Nothing Special   »   [go: up one dir, main page]

WO2022226918A1 - 天线及其制备方法、天线系统 - Google Patents

天线及其制备方法、天线系统 Download PDF

Info

Publication number
WO2022226918A1
WO2022226918A1 PCT/CN2021/091110 CN2021091110W WO2022226918A1 WO 2022226918 A1 WO2022226918 A1 WO 2022226918A1 CN 2021091110 W CN2021091110 W CN 2021091110W WO 2022226918 A1 WO2022226918 A1 WO 2022226918A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
sub
opening
layer
antenna
Prior art date
Application number
PCT/CN2021/091110
Other languages
English (en)
French (fr)
Inventor
王�锋
周健
张亚飞
曲峰
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/091110 priority Critical patent/WO2022226918A1/zh
Priority to US17/637,546 priority patent/US20240047878A1/en
Priority to CN202180000984.1A priority patent/CN115552728A/zh
Publication of WO2022226918A1 publication Critical patent/WO2022226918A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/364Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith using a particular conducting material, e.g. superconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises

Definitions

  • the present disclosure belongs to the field of communication technologies, and in particular relates to an antenna, a preparation method thereof, and an antenna system.
  • Thin film antenna helps to achieve conformal structure design and reduce the weight of the antenna.
  • an important aspect of thinning the antenna is to reduce the cross-sectional height of the antenna. Therefore, how to reduce the cross-sectional height of the antenna is a technical problem that needs to be solved urgently.
  • the present invention aims to solve at least one of the technical problems existing in the prior art, and provides an antenna, a preparation method thereof, and an antenna system.
  • an antenna which includes:
  • the dielectric layer has a first surface and a second surface oppositely arranged along its thickness direction;
  • a radiation patch arranged on the first surface of the dielectric layer
  • a reference electrode layer disposed on the second surface of the dielectric layer, and at least partially overlapping the orthographic projection of the radiation patch on the second surface;
  • the reference electrode layer has a through opening along its thickness direction, and the orthographic projection of at least part of the radiation edge of the radiation patch on the first surface is located within the orthographic projection of the opening on the first surface.
  • the reference electrode layer has an intermediate area and a peripheral area surrounding the intermediate area; the opening runs through at least part of the boundary line between the intermediate area and the peripheral area; the radiation patch is located in the The orthographic projection on the first surface covers the orthographic projection of the intermediate region of the reference electrode on the first surface;
  • the reference electrode layer includes a first hollow pattern in the middle area and a second hollow pattern in the peripheral area; the radiation patch includes a third hollow pattern.
  • the orthographic projection of the hollow portion of the first hollow pattern and the hollow portion of the third hollow portion on the first surface completely overlaps.
  • the radiation patch includes a first radiation side edge and a second radiation side edge extending along the first direction and arranged side by side along the second direction; the opening includes extending along the first direction and side by side along the second direction The first opening and the second opening are arranged; the orthographic projection of the first radiating edge on the dielectric layer runs through the orthographic projection of the first opening on the dielectric layer; the second radiating edge is on the dielectric layer The orthographic projection of the second opening passes through the orthographic projection of the dielectric layer.
  • the length of the first opening is not less than the length of the first radiating edge; and/or the length of the second opening is not less than the length of the second radiating edge.
  • the first hollow pattern includes a plurality of first metal lines extending along the third direction and arranged side by side along the first direction, and the gaps between the first metal lines define the hollow portion of the first hollow pattern ;
  • the two hollow patterns include a plurality of second metal lines extending along the third direction and arranged side by side along the first direction, and the gaps between the second metal lines define hollow portions of the second hollow patterns;
  • the three hollow patterns include a plurality of third metal lines extending along the third direction and arranged side by side along the first direction, and the gaps between the third metal lines define hollow portions of the third hollow pattern.
  • the distance between any two adjacent first metal lines is the same as the distance between any two adjacent second metal lines; and the extension of one second metal line is in the medium
  • the orthographic projection on the layer covers an orthographic projection of the first metal line on the dielectric layer.
  • the first direction is the same as the third direction.
  • the first hollow pattern further includes a plurality of fourth metal lines intersecting with the plurality of first metal lines; the fourth metal lines extend along the fourth direction and are arranged side by side along the second direction; the The third hollow pattern further includes a plurality of fifth metal lines intersecting with the plurality of third metal lines; the fifth metal lines extend along the fourth direction and are arranged side by side along the second direction.
  • the fourth direction is the same as the first direction.
  • the second hollow pattern further includes a plurality of sixth metal lines intersecting with the plurality of first metal lines; the sixth metal lines extend along the fourth direction and are arranged side by side along the second direction.
  • the radiation patch further includes a third radiation side and a fourth radiation side extending along the second direction and arranged side by side along the first direction; the opening further includes extending along the second direction and extending along the first direction
  • the third opening and the fourth opening are arranged side by side in directions; the orthographic projection of the third radiating edge on the dielectric layer passes through the orthographic projection of the third opening on the dielectric layer; the fourth radiating edge is in the The orthographic projection of the dielectric layer passes through the orthographic projection of the fourth opening on the dielectric layer.
  • the length of the third opening is not less than the length of the third radiating edge; and/or the length of the fourth opening is not less than the length of the fourth radiating edge.
  • the outlines of the reference electrode and the radiation patch are both circular or elliptical;
  • the reference electrode layer includes a plurality of concentrically arranged seventh metal lines, and a plurality of eighth metal lines radiating from the center of the reference electrode to the edge, and at least part of the eighth metal lines are at the position of the seventh metal line is disconnected at the place to define the opening;
  • the opening includes a first opening and a second opening; wherein, the first opening and the second opening are in a center-symmetrical pattern.
  • the reference electrode layer further includes a filling medium filled in the opening.
  • the filling medium includes silicon or aluminum oxide.
  • the dielectric layer includes a first sub-dielectric layer, a first adhesive layer, a second sub-dielectric layer, a second adhesive layer and a third sub-dielectric layer arranged in layers, and the third sub-dielectric layer is away from the
  • the surface of the first adhesive layer is used as the first surface of the dielectric layer
  • the surface of the first sub-dielectric layer facing away from the second adhesive layer is used as the second surface of the dielectric layer.
  • the dielectric layer includes a first sub-dielectric layer, a first adhesive layer, a second sub-dielectric layer, a second adhesive layer and a third sub-dielectric layer arranged in layers, and the third sub-dielectric layer is close to the
  • the surface of the first adhesive layer is used as the first surface of the dielectric layer
  • the surface of the first sub-dielectric layer close to the second adhesive layer is used as the second surface of the dielectric layer.
  • the materials of the first sub-dielectric layer and the third sub-dielectric layer both include polyimide, and the materials of the second sub-dielectric layer both include polyethylene terephthalate.
  • the width of the opening is more than 5 times the thickness of the dielectric layer.
  • an embodiment of the present disclosure provides a method for fabricating an antenna, including:
  • a reference electrode layer is formed on the first surface of the dielectric layer by a patterning process, and an opening is formed on the reference electrode layer;
  • a pattern including a radiation patch is formed on the second surface of the dielectric layer by a patterning process; wherein the orthographic projection of at least part of the radiation edge of the radiation patch on the first surface is located at the opening of the first surface. in the orthographic projection of a surface.
  • the medium layer includes a first sub-dielectric layer, a first adhesive layer, a second sub-dielectric layer, a second adhesive layer and a third sub-dielectric layer that are stacked in sequence; the preparation method includes: providing the the first sub-dielectric layer;
  • the reference electrode layer including the reference electrode layer on the first sub-dielectric layer through a patterning process
  • the first adhesive layer is coated on the side of the first sub-dielectric layer facing away from the first electrode layer, and the second sub-dielectric layer is formed on the first adhesive layer, and then the The second adhesive layer is formed on the surface of the second sub-dielectric layer facing away from the first adhesive layer, and the third sub-dielectric layer is formed on the second adhesive layer;
  • a pattern including radiation patches is formed on the third sub-dielectric layer through a patterning process.
  • the medium layer includes a first sub-dielectric layer, a first adhesive layer, a second sub-dielectric layer, a second adhesive layer and a third sub-dielectric layer that are stacked in sequence; the preparation method includes:
  • the reference electrode layer including the reference electrode layer on the first sub-dielectric layer through a patterning process
  • a second sub-dielectric layer is provided, and the side where the reference electrode layer is formed on the first sub-dielectric layer is bonded to the second sub-dielectric layer through a first adhesive layer, and the second sub-dielectric layer is bonded to the second sub-dielectric layer.
  • the side of the dielectric layer on which the radiation patch is formed is bonded to the second sub-dielectric layer.
  • an antenna system includes at least any of the above-mentioned antennas.
  • the antenna system further includes:
  • Transceiver unit for sending or receiving signals
  • a radio frequency transceiver connected to the transceiver unit, for modulating a signal sent by the transceiver unit, or for demodulating a signal received by the antenna and then transmitting to the transceiver unit;
  • a signal amplifier connected to the radio frequency transceiver, for improving the signal-to-noise ratio of the signal output by the radio frequency transceiver or the signal received by the antenna;
  • a power amplifier connected to the radio frequency transceiver, for amplifying the power of the signal output by the radio frequency transceiver or the signal received by the antenna;
  • the filtering unit is connected to both the signal amplifier and the power amplifier, and is connected to the antenna, and is used for filtering the received signal and then sending it to the antenna, or filtering the signal received by the antenna.
  • FIG. 1 is a top view of a thin film antenna according to an embodiment of the disclosure.
  • FIG. 2 is a cross-sectional view along A-A' of the thin film antenna of FIG. 1 .
  • FIG. 3 is another cross-sectional view along A-A' of the thin film antenna of FIG. 1 .
  • FIG. 4 is another cross-sectional view along A-A' of the thin film antenna of FIG. 1 .
  • FIG. 5 is a simulation schematic diagram of the thin film antenna shown in FIG. 1 .
  • FIG. 6 is a top view of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 7 is a top view of the ground layer of the thin film antenna shown in FIG. 6 .
  • FIG. 8 is a top view of the radiation patch of the thin film antenna shown in FIG. 6 .
  • FIG. 9 is a top view of a ground layer of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 10 is a top view of a radiation patch of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 11 is a top view of a ground layer of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 12 is a top view of a ground layer of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 13 is a schematic diagram of simulation of the thin film antenna shown in FIG. 12 .
  • FIG 14 is a top view of a ground layer of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 15 is a top view of a radiation patch of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 16 is a top view of a ground layer of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 17 is a top view of a radiation patch of another thin film antenna according to an embodiment of the disclosure.
  • FIG. 18 is a flowchart of a method for fabricating a thin film antenna according to an embodiment of the disclosure.
  • FIG. 19 is a flowchart of another method for fabricating a thin film antenna according to an embodiment of the disclosure.
  • FIG. 20 is a schematic structural diagram of an antenna system according to an embodiment of the disclosure.
  • FIG. 1 is a top view of a thin-film antenna according to an embodiment of the present disclosure
  • FIG. 2 is a cross-sectional view of A-A' of the thin-film antenna of FIG. 1 ; as shown in FIGS. 1 and 2 , an embodiment of the present disclosure provides a A thin film antenna includes a dielectric layer 1 , a radiation patch 2 , a reference electrode layer, and a feeder 4 .
  • the dielectric layer 1 includes a first surface (upper surface) and a second surface (lower surface) which are oppositely arranged along the thickness direction thereof.
  • the radiation patch 2 and the feeder 4 are arranged on the first surface of the dielectric layer 1 , and the feeder 4 is connected to the radiation patch 2 , and the reference electrode layer is arranged on the second surface of the dielectric layer 1 .
  • the reference electrode layer has an opening, the orthographic projection of the radiation patch 2 and the reference electrode layer on the dielectric layer 1 at least partially overlap, and at least part of the radiation edge of the radiation patch 2 is on the dielectric layer 1 The orthographic projection of is within the orthographic projection of the opening on the first surface.
  • the reference electrode layer includes but is not limited to the ground layer 3, that is, the signal applied to the reference electrode layer is the ground signal.
  • the reference electrode layer is the ground layer 3 as an example for description. It should be understood that as long as the thin-film antenna is in operation, the actual voltage on the reference electrode layer and the radiation layer can form a loop, that is, the selection of the ground layer 3 for the reference electrode layer does not constitute a limitation on the protection scope of the embodiments of the present disclosure.
  • the radiation edge of the radiation patch 2 refers to the side edge of the radiation patch 2. For example, when the outline of the radiation patch 2 is a rectangle, the four sides of the rectangular radiation patch 2 is the radiating edge.
  • an opening is provided on the ground layer 3 , and the orthographic projection of at least part of the radiation edge of the radiation patch 2 on the dielectric layer 1 is located within the orthographic projection of the opening on the dielectric layer 1 , through the arrangement of the opening, the cross section of the thin film antenna can be reduced to improve the radiation efficiency of the thin film antenna.
  • the opening is filled with a filling medium
  • the filling medium is a corresponding high dielectric constant material in the microwave and millimeter wave band, such as silicon, aluminum oxide, certain ceramic materials, and the like.
  • the radiation efficiency can be increased by 4 to 5 times compared with the traditional low-profile patch antenna, and after filling the high dielectric constant material, the maximum radiation efficiency can be increased to about 6 to 8 times. , and the radiation bandwidth (for 30% radiation efficiency) will also increase to more than 15%.
  • the materials of the radiating patch 2, the feed line 4 and the ground layer 3 may all be the same.
  • copper is used as an example for the materials of the radiation patch 2 , the feed line 4 and the ground layer 3 as an example.
  • the dielectric layer 1 in the antenna can be a single-layer structure or a composite-layer structure.
  • its material includes but is not limited to flexible materials, such as:
  • the dielectric layer 1 is made of polyimide (PI) or polyethylene terephthalate (PET) material.
  • FIG. 3 is another cross-sectional view along A-A' of the thin-film antenna of FIG. 1 ; as shown in FIG. 3 , when the dielectric layer 1 is a composite film layer, it includes first sub-dielectric layers stacked in sequence 11.
  • the side of the first sub-dielectric layer 11 away from the first adhesive layer 12 is used as the second surface of the dielectric layer 1;
  • the radiation patch 2 is arranged on the third sub-dielectric layer 15 away from the second adhesive layer 14
  • the side of the second sub-dielectric layer 13 facing away from the second adhesive layer 14 is used as the first surface of the dielectric layer 1 .
  • the first sub-dielectric layer 11 and the third sub-dielectric layer 15 include but are not limited to using PI material; the second sub-dielectric layer 13 includes but not limited to using polyethylene terephthalate (PET) material.
  • the materials of the first adhesive layer 12 and the second adhesive layer 14 can be transparent optical (OCA) glue.
  • OCA transparent optical
  • a protective layer such as a self-healing transparent waterproof coating, is also formed on the upper surface of the third sub-dielectric layer 15 to prevent The third sub-dielectric layer 15 performs protection.
  • FIG. 4 is another cross-sectional view along A-A' of the thin-film antenna of FIG. 1 ; as shown in FIG. 4 , when the dielectric layer 1 is a composite film layer, it includes first sub-dielectric layers stacked in sequence 11.
  • the side of the first sub-dielectric layer 11 close to the first adhesive layer 12 is used as the second surface of the dielectric layer 1;
  • the radiation patch 2 is arranged on the second sub-dielectric layer 13 close to the second adhesive layer 14
  • the side of the second sub-dielectric layer 13 close to the second adhesive layer 14 is used as the first surface of the dielectric layer 1 .
  • the first microstrip line, the transducer element and the first electrode layer are not exposed to the outside, so water and oxygen corrosion can be effectively prevented.
  • the first sub-dielectric layer 11 and the third sub-dielectric layer 15 can be made of the same material, and have the same or approximately the same thickness.
  • the second sub-dielectric layer 13 is different from the material and thickness of the first sub-dielectric layer 11 (third sub-dielectric layer 15 ), and the thickness of the second sub-dielectric layer 13 is larger than that of the first sub-dielectric layer 11 .
  • the thickness of the first sub-dielectric layer 11 (the third sub-dielectric layer 15 ) is about 10 ⁇ m-80 ⁇ m
  • the thickness of the second sub-dielectric layer 1313 is about 0.2 mm-0.7 mm.
  • the thin film antenna in the embodiments of the present disclosure will be described below with reference to specific examples.
  • the thin film antenna includes a dielectric layer 1, a radiation patch 2, a feeder 4 and a reference electrode layer.
  • the dielectric layer 1 includes a first surface (upper surface) and a second surface (lower surface) which are oppositely arranged along the thickness direction thereof.
  • the radiation patch 2 and the feeder 4 are arranged on the first surface of the dielectric layer 1
  • the ground layer 3 is arranged on the second surface of the dielectric layer 1 .
  • Both the radiation patch 2 and the ground layer 3 are plate electrodes.
  • the shapes of the radiation patch 2 and the ground layer 3 may be the same or different. In the embodiment of the present disclosure, the shapes of the radiation patch 2 and the ground layer 3 are the same as an example.
  • the shapes of the radiation patch 2 and the ground electrode layer include, but are not limited to, rectangle, ellipse, circle, and the like.
  • the shapes of the radiation patch 2 and the ground electrode layer are both rectangular as an example.
  • the radiating patch 2 has a first radiating edge 201 and a second radiating edge 202 extending along the first direction and arranged side by side along the second direction; and extending along the second direction and side by side along the first direction.
  • the feeder 4 is connected at a vertex position of the radiation patch 2 to provide the radiation patch 2 with microwave signals.
  • the ground layer 3 has two openings extending along the first direction and arranged side by side along the second direction, namely a first opening 31 and a second opening 32 , and filling medium is filled in the first opening 31 and the second opening 32 .
  • the orthographic projection of the first radiation edge 201 of the radiation patch 2 on the dielectric layer 1 runs through the orthographic projection of the first opening 31 on the dielectric layer 1;
  • the orthographic projection runs through the orthographic projection of the second opening 32 on the dielectric layer 1 .
  • the first direction and the second direction are perpendicular to each other, wherein the first direction is a vertical direction, and the second direction is a horizontal direction.
  • the first direction is the vertical direction and the second direction is the horizontal direction as an example for description.
  • the first opening 31 and the second opening 32 are set on the ground layer 3 as an example.
  • the third opening 37 extending along the second direction and arranged side by side along the first direction can also be set on the ground layer 3 . and the fourth opening 38 .
  • the orthographic projection of the third radiating edge 203 of the radiating element on the dielectric layer 1 runs through the orthographic projection of the third opening 37 on the dielectric layer 1, and the orthographic projection of the fourth radiating edge 204 of the radiating element on the dielectric layer 1 runs through the fourth opening Orthographic projection of 38 on dielectric layer 1.
  • the first opening 31 , the second opening 32 , the third opening 37 and the fourth opening 38 may be provided on the ground layer 3 in the embodiment of the present disclosure.
  • the length of the first opening 31 is not less than the length of the first radiating edge 201 ; and/or the length of the second opening 32 is not less than the length of the second radiating edge 202 .
  • the length of the first opening 31 is not less than the length of the first radiation edge 201
  • the length of the second opening 32 is not less than the length of the second radiation edge 202 .
  • the ground layer 3 is further provided with the third opening 33 and the fourth opening 340, the length of the third opening 33 is not less than the length of the third radiation edge 203, and/or the length of the fourth opening 34 is not less than the length of the fourth radiation edge 204 length.
  • the width of the first opening 31 (the second opening 32 ) of the ground layer 3 is more than 5h, for example: the first opening 31 (the second opening 32 ) of the ground layer 3 The width of 5h-10h.
  • Both the first opening 31 and the second opening 32 include a first side edge and a second side edge that extend along the second direction and are arranged side by side along the first direction; the orthographic projection of the first radiation edge 201 on the dielectric layer 1 is the same as the second side edge.
  • the distance between the orthographic projection of the first side of an opening 31 on the dielectric layer 1 is a, the orthographic projection of the second radiating edge 202 on the dielectric layer 1 and the first side of the second opening 32 on the dielectric layer 1
  • the distance between the orthographic projections on is b, and the specific values of a and b need to be simulated and optimized according to the radiation frequency and the height of the dielectric layer 1 .
  • the thicknesses of the radiation patch 2 and the ground layer 3 are both about 3 skin depths.
  • the thickness of the dielectric layer 1 is 20 ⁇ m, and the dielectric constant is 3; the thicknesses of the radiation patch 2 and the ground layer 3 are both 3 ⁇ m; the first opening 31 and the second The widths of the openings 32 are both 250 ⁇ m.
  • the first radiation edge 201 and the second radiation edge 202 are 3.4 ⁇ m, the third radiation edge 203 and the fourth radiation part are 3 ⁇ m, and the first opening 31 and the second opening 32 are respectively connected with the first radiation edge 201 and the second radiation edge 202 corresponding settings. As shown in FIG.
  • S1 represents the simulation curve where the first opening 31 and the second opening 32 are not provided in the ground layer 3
  • S2 represents the simulation curve where the first opening 31 and the second opening 32 are provided in the ground layer 3
  • S3 represents the simulation curve in the
  • the ground layer 3 sets the first opening 31 and the second opening 32 and sets the simulation curve of the filling medium in the first opening 31 and the second opening 32; at this time, the thin film antenna with the first opening 31 and the second opening 32 can obtain 31GHz
  • the radiation efficiency of the frequency is 42%, and the film antenna without the first opening 31 and the second opening 32 in the ground layer 3 obtains the radiation efficiency of 8.85% at the frequency of 31 GHz, which is higher than the radiation frequency of the antenna without the opening on the ground layer 3. out nearly 5 times.
  • the first opening 31 and the second opening 32 are filled with high dielectric materials, the radiation efficiency is further improved to 63%, which is more than 7 times the radiation efficiency of the antenna without openings. It can be seen that the radiation efficiency can be effectively improved by setting the opening on the ground electrode. Of course, filling the opening with a high dielectric material can further improve the radiation efficiency.
  • FIG. 6 is a top view of another thin film antenna according to an embodiment of the disclosure
  • FIG. 7 is a top view of the ground layer 3 of the thin film antenna shown in FIG. 6
  • FIG. 8 is the radiation of the thin film antenna shown in FIG. 6
  • the top view of the patch 2; this kind of thin film antenna is roughly the same as the thin film antenna shown in FIG. 1, the only difference is that this kind of thin film antenna is a transparent thin film antenna, and the radiating patch 2 and the ground layer 3 are all hollow pattern structures.
  • the grounding layer 3 includes a middle region Q1 and a peripheral region Q2 surrounding the middle region Q1, and the opening of the grounding layer 3 is formed at the boundary of the middle region Q1 and the peripheral region Q2.
  • the ground layer 3 includes a first hollow pattern in the middle region Q1 and a second hollow pattern in the peripheral region Q2.
  • the radiation patch 2 includes a third hollow pattern, and the orthographic projection of the radiation patch 2 on the dielectric layer 1 covers the orthographic projection of the middle region Q1 of the ground layer 3 on the dielectric layer 1 .
  • the orthographic projections of the hollow portion of the first hollow pattern and the hollow portion of the third hollow pattern on the dielectric layer 1 overlap. This arrangement can improve the radiation efficiency of the thin-film antenna and maximize the light of the thin-film antenna. transmittance.
  • the first hollow pattern includes a plurality of first metal wires 33 extending along the second direction and arranged side by side along the first direction, and the gaps between the adjacently arranged first metal wires 33 are defined by The hollow part of the first hollow pattern is obtained.
  • the second hollow pattern includes a plurality of second metal wires 34 extending along the second direction and arranged side by side along the first direction, and the gaps between the adjacent second metal wires 34 define hollow portions of the second hollow pattern.
  • the third hollow pattern includes a plurality of third metal wires 21 extending along the second direction and arranged side by side along the first direction, and the gaps between the adjacent third metal wires 21 define hollow portions of the third hollow pattern.
  • the orthographic projections of the hollowed-out portions of the first hollowed-out pattern and the hollowed-out portions of the third hollowed-out pattern on the dielectric layer 1 overlap, the orthographic projections of a first metal wire 33 and a third metal wire 21 on the dielectric layer 1 overlap at this time.
  • the first metal lines 33 and the third metal lines 21 are arranged in a one-to-one correspondence.
  • part of the second metal lines 34 in the peripheral region Q2 It includes a first line segment distributed on the side of the first opening 31 away from the middle region Q1, and a second line segment distributed on the side of the second opening 32 away from the middle region Q1.
  • the extension line of one metal line overlaps with the orthographic projection of the first line segment and the second line segment of a second metal line 34 on the dielectric layer 1 .
  • the first hollow pattern and the hollow pattern on the dielectric layer 1 can be formed by one patterning process, and the transmission at each position of the ground layer 3 formed by the first hollow pattern and the second hollow pattern can be formed.
  • the rate is the same, thus ensuring the optical uniformity of the thin film antenna.
  • the extension directions of the first metal wire 33 , the second metal wire 34 and the third metal wire 21 are the same, the transmitted microwave or millimeter wave energy can pass through the first opening 31 and The second opening 32 scatters into free space.
  • the first metal wire 33 , the second metal wire 34 , and the third metal wire 21 are all extended in the same direction for illustration as an example, but in the actual design, only the first metal wire 33 ,
  • the extending directions of the second metal wires 34 and the third metal wires 21 may be different from the extending directions of the first openings 31 and the second openings 32 . Therefore, the extending directions of the first metal wire 33 , the second metal wire 34 , and the third metal wire 21 are all the second direction, which does not limit the protection scope of the embodiments of the present disclosure.
  • the widths of the first metal wire 33, the second metal wire 34, and the third metal wire 21 are between 2 ⁇ m and 20 ⁇ m, and the hollow parts of the first hollow pattern, the third metal wire
  • the widths of the hollow parts of the second hollow pattern and the hollow part of the third hollow pattern are all on the order of 100 microns. It is verified by simulation that the radiation efficiency of the thin-film antenna shown in Fig. 6 is about 47%.
  • FIG. 9 is a top view of the ground layer 3 of another thin film antenna according to an embodiment of the disclosure
  • FIG. 10 is a top view of the radiation patch 2 of another thin film antenna according to an embodiment of the disclosure
  • the structure of this kind of thin-film antenna is roughly the same as that of the thin-film antenna shown in FIG. 6 , the difference is that the first hollow pattern in the middle region Q1 of the ground layer 3 not only includes a plurality of strips extending along the second direction, but also arranged side by side along the first direction.
  • the first metal wire 33 further includes a plurality of fourth metal wires 35 intersecting with the plurality of first metal wires 33 , and the plurality of fourth metal wires 35 extend along the first direction and are arranged side by side along the second direction.
  • the third hollow pattern of the radiation patch 2 not only includes a plurality of third metal lines 21 extending along the second direction and arranged side by side along the first direction, but also includes a plurality of third metal lines 21 intersecting with the plurality of third metal lines 21 .
  • a plurality of fifth metal lines 22 are provided, and the plurality of fifth metal lines 22 extend along the first direction and are arranged side by side along the second direction.
  • the orthographic projections of the hollowed-out portions of the first hollowed-out pattern and the hollowed-out portions of the third hollowed-out pattern on the dielectric layer 1 overlap, the orthographic projections of a fourth metal wire 35 and a fifth metal wire 22 on the dielectric layer 1 overlap, the fourth metal lines 35 and the fifth metal lines 22 are arranged in a one-to-one correspondence.
  • the first hollow pattern and the third hollow pattern adopt a grid-like structure, and the grid density of the first hollow pattern and the third hollow pattern in FIG. Improve the radiation gain of microwave and millimeter waves.
  • FIG. 11 is a top view of the ground layer 3 of another thin film antenna according to an embodiment of the disclosure.
  • the second hollow pattern in the peripheral region Q2 is also a grid pattern.
  • the second hollow pattern not only includes a plurality of second metal lines 34 extending along the second direction and arranged side by side along the first direction, but also includes a plurality of sixth metal lines 36 intersecting with the plurality of second metal lines 34 , and the plurality of sixth metal lines 36 extend along the first direction and are arranged side by side along the second direction.
  • the size of the hollow portion in the first hollow pattern is the same as the size in the second hollow pattern, so as to ensure uniform light transmittance of the thin film antenna.
  • the working frequency bands corresponding to the horizontal polarization and the vertical polarization can be designed respectively to realize a dual-polarized antenna.
  • FIG. 10 only shows that the feeder 4 feeds and receives energy from one of the top corners of the rectangular patch.
  • the first radiation edge 201 and the second radiation edge 202 are 3.4 ⁇ m
  • the third radiation edge 203 and the fourth radiation part are 3 ⁇ m
  • the first metal wire 33 and the second metal wire are 3 ⁇ m. 34.
  • the line widths of the third metal line 21, the fourth metal line 35, the fifth metal line 22 and the sixth metal line 36 are all equal, for example, equal to 15 ⁇ m
  • the widths of the first opening 31 and the second opening 32 are both W1
  • the widths of the third opening 37 and the fourth opening 38 are equal to W2, both of which are 250 ⁇ m
  • the width of each hollow portion is 185 ⁇ m.
  • Figure 13 is a schematic diagram of the simulation of the thin film antenna shown in Figure 12; as shown in Figure 13, the highest radiation efficiency of the thin film antenna can reach 63% through simulation, and the bandwidth of 30% radiation efficiency can reach 20.7%, 40% radiation The bandwidth of the efficiency can also reach 19%, as shown by S4 in Figure 13. Realized gain can reach 4.13dB.
  • FIG. 14 is a top view of the ground layer 3 of another thin film antenna according to an embodiment of the disclosure
  • FIG. 15 is a top view of the radiation patch 2 of another thin film antenna according to an embodiment of the disclosure
  • the thin-film antenna is substantially the same as the thin-film antenna of FIG.
  • the plurality of first metal wires 33 in the first hollow pattern extend along the third direction and are arranged side by side along the first direction;
  • the fourth metal wire 35 extends along the fourth direction and is arranged side by side along the first direction;
  • the plurality of second metal wires 34 in the second hollow pattern extend along the third direction and are arranged side by side along the first direction;
  • the sixth metal wires 36 extend along the fourth direction and are arranged side by side along the first direction;
  • the plurality of third metal wires 21 in the second hollow pattern extend along the third direction and are arranged side by side along the first direction;
  • the fifth metal wires 22 extend along the fourth direction and are arranged side by side along the first direction set up.
  • the third direction intersects the first direction and is not vertically arranged; the fourth direction and the first direction are not vertically arranged.
  • the hollow parts in the first hollow pattern, the hollow parts in the second hollow pattern, and the hollow parts in the third hollow pattern are all diamond-shaped lattices.
  • the rest of the structure is the same as that of the thin-film antenna shown in FIG. 11 , so it is not repeated here.
  • the thin film antenna can also achieve the functions of reducing the profile height and increasing the radiation.
  • FIG. 16 is a top view of the ground layer 3 of another thin film antenna according to an embodiment of the disclosure
  • FIG. 17 is a top view of the radiation patch 2 of another thin film antenna according to an embodiment of the disclosure
  • both the radiation patch 2 and the ground layer 3 in the thin film antenna are elliptical.
  • the radiation patch 2 and the ground layer 3 can also be circular or the like.
  • the ground layer 3 includes a plurality of seventh metal wires 39 arranged concentrically in multiple circles, and a plurality of eighth metal wires 23 radiating from the center of the ground layer 3 to the edge, and at least part of the eighth metal wires 23 are in the seventh metal wire 39 Disconnects are provided at locations defining openings.
  • FIG. 16 is a top view of the ground layer 3 of another thin film antenna according to an embodiment of the disclosure
  • FIG. 17 is a top view of the radiation patch 2 of another thin film antenna according to an embodiment of the disclosure
  • both the radiation patch 2 and the ground layer 3 in the thin film antenna are elliptical.
  • part of the eighth metal wire 23 is disconnected at the position of the seventh metal wire 39 , defining two openings, which are the first opening 31 and the second opening 32 respectively.
  • a ninth metal wire 310 arranged concentrically in the radiating electrode circle, and a plurality of tenth metal wires 24 radiating from the center of the reference electrode to the edge.
  • the orthographic projections of a ninth metal line 310 and a seventh metal line 39 on the dielectric layer 1 overlap, and the orthographic projections of an eighth metal line 23 and a tenth metal line 24 on the dielectric layer 1 overlap .
  • the distance between two adjacent seventh metal lines 39 is equal to the distance between two adjacent ninth metal lines 310 .
  • the number of the ninth metal lines 310 is less than the number of the seventh metal lines 39 , and the numbers of the eighth metal lines 23 and the tenth metal lines 24 may be equal.
  • the orthographic projection of the ninth metal line 310 farthest from the center on the dielectric layer 1 runs through the orthographic projection of the first opening 31 and the second opening 32 on the dielectric layer 1 .
  • the thin film antenna can also achieve the functions of reducing the profile height and increasing the radiation.
  • the first opening 31 and the second opening 32 in FIG. 16 are in a center-symmetric pattern. In this way, it is helpful to adjust the radiation frequency of the thin film antenna.
  • an opening is formed on the ground layer 3 of the traditional microstrip patch antenna corresponding to the edge of the microstrip patch, so that the radiation efficiency of the radiation patch 2 can be at 1% wavelength.
  • the following profile heights achieve a radiation efficiency of 40% or more.
  • filling the opening position of the ground layer 2 with low-loss and high-dielectric-constant material not only further improves the radiation efficiency of the resonance frequency band, but also the radiation bandwidth can reach more than 20%.
  • the metal grids on the ground layer 2 and the radiation patch 2 we can realize the design of ultra-low profile under the condition of maintaining the high radiation efficiency of the antenna, and at the same time achieve the thinning and transparency of the microwave patch antenna. requirements.
  • FIG. 18 is a flowchart of a method for manufacturing a thin film antenna according to an embodiment of the present disclosure; as shown in FIG. 18 , an embodiment of the present disclosure provides a method for manufacturing a thin film antenna, which can be used to prepare the above-mentioned method. Either a thin film antenna. Specifically, the method includes:
  • a dielectric layer 1 is provided.
  • the dielectric layer 1 may be a flexible substrate or a glass substrate, and step S1 may include a step of cleaning the dielectric layer 1 .
  • step S2 may specifically include: depositing a first metal thin film on the first surface of the dielectric layer 11 by means including but not limited to magnetron sputtering, then performing glue coating, exposing, developing, and then performing wet etching After etching, the strip is removed from the glue to form a pattern including the ground layer 3 .
  • a pattern including the radiation patch 2 and the feeder 4 is formed on the second surface of the dielectric layer 1 through a patterning process. At least part of the radiation edge of the radiation patch 2 is in the orthographic projection of the dielectric layer 1 through the opening in the orthographic projection of the dielectric layer 1 .
  • step S3 may specifically include: depositing a second metal thin film on the first surface of the dielectric layer 1 by means including but not limited to magnetron sputtering, then performing glue coating, exposing, developing, and then performing wet etching , after the etching is completed, the strip is removed to form a pattern including the radiation patch 2 and the feeder 4 .
  • the preparation sequence of the above steps S2 and S3 can be interchanged, that is, the radiation patch 2 and the feeder 4 can be formed on the first surface of the dielectric layer 1 , and then the first surface of the dielectric layer 1 can be formed.
  • the formation of the ground layer 3 is within the protection scope of the embodiments of the present disclosure.
  • the dielectric layer 1 in this embodiment of the present disclosure includes a first sub-dielectric layer 11 , a first adhesive layer 12 , a second sub-dielectric layer 13 , and a second adhesive layer 11 , which are sequentially stacked.
  • FIG. 19 is a flowchart of another method for manufacturing a thin film antenna according to an embodiment of the present disclosure; as shown in FIG. 19 , the preparation method according to an embodiment of the present disclosure can also be implemented by the following steps.
  • the first sub-dielectric layer 11 may use a PI substrate, and step S11 may include a step of cleaning the first sub-dielectric layer 11 .
  • the second sub-dielectric layer 13 can be a PET substrate, and the third sub-dielectric layer 15 can be a PI substrate.
  • the first adhesive layer 12 and the second adhesive layer 14 may use OCA glue.
  • a pattern including the radiation patch 2 and the feeder 4 is formed on the third sub-dielectric layer 15 through a patterning process.
  • steps S11-S13 are taken as an example before step S14. In an actual process, step S14 may also be performed first, and then steps S11-S13 may be performed.
  • the radiation patch 2 and the feeder 4 can also be disposed between the second sub-dielectric layer 13 and the second adhesive layer 14 , and the ground layer 3 can also be disposed between the first sub-dielectric layer 11 and the first adhesive layer between 12.
  • the formation method can be similar to the above-mentioned method, so it will not be repeated here.
  • FIG. 20 is a schematic structural diagram of an antenna system according to an embodiment of the present disclosure; as shown in FIG. 20 , an embodiment of the present disclosure provides an antenna system including at least one of the foregoing antennas.
  • the antenna system provided by the embodiments of the present disclosure further includes a transceiver unit, a radio frequency transceiver, a signal amplifier, a power amplifier, and a filter unit.
  • the antennas in the antenna system can be used as transmitting antennas or as receiving antennas.
  • the transceiver unit may include a baseband and a receiver, the baseband provides signals in at least one frequency band, such as 2G signals, 3G signals, 4G signals, 5G signals, etc., and transmits signals in at least one frequency band to the radio frequency transceiver.
  • the antenna in the antenna system After the antenna in the antenna system receives the signal, it can be processed by the filtering unit, power amplifier, signal amplifier, and radio frequency transceiver and then transmitted to the receiving end in the first launch unit.
  • the receiving end can be, for example, a smart gateway.
  • the radio frequency transceiver is connected to the transceiver unit, and is used for modulating the signal sent by the transceiver unit, or for demodulating the signal received by the antenna and then transmitting it to the transceiver unit.
  • the radio frequency transceiver may include a transmitter circuit, a receiver circuit, a modulation circuit, and a demodulation circuit. After the transmitter circuit receives various types of signals provided by the substrate, the modulation circuit can modulate the various types of signals provided by the baseband, and then sent to the antenna.
  • the antenna receives the signal and transmits it to the receiving circuit of the radio frequency transceiver, the receiving circuit transmits the signal to the demodulation circuit, and the demodulation circuit demodulates the signal and transmits it to the receiving end.
  • the radio frequency transceiver is connected to a signal amplifier and a power amplifier
  • the signal amplifier and the power amplifier are connected to a filtering unit
  • the filtering unit is connected to at least one antenna.
  • the signal amplifier is used to improve the signal-to-noise ratio of the signal output by the radio frequency transceiver and then transmit it to the filtering unit
  • the power amplifier is used to amplify the power of the signal output by the radio frequency transceiver and transmit it to the filtering unit
  • the filtering unit may specifically include a duplexer and a filtering circuit. The filtering unit combines the signals output by the signal amplifier and the power amplifier, filters out clutter, and transmits them to the antenna, which radiates the signal.
  • the antenna receives the signal and transmits it to the filtering unit.
  • the filtering unit filters the signal received by the antenna and transmits it to the signal amplifier and the power amplifier.
  • the signal amplifier gains the signal received by the antenna. Increase the signal-to-noise ratio of the signal; the power amplifier amplifies the power of the signal received by the antenna.
  • the signal received by the antenna is processed by the power amplifier and the signal amplifier and then transmitted to the radio frequency transceiver, and the radio frequency transceiver is then transmitted to the transceiver unit.
  • the signal amplifier may include various types of signal amplifiers, such as low noise amplifiers, without limitation.
  • the antenna system provided by the embodiments of the present disclosure further includes a power management unit, the power management unit is connected to the power amplifier, and provides the power amplifier with a voltage for amplifying the signal.

Landscapes

  • Waveguide Aerials (AREA)

Abstract

本公开提供一种天线及其制备方法、天线系统,属于通信技术领域。本公开的天线,其包括:介质层,具有沿其厚度方向相对设置的第一表面和第二表面;辐射贴片,设置在所述介质层的第一表面;参考电极层,设置在所述介质层的第二表面,且与所述辐射贴片在所述第二表面上的正投影至少部分重叠;其中,所述参考电极层具有沿其厚度方向贯穿开口,所述辐射贴片的辐射边的至少部分在所述第一表面的正投影位于所述开口在所述第一表面的正投影内。

Description

天线及其制备方法、天线系统 技术领域
本公开属于通信技术领域,具体涉及一种天线及其制备方法、天线系统。
背景技术
在手机、笔记本电脑、平板电脑等移动终端上,以及微小卫星、智能窗户和智能穿戴设备中等无线应用中,天线的小型化和薄膜化成为了一种发展趋势。天线薄膜化有助于实现共形结构设计,降低天线的重量。其中,天线薄膜化的一个重要方面是降低天线的剖面高度。因此,如何实现降低天线的剖面高度是一亟需要解决的技术问题。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一,提供一种天线及其制备方法、天线系统。
第一方面,本公开实施例提供一种天线,其包括:
介质层,具有沿其厚度方向相对设置的第一表面和第二表面;
辐射贴片,设置在所述介质层的第一表面;
参考电极层,设置在所述介质层的第二表面,且与所述辐射贴片在所述第二表面上的正投影至少部分重叠;其中,
所述参考电极层具有沿其厚度方向贯穿开口,所述辐射贴片的辐射边的至少部分在所述第一表面的正投影位于所述开口在所述第一表面的正投影内。
其中,所述参考电极层具有中间区域和环绕所述中间区域的外围区域;所述开口贯穿所述中间区域和所述外围区域之间的边界线的至少部分;所述辐射贴片在所述第一表面上的正投影覆盖所述参考电极的中间区域在所述第一表面上的正投影;
所述参考电极层包括位于中间区域的第一镂空图案和位于外围区域的 第二镂空图案;所述辐射贴片包括第三镂空图案。
其中,所述第一镂空图案的镂空部与所述第三镂空部的镂空部在所述第一表面上的正投影完全重叠。
其中,所述辐射贴片包括沿第一方向延伸,且沿第二方向并排设置的第一辐射侧边和第二辐射侧边;所述开口包括沿第一方向延伸,且沿第二方向并排设置的第一开口和第二开口;所述第一辐射边在所述介质层的正投影贯穿所述第一开口在所述介质层的正投影;所述第二辐射边在所述介质层的正投影贯穿所述第二开口在所述介质层的正投影。
其中,所述第一开口的长度不小于所述第一辐射边的长度;和/或,所述第二开口的长度不小于所述第二辐射边的长度。
其中,所述第一镂空图案包括沿第三方向延伸且沿第一方向并排设置的多条第一金属线,所述第一金属线之间的间隙限定出所述第一镂空图案的镂空部;
所述二镂空图案包括沿第三方向延伸且沿第一方向并排设置的多条第二金属线,所述第二金属线之间的间隙限定出所述第二镂空图案的镂空部;
所述三镂空图案包括沿第三方向延伸且沿第一方向并排设置的多条第三金属线,所述第三金属线之间的间隙限定出所述第三镂空图案的镂空部。
其中,任意两相邻的所述第一金属线之间的间距与任意两相邻的所述第二金属线之间的间距相同;且一条所述第二金属线的延长线在所述介质层上的正投影覆盖一条所述第一金属线在所述介质层上的正投影。
其中,所述第一方向与所述第三方向相同。
其中,所述第一镂空图案还包括与所述多条第一金属线交叉设置的多条第四金属线;所述第四金属线沿第四方向延伸,且沿第二方向并排设置;所述第三镂空图案还包括与所述多条第三金属线交叉设置的多条第五金属线;所述第五金属线沿第四方向延伸,且沿第二方向并排设置。
其中,所述第四方向与所述第一方向相同。
其中,所述第二镂空图案还包括与所述多条第一金属线交叉设置的多条第六金属线;所述第六金属线沿第四方向延伸,且沿第二方向并排设置。
其中,所述辐射贴片还包括沿第二方向延伸,且沿第一方向并排设置的第三辐射侧边和第四辐射侧边;所述开口还包括沿第二方向延伸,且沿第一方向并排设置的第三开口和第四开口;所述第三辐射边在所述介质层的正投影贯穿所述第三开口在所述介质层的正投影;所述第四辐射边在所述介质层的正投影贯穿所述第四开口在所述介质层的正投影。
其中,所述第三开口的长度不小于所述第三辐射边的长度;和/或,所述第四开口的长度不小于所述第四辐射边的长度。
其中,所述参考电极和所述辐射贴片的轮廓均为圆形或者椭圆形;
所述参考电极层包括多圈同心设置的第七金属线,以及由所述参考电极的圆心向边缘辐射的多条第八金属线,且至少部分第八金属线在所述第七金属线位置处断开设置,限定出所述开口;
所述辐射电极圈同心设置的第九金属线,以及由所述参考电极的圆心向边缘辐射的多条第十金属线。
其中,所述开口包括第一开口和第二开口;其中,所述第一开口和所述第二开口呈中心对称图形。
其中,所述参考电极层还包括填充在所述开口中的填充介质。
其中,所述填充介质包括硅或者三氧化二铝。
其中,所述介质层包括叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层,所述第三子介质层背离所述第一粘结层的表面用作所述介质层的第一表面,所述第一子介质层背离所述第二粘结层的表面用作所述介质层的第二表面。
其中,所述介质层包括叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层,所述第三子介质层靠近所述第一粘结层的表面用作所述介质层的第一表面,所述第一子介质层靠近所述第二粘结层的表面用作所述介质层的第二表面。
其中,所述第一子介质层和第三子介质层的材料均包括聚酰亚胺,所述第二子介质层的材料均包括聚对苯二甲酸乙二醇酯。
其中,开口的宽度为介质层厚度的5倍以上。
第二方面,本公开实施例提供一种天线的制备方法,其包括:
提供一介质层;
在所述介质层的第一表面上通过构图工艺形成包括参考电极层,所述参考电极层上形成有开口;
在所述介质层的第二表面通过构图工艺形成包括辐射贴片的图形;其中,所述辐射贴片的辐射边的至少部分在所述第一表面的正投影位于所述开口在所述第一表面的正投影内。
其中,所述介质层包括依次叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层;所述制备方法包括:提供所述第一子介质层;
在所述第一子介质层上通过构图工艺形成包括所述参考电极层;
在所述第一子介质层背离所述第一电极层的一侧涂覆所述第一粘结层,并将所述第二子介质层形成在所述第一粘结层上,之后将所述第二子介质层背离所述第一粘结层的表面形成所述第二粘结层,将第三子介质层形成在第二粘结层上;
在所述第三子介质层上通过构图工艺形成包括辐射贴片的图形。
其中,所述介质层包括依次叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层;所述制备方法包括:
提供所述第一子介质层;
在所述第一子介质层上通过构图工艺形成包括所述参考电极层;
提供所述第三子介质层;
在所述第三子介质层上通过构图工艺形成包括辐射贴片的图形;
提供第二子介质层,并将所述第一子介质层上形成有所述参考电极层的 一侧通过第一粘结层与所述第二子介质层粘结,将所述第二子介质层上形成有所述辐射贴片的一侧与所述第二子介质层粘结。
第三方面,本公开实施例一种天线系统,其中,包括至少上述的任一天线。
其中,所述天线系统还包括:
收发单元,用于发送信号或接收信号;
射频收发机,与所述收发单元相连,用于调制所述收发单元发送的信号,或用于解调所述天线接收的信号后传输给所述收发单元;
信号放大器,与所述射频收发机相连,用于提高所述射频收发机输出的信号或所述天线接收的信号的信噪比;
功率放大器,与所述射频收发机相连,用于放大所述射频收发机输出的信号或所述天线接收的信号的功率;
滤波单元,与所述信号放大器、所述功率放大器均相连,且与所述天线相连,用于将接收到的信号进行滤波后发送给所述天线,或对所述天线接收的信号滤波。
附图说明
图1为本公开实施例的一种薄膜天线的俯视图。
图2为图1的薄膜天线的A-A'的一种截面图。
图3为图1的薄膜天线的A-A'的另一种截面图。
图4为图1的薄膜天线的A-A'的另一种截面图。
图5为图1所示的薄膜天线的仿真示意图。
图6为本公开实施例的另一种薄膜天线的俯视图。
图7为图6所示的薄膜天线的接地层的俯视图。
图8为图6所示的薄膜天线的辐射贴片的俯视图。
图9为本公开实施例的另一种薄膜天线的接地层的俯视图。
图10为本公开实施例的另一种薄膜天线的辐射贴片的俯视图。
图11为本公开实施例的另一种薄膜天线的接地层的俯视图。
图12为本公开实施例的另一种薄膜天线的接地层的俯视图。
图13为图12所示的薄膜天线的仿真示意图。
图14为本公开实施例的另一种薄膜天线的接地层的俯视图。
图15为本公开实施例的另一种薄膜天线的辐射贴片的俯视图。
图16为本公开实施例的另一种薄膜天线的接地层的俯视图。
图17为本公开实施例的另一种薄膜天线的辐射贴片的俯视图。
图18为本公开实施例的一种薄膜天线的制备方法的流程图。
图19为本公开实施例的另一种薄膜天线的制备方法的流程图。
图20为本公开实施例的一种天线系统的结构示意图。
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,图1为本公开实施例的一种薄膜天线的俯视图;图2为图1 的薄膜天线的A-A'的一种截面图;如图1和2所示,本公开实施例提供一种薄膜天线,其包括介质层1、辐射贴片2和参考电极层、馈线4。其中,介质层1包括延其厚度方向相对设置的第一表面(上表面)和第二表面(下表面)。辐射贴片2和馈线4设置在介质层1的第一表面,且馈线4与辐射贴片2连接,参考电极层设置在介质层1的第二表面。在本公开实施例中,参考电极层上具有开口,辐射贴片2与参考电极层在介质层1上的正投影至少部分重叠,且辐射贴片2的辐射边的至少部分在介质层1上的正投影位于开口在第一表面上的正投影内。
需要说明的是,本公开实施例中参考电极层包括但不限于接地层3,也即给参考电极层所施加的信号为接地信号。在本公开实施例中,以参考电极层为接地层3为例进行说明。应当理解的是,只要是在薄膜天线工作时,实际在参考电极层和辐射层上的电压能够形成回路即可,也即参考电极层选用接地层3并不构成对本公开实施例保护范围的限制。另外,在本公开实施例中辐射贴片2的辐射边是指该辐射贴片2的侧边,例如:辐射贴片2的轮廓为矩形时,此时矩形辐射贴片2的四个侧边则为辐射边。
本公开实施例所提供的薄膜天线,由于在接地层3上设置开口,且该辐射贴片2的辐射边的至少部分在介质层1上的正投影位于开口在介质层1上的正投影内,通过这种开口的设置,可以降低薄膜天线剖面,以提高薄膜天线的辐射效率。
在一些示例中,在开口内填充有填充介质,还填充介质为微波毫米波段相应的高介电常数材料,例如:硅、三氧化二铝、特定陶瓷材料等等。在开口内,如果不填充高介电常数材料,辐射效率相对于传统低剖面贴片天线可以提高4到5倍,而填充高介电常数材料后,最高辐射效率能够提高到6到8倍左右,而且(30%辐射效率的)辐射带宽也将增大到15%以上。
在一些示例中,辐射贴片2、馈线4和接地层3的材料均可以相同。例如:铜(Cu)、铝(Al)、钼(Mo)、银(Ag)中的至少一种。在本公开实施例中以辐射贴片2、馈线4和接地层3的材料均采用铜为例进行说明。
在一些示例中,如图2所示,天线中的介质层1可以为单层结构也可以是复合层结构,当介质层1采用单层结构时,其材料包括但不限于柔性材质,例如:介质层1采用聚酰亚胺(PI)或者聚对苯二甲酸乙二醇酯(PET)材质。
在一些示例中,图3为图1的薄膜天线的A-A'的另一种截面图;如图3所示,介质层1为复合膜层时,其包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15;其中,接地层3设置在第一子介质层11背离第一粘结层12的一侧,也即第一子介质层11背离第一粘结层12的侧面用作介质层1的第二表面;辐射贴片2设置在第三子介质层15背离第二粘结层14的一侧,也即第二子介质层13背离第二粘结层14的侧面用作介质层1的第一表面。第一子介质层11和第三子介质层15包括但不限于采用PI材质;第二子介质层13包括但不限于采用聚对苯二甲酸乙二醇酯(PET)材质。第一粘结层12和第二粘结层14的材料均可以采用透明光学(OCA)胶。当辐射贴片2设置在第三子介质层15和第二粘结层14之间时,在第三子介质层15的上表面还形成有保护层,例如自修复透明防水涂层,以对第三子介质层15进行保护。
在一些示例中,图4为图1的薄膜天线的A-A'的另一种截面图;如图4所示,介质层1为复合膜层时,其包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15;其中,接地层3设置在第一子介质层11靠近第一粘结层12的一侧,也即第一子介质层11靠近第一粘结层12的侧面用作介质层1的第二表面;辐射贴片2设置在第二子介质层13靠近第二粘结层14的一侧,也即第二子介质层13靠近第二粘结层14的侧面用作介质层1的第一表面。在该种情况下,第一微带线、换能元件和第一电极层均不会暴露在外,因此可以有效防止水氧侵蚀。
在一些示例中,当介质层1包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14、第三子介质层15时,第一子介质层11和第三子介质层15可以选用相同材质,且二者厚度相同或者大致相同。第二子介质层13不同于第一子介质层11(第三子介质层15)的材 质和厚度,且第二子介质层13的厚度大于第一子介质层11。其中,第一子介质层11(第三子介质层15)的厚度在10μm-80μm左右,第二子介质层1313的厚度在0.2mm-0.7mm左右。
以下结合具体示例对本公开实施例中的薄膜天线进行说明。
第一种示例:如图1和2所示,该薄膜天线包括介质层1、辐射贴片2、馈线4和参考电极层。其中,介质层1包括延其厚度方向相对设置的第一表面(上表面)和第二表面(下表面)。辐射贴片2和馈线4设置在介质层1的第一表面,接地层3设置在介质层1的第二表面。辐射贴片2和接地层3均为板状电极。辐射贴片2和接地层3的形状可以相同也可以不同,在本公开实施例中以辐射贴片2和接地层3图形相同为例。辐射贴片2和接地电极层的形状包括但不限于矩形、椭圆形、圆形等。图1中以辐射贴片2和接地电极层的形状均为矩形为例。在该种情况下,辐射贴片2具有沿第一方向延伸,且沿第二方向并排设置的第一辐射边201和第二辐射边202;以及沿第二方向延伸,且沿第一方向并排社会的第三辐射边203和第四辐射边204。馈线4连接在辐射贴片2的一个顶角位置,为辐射贴片2提供微波信号。接地层3具有沿第一方向延伸,并沿第二方向并排设置的两个开口,分别为第一开口31和第二开口32,在第一开口31和第二开口32内填充有填充介质。其中,辐射贴片2的第一辐射边201在介质层1上的正投影贯穿第一开口31在介质层1上的正投影;辐射贴片2的第二辐射边202在介质层1上的正投影贯穿第二开口32在介质层1上的正投影。通过在接地层3设置第一开口31和第二开口32,以降低薄膜天线的剖面高度,以提高辐射效率。
需要说明的是,在本公开实施例中第一方向和第二方向,例如第一方向和第二方向相互垂直,其中,第一方向为垂直方向,第二方向为水平方向。在本公开实施例中均以第一方向为垂直方向,第二方向为水平方向为例进行描述。图1中以在接地层3设置第一开口31和第二开口32为例,实际上,还可以在接地层3上设置沿第二方向延伸,且沿第一方向并排设置的第三开口37和第四开口38。辐射元件的第三辐射边203在介质层1上的正投影贯穿第三开口37在介质层1上的正投影,辐射元件的第四辐射边204在介质 层1上的正投影贯穿第四开口38在介质层1上的正投影。当然,在本公开实施例的接地层3上也可以仅设置第一开口31、第二开口32、第三开口37和第四开口38中的一者或者任意多者。
在一些示例中,第一开口31的长度不小于第一辐射边201的长度;和/或第二开口32的长度不小于第二辐射边202的长度。例如:第一开口31的长度不小于第一辐射边201的长度,同时第二开口32的长度不小于第二辐射边202的长度。当接地层3还设置第三开口33和第四开口340时,第三开口33的长度不小于第三辐射边203的长度,和/或第四开口34的长度不小于第四辐射边204的长度。通过这种设置方式,有效的提高射频信号的辐射效率。
在一些示例中,若介质层1的厚度为h,接地层3的第一开口31(第二开口32)的宽度在5h以上,例如:接地层3的第一开口31(第二开口32)的宽度5h-10h。第一开口31和第二开口32均包括沿第二方向延伸,且沿第一方向并排设置的第一侧边和第二侧边;第一辐射边201在介质层1上的正投影与第一开口31的第一侧边在介质层1上的正投影之间的距离为a,第二辐射边202在介质层1上的正投影与第二开口32的第一侧边在介质层1上的正投影之间的距离为b,对于a和b的具体数值需要根据辐射频率和介质层1的高度进行仿真优化得到。辐射贴片2和接地层3的厚度均为3个趋肤深度左右。
在一个示例中,以10毫米波段(30GHz)为例,介质层1的厚度为20μm,介电常数为3;辐射贴片2和接地层3的厚度都取3μm;第一开口31和第二开口32的宽度均为250μm。第一辐射边201和第二辐射边202为3.4μm,第三辐射边203和第四辐射部为3μm,第一开口31和第二开口32分别与第一辐射边201和第二辐射边202对应设置。如图8所示,S1表示未在接地层3设置第一开口31和第二开口32的仿真曲线,S2表示在接地层3设置第一开口31和第二开口32的仿真曲线,S3表示在接地层3设置第一开口31和第二开口32且在第一开口31和第二开口32内设置填充介质的仿真曲线;此时设置第一开口31和第二开口32的薄膜天线可以得到 31GHz频率42%的辐射效率,未在接地层3设置第一开口31和第二开口32的薄膜天线则得到31GHz频率8.85%的辐射效率,比在接地层3上不进行开口的天线的辐射频率高出近5倍。在第一开口31和第二开口32内填充高介电材料,则辐射效率进一步提高到63%,是不开口天线辐射效率的7倍多。由此可见,在接地电极上设置开口,可以有效的提高辐射效率,当然在开口内填充高介电材料可以进一步提高辐射效率。
第二种示例:图6为本公开实施例的另一种薄膜天线的俯视图;图7为图6所示的薄膜天线的接地层3的俯视图;图8为图6所示的薄膜天线的辐射贴片2的俯视图;该种薄膜天线与图1所示的薄膜天线大致相同,区别仅在于,该种薄膜天线为透明薄膜天线,其中的辐射贴片2和接地层3均采用镂空图案结构。例如:接地层3包括中间区域Q1和环绕中间区域Q1的外围区域Q2,接地层3的开口形成在中间区域Q1和外围区域Q2的交界位置。接地层3包括位于中间区域Q1的第一镂空图案和位于外围区域Q2的第二镂空图案。辐射贴片2包括第三镂空图案,且辐射贴片2在介质层1上的正投影覆盖接地层3中间区域Q1在介质层1上的正投影。其中,第一镂空图案的镂空部和第三镂空图案的镂空部在介质层1上的正投影重叠,通过该种设置方式在提高薄膜天线的辐射效率的同时,最大限度的提高薄膜天线的光线透过率。
例如:如图7所示,第一镂空图案包括多条沿第二方向延伸,且沿第一方向并排设置是的第一金属线33,相邻设置的第一金属线33之间的间隙限定出第一镂空图案的镂空部。第二镂空图案包括多条沿第二方向延伸,且沿第一方向并排设置的第二金属线34,相邻设置的第二金属线34之间的间隙限定出第二镂空图案的镂空部。第三镂空图案包括多条沿第二方向延伸,且沿第一方向并排设置的第三金属线21,相邻设置的第三金属线21之间的间隙限定出第三镂空图案的镂空部。由于第一镂空图案的镂空部与第三镂空图案的镂空部在介质层1上方的正投影重叠,此时一条第一金属线33和一条第三金属线21在介质层1上方的正投影重叠,例如:第一金属线33和第三金属线21一一对应设置。
继续参照图7,由于接地层3中的第一开口31和第二开口32的设置,且由于在接地层3的中间区域Q1设置第一镂空图案,因此外围区域Q2的部分第二金属线34包括分布在第一开口31远离中间区域Q1一侧的第一线段,以及第二开口32远离中间区域Q1一侧的第二线段。一条金属线的延长线与一条第二金属线34的第一线段和第二线段在介质层1上的正投影重叠。在该种情况下,可以通过一次构图工艺形成位于介质层1上位于第一镂空图案和镂空图案,而且由这种第一镂空图案和第二镂空图案构成的接地层3的各个位置的透过率相同,从而保证薄膜天线的光学均一性。另外,由于在本公开实施例中,第一金属线33、第二金属线34和第三金属线21的延伸方向相同,因此传输的微波或毫米波能量,最大化的通过第一开口31和第二开口32散射到自由空间。
需要说明的是,图6中是以第一金属线33、第二金属线34、第三金属线21的延伸方向均相同为例进行说明的,但在实际设计中只要第一金属线33、第二金属线34、第三金属线21的延伸方向均与第一开口31和第二开口32的延伸方向不同即可。因此,第一金属线33、第二金属线34、第三金属线21的延伸方向均为第二方向并不构成对本公开实施例的保护范围的限制。
在一个示例中,对于自由波长10毫米(30GHz)左右,第一金属线33、第二金属线34、第三金属线21的宽度在2μm到20μm之间,第一镂空图案的镂空部、第二镂空图案的镂空部、第三镂空图案的镂空部的宽度均在百微米量级。通过仿真实现验证,图6所示的薄膜天线的辐射效率大约在47%左右。
例如:图9为本公开实施例的另一种薄膜天线的接地层3的俯视图;图10为本公开实施例的另一种薄膜天线的辐射贴片2的俯视图;如图9和10所示,该种薄膜天线与图6所示的薄膜天线结构大致相同,区别在于,接地层3的中间区域Q1的第一镂空图案不仅包括沿第二方向延伸,且沿第一方向并排设置的多条第一金属线33,而且还包括与多条第一金属线33相交的多条第四金属线35,且多条第四金属线35沿第一方向延伸,且沿第二方向 并排设置。相应的,辐射贴片2的第三镂空图案不仅包括沿第二方向延伸,且沿第一方向并排设置的多条第三金属线21,而且还包括与多条第三金属线21相交的多条第五金属线22,且多条第五金属线22沿第一方向延伸,且沿第二方向并排设置。由于第一镂空图案的镂空部和第三镂空图案的镂空部在介质层1上的正投影重叠,因此,一条第四金属线35和一条第五金属线22在介质层1上的正投影重叠,例如第四金属线35和第五金属线22一一对应设置。
在图9和10所示的的薄膜天线中,第一镂空图案和第三镂空图案采用网格状结构,相较图6第一镂空图案和第三镂空图案的网格密度增加,以此可以提高微波毫米波的辐射增益。
在一些示例中,图11为本公开实施例的另一种薄膜天线的接地层3的俯视图;
如图11所示,接地层3不仅中间区域Q1的第一镂空图案为网格状图案,而且外围区域Q2的第二镂空图案同样为网格图案。例如:第二镂空图案不仅包括沿第二方向延伸,且沿第一方向并排设置的多条第二金属线34,而且还包括与多条第二金属线34相交的多条第六金属线36,且多条第六金属线36沿第一方向延伸,且沿第二方向并排设置。其中,第一镂空图案中的镂空部的尺寸和第二镂空图案中的尺寸,从而保证薄膜天线的光线透过率均一。
进一步的图12为本公开实施例的另一种薄膜天线的接地层3的俯视图;该接地层3的结构与上述图9的结构大致相同,区别仅在于,该接地层3不仅包括第一开口31和第二开口32,而且还包括第三开口37和第四开口38;其中,第一开口31和第二开口32的宽度均为W1,第三开口37和第四开口38的宽度均为W2;在一些示例中W2=W1。在该种结构线可以分别设计水平极化和垂直极化对应的工作频段,实现双极化天线。对于双极化的能量馈送方式有多种。图10中仅展示了馈线4从矩形贴片的其中一个顶角进行能量馈送与接收。
对于图10中的薄膜天线辐射贴片2的第一辐射边201和第二辐射边202为3.4μm,第三辐射边203和第四辐射部为3μm,第一金属线33、第二金属线34、第三金属线21、第四金属线35、第五金属线22和第六金属线36的线宽均相等,例如等于15μm,第一开口31和第二开口32的宽度均为W1,和第三开口37和第四开口38的宽度均为W2相等,均为250μm,每个镂空部的宽度为185μm。图13为图12所示的薄膜天线的仿真示意图;如图13所示,经过仿真得到该薄膜天线的最高辐射效率可以达到63%,且30%辐射效率的带宽可以达到20.7%,40%辐射效率的带宽也可以达到19%,如图13中的S4所示。Realized gain可以达到4.13dB。
第三种示例:图14为本公开实施例的另一种薄膜天线的接地层3的俯视图;图15为本公开实施例的另一种薄膜天线的辐射贴片2的俯视图;如图14和15所示,该薄膜天线与图11的薄膜天线大致相同,区别仅在于,第一镂空图案中的多条第一金属线33沿第三方向延伸且沿第一方向并排设置;第四金属线35沿第四方向延伸且沿第一方向并排设置;第二镂空图案中的多条第二金属线34沿第三方向延伸且沿第一方向并排设置;第六金属线36沿第四方向延伸且沿第一方向并排设置;第二镂空图案中的多条第三金属线21沿第三方向延伸且沿第一方向并排设置;第五金属线22沿第四方向延伸且沿第一方向并排设置。其中,第三方向与第一方向相交,且非垂直设置;第四方向与第一方向,且非垂直设置。这样一来,第一镂空图案中的镂空部、第二镂空图案中的镂空部、第三镂空图案中的镂空部均为菱形格。对于其余结构均与图11所示的薄膜天线结构相同,故在此不再重复赘述。该种薄膜天线同样可以实现降低剖面高度且增加辐射的功能。
第四种示例,图16为本公开实施例的另一种薄膜天线的接地层3的俯视图;图17为本公开实施例的另一种薄膜天线的辐射贴片2的俯视图;如图16和17所示,该薄膜天线中的辐射贴片2和接地层3均为椭圆形。当然,的辐射贴片2和接地层3也可以是圆形等。其中,接地层3包括多圈同心设置的第七金属线39,以及由接地层3的圆心向边缘辐射的多条第八金属线23,且至少部分第八金属线23在第七金属线39位置处断开设置,限定出开 口。例如:图16中,部分第八金属线23在第七金属线39位置处断开设置,限定出两个开口,分别为第一开口31和第二开口32。辐射电极圈同心设置的第九金属线310,以及由参考电极的圆心向边缘辐射的多条第十金属线24。在该种情况下,一条第九金属线310与一条第七金属线39在介质层1上的正投影重叠,一条第八金属线23与一条第十金属线24在介质层1的正投影重叠。两相邻设置的第七金属线39之间的间距与两相邻设置的第九金属线310之间的间距相等。但第九金属线310的条数少于第七金属线39的条数,第八金属线23和第十金属线24的条数可以相等。且最远离中心的第九金属线310在介质层1上的正投影贯穿第一开口31和第二开口32在介质层1上的正投影。该种薄膜天线同样可以实现降低剖面高度且增加辐射的功能。
在一些示例中,图16中的第一开口31和第二开口32呈中心对称图形。这样一来,有助于对薄膜天线的辐射频率进行调节。
本公开实施例所提的薄膜天线,首先在传统的微带贴片天线的接地层3上,对应微带贴片边缘位置进行开口,这样就使得辐射贴片2的辐射效率可以在1%波长以下的剖面高度,实现40%以上的辐射效率。其次,在接地层2的开口位置填充低损耗高介电常数材料,这样不仅进一步提高谐振频段的辐射效率,同时辐射带宽可以达到20%以上。而且,通过设计接地层2和辐射贴片2上的金属网栅,我们可以在保持天线较高辐射效率的条件下,来实现超低剖面的设计,同时达到微波贴片天线薄膜化和透明化的要求。
第二方面,图18为本公开实施例的一种薄膜天线的制备方法的流程图;如图18所示,本公开实施例提供一种薄膜天线的制备方法,该方法可以用于制备上述的任一薄膜天线。该方法具体包括:
S1、提供一介质层1。
其中,介质层1可以采用柔性衬底,也可以采用玻璃衬底,在步骤S1中可以包括对介质层1清洗的步骤。
S2、在介质层1的第二表面上通过构图工艺形成包括接地层3的步骤。 其中,在接地层3上形成有开口。
在一些示例中,步骤S2具体可以包括:在介质层11的第一表面采用包括但不限于磁控溅射的方式沉积第一金属薄膜,然后进行涂胶、曝光、显影,随后进行湿法刻蚀,刻蚀完后strip去胶,形成包括接地层3的图形。
S3、在介质层1的第二表面通过构图工艺形成包括辐射贴片2和馈线4的图形。辐射贴片2的辐射边的至少部分在介质层1的正投影贯穿开口在介质层1的正投影内。
在一些示例中步骤S3具体可以包括,在介质层1的第一表面采用包括但不限于磁控溅射的方式沉积第二金属薄膜,然后进行涂胶、曝光、显影,随后进行湿法刻蚀,刻蚀完后strip去胶,形成包括辐射贴片2和馈线4的图形。
在此需要说明的是,上述步骤S2和S3的制备顺序可以互换,也即可以在介质层1的第一表面上形成辐射贴片2和馈线4,之后在介质层1的第一表面上形成接地层3,均在本公开实施例的保护范围内。
在一些示例中,如图3所示,本公开实施例中的介质层1包括依次叠层设置的第一子介质层11、第一粘结层12、第二子介质层13、第二粘结层14和第三子介质层15,其中,第一子介质层11背离第一粘结层12的表面用作介质层1的第二表面,第三子介质层15背离第二粘结层14的表面用作介质层1的第一表面,也即接地层3设置在第一子介质层11背离第一粘结层12的一侧,辐射贴片2和馈线4设置在第三子介质层15背离第二粘结层14的一侧。图19为本公开实施例的另一种薄膜天线的制备方法的流程图;如图19所示,本公开实施例的制备方法还可以采用如下步骤实现。
S11、提供第一子介质层11。
其中,第一子介质层11可以采用PI衬底,在步骤S11中可以包括对第一子介质层11清洗的步骤。
S12、在第一子介质层11上通过构图工艺形成包括接地层3的步骤。其中,在接地层3上形成开口。
其中,形成接地层3的步骤与上述步骤S2相同,故在此不再重复描述。
S13、在第一子介质层11背离接地层3的一侧涂覆第一粘结层12,并将第二子介质层13形成在第一粘结层12上,之后将第二子介质层13背离第一粘结层12的表面形成第二粘结层14,将第三子介质层15形成在第二粘结层14上。
其中,第二子介质层13可以采用PET衬底,第三子介质层15可以采用PI衬底。第一粘结层12和第二粘结层14可以采用OCA胶。
S14、在第三子介质层15上通过构图工艺形成包括辐射贴片2和馈线4的图形。
其中,形成辐射贴片2和馈线4的步骤与上述步骤S3的步骤相同,故在此不再重复描述。
需要说明的是,以上以步骤S11-S13的步骤先于步骤S14为例,在实际工艺中,也可以先进行步骤S14,再进行步骤S11-S13。
参照图4,辐射贴片2和馈线4还可以设置在第二子介质层13和第二粘结层14之间,接地层3还可以设置在第一子介质层11和第一粘结层12之间。形成的方法可以与上述方法相类似,故在此不再重复赘述。
第三方面,图20为本公开实施例的一种天线系统的结构示意图;如图20所示,本公开实施例提供一种天线系统,包括至少一个上述天线。
在一些示例中,本公开实施例提供的天线系统还包括收发单元、射频收发机、信号放大器、功率放大器、滤波单元。天线系统中的天线可以作为发送天线,也可以作为接收天线。其中,收发单元可以包括基带和接收端,基带提供至少一个频段的信号,例如提供2G信号、3G信号、4G信号、5G信号等,并将至少一个频段的信号发送给射频收发机。而天线系统中的天线接收到信号后,可以经过滤波单元、功率放大器、信号放大器、射频收发机的处理后传输给首发单元中的接收端,接收端例如可以为智慧网关等。
进一步地,射频收发机与收发单元相连,用于调制收发单元发送的信号,或用于解调天线接收的信号后传输给收发单元。具体地,射频收发机可以包 括发射电路、接收电路、调制电路、解调电路,发射电路接收基底提供的多种类型的信号后,调制电路可以对基带提供的多种类型的信号进行调制,再发送给天线。而天线接收信号传输给射频收发机的接收电路,接收电路将信号传输给解调电路,解调电路对信号进行解调后传输给接收端。
进一步地,射频收发机连接信号放大器和功率放大器,信号放大器和功率放大器再连接滤波单元,滤波单元连接至少一个天线。在天线系统进行发送信号的过程中,信号放大器用于提高射频收发机输出的信号的信噪比后传输给滤波单元;功率放大器用于放大射频收发机输出的信号的功率后传输给滤波单元;滤波单元具体可以包括双工器和滤波电路,滤波单元将信号放大器和功率放大器输出的信号进行合路且滤除杂波后传输给天线,天线将信号辐射出去。在天线系统进行接收信号的过程中,天线接收到信号后传输给滤波单元,滤波单元将天线接收的信号滤除杂波后传输给信号放大器和功率放大器,信号放大器将天线接收的信号进行增益,增加信号的信噪比;功率放大器将天线接收的信号的功率放大。天线接收的信号经过功率放大器、信号放大器处理后传输给射频收发机,射频收发机再传输给收发单元。
在一些示例中,信号放大器可以包括多种类型的信号放大器,例如低噪声放大器,在此不做限制。
在一些示例中,本公开实施例提供的天线系统还包括电源管理单元,电源管理单元连接功率放大器,为功率放大器提供用于放大信号的电压。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (26)

  1. 一种天线,其包括:
    介质层,具有沿其厚度方向相对设置的第一表面和第二表面;
    辐射贴片,设置在所述介质层的第一表面;
    参考电极层,设置在所述介质层的第二表面,且与所述辐射贴片在所述第二表面上的正投影至少部分重叠;其中,
    所述参考电极层具有沿其厚度方向贯穿开口,所述辐射贴片的辐射边的至少部分在所述第一表面的正投影位于所述开口在所述第一表面的正投影内。
  2. 根据权利要求1所述的天线,其中,所述参考电极层具有中间区域和环绕所述中间区域的外围区域;所述开口贯穿所述中间区域和所述外围区域之间的边界线的至少部分;所述辐射贴片在所述第一表面上的正投影覆盖所述参考电极的中间区域在所述第一表面上的正投影;
    所述参考电极层包括位于中间区域的第一镂空图案和位于外围区域的第二镂空图案;所述辐射贴片包括第三镂空图案。
  3. 根据权利要求2所述的天线,其中,所述第一镂空图案的镂空部与所述第三镂空部的镂空部在所述第一表面上的正投影完全重叠。
  4. 根据权利要求2或3所述的天线,其中,所述辐射贴片包括沿第一方向延伸,且沿第二方向并排设置的第一辐射侧边和第二辐射侧边;所述开口包括沿第一方向延伸,且沿第二方向并排设置的第一开口和第二开口;所述第一辐射边在所述介质层的正投影贯穿所述第一开口在所述介质层的正投影;所述第二辐射边在所述介质层的正投影贯穿所述第二开口在所述介质层的正投影。
  5. 根据权利要求4所述的天线,其中,所述第一开口的长度不小于所述第一辐射边的长度;和/或,所述第二开口的长度不小于所述第二辐射边的长度。
  6. 根据权利要求4所述的天线,其中,所述第一镂空图案包括沿第三 方向延伸且沿第一方向并排设置的多条第一金属线,所述第一金属线之间的间隙限定出所述第一镂空图案的镂空部;
    所述二镂空图案包括沿第三方向延伸且沿第一方向并排设置的多条第二金属线,所述第二金属线之间的间隙限定出所述第二镂空图案的镂空部;
    所述三镂空图案包括沿第三方向延伸且沿第一方向并排设置的多条第三金属线,所述第三金属线之间的间隙限定出所述第三镂空图案的镂空部。
  7. 根据权利要求6所述的天线,其中,任意两相邻的所述第一金属线之间的间距与任意两相邻的所述第二金属线之间的间距相同;且一条所述第二金属线的延长线在所述介质层上的正投影覆盖一条所述第一金属线在所述介质层上的正投影。
  8. 根据权利要求6所述的天线,其中,所述第一方向与所述第三方向相同。
  9. 根据权利要求6所述的天线,其中,所述第一镂空图案还包括与所述多条第一金属线交叉设置的多条第四金属线;所述第四金属线沿第四方向延伸,且沿第二方向并排设置;所述第三镂空图案还包括与所述多条第三金属线交叉设置的多条第五金属线;所述第五金属线沿第四方向延伸,且沿第二方向并排设置。
  10. 根据权利要求9所述的天线,其中,所述第四方向与所述第一方向相同。
  11. 根据权利要求9所述的天线,其中,所述第二镂空图案还包括与所述多条第一金属线交叉设置的多条第六金属线;所述第六金属线沿第四方向延伸,且沿第二方向并排设置。
  12. 根据权利要求11所述的天线,其中,所述辐射贴片还包括沿第二方向延伸,且沿第一方向并排设置的第三辐射侧边和第四辐射侧边;所述开口还包括沿第二方向延伸,且沿第一方向并排设置的第三开口和第四开口;所述第三辐射边在所述介质层的正投影贯穿所述第三开口在所述介质层的正投影;所述第四辐射边在所述介质层的正投影贯穿所述第四开口在所述介质 层的正投影。
  13. 根据权利要求12所述的天线,其中,所述第三开口的长度不小于所述第三辐射边的长度;和/或,所述第四开口的长度不小于所述第四辐射边的长度。
  14. 根据权利要求1所述的天线,其中,所述参考电极和所述辐射贴片的轮廓均为圆形或者椭圆形;
    所述参考电极层包括多圈同心设置的第七金属线,以及由所述参考电极的圆心向边缘辐射的多条第八金属线,且至少部分第八金属线在所述第七金属线位置处断开设置,限定出所述开口;
    所述辐射电极圈同心设置的第九金属线,以及由所述参考电极的圆心向边缘辐射的多条第十金属线。
  15. 根据权利要求14所述的天线,其中,所述开口包括第一开口和第二开口;其中,所述第一开口和所述第二开口呈中心对称图形。
  16. 根据权利要求1-15中任一项所述的天线,其中,所述参考电极层还包括填充在所述开口中的填充介质。
  17. 根据权利要求16所述的天线,其中,所述填充介质包括硅或者三氧化二铝。
  18. 根据权利要求1-15中任一项所述的天线,其中,所述介质层包括叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层,所述第三子介质层背离所述第一粘结层的表面用作所述介质层的第一表面,所述第一子介质层背离所述第二粘结层的表面用作所述介质层的第二表面。
  19. 根据权利要求1-15中任一项所述的天线,其中,所述介质层包括叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层,所述第三子介质层靠近所述第一粘结层的表面用作所述介质层的第一表面,所述第一子介质层靠近所述第二粘结层的表面用作所述介质层的第二表面。
  20. 根据权利要求18或19所述的天线,其中,所述第一子介质层和第三子介质层的材料均包括聚酰亚胺,所述第二子介质层的材料均包括聚对苯二甲酸乙二醇酯。
  21. 根据权利要求1-15中任一项所述的天线,其中,开口的宽度为介质层厚度的5倍以上。
  22. 一种天线的制备方法,其包括:
    提供一介质层;
    在所述介质层的第一表面上通过构图工艺形成包括参考电极层,所述参考电极层上形成有开口;
    在所述介质层的第二表面通过构图工艺形成包括辐射贴片的图形;其中,所述辐射贴片的辐射边的至少部分在所述第一表面的正投影位于所述开口在所述第一表面的正投影内。
  23. 根据权利要求22所述的制备方法,其中,所述介质层包括依次叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层;所述制备方法包括:提供所述第一子介质层;
    在所述第一子介质层上通过构图工艺形成包括所述参考电极层;
    在所述第一子介质层背离所述第一电极层的一侧涂覆所述第一粘结层,并将所述第二子介质层形成在所述第一粘结层上,之后将所述第二子介质层背离所述第一粘结层的表面形成所述第二粘结层,将第三子介质层形成在第二粘结层上;
    在所述第三子介质层上通过构图工艺形成包括辐射贴片的图形。
  24. 根据权利要求22所述的制备方法,其中,所述介质层包括依次叠层设置的第一子介质层、第一粘结层、第二子介质层、第二粘结层和第三子介质层;所述制备方法包括:
    提供所述第一子介质层;
    在所述第一子介质层上通过构图工艺形成包括所述参考电极层;
    提供所述第三子介质层;
    在所述第三子介质层上通过构图工艺形成包括辐射贴片的图形;
    提供第二子介质层,并将所述第一子介质层上形成有所述参考电极层的一侧通过第一粘结层与所述第二子介质层粘结,将所述第二子介质层上形成有所述辐射贴片的一侧与所述第二子介质层粘结。
  25. 一种天线系统,其中,包括至少一个权利要求1-21中任一所述的天线。
  26. 根据权利要求26所述的天线系统,其中,还包括:
    收发单元,用于发送信号或接收信号;
    射频收发机,与所述收发单元相连,用于调制所述收发单元发送的信号,或用于解调所述天线接收的信号后传输给所述收发单元;
    信号放大器,与所述射频收发机相连,用于提高所述射频收发机输出的信号或所述天线接收的信号的信噪比;
    功率放大器,与所述射频收发机相连,用于放大所述射频收发机输出的信号或所述天线接收的信号的功率;
    滤波单元,与所述信号放大器、所述功率放大器均相连,且与所述天线相连,用于将接收到的信号进行滤波后发送给所述天线,或对所述天线接收的信号滤波。
PCT/CN2021/091110 2021-04-29 2021-04-29 天线及其制备方法、天线系统 WO2022226918A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/091110 WO2022226918A1 (zh) 2021-04-29 2021-04-29 天线及其制备方法、天线系统
US17/637,546 US20240047878A1 (en) 2021-04-29 2021-04-29 Antenna and method for manufacturing the same, and antenna system
CN202180000984.1A CN115552728A (zh) 2021-04-29 2021-04-29 天线及其制备方法、天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/091110 WO2022226918A1 (zh) 2021-04-29 2021-04-29 天线及其制备方法、天线系统

Publications (1)

Publication Number Publication Date
WO2022226918A1 true WO2022226918A1 (zh) 2022-11-03

Family

ID=83846572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091110 WO2022226918A1 (zh) 2021-04-29 2021-04-29 天线及其制备方法、天线系统

Country Status (3)

Country Link
US (1) US20240047878A1 (zh)
CN (1) CN115552728A (zh)
WO (1) WO2022226918A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002368A (en) * 1997-06-24 1999-12-14 Motorola, Inc. Multi-mode pass-band planar antenna
CN104852158A (zh) * 2015-04-13 2015-08-19 复旦大学 P波段宽带高隔离度双圆极化薄膜阵列天线
CN108493592A (zh) * 2018-05-03 2018-09-04 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN108847521A (zh) * 2018-05-04 2018-11-20 杭州电子科技大学 宽带差分馈电微带滤波天线
CN110829015A (zh) * 2019-11-27 2020-02-21 北京中石伟业科技股份有限公司 一种分层带状线天线
CN110870138A (zh) * 2017-06-14 2020-03-06 索尼公司 天线装置
CN111740217A (zh) * 2020-07-03 2020-10-02 维沃移动通信有限公司 一种天线组件和电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002368A (en) * 1997-06-24 1999-12-14 Motorola, Inc. Multi-mode pass-band planar antenna
CN104852158A (zh) * 2015-04-13 2015-08-19 复旦大学 P波段宽带高隔离度双圆极化薄膜阵列天线
CN110870138A (zh) * 2017-06-14 2020-03-06 索尼公司 天线装置
CN108493592A (zh) * 2018-05-03 2018-09-04 京东方科技集团股份有限公司 微带天线及其制备方法和电子设备
CN108847521A (zh) * 2018-05-04 2018-11-20 杭州电子科技大学 宽带差分馈电微带滤波天线
CN110829015A (zh) * 2019-11-27 2020-02-21 北京中石伟业科技股份有限公司 一种分层带状线天线
CN111740217A (zh) * 2020-07-03 2020-10-02 维沃移动通信有限公司 一种天线组件和电子设备

Also Published As

Publication number Publication date
US20240047878A1 (en) 2024-02-08
CN115552728A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
US20220255238A1 (en) Antenna module and electronic device
US20220263225A1 (en) Antenna module and electronic device
CN210897636U (zh) 壳体组件、天线组件及电子设备
CN112235449B (zh) 壳体组件、天线组件及电子设备
US11532870B2 (en) Housing assembly and electronic devices
US12100893B2 (en) Antenna apparatus and electronic device
CN109830813A (zh) 天线系统及移动终端
CN112310633B (zh) 天线装置及电子设备
CN110233340A (zh) 一种加载方形开缝贴片的双频双极化5g天线
CN112421207B (zh) 显示屏模组及电子设备
WO2021000733A1 (zh) 壳体组件、天线组件及电子设备
US20240154323A1 (en) Antenna, method for manufacturing an antenna and communication system
WO2021000732A1 (zh) 壳体组件、天线组件及电子设备
WO2022226918A1 (zh) 天线及其制备方法、天线系统
CN217134663U (zh) 天线及天线系统
CN110931962B (zh) 一种应用于wlan的高隔离度低剖面双极化天线
WO2023000951A1 (zh) 天线及天线系统
CN210668697U (zh) 新型基于isgw的缝隙贴片天线
US20240195069A1 (en) Antenna, manufacturing method thereof and communication system
CN214313515U (zh) 一种小型化宽频带的微波平板天线
CN113745822B (zh) 一种低交叉极化非对称毫米波振子天线的设计方法
JP2020010314A (ja) アンテナ基板および通信モジュール
WO2023137740A1 (zh) 天线及通信系统
CN112235005B (zh) 显示屏组件、天线组件及电子设备
CN115173048A (zh) 一种基于光子晶体基板的多频高增益太赫兹微带天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21938397

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17637546

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21938397

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2024)