plurality of transducers 11A of the two-dimensional transducer array 11 into a plurality of patches P2 for three-dimensional scanning S2 as shown in FIG. To divide.
  • the transmission circuit 15 of the main body beamformer 25 generates a transmission signal and sends the generated transmission signal to the plurality of probe beamformers 13 via the transmission/reception switching circuit 14 in the same manner as in the case of the two-dimensional scanning S1.
  • the transmission circuit 15 performs beamforming on the transmission signals of the plurality of patches P2 for the three-dimensional scanning S2 divided by the patch division circuit 12.
  • the transmission signals beamformed by the main body beamformer 25 are sent to a plurality of probe beamformers 13 .
  • the plurality of probe beamformers 13 beamform the transmission signals in the respective patches P1 sent from the main body beamformer 25 .
  • the transmission signals that have undergone beamforming in the main body beamformer 25 and the plurality of probe beamformers 13 are transmitted to the plurality of transducers 11A of the respective patches P1.
  • a plurality of transducers 11A in each patch P2 generate ultrasonic waves based on the received transmission signals.
  • the ultrasonic waves emitted from the plurality of transducers 11A in this manner propagate within the subject as ultrasonic beams, are reflected by tissues within the subject, and propagate toward the plurality of transducers 11A as ultrasonic echoes. do.
  • the ultrasonic echoes propagating in the subject in this manner are received by the plurality of transducers 11A of the plurality of patches P2, and the plurality of transducers 11A generate received signals.
  • the generated received signals are sent to a plurality of probe beamformers 13 via the patch dividing circuit 12 .
  • the plurality of probe beamformers 13 perform beamforming on the received signals sent from the plurality of transducers 11A of each patch P2.
  • the received signals beamformed by the plurality of probe beamformers 13 are sent to the main body beamformer 25 of the device main body 3 .
  • the receiving circuit 16 of the main body beamformer 25 performs beamforming on the received signals of the plurality of patches P1 beamformed by the plurality of probe beamformers 13 . In this way, the received signals beamformed by the plurality of probe beamformers 13 and the main body beamformer 25 are stored in the memory 24 .
  • the scanning control unit 20 controls the plurality of probe beamformers 13 and the body beamformer 25 so as to steer the scanning plane in the elevation direction, as shown in FIG.
  • the scanning control unit 20 steers the scanning plane obtained by each of the plurality of patches P2 in the elevation direction so that each scanning plane has an arbitrary inclination (steer angle) with respect to the vertical direction.
  • a plurality of probe beamformers 13 and body beamformers 25 are controlled.
  • the main body beamformer 25 can give delays to the transmission signals and reception signals of the plurality of patches P2 for the three-dimensional scanning S2 so that the scanning plane is steered in the elevation direction.
  • the image generator 17 extracts the received signal corresponding to one frame of the three-dimensional ultrasonic image from the memory 24. is read out and a three-dimensional ultrasound image is generated based on the received signal.
  • the generated three-dimensional ultrasound image is subjected to predetermined processing by the display control unit 18, and then displayed on the monitor 19 together with the two-dimensional ultrasound image generated in the interval T1.
  • section T3 the same processing as the two-dimensional scanning S1 performed in section T1 is performed, and a newly generated two-dimensional ultrasound image is displayed on the monitor 19.
  • reception corresponding to a new three-dimensional ultrasound image of one frame is performed in the same manner as the processing of the three-dimensional scanning S2 performed in the interval T2.
  • the sequence of processing from transmitting ultrasound to changing the steering angle is repeated.
  • the image generation unit 17 extracts the one-frame three-dimensional ultrasonic image from the memory 24.
  • a received signal is read out and a three-dimensional ultrasound image is generated based on the received signal.
  • the generated three-dimensional ultrasound image is subjected to predetermined processing by the display control unit 18, and then displayed on the monitor 19 together with the two-dimensional ultrasound image generated in the interval T3.
  • each patch effectively becomes one transducer.
  • the pitch between transducers adjacent to each other in the elevation direction can be considered as the pitch between patches adjacent to each other in the elevation direction.
  • the pitch D becomes long, grating lobes are likely to occur.
  • an image called a grating lobe artifact is included in the obtained three-dimensional ultrasonic image, which hinders the user's interpretation of the three-dimensional ultrasonic image.
  • the number of patches in the elevation direction is smaller than the number of transducers in the elevation direction included in the two-dimensional transducer array. Therefore, when three-dimensional scanning is performed by performing beamforming using such a patch, beamforming is performed for transmission signals and reception signals of all transducers in the elevation direction included in the two-dimensional transducer array. There is a problem that the image quality of the obtained three-dimensional ultrasonic image is deteriorated compared to the case where it is performed.
  • the patch P2 for the three-dimensional scanning S2 divided by the patch dividing circuit 12 in Embodiment 1 has one transducer 11A in the elevation direction and two-dimensional vibration in the azimuth direction. It has the same number of transducers 11A as the transducer array 11 in the azimuth direction. Therefore, the number of patches P2 in the elevation direction is the same as the number of transducers 11A in the elevation direction included in the two-dimensional transducer array 11, and the pitch D between the patches P2 in the elevation direction is It is the same as the pitch between adjacent transducers 11A between.
  • the two-dimensional transducer array 11 is composed of a very large number of transducers 11A, and the pitch D between the patches P2 in the elevation direction is sufficiently short. Grating lobes are less likely to occur even if the main body beamformer 25 cannot be directly connected with a plurality of signal lines.
  • the transmission signals and the reception signals of the respective transducers 11A in the elevation direction of the two-dimensional transducer array 11 are A high-quality three-dimensional ultrasound image can be obtained because beam forming is performed on the other hand.
  • the two-dimensional ultrasound image and the three-dimensional ultrasound image are displayed together on the monitor 19, the user can check the two-dimensional ultrasound image and the three-dimensional ultrasound image together on the monitor 19.
  • the subject can be examined while accurately grasping the internal state of the subject such as the site to be observed.
  • the two-dimensional scanning S1 and the three-dimensional scanning S2 are alternately performed from the next section onward.
  • the operation of the ultrasonic diagnostic apparatus 1 described in Embodiment 1 is as described above.
  • the patch division circuit 12 divides the plurality of transducers 11A forming the two-dimensional transducer array 11 into the patches P1 for the two-dimensional scanning S1. and a patch P2 for three-dimensional scanning S2.
  • a plurality of probe beamformers 13 perform beamforming on the transmission signals and reception signals of the transducers 11A of the patches P1 and P2.
  • the main body beamformer 25 performs beamforming on the transmission signals and the reception signals of the plurality of patches P1 and P2, all the transducers 11A of the two-dimensional transducer array 11 and the main body beamformer 25 are Even if direct connection is not possible with a plurality of signal lines, both the image quality of the two-dimensional ultrasonic image and the image quality of the three-dimensional ultrasonic image can be improved.
  • the patch P1 for two-dimensional scanning S1 shown in FIG. 2 has one transducer 11A in the azimuth direction, and the same number of transducers in the elevation direction as the two-dimensional transducer array 11 in the elevation direction. However, it is sufficient to have two or more transducers 11A in the elevation direction. Even in this case, since the number of patches P1 in the azimuth direction is the same as the number of transducers 11A in the azimuth direction of the two-dimensional transducer array 11, two-dimensional scanning S1 is performed using patches P1 for two-dimensional scanning S1. A high-quality two-dimensional ultrasound image can be obtained by performing this.
  • the patch P2 for the three-dimensional scanning S2 shown in FIG. Although it has the vibrator 11A, it suffices if it has two or more vibrators 11A in the azimuth direction. Even in this case, since the number of patches P2 in the elevation direction is the same as the number of transducers 11A in the elevation direction of the two-dimensional transducer array 11, the patches P2 for three-dimensional scanning S2 are used for three-dimensional scanning. By performing S2, a three-dimensional ultrasound image with high image quality and suppressed grating lobe artifacts can be obtained.
  • the main body beamformer 25 generates transmission signals and reception signals for the plurality of patches P1 and P2 so that the range of the steering angle of the ultrasonic waves is symmetrical in the elevation direction when the three-dimensional scanning S2 is performed. beamforming can be performed. As a result, a three-dimensional ultrasound image that depicts the inside of the subject over a wide range can be obtained.
  • the main body beamformer 25 generates transmission signals and reception signals for the plurality of patches P1 and P2 so that the range of the steering angle of the ultrasonic waves is asymmetrical in the elevation direction when the three-dimensional scanning S2 is performed. beamforming can also be performed. As a result, for example, scanning of a range that the user does not need to observe can be omitted, so the computational load required for generating a three-dimensional ultrasound image can be reduced, and the frame of the three-dimensional ultrasound image displayed on the monitor 19 can be reduced. You can improve your rate.
  • the main body beamformer 25 transmits to the plurality of patches P1 and P2 so that the interval between the steering angles of the ultrasonic waves is changed according to the absolute value of the steering angle. It is also possible to beamform the signal and the received signal.
  • the steering angle interval refers to the angle formed by a pair of scan planes adjacent to each other. More specifically, the steering angle interval is the angle formed by the scanning planes of two adjacent patches P2, P2.
  • the main body beamformer 25 increases the angular spacing between adjacent scanning planes as the steering angle is closer to 0 degrees, while increasing the angular spacing between adjacent scanning planes as the steering angle is farther from 0 degrees. can be sparsely scanned.
  • the inclination of the scanning plane with respect to the vertical direction becomes greater as the vicinity of the end portion of the steering range is approached, and scanning can be performed so that the angular intervals between the adjacent scanning planes become sparse.
  • This also makes it possible to omit the scanning of a range that the user does not need to observe, so that the computational load required for generating a three-dimensional ultrasound image can be reduced, and the frame rate of the three-dimensional ultrasound image displayed on the monitor 19 can be reduced. can be improved.
  • the two-dimensional scanning S1 is started and then the three-dimensional scanning S2 is performed, but it may be started from the three-dimensional scanning S2.
  • the received signals obtained in the sections T2 and T4 of the three-dimensional scan S2 are not limited to the received signal corresponding to one frame of the three-dimensional ultrasonic image and the received signal corresponding to half of one frame of the three-dimensional ultrasonic image. .
  • 1 ⁇ 3 of the received signals of one frame of the three-dimensional ultrasound image may be obtained, 1 ⁇ 4 of the received signals may be obtained, or a smaller proportion of the received signals may be obtained. Even in this case, the frame rate of the two-dimensional ultrasound image displayed on the monitor 19 can be kept high.
  • the three-dimensional ultrasound image is stored after the received signal corresponding to one frame of the three-dimensional ultrasound image is stored in the memory 24 . It is described that an acoustic image is generated.
  • the received signal is obtained in the interval T2
  • the received signal is used to generate a three-dimensional ultrasound image having half the amount of information of one frame of the three-dimensional ultrasound image.
  • the received signal is obtained in the interval T4
  • the received signal obtained in the interval T2 and the interval T4 is used to generate a three-dimensional ultrasonic image of one frame and display it on the monitor 19.
  • a three-dimensional ultrasonic image is generated each time a received signal is obtained in one section of the three-dimensional scanning S2, and the generated three-dimensional ultrasonic image is displayed on the monitor 19 together with the two-dimensional ultrasonic image. can be displayed.
  • the frame rate of the two-dimensional ultrasound image displayed on the monitor 19 can be maintained high, and the frame rate of the three-dimensional ultrasound image displayed on the monitor 19 can also be improved.
  • the scanning control unit 20 selects groups G1, G2, and G3 in which the scanning lines SL adjacent to each other in the azimuth direction of the three-dimensional scanning S2 are different from each other. may be divided into a plurality of groups G1, G2 and G3 so as to belong to a plurality of scanning lines SL in the three-dimensional scanning S2.
  • the scanning control unit 20 controls the plurality of probe beamformers 13 so as to scan each divided group G1, G2, G3, and scans at least one divided group G1, G2, G3.
  • the three-dimensional scanning S2 can be switched to the two-dimensional scanning S1 each time the dimensional scanning S2 ends.
  • the plurality of scanning lines SL in the three-dimensional scanning S2 are grouped into three groups so that the scanning lines SL adjacent in the azimuth direction belong to mutually different groups among the three groups G1, G2 and G3. It is divided into G1, G2 and G3.
  • three-dimensional scanning S2 is performed along a plurality of scanning lines SL belonging to group G1 in section T2 of FIG. 7, and three-dimensional scanning is performed along a plurality of scanning lines SL belonging to group G2 in section T4.
  • S2 is performed, and the three-dimensional scanning S2 is performed along the plurality of scanning lines SL belonging to the group G3 in the section of the next three-dimensional scanning S2.
  • the groups G1, G2 and G3 of the scanning lines SL to be used are switched each time the three-dimensional scanning S2 is performed.
  • a three-dimensional ultrasound image may be generated when all the received signals corresponding to the three groups G1, G2 and G3 are obtained, and the received signals corresponding to each of the groups G1, G2 and G3 are A three-dimensional ultrasound image may be generated when acquired.
  • a three-dimensional ultrasound image is generated when received signals corresponding to each of groups G1, G2, and G3 are obtained, first, when received signals corresponding to group G1 are obtained, group G1 A three-dimensional ultrasound image having a density of 1 ⁇ 3 that of a one-frame three-dimensional ultrasound image is generated from the received signal corresponding to .
  • the received signal corresponding to the group G2 when the received signal corresponding to the group G2 is obtained, the received signal corresponding to the group G1 and the received signal corresponding to the group G2 have a density of 2/3 of the three-dimensional ultrasonic image of one frame. A three-dimensional ultrasound image is generated. Finally, when the received signals corresponding to the group G3 are obtained, one frame of three-dimensional ultrasound image is generated from the received signals corresponding to the three groups G1, G2 and G3.
  • a sensor that detects the movement of the ultrasonic probe 2 such as an acceleration sensor or a gyro sensor, can be attached to the ultrasonic probe 2.
  • the ultrasonic probe 2 moves together with the body surface of the subject due to, for example, breathing of the subject.
  • the detected subject motion is greater than a defined motion threshold, only the received signals corresponding to the most recent group can be used to generate a three-dimensional ultrasound image. As a result, a three-dimensional ultrasound image that follows the movement of the subject can be generated.
  • the scanning control unit 20 controls the plurality of scanning lines in the two-dimensional scanning S1 so that the scanning lines SL adjacent in the elevation direction of the two-dimensional scanning S1 belong to different groups. SLs may be divided into multiple groups. Therefore, the scanning control unit 20 controls the plurality of probe beam formers 13 so that each divided group is scanned, and each time two-dimensional scanning S1 of at least one divided group is completed, , the two-dimensional scanning S1 can be switched to the three-dimensional scanning S2.
  • the two-dimensional ultrasonic image may be generated when all the received signals corresponding to the three groups are obtained, and the two-dimensional ultrasonic image may be generated when the received signals corresponding to each group are obtained. may be generated.
  • the two-dimensional transducer array 11 can have a width in the azimuth direction that is 2.5 times or more the width in the elevation direction. It can be designed to be 2.5 times or more the width in the elevation direction. Since the width of the two-dimensional transducer array 11 in the elevation direction is shorter than the width in the azimuth direction, when the tip of the ultrasonic probe 2 is brought into contact with the body surface of the subject, the ultrasonic probe 2 and the subject Therefore, the ultrasonic probe 2 can be brought into contact with the curved body surface without any gap.
  • the patch P2 including one transducer 11A in the elevation direction and a plurality of transducers 11A in the azimuth direction is used when the three-dimensional scanning S2 is performed. Therefore, even when the width of the two-dimensional transducer array 11 in the elevation direction is shorter than the width in the azimuth direction, a three-dimensional ultrasonic image with high image quality and suppressed grating lobe artifacts can be obtained.
  • Embodiment 2 In Embodiment 1, all transducers 11A constituting the two-dimensional transducer array 11 are divided into a plurality of patches P1 for two-dimensional scanning S1 and a plurality of patches P2 for three-dimensional scanning.
  • An aperture that moves (sweeps) in the azimuth direction is set in the transducer array 11, and a plurality of transducers 11A in the aperture can be divided into a plurality of patches P1 and P2.
  • the aperture means an area for selecting an arbitrary plurality of vibrators 11A from the plurality of vibrators 11A arranged in the elevation direction and the azimuth direction.
  • FIG. 9 shows the configuration of an ultrasonic diagnostic apparatus 1A according to Embodiment 2 of the present invention.
  • An ultrasonic diagnostic apparatus 1A according to the second embodiment includes an ultrasonic probe 2A instead of the ultrasonic probe 2 in the ultrasonic diagnostic apparatus 1 according to the first embodiment shown in FIG.
  • the ultrasonic probe 2A according to the second embodiment is the ultrasonic probe 2 according to the first embodiment, to which a sweep circuit 41 is added.
  • the sweep circuit 41 is connected to the two-dimensional transducer array 11, and the patch dividing circuit 12 is connected to the sweep circuit 41.
  • the transducers 11A having a first transducer number equal to or less than the number of transducers in the elevation direction of the two-dimensional transducer array 11 are arranged in the elevation direction
  • the plurality of transducers 11A included in the opening in which the transducers 11A having a second number of transducers smaller than the number of transducers in the azimuth direction of the two-dimensional transducer array 11 are arranged in the azimuth direction, are arranged two-dimensionally. At least a part of the transducers 11A of the transducer array 11, ie, a subarray, is selected.
  • the patch dividing circuit 41 divides, for example, from the plurality of oscillators 11A of the two-dimensional oscillator array 11, as shown in FIG. First, the M ⁇ N transducers 11A included in the aperture Q in which the M transducers 11A are arranged in the elevation direction and the N transducers 11A are arranged in the azimuth direction are directly selected.
  • M and N are integers of 2 or more.
  • M is equal to the number of transducers in the two-dimensional transducer array 11 in the elevation direction
  • N is smaller than the number of transducers in the two-dimensional transducer array 11 in the azimuth direction.
  • the sweep circuit 41 sweeps the opening Q in the azimuth direction when the two-dimensional scanning S1 and the three-dimensional scanning S2 are performed.
  • the patch division circuit 12 divides the plurality of patches P1 and P2 at the aperture Q.
  • the patch dividing circuit 12 divides the plurality of transducers 11A in the aperture Q into two-dimensional scans in which K transducers 11A, which are a divisor of M, are arranged in the elevation direction.
  • the patch dividing circuit 12 divides the plurality of transducers 11A in the aperture Q into a 3-axis array in which L transducers 11A, which is a divisor of N, are arranged in the azimuth direction.
  • the patch division circuit 12 divides the plurality of transducers 11A in the aperture Q into the patch P1 for the two-dimensional scanning S1 and the patch P1 for the three-dimensional scanning S2. are divided into patches P2 for each. Therefore, the control of the aperture Q can be shared between the two-dimensional scanning S1 and the three-dimensional scanning S2, the scale of the circuit mounted in the ultrasonic probe 2A can be reduced, and the scanning control can be simplified.
  • the sweep circuit 41 moves the transducers 11A included in the aperture Q by being connected to the two-dimensional transducer array 11 to the plurality of transducers 11A in at least a part of the two-dimensional transducer array 11, That is, it selects directly as a subarray.
  • the sweep circuit 41 can also indirectly select the transducers 11A included in the aperture Q as a subarray by being connected to a plurality of probe beamformers 13 .
  • FIG. 11 shows the configuration of an ultrasonic diagnostic apparatus 1B according to the third embodiment.
  • An ultrasonic diagnostic apparatus 1B according to the third embodiment includes an ultrasonic probe 2B instead of the ultrasonic probe 2A in the ultrasonic diagnostic apparatus 1A according to the second embodiment shown in FIG.
  • the ultrasonic probe 2B according to the third embodiment differs from the ultrasonic probe 2A according to the second embodiment in that the connection position of the sweep circuit 41 is changed.
  • the ultrasonic probe 2B has a plurality of probe beamformers 13 corresponding to all the transducers 11A forming the two-dimensional transducer array 11.
  • FIG. A patch dividing circuit 12 and a plurality of probe beamformers 13 are sequentially connected to the two-dimensional transducer array 11 , and a sweep circuit 41 is connected to the plurality of probe beamformers 13 .
  • a body beam former 25 of the device body 3 is also connected to the sweep circuit 41 .
  • the sweep circuit 41 selects a portion of the probe beamformers 13 corresponding to the plurality of patches P1 and P2 divided by the patch division circuit 12 from among the plurality of probe beamformers 13.
  • a plurality of transducers 11A corresponding to those probe beamformers 13 are selected as the M ⁇ N transducers 11A of the aperture Q.
  • the patch division circuit 12 selects a plurality of transducers 11A in the aperture Q in the same manner as in the second embodiment. is divided into a patch P1 for two-dimensional scanning S1 and a patch P2 for three-dimensional scanning S2, respectively. It is possible to reduce the scale of the circuit implemented in the acoustic probe 2A and to simplify the scanning control.
  • Embodiment 4 In Embodiment 1, a three-dimensional ultrasonic image corresponding to the entire scanning range in the three-dimensional scanning S2 is generated. can also be generated.
  • FIG. 12 shows the configuration of an ultrasonic diagnostic apparatus 1C according to the fourth embodiment.
  • An ultrasonic diagnostic apparatus 1C according to the fourth embodiment includes an apparatus main body 3C instead of the apparatus main body 3 in the ultrasonic diagnostic apparatus 1 according to the first embodiment shown in FIG.
  • the apparatus main body 3C according to the fourth embodiment is the same as the apparatus main body 3 according to the first embodiment, except that an observation target selection unit 51 and an observation target detection unit 52 are added, and a main control unit 21C is provided instead of the main control unit 21.
  • a processor 23C is provided instead of the processor 23.
  • an observation target selection section 51 is connected to the main body control section 21C.
  • An observation target detection unit 52 is connected to the reception circuit 16 and the observation target selection unit 51 .
  • a memory 24 is connected to the receiving circuit 16 and the observation target detecting section 52 .
  • the image generation unit 17, the display control unit 18, the scanning control unit 20, the main body control unit 21C, the observation target selection unit 51, and the observation target detection unit 52 constitute a processor 23C for the device main body 3C.
  • the observation target selection unit 51 preliminarily stores a plurality of parts of the subject, treatment instruments, and the like that can be the user's observation target, and selects the observation target based on the user's input operation via the input device 22 . At this time, for example, a list of a plurality of observation target parts and treatment tools stored in advance is displayed on the monitor 19, and when the user selects one observation target via the input device 22, the observation target selection unit 51 can select an observation target selected by the user.
  • the observation target detection unit 52 detects the observation target selected by the observation target selection unit 51 based on the received signal supplied via the receiving circuit 16 of the main body beamformer 25 by performing the three-dimensional scanning S2. Information on the observation target detected by the observation target detection unit 52 is stored in the memory 24 in association with the received signal from which the observation target has been detected.
  • the image generation unit 17 reads out the information of the observation target detected by the observation target detection unit 52 and the received signal from the memory 24, and performs volume rendering processing on the observation target detected by the observation target detection unit 52. generates a three-dimensional ultrasound image of the observation target.
  • the three-dimensional ultrasound image of the observation target generated by the image generation unit 17 in this way can be superimposed on the two-dimensional ultrasound image on the monitor 19, for example. Also, the three-dimensional ultrasound image of the observation target may be displayed on the monitor 19 side by side with the two-dimensional ultrasound image.
  • an observation target is detected, and a three-dimensional ultrasonic image of the observation target is generated by performing volume rendering on the detected observation target. Therefore, the user can grasp in detail the shape of the observation target, the three-dimensional positional relationship, and the like.
  • the image generation unit 17 can also generate a three-dimensional ultrasound image by reducing the received signals of portions other than the portion corresponding to the observation target detected by the observation target detection unit 52 . Also in this case, a three-dimensional ultrasound image in which the observation target is emphasized can be obtained, so that the user can grasp the shape of the observation target and the three-dimensional positional relationship in detail.
  • the calculation load required for generating a three-dimensional ultrasound image is reduced, and a three-dimensional ultrasound image is generated.
  • the frame rate for displaying sound wave images can be improved.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Gynecology & Obstetrics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

2次元超音波画像および3次元超音波画像の画質を向上できる超音波診断装置および超音波診断装置の制御方法を提供する。超音波診断装置(1)は、超音波プローブ(2)と装置本体(3)とを備える。超音波プローブ(2)は、複数の振動子を含む2次元振動子アレイ(11)と、2次元走査の際に少なくとも一部の振動子をエレベーション方向に振動子が並ぶ複数のパッチに分割し、3次元走査の際に少なくとも一部の振動子をアジマス方向に振動子が並ぶ複数のパッチに分割するパッチ分割回路(12)と、複数のパッチに対応する複数のプローブビームフォーマ(13)とを含み、装置本体(3)は、本体ビームフォーマ(14)を含み、プローブビームフォーマ(13)は、パッチ内の振動子に対して送受信信号のビームフォーミングを行い、本体ビームフォーマ(14)は、複数のパッチに対して送受信信号のビームフォーミングを行う。

Description

超音波診断装置および超音波診断装置の制御方法
 本発明は、2次元走査と3次元走査の双方を行う超音波診断装置および超音波診断装置の制御方法に関する。
 従来から、いわゆるアジマス方向と、いわゆるエレベーション方向において、それぞれ、複数の振動子が配列された2次元振動子アレイを含む、超音波プローブを備えた超音波診断装置が知られている。一般的に、2次元振動子アレイは非常に多数の振動子を含んでいるため、2次元振動子アレイのすべての振動子から装置本体まで信号線を引き出すことが困難である。それにより、2次元振動子アレイのすべての振動子に対して個別にビームフォーミングを行うことが困難であるため、複数の振動子を1つの制御単位として、すなわち1つのパッチとして制御することが多い。
 通常、2次元振動子アレイを構成する複数の振動子を、アジマス方向とエレベーション方向にそれぞれ複数の振動子を有する複数のパッチに分割し、それぞれのパッチの送信信号と受信信号に対してビームフォーミングがなされることが多く、これが、2次元走査により得られる2次元超音波画像の画質が低下する要因となっていた。そこで、2次元超音波画像の画質を向上させるために、特許文献1に開示されるような超音波診断装置が開発されている。特許文献1では、2次元振動子アレイのエレベーション方向における1列の振動子、すなわち、2次元振動子アレイのエレベーション方向における振動子数をNとして1×Nの振動子を1つのパッチとして制御している。
特表2019-509856号公報
 特許文献1の技術を用いることにより、2次元超音波画像の画質を向上できるが、特許文献1に開示されているパッチを用いて3次元走査を行うと、いわゆるグレーティングローブが発生しやすく、これにより、得られた3次元超音波画像において、いわゆるグレーティングローブアーチファクトが発生しやすくなるため、画質の低い3次元超音波画像が得られてしまうという問題があった。
 本発明は、このような従来の問題点を解消するためになされたものであり、2次元超音波画像と3次元超音波画像の画質を向上できる超音波診断装置および超音波診断装置の制御方法を提供することを目的とする。
 上記目的を達成するために、本発明に係る超音波診断装置は、2次元走査および3次元走査の双方を行う超音波診断装置であって、超音波プローブと、超音波プローブに接続された装置本体とを備え、超音波プローブは、複数の振動子がエレベーション方向およびアジマス方向にそれぞれ配列された2次元振動子アレイと、2次元走査を行う際には、2次元振動子アレイの少なくとも一部の複数の振動子を、それぞれエレベーション方向に2以上の振動子が並んだ複数のパッチに分割し、3次元走査を行う際には、2次元振動子アレイの少なくとも一部の複数の振動子を、それぞれアジマス方向に2以上の振動子が並んだ複数のパッチに分割するパッチ分割回路と、パッチ分割回路により分割された複数のパッチに対応する複数のプローブビームフォーマとを含み、装置本体は、超音波プローブの複数のプローブビームフォーマに接続された本体ビームフォーマを含み、複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子に対して送信信号および受信信号のビームフォーミングを行い、本体ビームフォーマは、複数のパッチに対して送信信号および受信信号のビームフォーミングを行うことを特徴とする。
 本体ビームフォーマは、それぞれ複数のプローブビームフォーマに接続された送信回路および受信回路を含み、装置本体は、受信回路に接続された画像生成部を含み、少なくとも一部の複数の振動子から超音波ビームを送信する際には、送信回路から複数のプローブビームフォーマを介して複数のパッチにおける2以上の振動子に送信信号が供給され、少なくとも一部の複数の振動子により超音波エコーを受信する際には、複数パッチにおける2以上の振動子から複数のプローブビームフォーマおよび受信回路を介して画像生成部に受信信号が供給されることが好ましい。
 画像生成部は、2次元走査を行うことにより本体ビームフォーマの受信回路を介して供給される受信信号に基づいて2次元超音波画像を生成し、3次元走査を行うことにより本体ビームフォーマの受信回路を介して供給される受信信号に基づいて3次元超音波画像を生成することが好ましい。
 エレベーション方向に、2次元振動子アレイのエレベーション方向における振動子数以下の第1の振動子数の振動子が配列され、且つ、アジマス方向に、2次元振動子アレイのアジマス方向における振動子数よりも少ない第2の振動子数の振動子が配列された開口に含まれる複数の振動子を、少なくとも一部の複数の振動子として選択するスイープ回路を有し、パッチ分割回路は、開口において複数のパッチの分割を行い、スイープ回路により開口をアジマス方向にスイープさせながら開口内の振動子を用いて2次元走査および3次元走査が行われ得る。
 第1の振動子数をMとし且つ第2の振動子数をNとした場合に、パッチ分割回路は、2次元走査が行われる際に、開口に含まれる複数の振動子を、それぞれ、エレベーション方向にMの約数であるK個の振動子が並んだ複数のパッチに分割し、3次元走査が行われる際に、開口に含まれる複数の振動子を、それぞれ、アジマス方向にNの約数であるL個の振動子が並んだ複数のパッチに分割できる。
 複数のプローブビームフォーマは、パッチ分割回路に接続され、パッチ分割回路は、スイープ回路に接続され、スイープ回路は、2次元振動子アレイの複数の振動子に接続され、複数の振動子から、開口に含まれる複数の振動子を直接的に選択できる。
 または、スイープ回路は、複数のプローブビームフォーマに接続され、複数のプローブビームフォーマは、パッチ分割回路に接続され、パッチ分割回路は、2次元振動子アレイの複数の振動子に接続され、スイープ回路は、複数のプローブビームフォーマから一部のプローブビームフォーマを選択することにより、開口に含まれる複数の振動子を選択できる。
 本体ビームフォーマは、3次元走査が行われる際に、2次元振動子アレイから送信および受信される超音波がエレベーション方向にステアされるように、複数のパッチに対して送信信号および受信信号を遅延させるビームフォーミングを行うことができる。
 この場合に、本体ビームフォーマは、3次元走査が行われる際に、超音波のステア角度の範囲がエレベーション方向において非対称となるように、複数のパッチに対して送信信号および受信信号のビームフォーミングを行うことができる。
 また、ビームフォーマは、3次元走査が行われる際に、超音波のステア角度の間隔を、ステア角度の絶対値に応じて変更するように、複数のパッチに対して送信信号および受信信号のビームフォーミングを行うことができる。
 装置本体は、2次元走査と3次元走査とを交互に行うように走査を制御する走査制御部を含むことができる。
 この場合に、走査制御部は、3次元走査が行われる際に、3次元走査のアジマス方向に隣接する走査線が互いに異なるグループに属するように、3次元走査における複数の走査線を複数のグループに分割して、分割されたそれぞれのグループ毎に走査されるように複数のプローブビームフォーマを制御し、且つ、分割された少なくとも1つのグループの3次元走査が終了する毎に、3次元走査を2次元走査に切り替えることができる。
 2次元振動子アレイは、エレベーション方向の幅の2.5倍以上のアジマス方向の幅を有することが好ましい。
 装置本体は、ユーザが入力操作を行うための入力装置と、入力装置を介したユーザの入力操作に基づいて、観察対象を選択する観察対象選択部と、3次元走査を行うことにより本体ビームフォーマを介して供給される受信信号に基づいて、観察対象選択部により選択された観察対象を検出する観察対象検出部とを含み得る。
 この場合に、画像生成部は、観察対象検出部により検出された観察対象に対してボリュームレンダリングを行うことにより、観察対象の3次元超音波画像を生成できる。
 装置本体は、画像生成部により生成された2次元超音波画像および3次元超音波画像を表示するモニタを含み、モニタにおいて、2次元超音波画像に3次元超音波画像が重畳表示され得る。
 また、画像生成部は、観察対象検出部により検出された観察対象に対応する部分以外の部分の受信信号を削減して3次元超音波画像を生成できる。
 複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子に対して送信信号に遅延を付与することにより送信信号のビームフォーミングを行うことができる。
 また、複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子に対して遅延が未付与の送信信号を送信することにより送信信号のビームフォーミングを行うこともできる。
 また、複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子に対して受信信号に遅延を付与することにより受信信号のビームフォーミングを行うことができる。
 また、複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子から受信した遅延が未付与の受信信号を本体ビームフォーマに送信することにより受信信号のビームフォーミングを行うこともできる。
 本発明に係る超音波診断装置の制御方法は、複数の振動子がエレベーション方向およびアジマス方向にそれぞれ配列された2次元振動子アレイを含む超音波プローブと、超音波プローブに接続された装置本体を備え、2次元走査および3次元走査の双方を行う超音波診断装置の制御方法であって、2次元走査を行う際には、複数の振動子を、それぞれエレベーション方向に2以上の振動子が並んだ複数のパッチに分割し、3次元走査を行う場合には、複数の振動子を、それぞれアジマス方向に2以上の振動子が並んだ複数のパッチに分割し、超音波プローブにおいて、複数のパッチ内における2以上の振動子に対して送信信号および受信信号のビームフォーミングを行い、装置本体において、複数のパッチに対して送信信号および受信信号のビームフォーミングを行うことを特徴とする。
 本発明によれば、超音波診断装置が、2次元走査および3次元走査の双方を行う超音波診断装置であって、超音波プローブと、超音波プローブに接続された装置本体とを備え、超音波プローブは、複数の振動子がエレベーション方向およびアジマス方向にそれぞれ配列された2次元振動子アレイと、2次元走査を行う際には、複数の振動子を、それぞれエレベーション方向に2以上の振動子が並んだ複数のパッチに分割し、3次元走査を行う際には、複数の振動子を、それぞれアジマス方向に2以上の振動子が並んだ複数のパッチに分割するパッチ分割回路と、パッチ分割回路により分割された複数のパッチに対応する複数のプローブビームフォーマとを含み、装置本体は、超音波プローブの複数のプローブビームフォーマに接続された本体ビームフォーマを含み、複数のプローブビームフォーマは、複数のパッチ内における2以上の振動子に対して送信信号および受信信号のビームフォーミングを行い、本体ビームフォーマは、複数のパッチに対して送信信号および受信信号のビームフォーミングを行うため、2次元超音波画像と3次元超音波画像の画質を向上できる。
本発明の実施の形態1に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態1における2次元走査用のパッチの例を模式的に示す図である。 本発明の実施の形態1における3次元走査用のパッチの例を模式的に示す図である。 本発明の実施の形態1における送信回路の構成を示すブロック図である。 本発明の実施の形態1における受信回路の構成を示すブロック図である。 本発明の実施の形態1における画像生成部の構成を示すブロック図である。 本発明の実施の形態1における2次元走査と3次元走査の時間的なタイミングを模式的に示す図である。 本発明の実施の形態1においてグループ分けされた走査線を模式的に示す図である。 本発明の実施の形態2に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態2における開口を模式的に示す図である。 本発明の実施の形態3に係る超音波診断装置の構成を示すブロック図である。 本発明の実施の形態4に係る超音波診断装置の構成を示すブロック図である。
 以下、この発明の実施の形態を添付図面に基づいて説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、「同一」、「同じ」は、技術分野で一般的に許容される誤差範囲を含むものとする。
実施の形態1
 図1に本発明の実施の形態に係る超音波診断装置1の構成を示す。超音波診断装置1は、超音波プローブ2と、超音波プローブ2に接続された装置本体3を備えている。図示しないが、超音波プローブ2と装置本体3とは、ケーブルにより互いに接続されている。
 超音波プローブ2は、2次元振動子アレイ11を備えており、2次元振動子アレイ11にパッチ分割回路12が接続されている。また、パッチ分割回路12に複数のプローブビームフォーマ13が接続されている。図示しないが、複数のプローブビームフォーマ13からは、それぞれ、信号線が引き出されている。これらの複数の信号線は、超音波プローブ2と装置本体3とを互いに接続するケーブルを通って、装置本体3側に延びている。
 装置本体3は、超音波プローブ2と装置本体3とを互いに接続するケーブルを通る複数の信号線により、超音波プローブ2の複数のプローブビームフォーマ13と接続される送受信切り替え回路14を備えている。送受信切り替え回路14に、送信回路15および受信回路16が接続されている。送受信切り替え回路14、送信回路15および受信回路16により、本体ビームフォーマ25が構成されている。また、受信回路16に、画像生成部17、表示制御部18およびモニタ19が、順次、接続されている。また、受信回路16にメモリ24が接続されている。また、装置本体3は、超音波プローブ2のパッチ分割回路12と複数のプローブビームフォーマ13および装置本体3の本体ビームフォーマ25に接続された走査制御部20を備えている。
 また、画像生成部17、表示制御部18および走査制御部20に、本体制御部21が接続されている。また、本体制御部21に、入力装置22が接続されている。
 また、画像生成部17、表示制御部18、走査制御部20および本体制御部21により、装置本体3用のプロセッサ23が構成されている。
 2次元振動子アレイ11は、例えば図2および図3に示すように、エレベーション方向およびアジマス方向にそれぞれ配列された複数の振動子11Aを有している。これらの振動子11Aは、それぞれ送信回路15から供給される送信信号に従って超音波を送信すると共に、被検体からの超音波エコーを受信して、超音波エコーに基づく信号を出力する。振動子11Aは、例えば、PZT(Lead Zirconate Titanate:チタン酸ジルコン酸鉛)に代表される圧電セラミック、PVDF(Poly Vinylidene Di Fluoride:ポリフッ化ビニリデン)に代表される高分子圧電素子およびPMN-PT(Lead Magnesium Niobate-Lead Titanate:マグネシウムニオブ酸鉛-チタン酸鉛固溶体)に代表される圧電単結晶等からなる圧電体の両端に電極を形成することにより構成される。
 図2および図3では、アジマス方向がX方向として、エレベーション方向がY方向として記載されている。以下でも、説明のために、アジマス方向をX方向、エレベーション方向をY方向と呼ぶことがある。また、アジマス方向とエレベーション方向の双方に直交する方向をZ方向と呼ぶことがある。
 パッチ分割回路12は、2次元走査が行われる際に、2次元振動子アレイ11の振動子11Aの少なくとも一部の複数の振動子11A(サブアレイ)を、それぞれエレベーション方向に2以上の振動子11Aが並んだ複数のパッチに分割する。また、パッチ分割回路12は、3次元走査が行われる際に、2次元振動子アレイ11の振動子11Aのうち、少なくとも一部の複数の振動子11A(サブアレイ)を、それぞれアジマス方向に2以上の振動子11Aが並んだ複数のパッチに分割する。
 パッチ分割回路12は、例えば、2次元走査が行われる際に、図2に示すように、複数の振動子11Aを、それぞれエレベーション方向に複数の振動子11Aが並んだ複数のパッチP1に分割できる。また、パッチ分割回路12は、3次元走査が行われる際に、図3に示すように、複数の振動子11Aを、それぞれアジマス方向に複数の振動子11Aが並んだ複数のパッチP2に分割できる。
 ここで、2次元走査とは、例えば図2に示すように、1つの走査面に沿って観察対象の断層面を走査して、観察対象の断層面に関する2次元的な情報を得ることである。
 また、3次元走査とは、例えば図3に示すように、走査面をエレベーション方向にステアしながら、すなわち、エレベーション方向に傾けながら、複数の走査面に沿って観察対象の複数の断層面を走査し、観察対象の3次元的な情報を得ることである。
 また、パッチとは、複数の振動子11Aの制御単位のことである。パッチは、2以上の振動子11Aを含み得る。
 例えば、図2に示す2次元走査用のパッチP1は、2次元振動子アレイ11においてエレベーション方向に1列に並んだ複数の振動子11Aを含んでおり、パッチP1に含まれる複数の振動子11Aは、まとめて制御され得る。
 また、図3に示す3次元走査用のパッチP2は、2次元振動子アレイ11においてアジマス方向に1列に並んだ複数の振動子11Aを含んでおり、パッチP2に含まれる複数の振動子11Aは、まとめて制御され得る。
 超音波プローブ2には、2次元振動子アレイ11を構成する振動子11Aの総数よりも少ない数のプローブビームフォーマ13が含まれている。
 複数のプローブビームフォーマ13は、パッチ分割回路12により分割された複数のパッチP1およびP2に対応しており、パッチP1およびP2のそれぞれに含まれる複数の振動子11Aから受け取った受信信号と、送信回路15から供給される送信信号とに対してビームフォーミングを行い得る。
 ここで、複数のプローブビームフォーマ13は、送信信号に対するビームフォーミングとして、それぞれのパッチP1およびP2の振動子11Aから特定の方向に超音波ビームが送信されるように、それぞれの送信信号に対して遅延を付与することができる。また、複数のプローブビームフォーマ13は、送信信号に対するビームフォーミングとして、送信信号に対して遅延を付与せずに、すなわち、遅延が未付与の送信信号をパッチP1およびP2の振動子11A内の複数の振動子11Aに対して送信することにより、それぞれのパッチP1およびP2の振動子11AからZ方向に直進する超音波ビームが送信されるようにすることもできる。
 また、複数のプローブビームフォーマ13は、受信信号に対するビームフォーミングとして、それぞれのパッチP1およびP2の振動子11Aが特定の方向から伝搬する超音波エコーを受信するように、それぞれの受信信号に対して遅延を付与することができる。また、複数のプローブビームフォーマ13は、受信信号に対するビームフォーミングとして、受信信号に対して遅延を付与せずに、すなわち、パッチP1およびP2内の複数の振動子11Aから受信した遅延が未付与の受信信号をそのまま本体ビームフォーマ25に送信することにより、それぞれのパッチP1およびP2の振動子11AがZ方向に直進する超音波エコーを受信するようにすることもできる。
 本体ビームフォーマ25は、超音波プローブ2と装置本体3とを互いに接続するケーブル内を通る図示しない複数の信号線を介して、複数のプローブビームフォーマ13に接続され、パッチ分割回路12により分割された複数のパッチP1およびP2の送信信号と受信信号のビームフォーミングを行う。
 本体ビームフォーマ25は、図1に示すように、送受信切り替え回路14、送信回路15および受信回路16を含んでいる。
 送信回路15は、走査制御部20による制御の下で、パッチP1およびP2の送信信号のビームフォーミングを行い、送受信切り替え回路14、複数のプローブビームフォーマ13およびパッチ分割回路12を介して2次元振動子アレイ11に対して送信信号を送信する。送信回路15は、図4に示すように、送受信切り替え回路14に接続される送信信号発生回路31と、送信信号発生回路31に接続される遅延信号発生回路32とを有している。
 遅延信号発生回路32は、走査制御部20による制御の下で、振動子アレイ11から送信される超音波を送信焦点距離に対応する位置に収束させるように、すなわち、送信信号のビームフォーミングのために、振動子アレイ11のそれぞれの振動子11Aが駆動するタイミングに遅延を付与するための送信遅延信号を発生する。
 送信信号発生回路31は、例えば、複数のパルス発生器を含んでおり、走査制御部20による制御の下で、遅延信号発生回路32により生成された送信遅延信号に基づいて、複数の振動子11Aに対する駆動信号である送信信号を発生する。このようにして、送信信号発生回路31は、送信遅延信号に従ってビームフォーミングがなされた送信信号を発生させる。送信信号発生回路31は、送信信号を、送受信切り替え回路14、複数のプローブビームフォーマ13およびパッチ分割回路12を介して、2次元振動子アレイ11の複数の振動子11Aに供給する。このようにして、2次元振動子アレイ11の複数の振動子11Aの電極にパルス状または連続波状の電圧が印加されると、圧電体が伸縮し、それぞれの振動子11Aからパルス状または連続波状の超音波が発生して、それらの超音波の合成波から、超音波ビームが形成される。
 受信回路16は、走査制御部20による制御の下で、パッチP1およびP2の受信信号すなわち送受信切り替え回路14を介して複数のプローブビームフォーマ13から受信した受信信号のビームフォーミングを行う。
 受信回路16は、図5に示すように、送受信切り替え回路14に接続される増幅回路33と、増幅回路33に接続されるAD(Analog Digital)変換回路34と、AD変換回路34に接続される整相加算回路35を有している。
 増幅回路33は、2次元振動子アレイ11を構成するそれぞれの振動子11Aから入力された受信信号を増幅し、増幅した受信信号をAD変換回路33に送信する。
 AD変換回路34は、増幅回路32から送信された受信信号をデジタル形式に変換する。
 整相可算回路35は、走査制御部20による制御の下で、被検体内のそれぞれの観測点で反射した超音波エコーを集束させるように、AD変換回路34によりデジタル形式に変換されたそれぞれの受信信号に対して遅延を付与し、遅延が付与された受信信号をそれぞれの観測点毎に加算合成する。これにより、パッチP1およびP2の受信信号のビームフォーミングが行われる。
 送受信切り替え回路14は、走査制御部20による制御の下で、複数のプローブビームフォーマ13と送信回路15とが互いに接続された状態と、複数のプローブビームフォーマ13と受信回路16とが互いに接続された状態とを切り替える。送受信切り替え回路14は、送信回路15がパッチP1およびP2の送信信号のビームフォーマを行う際に、複数のプローブビームフォーマ13と送信回路15とが互いに接続された状態にし、受信回路16がパッチP1およびP2の受信信号のビームフォーマを行う際に、複数のプローブビームフォーマ13と受信回路16とが互いに接続された状態にする。
 ここで、複数のプローブビームフォーマ13の総数は、2次元振動子アレイ11を構成する振動子11Aの総数よりも少ない。そのため、ケーブルを通って本体ビームフォーマ25に接続される複数の信号線の本数も、2次元振動子アレイ11を構成する振動子11Aの総数よりも少ない。また、本体ビームフォーマ25は、複数のパッチP1およびP2の送信信号に対するビームフォーミングの際に、送信信号に対して遅延を付与してもよく、遅延を付与しなくてもよい。また、本体ビームフォーマ25は、複数のパッチP1およびP2の受信信号に対するビームフォーミングの際に、受信信号に対して遅延を付与してもよく、遅延を付与しなくてもよい。
 ところで、一般的に、2次元振動子アレイは非常に多数の振動子を含んでいるため、2次元振動子アレイのすべての振動子から装置本体まで信号線を引き出すことが困難であった。そのため、2次元振動子アレイを有する超音波診断装置では、2次元振動子アレイを構成する複数の振動子をアジマス方向とエレベーション方向にそれぞれ複数の振動子を有する複数のパッチに分割することが多かった。
 このようなパッチの受信信号と送信信号に対してビームフォーミングをすることにより2次元走査を行うと、アジマス方向におけるパッチの数は、2次元振動子アレイに含まれるアジマス方向の振動子の数よりも少ないため、2次元振動子アレイに含まれるアジマス方向のすべての振動子の送信信号と受信信号に対してビームフォーミングを行う場合と比較して、得られる2次元超音波画像の画質が低下してしまうという問題があった。
 図2に示すような、パッチ分割回路12により分割された2次元走査用のパッチP1は、アジマス方向において1個の振動子11Aを有し、エレベーション方向において2次元振動子アレイ11のエレベーション方向における振動子11Aの数と同一の数の振動子11Aを有している。そのため、アジマス方向におけるパッチP1の数は、2次元振動子アレイ11に含まれるアジマス方向の振動子11Aの数と同じである。本体ビームフォーマ25により、複数のパッチP1の送信信号と受信信号に対してビームフォーミングを行うと、2次元振動子アレイ11の、アジマス方向のそれぞれの振動子11Aの送信信号と受信信号に対してビームフォーミングを行うことになる。そのため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても、高画質な2次元超音波画像が得られる。
 また、一般的に、図3に示すように走査面をエレベーション方向にステアする場合には、エレベーション方向において互いに隣接する振動子間のピッチが短いほど、いわゆるグレーティングローブが発生しにくく、振動子間のピッチが長いほどグレーティングローブが発生しやすいことが知られている。例えば、エレベーション方向において互いに隣接する振動子間のピッチをD、走査面のステア角度をA、パッチ内の振動子から発せられる超音波の波長をLとして、L=D|sin(A)-sin(B)|の条件を満たす角度Bの方向において、いわゆるグレーティングローブが発生することが知られている。例えば、ピッチDが0.2mm、波長Lが0.2mm、角度Aが30度である場合に-30度の角度Bの方向にグレーティングローブが発生する。
 ここで、エレベーション方向において互いに隣接する振動子間のピッチDとは、エレベーション方向に互いに隣接する一対の振動子の中心間の距離のことである。走査面のステア角度とは、XZ面を0度としたYZ面内における走査面の傾斜角度のことであり、XZ面の一方の面側におけるステア角度を正とし、XZ面の他方の面側におけるステア角度を負とすることができる。sin(A)は角度Aを位相とする正弦関数、sin(B)は角度Bを位相とする正弦関数、||は絶対値記号である。
 アジマス方向とエレベーション方向にそれぞれ複数の振動子を有するパッチを用いて、送信信号と受信信号のビームフォーミングをすることにより3次元走査を行うと、それぞれのパッチが実効的に1つの振動子として扱われる。そのため、エレベーション方向において互いに隣接する振動子間のピッチは、エレベーション方向において互いに隣接するパッチ間のピッチとして考えられる。この場合には、ピッチDが長くなるため、グレーティングローブが生じやすくなる。グレーティングローブが発生すると、得られた3次元超音波画像にグレーティングローブアーチファクトと呼ばれる像が含まれてしまい、ユーザが3次元超音波画像を読影する際の妨げとなる。
 また、アジマス方向とエレベーション方向にそれぞれ複数の振動子を有するパッチにおいて、エレベーション方向におけるパッチの数は、2次元振動子アレイに含まれるエレベーション方向の振動子の数よりも少ない。そのため、このようなパッチを用いてビームフォーミングを行うことにより3次元走査を行うと、2次元振動子アレイに含まれるエレベーション方向のすべての振動子の送信信号と受信信号に対してビームフォーミングを行う場合と比較して、得られる3次元超音波画像の画質が低下してしまうという問題があった。
 図3に示すような、パッチ分割回路12により分割された3次元走査用のパッチP2は、エレベーション方向において1個の振動子11Aを有し、アジマス方向において2次元振動子アレイ11のアジマス方向における振動子11Aの数と同一の数の振動子11Aを有している。そのため、エレベーション方向におけるパッチP2の数は、2次元振動子アレイ11に含まれるエレベーション方向の振動子11Aの数と同じである。また、エレベーション方向におけるパッチP2間のピッチDは、エレベーション方向において互いに隣接する振動子11A間のピッチと同じである。2次元振動子アレイ11は、非常に多数の振動子11Aにより構成されており、エレベーション方向におけるパッチP2間のピッチDは、十分に短い。そのため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても、グレーティングローブが発生しにくい。
 また、本体ビームフォーマ25により、複数のパッチP2の送信信号と受信信号に対してビームフォーミングを行うと、2次元振動子アレイ11のエレベーション方向のそれぞれの振動子11Aの送信信号と受信信号に対してビームフォーミングを行うことになる。そのため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても、高画質な3次元超音波画像が得られる。
 画像生成部17は、図6に示すように、信号処理部36、DSC(Digital Scan Converter:デジタルスキャンコンバータ)37および画像処理部38が順次直列に接続された構成を有している。
 信号処理部36は、2次元走査が行われる場合に、受信回路16から受信した受信信号に対し、本体制御部21により設定される音速値を用いて超音波の反射位置の深度に応じた距離による減衰の補正を施す。その後、信号処理部36は、包絡線検波処理を施すことにより、被検体内の組織に関する断層画像情報であるBモード画像信号を2次元超音波画像信号として生成する。
 また、信号処理部36は、3次元走査が行われる場合に、複数の走査断面について、2次元走査の場合と同様にして、受信回路16から受信した受信信号に対して減衰の補正と包絡線検波処理とを施す。さらに、信号処理部36は、得られた受信信号に対していわゆるボリュームレンダリングの処理を行う。これにより、信号処理部36は、3次元超音波画像信号を生成する。
 DSC37は、信号処理部36で生成された2次元超音波画像信号および3次元超音波画像信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)する。
 画像処理部38は、DSC37から入力される2次元超音波画像信号および3次元超音波画像信号に階調処理等の各種の必要な画像処理を施した後、2次元超音波画像信号および3次元超音波画像信号を表示制御部18に送出する。以降は、画像処理部38により画像処理が施された2次元超音波画像信号を単に2次元超音波画像と呼び、画像処理部38により画像処理が施された3次元超音波画像信号を単に3次元超音波画像と呼ぶ。
 走査制御部20は、パッチ分割回路12、複数のプローブビームフォーマ13および本体ビームフォーマ25を制御することにより、超音波診断装置1においてなされる2次元走査と3次元走査を制御する。
 走査制御部20は、2次元走査と3次元走査を交互に行うように走査を制御できる。例えば、走査制御部20は、図7に示すように、1フレームの2次元超音波画像に相当する受信信号を得るための2次元走査S1と、1フレームの3次元超音波画像に相当する受信信号を得るための3次元走査S2とが交互になされるように走査を制御できる。図7では、例えば、区間T1において1フレームの2次元超音波画像に相当する受信信号が得られ、区間T2において1フレームの3次元超音波画像に相当する受信信号が得られ、区間T3において新たな1フレームの2次元超音波画像に相当する受信信号が得られ、区間T4において新たな1フレームの3次元超音波画像に相当する受信信号が得られるように、走査が制御される。
 このような場合に、走査制御部20は、例えば、2次元走査S1を行うことを表す信号と3次元走査S2を行うことを表す信号とを、パッチ分割回路12に送信する。パッチ分割回路12は、走査制御部20から送信された信号に基づいて、2次元走査S1用のパッチP1と3次元走査S2用のパッチP2とを切り替えるように複数の振動子11Aを分割する。
 本体制御部21は、予め記録されたプログラム等に従って装置本体3の各部を制御する。
 表示制御部18は、本体制御部21の制御の下で、画像生成部17により生成された2次元超音波画像および3次元超音波画像等に対して所定の処理を施して、モニタ19に表示する。
 モニタ19は、表示制御部18の制御の下で、種々の表示を行う。モニタ19は、例えば、LCD(Liquid Crystal Display:液晶ディスプレイ)または有機ELディスプレイ(Organic Electroluminescence Display)等のディスプレイ装置を含む。
 入力装置22は、ユーザが入力操作を行うためのものである。入力装置22は、例えば、キーボード、マウス、トラックボール、タッチパッドおよびタッチパネル等のユーザが入力操作を行うための装置等により構成される。
 メモリ24は、本体ビームフォーマ25によってビームフォーミングが行われた受信信号等を一時的に保存するためのものである。メモリ24としては、例えば、フラッシュメモリ、HDD(Hard Disc Drive:ハードディスクドライブ)、SSD(Solid State Drive:ソリッドステートドライブ)、FD(Flexible Disc:フレキシブルディスク)、MOディスク(Magneto-Optical disc:光磁気ディスク)、MT(Magnetic Tape:磁気テープ)、RAM(Random Access Memory:ランダムアクセスメモリ)、CD(Compact Disc:コンパクトディスク)、DVD(Digital Versatile Disc:デジタルバーサタイルディスク)、SDカード(Secure Digital card:セキュアデジタルカード)、USBメモリ(Universal Serial Bus memory:ユニバーサルシリアルバスメモリ)等の記録メディア等が用いられ得る。
 なお、画像生成部17、表示制御部18、走査制御部20および本体制御部21を有するプロセッサ23は、CPU(Central Processing Unit:中央処理装置)、および、CPUに各種の処理を行わせるための制御プログラムから構成されるが、FPGA(Field Programmable Gate Array:フィードプログラマブルゲートアレイ)、DSP(Digital Signal Processor:デジタルシグナルプロセッサ)、ASIC(Application Specific Integrated Circuit:アプリケーションスペシフィックインテグレイテッドサーキット)、GPU(Graphics Processing Unit:グラフィックスプロセッシングユニット)、その他のIC(Integrated Circuit:集積回路)を用いて構成されてもよく、もしくはそれらを組み合わせて構成されてもよい。
 また、プロセッサ23の画像生成部17、表示制御部18、走査制御部20および本体制御部21は、部分的にあるいは全体的に1つのCPU等に統合させて構成されることもできる。
 次に、本発明の実施の形態1に係る超音波診断装置1が、2次元走査S1および3次元走査S2を行い、それによって得られた2次元超音波画像と3次元超音波画像をモニタ19に表示するまでの動作を説明する。
 まず、ユーザにより、超音波プローブ2が被検体の体表上に配置され、入力装置22を介して走査を開始する指示が入力される。このようにしてユーザに入力された情報は、本体制御部21から装置本体3の各部に送信される。この状態において、走査制御部20の制御の下で、2次元走査S1および3次元走査S2が行われる。
 以下では、図7に示すように、区間T1における2次元走査S1により走査が開始される例を説明する。
 走査制御部20は、本体制御部21から走査を開始する指示を受け取ると、区間T1において2次元走査S1を行うことを表す情報をパッチ分割回路12に送信する。
 パッチ分割回路12は、走査制御部20から送信された情報に基づいて、2次元振動子アレイ11の複数の振動子11Aを図2に示すような2次元走査S1用の複数のパッチP1に分割する。
 本体ビームフォーマ25の送信回路15は、本体制御部21から受け取った走査を開始する指示に基づいて、送信信号を発生し、発生した送信信号を、送受信切り替え回路14を介して複数のプローブビームフォーマ13に送出する。
 この際に、送信回路15は、パッチ分割回路12により分割された2次元走査S1用の複数のパッチP1の送信信号に対してビームフォーミングを行う。送信回路15でビームフォーミングが行われた送信信号は、複数のプローブビームフォーマ13に送出される。
 続いて、複数のプローブビームフォーマ13は、本体ビームフォーマ25の送信回路15から送出されたそれぞれのパッチP1内の送信信号に対してビームフォーミングを行う。
 このようにして、本体ビームフォーマ25と複数のプローブビームフォーマ13とにおいてビームフォーミングが行われた送信信号は、それぞれのパッチP1の複数の振動子11Aに送信される。
 それぞれのパッチP1内の複数の振動子11Aは、受け取った送信信号に基づいて超音波を発生させる。このようにして複数の振動子11Aから発せられた超音波は、被検体内を超音波ビームとして伝搬し、被検体内の組織で反射して超音波エコーとして複数の振動子11Aに向かって伝搬する。
 このようにして被検体内を伝搬する超音波エコーは、複数のパッチP1の複数の振動子11Aに受信され、複数の振動子11Aにより受信信号が生成される。生成された受信信号は、パッチ分割回路12を介して複数のプローブビームフォーマ13に送出される。
 複数のプローブビームフォーマ13は、それぞれのパッチP1の複数の振動子11Aから送出された受信信号に対してビームフォーミングを行う。複数のプローブビームフォーマ13によりビームフォーミングが行われた受信信号は、装置本体3の本体ビームフォーマ25に送出される。
 本体ビームフォーマ25の受信回路16は、複数のプローブビームフォーマ13によりビームフォーミングされた、複数のパッチP1の受信信号に対してビームフォーミングを行う。
 このようにして、複数のプローブビームフォーマ13と本体ビームフォーマ25とによってビームフォーミングが行われた受信信号は、画像生成部17に送出される。
 画像生成部17は、本体ビームフォーマ25の受信回路16から送出された受信信号に基づいて、2次元超音波画像を生成する。
 生成された2次元超音波画像は、表示制御部18において所定の処理が施された後で、モニタ19に表示される。
 ここで、一般的に、2次元振動子アレイは非常に多数の振動子を含んでいるため、2次元振動子アレイのすべての振動子から装置本体まで信号線を引き出すことが困難であった。そのため、2次元振動子アレイを有する超音波診断装置では、2次元振動子アレイを構成する複数の振動子をアジマス方向とエレベーション方向にそれぞれ複数の振動子を有する複数のパッチに分割することが多かった。
 このようなパッチの受信信号と送信信号に対してビームフォーミングをすることにより2次元走査S1を行うと、アジマス方向におけるパッチの数は、2次元振動子アレイに含まれるアジマス方向の振動子の数よりも少ない。そのため、2次元振動子アレイに含まれるアジマス方向のすべての振動子の送信信号と受信信号に対してビームフォーミングを行う場合と比較して、得られる2次元超音波画像の画質が低下してしまうという問題があった。
 図2に示すように、実施の形態1におけるパッチ分割回路12により分割された2次元走査S1用のパッチP1は、アジマス方向において1個の振動子11Aを有し、エレベーション方向において2次元振動子アレイ11のエレベーション方向における振動子11Aの数と同一の数の振動子11Aを有している。そのため、アジマス方向におけるパッチP1の数は、2次元振動子アレイ11に含まれるアジマス方向の振動子11Aの数と同じである。本体ビームフォーマ25により、複数のパッチP1の送信信号と受信信号に対してビームフォーミングを行うと、2次元振動子アレイ11のアジマス方向のそれぞれの振動子11Aの送信信号と受信信号に対してビームフォーミングを行うことになるため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても高画質な2次元超音波画像が得られる。
 次に、走査制御部20は、図7に示す区間T2において3次元走査S2を行うことを表す情報をパッチ分割回路12に送信する。なお、一例として、区間T2では、1フレームの3次元超音波画像に相当する受信信号が得られるとする。
 パッチ分割回路12は、走査制御部20から送信された情報に基づいて、2次元振動子アレイ11の複数の振動子11Aを、図3に示すような3次元走査S2用の複数のパッチP2に分割する。
 本体ビームフォーマ25の送信回路15は、2次元走査S1の場合と同様にして、送信信号を発生し、発生した送信信号を、送受信切り替え回路14を介して複数のプローブビームフォーマ13に送出する。
 この際に、送信回路15は、パッチ分割回路12により分割された3次元走査S2用の複数のパッチP2の送信信号に対してビームフォーミングを行う。本体ビームフォーマ25でビームフォーミングが行われた送信信号は、複数のプローブビームフォーマ13に送出される。
 続いて、複数のプローブビームフォーマ13は、本体ビームフォーマ25から送出されたそれぞれのパッチP1内の送信信号に対してビームフォーミングを行う。
 このようにして、本体ビームフォーマ25と複数のプローブビームフォーマ13においてビームフォーミングが行われた送信信号は、それぞれのパッチP1の複数の振動子11Aに送信される。
 それぞれのパッチP2内の複数の振動子11Aは、受け取った送信信号に基づいて超音波を発生させる。このようにして複数の振動子11Aから発せられた超音波は、被検体内を超音波ビームとして伝搬し、被検体内の組織で反射して超音波エコーとして複数の振動子11Aに向かって伝搬する。
 このようにして被検体内を伝搬する超音波エコーは、複数のパッチP2の複数の振動子11Aに受信され、複数の振動子11Aにより受信信号が生成される。生成された受信信号は、パッチ分割回路12を介して複数のプローブビームフォーマ13に送出される。
 複数のプローブビームフォーマ13は、それぞれのパッチP2の複数の振動子11Aから送出された受信信号に対してビームフォーミングを行う。複数のプローブビームフォーマ13によりビームフォーミングが行われた受信信号は、装置本体3の本体ビームフォーマ25に送出される。
 本体ビームフォーマ25の受信回路16は、複数のプローブビームフォーマ13によりビームフォーミングされた、複数のパッチP1の受信信号に対してビームフォーミングを行う。
 このようにして、複数のプローブビームフォーマ13と本体ビームフォーマ25とによってビームフォーミングが行われた受信信号は、メモリ24に保存される。
 ここで、走査制御部20は、図3に示すように、走査面をエレベーション方向にステアするように、複数のプローブビームフォーマ13および本体ビームフォーマ25を制御する。言い換えると、走査制御部20は、複数のパッチP2のそれぞれにより得られる走査面をエレベーション方向にステアして、各走査面が鉛直方向に対して任意の傾き(ステア角度)を有するように、複数のプローブビームフォーマ13および本体ビームフォーマ25を制御する。この際に、本体ビームフォーマ25は、走査面がエレベーション方向にステアされるように、3次元走査S2用の複数のパッチP2の送信信号および受信信号に対して遅延を付与できる。
 このようにしてステア角度が変更された状態で、複数のプローブビームフォーマ13および本体ビームフォーマ25による送信信号のビームフォーミングと、超音波の送信と、超音波の受信と、複数のプローブビームフォーマ13および本体ビームフォーマ25による受信信号のビームフォーミングと、メモリ24への受信信号の保存とがなされ、さらに、ステア角度が変更される。
 このようにして、図7に示す区間T2において、1フレームの3次元超音波画像に相当する受信信号が得られるまで、超音波の送信からステア角度の変更までの一連の処理が繰り返される。
 区間T2の処理によって、1フレームの3次元超音波画像に相当する受信信号がメモリ24に保存されると、画像生成部17は、メモリ24から1フレームの3次元超音波画像に相当する受信信号を読み出して、この受信信号に基づいて3次元超音波画像を生成する。生成された3次元超音波画像は、表示制御部18によって所定の処理が施された後で、区間T1で生成された2次元超音波画像と一緒にモニタ19に表示される。
 次に、区間T3において、区間T1で行われた2次元走査S1の処理と同様の処理が行われ、新たに生成された2次元超音波画像がモニタ19に表示される。
 区間T3における2次元走査S1の処理が完了すると、次の区間T4において、区間T2で行われた3次元走査S2の処理と同様にして、新たな1フレームの3次元超音波画像に相当する受信信号を得るために、超音波の送信からステア角度の変更までの一連の処理が繰り返される。
 区間T4の処理によって、新たな1フレームの3次元超音波画像に相当する受信信号がメモリ24に保存されると、画像生成部17は、メモリ24から1フレームの3次元超音波画像に相当する受信信号を読み出して、この受信信号に基づいて3次元超音波画像を生成する。生成された3次元超音波画像は、表示制御部18によって所定の処理が施された後で、区間T3で生成された2次元超音波画像と一緒にモニタ19に表示される。
 ここで、一般的に、図3に示すように走査面をエレベーション方向にステアする場合には、エレベーション方向において互いに隣接する振動子間のピッチDが短いほどグレーティングローブが発生しにくく、振動子間のピッチDが長いほどグレーティングローブが発生しやすいことが知られている。
 アジマス方向とエレベーション方向にそれぞれ複数の振動子を有するパッチを用いて、送信信号と受信信号のビームフォーミングをすることにより3次元走査S2を行うと、それぞれのパッチが実効的に1つの振動子として扱われる。そのため、エレベーション方向において互いに隣接する振動子間のピッチは、エレベーション方向において互いに隣接するパッチ間のピッチとして考えられる。この場合には、ピッチDが長くなるため、グレーティングローブが生じやすくなる。グレーティングローブが発生すると、得られた3次元超音波画像にグレーティングローブアーチファクトと呼ばれる像が含まれてしまい、ユーザが3次元超音波画像を読影する際の妨げとなる。
 また、アジマス方向とエレベーション方向にそれぞれ複数の振動子を有するパッチにおいて、エレベーション方向におけるパッチの数は、2次元振動子アレイに含まれるエレベーション方向の振動子の数よりも少ない。そのため、このようなパッチを用いてビームフォーミングを行うことにより3次元走査を行うと、2次元振動子アレイに含まれるエレベーション方向のすべての振動子の送信信号と受信信号に対してビームフォーミングを行う場合と比較して、得られる3次元超音波画像の画質が低下してしまうという問題があった。
 図3に示すように、実施の形態1におけるパッチ分割回路12により分割された3次元走査S2用のパッチP2は、エレベーション方向において1個の振動子11Aを有し、アジマス方向において2次元振動子アレイ11のアジマス方向における振動子11Aの数と同一の数の振動子11Aを有している。そのため、エレベーション方向におけるパッチP2の数は、2次元振動子アレイ11に含まれるエレベーション方向の振動子11Aの数と同じであり、エレベーション方向におけるパッチP2間のピッチDは、エレベーション方向間の隣接する振動子11A間のピッチと同じである。2次元振動子アレイ11は、非常に多数の振動子11Aにより構成されており、エレベーション方向におけるパッチP2間のピッチDは十分に短いため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても、グレーティングローブが発生しにくい。
 また、本体ビームフォーマ25により、複数のパッチP2の送信信号と受信信号に対してビームフォーミングを行うと、2次元振動子アレイ11のエレベーション方向のそれぞれの振動子11Aの送信信号と受信信号に対してビームフォーミングを行うことになるため、高画質な3次元超音波画像が得られる。
 また、2次元超音波画像と3次元超音波画像とが一緒にモニタ19に表示されるため、ユーザは、2次元超音波画像と3次元超音波画像とをモニタ19上で一緒に確認することにより、観察対象の部位等の被検体内の様子を精確に把握しながら被検体を検査できる。
 このようにして、3次元超音波画像が2次元超音波画像と一緒にモニタ19に表示されると、次の区間以降も、2次元走査S1と3次元走査S2とが交互に行われる。
 実施の形態1において説明される超音波診断装置1の動作は以上のようなものである。
 以上から、本発明の実施の形態1の超音波診断装置1によれば、パッチ分割回路12により、2次元振動子アレイ11を構成する複数の振動子11Aが、2次元走査S1用のパッチP1と3次元走査S2用のパッチP2とに分割される。また、複数のプローブビームフォーマ13により、それぞれのパッチP1およびP2の振動子11Aの送信信号と受信信号に対してビームフォーミングがなされる。さらに、本体ビームフォーマ25により、複数のパッチP1およびP2の、送信信号と受信信号に対してビームフォーミングがなされるため、2次元振動子アレイ11のすべての振動子11Aと本体ビームフォーマ25とを複数の信号線で直接接続できなくても、2次元超音波画像の画質と3次元超音波画像の画質の双方を向上できる。
 なお、図2に示す2次元走査S1用のパッチP1は、アジマス方向において1個の振動子11Aを有し、エレベーション方向において2次元振動子アレイ11のエレベーション方向の振動子数と同じ数の振動子11Aを有しているが、エレベーション方向において2以上の振動子11Aを有していればよい。この場合でも、アジマス方向におけるパッチP1の数は、2次元振動子アレイ11のアジマス方向の振動子11Aの数と同じであるため、2次元走査S1用のパッチP1を用いて2次元走査S1が行われることにより、高画質な2次元超音波画像が得られる。
 また、図3に示す3次元走査S2用のパッチP2は、エレベーション方向において1個の振動子11Aを有し、アジマス方向において2次元振動子アレイ11のアジマス方向の振動子数と同じ数の振動子11Aを有しているが、アジマス方向において2以上の振動子11Aを有していればよい。この場合でも、エレベーション方向におけるパッチP2の数は、2次元振動子アレイ11のエレベーション方向の振動子11Aの数と同じであるため、3次元走査S2用のパッチP2を用いて3次元走査S2が行われることにより、高画質で且つグレーティングローブアーチファクトが抑制された3次元超音波画像が得られる。
 また、本体ビームフォーマ25は、3次元走査S2が行われる際に、超音波のステア角度の範囲がエレベーション方向において対称となるように、複数のパッチP1およびP2に対して送信信号および受信信号のビームフォーミングを行うことができる。これにより、広範囲にわたって被検体内を描出した3次元超音波画像を得ることができる。
 また、本体ビームフォーマ25は、3次元走査S2が行われる際に、超音波のステア角度の範囲がエレベーション方向において非対称となるように、複数のパッチP1およびP2に対して送信信号および受信信号のビームフォーミングを行うこともできる。これにより、例えば、ユーザが観察する必要のない範囲の走査を省くことができるため、3次元超音波画像の生成に要する計算負荷を軽減でき、モニタ19に表示される3次元超音波画像のフレームレートを向上できる。
 また、本体ビームフォーマ25は、3次元走査S2が行われる際に、超音波のステア角度の間隔を、ステア角度の絶対値に応じて変更するように、複数のパッチP1およびP2に対して送信信号および受信信号のビームフォーミングを行うこともできる。ここで、ステア角度の間隔とは、互いに隣接する一対の走査面のなす角のことを指す。より具体的に、ステア角度の間隔とは、隣り合う二つのパッチP2,P2の走査面がなす角のことである。この場合に、本体ビームフォーマ25は、例えば、ステア角度が0度に近いほど、隣接する走査面の角度間隔を密にする一方、ステア角度が0度から遠ざかるほど、隣接する走査面の角度間隔を疎にするように走査できる。すなわち、鉛直方向に対する走査面の傾きは、ステア範囲の端部近傍に近づくほど大きくなり、隣接する走査面との角度間隔を疎にするように走査できる。これによっても、ユーザが観察する必要のない範囲の走査を省くことができるため、3次元超音波画像の生成に要する計算負荷を軽減でき、モニタ19に表示される3次元超音波画像のフレームレートを向上できる。
 また、超音波診断装置1の動作の説明では、2次元走査S1から開始され、次に3次元走査S2が行われているが、3次元走査S2から開始されてもよい。
 また、図7を用いた説明において、区間T2における3次元走査S2および区間S4における3次元走査S2で、それぞれ、1フレームの3次元超音波画像に相当する受信信号が得られる例が説明されている。一方、例えば、区間T2における3次元走査S2により、1フレームの3次元超音波画像の半分に相当する受信信号が得られ、区間T4における3次元走査S2により、1フレームの3次元超音波画像の残りの半分に相当する受信信号が得られてもよい。一般的に、1フレームの3次元超音波画像に相当する受信信号を得るための3次元走査S2および3次元超音波画像の生成には、十分に長い時間を要する。そのため、3次元走査S2の途中に2次元走査S1を行うことにより、モニタ19に表示される2次元超音波画像のフレームレートを高く維持することができる。
 また、3次元走査S2の区間T2、T4で得られる受信信号は、1フレームの3次元超音波画像に相当する受信信号および1フレームの3次元超音波画像の半分に相当する受信信号に限定されない。例えば、1フレームの3次元超音波画像の1/3の受信信号が得られてもよく、1/4の受信信号が得られてもよく、より少ない割合の受信信号が得られてもよい。この場合でも、モニタ19に表示される2次元超音波画像のフレームレートを高く維持できる。
 また、区間T2で1フレームの3次元超音波画像の半分に相当する受信信号が得られる場合に、1フレームの3次元超音波画像に相当する受信信号がメモリ24に保存されてから3次元超音波画像の生成が行われることが説明されている。これに対して、例えば、区間T2で受信信号が得られた際に、その受信信号を用いて、1フレームの3次元超音波画像の半分の情報量を有する3次元超音波画像を生成してモニタ19に表示し、区間T4で受信信号が得られた際に、区間T2と区間T4で得られた受信信号を用いて、1フレームの3次元超音波画像を生成してモニタ19に表示してもよい。このように、3次元走査S2の1つの区間で受信信号が得られる毎に3次元超音波画像を生成し、生成された3次元超音波画像を、2次元超音波画像と一緒にモニタ19に表示できる。これにより、モニタ19に表示される2次元超音波画像のフレームレートを高く維持できることに加え、モニタ19に表示される3次元超音波画像のフレームレートも向上できる。
 また、走査制御部20は、図8に模式的に示すように、3次元走査S2が行われる際に、3次元走査S2のアジマス方向に隣接する走査線SLが互いに異なるグループG1、G2およびG3に属するように、3次元走査S2における複数の走査線SLを複数のグループG1、G2およびG3に分割してもよい。走査制御部20は、分割されたそれぞれのグループG1、G2、G3毎に走査されるように複数のプローブビームフォーマ13を制御し、且つ、分割された少なくとも1つのグループG1、G2、G3の3次元走査S2が終了する毎に、3次元走査S2を2次元走査S1に切り替えることができる。
 図8に示す例では、アジマス方向に隣接する走査線SLが、3つのグループG1、G2およびG3のうち、互いに異なるグループに属するように、3次元走査S2における複数の走査線SLが3つのグループG1、G2およびG3に分割されている。この場合に、例えば、図7の区間T2においてグループG1に属する複数の走査線SLに沿って3次元走査S2が行われ、区間T4においてグループG2に属する複数の走査線SLに沿って3次元走査S2が行われ、次の3次元走査S2の区間においてグループG3に属する複数の走査線SLに沿って3次元走査S2が行われる。言い換えると、3次元走査S2が行われる度に、使用する走査線SLのグループG1、G2およびG3が切り替えられる。
 この場合に、3つのグループG1、G2およびG3に対応する受信信号がすべて得られた際に3次元超音波画像が生成されてもよく、グループG1、G2およびG3のそれぞれに対応する受信信号が得られた際に3次元超音波画像が生成されてもよい。グループG1、G2およびG3のそれぞれに対応する受信信号が得られた際に3次元超音波画像が生成される場合には、まず、グループG1に対応する受信信号が得られた際に、グループG1に対応する受信信号から、1フレームの3次元超音波画像の1/3の密度を有する3次元超音波画像が生成される。次に、グループG2に対応する受信信号が得られた際に、グループG1に対応する受信信号およびグループG2に対応する受信信号から、1フレームの3次元超音波画像の2/3の密度の有する3次元超音波画像が生成される。最後に、グループG3に対応する受信信号が得られた際に、3つのグループG1、G2およびG3に対応する受信信号から、1フレームの3次元超音波画像が生成される。
 また、図示しないが、超音波プローブ2に対して、加速度センサまたはジャイロセンサ等の、超音波プローブ2の動きを検出するセンサを取り付けることもできる。この場合に、例えば被検体の呼吸等により、被検体の体表面と一緒に超音波プローブ2が動いたことを検出できる。さらに、検出された被検体の動きが、定められた動きしきい値よりも大きい場合に、最新の1グループに対応する受信信号のみを用いて3次元超音波画像が生成され得る。これにより、被検体の動きに追従した3次元超音波画像を生成できる。
 また、走査制御部20は、2次元走査S1が行われる際に、2次元走査S1のエレベーション方向に隣接する走査線SLが互いに異なるグループに属するように、2次元走査S1における複数の走査線SLを複数のグループに分割してもよい。そこで、走査制御部20は、分割されたそれぞれのグループ毎に走査されるように複数のプローブビームフォーマ13を制御し、且つ、分割された少なくとも1つのグループの2次元走査S1が終了する毎に、2次元走査S1を3次元走査S2に切り替えることができる。
 図示しないが、例えば、2次元走査S1における複数の走査線SLを3つのグループに分割する場合に、図7の区間T1において1つ目のグループに対応する受信信号が得られ、区間T3において2つ目のグループに対応する受信信号が得られ、次の2次元走査S1の区間において3つ目のグループに対応する受信信号が得られる。この場合に、3つのグループに対応する受信信号がすべて得られた際に2次元超音波画像が生成されてもよく、それぞれのグループに対応する受信信号が得られた際に2次元超音波画像が生成されてもよい。
 また、2次元振動子アレイ11はエレベーション方向の幅の2.5倍以上のアジマス方向の幅を有することができる、すわなち、2次元振動子アレイ11のサイズは、アジマス方向の幅がエレベーション方向の幅の2.5倍以上となるように設計され得る。2次元振動子アレイ11のエレベーション方向の幅がアジマス方向の幅よりも短いことにより、超音波プローブ2の先端部を被検体の体表面に接触させた際に、超音波プローブ2と被検体の体表面との間に隙間が生じにくく、湾曲した体表面に対しても、超音波プローブ2を隙間なく接触できる。さらに、実施の形態1の超音波診断装置1では、3次元走査S2が行われる際に、エレベーション方向に1つの振動子11Aを含み且つアジマス方向に複数の振動子11Aを含むパッチP2が用いられるため、2次元振動子アレイ11のエレベーション方向の幅がアジマス方向の幅よりも短い場合でも、高画質で且つグレーティングローブアーチファクトが抑制された3次元超音波画像が得られる。
 実施の形態2
 実施の形態1では、2次元振動子アレイ11を構成するすべての振動子11Aを2次元走査S1用の複数のパッチP1と3次元走査用の複数のパッチP2に分割しているが、2次元振動子アレイ11に、アジマス方向に移動(スイープ)する開口を設定し、その開口内の複数の振動子11Aが複数のパッチP1、P2に分割され得る。ここで、開口とは、エレベーション方向およびアジマス方向にそれぞれ配列された複数の振動子11Aから、任意の複数の振動子11Aを選択するための領域を意味する。
 図9に、本発明の実施の形態2の超音波診断装置1Aの構成を示す。実施の形態2の超音波診断装置1Aは、図1に示す実施の形態1の超音波診断装置1において、超音波プローブ2の代わりに超音波プローブ2Aを備えたものである。
 実施の形態2における超音波プローブ2Aは、実施の形態1における超音波プローブ2で、スイープ回路41が追加されたものである。超音波プローブ2Aにおいて、2次元振動子アレイ11にスイープ回路41が接続され、スイープ回路41にパッチ分割回路12が接続されている。
 スイープ回路41は、走査制御部20の制御の下で、エレベーション方向に、2次元振動子アレイ11のエレベーション方向における振動子数以下の第1の振動子数の振動子11Aが配列され、且つ、アジマス方向に、2次元振動子アレイ11のアジマス方向における振動子数よりも少ない第2の振動子数の振動子11Aが配列された、開口に含まれる複数の振動子11Aを、2次元振動子アレイ11の少なくとも一部の振動子11A、すなわちサブアレイ、として選択する。
 第1の振動子数をMとし且つ第2の振動子数をNとした場合に、パッチ分割回路41は、例えば、2次元振動子アレイ11の複数の振動子11Aから、図10に示すように、エレベーション方向にM個の振動子11Aが配列され且つアジマス方向にN個の振動子11Aが配列された開口Qに含まれるM×N個の振動子11Aを直接的に選択する。ここで、MおよびNは、2以上の整数である。なお、図9においては、Mは2次元振動子アレイ11のエレベーション方向の振動子数と等しく、Nは2次元振動子アレイ11のアジマス方向の振動子数よりも小さい。
 また、スイープ回路41は、2次元走査S1および3次元走査S2が行われる際に、開口Qをアジマス方向にスイープさせる。
 パッチ分割回路12は、開口Qにおいて複数のパッチP1およびP2の分割を行う。パッチ分割回路12は、2次元走査S1が行われる際に、開口Qにおける複数の振動子11Aを、それぞれ、エレベーション方向にMの約数であるK個の振動子11Aが並んだ、2次元走査S1用の複数のパッチP1に分割する。また、パッチ分割回路12は、3次元走査S2が行われる際に、開口Qにおける複数の振動子11Aを、それぞれ、アジマス方向にNの約数であるL個の振動子11Aが並んだ、3次元走査S2用の複数のパッチP2に分割する。
 以上のように、2次元振動子アレイ11に開口Qが設定される場合でも、パッチ分割回路12により、開口Qにおける複数の振動子11Aが、2次元走査S1用のパッチP1および3次元走査S2用のパッチP2にそれぞれ分割される。そのため、2次元走査S1と3次元走査S2で開口Qの制御を共通化でき、超音波プローブ2A内に実装される回路の規模を小さくでき、且つ、走査の制御を簡略化できる。
実施の形態3
 実施の形態2において、スイープ回路41は、2次元振動子アレイ11に接続されることで開口Qに含まれる振動子11Aを、2次元振動子アレイ11の少なくとも一部の複数の振動子11A、すなわちサブアレイ、として直接的に選択している。これに対し、スイープ回路41は、複数のプローブビームフォーマ13に接続されることで開口Qに含まれる振動子11Aをサブアレイとして間接的に選択することもできる。
 図11に、実施の形態3の超音波診断装置1Bの構成を示す。実施の形態3の超音波診断装置1Bは、図9に示す実施の形態2の超音波診断装置1Aにおいて、超音波プローブ2Aの代わりに超音波プローブ2Bを備えたものである。
 実施の形態3における超音波プローブ2Bは、実施の形態2における超音波プローブ2Aにおいて、スイープ回路41の接続位置が変更されたものである。超音波プローブ2Bは、2次元振動子アレイ11を構成するすべての振動子11Aに対応する複数のプローブビームフォーマ13を有している。2次元振動子アレイ11にパッチ分割回路12および複数のプローブビームフォーマ13が順次接続され、複数のプローブビームフォーマ13にスイープ回路41が接続されている。また、スイープ回路41に装置本体3の本体ビームフォーマ25が接続されている。
 実施の形態3において、スイープ回路41は、複数のプローブビームフォーマ13のうち、パッチ分割回路12により分割された複数のパッチP1およびP2に対応する一部のプローブビームフォーマ13を選択することにより、それらのプローブビームフォーマ13に対応する複数の振動子11Aを、開口QのM×N個の振動子11Aとして選択する。
 以上のように、スイープ回路41により、開口QのM×N個の振動子11Aが間接的に選択される場合でも、実施の形態2と同様にして、パッチ分割回路12により、開口Qにおける複数の振動子11Aが、2次元走査S1用のパッチP1および3次元走査S2用のパッチP2にそれぞれ分割されるため、2次元走査S1と3次元走査S2で開口Qの制御を共通化でき、超音波プローブ2A内に実装される回路の規模を小さくでき、且つ、走査の制御を簡略化できる。
実施の形態4
 実施の形態1では、3次元走査S2における走査範囲の全体に対応する3次元超音波画像が生成されているが、ユーザの観察対象を検出し、検出された観察対象の3次元超音波画像を生成することもできる。
 図12に、実施の形態4の超音波診断装置1Cの構成を示す。実施の形態4の超音波診断装置1Cは、図1に示す実施の形態1の超音波診断装置1において、装置本体3の代わりに装置本体3Cを備えたものである。
 実施の形態4における装置本体3Cは、実施の形態1における装置本体3において、観察対象選択部51と観察対象検出部52が追加され、本体制御部21の代わりに本体制御部21Cが備えられ、プロセッサ23の代わりにプロセッサ23Cが備えられたものである。
 装置本体3Cにおいて、本体制御部21Cに観察対象選択部51が接続されている。また、受信回路16および観察対象選択部51に、観察対象検出部52が接続されている。また、受信回路16および観察対象検出部52に、メモリ24が接続されている。また、画像生成部17、表示制御部18、走査制御部20、本体制御部21C、観察対象選択部51および観察対象検出部52により、装置本体3C用のプロセッサ23Cが構成されている。
 観察対象選択部51は、ユーザの観察対象となり得る複数の被検体の部位および処置具等を予め記憶しており、入力装置22を介したユーザの入力操作に基づいて、観察対象を選択する。この際に、例えば、予め記憶されている複数の観察対象の部位および処置具等のリストがモニタ19に表示され、入力装置22を介してユーザが1つの観察対象を選択すると、観察対象選択部51は、ユーザにより選択された観察対象を選択できる。
 観察対象検出部52は、3次元走査S2を行うことにより本体ビームフォーマ25の受信回路16を介して供給される受信信号に基づいて、観察対象選択部51により選択された観察対象を検出する。観察対象検出部52によって検出された観察対象の情報は、観察対象の検出が行われた受信信号と関連付けられてメモリ24に保存される。
 画像生成部17は、観察対象検出部52により検出された観察対象の情報と受信信号とをメモリ24から読み出し、観察対象検出部52により検出された観察対象に対してボリュームレンダリングの処理を行うことにより、観察対象の3次元超音波画像を生成する。
 このようにして画像生成部17によって生成された観察対象の3次元超音波画像は、例えば、モニタ19において2次元超音波画像に重畳表示され得る。また、観察対象の3次元超音波画像は、2次元超音波画像と並んでモニタ19に表示されてもよい。
 以上から、実施の形態4の超音波診断装置1Cによれば、観察対象が検出され、検出された観察対象に対してボリュームレンダリングが行われることにより、観察対象の3次元超音波画像が生成されるため、ユーザは、観察対象の形状および3次元的な位置関係等を詳細に把握できる。
 なお、画像生成部17は、観察対象検出部52により検出された観察対象に対応する部分以外の部分の受信信号を削減して3次元超音波画像を生成することもできる。この場合にも、観察対象が強調された3次元超音波画像が得られるため、ユーザは、観察対象の形状および3次元的な位置関係等を詳細に把握できる。また、実施の形態1のように、走査範囲の全体に対応する3次元超音波画像を生成する場合と比較して、3次元超音波画像の生成に必要な計算負荷を軽減し、3次元超音波画像を表示するフレームレートを向上できる。
 また、実施の形態4の態様は、実施の形態1に適用できることが説明されているが、実施の形態2および3に対しても同様に適用できる。
1,1A,1B,1C 超音波診断装置、2,2A,2B 超音波プローブ、3,3C 装置本体、11 2次元振動子アレイ、11A 振動子、12 パッチ分割回路、13 プローブビームフォーマ、14 送受信切り替え回路、15 送信回路、16 受信回路、17 画像生成部、18 表示制御部、19 モニタ、20 走査制御部、21,21C 本体制御部、22 入力装置、23,23C プロセッサ、24 メモリ、25 本体ビームフォーマ、31 送信信号発生回路、32 遅延信号発生回路、33 増幅回路、34 AD変換回路、35 整相加算回路、36 信号処理部、37 DSC、38 画像処理部、41 スイープ回路、51 観察対象選択部、52 観察対象検出部、G1,G2,G3 グループ、P1,P2 パッチ、Q 開口、S1 2次元走査、S2 3次元走査、SL 走査線、T1,T2,T3,T4 区間。

Claims (22)

  1.  2次元走査および3次元走査の双方を行う超音波診断装置であって、
     超音波プローブと、
     前記超音波プローブに接続された装置本体と
     を備え、
     前記超音波プローブは、
     複数の振動子がエレベーション方向およびアジマス方向にそれぞれ配列された2次元振動子アレイと、
     前記2次元走査を行う際には、前記2次元振動子アレイの少なくとも一部の複数の振動子を、それぞれ前記エレベーション方向に2以上の前記振動子が並んだ複数のパッチに分割し、前記3次元走査を行う際には、前記2次元振動子アレイの少なくとも一部の複数の振動子を、それぞれ前記アジマス方向に2以上の前記振動子が並んだ複数のパッチに分割するパッチ分割回路と、
     前記パッチ分割回路により分割された前記複数のパッチに対応する複数のプローブビームフォーマと
     を含み、
     前記装置本体は、前記超音波プローブの前記複数のプローブビームフォーマに接続された本体ビームフォーマを含み、
     前記複数のプローブビームフォーマは、前記複数のパッチ内における前記2以上の前記振動子に対して送信信号および受信信号のビームフォーミングを行い、
     前記本体ビームフォーマは、前記複数のパッチに対して前記送信信号および前記受信信号のビームフォーミングを行う、
    超音波診断装置。
  2.  前記本体ビームフォーマは、それぞれ前記複数のプローブビームフォーマに接続された送信回路および受信回路を含み、
     前記装置本体は、前記受信回路に接続された画像生成部を含み、
     前記少なくとも一部の複数の振動子から超音波ビームを送信する際には、前記送信回路から前記複数のプローブビームフォーマを介して前記複数のパッチにおける前記2以上の前記振動子に前記送信信号が供給され、
     前記少なくとも一部の複数の振動子により超音波エコーを受信する際には、前記複数パッチにおける前記2以上の前記振動子から前記複数のプローブビームフォーマおよび前記受信回路を介して前記画像生成部に前記受信信号が供給される、
    請求項1に記載の超音波診断装置。
  3.  前記画像生成部は、前記2次元走査を行うことにより前記本体ビームフォーマの前記受信回路を介して供給される前記受信信号に基づいて2次元超音波画像を生成し、前記3次元走査を行うことにより前記本体ビームフォーマの前記受信回路を介して供給される前記受信信号に基づいて3次元超音波画像を生成する、
    請求項2に記載の超音波診断装置。
  4.  前記エレベーション方向に、前記2次元振動子アレイの前記エレベーション方向における振動子数以下の第1の振動子数の前記振動子が配列され、且つ、前記アジマス方向に、前記2次元振動子アレイの前記アジマス方向における振動子数よりも少ない第2の振動子数の前記振動子が配列された開口に含まれる複数の振動子を、前記少なくとも一部の複数の振動子として選択するスイープ回路を有し、
     前記パッチ分割回路は、前記開口において前記複数のパッチの分割を行い、
     前記スイープ回路により前記開口を前記アジマス方向にスイープさせながら前記開口内の前記振動子を用いて前記2次元走査および前記3次元走査が行われる、
    請求項1~3のいずれか一項に記載の超音波診断装置。
  5.  前記第1の振動子数をMとし且つ前記第2の振動子数をNとした場合に、前記パッチ分割回路は、前記2次元走査が行われる際に、前記開口に含まれる複数の振動子を、それぞれ、前記エレベーション方向にMの約数であるK個の前記振動子が並んだ複数の前記パッチに分割し、前記3次元走査が行われる際に、前記開口に含まれる複数の振動子を、それぞれ、前記アジマス方向にNの約数であるL個の前記振動子が並んだ複数の前記パッチに分割する、
    請求項4に記載の超音波診断装置。
  6.  前記複数のプローブビームフォーマは、前記パッチ分割回路に接続され、
     前記パッチ分割回路は、前記スイープ回路に接続され、
     前記スイープ回路は、前記2次元振動子アレイの前記複数の振動子に接続され、前記複数の振動子から、前記開口に含まれる複数の振動子を直接的に選択する、
    請求項4または5に記載の超音波診断装置。
  7.  前記スイープ回路は、前記複数のプローブビームフォーマに接続され、
     前記複数のプローブビームフォーマは、前記パッチ分割回路に接続され、
     前記パッチ分割回路は、前記2次元振動子アレイの前記複数の振動子に接続され、
     前記スイープ回路は、前記複数のプローブビームフォーマから一部の前記プローブビームフォーマを選択することにより、開口に含まれる複数の振動子を選択する、
    請求項4または5に記載の超音波診断装置。
  8.  前記本体ビームフォーマは、前記3次元走査が行われる際に、前記2次元振動子アレイから送信および受信される超音波が前記エレベーション方向にステアされるように、前記複数のパッチに対して前記送信信号および前記受信信号を遅延させるビームフォーミングを行う、
    請求項1~7のいずれか一項に記載の超音波診断装置。
  9.  前記本体ビームフォーマは、前記3次元走査が行われる際に、超音波のステア角度の範囲が前記エレベーション方向において非対称となるように、前記複数のパッチに対して前記送信信号および前記受信信号のビームフォーミングを行う、
    請求項8に記載の超音波診断装置。
  10.  前記本体ビームフォーマは、前記3次元走査が行われる際に、超音波のステア角度の間隔を、ステア角度の絶対値に応じて変更するように、前記複数のパッチに対して前記送信信号および前記受信信号のビームフォーミングを行う、
    請求項8または9に記載の超音波診断装置。
  11.  前記装置本体は、前記2次元走査と前記3次元走査とを交互に行うように走査を制御する走査制御部を含む、
    請求項1~10のいずれか一項に記載の超音波診断装置。
  12.  前記走査制御部は、前記3次元走査が行われる際に、前記3次元走査の前記アジマス方向に隣接する走査線が互いに異なるグループに属するように、前記3次元走査における複数の走査線を複数のグループに分割して、分割されたそれぞれの前記グループ毎に走査されるように前記複数のプローブビームフォーマを制御し、且つ、分割された少なくとも1つの前記グループの前記3次元走査が終了する毎に、前記3次元走査を前記2次元走査に切り替える、
    請求項11に記載の超音波診断装置。
  13.  前記2次元振動子アレイは、前記エレベーション方向の幅の2.5倍以上の前記アジマス方向の幅を有する、
    請求項1~12のいずれか一項に記載の超音波診断装置。
  14.  前記装置本体は、
     ユーザが入力操作を行うための入力装置と、
     前記入力装置を介したユーザの入力操作に基づいて、観察対象を選択する観察対象選択部と、
     前記3次元走査を行うことにより前記本体ビームフォーマを介して供給される前記受信信号に基づいて、前記観察対象選択部により選択された前記観察対象を検出する観察対象検出部と、を含む、
    請求項3に記載の超音波診断装置。
  15.  前記画像生成部は、前記観察対象検出部により検出された前記観察対象に対してボリュームレンダリングを行うことにより、前記観察対象の前記3次元超音波画像を生成する、
    請求項14に記載の超音波診断装置。
  16.  前記装置本体は、前記画像生成部により生成された前記2次元超音波画像および前記3次元超音波画像を表示するモニタを含み、
     前記モニタにおいて、前記2次元超音波画像に前記3次元超音波画像が重畳表示される、
    請求項15に記載の超音波診断装置。
  17.  前記画像生成部は、前記観察対象検出部により検出された前記観察対象に対応する部分以外の部分の前記受信信号を削減して前記3次元画像を生成する、
    請求項14~16のいずれか一項に記載の超音波診断装置。
  18.  前記複数のプローブビームフォーマは、前記複数のパッチ内における前記2以上の前記振動子に対して前記送信信号に遅延を付与することにより前記送信信号のビームフォーミングを行う、
    請求項1~17のいずれか一項に記載の超音波診断装置。
  19.  前記複数のプローブビームフォーマは、前記複数のパッチ内における前記2以上の前記振動子に対して遅延が未付与の前記送信信号を送信することにより前記送信信号のビームフォーミングを行う、
    請求項1~17のいずれか一項に記載の超音波診断装置。
  20.  前記複数のプローブビームフォーマは、前記複数のパッチ内における前記2以上の前記振動子に対して前記受信信号に遅延を付与することにより前記受信信号のビームフォーミングを行う、
    請求項1~19のいずれか一項に記載の超音波診断装置。
  21.  前記複数のプローブビームフォーマは、前記複数のパッチ内における前記2以上の前記振動子から受信した、遅延が未付与の前記受信信号を、前記本体ビームフォーマに送信することにより前記受信信号のビームフォーミングを行う、
    請求項1~19のいずれか一項に記載の超音波診断装置。
  22.  複数の振動子がエレベーション方向およびアジマス方向にそれぞれ配列された2次元振動子アレイを含む超音波プローブと、前記超音波プローブに接続された装置本体とを備え、2次元走査および3次元走査の双方を行う超音波診断装置の制御方法であって、
     前記2次元走査を行う際には、前記複数の振動子を、それぞれ前記エレベーション方向に2以上の前記振動子が並んだ複数のパッチに分割し、
     前記3次元走査を行う場合には、前記複数の振動子を、それぞれ前記アジマス方向に2以上の前記振動子が並んだ複数のパッチに分割し、
     前記超音波プローブにおいて、前記複数のパッチ内における前記2以上の前記振動子に対して送信信号および受信信号のビームフォーミングを行い、
     前記装置本体において、前記複数のパッチに対して送信信号および受信信号のビームフォーミングを行う、
    超音波診断装置の制御方法。
PCT/JP2022/016591 2021-04-30 2022-03-31 超音波診断装置および超音波診断装置の制御方法 WO2022230601A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22795517.6A EP4331498A4 (en) 2021-04-30 2022-03-31 ULTRASOUND DIAGNOSTIC DEVICE AND METHOD FOR CONTROLLING THE ULTRASOUND DIAGNOSTIC DEVICE
JP2023517216A JPWO2022230601A1 (ja) 2021-04-30 2022-03-31
CN202280030579.9A CN117241736A (zh) 2021-04-30 2022-03-31 超声波诊断装置及超声波诊断装置的控制方法
US18/496,812 US20240050071A1 (en) 2021-04-30 2023-10-27 Ultrasound diagnostic apparatus and method for controlling ultrasound diagnostic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-077574 2021-04-30
JP2021077574 2021-04-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/496,812 Continuation US20240050071A1 (en) 2021-04-30 2023-10-27 Ultrasound diagnostic apparatus and method for controlling ultrasound diagnostic apparatus

Publications (1)

Publication Number Publication Date
WO2022230601A1 true WO2022230601A1 (ja) 2022-11-03

Family

ID=83848070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/016591 WO2022230601A1 (ja) 2021-04-30 2022-03-31 超音波診断装置および超音波診断装置の制御方法

Country Status (5)

Country Link
US (1) US20240050071A1 (ja)
EP (1) EP4331498A4 (ja)
JP (1) JPWO2022230601A1 (ja)
CN (1) CN117241736A (ja)
WO (1) WO2022230601A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307085A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 超音波診断装置
JP2017185085A (ja) * 2016-04-07 2017-10-12 株式会社日立製作所 超音波撮像装置および超音波送受信方法
JP2018503459A (ja) * 2015-01-29 2018-02-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. マルチライン受信ビームフォーマ、超音波プローブ及び方法
JP2019509856A (ja) 2016-03-30 2019-04-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 1次元パッチを有する2次元超音波アレイトランスデューサ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468216B1 (en) * 2000-08-24 2002-10-22 Kininklijke Philips Electronics N.V. Ultrasonic diagnostic imaging of the coronary arteries
US9739885B2 (en) * 2012-05-09 2017-08-22 Koninklijke Philips N.V. Ultrasound transducer arrays with variable patch geometries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307085A (ja) * 2007-06-12 2008-12-25 Toshiba Corp 超音波診断装置
JP2018503459A (ja) * 2015-01-29 2018-02-08 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. マルチライン受信ビームフォーマ、超音波プローブ及び方法
JP2019509856A (ja) 2016-03-30 2019-04-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 1次元パッチを有する2次元超音波アレイトランスデューサ
JP2017185085A (ja) * 2016-04-07 2017-10-12 株式会社日立製作所 超音波撮像装置および超音波送受信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4331498A4

Also Published As

Publication number Publication date
US20240050071A1 (en) 2024-02-15
EP4331498A1 (en) 2024-03-06
JPWO2022230601A1 (ja) 2022-11-03
CN117241736A (zh) 2023-12-15
EP4331498A4 (en) 2024-10-09

Similar Documents

Publication Publication Date Title
US9895139B2 (en) Ultrasound diagnostic apparatus and ultrasound image producing method
JP2004174226A (ja) 超音波送受信装置及び超音波送受信方法
JP2004089311A (ja) 超音波送受信装置
JP5254389B2 (ja) 超音波診断装置および超音波画像生成方法
US10231709B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP2009279306A (ja) 超音波診断装置
WO2013027756A1 (ja) 超音波プローブ及び超音波診断装置
JP6114663B2 (ja) 超音波診断装置および超音波画像生成方法
US10299762B2 (en) Ultrasound diagnostic apparatus, signal processing method for ultrasound diagnostic apparatus, and recording medium
JP5777604B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
JP4468136B2 (ja) 超音波送受信装置
JP2005087266A (ja) 超音波撮像装置
WO2022230601A1 (ja) 超音波診断装置および超音波診断装置の制御方法
JP5766175B2 (ja) 超音波診断装置、音速設定方法およびプログラム
JP5254390B2 (ja) 超音波診断装置および超音波画像生成方法
JP7211150B2 (ja) 超音波診断装置、超音波画像生成方法及びプログラム
JP2012196263A (ja) 超音波診断装置および超音波画像生成方法
JP5829229B2 (ja) 超音波診断装置および超音波画像生成方法
JP2006218089A (ja) 超音波診断装置
JP2004113694A (ja) 超音波撮像装置及び超音波撮像方法
JP2012196255A (ja) 超音波診断装置および超音波画像生成方法
JP2009082584A (ja) 超音波診断装置
JP2004097379A (ja) 超音波送受信装置
WO2013176221A1 (ja) 超音波診断装置およびデータ処理方法
JP2008035903A (ja) 超音波診断装置および超音波診断画像生成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22795517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280030579.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023517216

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022795517

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022795517

Country of ref document: EP

Effective date: 20231130

NENP Non-entry into the national phase

Ref country code: DE