Nothing Special   »   [go: up one dir, main page]

WO2022224070A1 - 表示装置、及び表示装置の作製方法 - Google Patents

表示装置、及び表示装置の作製方法 Download PDF

Info

Publication number
WO2022224070A1
WO2022224070A1 PCT/IB2022/053306 IB2022053306W WO2022224070A1 WO 2022224070 A1 WO2022224070 A1 WO 2022224070A1 IB 2022053306 W IB2022053306 W IB 2022053306W WO 2022224070 A1 WO2022224070 A1 WO 2022224070A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
organic layer
emitting element
light emitting
Prior art date
Application number
PCT/IB2022/053306
Other languages
English (en)
French (fr)
Inventor
山崎舜平
岡崎健一
久保田大介
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2023515410A priority Critical patent/JPWO2022224070A1/ja
Priority to CN202280027309.2A priority patent/CN117178314A/zh
Priority to KR1020237037983A priority patent/KR20230171443A/ko
Priority to US18/284,612 priority patent/US20240164175A1/en
Publication of WO2022224070A1 publication Critical patent/WO2022224070A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/60Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation in which radiation controls flow of current through the devices, e.g. photoresistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K39/00Integrated devices, or assemblies of multiple devices, comprising at least one organic radiation-sensitive element covered by group H10K30/00
    • H10K39/30Devices controlled by radiation
    • H10K39/32Organic image sensors
    • H10K39/34Organic image sensors integrated with organic light-emitting diodes [OLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/19Tandem OLEDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/771Integrated devices comprising a common active layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K65/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element and at least one organic radiation-sensitive element, e.g. organic opto-couplers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/20Changing the shape of the active layer in the devices, e.g. patterning
    • H10K71/231Changing the shape of the active layer in the devices, e.g. patterning by etching of existing layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • H10K59/80515Anodes characterised by their shape

Definitions

  • One embodiment of the present invention relates to a display device.
  • One aspect of the present invention relates to an imaging device.
  • One embodiment of the present invention relates to a display device having an imaging function.
  • one aspect of the present invention is not limited to the above technical field.
  • Technical fields of one embodiment of the present invention disclosed in this specification and the like include semiconductor devices, display devices, light-emitting devices, power storage devices, memory devices, electronic devices, lighting devices, input devices, input/output devices, and driving methods thereof. , or methods for producing them, can be mentioned as an example.
  • a semiconductor device refers to all devices that can function by utilizing semiconductor characteristics.
  • display devices are required to have higher definition in order to display high-resolution images.
  • information terminal devices such as smartphones, tablet terminals, and notebook PCs (personal computers)
  • display devices are required to have low power consumption in addition to high definition.
  • a display device that has various functions in addition to displaying an image, such as a function as a touch panel or a function of capturing an image of a fingerprint for authentication.
  • a light-emitting element also referred to as an EL element
  • EL the phenomenon of electroluminescence
  • Patent Document 1 discloses a flexible light-emitting device to which an organic EL element is applied.
  • An object of one embodiment of the present invention is to provide a display device having an imaging function. Another object is to provide an imaging device or a display device having a high-definition display portion. Another object is to provide a display device or an imaging device with a high aperture ratio. Another object is to provide an imaging device or a display device that can perform imaging with high sensitivity. Another object is to provide a display device from which biometric information such as a fingerprint can be obtained. Another object is to provide a display device that functions as a touch panel.
  • An object of one embodiment of the present invention is to provide a highly reliable display device, imaging device, or electronic device.
  • An object of one embodiment of the present invention is to provide a display device, an imaging device, an electronic device, or the like having a novel structure.
  • One aspect of the present invention aims to alleviate at least one of the problems of the prior art.
  • One embodiment of the present invention is a display device including a first light-emitting element and a light-receiving element.
  • a first pixel electrode, a first organic layer, and a common electrode are laminated in this order.
  • a second pixel electrode, a second organic layer, and a common electrode are laminated in this order.
  • the first organic layer includes a first emissive layer.
  • the second organic layer includes a photoelectric conversion layer.
  • a region between the first light-emitting element and the light-receiving element has a first layer and a second layer. The first layer overlies the second organic layer and comprises the same material as the first organic layer.
  • a second layer overlies the first organic layer and comprises the same material as the second organic layer.
  • the end of the first organic layer and the end of the first layer are provided to face each other.
  • the end of the second organic layer and the end of the second layer are provided to face each other.
  • a third pixel electrode, a third organic layer, and a common electrode are laminated in this order.
  • a third organic layer includes a second light-emitting layer.
  • a third layer and a fourth layer are provided in a region between the second light emitting element and the first light emitting element.
  • the third layer preferably overlaps the third organic layer and comprises the same material as the first organic layer.
  • the fourth layer preferably overlaps with the first organic layer and contains the same material as the third organic layer.
  • an end portion of the first organic layer and an end portion of the third layer are provided so as to face each other. Further, in a region between the second light emitting element and the first light emitting element, it is preferable that the end of the third organic layer and the end of the fourth layer are provided to face each other.
  • the resin layer is located in a region between the first light emitting element and the light receiving element. Moreover, it is preferable that the end portion of the first organic layer and the end portion of the first layer face each other with the resin layer interposed therebetween. Furthermore, it is preferable that the end portion of the second organic layer and the end portion of the second layer face each other with the resin layer interposed therebetween.
  • first insulating layer is located between the first light emitting element and the light receiving element.
  • the first insulating layer is preferably in contact with the edge of the first organic layer, the edge of the second organic layer, the edge of the first layer, and the edge of the second layer.
  • Another embodiment of the present invention includes a first step of forming a first pixel electrode and a second pixel electrode side by side, and forming an island-shaped electrode over the first pixel electrode using a first metal mask.
  • a metal oxide film formed by an atomic layer deposition method is preferably used for the first insulating layer.
  • a display device having an imaging function it is possible to provide a display device having an imaging function.
  • an imaging device or a display device having a high-definition display portion can be provided.
  • a display device or an imaging device with a high aperture ratio can be provided.
  • an imaging device or a display device capable of imaging with high sensitivity can be provided.
  • a display device capable of acquiring biometric information such as fingerprints can be provided.
  • a display device functioning as a touch panel can be provided.
  • a highly reliable display device, imaging device, or electronic device can be provided.
  • a display device, an imaging device, an electronic device, or the like with a novel structure can be provided.
  • at least one of the problems of the prior art can be alleviated.
  • 1A to 1C are diagrams showing configuration examples of a display device.
  • 2A and 2B are diagrams showing configuration examples of the display device.
  • 3A and 3B are diagrams showing configuration examples of the display device.
  • 4A and 4B are diagrams illustrating configuration examples of a display device.
  • 5A and 5B are diagrams showing configuration examples of the display device.
  • 6A and 6B are diagrams showing configuration examples of the display device.
  • 7A to 7C are diagrams illustrating an example of a method for manufacturing a display device.
  • 8A to 8C are diagrams illustrating an example of a method for manufacturing a display device.
  • 9A to 9C are diagrams illustrating an example of a method for manufacturing a display device.
  • 10A to 10C are diagrams illustrating an example of a method for manufacturing a display device.
  • FIG. 11A to 11C are diagrams illustrating an example of a method for manufacturing a display device.
  • FIG. 12 is a diagram illustrating a configuration example of a display device.
  • FIG. 13A is a diagram illustrating a configuration example of a display device.
  • FIG. 13B is a diagram illustrating a configuration example of a transistor;
  • 14A, 14B, and 14D are cross-sectional views showing examples of display devices.
  • 14C and 14E are diagrams showing examples of images.
  • 14F to 14H are top views showing examples of pixels.
  • FIG. 15A is a cross-sectional view showing a configuration example of a display device.
  • 15B to 15D are top views showing examples of pixels.
  • FIG. 16A is a cross-sectional view showing a configuration example of a display device.
  • 16B to 16I are top views showing examples of pixels.
  • 17A and 17B are diagrams illustrating configuration examples of a display device.
  • 18A to 18G are diagrams showing configuration examples of display devices.
  • 19A to 19F are diagrams showing examples of pixels.
  • 19G and 19H are diagrams showing examples of pixel circuit diagrams.
  • 20A to 20J are diagrams showing configuration examples of display devices.
  • 21A and 21B are diagrams illustrating examples of electronic devices.
  • 22A to 22D are diagrams illustrating examples of electronic devices.
  • 23A to 23F are diagrams illustrating examples of electronic devices.
  • 24A to 24F are diagrams illustrating examples of electronic devices.
  • film and the term “layer” can be interchanged with each other.
  • conductive layer or “insulating layer” may be interchangeable with the terms “conductive film” or “insulating film.”
  • an EL layer refers to a layer provided between a pair of electrodes of a light-emitting element and containing at least a light-emitting substance (also referred to as a light-emitting layer) or a laminate including a light-emitting layer.
  • a display panel which is one aspect of a display device, has a function of displaying (outputting) an image or the like on a display surface. Therefore, the display panel is one aspect of the output device.
  • the substrate of the display panel is attached with a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package), or the substrate is mounted with a COG (Chip On Glass) method.
  • a connector such as FPC (Flexible Printed Circuit) or TCP (Tape Carrier Package)
  • COG Chip On Glass
  • One embodiment of the present invention is a display device including a light-emitting element (also referred to as a light-emitting device) and a light-receiving element (also referred to as a light-receiving device).
  • a light-emitting element has a pair of electrodes and an EL layer therebetween.
  • the light receiving element has a pair of electrodes and an active layer therebetween.
  • the light-emitting element is preferably an organic EL element (organic electroluminescence element).
  • the light receiving element is preferably an organic photodiode (organic photoelectric conversion element).
  • the display device preferably has two or more light-emitting elements that emit different colors.
  • Light-emitting elements that emit different colors have EL layers containing different materials.
  • a full-color display device can be realized by using three types of light-emitting elements that emit red (R), green (G), and blue (B) light.
  • an image can be captured by a plurality of light receiving elements, and thus functions as an imaging device.
  • the light emitting element can be used as a light source for imaging.
  • one embodiment of the present invention can display an image with a plurality of light-emitting elements, and therefore functions as a display device. Therefore, one embodiment of the present invention can be referred to as a display device having an imaging function or an imaging device having a display function.
  • the display section has a function of displaying an image and a function of a light receiving section. Since an image can be captured by a plurality of light receiving elements provided in the display portion, the display device can function as an image sensor or a touch panel. That is, it is possible to detect that an image is captured on the display unit, or that an object approaches or touches.
  • the light-emitting element provided in the display unit can be used as a light source when receiving light, there is no need to provide a light source separate from the display device, and a highly functional display can be achieved without increasing the number of electronic components. device can be realized.
  • the light-receiving element when light emitted from a light-emitting element included in a display portion is reflected by an object, the light-receiving element can detect the reflected light. It can be carried out.
  • the display device of one embodiment of the present invention can capture an image of a fingerprint or a palmprint when a finger, palm, or the like is brought into contact with the display portion. Therefore, an electronic device including the display device of one embodiment of the present invention can perform personal authentication using a captured fingerprint or palmprint image. As a result, there is no need to separately provide an imaging device for fingerprint authentication or palm print authentication, and the number of parts of the electronic device can be reduced. Further, since the light-receiving elements are arranged in a matrix in the display portion, it is possible to pick up images of fingerprints and palmprints anywhere on the display portion, so that a highly convenient electronic device can be realized.
  • a vapor deposition method using a shadow mask such as a fine metal mask (hereinafter also referred to as FMM: Fine Metal Mask) is used. known to form.
  • FMM Fine Metal Mask
  • island-like organic films are formed due to various influences such as FMM accuracy, positional deviation between the FMM and the substrate, FMM deflection, and broadening of the contour of the formed film due to vapor scattering and the like. Since the shape and position deviate from the design, it is difficult to increase the definition and aperture ratio of the display device. Therefore, measures have been taken to artificially increase the definition (also called pixel density) by applying a special pixel arrangement method such as a pentile arrangement.
  • two adjacent island-shaped organic films can be partially overlapped in order to achieve higher definition and higher aperture ratio.
  • the distance between the light emitting regions can be significantly shortened compared to the case where the two island-shaped organic films are not overlapped.
  • current leakage occurs between the adjacent two light-emitting elements through the overlapped organic film, resulting in unintended light emission.
  • the display quality is degraded due to a decrease in luminance, a decrease in contrast, and the like.
  • power efficiency, power consumption, etc. deteriorate due to leakage current.
  • the imaging sensitivity may decrease.
  • FMM is used to separately fabricate organic films between adjacent light emitting elements and light receiving elements or between two adjacent light emitting elements so that a part of each organic film overlaps.
  • a layer containing a light-emitting organic compound (also referred to as a light-emitting layer) of a light-emitting element and a layer containing a photoelectric conversion material (also referred to as an active layer or a photoelectric conversion layer) of a light-receiving element are combined by FMM. I use it and make it separately.
  • a common film may be used between the light-emitting elements and between the light-emitting element and the light-receiving element without separately forming an organic film that can be used in common between the light-emitting element and the light-receiving element.
  • An organic laminated film in which a light emitting layer, an active layer, and another organic film are laminated is positioned between the adjacent light emitting element and light receiving element. Subsequently, the organic laminated film is divided by etching part of the organic laminated film by photolithography. As a result, a current leak path (leak path) between the light-emitting element and the light-receiving element can be cut off. Therefore, it is possible to reduce noise when performing imaging using the light-receiving element, and to perform imaging with high sensitivity.
  • a current leak path (leak path) can be separated between two adjacent light emitting elements. Therefore, brightness can be increased, contrast can be increased, power efficiency can be increased, power consumption can be reduced, and the like.
  • an insulating layer in order to protect the side surfaces of the organic laminated film exposed by etching. Thereby, the reliability of the display device can be improved.
  • FIG. 1A shows a schematic top view of display device 100 .
  • the display device 100 includes a plurality of red light emitting elements 110R, green light emitting elements 110G, blue light emitting elements 110B, and light receiving elements 110S.
  • symbols R, G, B, and S are attached to the light emitting regions of the respective light emitting elements or light receiving elements for easy identification of the respective light emitting elements.
  • the light-emitting element 110R, the light-emitting element 110G, the light-emitting element 110B, and the light-receiving element 110S are arranged in a matrix.
  • FIG. 1A shows a configuration in which two elements are alternately arranged in one direction.
  • the arrangement method of the light-emitting elements is not limited to this, and an arrangement method such as a stripe arrangement, an S-stripe arrangement, a delta arrangement, a Bayer arrangement, or a zigzag arrangement may be applied, or a pentile arrangement, a diamond arrangement, or the like may be used. can.
  • EL elements such as OLEDs (Organic Light Emitting Diodes) or QLEDs (Quantum-dot Light Emitting Diodes) are preferably used as the light emitting elements 110R, 110G, and 110B.
  • the light-emitting substance of the EL element include a substance that emits fluorescence (fluorescent material), a substance that emits phosphorescence (phosphorescent material), and a substance that exhibits thermally activated delayed fluorescence (thermally activated delayed fluorescence: TADF) material. ) and the like.
  • TADF thermally activated delayed fluorescence
  • a pn-type or pin-type photodiode can be used as the light receiving element 110S.
  • the light receiving element 110S functions as a photoelectric conversion element that detects light incident on the light receiving element 110S and generates charges.
  • the amount of charge generated by the photoelectric conversion element is determined according to the amount of incident light.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so they can be applied to various devices.
  • FIG. 1A also shows a connection electrode 111C electrically connected to the common electrode 113.
  • FIG. 111 C of connection electrodes are given the electric potential (for example, anode electric potential or cathode electric potential) for supplying to the common electrode 113.
  • FIG. The connection electrode 111C is provided outside the display area where the light emitting elements 110R and the like are arranged. Further, in FIG. 1A, the common electrode 113 is indicated by a dashed line.
  • connection electrodes 111C can be provided along the periphery of the display area. For example, it may be provided along one side of the periphery of the display area, or may be provided over two or more sides of the periphery of the display area. That is, when the top surface shape of the display area is rectangular, the top surface shape of the connection electrode 111C can be strip-shaped, L-shaped, U-shaped (square bracket-shaped), square, or the like.
  • FIG. 1B and 1C are schematic cross-sectional views corresponding to the dashed-dotted line A1-A2 and the dashed-dotted line C1-C2 in FIG. 1A, respectively.
  • FIG. 1B shows a schematic cross-sectional view of the light-emitting element 110G, the light-emitting element 110R, and the light-receiving element 110S
  • FIG. 1C shows a schematic cross-sectional view of the connection electrode 111C.
  • FIG. 1B shows cross sections of the light emitting element 110R, the light emitting element 110G, and the light receiving element 110S.
  • the light emitting element 110R has a pixel electrode 111R, an organic layer 115, an organic layer 112R, an organic layer 116, an organic layer 114, and a common electrode 113.
  • the light emitting element 110G has a pixel electrode 111G, an organic layer 115, an organic layer 112G, an organic layer 116, an organic layer 114, and a common electrode 113.
  • the light receiving element 110S has a pixel electrode 111S, an organic layer 115, an organic layer 155, an organic layer 116, an organic layer 114, and a common electrode 113.
  • the organic layer 114 and the common electrode 113 are commonly provided for the light emitting element 110R, the light emitting element 110G, the light receiving element 110S, and the light emitting element 110B (not shown).
  • the organic layer 114 can also be referred to as a common layer.
  • the organic layer 112R of the light-emitting element 110R has at least a light-emitting organic compound that emits red light.
  • the organic layer 112G included in the light-emitting element 110G contains at least a light-emitting organic compound that emits green light.
  • An organic layer 112B (not shown) included in the light-emitting element 110B contains at least a light-emitting organic compound that emits blue light.
  • the organic layer 112R, the organic layer 112G, and the organic layer 112B can each be called a light-emitting layer.
  • the organic layer 155 of the light-receiving element 110S has a photoelectric conversion material that is sensitive to the wavelength region of visible light or infrared light.
  • the wavelength range to which the photoelectric conversion material of the organic layer 155 is sensitive includes the wavelength range of light emitted by the light emitting element 110R, the wavelength range of light emitted by the light emitting element 110G, and the wavelength range of light emitted by the light emitting element 110B. Preferably one or more are included. Alternatively, a photoelectric conversion material having sensitivity to infrared light having a longer wavelength than the wavelength range of light emitted by the light emitting element 110R may be used.
  • the organic layer 155 can also be called an active layer or a photoelectric conversion layer.
  • the light-emitting element 110R, the light-emitting element 110G, and the light-emitting element 110B may be referred to as the light-emitting element 110 when describing matters common to them.
  • the symbols omitting the letters may be used. be.
  • the laminated film positioned between the pixel electrode and the common electrode 113 can be called an EL layer.
  • a layered film positioned between the pixel electrode 111S and the common electrode 113 can be called a PD layer.
  • the organic layer 115 is a layer located between the organic layer 112 or the organic layer 155 and the pixel electrode 111.
  • the organic layer 116 is a layer located between the organic layer 112 or the organic layer 155 and the organic layer 114 .
  • Organic layer 114 is a layer located between organic layer 116 and common electrode 113 .
  • the organic layer 115, the organic layer 116, and the organic layer 114 can each independently have one or more of an electron injection layer, an electron transport layer, a hole injection layer, and a hole transport layer.
  • the organic layer 115 has a stacked structure of a hole injection layer and a hole transport layer from the pixel electrode 111 side
  • the organic layer 116 has an electron transport layer
  • the organic layer 114 has an electron injection layer. can do.
  • the organic layer 115 has a stacked structure of an electron injection layer and an electron transport layer from the pixel electrode 111 side
  • the organic layer 116 has a hole transport layer
  • the organic layer 114 has a hole injection layer. can do.
  • organic layer 112, the organic layer 114, the organic layer 115, the organic layer 116, the organic layer 155, and the like which are positioned between a pair of electrodes of the light-emitting element or the light-receiving element 110S, are called organic layers. It is intended to be a layer constituting an organic photoelectric conversion element, and does not necessarily need to contain an organic compound.
  • each of the organic layer 112, the organic layer 114, the organic layer 115, and the organic layer 116 can be a film containing only an inorganic compound or an inorganic substance without containing an organic compound.
  • a pixel electrode 111R, a pixel electrode 111G, and a pixel electrode 111B are provided for each light emitting element. Further, the common electrode 113 and the organic layer 114 are provided as a continuous layer common to each light emitting element and light receiving element 110S.
  • a conductive film having a property of transmitting visible light is used for one of the pixel electrodes and the common electrode 113, and a conductive film having a reflective property is used for the other.
  • a protective layer 121 is provided on the common electrode 113 to cover the light emitting element 110R, the light emitting element 110G, the light receiving element 110S, and the light emitting element 110B (not shown).
  • the protective layer 121 has a function of preventing impurities such as water from diffusing into each light emitting element from above.
  • a slit 120 is provided between the adjacent light emitting element and the light receiving element 110S and between two adjacent light emitting elements.
  • the slit 120 is formed by etching the organic layer 112 or the organic layer 155, the organic layer 115, and the organic layer 116 located between the adjacent light emitting element and the light receiving element 110S or between two adjacent light emitting elements. corresponds to
  • An insulating layer 125 and a resin layer 126 are provided in the slit 120 .
  • the insulating layer 125 is provided along the side walls and bottom surface of the slit 120 .
  • the resin layer 126 is provided on the insulating layer 125 and has a function of filling the concave portion positioned in the slit 120 and planarizing the upper surface thereof.
  • the slits 120 can be formed at the same time as the openings of the external connection terminals such as the connection electrodes 111C are formed, these can be formed without increasing the number of steps.
  • the slit 120 has the insulating layer 125 and the resin layer 126 , it has the effect of preventing a short circuit between the pixel electrode 111 and the common electrode 113 .
  • the resin layer 126 has the effect of improving the adhesion of the organic layer 114 . That is, since the adhesion of the organic layer 114 is improved by providing the resin layer 126, film peeling of the organic layer 114 can be suppressed.
  • the insulating layer 125 is provided in contact with the side surface of the organic layer (for example, the organic layer 115, etc.), a structure in which the organic layer and the resin layer 126 do not contact can be employed.
  • the organic layer and the resin layer 126 are in contact with each other, the organic layer may be dissolved by an organic solvent or the like contained in the resin layer 126 . Therefore, by providing the insulating layer 125 between the organic layer and the resin layer 126 as shown in this embodiment mode, the side surface of the organic layer can be protected.
  • the slit 120 has a structure capable of dividing at least one or more of the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the active layer, the hole blocking layer, the electron transport layer, and the electron injection layer. If it is
  • the insulating layer 125 can be an insulating layer containing an inorganic material.
  • an inorganic insulating film such as an oxide insulating film, a nitride insulating film, an oxynitride insulating film, or a nitride oxide insulating film can be used, for example.
  • the insulating layer 125 may have a single-layer structure or a laminated structure.
  • the oxide insulating film includes a silicon oxide film, an aluminum oxide film, a magnesium oxide film, an indium gallium zinc oxide film, a gallium oxide film, a germanium oxide film, an yttrium oxide film, a zirconium oxide film, a lanthanum oxide film, a neodymium oxide film, and an oxide film.
  • Examples include a hafnium film and a tantalum oxide film.
  • Examples of the nitride insulating film include a silicon nitride film and an aluminum nitride film.
  • As the oxynitride insulating film a silicon oxynitride film, an aluminum oxynitride film, or the like can be given.
  • nitride oxide insulating film a silicon nitride oxide film, an aluminum nitride oxide film, or the like can be given.
  • an inorganic insulating film such as an aluminum oxide film, a hafnium oxide film, or a silicon oxide film formed by an ALD method to the insulating layer 125, the insulating layer 125 with few pinholes and an excellent function of protecting the EL layer can be obtained. can be formed.
  • oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • nitride oxide refers to a material whose composition contains more nitrogen than oxygen. point to the material.
  • silicon oxynitride refers to a material whose composition contains more oxygen than nitrogen
  • silicon nitride oxide refers to a material whose composition contains more nitrogen than oxygen. indicates
  • a sputtering method, a CVD method, a PLD method, an ALD method, or the like can be used to form the insulating layer 125 .
  • the insulating layer 125 is preferably formed by an ALD method with good coverage.
  • An insulating layer containing an organic material can be suitably used as the resin layer 126 .
  • acrylic resin, polyimide resin, epoxy resin, imide resin, polyamide resin, polyimideamide resin, silicone resin, siloxane resin, benzocyclobutene-based resin, phenolic resin, and precursors of these resins are applied as the resin layer 126. can do.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin may be used.
  • a photosensitive resin can be used as the resin layer 126 .
  • a photoresist may be used as the photosensitive resin.
  • a positive material or a negative material can be used for the photosensitive resin.
  • a colored material for example, a material containing a black pigment
  • a function of blocking stray light from adjacent pixels and suppressing color mixture may be imparted.
  • a reflective film for example, a metal film containing one or more selected from silver, palladium, copper, titanium, and aluminum
  • a reflective film is provided between the insulating layer 125 and the resin layer 126 so that A function of improving the light extraction efficiency by reflecting emitted light by the reflecting film may be imparted.
  • the upper surface of the resin layer 126 is flat, the surface may have a gently curved shape.
  • FIG. 1B and the like show an example in which the upper surface of the resin layer 126 has a corrugated shape having concave portions and convex portions, the present invention is not limited to this.
  • the top surface of resin layer 126 may be convex, concave, or flat.
  • a laminated film of an inorganic insulating film and an organic insulating film can also be used as the protective layer 121 .
  • a structure in which an organic insulating film is sandwiched between a pair of inorganic insulating films is preferable.
  • the organic insulating film functions as a planarizing film.
  • the upper surface of the organic insulating film can be flattened, so that the coverage of the inorganic insulating film thereon can be improved, and the barrier property can be enhanced.
  • the upper surface of the protective layer 121 is flat, when a structure (for example, a color filter, an electrode of a touch sensor, or a lens array) is provided above the protective layer 121, an uneven shape due to the structure below may be formed. This is preferable because it can reduce the impact.
  • a structure for example, a color filter, an electrode of a touch sensor, or a lens array
  • the protective layer 121 can have, for example, a single layer structure or a laminated structure including at least an inorganic insulating film.
  • inorganic insulating films include oxide films and nitride films such as silicon oxide films, silicon oxynitride films, silicon nitride oxide films, silicon nitride films, aluminum oxide films, aluminum oxynitride films, and hafnium oxide films.
  • a semiconductor material such as indium gallium oxide or indium gallium zinc oxide may be used for the protective layer 121 .
  • FIG. 1C shows a connection portion 130 where the connection electrode 111C and the common electrode 113 are electrically connected.
  • the connection section 130 the common electrode 113 is provided on the connection electrode 111C with the organic layer 114 interposed therebetween.
  • An insulating layer 125 is provided in contact with the side surface of the connection electrode 111 ⁇ /b>C, and a resin layer 126 is provided on the insulating layer 125 .
  • the organic layer 114 may not be provided on the connecting portion 130 .
  • the connection portion 130 the common electrode 113 is provided on the connection electrode 111 ⁇ /b>C so as to be in contact therewith, and the protective layer 121 is provided to cover the common electrode 113 .
  • FIG. 2A is a cross-sectional schematic diagram including a portion of light emitting element 110R, a portion of light emitting element 110G, and a region therebetween in FIG. 1B.
  • the end of the pixel electrode 111 is preferably tapered.
  • the step coverage of the organic layer 115 and the like can be improved.
  • the end of the object being tapered means that the angle formed by the surface and the surface to be formed is greater than 0 degree and less than 90 degrees in the region of the end, and It refers to having a cross-sectional shape that continuously increases in thickness. Note that although the case where the pixel electrode 111R and the like has a single-layer structure is shown here, a plurality of layers may be laminated.
  • An organic layer 115 is provided to cover the pixel electrode 111R.
  • An organic layer 115 is provided to cover the pixel electrode 111G. These organic layers 115 are formed by dividing a continuous film by slits 120 .
  • An organic layer 112R is provided to cover the organic layer 115 on the light emitting element 110R side of the slit 120 .
  • a layer 135R is provided on the organic layer 115 on the light emitting element 110G side of the slit 120. As shown in FIG. The layer 135R can also be said to be a cut piece that is left on the side of the light emitting element 110G after a part of the film that will be the organic layer 112R is cut off by the slit 120 .
  • an organic layer 112G is provided to cover the organic layer 115 on the light emitting element 110G side of the slit 120.
  • a layer 135G is provided on the organic layer 112R on the light emitting element 110R side of the slit 120.
  • the layer 135G can also be said to be a cut piece that is left on the side of the light emitting element 110R after a part of the film that will become the organic layer 112G is cut off by the slit 120 .
  • the end (side surface) of the organic layer 112R and the end of the layer 135R are provided to face each other with the slit 120 interposed therebetween.
  • the end of the organic layer 112G and the end of the layer 135G are provided to face each other with the slit 120 interposed therebetween.
  • one or both of the layers 135R and 135G may not be formed. Specifically, if the end of the organic layer 112R before forming the slit 120 overlaps the formation position of the slit 120, the layer 135R may not be formed.
  • An organic layer 116 is provided to cover the organic layer 112R and the layer 135G.
  • An organic layer 116 is provided to cover the organic layer 112G and the layer 135R. These organic layers 116 are formed by dividing a continuous film by the slits 120 in the same manner as the organic layer 115 .
  • the insulating layer 125 is provided inside the slit 120 and covers the side surfaces of the pair of organic layers 115, 112R, 112G, 135R, 135G, and the pair of organic layers 116. It is provided in contact with the side surface. Also, the insulating layer 125 is provided to cover the upper surface of the substrate 101 .
  • the resin layer 126 is provided in contact with the upper and side surfaces of the insulating layer 125 .
  • the resin layer 126 has a function of flattening the concave portion of the surface on which the organic layer 114 is formed.
  • the organic layer 114, the common electrode 113, and the protective layer 121 are formed in this order to cover the upper surfaces of the organic layer 116, the insulating layer 125, and the resin layer 126. Note that the organic layer 114 may be omitted if unnecessary.
  • the layers 135R and 135G are portions located at the ends of the film that will become the organic layer 112R or the organic layer 112G.
  • the thickness of the organic film tends to gradually decrease toward the end, so the layers 135R and 135G are thinner than the organic layer 112R or the organic layer 112G. have a part.
  • the layers 135R and 135G may be so thin that they cannot be observed by cross-sectional observation. Further, even if the layer 135R or the layer 135G exists, it may be difficult to confirm the boundary between the layer 135R and the organic layer 112G or the boundary between the layer 135G and the organic layer 112R by cross-sectional observation.
  • the layers 135R and 135G contain a light-emitting compound (for example, a fluorescent material, a phosphorescent material, or a quantum dot), they cannot be irradiated with light such as ultraviolet light or visible light in plan view. , light emission is obtained by photoluminescence.
  • the presence of the layers 135R and 135G can be confirmed by observing this light emission with an optical microscope or the like. Specifically, since the layer 135R overlaps the organic layer 112G in the portion where the layer 135R is located, when the portion is irradiated with ultraviolet light or the like, the light from the layer 135R and the light from the organic layer 112G are mixed. Both are confirmed.
  • the layer 135R or the layer 135G contains the same material as the organic layer 112R or the organic layer 112G.
  • the compounds contained in the layers 135R and 135G can also be estimated.
  • the organic layer 112R and the organic layer 112G are formed separately using FMM, and the other organic layers (the organic layer 115 and the organic layer 116) are formed as a continuous film.
  • the other organic layers are formed as a continuous film.
  • either one of organic layer 115, organic layer 116, or both may be fabricated separately using FMM.
  • fragments of the organic layer 115 or the organic layer 116 may remain in the vicinity of the slit 120 in the same manner as the layer 135R.
  • FIG. 2B shows a schematic cross-sectional view of part of the light emitting element 110G, part of the light receiving element 110S, and the slit 120 positioned therebetween.
  • a layer 135S is provided on the organic layer 112G on the light emitting element 110G side of the slit 120.
  • the layer 135S can also be said to be a piece of a film that is part of the film that will become the organic layer 155 and which is cut off by the slit 120 and remains on the light emitting element 110G side.
  • the layer 135S and the organic layer 155 are provided facing each other with the slit 120 interposed therebetween.
  • a layer 135G is provided so as to be sandwiched between the organic layer 115 and the organic layer 155 on the light receiving element 110S side of the slit 120 .
  • the layer 135G and the organic layer 112G are provided facing each other with the slit 120 interposed therebetween.
  • FIGS. 2A and 2B the region between the light emitting element 110R and the light emitting element 110G and the region between the light emitting element 110G and the light receiving element 110S are described.
  • a similar configuration is provided between the light emitting element 110G and the light emitting element 110B, between the light emitting element 110R and the light receiving element 110S, and between the light emitting element 110B and the light receiving element 110S.
  • 3A and 3B are schematic cross-sectional views when the insulating layer 125 is not provided.
  • the resin layer 126 is provided in contact with the side surface of the pair of organic layers 115, the side surface of the organic layer 112R, the side surface of the organic layer 112G, the side surface of the layer 135R, the side surface of the layer 135G, and the side surface of the pair of organic layers 116. be done.
  • the resin layer 126 is provided in contact with the side surface of the organic layer 155 and the side surface of the layer 135S.
  • part of the EL layer or the PD layer may be dissolved by the solvent used when forming the film that becomes the resin layer 126 . Therefore, when the insulating layer 125 is not provided, water or an alcohol such as ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), or glycerin is preferably used as a solvent for the resin layer 126 .
  • the solvent is not limited to this, and a solvent that does not dissolve or hardly dissolves the EL layer and the PD layer may be used.
  • the display device of one embodiment of the present invention can have a structure in which an insulator covering the end portion of the pixel electrode is not provided. In other words, an insulator is not provided between the pixel electrode and the EL layer.
  • the viewing angle (the maximum angle at which a constant contrast ratio is maintained when the screen is viewed obliquely) is 100° or more and less than 180°, preferably 150°. It can be in the range of 170° or more. It should be noted that the above viewing angle can be applied to each of the vertical and horizontal directions.
  • the viewing angle characteristics can be improved, and the visibility of images can be improved.
  • [Modification] 4A and 4B are modifications of FIGS. 2A and 2B, respectively.
  • 4A and 4B show an example in which an insulating layer 131 is provided to cover the edge of the pixel electrode.
  • the insulating layer 131 has a function of planarizing the surface on which the organic layer 115 is formed.
  • the ends of the insulating layer 131 are preferably tapered.
  • the surface can be gently curved. Therefore, coverage with a film formed over the insulating layer 131 can be improved.
  • Examples of materials that can be used for the insulating layer 131 include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like. be done.
  • the insulating layer 131 may have recesses in regions overlapping the slits 120 .
  • This recess can be formed by partially etching the upper portion of the insulating layer 131 during etching for forming the slit 120 .
  • a part of the insulating layer 125 is formed so as to fit in the recess of the insulating layer 131, so that the adhesion therebetween can be improved.
  • the slit 120 is provided in a region overlapping with the insulating layer 131 .
  • the layers 135R, 135G, and 135S are also provided in regions overlapping with the insulating layer 131. FIG.
  • FIG. 5A and 5B are examples in which an insulating layer 132 is provided on the insulating layer 131.
  • FIG. 5A and 5B are examples in which an insulating layer 132 is provided on the insulating layer 131.
  • the insulating layer 132 overlaps the edge of the pixel electrode 111 with the insulating layer 131 interposed therebetween. Also, the insulating layer 132 is provided to cover the end portion of the insulating layer 131 . Also, the insulating layer 132 has a portion in contact with the upper surface of the pixel electrode 111 .
  • the insulating layer 132 preferably has tapered ends. Accordingly, step coverage of a film formed over the insulating layer 132, such as an EL layer provided to cover the end portion of the insulating layer 132, can be improved.
  • the thickness of the insulating layer 132 is preferably thinner than that of the insulating layer 131 .
  • step coverage of a film formed over the insulating layer 132 can be improved.
  • Examples of inorganic insulating materials that can be used for the insulating layer 132 include oxides or nitrides such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, aluminum oxide, aluminum oxynitride, or hafnium oxide. be able to. Alternatively, yttrium oxide, zirconium oxide, gallium oxide, tantalum oxide, magnesium oxide, lanthanum oxide, cerium oxide, neodymium oxide, or the like may be used.
  • the insulating layer 132 may be laminated with a film containing the inorganic insulating material.
  • a film containing the inorganic insulating material for example, a stacked structure in which a silicon oxide film or a silicon oxynitride film is stacked over a silicon nitride film, a stacked structure in which a silicon oxide film or a silicon oxynitride film is stacked over an aluminum oxide film, or the like can be employed. Since the silicon oxide film and the silicon oxynitride film are films that are particularly difficult to be etched, they are preferably arranged on the upper side.
  • the silicon nitride film and the aluminum oxide film are films into which water, hydrogen, oxygen, and the like are difficult to diffuse, by arranging them on the insulating layer 131 side, gases released from the insulating layer 131 can diffuse into the light-emitting element. Acts as a barrier layer to prevent
  • the slit 120 is provided in a region overlapping with the insulating layer 132 .
  • the layers 135R and 135G are also provided in regions overlapping with the insulating layer 132 .
  • the insulating layer 132 By providing the insulating layer 132, it is possible to prevent the upper surface of the insulating layer 131 from being etched when the slits 120 are formed.
  • FIG. 6A is a schematic cross-sectional view of a display device exemplified below.
  • 6A shows a cross section of a region including the light emitting element 110R, the light emitting element 110G, the light emitting element 110B, the light receiving element 110S, and the connecting portion 130.
  • FIG. 6B is a schematic cross-sectional view enlarging the slit 120 positioned between the light emitting element 110R and the light emitting element 110G and its vicinity.
  • the light emitting element 110B has a pixel electrode 111B, an organic layer 115, an organic layer 112B, an organic layer 116, an organic layer 114, and a common electrode 113. Further, in FIG. 6A, a layer 135B, which is a part (piece) of the organic layer 112B divided by the slit 120, is provided near the light emitting element 110R and near the light receiving element 110S.
  • a conductive layer 161, a conductive layer 162, and a resin layer 163 are provided under the pixel electrode 111.
  • the conductive layer 161 is provided on the insulating layer 105 .
  • the conductive layer 161 has a portion penetrating through the insulating layer 105 in the opening provided in the insulating layer 105 .
  • the conductive layer 161 functions as a wiring or an electrode that electrically connects a wiring, transistor, electrode, or the like (not shown) located below the insulating layer 105 to the pixel electrode 111 .
  • the conductive layer 161 has recesses formed in the portions located in the openings of the insulating layer 105 .
  • the resin layer 163 is provided so as to fill the recess and functions as a planarizing film.
  • the upper surface of the resin layer 163 is preferably as flat as possible, the surface may have a gently curved shape.
  • FIG. 6A and the like show an example in which the upper surface of the resin layer 163 has a corrugated shape having concave portions and convex portions, the present invention is not limited to this.
  • the top surface of the resin layer 163 may be convex, concave, or flat.
  • a conductive layer 162 is provided on the conductive layer 161 and the resin layer 163 .
  • the conductive layer 162 functions as an electrode that electrically connects the conductive layer 161 and the pixel electrode 111 .
  • the light-emitting element 110 is a top emission type light-emitting element
  • a film reflecting visible light is used as the conductive layer 162 and a film transmitting visible light is used as the pixel electrode 111 .
  • the conductive layer 162 can function as a reflective electrode by using the film including the conductive layer 162 .
  • the conductive layer 162 and the pixel electrode 111 can be provided over the opening portion (also referred to as the contact portion) of the insulating layer 105 with the resin layer 163 interposed therebetween; can be done. Therefore, the aperture ratio can be increased.
  • the light receiving element 110S is a photoelectric conversion element that receives light from above
  • a reflective film can be used for the conductive layer 162
  • a translucent film can be used for the pixel electrode 111.
  • the contact portion can also function as a light receiving region, the light receiving area can be enlarged and the light receiving sensitivity can be enhanced.
  • each pixel electrode 111 may be varied.
  • the pixel electrode 111 can be used as an optical adjustment layer for the microcavity.
  • a transparent and reflective film is used as the common electrode.
  • 6A and 6B show examples in which the shape of the resin layer 126 is different from the above.
  • the upper portion of the resin layer 126 has a shape wider than that of the slit 120 .
  • the insulating layer 125 is processed using the resin layer 126 as an etching mask, a portion covered with the upper portion of the resin layer 126 remains.
  • part of the sacrificial layer 145 used in the manufacturing process of the display device also remains for the same reason. Specifically, a sacrificial layer 145 is provided on the organic layer 116 in the vicinity of the slit 120 .
  • a portion of the insulating layer 125 is provided to cover the upper surface of the sacrificial layer 145 .
  • a resin layer 126 is provided to cover the sacrificial layer 145 and the insulating layer 125 .
  • the end of the insulating layer 125 and the end of the sacrificial layer 145 each have a tapered shape. Thereby, the step coverage of the organic layer 114 and the like can be improved.
  • the layers 135R, 135G, 135B, and 135S each have regions in contact with the insulating layer 125 and overlapping with the insulating layer 125, the sacrificial layer 145, and the resin layer 126. .
  • FIG. 6A An example of a method for manufacturing a display device of one embodiment of the present invention is described below with reference to drawings.
  • the display device shown in FIG. 6A will be described as an example.
  • 7A to 10C are schematic cross-sectional views in each step of an example of a method for manufacturing a display device illustrated below.
  • a schematic cross-sectional view of the connection portion 130 and its vicinity is also shown on the right side.
  • the thin films (insulating film, semiconductor film, conductive film, etc.) constituting the display device can be formed by sputtering, chemical vapor deposition (CVD), vacuum deposition, pulsed laser deposition (PLD). ) method, Atomic Layer Deposition (ALD) method, or the like.
  • the CVD method includes a plasma enhanced CVD (PECVD) method, a thermal CVD method, and the like.
  • PECVD plasma enhanced CVD
  • thermal CVD is the metal organic CVD (MOCVD) method.
  • thin films that make up the display device can be applied by spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, etc. It can be formed by a method such as coating or knife coating.
  • the thin film when processing the thin film that constitutes the display device, a photolithography method or the like can be used.
  • the thin film may be processed by a nanoimprint method, a sandblast method, a lift-off method, or the like.
  • an island-shaped thin film may be directly formed by a film formation method using a shielding mask such as a metal mask.
  • a photolithography method there are typically the following two methods.
  • One is a method of forming a resist mask on a thin film to be processed, processing the thin film by etching or the like, and removing the resist mask.
  • the other is a method of forming a photosensitive thin film, then performing exposure and development to process the thin film into a desired shape.
  • the light used for exposure can be, for example, i-line (wavelength 365 nm), g-line (wavelength 436 nm), h-line (wavelength 405 nm), or a mixture of these.
  • ultraviolet rays, KrF laser light, ArF laser light, or the like can also be used.
  • extreme ultraviolet (EUV) light, X-rays, or the like may be used.
  • An electron beam can also be used instead of the light used for exposure.
  • the use of extreme ultraviolet light, X-rays, or electron beams is preferable because extremely fine processing is possible.
  • a photomask is not necessary when exposure is performed by scanning a beam such as an electron beam.
  • a dry etching method, a wet etching method, a sandblasting method, or the like can be used to etch the thin film.
  • substrate 101 a substrate having heat resistance enough to withstand at least heat treatment performed later can be used.
  • a substrate having heat resistance enough to withstand at least heat treatment performed later can be used.
  • a substrate having heat resistance enough to withstand at least heat treatment performed later can be used.
  • a glass substrate, a quartz substrate, a sapphire substrate, a ceramic substrate, an organic resin substrate, or the like can be used.
  • a semiconductor substrate such as a single crystal semiconductor substrate made of silicon, silicon carbide, or the like, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, or an SOI substrate can be used.
  • the substrate 101 it is preferable to use a substrate in which a semiconductor circuit including a semiconductor element such as a transistor is formed on the above semiconductor substrate or insulating substrate.
  • the semiconductor circuit preferably constitutes, for example, a pixel circuit, a gate line driver circuit (gate driver), a source line driver circuit (source driver), and the like.
  • gate driver gate line driver
  • source driver source driver
  • an arithmetic circuit, a memory circuit, and the like may be configured.
  • An insulating layer 105 is provided on the top of the substrate 101 .
  • the insulating layer 105 is provided with a plurality of openings that reach the transistors, wirings, electrodes, or the like provided over the substrate 101 .
  • the opening can be formed by photolithography.
  • An inorganic insulating material or an organic insulating material can be used as the insulating layer 105 .
  • a conductive film to be the conductive layer 161 is formed over the insulating layer 105 . At this time, recesses are formed in the conductive film due to the openings in the insulating layer 105 .
  • a resin layer 163 is formed in the concave portion of the conductive film.
  • a photosensitive resin is preferably used as the resin layer 163 .
  • the resin layer 163 can be formed by first forming a resin film, exposing the resin film through a photomask, and then performing development processing. After that, in order to adjust the height of the upper surface of the resin layer 163, the upper portion of the resin layer 163 may be etched by ashing or the like.
  • the resin layer 163 When a non-photosensitive resin is used as the resin layer 163, after the resin film is formed, the surface of the conductive film that becomes the conductive layer 161 is exposed by ashing or the like so as to optimize the thickness.
  • the resin layer 163 can be formed by etching the upper portion of the resin film up to the thickness.
  • a conductive film to be the conductive layer 161 and a conductive film to be the conductive layer 162 are formed over the resin layer 163 .
  • a resist mask is formed over the two layers of the conductive films by a photolithography method, and unnecessary portions of the conductive films are removed by etching. After that, the resist mask is removed, so that the conductive layers 161 and 162 can be formed in the same step.
  • the conductive layer 161 and the conductive layer 162 are formed in the same step using the same photomask here, the conductive layer 161 and the conductive layer 162 may be formed separately using different photomasks. good. At this time, it is preferable to process the conductive layer 161 and the conductive layer 162 so that the conductive layer 161 is included inside the outline of the conductive layer 162 in plan view.
  • a conductive film is formed to cover the conductive layers 161 and 162, and a part of the conductive film is removed by etching to form the pixel electrode 111 and the connection electrode 111C (FIG. 7A).
  • the conductive layer 161 and the conductive layer 162 are formed when the pixel electrode 111 and the like are formed. It is preferable because it is not exposed to the etching atmosphere.
  • an organic layer 115 is formed on the pixel electrode 111 (FIG. 7B).
  • the organic layer 115 is preferably deposited without using FMM.
  • the organic layer 115 may be produced separately using FMM. In that case, the later description of the organic layer 112R and the like can be used.
  • the organic layer 115 can be preferably formed by a vacuum deposition method.
  • the film is not limited to this, and can be formed by a sputtering method, an inkjet method, or the like.
  • the film formation method described above can be used as appropriate.
  • the organic layer 112R is preferably formed by vacuum deposition via FMM. Note that the island-shaped organic layer 112R may be formed by a sputtering method using FMM or an inkjet method.
  • FIG. 7C shows how the organic layer 112R is deposited through the FMM 151R.
  • FIG. 7C shows a state in which a film is formed by a so-called face-down method in which the substrate is turned over so that the surface to be formed faces downward.
  • the organic layer 112R extends to the region between the pixel electrode 111R and the adjacent pixel electrodes. can be deposited.
  • the FMM 151G is used to form an organic layer 112G on the pixel electrode 111G (FIG. 8A).
  • the organic layer 112G like the organic layer 112R, has a pattern extending outside the pixel electrode 111G. As a result, a portion in which the organic layer 112G is laminated on the organic layer 112R is formed as shown in the region RG in FIG. 9A.
  • an FMM 151B (not shown) is used to form an organic layer 112B on the pixel electrode 111B.
  • the FMM 151S is used to form an organic layer 155 on the pixel electrode 111S.
  • the organic layer 112B and the organic layer 155 also form a pattern extending outward from the pixel electrode 111B or the pixel electrode 111S.
  • a stacked region RS is formed.
  • a region in which the organic layer 155 is laminated on the organic layer 112G, a region in which the organic layer 112B is laminated on the organic layer 112R, and the like are also formed.
  • the organic layer 112R, the organic layer 112G, the organic layer 112B, and the organic layer 155 on the connection electrode 111C it is preferable not to form the organic layer 112R, the organic layer 112G, the organic layer 112B, and the organic layer 155 on the connection electrode 111C.
  • the formation order is not limited to this.
  • the organic layer 116 is formed to cover the organic layer 112R, the organic layer 112G, the organic layer 112B, and the organic layer 155 (FIG. 8C).
  • the organic layer 116 can be formed by a method similar to that of the organic layer 115 .
  • a sacrificial film 144 is formed to cover the organic layer 116 .
  • the sacrificial film 144 a film having high resistance to the etching treatment of the organic layer 115, the organic layer 112, the organic layer 155, and the organic layer 116, that is, a film having a high etching selectivity can be used. Also, for the sacrificial film 144, a film having a high etching selectivity with respect to the sacrificial film, such as the sacrificial film 146 described later, can be used. Furthermore, it is particularly preferable that the sacrificial film 144 be a film that can be removed by a wet etching method that causes little damage to the organic layer 115, the organic layer 112, the organic layer 155, and the organic layer .
  • the sacrificial film 144 for example, an inorganic film such as a metal film, an alloy film, a metal oxide film, a semiconductor film, or an inorganic insulating film can be suitably used.
  • the sacrificial film 144 can be formed by various film formation methods such as sputtering, vapor deposition, CVD, and ALD.
  • the sacrificial film 144 that is directly formed on the organic layer 116 is preferably formed using the ALD method.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, titanium, aluminum, yttrium, zirconium, and tantalum, or the metal materials can be used.
  • a low melting point material such as aluminum or silver.
  • a metal oxide such as indium gallium zinc oxide (In--Ga--Zn oxide, also referred to as IGZO) can be used.
  • indium oxide, indium zinc oxide (In—Zn oxide), indium tin oxide (In—Sn oxide), indium titanium oxide (In—Ti oxide), indium tin zinc oxide (In—Sn -Zn oxide), indium titanium zinc oxide (In-Ti-Zn oxide), indium gallium tin zinc oxide (In-Ga-Sn-Zn oxide), and the like can be used.
  • indium tin oxide containing silicon or the like can be used.
  • element M is aluminum, silicon, boron, yttrium, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium, hafnium, tantalum, tungsten , or one or more selected from magnesium).
  • M is preferably one or more selected from gallium, aluminum, and yttrium.
  • an oxide such as aluminum oxide, hafnium oxide, or silicon oxide, a nitride such as silicon nitride or aluminum nitride, or an oxynitride such as silicon oxynitride can be used.
  • Such an inorganic insulating material can be formed using a film formation method such as a sputtering method, a CVD method, or an ALD method.
  • a material that is soluble in a chemically stable solvent may be used for at least the organic layer 116 located on the top of the EL layer.
  • a material that dissolves in water or alcohol can be suitably used for the sacrificial film 144 .
  • the sacrificial film 144 is formed, it is preferably dissolved in a solvent such as water or alcohol and applied by a wet film formation method, and then heat treatment is performed to evaporate the solvent. At this time, heat treatment is preferably performed in a reduced-pressure atmosphere because the solvent can be removed at a low temperature in a short time, so that thermal damage to the EL layer can be reduced.
  • Wet film formation methods that can be used to form the sacrificial film 144 include spin coating, dipping, spray coating, inkjet, dispensing, screen printing, offset printing, doctor knife method, slit coating, roll coating, curtain coating, and knife coating. There are coats.
  • an organic material such as polyvinyl alcohol (PVA), polyvinyl butyral, polyvinylpyrrolidone, polyethylene glycol, polyglycerin, pullulan, water-soluble cellulose, or alcohol-soluble polyamide resin can be used.
  • PVA polyvinyl alcohol
  • polyvinyl butyral polyvinylpyrrolidone
  • polyethylene glycol polyglycerin
  • pullulan polyethylene glycol
  • pullulan polyglycerin
  • pullulan water-soluble cellulose
  • alcohol-soluble polyamide resin water-soluble polyamide resin
  • the sacrificial film 146 is a film used as a hard mask when etching the sacrificial film 144 later.
  • the sacrificial film 144 is exposed when the sacrificial film 146 is processed later. Therefore, for the sacrificial film 144 and the sacrificial film 146, a combination of films having a high etching selectivity is selected. Therefore, a film that can be used for the sacrificial film 146 can be selected according to the etching conditions for the sacrificial film 144 and the etching conditions for the sacrificial film 146 .
  • the sacrificial film 146 can be selected from various materials according to the etching conditions for the sacrificial film 144 and the etching conditions for the sacrificial film 146 .
  • it can be selected from films that can be used for the sacrificial film 144 .
  • an oxide film can be used as the sacrificial film 146 .
  • an oxide film or an oxynitride film such as silicon oxide, silicon oxynitride, aluminum oxide, aluminum oxynitride, hafnium oxide, or hafnium oxynitride can be used.
  • a nitride film can be used as the sacrificial film 146.
  • nitrides such as silicon nitride, aluminum nitride, hafnium nitride, titanium nitride, tantalum nitride, tungsten nitride, gallium nitride, and germanium nitride can also be used.
  • the sacrificial film 144 an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide formed by an ALD method is used, and as the sacrificial film 146, an indium gallium zinc oxide (In—Ga—Zn It is preferable to use a metal oxide containing indium such as an oxide (also referred to as IGZO).
  • the sacrificial film 146 is preferably made of metal such as tungsten, molybdenum, copper, aluminum, titanium, and tantalum, or an alloy containing the metal.
  • an organic film that can be used for the organic layer 115, the organic layer 112, the organic layer 155, the organic layer 116, or the like may be used.
  • the same organic film used for organic layer 115 , organic layer 112 , organic layer 155 , or organic layer 116 can be used for sacrificial film 146 .
  • a deposition apparatus can be used in common with the organic layers 115, 112, 155, 116, and the like, which is preferable.
  • the later sacrificial layer can be used as a mask to etch the organic layer 115, the organic layer 112, the organic layer 155, and the organic layer 116, etc., the process can be simplified.
  • a resist mask 143 is formed on the sacrificial film 146 at positions overlapping with the pixel electrode 111R, the pixel electrode 111G, the pixel electrode 111B, the pixel electrode 111S, and the connection electrode 111C (FIG. 9A).
  • the resist mask 143 can use a resist material containing a photosensitive resin, such as a positive resist material or a negative resist material.
  • the resist mask 143 is formed on the sacrificial film 144 without the sacrificial film 146, if defects such as pinholes are present in the sacrificial film 144, the organic layer 115 and the organic layer 115 and the organic layer 115 may be damaged by the solvent of the resist material. 112, the organic layer 155, and the organic layer 116 may be dissolved. Using the sacrificial film 146 can prevent such a problem from occurring.
  • the resist mask is directly applied over the sacrificial film 144 without using the sacrificial film 146. 143 may be formed.
  • etching the sacrificial film 146 it is preferable to use etching conditions with a high selectivity so that the sacrificial film 144 is not removed by the etching.
  • Etching of the sacrificial film 146 can be performed by wet etching or dry etching. By using dry etching, reduction of the pattern of the sacrificial layer 147 can be suppressed.
  • the removal of the resist mask 143 can be performed by wet etching or dry etching.
  • the resist mask 143 is removed while the organic layer 116 is covered with the sacrificial film 144, the influence on the organic layers 115, 112, 155, and 116 is suppressed.
  • the organic layer 115, the organic layer 112, the organic layer 155, and the organic layer 116 come into contact with oxygen, the electrical characteristics may be adversely affected. is preferred.
  • the organic layer 116 and the like do not come into contact with the chemical solution, so that the organic layer 116 and the like can be prevented from dissolving.
  • Etching of the sacrificial film 144 can be performed by wet etching or dry etching, but dry etching is preferable because pattern shrinkage can be suppressed.
  • the organic layer 112R, the organic layer 112G, the organic layer 112B, and part of the organic layer 155 are parted by etching, so that a layer 135R that is a fragment of the organic layer 112R and a layer 135G that is a fragment of the organic layer 112G are separated.
  • a layer 135B that is a snippet of the organic layer 112B, and a layer 135S that is a snippet of the organic layer 155 are formed.
  • the organic layers 116, 112, 155, and 115 are preferably etched by dry etching using an etching gas that does not contain oxygen as its main component. Accordingly, deterioration of the organic layer 116, the organic layer 112, the organic layer 155, and the organic layer 115 can be suppressed, and a highly reliable display device can be realized.
  • Etching gases containing no oxygen as a main component include, for example, noble gases such as CF 4 , C 4 F 8 , SF 6 , CHF 3 , Cl 2 , H 2 O, BCl 3 , H 2 and He. Further, a mixed gas of the above gas and a diluent gas that does not contain oxygen can be used as an etching gas.
  • the etching of the organic layer 116, the organic layer 112, the organic layer 155, and the organic layer 115 is not limited to the above, and may be performed by dry etching using another gas or by wet etching.
  • the organic layer 116, the organic layer 112, the organic layer 155, and the organic layer 115 are etched by dry etching using an oxygen gas or a mixed gas containing an oxygen gas as an etching gas, the etching rate can be increased. . Therefore, etching can be performed under low-power conditions while maintaining a sufficiently high etching rate, so that damage due to etching can be reduced. Furthermore, problems such as adhesion of reaction products that occur during etching can be suppressed.
  • a mixed gas obtained by adding oxygen gas to the etching gas that does not contain oxygen as a main component can be used as the etching gas.
  • the insulating layer 105 is exposed when the organic layer 116, the organic layer 112, the organic layer 155, and the organic layer 115 are etched. Therefore, it is preferable to use a film having high resistance to etching of the organic layer 115 as the insulating layer 105 .
  • the organic layer 115 is etched, the upper portion of the insulating layer 105 may be etched and the portion not covered with the organic layer 115 may be thinned.
  • the sacrificial layer 147 may be etched at the same time when the organic layer 116, the organic layer 112, the organic layer 155, or the organic layer 115 is etched.
  • the process can be simplified and the manufacturing cost of the display device can be reduced. It is preferable because it can be done.
  • the sacrificial layer 147 is then removed to expose the top surface of the sacrificial layer 145 (FIG. 9C). At this time, it is preferable to leave the sacrificial layer 145 as it is. Note that the sacrificial layer 147 may not be removed at this point.
  • the insulating film 125f functions as a barrier layer that prevents impurities such as water from diffusing into the EL layer.
  • the insulating film 125f is preferably formed by an ALD method, which has excellent step coverage, because the side surfaces of the EL layer can be preferably covered.
  • the insulating film 125f and the sacrificial layer 145 are preferably formed using an inorganic insulating material such as aluminum oxide, hafnium oxide, or silicon oxide formed by an ALD method.
  • the material that can be used for the insulating film 125f is not limited to this, and the material that can be used for the sacrificial film 144 can be used as appropriate.
  • a resin layer 126 is formed in a region overlapping with the slit 120 (FIG. 10A).
  • the resin layer 126 can be formed by a method similar to that of the resin layer 163 .
  • the insulating film 125f and the sacrificial layer 145 are preferably etched in the same step.
  • the etching of the sacrificial layer 145 is preferably performed by wet etching that causes less etching damage to the organic layer 116 .
  • wet etching using a tetramethylammonium hydroxide (TMAH) aqueous solution, dilute hydrofluoric acid, oxalic acid, phosphoric acid, acetic acid, nitric acid, or a mixed liquid thereof is preferably used.
  • TMAH tetramethylammonium hydroxide
  • the insulating film 125f and the sacrificial layer 145 it is preferable to remove one or both of the insulating film 125f and the sacrificial layer 145 by dissolving them in a solvent such as water or alcohol.
  • a solvent such as water or alcohol.
  • alcohol capable of dissolving the insulating film 125f and the sacrificial layer 145 various alcohols such as ethyl alcohol, methyl alcohol, isopropyl alcohol (IPA), or glycerin can be used.
  • IPA isopropyl alcohol
  • a drying process is performed to remove water contained inside the organic layers 115, 112, 155, 116, etc. and water adsorbed on the surface.
  • heat treatment is preferably performed in an inert gas atmosphere or a reduced pressure atmosphere.
  • the heat treatment can be performed at a substrate temperature of 50° C. to 200° C., preferably 60° C. to 150° C., more preferably 70° C. to 120° C.
  • a reduced-pressure atmosphere is preferable because drying can be performed at a lower temperature.
  • the organic layer 114 is formed to cover the organic layer 116, the insulating layer 125, the sacrificial layer 145, the resin layer 126, and the like.
  • the organic layer 114 can be formed by the same method as the organic layer 115 and the like.
  • a shielding mask may be used to prevent the organic layer 114 from being formed on the connection electrode 111C.
  • the common electrode 113 can be formed by a film forming method such as vapor deposition or sputtering. Alternatively, a film formed by an evaporation method and a film formed by a sputtering method may be stacked.
  • the common electrode 113 it is preferable to form the common electrode 113 so as to include the region where the organic layer 114 is formed. That is, the end portion of the organic layer 114 can overlap with the common electrode 113 .
  • the common electrode 113 may be formed using a shielding mask.
  • FIG. 10C shows an example in which the organic layer 114 is sandwiched between the connection electrode 111C and the common electrode 113 as the connection portion 130 .
  • a material with as low electric resistance as possible for the organic layer 114 it is preferable to use a material with as low electric resistance as possible for the organic layer 114 .
  • an electron-injecting or hole-injecting material with a thickness of 1 nm or more and 5 nm or less, preferably 1 nm or more and 3 nm or less, for the organic layer 114, the electric resistance between the connection electrode 111C and the common electrode 113 can be reduced. It may be so small that it can be ignored.
  • a protective layer 121 is formed on the common electrode 113 (FIG. 10C).
  • a sputtering method, a PECVD method, or an ALD method is preferably used for forming the inorganic insulating film used for the protective layer 121 .
  • the ALD method is preferable because it has excellent step coverage and hardly causes defects such as pinholes.
  • the display device shown in FIG. 6A can be manufactured.
  • the resin layer 126 is formed to be wider than the slit 120 in the above example, the width of the resin layer 126 and the width of the slit 120 may be the same.
  • FIG. 11A is a schematic cross-sectional view when the resin layer 126 is formed after forming the insulating film 125f.
  • the resin layer 126 is formed only inside the slit 120 by etching the upper portion of the resin layer 126 by ashing or the like. can do. At this time, it is preferable to bring the top surface of the resin layer 126 as close to the top surface of the adjacent organic layer 116 as possible. As a result, it is possible to reduce the step difference between the portion overlapping with the slit 120 and both ends thereof, and improve the step coverage of the organic layer 114 and the like.
  • the insulating film 125f and the sacrificial layer 145 are etched in the same manner as described above (FIG. 11B). At this time, since there is no portion of the sacrificial layer 145 that is covered with the resin layer 126, the sacrificial layer 145 is removed without leaving any fragments.
  • a display device as shown in FIG. 11C can be manufactured.
  • FIG. 11C shows an example in which the organic layer 114 is not provided between the connection electrode 111C and the common electrode 113 . Since the connection electrode 111C and the common electrode 113 are in contact with each other, the contact resistance therebetween can be made extremely small, and power consumption can be reduced.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • Embodiment 2 In this embodiment, a structural example of a display device of one embodiment of the present invention will be described. Although a display device capable of displaying an image is described here, it can be used as a display device by using a light-emitting element as a light source.
  • the display device of this embodiment can be a high-resolution display device or a large-sized display device. Therefore, the display device of the present embodiment includes a relatively large screen such as a television device, a desktop or notebook personal computer, a computer monitor, a digital signage, a large game machine such as a pachinko machine, or the like. In addition to electronic devices, it can also be used for display parts of digital cameras, digital video cameras, digital photo frames, mobile phones, portable game machines, smartphones, wristwatch terminals, tablet terminals, personal digital assistants, and sound reproducing devices.
  • FIG. 12 shows a perspective view of the display device 400
  • FIG. 13A shows a cross-sectional view of the display device 400. As shown in FIG.
  • the display device 400 has a configuration in which a substrate 452 and a substrate 451 are bonded together.
  • the substrate 452 is clearly indicated by dashed lines.
  • the display device 400 has a display section 462, a circuit 464, wiring 465, and the like.
  • FIG. 12 shows an example in which an IC 473 and an FPC 472 are mounted on the display device 400 . Therefore, the configuration shown in FIG. 13 can also be said to be a display module including the display device 400, an IC (integrated circuit), and an FPC.
  • a scanning line driving circuit for example, can be used as the circuit 464 .
  • the wiring 465 has a function of supplying signals and power to the display section 462 and the circuit 464 .
  • the signal and power are input to the wiring 465 from the outside through the FPC 472 or input to the wiring 465 from the IC 473 .
  • FIG. 12 shows an example in which an IC 473 is provided on a substrate 451 by a COG (Chip On Glass) method, a COF (Chip on Film) method, or the like.
  • IC 473 for example, an IC having a scanning line driver circuit, a signal line driver circuit, or the like can be applied.
  • the display device 400 and the display module may be configured without an IC.
  • the IC may be mounted on the FPC by the COF method or the like.
  • FIG. 13A shows an example of a cross section of the display device 400 when part of the region including the FPC 472, part of the circuit 464, part of the display portion 462, and part of the region including the connection portion are cut. show.
  • FIG. 13A shows an example of a cross section of the display section 462, in particular, a region including a light emitting element 430b that emits green light (G) and a light receiving element 440 that receives reflected light (L).
  • a display device 400 shown in FIG. 13A includes a transistor 252, a transistor 260, a transistor 258, a light-emitting element 430b, a light-receiving element 440, and the like between substrates 451 and 452.
  • FIG. 13A includes a transistor 252, a transistor 260, a transistor 258, a light-emitting element 430b, a light-receiving element 440, and the like between substrates 451 and 452.
  • the above-exemplified light emitting elements or light receiving elements can be applied.
  • the three sub-pixels are red (R), green (G), and blue (B).
  • Color sub-pixels such as yellow (Y), cyan (C), and magenta (M) sub-pixels.
  • the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y four-color sub-pixels. be done.
  • the sub-pixel may include a light-emitting element that emits infrared light.
  • a photoelectric conversion element sensitive to light in the red, green, or blue wavelength range, or a photoelectric conversion element sensitive to light in the infrared wavelength range can be used.
  • the substrate 452 and the protective layer 416 are adhered via the adhesive layer 442 .
  • the adhesive layer 442 is provided so as to overlap each of the light emitting element 430b and the light receiving element 440, and the display device 400 has a solid sealing structure.
  • a light shielding layer 417 is provided on the substrate 452 .
  • the light-emitting element 430b and the light-receiving element 440 have conductive layers 411a, 411b, and 411c as pixel electrodes.
  • the conductive layer 411b reflects visible light and functions as a reflective electrode.
  • the conductive layer 411c is transparent to visible light and functions as an optical adjustment layer.
  • a conductive layer 411 a included in the light emitting element 430 b is connected to the conductive layer 272 b included in the transistor 260 through an opening provided in the insulating layer 294 .
  • the transistor 260 has a function of controlling driving of the light emitting element.
  • the conductive layer 411 a included in the light receiving element 440 is electrically connected to the conductive layer 272 b included in the transistor 258 .
  • the transistor 258 has a function of controlling the timing of exposure using the light receiving element 440 and the like.
  • An EL layer 412G or a PD layer 412S is provided to cover the pixel electrodes.
  • An insulating layer 421 is provided in contact with a side surface of the EL layer 412G and a side surface of the PD layer 412S, and a resin layer 422 is provided so as to fill the concave portions of the insulating layer 421.
  • An organic layer 414, a common electrode 413, and a protective layer 416 are provided to cover the EL layer 412G and the PD layer 412S.
  • a layer 415G and a layer 415S are provided in contact with the insulating layer 421.
  • Layer 415G comprises the same material as EL layer 412G and layer 415S comprises the same material as PD layer 412S.
  • the light G emitted by the light emitting element 430b is emitted to the substrate 452 side.
  • the light receiving element 440 receives the light L incident through the substrate 452 and converts it into an electric signal.
  • a material having high visible light transmittance is preferably used for the substrate 452 .
  • the transistors 252 , 260 , and 258 are all formed over the substrate 451 . These transistors can be made with the same material and the same process.
  • transistor 252, the transistor 260, and the transistor 258 may be separately manufactured so as to have different structures.
  • transistors with or without back gates may be separately manufactured, or transistors with different materials or thicknesses or both of semiconductors, gate electrodes, gate insulating layers, source electrodes, and drain electrodes may be separately manufactured. .
  • the substrate 451 and the insulating layer 262 are bonded together by an adhesive layer 455 .
  • a manufacturing substrate provided with an insulating layer 262 , each transistor, each light-emitting element, a light-receiving element, and the like is attached to a substrate 452 provided with a light-shielding layer 417 with an adhesive layer 442 . match. Then, the formation substrate is peeled off and a substrate 451 is attached to the exposed surface, so that each component formed over the formation substrate is transferred to the substrate 451 .
  • Each of the substrates 451 and 452 preferably has flexibility. Thereby, the flexibility of the display device 400 can be enhanced.
  • a connecting portion 254 is provided in a region of the substrate 451 where the substrate 452 does not overlap.
  • the wiring 465 is electrically connected to the FPC 472 through the conductive layer 466 and the connecting layer 292 .
  • the conductive layer 466 can be obtained by processing the same conductive film as the pixel electrode. Thereby, the connection portion 254 and the FPC 472 can be electrically connected via the connection layer 292 .
  • the transistors 252, 260, and 258 each include a conductive layer 271 functioning as a gate, an insulating layer 261 functioning as a gate insulating layer, a semiconductor layer 281 having a channel formation region 281i and a pair of low-resistance regions 281n, and a pair of low-resistance regions. 281n, a conductive layer 272b connected to the other of the pair of low-resistance regions 281n, an insulating layer 275 functioning as a gate insulating layer, a conductive layer 273 functioning as a gate, and covering the conductive layer 273 It has an insulating layer 265 .
  • the insulating layer 261 is located between the conductive layer 271 and the channel formation region 281i.
  • the insulating layer 275 is located between the conductive layer 273 and the channel formation region 281i.
  • the conductive layers 272a and 272b are connected to the low-resistance region 281n through openings provided in the insulating layer 265, respectively.
  • One of the conductive layers 272a and 272b functions as a source and the other functions as a drain.
  • FIG. 13A shows an example in which an insulating layer 275 covers the upper and side surfaces of the semiconductor layer.
  • the conductive layers 272a and 272b are connected to the low-resistance region 281n through openings provided in the insulating layers 275 and 265, respectively.
  • the insulating layer 275 overlaps the channel formation region 281i of the semiconductor layer 281 and does not overlap the low resistance region 281n.
  • the structure shown in FIG. 13B can be manufactured.
  • an insulating layer 265 is provided to cover the insulating layer 275 and the conductive layer 273, and the conductive layers 272a and 272b are connected to the low resistance region 281n through openings in the insulating layer 265, respectively.
  • an insulating layer 268 may be provided to cover the transistor.
  • the structure of the transistor included in the display device of this embodiment there is no particular limitation on the structure of the transistor included in the display device of this embodiment.
  • a planar transistor, a staggered transistor, an inverted staggered transistor, or the like can be used.
  • the transistor structure may be either a top-gate type or a bottom-gate type.
  • gates may be provided above and below a semiconductor layer in which a channel is formed.
  • a structure in which a semiconductor layer in which a channel is formed is sandwiched between two gates is applied to the transistors 252 , 260 , and 258 .
  • a transistor may be driven by connecting two gates and applying the same signal to them.
  • the threshold voltage of the transistor may be controlled by applying a potential for controlling the threshold voltage to one of the two gates and applying a potential for driving to the other.
  • the crystallinity of the semiconductor material used for the semiconductor layer of the transistor is not particularly limited, either.
  • a semiconductor having a crystalline region in the semiconductor) may be used.
  • a single crystal semiconductor or a crystalline semiconductor is preferably used because deterioration in transistor characteristics can be suppressed.
  • a semiconductor layer of a transistor preferably includes a metal oxide (also referred to as an oxide semiconductor).
  • the display device of this embodiment preferably uses a transistor including a metal oxide for a channel formation region (hereinafter referred to as an OS transistor).
  • the bandgap of the metal oxide used for the semiconductor layer of the transistor is preferably 2 eV or more, more preferably 2.5 eV or more.
  • the metal oxide preferably contains at least indium or zinc, and more preferably contains indium and zinc.
  • metal oxides include indium and M (where M is gallium, aluminum, yttrium, tin, silicon, boron, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium). , hafnium, tantalum, tungsten, magnesium, and cobalt) and zinc.
  • M is preferably one or more selected from gallium, aluminum, yttrium and tin, more preferably gallium.
  • a metal oxide containing indium, M, and zinc may be hereinafter referred to as an In-M-Zn oxide.
  • the atomic ratio of In in the In-M-Zn oxide is preferably equal to or higher than the atomic ratio of M.
  • the atomic ratio of In in the In-M-Zn oxide may be less than the atomic ratio of M.
  • the amount of change in the threshold voltage or the amount of change in the shift voltage (Vsh) measured by NBTIS (Negative Bias Temperature Illumination Stress) test of the transistor can be reduced.
  • the semiconductor layer of the transistor may contain silicon.
  • silicon examples include amorphous silicon and crystalline silicon (low-temperature polysilicon, monocrystalline silicon, etc.).
  • low-temperature polysilicon has relatively high mobility and can be formed on a glass substrate, so it can be suitably used for display devices.
  • a transistor whose semiconductor layer is formed using low-temperature polysilicon is used as the transistor 252 included in the driver circuit, and a transistor whose semiconductor layer is formed using an oxide semiconductor is used as the transistor 260, the transistor 258, or the like provided in the pixel. can be done.
  • the semiconductor layer of the transistor may have a layered material that functions as a semiconductor.
  • a layered substance is a general term for a group of materials having a layered crystal structure.
  • a layered crystal structure is a structure in which layers formed by covalent or ionic bonds are stacked via bonds such as van der Waals forces that are weaker than covalent or ionic bonds.
  • a layered material has high electrical conductivity within a unit layer, that is, high two-dimensional electrical conductivity. By using a material that functions as a semiconductor and has high two-dimensional electrical conductivity for the channel formation region, a transistor with high on-state current can be provided.
  • Chalcogenides are compounds containing chalcogens (elements belonging to group 16). Chalcogenides include transition metal chalcogenides and Group 13 chalcogenides.
  • transition metal chalcogenides applicable as semiconductor layers of transistors include molybdenum sulfide (typically MoS 2 ), molybdenum selenide (typically MoSe 2 ), molybdenum tellurium (typically MoTe 2 ), tungsten sulfide (typically WS 2 ), tungsten selenide (typically WSe 2 ), tungsten tellurium (typically WTe 2 ), hafnium sulfide (typically HfS 2 ), hafnium selenide (typically HfSe 2 ), zirconium sulfide (typically ZrS 2 ), zirconium selenide (typically ZrSe 2 ), and the like.
  • molybdenum sulfide typically MoS 2
  • molybdenum selenide typically MoSe 2
  • molybdenum tellurium typically MoTe 2
  • tungsten sulfide typically WS 2
  • the display device shown in FIG. 13A has an OS transistor and a structure in which a common layer between light emitting elements is separated.
  • leakage current that can flow through the transistor and leakage current that can flow between adjacent light-emitting elements also referred to as lateral leakage current, side leakage current, or the like
  • lateral leakage current, side leakage current, or the like leakage current that can flow between adjacent light-emitting elements
  • the leakage current that can flow in the transistor and the horizontal leakage current between light-emitting elements are extremely low, so that light leakage that can occur during black display (so-called black floating) is extremely small (also called pure black display). can be
  • a color-coding structure (SBS structure)
  • a layer provided between light-emitting elements for example, an organic layer commonly used between light-emitting elements, or a common layer
  • a display with no side leakage or with very little side leakage can be obtained.
  • the transistor included in the circuit 464 and the transistor included in the display portion 462 may have the same structure or different structures.
  • the plurality of transistors included in the circuit 464 may all have the same structure, or may have two or more types.
  • the plurality of transistors included in the display portion 462 may all have the same structure, or may have two or more types.
  • the insulating layer can function as a barrier layer. With such a structure, diffusion of impurities from the outside into the transistor can be effectively suppressed, and the reliability of the display device can be improved.
  • Inorganic insulating films are preferably used for the insulating layer 261, the insulating layer 262, the insulating layer 265, the insulating layer 268, and the insulating layer 275, respectively.
  • the inorganic insulating film for example, a silicon nitride film, a silicon oxynitride film, a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used.
  • a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film, or the like may be used.
  • two or more of the inorganic insulating films described above may be laminated and used.
  • the organic insulating film preferably has an opening near the edge of the display device 400 .
  • the organic insulating film may be formed so that the edges of the organic insulating film are located inside the edges of the display device 400 so that the organic insulating film is not exposed at the edges of the display device 400 .
  • An organic insulating film is suitable for the insulating layer 294 that functions as a planarizing layer.
  • materials that can be used for the organic insulating film include acrylic resins, polyimide resins, epoxy resins, polyamide resins, polyimideamide resins, siloxane resins, benzocyclobutene-based resins, phenolic resins, precursors of these resins, and the like.
  • a light shielding layer 417 is preferably provided on the surface of the substrate 452 on the substrate 451 side.
  • various optical members can be arranged outside the substrate 452 .
  • optical members include polarizing plates, retardation plates, light diffusion layers (diffusion films, etc.), antireflection layers, light collecting films, and the like.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged on the outside of the substrate 452.
  • an antistatic film that suppresses adhesion of dust, a water-repellent film that prevents adhesion of dirt, a hard coat film that suppresses the occurrence of scratches due to use, a shock absorption layer, etc. are arranged.
  • the connecting portion 278 is shown in FIG. 13A. At the connecting portion 278, the common electrode 413 and the wiring are electrically connected.
  • FIG. 13A shows an example in which the wiring has the same laminated structure as that of the pixel electrode.
  • the substrates 451 and 452 glass, quartz, ceramics, sapphire, resins, metals, alloys, semiconductors, etc. can be used, respectively.
  • a material that transmits the light is used for the substrate on the side from which the light from the light-emitting element is extracted.
  • the flexibility of the display device can be increased.
  • a polarizing plate may be used as the substrate 451 or the substrate 452 .
  • polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resins, acrylic resins, polyimide resins, polymethyl methacrylate resins, polycarbonate (PC) resins, and polyether resins are used, respectively.
  • PES resin Sulfone (PES) resin, polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetrafluoroethylene (PTFE) resin, ABS resin, cellulose nanofiber, or the like can be used.
  • PES polytetyrene resin
  • polyamideimide resin polyurethane resin
  • polyvinyl chloride resin polyvinylidene chloride resin
  • polypropylene resin polytetrafluoroethylene (PTFE) resin
  • PTFE resin polytetrafluoroethylene
  • ABS resin cellulose nanofiber, or the like
  • One or both of the substrates 451 and 452 may be made of glass having a thickness sufficient to be flexible.
  • a substrate having high optical isotropy has small birefringence (it can be said that the amount of birefringence is small).
  • the absolute value of the retardation (retardation) value of the substrate with high optical isotropy is preferably 30 nm or less, more preferably 20 nm or less, and even more preferably 10 nm or less.
  • Films with high optical isotropy include triacetyl cellulose (TAC, also called cellulose triacetate) films, cycloolefin polymer (COP) films, cycloolefin copolymer (COC) films, and acrylic films.
  • TAC triacetyl cellulose
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • a film having a low water absorption rate as the substrate.
  • various curable adhesives such as photocurable adhesives such as ultraviolet curable adhesives, reaction curable adhesives, thermosetting adhesives, and anaerobic adhesives can be used.
  • These adhesives include epoxy resins, acrylic resins, silicone resins, phenol resins, polyimide resins, imide resins, PVC (polyvinyl chloride) resins, PVB (polyvinyl butyral) resins, EVA (ethylene vinyl acetate) resins, and the like.
  • a material with low moisture permeability such as epoxy resin is preferable.
  • a two-liquid mixed type resin may be used.
  • an adhesive sheet or the like may be used.
  • connection layer 292 an anisotropic conductive film (ACF), an anisotropic conductive paste (ACP), or the like can be used.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • materials that can be used for conductive layers such as various wirings and electrodes constituting display devices include aluminum, titanium, chromium, nickel, copper, yttrium, zirconium, molybdenum, silver, Examples include metals such as tantalum and tungsten, and alloys containing these metals as main components. A film containing these materials can be used as a single layer or as a laminated structure.
  • conductive oxides such as indium oxide, indium tin oxide, indium zinc oxide, zinc oxide, zinc oxide containing gallium, or graphene can be used.
  • metal materials such as gold, silver, platinum, magnesium, nickel, tungsten, chromium, molybdenum, iron, cobalt, copper, palladium, and titanium, or alloy materials containing such metal materials can be used.
  • a nitride of the metal material eg, titanium nitride
  • it is preferably thin enough to have translucency.
  • a stacked film of any of the above materials can be used as the conductive layer.
  • a laminated film of a silver-magnesium alloy and indium tin oxide because the conductivity can be increased.
  • conductive layers such as various wirings and electrodes that constitute a display device, and conductive layers (conductive layers functioning as pixel electrodes or common electrodes) of light-emitting elements.
  • Examples of insulating materials that can be used for each insulating layer include resins such as acrylic resins and epoxy resins, and inorganic insulating materials such as silicon oxide, silicon oxynitride, silicon nitride oxide, silicon nitride, and aluminum oxide.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a display device of one embodiment of the present invention includes a light-receiving element (also referred to as a light-receiving device) and a light-emitting element (also referred to as a light-emitting device).
  • the display device of one embodiment of the present invention may have a structure including a light receiving/emitting element (also referred to as a light emitting/receiving device) and a light emitting element.
  • a display device of one embodiment of the present invention includes a light receiving element and a light emitting element in a light emitting/receiving portion.
  • light-emitting elements are arranged in a matrix in the light-receiving and light-emitting portion, and an image can be displayed by the light-receiving and light-emitting portion.
  • the light receiving/emitting unit has light receiving elements arranged in a matrix, and the light emitting/receiving unit has one or both of an imaging function and a sensing function.
  • the light receiving/emitting unit can be used for image sensors, touch sensors, and the like.
  • the display device of one embodiment of the present invention can use the light-emitting element as a light source of the sensor. Therefore, it is not necessary to provide a light receiving portion and a light source separately from the display device, and the number of parts of the electronic device can be reduced.
  • the light-receiving element when an object reflects (or scatters) light emitted by a light-emitting element included in the light-receiving/emitting portion, the light-receiving element can detect the reflected light (or scattered light), so that the display device is dark. It is possible to capture an image and detect a touch operation even at a place.
  • a light-emitting element included in the display device of one embodiment of the present invention functions as a display element (also referred to as a display device).
  • an EL element such as OLED and QLED.
  • Examples of light-emitting substances included in EL elements include substances that emit fluorescence (fluorescent materials), substances that emit phosphorescence (phosphorescence materials), and substances that exhibit thermally activated delayed fluorescence (thermally activated delayed fluorescence (TADF) materials).
  • LEDs such as micro LED, can also be used as a light emitting element.
  • a light-emitting substance included in an EL element not only an organic compound but also an inorganic compound (such as a quantum dot material) can be used.
  • a display device of one embodiment of the present invention has a function of detecting light using a light-receiving element.
  • the display device can capture an image using the light receiving element.
  • the display device can be used as a scanner.
  • An electronic device to which the display device of one embodiment of the present invention is applied can acquire biometric data such as fingerprints and palmprints by using the function of an image sensor. That is, the biometric authentication sensor can be incorporated in the display device.
  • the biometric authentication sensor By incorporating the biometric authentication sensor into the display device, compared to the case where the biometric authentication sensor is provided separately from the display device, the number of parts of the electronic device can be reduced, and the size and weight of the electronic device can be reduced. .
  • the display device can detect the touch operation of the object using the light receiving element.
  • a pn-type or pin-type photodiode can be used as the light receiving element.
  • a light-receiving element functions as a photoelectric conversion element (also referred to as a photoelectric conversion device) that detects light incident on the light-receiving element and generates an electric charge. The amount of charge generated from the light receiving element is determined based on the amount of light incident on the light receiving element.
  • organic photodiode having a layer containing an organic compound as the light receiving element.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so they can be applied to various devices.
  • an organic EL element (also referred to as an organic EL device) is used as the light emitting element, and an organic photodiode is used as the light receiving element.
  • An organic EL element and an organic photodiode can be formed on the same substrate. Therefore, an organic photodiode can be incorporated in a display device using an organic EL element.
  • the number of film formation processes becomes enormous.
  • the organic photodiode has many layers that can have the same structure as the organic EL element, the layers that can have the same structure can be formed at once, thereby suppressing an increase in the number of film forming steps.
  • one of the pair of electrodes can be a layer common to the light receiving element and the light emitting element.
  • at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be a layer common to the light receiving element and the light emitting element. Since the light-receiving element and the light-emitting element have a common layer in this way, the number of film formations and the number of masks can be reduced, and the manufacturing steps and manufacturing cost of the display device can be reduced.
  • a display device having a light-receiving element can be manufactured using an existing display device manufacturing apparatus and manufacturing method.
  • subpixels exhibiting one color include light-receiving and emitting elements instead of light-emitting elements, and subpixels exhibiting other colors include light-emitting elements.
  • the light receiving/emitting element has both a function of emitting light (light emitting function) and a function of receiving light (light receiving function). For example, if a pixel has three sub-pixels, a red sub-pixel, a green sub-pixel, and a blue sub-pixel, at least one sub-pixel has a light emitting/receiving element and the other sub-pixels have a light emitting element. Configuration. Therefore, the light receiving/emitting portion of the display device of one embodiment of the present invention has a function of displaying an image using both the light receiving/emitting element and the light emitting element.
  • the pixel By having the light receiving and emitting element serve as both a light emitting element and a light receiving element, the pixel can be given a light receiving function without increasing the number of sub-pixels included in the pixel. As a result, one or both of an imaging function and a sensing function can be added to the light emitting/receiving portion of the display device while maintaining the aperture ratio of the pixel (the aperture ratio of each sub-pixel) and the definition of the display device. can. Therefore, in the display device of one embodiment of the present invention, the aperture ratio of the pixel can be increased and high definition can be easily achieved as compared with the case where the subpixel including the light-receiving element is provided separately from the subpixel including the light-emitting element. be.
  • the light receiving/emitting element and the light emitting element are arranged in a matrix in the light emitting/receiving portion, and an image can be displayed by the light emitting/receiving portion.
  • the light receiving/emitting unit can be used for an image sensor, a touch sensor, or the like.
  • the display device of one embodiment of the present invention can use the light-emitting element as a light source of the sensor. Therefore, it is possible to capture images and detect touch operations even in dark places.
  • the light receiving and emitting element can be produced by combining an organic EL element and an organic photodiode.
  • a light emitting/receiving element can be produced by adding an active layer of an organic photodiode to the laminated structure of the organic EL element.
  • an increase in the number of film forming processes can be suppressed by collectively forming layers that can have a common configuration with the organic EL element.
  • one of the pair of electrodes can be a layer common to the light receiving and emitting element and the light emitting element.
  • at least one of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer may be a common layer for the light receiving and emitting device and the light emitting device.
  • the layer included in the light receiving and emitting element may have different functions depending on whether the light receiving or emitting element functions as a light receiving element or as a light emitting element.
  • constituent elements are referred to based on their functions when the light emitting/receiving element functions as a light emitting element.
  • the display device of this embodiment has a function of displaying an image using a light-emitting element and a light-receiving/light-receiving element.
  • the light emitting element and the light emitting/receiving element function as a display element.
  • the display device of this embodiment has a function of detecting light using light receiving and emitting elements.
  • the light emitting/receiving element can detect light having a shorter wavelength than the light emitted by the light emitting/receiving element itself.
  • the display device of this embodiment can capture an image using the light emitting/receiving element. Further, when the light emitting/receiving element is used as a touch sensor, the display device of this embodiment can detect a touch operation on an object using the light emitting/receiving element.
  • the light receiving and emitting element functions as a photoelectric conversion element.
  • the light emitting/receiving element can be manufactured by adding the active layer of the light receiving element to the structure of the light emitting element.
  • the active layer of a pn-type or pin-type photodiode can be used for the light receiving and emitting element.
  • organic photodiode having a layer containing an organic compound for the light emitting/receiving element.
  • Organic photodiodes can be easily made thinner, lighter, and larger, and have a high degree of freedom in shape and design, so they can be applied to various devices.
  • a display device that is an example of the display device of one embodiment of the present invention is described below in more detail with reference to the drawings.
  • FIG. 14A shows a schematic diagram of the display panel 200.
  • the display panel 200 has a substrate 201, a substrate 202, a light receiving element 212, a light emitting element 211R, a light emitting element 211G, a light emitting element 211B, a functional layer 203, and the like.
  • the light emitting element 211R, the light emitting element 211G, the light emitting element 211B, and the light receiving element 212 are provided between the substrates 201 and 202.
  • the light emitting element 211R, the light emitting element 211G, and the light emitting element 211B emit red (R), green (G), or blue (B) light, respectively.
  • the light emitting element 211R, the light emitting element 211G, and the light emitting element 211B may be referred to as the light emitting element 211 when they are not distinguished from each other.
  • the display panel 200 has a plurality of pixels arranged in a matrix.
  • One pixel has one or more sub-pixels.
  • One sub-pixel has one light-emitting element.
  • a pixel has three sub-pixels (three colors of R, G, and B, or three colors of yellow (Y), cyan (C), and magenta (M)), or sub-pixels (4 colors of R, G, B, and white (W), or 4 colors of R, G, B, Y, etc.) can be applied.
  • the pixel has a light receiving element 212 .
  • the light-receiving elements 212 may be provided in all the pixels, or may be provided in some of the pixels. Also, one pixel may have a plurality of light receiving elements 212 .
  • FIG. 14A shows how a finger 220 touches the surface of the substrate 202 .
  • Part of the light emitted by the light emitting element 211G is reflected at the contact portion between the substrate 202 and the finger 220.
  • FIG. A part of the reflected light is incident on the light receiving element 212, so that contact of the finger 220 with the substrate 202 can be detected. That is, the display panel 200 can function as a touch panel.
  • the functional layer 203 has a circuit for driving the light emitting elements 211R, 211G, and 211B, and a circuit for driving the light receiving element 212.
  • a switch, a transistor, a capacitor, a wiring, and the like are provided in the functional layer 203 . Note that when the light-emitting element 211R, the light-emitting element 211G, the light-emitting element 211B, and the light-receiving element 212 are driven by a passive matrix method, a configuration in which switches, transistors, and the like are not provided may be employed.
  • the display panel 200 preferably has a function of detecting the fingerprint of the finger 220.
  • FIG. 14B schematically shows an enlarged view of the contact portion when the finger 220 is in contact with the substrate 202 .
  • FIG. 14B also shows the light emitting elements 211 and the light receiving elements 212 arranged alternately.
  • a fingerprint is formed on the finger 220 by concave portions and convex portions. Therefore, the convex portion of the fingerprint touches the substrate 202 as shown in FIG. 14B.
  • Light reflected from a certain surface, interface, etc. includes specular reflection and diffuse reflection.
  • Specularly reflected light is highly directional light whose incident angle and reflected angle are the same, and diffusely reflected light is light with low angle dependence of intensity and low directivity.
  • the light reflected from the surface of the finger 220 is dominated by the diffuse reflection component of the specular reflection and the diffuse reflection.
  • the light reflected from the interface between the substrate 202 and the atmosphere is predominantly a specular reflection component.
  • the intensity of the light reflected by the contact surface or non-contact surface between the finger 220 and the substrate 202 and incident on the light receiving element 212 positioned directly below them is the sum of the specular reflection light and the diffuse reflection light. .
  • the specularly reflected light (indicated by solid line arrows) is dominant. indicated by dashed arrows) becomes dominant. Therefore, the intensity of the light received by the light receiving element 212 located directly below the concave portion is higher than that of the light receiving element 212 located directly below the convex portion. Thereby, the fingerprint of the finger 220 can be imaged.
  • a clear fingerprint image can be obtained by setting the array interval of the light receiving elements 212 to be smaller than the distance between two convex portions of the fingerprint, preferably smaller than the distance between adjacent concave portions and convex portions. Since the distance between concave and convex portions of a human fingerprint is approximately 200 ⁇ m, for example, the array interval of the light receiving elements 212 is 400 ⁇ m or less, preferably 200 ⁇ m or less, more preferably 150 ⁇ m or less, even more preferably 100 ⁇ m or less, and even more preferably 100 ⁇ m or less. The thickness is 50 ⁇ m or less, and 1 ⁇ m or more, preferably 10 ⁇ m or more, and more preferably 20 ⁇ m or more.
  • FIG. 14C An example of a fingerprint image captured by the display panel 200 is shown in FIG. 14C.
  • the contour of the finger 220 is indicated by a dashed line
  • the contour of the contact portion 221 is indicated by a dashed line within the imaging range 223 .
  • a fingerprint 222 with high contrast can be imaged due to the difference in the amount of light incident on the light receiving element 212 in the contact portion 221 .
  • the display panel 200 can also function as a touch panel and a pen tablet.
  • FIG. 14D shows a state in which the tip of the stylus 225 is in contact with the substrate 202 and is slid in the direction of the dashed arrow.
  • the diffusely reflected light diffused by the contact surface of the substrate 202 and the tip of the stylus 225 is incident on the light receiving element 212 located in the portion overlapping with the contact surface, thereby causing the tip of the stylus 225 to A position can be detected with high accuracy.
  • FIG. 14E shows an example of the trajectory 226 of the stylus 225 detected by the display panel 200.
  • the display panel 200 can detect the position of the object to be detected such as the stylus 225 with high positional accuracy, it is possible to perform high-definition drawing in a drawing application or the like.
  • an electromagnetic induction touch pen, or the like it is possible to detect the position of even an object with high insulation.
  • Various writing utensils for example, brushes, glass pens, quill pens, etc.
  • FIGS. 14F to 14H examples of pixels applicable to the display panel 200 are shown in FIGS. 14F to 14H.
  • the pixels shown in FIGS. 14F and 14G each have a red (R) light emitting element 211R, a green (G) light emitting element 211G, a blue (B) light emitting element 211B, and a light receiving element 212.
  • the pixels have pixel circuits for driving the light-emitting element 211R, the light-emitting element 211G, the light-emitting element 211B, and the light-receiving element 212, respectively.
  • FIG. 14F is an example in which three light-emitting elements and one light-receiving element are arranged in a 2 ⁇ 2 matrix.
  • FIG. 14G shows an example in which three light-emitting elements are arranged in a row, and one horizontally long light-receiving element 212 is arranged below them.
  • the pixel shown in FIG. 14H is an example having a white (W) light emitting element 211W.
  • W white
  • four light-emitting elements are arranged in a row, and a light-receiving element 212 is arranged below them.
  • the pixel configuration is not limited to the above, and various arrangement methods can be adopted.
  • a display panel 200A shown in FIG. 15A has light emitting elements 211IR in addition to the configuration illustrated in FIG. 14A.
  • the light emitting element 211IR is a light emitting element that emits infrared light IR. Further, at this time, it is preferable to use an element capable of receiving at least the infrared light IR emitted by the light emitting element 211IR as the light receiving element 212 . Further, it is more preferable to use an element capable of receiving both visible light and infrared light as the light receiving element 212 .
  • 15B to 15D show examples of pixels applicable to the display panel 200A.
  • FIG. 15B is an example in which three light-emitting elements are arranged in a row, and a light-emitting element 211IR and a light-receiving element 212 are arranged side by side below them.
  • FIG. 15C is an example in which four light emitting elements including the light emitting element 211IR are arranged in a row, and the light receiving element 212 is arranged below them.
  • FIG. 15D is an example in which three light emitting elements and a light receiving element 212 are arranged in four directions around the light emitting element 211IR.
  • the positions of the light-emitting elements and the light-emitting element and the light-receiving element are interchangeable.
  • a display panel 200B shown in FIG. 16A has a light emitting element 211B, a light emitting element 211G, and a light emitting/receiving element 213R.
  • the light receiving/emitting element 213R has a function as a light emitting element that emits red (R) light and a function as a photoelectric conversion element that receives visible light.
  • FIG. 16A shows an example in which the light emitting/receiving element 213R receives green (G) light emitted by the light emitting element 211G.
  • the light receiving/emitting element 213R may receive blue (B) light emitted by the light emitting element 211B.
  • the light emitting/receiving element 213R may receive both green light and blue light.
  • the light receiving/emitting element 213R preferably receives light with a shorter wavelength than the light emitted by itself.
  • the light receiving/emitting element 213R may be configured to receive light having a longer wavelength (for example, infrared light) than the light emitted by itself.
  • the light emitting/receiving element 213R may be configured to receive light of the same wavelength as the light emitted by itself, but in that case, the light emitted by itself may also be received, resulting in a decrease in light emission efficiency. Therefore, the light emitting/receiving element 213R is preferably configured such that the peak of the emission spectrum and the peak of the absorption spectrum do not overlap as much as possible.
  • the light emitted by the light receiving and emitting element is not limited to red light. Also, the light emitted by the light emitting element is not limited to the combination of green light and blue light.
  • the light emitting/receiving element can be an element that emits green or blue light and receives light of a wavelength different from the light emitted by itself.
  • the light emitting/receiving element 213R serves as both a light emitting element and a light receiving element, so that the number of elements arranged in one pixel can be reduced. Therefore, high definition, high aperture ratio, high resolution, etc. are facilitated.
  • 16B to 16I show examples of pixels applicable to the display panel 200B.
  • FIG. 16B is an example in which the light emitting/receiving element 213R, the light emitting element 211G, and the light emitting element 211B are arranged in a line.
  • FIG. 16C shows an example in which the light emitting elements 211G and the light emitting elements 211B are arranged alternately in the vertical direction, and the light emitting/receiving elements 213R are arranged horizontally.
  • FIG. 16D is an example in which three light-emitting elements (light-emitting element 211G, light-emitting element 211B, and light-emitting element 211X and one light-receiving/emitting element are arranged in a 2 ⁇ 2 matrix.
  • G, and B Lights other than R, G, and B include white (W), yellow (Y), cyan (C), magenta (M), and infrared light (IR). , ultraviolet light (UV), etc.
  • the light emitting element 211X exhibits infrared light
  • the light receiving and emitting element has a function of detecting infrared light, or detects both visible light and infrared light.
  • the wavelength of light detected by the light receiving and emitting element can be determined according to the application of the sensor.
  • FIG. 16E shows two pixels. A region including three elements surrounded by dotted lines corresponds to one pixel. Each pixel has a light emitting element 211G, a light emitting element 211B, and a light emitting/receiving element 213R. In the left pixel shown in FIG. 16E, the light emitting element 211G is arranged in the same row as the light emitting/receiving element 213R, and the light emitting element 211B is arranged in the same column as the light emitting/receiving element 213R. In the right pixel shown in FIG.
  • the light emitting element 211G is arranged in the same row as the light emitting/receiving element 213R, and the light emitting element 211B is arranged in the same column as the light emitting element 211G.
  • the light emitting/receiving element 213R, the light emitting element 211G, and the light emitting element 211B are repeatedly arranged in both odd and even rows, and in each column, Light-emitting elements or light-receiving and light-receiving elements of different colors are arranged.
  • FIG. 16F shows four pixels to which the pentile arrangement is applied, and two adjacent pixels have light-emitting elements or light-receiving/light-receiving elements exhibiting different combinations of two colors of light. Note that FIG. 16F shows the top surface shape of the light emitting element or the light emitting/receiving element.
  • the upper left pixel and lower right pixel shown in FIG. 16F have a light emitting/receiving element 213R and a light emitting element 211G.
  • the upper right pixel and the lower left pixel have light emitting elements 211G and 211B. That is, in the example shown in FIG. 16F, each pixel is provided with a light emitting element 211G.
  • the upper surface shape of the light emitting element and light receiving/emitting element is not particularly limited, and may be a circle, an ellipse, a polygon, a polygon with rounded corners, or the like.
  • FIG. 16F and the like show an example in which the upper surface shape of the light emitting element and the light receiving/emitting element is a square (rhombus) inclined by approximately 45 degrees.
  • the top surface shape of the light-emitting element and the light-receiving/emitting element for each color may be different from each other, or may be the same for some or all colors.
  • the sizes of the light-emitting regions (or light-receiving and emitting regions) of the light-emitting elements and light-receiving and light-receiving elements of each color may be different from each other, or may be the same for some or all colors.
  • the area of the light emitting region of the light emitting element 211G provided in each pixel may be made smaller than the light emitting region (or light receiving/emitting region) of the other elements.
  • FIG. 16G is a modification of the pixel array shown in FIG. 16F. Specifically, the configuration of FIG. 16G is obtained by rotating the configuration of FIG. 16F by 45 degrees. In FIG. 16F, one pixel is described as having two elements, but as shown in FIG. 16G, one pixel can be considered to be composed of four elements.
  • FIG. 16H is a modification of the pixel array shown in FIG. 16F.
  • the upper left pixel and lower right pixel shown in FIG. 16H have a light emitting/receiving element 213R and a light emitting element 211G.
  • the upper right pixel and the lower left pixel have a light emitting/receiving element 213R and a light emitting element 211B. That is, in the example shown in FIG. 16H, each pixel is provided with a light emitting/receiving element 213R. Since the light emitting/receiving element 213R is provided in each pixel, the configuration shown in FIG. 16H can perform imaging with higher definition than the configuration shown in FIG. 16F. Thereby, for example, the accuracy of biometric authentication can be improved.
  • FIG. 16I is a modification of the pixel array shown in FIG. 16H, and is a configuration obtained by rotating the pixel array by 45 degrees.
  • one pixel is composed of four elements (two light emitting elements and two light emitting/receiving elements).
  • one pixel has a plurality of light receiving and emitting elements having a light receiving function, so that an image can be captured with high definition. Therefore, the accuracy of biometric authentication can be improved.
  • the imaging resolution can be the root twice the display resolution.
  • a display device to which the configuration shown in FIG. 16H or 16I is applied includes p (p is an integer of 2 or more) first light-emitting elements and q (q is an integer of 2 or more) second light-emitting elements. and r (r is an integer greater than p and greater than q) light receiving and emitting elements.
  • One of the first light emitting element and the second light emitting element emits green light and the other emits blue light.
  • the light receiving/emitting element emits red light and has a light receiving function.
  • the light emitted from the light source is difficult for the user to visually recognize. Since blue light has lower visibility than green light, a light-emitting element that emits blue light is preferably used as a light source. Therefore, it is preferable that the light emitting/receiving element has a function of receiving blue light. It should be noted that the present invention is not limited to this, and a light-emitting element used as a light source can be appropriately selected according to the sensitivity of the light-receiving and emitting element.
  • pixels with various arrangements can be applied to the display device of this embodiment.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a device manufactured using a metal mask or FMM may be referred to as a device with an MM (metal mask) structure.
  • a device manufactured without using a metal mask or FMM may be referred to as a device with an MML (metal maskless) structure.
  • a structure in which a light-emitting layer is separately formed or a light-emitting layer is separately painted in each color light-emitting device is referred to as SBS (Side By Side) structure.
  • SBS Side By Side
  • a light-emitting device capable of emitting white light is sometimes referred to as a white light-emitting device.
  • the white light-emitting device can be combined with a colored layer (for example, a color filter) to form a full-color display device.
  • light-emitting devices can be broadly classified into single structures and tandem structures.
  • a single-structure device preferably has one light-emitting unit between a pair of electrodes, and the light-emitting unit preferably includes one or more light-emitting layers.
  • the light-emitting unit preferably includes one or more light-emitting layers.
  • the luminescent color of the first luminescent layer and the luminescent color of the second luminescent layer have a complementary color relationship, it is possible to obtain a configuration in which the entire light emitting device emits white light.
  • a tandem structure device preferably has two or more light-emitting units between a pair of electrodes, and each light-emitting unit preferably includes one or more light-emitting layers.
  • each light-emitting unit preferably includes one or more light-emitting layers.
  • luminance per predetermined current can be increased, and a light-emitting device with higher reliability than a single structure can be obtained.
  • the white light emitting device when comparing the white light emitting device (single structure or tandem structure) and the light emitting device having the SBS structure, the light emitting device having the SBS structure can consume less power than the white light emitting device. When it is desired to keep power consumption low, it is preferable to use a light-emitting device with an SBS structure. On the other hand, the white light emitting device is preferable because the manufacturing process is simpler than that of the SBS structure light emitting device, so that the manufacturing cost can be lowered or the manufacturing yield can be increased.
  • a display device of one embodiment of the present invention includes a top-emission type in which light is emitted in a direction opposite to a substrate provided with a light-emitting element, a bottom-emission type in which light is emitted toward a substrate provided with a light-emitting element, and a double-sided display device. It may be of any dual-emission type that emits light to .
  • a top emission type display device will be described as an example.
  • a light-emitting layer 383 may be used when describing items common to the light-emitting layer 383R, the light-emitting layer 383G, and the like.
  • the display device 380A shown in FIG. 17A includes a light receiving element 370PD, a light emitting element 370R that emits red (R) light, a light emitting element 370G that emits green (G) light, and a light emitting element 370B that emits blue (B) light.
  • Each light emitting element has a pixel electrode 371, a hole injection layer 381, a hole transport layer 382, a light emitting layer, an electron transport layer 384, an electron injection layer 385, and a common electrode 375 which are stacked in this order.
  • the light emitting element 370R has a light emitting layer 383R
  • the light emitting element 370G has a light emitting layer 383G
  • the light emitting element 370B has a light emitting layer 383B.
  • the light-emitting layer 383R has a light-emitting material that emits red light
  • the light-emitting layer 383G has a light-emitting material that emits green light
  • the light-emitting layer 383B has a light-emitting material that emits blue light.
  • the light-emitting element is an electroluminescence element that emits light toward the common electrode 375 by applying a voltage between the pixel electrode 371 and the common electrode 375 .
  • the light receiving element 370PD has a pixel electrode 371, a hole injection layer 381, a hole transport layer 382, an active layer 373, an electron transport layer 384, an electron injection layer 385, and a common electrode 375 which are laminated in this order.
  • the light receiving element 370PD is a photoelectric conversion element that receives light incident from the outside of the display device 380A and converts it into an electric signal.
  • the pixel electrode 371 functions as an anode and the common electrode 375 functions as a cathode in both the light-emitting element and the light-receiving element.
  • the light receiving element by driving the light receiving element with a reverse bias applied between the pixel electrode 371 and the common electrode 375, the light incident on the light receiving element can be detected, electric charge can be generated, and the electric charge can be extracted as a current.
  • an organic compound is used for the active layer 373 of the light receiving element 370PD.
  • the light-receiving element 370PD can share layers other than the active layer 373 with those of the light-emitting element. Therefore, the light-receiving element 370PD can be formed in parallel with the formation of the light-emitting element simply by adding the step of forming the active layer 373 to the manufacturing process of the light-emitting element. Also, the light emitting element and the light receiving element 370PD can be formed on the same substrate. Therefore, the light-receiving element 370PD can be incorporated in the display device without significantly increasing the number of manufacturing steps.
  • the display device 380A shows an example in which the light receiving element 370PD and the light emitting element have a common configuration except that the active layer 373 of the light receiving element 370PD and the light emitting layer 383 of the light emitting element are separately formed.
  • the configuration of the light receiving element 370PD and the light emitting element is not limited to this.
  • the light receiving element 370PD and the light emitting element may have layers that are made separately from each other. It is preferable that the light-receiving element 370PD and the light-emitting element have at least one layer (common layer) used in common. As a result, the light-receiving element 370PD can be incorporated in the display device without significantly increasing the number of manufacturing processes.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side of the pixel electrode 371 and the common electrode 375 .
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • a micro optical resonator (microcavity) structure is preferably applied to the light emitting element included in the display device of this embodiment. Therefore, one of the pair of electrodes of the light-emitting element preferably has an electrode (semi-transmissive/semi-reflective electrode) that is transparent and reflective to visible light, and the other is an electrode that is reflective to visible light ( reflective electrode). Since the light-emitting element has a microcavity structure, the light emitted from the light-emitting layer can be resonated between the two electrodes, and the light emitted from the light-emitting element can be enhanced.
  • the semi-transmissive/semi-reflective electrode can have a laminated structure of a reflective electrode and an electrode having transparency to visible light (also referred to as a transparent electrode).
  • the light transmittance of the transparent electrode is set to 40% or more.
  • the visible light reflectance of the semi-transmissive/semi-reflective electrode is 10% or more and 95% or less, preferably 30% or more and 80% or less.
  • the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of these electrodes is preferably 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the near-infrared light transmittance or reflectance of these electrodes is similar to the visible light transmittance or reflectance, It is preferable to satisfy the above numerical range.
  • the light-emitting element has at least a light-emitting layer 383 .
  • layers other than the light-emitting layer 383 include a substance with a high hole-injection property, a substance with a high hole-transport property, a hole-blocking material, a substance with a high electron-transport property, a substance with a high electron-injection property, and an electron-blocking material.
  • a layer containing a bipolar substance a substance with high electron-transport properties and high hole-transport properties
  • the light-emitting element and the light-receiving element may have one or more layers in common among the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer.
  • the light-emitting element and the light-receiving element can each have one or more of the hole injection layer, the hole transport layer, the electron transport layer, and the electron injection layer.
  • the hole-injecting layer is a layer that injects holes from the anode into the hole-transporting layer, and contains a material with high hole-injecting properties.
  • a material with high hole-injecting properties an aromatic amine compound or a composite material containing a hole-transporting material and an acceptor material (electron-accepting material) can be used.
  • the hole-transporting layer is a layer that transports holes injected from the anode to the light-emitting layer by means of the hole-injecting layer.
  • the hole-transporting layer is a layer that transports holes generated by incident light in the active layer to the anode.
  • a hole-transporting layer is a layer containing a hole-transporting material.
  • the hole-transporting material a substance having a hole mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these can be used as long as they have a higher hole-transport property than electron-transport property.
  • hole-transporting materials include ⁇ -electron-rich heteroaromatic compounds (e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.), aromatic amines (compounds having an aromatic amine skeleton), and other highly hole-transporting materials. is preferred.
  • ⁇ -electron-rich heteroaromatic compounds e.g., carbazole derivatives, thiophene derivatives, furan derivatives, etc.
  • aromatic amines compounds having an aromatic amine skeleton
  • other highly hole-transporting materials is preferred.
  • the electron transport layer is a layer that transports electrons injected from the cathode to the light-emitting layer by the electron injection layer.
  • the electron transport layer is a layer that transports electrons generated by incident light in the active layer to the cathode.
  • the electron-transporting layer is a layer containing an electron-transporting material.
  • an electron-transporting material a substance having an electron mobility of 1 ⁇ 10 ⁇ 6 cm 2 /Vs or more is preferable. Note that substances other than these substances can be used as long as they have a higher electron-transport property than hole-transport property.
  • electron-transporting materials include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, ⁇ electron deficient including oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives with quinoline ligands, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, and other nitrogen-containing heteroaromatic compounds
  • a material having a high electron transport property such as a type heteroaromatic compound can be used.
  • the electron injection layer is a layer that injects electrons from the cathode to the electron transport layer, and is a layer that contains a material with high electron injection properties.
  • Alkali metals, alkaline earth metals, or compounds thereof can be used as materials with high electron injection properties.
  • a composite material containing an electron-transporting material and a donor material (electron-donating material) can also be used as a material with high electron-injecting properties.
  • the light-emitting layer 383 is a layer containing a light-emitting substance.
  • Emissive layer 383 can have one or more luminescent materials.
  • a substance exhibiting emission colors such as blue, purple, violet, green, yellow-green, yellow, orange, and red is used as appropriate.
  • a substance that emits near-infrared light can be used as the light-emitting substance.
  • Examples of light-emitting substances include fluorescent materials, phosphorescent materials, TADF materials, and quantum dot materials.
  • fluorescent materials include pyrene derivatives, anthracene derivatives, triphenylene derivatives, fluorene derivatives, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, dibenzoquinoxaline derivatives, quinoxaline derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives, and naphthalene derivatives. be done.
  • Examples of phosphorescent materials include organometallic complexes (especially iridium complexes) having a 4H-triazole skeleton, 1H-triazole skeleton, imidazole skeleton, pyrimidine skeleton, pyrazine skeleton, or pyridine skeleton, and phenylpyridine derivatives having an electron-withdrawing group.
  • organometallic complexes especially iridium complexes
  • platinum complexes, rare earth metal complexes, etc. which are used as ligands, can be mentioned.
  • the light-emitting layer 383 may contain one or more organic compounds (host material, assist material, etc.) in addition to the light-emitting substance (guest material).
  • One or both of a hole-transporting material and an electron-transporting material can be used as the one or more organic compounds.
  • Bipolar materials or TADF materials may also be used as one or more organic compounds.
  • the light-emitting layer 383 preferably includes, for example, a phosphorescent material and a combination of a hole-transporting material and an electron-transporting material that easily form an exciplex.
  • ExTET Exciplex-Triplet Energy Transfer
  • a combination that forms an exciplex that emits light that overlaps with the wavelength of the absorption band on the lowest energy side of the light-emitting substance energy transfer becomes smooth and light emission can be efficiently obtained. With this configuration, high efficiency, low-voltage driving, and long life of the light-emitting element can be realized at the same time.
  • the HOMO level (highest occupied orbital level) of the hole-transporting material is higher than the HOMO level of the electron-transporting material.
  • the LUMO level (lowest unoccupied molecular orbital level) of the hole-transporting material is equal to or higher than the LUMO level of the electron-transporting material.
  • the LUMO and HOMO levels of a material can be derived from the material's electrochemical properties (reduction and oxidation potentials) measured by cyclic voltammetry (CV) measurements.
  • Formation of the exciplex is performed by comparing, for example, the emission spectrum of the hole-transporting material, the emission spectrum of the electron-transporting material, and the emission spectrum of a mixed film in which these materials are mixed, and the emission spectrum of the mixed film is the emission spectrum of each material. It can be confirmed by observing a phenomenon that the spectrum shifts to a longer wavelength (or has a new peak on the longer wavelength side).
  • the transient photoluminescence (PL) of the hole-transporting material, the transient PL of the electron-transporting material, and the transient PL of the mixed film in which these materials are mixed are compared, and the transient PL lifetime of the mixed film is the transient PL of each material.
  • the transient PL described above may be read as transient electroluminescence (EL). That is, by comparing the transient EL of a hole-transporting material, the transient EL of a material having an electron-transporting property, and the transient EL of a mixed film thereof, and observing the difference in transient response, the formation of an exciplex can also be confirmed. can do.
  • EL transient electroluminescence
  • the active layer 373 contains a semiconductor.
  • the semiconductor include inorganic semiconductors such as silicon and organic semiconductors including organic compounds.
  • This embodiment mode shows an example in which an organic semiconductor is used as the semiconductor included in the active layer 373 .
  • the light-emitting layer 383 and the active layer 373 can be formed by the same method (for example, a vacuum deposition method), and a manufacturing apparatus can be shared, which is preferable.
  • Materials of the n-type semiconductor included in the active layer 373 include electron-accepting organic semiconductor materials such as fullerenes (eg, C 60 , C 70 , etc.) and fullerene derivatives.
  • Fullerenes have a soccer ball-like shape, which is energetically stable.
  • Fullerene has both deep (low) HOMO and LUMO levels. Since fullerene has a deep LUMO level, it has an extremely high electron-accepting property (acceptor property). Normally, as in benzene, if the ⁇ -electron conjugation (resonance) spreads in the plane, the electron-donating property (donor property) increases. and the electron acceptability becomes higher.
  • a high electron-accepting property is useful as a light-receiving element because charge separation occurs quickly and efficiently.
  • Both C 60 and C 70 have broad absorption bands in the visible light region, and C 70 is particularly preferable because it has a larger ⁇ -electron conjugated system than C 60 and has a wide absorption band in the long wavelength region.
  • [6,6]-Phenyl-C71-butylic acid methyl ester (abbreviation: PC70BM), [6,6]-Phenyl-C61-butylic acid methyl ester (abbreviation: PC60BM), 1′, 1′′,4′,4′′-Tetrahydro-di[1,4]methanonaphthaleno[1,2:2′,3′,56,60:2′′,3′′][5,6]fullerene- C60 (abbreviation: ICBA) etc. are mentioned.
  • n-type semiconductor materials include perylenetetracarboxylic acid derivatives such as N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic acid diimide (abbreviation: Me-PTCDI).
  • n-type semiconductor materials include 2,2′-(5,5′-(thieno[3,2-b]thiophene-2,5-diyl)bis(thiophene-5,2-diyl) ) bis(methan-1-yl-1-ylidene)dimalononitrile (abbreviation: FT2TDMN).
  • Materials for the n-type semiconductor include metal complexes having a quinoline skeleton, metal complexes having a benzoquinoline skeleton, metal complexes having an oxazole skeleton, metal complexes having a thiazole skeleton, oxadiazole derivatives, triazole derivatives, imidazole derivatives, Oxazole derivatives, thiazole derivatives, phenanthroline derivatives, quinoline derivatives, benzoquinoline derivatives, quinoxaline derivatives, dibenzoquinoxaline derivatives, pyridine derivatives, bipyridine derivatives, pyrimidine derivatives, naphthalene derivatives, anthracene derivatives, coumarin derivatives, rhodamine derivatives, triazine derivatives, quinone derivatives, etc. is mentioned.
  • Materials of the p-type semiconductor included in the active layer 373 include copper (II) phthalocyanine (CuPc), tetraphenyldibenzoperiflanthene (DBP), zinc phthalocyanine (ZnPc), tin Electron-donating organic semiconductor materials such as phthalocyanine (SnPc), quinacridone, and rubrene are included.
  • CuPc copper
  • DBP tetraphenyldibenzoperiflanthene
  • ZnPc zinc phthalocyanine
  • Electron-donating organic semiconductor materials such as phthalocyanine (SnPc), quinacridone, and rubrene are included.
  • Examples of p-type semiconductor materials include carbazole derivatives, thiophene derivatives, furan derivatives, and compounds having an aromatic amine skeleton.
  • materials for p-type semiconductors include naphthalene derivatives, anthracene derivatives, pyrene derivatives, triphenylene derivatives, fluorene derivatives, pyrrole derivatives, benzofuran derivatives, benzothiophene derivatives, indole derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, indolocarbazole derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanine derivatives, quinacridone derivatives, rubrene derivatives, tetracene derivatives, polyphenylenevinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinylcarbazole derivatives, polythiophene derivatives and the like.
  • the HOMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the HOMO level of the electron-accepting organic semiconductor material.
  • the LUMO level of the electron-donating organic semiconductor material is preferably shallower (higher) than the LUMO level of the electron-accepting organic semiconductor material.
  • a spherical fullerene as the electron-accepting organic semiconductor material, and use an organic semiconductor material with a shape close to a plane as the electron-donating organic semiconductor material. Molecules with similar shapes tend to gather together, and when molecules of the same type aggregate, the energy levels of the molecular orbitals are close to each other, so the carrier transportability can be enhanced.
  • the active layer 373 is preferably formed by co-depositing an n-type semiconductor and a p-type semiconductor.
  • the active layer 373 may be formed by laminating an n-type semiconductor and a p-type semiconductor.
  • Both low-molecular-weight compounds and high-molecular-weight compounds can be used for the light-emitting element and the light-receiving element, and inorganic compounds may be included.
  • the layers constituting the light-emitting element and the light-receiving element can each be formed by a vapor deposition method (including a vacuum vapor deposition method), a transfer method, a printing method, an inkjet method, a coating method, or the like.
  • polymer compounds such as poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonic acid) (PEDOT/PSS), molybdenum oxide, and iodide Inorganic compounds such as copper (CuI) can be used.
  • Inorganic compounds such as zinc oxide (ZnO) and organic compounds such as polyethyleneimine ethoxylate (PEIE) can be used as the electron-transporting material or the hole-blocking material.
  • the light receiving device may have, for example, a mixed film of PEIE and ZnO.
  • Poly[[4,8-bis[5-(2-ethylhexyl)-2-thienyl]benzo[1,2-b:4,5-b']dithiophene-2 functioning as a donor is added to the active layer 373.
  • Polymer compounds such as 1,3-diyl]]polymer (abbreviation: PBDB-T) or PBDB-T derivatives can be used.
  • PBDB-T 1,3-diyl]]polymer
  • PBDB-T derivatives a method of dispersing an acceptor material in PBDB-T or a PBDB-T derivative can be used.
  • a display device 380B shown in FIG. 17B differs from the display device 380A in that the light receiving element 370PD and the light emitting element 370R have the same configuration.
  • the light receiving element 370PD and the light emitting element 370R have the active layer 373 and the light emitting layer 383R in common.
  • the light-receiving element 370PD has a common configuration with a light-emitting element that emits light with a longer wavelength than the light to be detected.
  • the light receiving element 370PD configured to detect blue light can have the same configuration as one or both of the light emitting elements 370R and 370G.
  • the light receiving element 370PD configured to detect green light can have the same configuration as the light emitting element 370R.
  • the number of film forming processes and the number of masks are reduced compared to a configuration in which the light receiving element 370PD and the light emitting element 370R have layers that are separately formed. can be reduced. Therefore, manufacturing steps and manufacturing costs of the display device can be reduced.
  • the margin for misalignment can be narrowed compared to a structure in which the light receiving element 370PD and the light emitting element 370R have separate layers. .
  • the aperture ratio of the pixel can be increased, and the light extraction efficiency of the display device can be increased. This can extend the life of the light emitting element.
  • the display device can express high luminance. Also, it is possible to increase the definition of the display device.
  • the light-emitting layer 383R has a light-emitting material that emits red light.
  • Active layer 373 comprises an organic compound that absorbs light of wavelengths shorter than red (eg, one or both of green light and blue light).
  • the active layer 373 preferably contains an organic compound that hardly absorbs red light and absorbs light with a wavelength shorter than that of red light. As a result, red light is efficiently extracted from the light emitting element 370R, and the light receiving element 370PD can detect light with a shorter wavelength than red light with high accuracy.
  • the display device 380B an example in which the light emitting element 370R and the light receiving element 370PD have the same configuration is shown, but the light emitting element 370R and the light receiving element 370PD may have optical adjustment layers with different thicknesses.
  • a display device 380C shown in FIGS. 18A and 18B has a light receiving/emitting element 370SR, a light emitting element 370G, and a light emitting element 370B which emit red (R) light and have a light receiving function.
  • the above display device 380A and the like can be used for the configuration of the light emitting elements 370G and 370B.
  • the light emitting/receiving element 370SR has a pixel electrode 371, a hole injection layer 381, a hole transport layer 382, an active layer 373, a light emitting layer 383R, an electron transport layer 384, an electron injection layer 385, and a common electrode 375 stacked in this order.
  • the light emitting/receiving element 370SR has the same configuration as the light emitting element 370R and the light receiving element 370PD exemplified in the display device 380B.
  • FIG. 18A shows a case where the light emitting/receiving element 370SR functions as a light emitting element.
  • FIG. 18A shows an example in which the light emitting element 370B emits blue light, the light emitting element 370G emits green light, and the light receiving/emitting element 370SR emits red light.
  • FIG. 18B shows a case where the light emitting/receiving element 370SR functions as a light receiving element.
  • FIG. 18B shows an example in which the light receiving/emitting element 370SR receives blue light emitted by the light emitting element 370B and green light emitted by the light emitting element 370G.
  • the light emitting element 370B, the light emitting element 370G, and the light emitting/receiving element 370SR each have a pixel electrode 371 and a common electrode 375.
  • a case where the pixel electrode 371 functions as an anode and the common electrode 375 functions as a cathode will be described as an example.
  • the light emitting/receiving element 370SR is driven by applying a reverse bias between the pixel electrode 371 and the common electrode 375, thereby detecting light incident on the light emitting/receiving element 370SR, generating electric charges, and extracting them as current. .
  • the light emitting/receiving element 370SR can be said to have a configuration in which an active layer 373 is added to the light emitting element.
  • the light emitting/receiving element 370SR can be formed in parallel with the formation of the light emitting element simply by adding the step of forming the active layer 373 to the manufacturing process of the light emitting element.
  • the light emitting element and the light receiving/emitting element can be formed on the same substrate. Therefore, one or both of an imaging function and a sensing function can be imparted to the display portion without significantly increasing the number of manufacturing steps.
  • the stacking order of the light emitting layer 383R and the active layer 373 is not limited.
  • 18A and 18B show an example in which an active layer 373 is provided on the hole transport layer 382 and a light emitting layer 383R is provided on the active layer 373.
  • FIG. The stacking order of the light emitting layer 383R and the active layer 373 may be changed.
  • the light receiving and emitting element may not have at least one of the hole injection layer 381, the hole transport layer 382, the electron transport layer 384, and the electron injection layer 385.
  • the light emitting/receiving element may have other functional layers such as a hole blocking layer and an electron blocking layer.
  • a conductive film that transmits visible light is used for the electrode on the light extraction side.
  • a conductive film that reflects visible light is preferably used for the electrode on the side from which light is not extracted.
  • each layer constituting the light emitting/receiving element is the same as the functions and materials of the layers constituting the light emitting element and the light receiving element, so detailed description thereof will be omitted.
  • 18C to 18G show examples of laminated structures of light receiving and emitting elements.
  • the light emitting and receiving element shown in FIG. 18C includes a first electrode 377, a hole injection layer 381, a hole transport layer 382, a light emitting layer 383R, an active layer 373, an electron transport layer 384, an electron injection layer 385, and a second electrode. 378.
  • FIG. 18C is an example in which a light emitting layer 383R is provided on the hole transport layer 382 and an active layer 373 is laminated on the light emitting layer 383R.
  • the active layer 373 and the light emitting layer 383R may be in contact with each other.
  • a buffer layer is preferably provided between the active layer 373 and the light emitting layer 383R.
  • the buffer layer preferably has hole-transporting properties and electron-transporting properties.
  • at least one of a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a hole block layer, an electron block layer, and the like can be used as the buffer layer.
  • FIG. 18D shows an example of using a hole transport layer 382 as a buffer layer.
  • a buffer layer between the active layer 373 and the light emitting layer 383R By providing a buffer layer between the active layer 373 and the light emitting layer 383R, it is possible to suppress the transfer of excitation energy from the light emitting layer 383R to the active layer 373.
  • the buffer layer can also be used to adjust the optical path length (cavity length) of the microcavity structure. Therefore, a light emitting/receiving element having a buffer layer between the active layer 373 and the light emitting layer 383R can provide high light emitting efficiency.
  • FIG. 18E is an example having a layered structure in which a hole transport layer 382-1, an active layer 373, a hole transport layer 382-2, and a light emitting layer 383R are layered on the hole injection layer 381 in this order.
  • the hole transport layer 382-2 functions as a buffer layer.
  • the hole transport layer 382-1 and the hole transport layer 381-2 may contain the same material or may contain different materials. Further, the above layer that can be used for the buffer layer may be used instead of the hole-transport layer 381-2. Also, the positions of the active layer 373 and the light emitting layer 383R may be exchanged.
  • the light emitting/receiving element shown in FIG. 18F differs from the light emitting/receiving element shown in FIG. 18A in that it does not have a hole transport layer 382 .
  • the light receiving and emitting device may not have at least one of the hole injection layer 381, the hole transport layer 382, the electron transport layer 384, and the electron injection layer 385.
  • the light emitting/receiving element may have other functional layers such as a hole blocking layer and an electron blocking layer.
  • the light emitting/receiving element shown in FIG. 18G differs from the light emitting/receiving element shown in FIG. 18A in that it does not have an active layer 373 and a light emitting layer 383R, but has a layer 389 that serves both as a light emitting layer and an active layer.
  • Layers that serve as both a light-emitting layer and an active layer include, for example, an n-type semiconductor that can be used for the active layer 373, a p-type semiconductor that can be used for the active layer 373, and a light-emitting substance that can be used for the light-emitting layer 383R.
  • a layer containing three materials can be used.
  • the absorption band on the lowest energy side of the absorption spectrum of the mixed material of the n-type semiconductor and the p-type semiconductor and the maximum peak of the emission spectrum (PL spectrum) of the light-emitting substance do not overlap each other. More preferably away.
  • a pixel can have a structure in which a plurality of types of sub-pixels having light-emitting devices emitting different colors are provided.
  • a pixel can be configured to have three types of sub-pixels.
  • the three sub-pixels are red (R), green (G), and blue (B) sub-pixels, and yellow (Y), cyan (C), and magenta (M) sub-pixels. etc.
  • the pixel can be configured to have four types of sub-pixels. Examples of the four sub-pixels include R, G, B, and white (W) sub-pixels, and R, G, B, and Y sub-pixels.
  • the arrangement of sub-pixels includes, for example, a stripe arrangement, an S-stripe arrangement, a matrix arrangement, a delta arrangement, a Bayer arrangement, and a pentile arrangement.
  • top surface shapes of sub-pixels include triangles, quadrilaterals (including rectangles and squares), polygons such as pentagons, shapes with rounded corners of these polygons, ellipses, and circles.
  • the top surface shape of the sub-pixel here corresponds to the top surface shape of the light emitting region of the light emitting device.
  • a display device having a light-emitting device and a light-receiving device in a pixel, since the pixel has a light-receiving function, it is possible to detect contact or proximity of an object while displaying an image. For example, not only can an image be displayed by all the sub-pixels of the display device, but also some sub-pixels can emit light as a light source and the remaining sub-pixels can be used to display an image.
  • the pixels shown in FIGS. 19A, 19B, and 19C have sub-pixels G, sub-pixels B, sub-pixels R, and sub-pixels PS.
  • a stripe arrangement is applied to the pixels shown in FIG. 19A.
  • a matrix arrangement is applied to the pixels shown in FIG. 19B.
  • the pixel arrangement shown in FIG. 19C has a configuration in which three sub-pixels (sub-pixel R, sub-pixel G, and sub-pixel S) are vertically arranged next to one sub-pixel (sub-pixel B).
  • the pixels shown in FIGS. 19D, 19E, and 19F have sub-pixels G, sub-pixels B, sub-pixels R, sub-pixels IR, and sub-pixels PS.
  • 19D, 19E, and 19F show examples in which one pixel is provided over two rows.
  • Three sub-pixels (sub-pixel G, sub-pixel B, sub-pixel R) are provided in the upper row (first row), and two sub-pixels (one sub-pixel) are provided in the lower row (second row).
  • a pixel PS and one sub-pixel IR) are provided.
  • FIG. 19D three vertically long sub-pixels G, B, and R are arranged horizontally, and below them, a sub-pixel PS and a horizontally long sub-pixel IR are horizontally arranged.
  • FIG. 19E two horizontally long sub-pixels G and R are arranged vertically, horizontally long sub-pixels B are arranged horizontally, and horizontally long sub-pixels IR and vertically long sub-pixels PS are arranged below them. are arranged side by side.
  • FIG. 19F vertically long sub-pixels R, sub-pixels G, and sub-pixels B are arranged horizontally, and horizontally long sub-pixels IR and vertically long sub-pixels PS are horizontally arranged below them.
  • 19E and 19F show the case where the area of the sub-pixel IR is the largest and the area of the sub-pixel PS is approximately the same as that of the sub-pixels.
  • the sub-pixel R has a light-emitting device that emits red light.
  • Sub-pixel G has a light-emitting device that emits green light.
  • Sub-pixel B has a light-emitting device that emits blue light.
  • Sub-pixel IR has a light-emitting device that emits infrared light.
  • the sub-pixel PS has a light receiving device.
  • the wavelength of light detected by the sub-pixel PS is not particularly limited, but the light-receiving device included in the sub-pixel PS is sensitive to the light emitted by the light-emitting device included in the sub-pixel R, sub-pixel G, sub-pixel B, or IR. It is preferable to have For example, it is preferable to detect one or more of light in wavelength ranges such as blue, purple, blue-violet, green, yellow-green, yellow, orange, and red, and light in an infrared wavelength range.
  • the light receiving area of the sub-pixel PS is smaller than the light emitting area of the other sub-pixels.
  • the sub-pixels PS can be used to capture images for personal authentication using a fingerprint, palm print, iris, pulse shape (including vein shape and artery shape), face, or the like.
  • the sub-pixel PS can be used for a touch sensor (also called a direct touch sensor) or a near-touch sensor (also called a hover sensor, a hover touch sensor, a non-contact sensor, or a touchless sensor).
  • a touch sensor also called a direct touch sensor
  • a near-touch sensor also called a hover sensor, a hover touch sensor, a non-contact sensor, or a touchless sensor
  • the sub-pixel PS preferably detects infrared light. This enables touch detection even in dark places.
  • the touch sensor or near-touch sensor can detect the proximity or contact of an object (finger, hand, pen, etc.).
  • a touch sensor can detect an object by direct contact between the display device and the object.
  • the near-touch sensor can detect the object even if the object does not touch the display device.
  • the display device can detect the object when the distance between the display device and the object is 0.1 mm or more and 300 mm or less, preferably 3 mm or more and 50 mm or less.
  • the display device can be operated without direct contact with the object, in other words, the display device can be operated without contact.
  • the risk of staining or scratching the display device can be reduced, or the object can be displayed without directly touching the stain (for example, dust or virus) attached to the display device. It becomes possible to operate the device.
  • the sub-pixels PS are provided in all the pixels included in the display device.
  • the sub-pixel PS is used for a touch sensor or a near-touch sensor, high precision is not required compared to the case of capturing an image of a fingerprint, and therefore, some pixels included in the display device are provided with the sub-pixel PS. All you have to do is By making the number of sub-pixels PS included in the display device smaller than the number of sub-pixels R and the like, the detection speed can be increased.
  • FIG. 19G shows an example of a pixel circuit of a sub-pixel having a light receiving device
  • FIG. 19H shows an example of a pixel circuit of a sub-pixel having a light emitting device.
  • a pixel circuit PIX1 shown in FIG. 19G has a light receiving device PD, a transistor M11, a transistor M12, a transistor M13, a transistor M14, and a capacitive element C2.
  • a light receiving device PD a transistor M11, a transistor M12, a transistor M13, a transistor M14, and a capacitive element C2.
  • an example using a photodiode is shown as the light receiving device PD.
  • the light receiving device PD has an anode electrically connected to the wiring V1 and a cathode electrically connected to one of the source or drain of the transistor M11.
  • the transistor M11 has its gate electrically connected to the wiring TX, and the other of its source and drain electrically connected to one electrode of the capacitor C2, one of the source and drain of the transistor M12, and the gate of the transistor M13.
  • the transistor M12 has a gate electrically connected to the wiring RES and the other of the source and the drain electrically connected to the wiring V2.
  • One of the source and the drain of the transistor M13 is electrically connected to the wiring V3, and the other of the source and the drain is electrically connected to one of the source and the drain of the transistor M14.
  • the transistor M14 has a gate electrically connected to the wiring SE and the other of the source and the drain electrically connected to the wiring OUT1.
  • a constant potential is supplied to each of the wiring V1, the wiring V2, and the wiring V3.
  • the wiring V2 is supplied with a potential higher than that of the wiring V1.
  • the transistor M12 is controlled by a signal supplied to the wiring RES, and has a function of resetting the potential of the node connected to the gate of the transistor M13 to the potential supplied to the wiring V2.
  • the transistor M11 is controlled by a signal supplied to the wiring TX, and has a function of controlling the timing at which the potential of the node changes according to the current flowing through the light receiving device PD.
  • the transistor M13 functions as an amplifying transistor that outputs according to the potential of the node.
  • the transistor M14 is controlled by a signal supplied to the wiring SE, and functions as a selection transistor for reading an output corresponding to the potential of the node by an external circuit connected to the wiring OUT1.
  • a pixel circuit PIX2 shown in FIG. 19H has a light emitting device EL, a transistor M15, a transistor M16, a transistor M17, and a capacitive element C3.
  • a light emitting device EL an example using a light-emitting diode is shown as the light-emitting device EL.
  • an organic EL element it is preferable to use an organic EL element as the light emitting device EL.
  • the transistor M15 has a gate electrically connected to the wiring VG, one of the source and the drain electrically connected to the wiring VS, and the other of the source and the drain being connected to one electrode of the capacitor C3 and the gate of the transistor M16.
  • electrically connected to the One of the source and drain of the transistor M16 is electrically connected to the wiring V4, and the other is electrically connected to the anode of the light emitting device EL and one of the source and drain of the transistor M17.
  • the transistor M17 has a gate electrically connected to the wiring MS and the other of the source and the drain electrically connected to the wiring OUT2.
  • a cathode of the light emitting device EL is electrically connected to the wiring V5.
  • a constant potential is supplied to each of the wiring V4 and the wiring V5.
  • the anode side of the light emitting device EL can be at a higher potential and the cathode side can be at a lower potential than the anode side.
  • the transistor M15 is controlled by a signal supplied to the wiring VG and functions as a selection transistor for controlling the selection state of the pixel circuit PIX2.
  • the transistor M16 functions as a driving transistor that controls the current flowing through the light emitting device EL according to the potential supplied to its gate. When the transistor M15 is on, the potential supplied to the wiring VS is supplied to the gate of the transistor M16, and the light emission luminance of the light emitting device EL can be controlled according to the potential.
  • the transistor M17 is controlled by a signal supplied to the wiring MS, and has a function of outputting the potential between the transistor M16 and the light emitting device EL to the outside through the wiring OUT2.
  • transistor M11 the transistor M12, the transistor M13, and the transistor M14 included in the pixel circuit PIX1
  • metal is added to semiconductor layers in which channels are formed.
  • a transistor including an oxide (oxide semiconductor) is preferably used.
  • a transistor that uses metal oxide which has a wider bandgap than silicon and a lower carrier density, can achieve extremely low off-current. Therefore, the small off-state current can hold charge accumulated in the capacitor connected in series with the transistor for a long time. Therefore, transistors including an oxide semiconductor are preferably used particularly for the transistor M11, the transistor M12, and the transistor M15 which are connected in series to the capacitor C2 or the capacitor C3. Further, by using a transistor including an oxide semiconductor for other transistors, the manufacturing cost can be reduced.
  • the off current value of the OS transistor per 1 ⁇ m channel width at room temperature is 1 aA (1 ⁇ 10 ⁇ 18 A) or less, 1 zA (1 ⁇ 10 ⁇ 21 A) or less, or 1 yA (1 ⁇ 10 ⁇ 24 A).
  • the off current value of the Si transistor per 1 ⁇ m channel width at room temperature is 1 fA (1 ⁇ 10 ⁇ 15 A) or more and 1 pA (1 ⁇ 10 ⁇ 12 A) or less. Therefore, it can be said that the off-state current of the OS transistor is about ten digits lower than the off-state current of the Si transistor.
  • transistors in which silicon is used as a semiconductor in which a channel is formed can be used for the transistors M11 to M17.
  • highly crystalline silicon such as single crystal silicon or polycrystalline silicon because high field-effect mobility can be achieved and high-speed operation is possible.
  • At least one of the transistors M11 to M17 may be formed using an oxide semiconductor, and the rest may be formed using silicon.
  • transistors are shown as n-channel transistors in FIGS. 19G and 19H, p-channel transistors can also be used.
  • the transistors included in the pixel circuit PIX1 and the transistors included in the pixel circuit PIX2 are preferably formed side by side on the same substrate. In particular, it is preferable that the transistors included in the pixel circuit PIX1 and the transistors included in the pixel circuit PIX2 are mixed in one region and periodically arranged.
  • each pixel circuit it is preferable to provide one or a plurality of layers having one or both of a transistor and a capacitive element at positions overlapping with the light receiving device PD or the light emitting device EL.
  • the effective area occupied by each pixel circuit can be reduced, and a high-definition light receiving section or display section can be realized.
  • the amount of current flowing through the light emitting device EL included in the pixel circuit is necessary to increase the amount of current flowing through the light emitting device EL.
  • the OS transistor when the transistor operates in the saturation region, the OS transistor can reduce the change in the current between the source and the drain with respect to the change in the voltage between the gate and the source compared to the Si transistor. Therefore, by applying an OS transistor as a drive transistor included in a pixel circuit, the current flowing between the source and the drain can be finely determined according to the change in the voltage between the gate and the source. can be controlled. Therefore, it is possible to increase the gradation in the pixel circuit.
  • the OS transistor flows a more stable current (saturation current) than the Si transistor even when the source-drain voltage gradually increases. be able to. Therefore, by using the OS transistor as the driving transistor, a stable current can be supplied to the light-emitting device even if the current-voltage characteristics of the light-emitting device including the EL material are varied. That is, when the OS transistor operates in the saturation region, even if the source-drain voltage is increased, the source-drain current hardly changes, so that the light emission luminance of the light-emitting device can be stabilized.
  • an OS transistor as a driving transistor included in a pixel circuit, it is possible to suppress black floating, increase emission luminance, provide multiple gradations, and suppress variations in light emitting devices. can be planned.
  • the display device of one embodiment of the present invention can have a variable refresh rate.
  • the power consumption can be reduced by adjusting the refresh rate (for example, in the range of 0.01 Hz to 240 Hz) according to the content displayed on the display device.
  • driving that reduces the power consumption of the display device by driving with a reduced refresh rate may be referred to as idling stop (IDS) driving.
  • IDS idling stop
  • the drive frequency of the touch sensor or the near touch sensor may be changed according to the refresh rate. For example, when the refresh rate of the display device is 120 Hz, the driving frequency of the touch sensor or the near-touch sensor can be higher than 120 Hz (typically 240 Hz). With this structure, low power consumption can be achieved and the response speed of the touch sensor or the near touch sensor can be increased.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • Display panel configuration example Wearable electronic devices for VR, AR, etc. can provide 3D images by using parallax. In that case, it is necessary to display the image for the right eye in the field of view of the right eye and the image for the left eye in the field of view of the left eye, respectively.
  • the shape of the display portion of the display device may be a horizontally long rectangular shape, but the pixels provided outside the field of view of the right eye and the left eye do not contribute to the display, so the pixels always display black. It will happen.
  • the display portion of the display panel is divided into two regions for the right eye and the left eye, and pixels are not arranged in the outer region that does not contribute to display.
  • power consumption required for pixel writing can be reduced.
  • the load on the source line, the gate line, and the like is reduced, display with a high frame rate is possible. As a result, a smooth moving image can be displayed, and a sense of reality can be enhanced.
  • FIG. 20A shows a configuration example of the display panel.
  • a left-eye display section 702L and a right-eye display section 702R are arranged inside the substrate 701 .
  • a driver circuit, wiring, an IC, an FPC, and the like may be arranged on the substrate 701.
  • FIG. 20A shows a configuration example of the display panel.
  • a left-eye display section 702L and a right-eye display section 702R are arranged inside the substrate 701 .
  • a driver circuit, wiring, an IC, an FPC, and the like may be arranged on the substrate 701.
  • a display section 702L and a display section 702R shown in FIG. 20A have a square top surface shape.
  • the top surface shape of the display portion 702L and the display portion 702R may be other regular polygons.
  • 20B shows an example of a regular hexagon
  • FIG. 20C shows an example of a regular octagon
  • FIG. 20D shows an example of a regular decagon
  • FIG. An example of a rectangular shape is shown.
  • Polygons other than regular polygons may also be used.
  • a regular polygon with rounded corners or a polygon may also be used.
  • the straight line portion of the outline of each display section may not be a straight line, and there may be a stepped portion.
  • a linear portion that is not parallel to the pixel arrangement direction has a stepped top surface shape.
  • the user views the image without visually recognizing the shape of the pixels, even if the oblique outline of the display section is strictly stepped, it can be regarded as a straight line.
  • the curved portion of the outline of the display section is strictly stepped, it can be regarded as a curved line.
  • FIG. 20F shows an example in which the upper surface shape of the display section 702L and the display section 702R is circular.
  • the upper surface shapes of the display section 702L and the display section 702R may be bilaterally asymmetric. Also, they do not have to be regular polygons.
  • FIG. 20G shows an example in which the upper surface shape of the display section 702L and the display section 702R is a left-right asymmetrical octagon.
  • FIG. 20H shows an example of a regular heptagon. In this way, even when the upper surface shapes of the display portions 702L and 702R are asymmetrical, it is preferable that the display portions 702L and 702R are arranged symmetrically. As a result, it is possible to provide an image that does not give a sense of discomfort.
  • FIG. 20I is an example in which two circular display portions 702 in FIG. 20F are connected.
  • FIG. 20J is an example in which the two regular octagonal display portions 702 in FIG. 20C are connected.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • a metal oxide used for an OS transistor preferably contains at least indium or zinc, and more preferably contains indium and zinc.
  • metal oxides include indium and M (where M is gallium, aluminum, yttrium, tin, silicon, boron, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lanthanum, cerium, neodymium). , hafnium, tantalum, tungsten, magnesium, and cobalt) and zinc.
  • M is preferably one or more selected from gallium, aluminum, yttrium and tin, more preferably gallium.
  • the metal oxide is formed by chemical vapor deposition (CVD) such as sputtering, metal organic chemical vapor deposition (MOCVD), or atomic layer deposition (ALD). It can be formed by a layer deposition method or the like.
  • CVD chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • ALD atomic layer deposition
  • oxides containing indium (In), gallium (Ga), and zinc (Zn) will be described as examples of metal oxides. Note that an oxide containing indium (In), gallium (Ga), and zinc (Zn) is sometimes called an In--Ga--Zn oxide.
  • Crystal structures of oxide semiconductors include amorphous (including completely amorphous), CAAC (c-axis-aligned crystalline), nc (nanocrystalline), CAC (cloud-aligned composite), single crystal, and polycrystal. (poly crystal) and the like.
  • the crystal structure of the film or substrate can be evaluated using an X-ray diffraction (XRD) spectrum.
  • XRD X-ray diffraction
  • it can be evaluated using an XRD spectrum obtained by GIXD (Grazing-Incidence XRD) measurement.
  • GIXD Gram-Incidence XRD
  • the GIXD method is also called a thin film method or a Seemann-Bohlin method.
  • the XRD spectrum obtained by the GIXD measurement may be simply referred to as the XRD spectrum.
  • the shape of the peak of the XRD spectrum is almost bilaterally symmetrical.
  • the shape of the peak of the XRD spectrum is left-right asymmetric.
  • the asymmetric shape of the peaks in the XRD spectra demonstrates the presence of crystals in the film or substrate. In other words, the film or substrate cannot be said to be in an amorphous state unless the shape of the peaks in the XRD spectrum is symmetrical.
  • the crystal structure of the film or substrate can be evaluated by a diffraction pattern (also referred to as a nano beam electron diffraction pattern) observed by nano beam electron diffraction (NBED).
  • a diffraction pattern also referred to as a nano beam electron diffraction pattern
  • NBED nano beam electron diffraction
  • a halo is observed in the diffraction pattern of a quartz glass substrate, and it can be confirmed that the quartz glass is in an amorphous state.
  • a spot-like pattern is observed instead of a halo. For this reason, it is presumed that it cannot be concluded that the In-Ga-Zn oxide deposited at room temperature is in an intermediate state, neither single crystal nor polycrystal, nor amorphous state, and is in an amorphous state. be done.
  • oxide semiconductors may be classified differently from the above when their structures are focused. For example, oxide semiconductors are classified into single-crystal oxide semiconductors and non-single-crystal oxide semiconductors. Examples of non-single-crystal oxide semiconductors include the above CAAC-OS and nc-OS. Non-single-crystal oxide semiconductors include polycrystalline oxide semiconductors, amorphous-like oxide semiconductors (a-like OS), amorphous oxide semiconductors, and the like.
  • CAAC-OS is an oxide semiconductor that includes a plurality of crystal regions, and the c-axes of the plurality of crystal regions are oriented in a specific direction. Note that the specific direction is the thickness direction of the CAAC-OS film, the normal direction to the formation surface of the CAAC-OS film, or the normal direction to the surface of the CAAC-OS film.
  • a crystalline region is a region having periodicity in atomic arrangement. If the atomic arrangement is regarded as a lattice arrangement, the crystalline region is also a region with a uniform lattice arrangement.
  • CAAC-OS has a region where a plurality of crystal regions are connected in the a-b plane direction, and the region may have strain.
  • the strain refers to a portion where the orientation of the lattice arrangement changes between a region with a uniform lattice arrangement and another region with a uniform lattice arrangement in a region where a plurality of crystal regions are connected. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and has no obvious orientation in the ab plane direction.
  • each of the plurality of crystal regions is composed of one or more microcrystals (crystals having a maximum diameter of less than 10 nm).
  • the maximum diameter of the crystalline region is less than 10 nm.
  • the size of the crystal region may be about several tens of nanometers.
  • the CAAC-OS includes a layer containing indium (In) and oxygen (hereinafter referred to as an In layer) and a layer containing gallium (Ga), zinc (Zn), and oxygen (
  • In layer a layer containing indium (In) and oxygen
  • Ga gallium
  • Zn zinc
  • oxygen oxygen
  • it tends to have a layered crystal structure (also referred to as a layered structure) in which (Ga, Zn) layers are laminated.
  • the (Ga, Zn) layer may contain indium.
  • the In layer may contain gallium.
  • the In layer may contain zinc.
  • the layered structure is observed as a lattice image in, for example, a high-resolution TEM (Transmission Electron Microscope) image.
  • a plurality of bright points are observed in the electron beam diffraction pattern of the CAAC-OS film.
  • a certain spot and another spot are observed at point-symmetrical positions with respect to the spot of the incident electron beam that has passed through the sample (also referred to as a direct spot) as the center of symmetry.
  • the lattice arrangement in the crystal region is basically a hexagonal lattice, but the unit cell is not always a regular hexagon and may be a non-regular hexagon. Moreover, the distortion may have a lattice arrangement such as a pentagon or a heptagon.
  • the distortion of the lattice arrangement suppresses the formation of grain boundaries. This is because the CAAC-OS can tolerate strain due to the fact that the arrangement of oxygen atoms is not dense in the ab plane direction, the bond distance between atoms changes due to the substitution of metal atoms, and the like. It is considered to be for
  • a crystal structure in which clear grain boundaries are confirmed is called a polycrystal.
  • a grain boundary becomes a recombination center, traps carriers, and is highly likely to cause a decrease in on-current of a transistor, a decrease in field-effect mobility, and the like. Therefore, a CAAC-OS in which no clear grain boundaries are observed is one of crystalline oxides having a crystal structure suitable for a semiconductor layer of a transistor.
  • a structure containing Zn is preferable for forming a CAAC-OS.
  • In--Zn oxide and In--Ga--Zn oxide are preferable because they can suppress the generation of grain boundaries more than In oxide.
  • CAAC-OS is an oxide semiconductor with high crystallinity and no clear crystal grain boundaries. Therefore, it can be said that the decrease in electron mobility due to grain boundaries is less likely to occur in CAAC-OS.
  • a CAAC-OS can be said to be an oxide semiconductor with few impurities and defects (such as oxygen vacancies). Therefore, an oxide semiconductor including CAAC-OS has stable physical properties. Therefore, an oxide semiconductor including CAAC-OS is resistant to heat and has high reliability.
  • CAAC-OS is also stable against high temperatures (so-called thermal budget) in the manufacturing process. Therefore, the use of the CAAC-OS for the OS transistor makes it possible to increase the degree of freedom in the manufacturing process.
  • nc-OS has periodic atomic arrangement in a minute region (eg, a region of 1 nm to 10 nm, particularly a region of 1 nm to 3 nm).
  • the nc-OS has minute crystals.
  • the size of the minute crystal is, for example, 1 nm or more and 10 nm or less, particularly 1 nm or more and 3 nm or less, the minute crystal is also called a nanocrystal.
  • nc-OS does not show regularity in crystal orientation between different nanocrystals. Therefore, no orientation is observed in the entire film.
  • an nc-OS may be indistinguishable from an a-like OS or an amorphous oxide semiconductor depending on the analysis method.
  • an nc-OS film is subjected to structural analysis using an XRD apparatus, out-of-plane XRD measurement using ⁇ /2 ⁇ scanning does not detect a peak indicating crystallinity.
  • an nc-OS film is subjected to electron beam diffraction (also referred to as selected area electron beam diffraction) using an electron beam with a probe diameter larger than that of nanocrystals (for example, 50 nm or more), a diffraction pattern such as a halo pattern is obtained. is observed.
  • an nc-OS film is subjected to electron diffraction (also referred to as nanobeam electron diffraction) using an electron beam with a probe diameter close to or smaller than the size of a nanocrystal (for example, 1 nm or more and 30 nm or less)
  • an electron beam diffraction pattern is obtained in which a plurality of spots are observed within a ring-shaped area centered on the direct spot.
  • An a-like OS is an oxide semiconductor having a structure between an nc-OS and an amorphous oxide semiconductor.
  • An a-like OS has void or low density regions. That is, the a-like OS has lower crystallinity than the nc-OS and CAAC-OS. In addition, the a-like OS has a higher hydrogen concentration in the film than the nc-OS and the CAAC-OS.
  • CAC-OS relates to material composition.
  • CAC-OS is, for example, one structure of a material in which elements constituting a metal oxide are unevenly distributed with a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or in the vicinity thereof.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size in the vicinity thereof.
  • the mixed state is also called mosaic or patch.
  • CAC-OS is a structure in which the material is separated into a first region and a second region to form a mosaic shape, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). ). That is, CAC-OS is a composite metal oxide in which the first region and the second region are mixed.
  • the atomic ratios of In, Ga, and Zn to the metal elements constituting the CAC-OS in the In--Ga--Zn oxide are denoted by [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region where [Ga] is greater than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region whose main component is indium oxide, indium zinc oxide, or the like.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Also, the second region can be rephrased as a region containing Ga as a main component.
  • a clear boundary between the first region and the second region may not be observed.
  • the CAC-OS in the In—Ga—Zn oxide means a region containing Ga as a main component and a region containing In as a main component in a material structure containing In, Ga, Zn, and O. Each region is a mosaic, and refers to a configuration in which these regions exist randomly. Therefore, CAC-OS is presumed to have a structure in which metal elements are unevenly distributed.
  • a CAC-OS can be formed, for example, by a sputtering method under the condition that the substrate is not intentionally heated.
  • a sputtering method one or more selected from an inert gas (typically argon), an oxygen gas, and a nitrogen gas may be used as a deposition gas. good.
  • the flow rate ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is preferably as low as possible.
  • the flow ratio of the oxygen gas to the total flow rate of the film forming gas during film formation is 0% or more and less than 30%, preferably 0% or more and 10% or less.
  • an EDX mapping obtained using energy dispersive X-ray spectroscopy shows that a region containing In as a main component It can be confirmed that the (first region) and the region (second region) containing Ga as the main component are unevenly distributed and have a mixed structure.
  • the first region is a region with higher conductivity than the second region. That is, when carriers flow through the first region, conductivity as a metal oxide is developed. Therefore, by distributing the first region in the form of a cloud in the metal oxide, a high field effect mobility ( ⁇ ) can be realized.
  • the second region is a region with higher insulation than the first region.
  • the leakage current can be suppressed by distributing the second region in the metal oxide.
  • CAC-OS when used for a transistor, the conductivity caused by the first region and the insulation caused by the second region act in a complementary manner to provide a switching function (turning ON/OFF). functions) can be given to the CAC-OS.
  • a part of the material has a conductive function
  • a part of the material has an insulating function
  • the whole material has a semiconductor function.
  • CAC-OS is most suitable for various semiconductor devices including display devices.
  • Oxide semiconductors have a variety of structures, each with different characteristics.
  • An oxide semiconductor of one embodiment of the present invention includes two or more of an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, an a-like OS, a CAC-OS, an nc-OS, and a CAAC-OS. may
  • an oxide semiconductor with low carrier concentration is preferably used for a transistor.
  • the carrier concentration of the oxide semiconductor is 1 ⁇ 10 17 cm ⁇ 3 or less, preferably 1 ⁇ 10 15 cm ⁇ 3 or less, more preferably 1 ⁇ 10 13 cm ⁇ 3 or less, more preferably 1 ⁇ 10 11 cm ⁇ 3 or less. 3 or less, more preferably less than 1 ⁇ 10 10 cm ⁇ 3 and 1 ⁇ 10 ⁇ 9 cm ⁇ 3 or more.
  • the impurity concentration in the oxide semiconductor film may be lowered to lower the defect level density.
  • a low impurity concentration and a low defect level density are referred to as high-purity intrinsic or substantially high-purity intrinsic.
  • an oxide semiconductor with a low carrier concentration is sometimes referred to as a highly purified intrinsic or substantially highly purified intrinsic oxide semiconductor.
  • the trap level density may also be low.
  • the charge trapped in the trap level of the oxide semiconductor takes a long time to disappear, and may behave as if it were a fixed charge. Therefore, a transistor whose channel formation region is formed in an oxide semiconductor with a high trap level density might have unstable electrical characteristics.
  • Impurities include hydrogen, nitrogen, alkali metals, alkaline earth metals, iron, nickel, silicon, and the like.
  • the impurities in the oxide semiconductor refer to, for example, substances other than the main components of the oxide semiconductor. For example, an element whose concentration is less than 0.1 atomic percent can be said to be an impurity.
  • the concentration of silicon or carbon in the oxide semiconductor and the concentration of silicon or carbon in the vicinity of the interface with the oxide semiconductor are 2 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 17 atoms/cm 3 or less.
  • the concentration of alkali metal or alkaline earth metal in the oxide semiconductor obtained by SIMS is set to 1 ⁇ 10 18 atoms/cm 3 or less, preferably 2 ⁇ 10 16 atoms/cm 3 or less.
  • the nitrogen concentration in the oxide semiconductor obtained by SIMS is less than 5 ⁇ 10 19 atoms/cm 3 , preferably 5 ⁇ 10 18 atoms/cm 3 or less, more preferably 1 ⁇ 10 18 atoms/cm 3 or less. , more preferably 5 ⁇ 10 17 atoms/cm 3 or less.
  • the oxide semiconductor reacts with oxygen that bonds to a metal atom to form water, which may cause oxygen vacancies.
  • oxygen vacancies When hydrogen enters the oxygen vacancies, electrons, which are carriers, may be generated.
  • part of hydrogen may bond with oxygen that bonds with a metal atom to generate an electron, which is a carrier. Therefore, a transistor including an oxide semiconductor containing hydrogen is likely to have normally-on characteristics. Therefore, hydrogen in the oxide semiconductor is preferably reduced as much as possible.
  • the hydrogen concentration in the oxide semiconductor obtained by SIMS is less than 1 ⁇ 10 20 atoms/cm 3 , preferably less than 1 ⁇ 10 19 atoms/cm 3 , more preferably less than 5 ⁇ 10 18 atoms/cm. Less than 3 , more preferably less than 1 ⁇ 10 18 atoms/cm 3 .
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.
  • An electronic device of this embodiment includes a display device of one embodiment of the present invention.
  • the display device of one embodiment of the present invention can easily have high definition, high resolution, and large size. Therefore, the display device of one embodiment of the present invention can be used for display portions of various electronic devices.
  • the display device of one embodiment of the present invention can be manufactured at low cost, the manufacturing cost of the electronic device can be reduced.
  • Examples of electronic devices include televisions, desktop or notebook personal computers, monitors for computers, digital signage, large game machines such as pachinko machines, and other electronic devices with relatively large screens. Examples include cameras, digital video cameras, digital photo frames, mobile phones, mobile game machines, mobile information terminals, and sound reproducing devices.
  • the display device of one embodiment of the present invention can have high definition, it can be suitably used for an electronic device having a relatively small display portion.
  • electronic devices include wristwatch-type and bracelet-type information terminals (wearable devices), VR devices such as head-mounted displays, and glasses-type AR devices that can be worn on the head. equipment and the like.
  • Wearable devices also include devices for SR (Substitutional Reality) and devices for MR (Mixed Reality).
  • a display device of one embodiment of the present invention includes HD (1280 ⁇ 720 pixels), FHD (1920 ⁇ 1080 pixels), WQHD (2560 ⁇ 1440 pixels), WQXGA (2560 ⁇ 1600 pixels), 4K2K (2560 ⁇ 1600 pixels), 3840 ⁇ 2160) and 8K4K (7680 ⁇ 4320 pixels).
  • the resolution it is preferable to set the resolution to 4K2K, 8K4K, or higher.
  • the pixel density (definition) of the display device of one embodiment of the present invention is preferably 300 ppi or more, more preferably 500 ppi or more, 1000 ppi or more, more preferably 2000 ppi or more, more preferably 3000 ppi or more, and 5000 ppi or more.
  • the electronic device of this embodiment can be incorporated along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • the electronic device of this embodiment may have an antenna.
  • An image, information, or the like can be displayed on the display portion by receiving a signal with the antenna.
  • the antenna may be used for contactless power transmission.
  • the electronic device of this embodiment includes sensors (force, displacement, position, velocity, acceleration, angular velocity, number of revolutions, distance, light, liquid, magnetism, temperature, chemical substance, sound, time, hardness, electric field, current, voltage , power, radiation, flow, humidity, gradient, vibration, odor or infrared sensing, detection or measurement).
  • the electronic device of this embodiment can have various functions. For example, functions to display various information (still images, moving images, text images, etc.) on the display, touch panel functions, functions to display calendars, dates or times, functions to execute various software (programs), wireless communication function, a function of reading a program or data recorded on a recording medium, and the like.
  • An electronic device 6500 shown in FIG. 21A is a mobile information terminal that can be used as a smartphone.
  • the electronic device 6500 has a housing 6501, a display unit 6502, a power button 6503, a button 6504, a speaker 6505, a microphone 6506, a camera 6507, a light source 6508, and the like.
  • a display portion 6502 has a touch panel function.
  • the display device of one embodiment of the present invention can be applied to the display portion 6502 .
  • FIG. 21B is a schematic cross-sectional view including the end of the housing 6501 on the microphone 6506 side.
  • a light-transmitting protective member 6510 is provided on the display surface side of the housing 6501, and a display panel 6511, an optical member 6512, a touch sensor panel 6513, and a printer are placed in a space surrounded by the housing 6501 and the protective member 6510.
  • a substrate 6517, a battery 6518, and the like are arranged.
  • a display panel 6511, an optical member 6512, and a touch sensor panel 6513 are fixed to the protective member 6510 with an adhesive layer (not shown).
  • a portion of the display panel 6511 is folded back in a region outside the display portion 6502, and the FPC 6515 is connected to the folded portion.
  • An IC6516 is mounted on the FPC6515.
  • the FPC 6515 is connected to terminals provided on the printed circuit board 6517 .
  • a flexible display (flexible display device) of one embodiment of the present invention can be applied to the display panel 6511 . Therefore, an extremely lightweight electronic device can be realized. In addition, since the display panel 6511 is extremely thin, the thickness of the electronic device can be reduced and the large-capacity battery 6518 can be mounted. In addition, by folding back part of the display panel 6511 and arranging a connection portion with the FPC 6515 on the back side of the pixel portion, an electronic device with a narrow frame can be realized.
  • FIG. 22A An example of a television device is shown in FIG. 22A.
  • a television set 7100 has a display portion 7000 incorporated in a housing 7101 .
  • a configuration in which a housing 7101 is supported by a stand 7103 is shown.
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • the operation of the television device 7100 shown in FIG. 22A can be performed using operation switches provided on the housing 7101 and a separate remote controller 7111 .
  • the display portion 7000 may be provided with a touch sensor, and the television device 7100 may be operated by touching the display portion 7000 with a finger or the like.
  • the remote controller 7111 may have a display section for displaying information output from the remote controller 7111 .
  • a channel and a volume can be operated with operation keys or a touch panel provided in the remote controller 7111 , and an image displayed on the display portion 7000 can be operated.
  • the television device 7100 is configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts. Also, by connecting to a wired or wireless communication network via a modem, one-way (from the sender to the receiver) or two-way (between the sender and the receiver, or between the receivers, etc.) information communication. is also possible.
  • FIG. 22B shows an example of a notebook personal computer.
  • a notebook personal computer 7200 has a housing 7211, a keyboard 7212, a pointing device 7213, an external connection port 7214, and the like.
  • the display portion 7000 is incorporated in the housing 7211 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 .
  • FIGS. 22C and 22D An example of digital signage is shown in FIGS. 22C and 22D.
  • a digital signage 7300 shown in FIG. 22C includes a housing 7301, a display unit 7000, speakers 7303, and the like. Furthermore, it can have an LED lamp, an operation key (including a power switch or an operation switch), connection terminals, various sensors, a microphone, and the like.
  • FIG. 22D shows a digital signage 7400 attached to a cylindrical post 7401.
  • a digital signage 7400 has a display section 7000 provided along the curved surface of a pillar 7401 .
  • the display device of one embodiment of the present invention can be applied to the display portion 7000 in FIGS. 22C and 22D.
  • the wider the display unit 7000 the more information can be provided at once.
  • the wider the display unit 7000 the more conspicuous it is, and the more effective the advertisement can be, for example.
  • a touch panel By applying a touch panel to the display unit 7000, not only can images or moving images be displayed on the display unit 7000, but also the user can intuitively operate the display unit 7000, which is preferable. Further, when used for providing information such as route information or traffic information, usability can be enhanced by intuitive operation.
  • the digital signage 7300 or digital signage 7400 is preferably capable of cooperating with an information terminal 7311 or information terminal 7411 such as a smartphone possessed by the user through wireless communication.
  • advertisement information displayed on the display unit 7000 can be displayed on the screen of the information terminal 7311 or the information terminal 7411 .
  • display on the display portion 7000 can be switched.
  • the digital signage 7300 or the digital signage 7400 can execute a game using the screen of the information terminal 7311 or 7411 as an operation means (controller). This allows an unspecified number of users to simultaneously participate in and enjoy the game.
  • FIG. 23A is a diagram showing the appearance of the camera 8000 with the finder 8100 attached.
  • a camera 8000 has a housing 8001, a display unit 8002, operation buttons 8003, a shutter button 8004, and the like.
  • a detachable lens 8006 is attached to the camera 8000 . Note that the camera 8000 may be integrated with the lens 8006 and the housing.
  • the camera 8000 can capture an image by pressing the shutter button 8004 or by touching the display unit 8002 that functions as a touch panel.
  • the housing 8001 has a mount with electrodes, and can be connected to the viewfinder 8100 as well as a strobe device or the like.
  • the viewfinder 8100 has a housing 8101, a display section 8102, buttons 8103, and the like.
  • the housing 8101 is attached to the camera 8000 by mounts that engage the mounts of the camera 8000 .
  • a viewfinder 8100 can display an image or the like received from the camera 8000 on a display portion 8102 .
  • the button 8103 has a function as a power button or the like.
  • the display device of one embodiment of the present invention can be applied to the display portion 8002 of the camera 8000 and the display portion 8102 of the viewfinder 8100 .
  • the camera 8000 having a built-in finder may also be used.
  • FIG. 23B is a diagram showing the appearance of the head mounted display 8200.
  • FIG. 23B is a diagram showing the appearance of the head mounted display 8200.
  • a head-mounted display 8200 has a mounting section 8201, a lens 8202, a main body 8203, a display section 8204, a cable 8205, and the like.
  • a battery 8206 is built in the mounting portion 8201 .
  • a cable 8205 supplies power from a battery 8206 to the main body 8203 .
  • a main body 8203 includes a wireless receiver or the like, and can display received video information on a display portion 8204 .
  • the main body 8203 is equipped with a camera, and information on the movement of the user's eyeballs or eyelids can be used as input means.
  • the mounting section 8201 may be provided with a plurality of electrodes capable of detecting a current flowing along with the movement of the user's eyeballs at a position where it touches the user, and may have a function of recognizing the line of sight. Moreover, it may have a function of monitoring the user's pulse based on the current flowing through the electrode.
  • the mounting unit 8201 may have various sensors such as a temperature sensor, a pressure sensor, an acceleration sensor, etc., and has a function of displaying biological information of the user on the display unit 8204, In addition, a function of changing an image displayed on the display portion 8204 may be provided.
  • the display device of one embodiment of the present invention can be applied to the display portion 8204 .
  • FIG. 23C to 23E are diagrams showing the appearance of the head mounted display 8300.
  • FIG. A head mounted display 8300 includes a housing 8301 , a display portion 8302 , a band-shaped fixture 8304 , and a pair of lenses 8305 .
  • the user can visually recognize the display on the display unit 8302 through the lens 8305 .
  • the display portion 8302 it is preferable to arrange the display portion 8302 in a curved manner because the user can feel a high presence.
  • three-dimensional display or the like using parallax can be performed.
  • the configuration is not limited to the configuration in which one display portion 8302 is provided, and two display portions 8302 may be provided and one display portion may be arranged for one eye of the user.
  • the display device of one embodiment of the present invention can be applied to the display portion 8302 .
  • the display device of one embodiment of the present invention can also achieve extremely high definition. For example, even when the display is magnified using the lens 8305 as shown in FIG. 23E and visually recognized, the pixels are difficult for the user to visually recognize. In other words, the display portion 8302 can be used to allow the user to view highly realistic images.
  • FIG. 23F is a diagram showing the appearance of a goggle-type head-mounted display 8400.
  • the head mounted display 8400 has a pair of housings 8401, a mounting section 8402, and a cushioning member 8403.
  • a display portion 8404 and a lens 8405 are provided in the pair of housings 8401, respectively. By displaying different images on the pair of display portions 8404, three-dimensional display using parallax can be performed.
  • the user can visually recognize the display unit 8404 through the lens 8405.
  • the lens 8405 has a focus adjustment mechanism, and its position can be adjusted according to the user's visual acuity.
  • the display portion 8404 is preferably square or horizontally long rectangular. This makes it possible to enhance the sense of presence.
  • the mounting part 8402 preferably has plasticity and elasticity so that it can be adjusted according to the size of the user's face and does not slip off.
  • a part of the mounting portion 8402 preferably has a vibration mechanism that functions as a bone conduction earphone. As a result, you can enjoy video and audio without the need for separate audio equipment such as earphones and speakers.
  • the housing 8401 may have a function of outputting audio data by wireless communication.
  • the mounting part 8402 and the cushioning member 8403 are parts that come into contact with the user's face (forehead, cheeks, etc.). Since the cushioning member 8403 is in close contact with the user's face, it is possible to prevent light leakage and enhance the sense of immersion. It is preferable to use a soft material for the cushioning member 8403 so that the cushioning member 8403 comes into close contact with the user's face when the head mounted display 8400 is worn by the user. For example, materials such as rubber, silicone rubber, urethane, and sponge can be used.
  • a member that touches the user's skin is preferably detachable for easy cleaning or replacement.
  • the electronic device shown in FIGS. 24A to 24F includes a housing 9000, a display unit 9001, a speaker 9003, operation keys 9005 (including a power switch or an operation switch), connection terminals 9006, sensors 9007 (force, displacement, position, speed). , acceleration, angular velocity, number of rotations, distance, light, liquid, magnetism, temperature, chemical substances, sound, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, smell, or infrared rays , detection or measurement), a microphone 9008, and the like.
  • the electronic devices shown in FIGS. 24A to 24F have various functions. For example, a function to display various information (still images, moving images, text images, etc.) on the display unit, a touch panel function, a calendar, a function to display the date or time, a function to control processing by various software (programs), It can have a wireless communication function, a function of reading and processing programs or data recorded on a recording medium, and the like. Note that the functions of the electronic device are not limited to these, and can have various functions.
  • the electronic device may have a plurality of display units.
  • the electronic device is equipped with a camera, etc., and has the function of capturing still images or moving images and storing them in a recording medium (external or built into the camera), or the function of displaying the captured image on the display unit, etc. good.
  • the display device of one embodiment of the present invention can be applied to the display portion 9001 .
  • FIGS. 24A to 24F Details of the electronic devices shown in FIGS. 24A to 24F will be described below.
  • FIG. 24A is a perspective view showing a mobile information terminal 9101.
  • the mobile information terminal 9101 can be used as a smart phone, for example.
  • the portable information terminal 9101 may be provided with a speaker 9003, a connection terminal 9006, a sensor 9007, and the like.
  • the mobile information terminal 9101 can display text and image information on its multiple surfaces.
  • FIG. 24A shows an example in which three icons 9050 are displayed.
  • Information 9051 indicated by a dashed rectangle can also be displayed on another surface of the display portion 9001 . Examples of the information 9051 include notification of incoming e-mail, SNS, telephone, etc., title of e-mail, SNS, etc., sender name, date and time, remaining battery power, strength of antenna reception, and the like.
  • an icon 9050 or the like may be displayed at the position where the information 9051 is displayed.
  • FIG. 24B is a perspective view showing the mobile information terminal 9102.
  • the portable information terminal 9102 has a function of displaying information on three or more sides of the display portion 9001 .
  • information 9052, information 9053, and information 9054 are displayed on different surfaces.
  • the user can confirm the information 9053 displayed at a position where the mobile information terminal 9102 can be viewed from above the mobile information terminal 9102 while the mobile information terminal 9102 is stored in the chest pocket of the clothes.
  • the user can check the display without taking out the portable information terminal 9102 from the pocket, and can determine, for example, whether to receive a call.
  • FIG. 24C is a perspective view showing a wristwatch-type mobile information terminal 9200.
  • the mobile information terminal 9200 can be used as a smart watch (registered trademark), for example.
  • the display portion 9001 has a curved display surface, and display can be performed along the curved display surface.
  • Hands-free communication is also possible by allowing the mobile information terminal 9200 to communicate with, for example, a headset capable of wireless communication.
  • the portable information terminal 9200 can transmit data to and from another information terminal through the connection terminal 9006, and can be charged. Note that the charging operation may be performed by wireless power supply.
  • FIG. 24D to 24F are perspective views showing a foldable personal digital assistant 9201.
  • FIG. 24D is a state in which the portable information terminal 9201 is unfolded
  • FIG. 24F is a state in which it is folded
  • FIG. 24E is a perspective view in the middle of changing from one of FIGS. 24D and 24F to the other.
  • the portable information terminal 9201 has excellent portability in the folded state, and has excellent display visibility due to a seamless wide display area in the unfolded state.
  • a display portion 9001 included in the portable information terminal 9201 is supported by three housings 9000 connected by hinges 9055 .
  • the display portion 9001 can be bent with a curvature radius of 0.1 mm or more and 150 mm or less.
  • This embodiment can be implemented by appropriately combining at least part of it with other embodiments described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

撮像機能を有する表示装置を提供する。開口率の高い表示装置または撮像装置を提供する。 表示装置は、第1の発光素子、受光素子を有する。第1の発光素子は、第1の画素電極、第1の有機層、及び共通電極がこの順で積層される。受光素子は、第2の画素電極、第2の有機層、及び共通電極がこの順で積層される。第1の有機層は第1の発光層を含み、第2の有機層は光電変換層を含む。第1の発光素子と受光素子との間の領域に、第1の層及び第2の層を有する。第1の層は第2の有機層と重畳し、且つ、第1の有機層と同一の材料を含む。第2の層は第1の有機層と重畳し、且つ、第2の有機層と同一の材料を含む。第1の発光素子と受光素子との間の領域において、第1の有機層の端部と第1の層の端部が対向して設けられ、第2の有機層の端部と第2の層の端部が対向して設けられる。

Description

表示装置、及び表示装置の作製方法
 本発明の一態様は、表示装置に関する。本発明の一態様は、撮像装置に関する。本発明の一態様は、撮像機能を有する表示装置に関する。
 なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置、入出力装置、それらの駆動方法、又はそれらの製造方法、を一例として挙げることができる。半導体装置は、半導体特性を利用することで機能しうる装置全般を指す。
 近年、表示装置は高解像度の画像を表示するために高精細化が求められている。また、スマートフォン、タブレット型端末、及びノート型PC(パーソナルコンピュータ)などの情報端末機器においては、表示装置は、高精細化に加えて、低消費電力化が求められている。さらに、タッチパネルとしての機能、または認証のために指紋を撮像する機能など、画像を表示するだけでなく、様々な機能が付加された表示装置が求められている。
 表示装置としては、例えば、発光素子を有する発光装置が開発されている。エレクトロルミネッセンス(Electroluminescence、以下ELと記す)現象を利用した発光素子(EL素子とも記す)は、薄型軽量化が容易である、入力信号に対し高速に応答可能である、直流定電圧電源を用いて駆動可能である等の特徴を有し、表示装置に応用されている。例えば、特許文献1に、有機EL素子が適用された、可撓性を有する発光装置が開示されている。
特開2014−197522号公報
 本発明の一態様は、撮像機能を有する表示装置を提供することを課題の一とする。または、高精細な表示部を有する撮像装置または表示装置を提供することを課題の一とする。または、開口率の高い表示装置または撮像装置を提供することを課題の一とする。または、高感度な撮像を行うことのできる撮像装置、または表示装置を提供することを課題の一とする。または、指紋などの生体情報を取得できる表示装置を提供することを課題の一とする。または、タッチパネルとして機能する表示装置を提供することを課題の一とする。
 本発明の一態様は、信頼性の高い表示装置、撮像装置、または電子機器を提供することを課題の一とする。本発明の一態様は、新規な構成を有する表示装置、撮像装置、または電子機器等を提供することを課題の一とする。本発明の一態様は、先行技術の問題点の少なくとも一つを少なくとも軽減することを課題の一とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から抽出することが可能である。
 本発明の一態様は、第1の発光素子と、受光素子と、を有する表示装置である。第1の発光素子は、第1の画素電極、第1の有機層、及び共通電極が、この順で積層される。受光素子は、第2の画素電極、第2の有機層、及び共通電極が、この順で積層される。第1の有機層は、第1の発光層を含む。第2の有機層は、光電変換層を含む。第1の発光素子と、受光素子との間の領域に、第1の層、及び第2の層を有する。第1の層は、第2の有機層と重畳し、且つ、第1の有機層と同一の材料を含む。第2の層は、第1の有機層と重畳し、且つ、第2の有機層と同一の材料を含む。第1の発光素子と、受光素子との間の領域において、第1の有機層の端部と、第1の層の端部とが対向して設けられる。第1の発光素子と、受光素子との間の領域において、第2の有機層の端部と、第2の層の端部とが対向して設けられる。
 また、上記において、第2の発光素子を有することが好ましい。第2の発光素子は、第3の画素電極、第3の有機層、及び共通電極が、この順で積層される。第3の有機層は、第2の発光層を含む。また、第2の発光素子と、第1の発光素子との間の領域に、第3の層と、第4の層を有する。第3の層は、第3の有機層と重畳し、且つ、第1の有機層と同一の材料を含むことが好ましい。また第4の層は、第1の有機層と重畳し、且つ、第3の有機層と同一の材料を含むことが好ましい。また、第2の発光素子と、第1の発光素子との間の領域において、第1の有機層の端部と、第3の層の端部とが対向して設けられることが好ましい。さらに第2の発光素子と、第1の発光素子との間の領域において、第3の有機層の端部と、第4の層の端部とが対向して設けられることが好ましい。
 また、上記いずれかにおいて、樹脂層を有することが好ましい。樹脂層は、第1の発光素子と、受光素子との間の領域に位置する。また、第1の有機層の端部と、第1の層の端部とは、樹脂層を挟んで対向することが好ましい。さらに第2の有機層の端部と、第2の層の端部とは、樹脂層を挟んで対向することが好ましい。
 また、上記いずれかにおいて、第1の絶縁層を有することが好ましい。第1の絶縁層は、第1の発光素子と、受光素子との間に位置する。また第1の絶縁層は、第1の有機層の端部、第2の有機層の端部、第1の層の端部、及び第2の層の端部に接することが好ましい。
 また、本発明の他の一態様は、第1の画素電極及び第2の画素電極を並べて形成する第1の工程と、第1の画素電極上に、第1のメタルマスクを用いて島状の第1の有機層を形成する第2の工程と、第2の画素電極上に、第2のメタルマスクを用いて島状の第2の有機層を形成する第3の工程と、第1の画素電極と第2の画素電極との間の領域において第1の有機層と第2の有機層とをそれぞれエッチングにより分断する第4の工程と、第1の有機層及び第2の有機層を覆って、共通電極を形成する第5の工程と、を有し、第1の有機層は、発光性の有機化合物を含み、第2の有機層は、光電変換材料を含む、表示装置の作製方法である。
 また、上記において、第4の工程の後であって、第5の工程の前に、エッチングにより形成されたスリット内に、樹脂層を形成する第6の工程を有することが好ましい。
 また、上記において、樹脂層には、感光性の有機樹脂を用いることが好ましい。
 また、上記いずれかにおいて、第4の工程の後であって、第6の工程の前に、エッチングによって露出した第1の有機層の側面、及び第2の有機層の側面に接して、第1の絶縁層を形成する第7の工程を有することが好ましい。
 また、上記において、第1の絶縁層には、原子層堆積法により形成した酸化金属膜を用いることが好ましい。
 本発明の一態様によれば、撮像機能を有する表示装置を提供することができる。または、高精細な表示部を有する撮像装置または表示装置を提供することができる。または、開口率の高い表示装置または撮像装置を提供することができる。または、高感度な撮像を行うことのできる撮像装置、または表示装置を提供することができる。または、指紋などの生体情報を取得できる表示装置を提供することができる。または、タッチパネルとして機能する表示装置を提供することができる。
 本発明の一態様によれば、信頼性の高い表示装置、撮像装置、または電子機器を提供することができる。または、新規な構成を有する表示装置、撮像装置、または電子機器等を提供できる。または、先行技術の問題点の少なくとも一つを少なくとも軽減できる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から抽出することが可能である。
図1A乃至図1Cは、表示装置の構成例を示す図である。
図2A及び図2Bは、表示装置の構成例を示す図である。
図3A及び図3Bは、表示装置の構成例を示す図である。
図4A及び図4Bは、表示装置の構成例を示す図である。
図5A及び図5Bは、表示装置の構成例を示す図である。
図6A及び図6Bは、表示装置の構成例を示す図である。
図7A乃至図7Cは、表示装置の作製方法例を示す図である。
図8A乃至図8Cは、表示装置の作製方法例を示す図である。
図9A乃至図9Cは、表示装置の作製方法例を示す図である。
図10A乃至図10Cは、表示装置の作製方法例を示す図である。
図11A乃至図11Cは、表示装置の作製方法例を示す図である。
図12は、表示装置の構成例を示す図である。
図13Aは、表示装置の構成例を示す図である。図13Bは、トランジスタの構成例を示す図である。
図14A、図14B及び図14Dは、表示装置の例を示す断面図である。図14C及び図14Eは、画像の例を示す図である。図14F乃至図14Hは、画素の例を示す上面図である。
図15Aは、表示装置の構成例を示す断面図である。図15B乃至図15Dは、画素の例を示す上面図である。
図16Aは、表示装置の構成例を示す断面図である。図16B乃至図16Iは、画素の一例を示す上面図である。
図17A及び図17Bは、表示装置の構成例を示す図である。
図18A乃至図18Gは、表示装置の構成例を示す図である。
図19A乃至図19Fは、画素の例を示す図である。図19G及び図19Hは、画素の回路図の例を示す図である。
図20A乃至図20Jは、表示装置の構成例を示す図である。
図21A及び図21Bは、電子機器の一例を示す図である。
図22A乃至図22Dは、電子機器の一例を示す図である。
図23A乃至図23Fは、電子機器の一例を示す図である。
図24A乃至図24Fは、電子機器の一例を示す図である。
 以下、実施の形態について図面を参照しながら説明する。ただし、実施の形態は多くの異なる態様で実施することが可能であり、趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は、以下の実施の形態の記載内容に限定して解釈されるものではない。
 なお、以下に説明する発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
 なお、本明細書で説明する各図において、各構成要素の大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 なお、本明細書等における「第1」、「第2」等の序数詞は、構成要素の混同を避けるために付すものであり、数的に限定するものではない。
 なお、以下では「上」、「下」などの向きを示す表現は、基本的には図面の向きと合わせて用いるものとする。しかしながら、説明を容易にするためなどの目的で、明細書中の「上」または「下」が意味する向きが、図面とは一致しない場合がある。一例としては、積層体等の積層順(または形成順)などを説明する場合に、図面において当該積層体が設けられる側の面(被形成面、支持面、接着面、平坦面など)が当該積層体よりも上側に位置していても、その向きを下、これとは反対の向きを上、などと表現する場合がある。
 また、本明細書等において、「膜」という用語と、「層」という用語とは、互いに入れ替えることが可能である。例えば、「導電層」または「絶縁層」という用語は、「導電膜」または「絶縁膜」という用語に相互に交換することが可能な場合がある。
 なお、本明細書において、EL層とは発光素子の一対の電極間に設けられ、少なくとも発光性の物質を含む層(発光層とも呼ぶ)、または発光層を含む積層体を示すものとする。
 本明細書等において、表示装置の一態様である表示パネルは表示面に画像等を表示(出力)する機能を有するものである。したがって表示パネルは出力装置の一態様である。
 また、本明細書等では、表示パネルの基板に、例えばFPC(Flexible Printed Circuit)もしくはTCP(Tape Carrier Package)などのコネクターが取り付けられたもの、または基板にCOG(Chip On Glass)方式等によりICが実装されたものを、表示パネルモジュール、表示モジュール、または単に表示パネルなどと呼ぶ場合がある。
(実施の形態1)
 本実施の形態では、本発明の一態様の表示装置の構成例、及び表示装置の作製方法例について説明する。
 本発明の一態様は、発光素子(発光デバイスともいう)と、受光素子(受光デバイスともいう)を有する表示装置である。発光素子は一対の電極と、その間にEL層を有する。受光素子は、一対の電極と、その間に活性層を有する。発光素子は、有機EL素子(有機電界発光素子)であることが好ましい。受光素子は、有機フォトダイオード(有機光電変換素子)であることが好ましい。
 また、表示装置は、異なる色を発する2つ以上の発光素子を有することが好ましい。異なる色を発する発光素子は、それぞれ異なる材料を含むEL層を有する。例えば、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する3種類の発光素子を有することで、フルカラーの表示装置を実現できる。
 本発明の一態様は、複数の受光素子によって撮像することができるため、撮像装置として機能する。このとき、発光素子は、撮像のための光源として用いることができる。また、本発明の一態様は、複数の発光素子によって画像を表示することが可能なため、表示装置として機能する。したがって、本発明の一態様は、撮像機能を有する表示装置、または表示機能を有する撮像装置ということができる。
 例えば、本発明の一態様の表示装置は、表示部に発光素子がマトリクス状に配置され、さらに表示部には、受光素子がマトリクス状に配置される。そのため、表示部は、画像を表示する機能と、受光部としての機能を有する。表示部に設けられる複数の受光素子により画像を撮像することができるため、表示装置は、イメージセンサ、またはタッチパネルとして機能することができる。すなわち、表示部で画像を撮像すること、または対象物が近づくことまたは接触することを検出することができる。さらに、表示部に設けられる発光素子は、受光の際の光源として利用することができるため、表示装置とは別に光源を設ける必要がなく、電子部品の部品点数を増やすことなく機能性の高い表示装置を実現できる。
 本発明の一態様は、表示部が有する発光素子の発光を対象物が反射した際に、受光素子がその反射光を検出できるため、暗い環境でも撮像及びタッチ(非接触を含む)の検出を行うことができる。
 また、本発明の一態様の表示装置は、表示部に指または掌などを接触させた場合に、指紋または掌紋を撮像することができる。そのため、本発明の一態様の表示装置を備える電子機器は、撮像した指紋、または掌紋の画像を用いて、個人認証を実行することができる。これにより、指紋認証または掌紋認証のための撮像装置を別途設ける必要がなく、電子機器の部品点数を削減することができる。また、表示部にはマトリクス状に受光素子が配置されているため、表示部のどの場所であっても指紋及び掌紋の撮像を行うことができ、利便性に優れた電子機器を実現できる。
 ここで、発光色の異なる発光素子間で、EL層の一部または全部を作り分ける場合、ファインメタルマスク(以下、FMM:Fine Metal Maskとも表記する。)などのシャドーマスクを用いた蒸着法により形成することが知られている。しかしながら、この方法では、FMMの精度、FMMと基板との位置ずれ、FMMのたわみ、及び蒸気の散乱などによる成膜される膜の輪郭の広がりなど、様々な影響により、島状の有機膜の形状及び位置に設計からのずれが生じるため、表示装置の高精細化、及び高開口率化が困難である。そのため、ペンタイル配列などの特殊な画素配列方式を適用することなどにより、疑似的に精細度(画素密度ともいう)を高める対策が取られていた。
 FMMを用いた作製方法において、少しでも高精細化、高開口率化を達成するために、隣接する2つの島状の有機膜の一部が重なるように形成することができる。これにより、2つの島状の有機膜を重ねない場合に比べて、発光領域間の距離を格段に縮めることができる。しかしながら、隣接する2つの島状の有機膜を重ねて形成した場合に、隣接する2つの発光素子間において、重ねて形成した有機膜を介して電流のリークが生じ、意図しない発光が生じてしまう場合がある。これにより、輝度の低下、コントラストの低下などが生じることで、表示品位が低下してしまう。また、リーク電流によって電力効率、消費電力などが悪化してしまう。
 また、発光素子と受光素子との間に、同様のリーク電流が生じる場合には、当該リーク電流が、受光素子で撮像を行う際のノイズの要因となるため、撮像の感度(S/N比)が低下してしまう恐れがある。
 そこで本発明の一態様では、隣接する発光素子と受光素子の間、または隣接する2つの発光素子間で、それぞれの有機膜の一部が重畳するように、FMMを用いて作り分ける。具体的には、発光素子が有する発光性の有機化合物を含む層(発光層ともいう)と、受光素子が有する光電変換材料を含む層(活性層、または光電変換層ともいう)とをFMMを用いて作り分ける。このとき、発光素子及び受光素子間において、共通して用いることのできる有機膜は作り分けることなく、発光素子間、及び発光素子と受光素子の間で共通の膜を用いてもよい。隣接する発光素子と受光素子の間には、発光層と、活性層と、他の有機膜とが積層された有機積層膜が位置することとなる。続いて、フォトリソグラフィ法により、当該有機積層膜の一部をエッチングすることにより、当該有機積層膜を分断する。これにより、発光素子と受光素子との間の電流のリーク経路(リークパス)を分断することができる。そのため、受光素子を用いた撮像を行う際のノイズを低減でき、高感度な撮像を行うことができる。
 さらに、隣接する2つの発光素子間で、電流のリーク経路(リークパス)を分断することができる。そのため、輝度を高めること、コントラストを高めること、電力効率を高めること、または消費電力を低減すること、などができる。
 さらに、エッチングにより露出した有機積層膜の側面を保護するために、絶縁層を形成することが好ましい。これにより、表示装置の信頼性を高めることができる。
 以下では、本発明の一態様の表示装置の構成例、及び作製方法例について図面を参照して説明する。
[構成例1]
 図1Aに、表示装置100の上面概略図を示す。表示装置100は、赤色を呈する発光素子110R、緑色を呈する発光素子110G、及び青色を呈する発光素子110B、及び受光素子110Sを、それぞれ複数有する。図1Aでは、各発光素子の区別を簡単にするため、各発光素子または受光素子の発光領域内にR、G、B、Sの符号を付している。
 発光素子110R、発光素子110G、発光素子110B、及び受光素子110Sは、それぞれマトリクス状に配列している。図1Aは、一方向に2つの素子が交互に配列する構成を示している。なお、発光素子の配列方法はこれに限られず、ストライプ配列、Sストライプ配列、デルタ配列、ベイヤー配列、ジグザグ配列などの配列方法を適用してもよいし、ペンタイル配列、ダイヤモンド配列などを用いることもできる。
 発光素子110R、発光素子110G、及び発光素子110Bとしては、OLED(Organic Light Emitting Diode)、またはQLED(Quantum−dot Light Emitting Diode)などのEL素子を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(Thermally activated delayed fluorescence:TADF)材料)などが挙げられる。EL素子が有する発光物質としては、有機化合物だけでなく、無機化合物(量子ドット材料など)を用いることができる。
 受光素子110Sとしては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光素子110Sは、受光素子110Sに入射する光を検出し電荷を発生させる光電変換素子として機能する。光電変換素子は、入射する光量に応じて、発生する電荷量が決まる。特に、受光素子110Sとして、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な装置に適用できる。
 また、図1Aには、共通電極113と電気的に接続する接続電極111Cを示している。接続電極111Cは、共通電極113に供給するための電位(例えばアノード電位、またはカソード電位)が与えられる。接続電極111Cは、発光素子110Rなどが配列する表示領域の外に設けられる。また図1Aには、共通電極113を破線で示している。
 接続電極111Cは、表示領域の外周に沿って設けることができる。例えば、表示領域の外周の一辺に沿って設けられていてもよいし、表示領域の外周の2辺以上にわたって設けられていてもよい。すなわち、表示領域の上面形状が長方形である場合には、接続電極111Cの上面形状は、帯状、L字状、コの字状(角括弧状)、または四角形などとすることができる。
 図1B、図1Cはそれぞれ、図1A中の一点鎖線A1−A2、一点鎖線C1−C2に対応する断面概略図である。図1Bには、発光素子110G、発光素子110R、及び受光素子110Sの断面概略図を示し、図1Cには接続電極111Cの断面概略図を示している。
 図1Bには、発光素子110R、発光素子110G、及び受光素子110Sの断面を示している。発光素子110Rは、画素電極111R、有機層115、有機層112R、有機層116、有機層114、及び共通電極113を有する。発光素子110Gは、画素電極111G、有機層115、有機層112G、有機層116、有機層114、及び共通電極113を有する。受光素子110Sは、画素電極111S、有機層115、有機層155、有機層116、有機層114、及び共通電極113を有する。有機層114と共通電極113は、発光素子110R、発光素子110G、受光素子110S、及び発光素子110B(図示しない)に共通に設けられる。有機層114は、共通層ともいうことができる。
 発光素子110Rが有する有機層112Rは、少なくとも赤色の光を発する発光性の有機化合物を有する。発光素子110Gが有する有機層112Gは、少なくとも緑色の光を発する発光性の有機化合物を有する。発光素子110Bが有する有機層112B(図示しない)は、少なくとも青色の光を発する発光性の有機化合物を有する。有機層112R、有機層112G、及び有機層112Bは、それぞれ発光層とも呼ぶことができる。
 受光素子110Sが有する有機層155は、可視光または赤外光の波長域に感度を有する光電変換材料を有する。有機層155が有する光電変換材料が感度を有する波長域には、発光素子110Rが発する光の波長域、発光素子110Gが発する光の波長域、または発光素子110Bが発する光の波長域のうち、一以上が含まれることが好ましい。または、発光素子110Rが発する光の波長域よりも長波長の赤外光に感度を有する光電変換材料を用いてもよい。有機層155は、活性層、または光電変換層とも呼ぶことができる。
 以下では、発光素子110R、発光素子110G、及び発光素子110Bに共通する事項を説明する場合には、発光素子110と呼称して説明する場合がある。同様に、有機層112R、有機層112G、及び有機層112Bなど、アルファベットで区別する構成要素についても、これらに共通する事項を説明する場合には、アルファベットを省略した符号を用いて説明する場合がある。
 各発光素子において、画素電極と、共通電極113との間に位置する積層膜を、EL層と呼ぶことができる。また受光素子110Sにおいて、画素電極111Sと、共通電極113との間に位置する積層膜をPD層と呼ぶことができる。
 各発光素子または受光素子110Sにおいて、有機層115は、有機層112または有機層155と画素電極111との間に位置する層である。また、有機層116は、有機層112または有機層155と有機層114との間に位置する層である。有機層114は、有機層116と共通電極113との間に位置する層である。
 有機層115、有機層116、及び有機層114は、それぞれ独立に電子注入層、電子輸送層、正孔注入層、及び正孔輸送層のうち、一以上を有することができる。例えば、有機層115が、画素電極111側から正孔注入層と正孔輸送層の積層構造を有し、有機層116が電子輸送層を有し、有機層114が電子注入層を有する構成とすることができる。または、有機層115が、画素電極111側から電子注入層と電子輸送層の積層構造を有し、有機層116が正孔輸送層を有し、有機層114が正孔注入層を有する構成とすることができる。
 なお、有機層112、有機層114、有機層115、有機層116、有機層155など、発光素子または受光素子110Sの一対の電極間に位置する層について、有機層という名称は、有機EL素子または有機光電変換素子を構成する層、という意図を含み、必ずしも有機化合物を含む必要はない。例えば、有機層112、有機層114、有機層115、及び有機層116には、それぞれ有機化合物を含まず、無機化合物または無機物のみを含む膜を用いることもできる。
 画素電極111R、画素電極111G、及び画素電極111B(図示しない)は、それぞれ発光素子毎に設けられている。また、共通電極113及び有機層114は、各発光素子及び受光素子110Sに共通な一続きの層として設けられている。各画素電極と共通電極113のいずれか一方に可視光に対して透光性を有する導電膜を用い、他方に反射性を有する導電膜を用いる。各画素電極を透光性、共通電極113を反射性とすることで、下面射出型(ボトムエミッション型)の表示装置とすることができ、反対に各画素電極を反射性、共通電極113を透光性とすることで、上面射出型(トップエミッション型)の表示装置とすることができる。なお、各画素電極と共通電極113の双方を透光性とすることで、両面射出型(デュアルエミッション型)の表示装置とすることもできる。
 共通電極113上には、発光素子110R、発光素子110G、受光素子110S、及び発光素子110B(図示しない)を覆って、保護層121が設けられている。保護層121は、上方から各発光素子に水などの不純物が拡散することを防ぐ機能を有する。
 隣接する発光素子と受光素子110Sとの間、及び、隣接する2つの発光素子間には、スリット120が設けられている。スリット120は、隣接する発光素子と受光素子110Sとの間、または、隣接する2つの発光素子間に位置する有機層112または有機層155と、有機層115と、有機層116とをエッチングした部分に相当する。
 スリット120には、絶縁層125と、樹脂層126が設けられている。絶縁層125は、スリット120の側壁及び底面に沿って設けられている。また、樹脂層126は、絶縁層125上に設けられ、スリット120に位置する凹部を埋め、その上面を平坦化する機能を有する。樹脂層126により、スリット120の凹部を平坦化することで、有機層114、共通電極113、及び保護層121の被覆性を高めることができる。
 また、スリット120は、接続電極111Cなどの外部接続端子の開口部の形成と同時に形成できるため、工程を増やすことなく、これらを形成できる。また、スリット120は、絶縁層125、及び樹脂層126を有するため、画素電極111と、共通電極113との間の短絡を防止する効果を奏する。また、樹脂層126は、有機層114の密着性を向上させる効果を奏する。すなわち、樹脂層126を設けることで、有機層114の密着性が向上するため、有機層114の膜剥がれを抑制することができる。
 絶縁層125は、有機層(例えば、有機層115など)の側面に接して設けられるため、当該有機層と、樹脂層126とが接しない構造とすることができる。当該有機層と、樹脂層126とが接すると、樹脂層126に含まれる有機溶媒などにより有機層が溶解する可能性がある。そのため、本実施の形態に示すように、有機層と樹脂層126との間に絶縁層125を設ける構成とすることで、有機層の側面を保護することが可能となる。なお、スリット120は、少なくとも正孔注入層、正孔輸送層、電子抑止層、発光層、活性層、正孔抑止層、電子輸送層、及び電子注入層のいずれか一または複数を分断できる構成であればよい。
 絶縁層125としては、無機材料を有する絶縁層とすることができる。絶縁層125には、例えば、酸化絶縁膜、窒化絶縁膜、酸化窒化絶縁膜、及び窒化酸化絶縁膜などの無機絶縁膜を用いることができる。絶縁層125は単層構造であってもよく積層構造であってもよい。酸化絶縁膜としては、酸化シリコン膜、酸化アルミニウム膜、酸化マグネシウム膜、インジウムガリウム亜鉛酸化物膜、酸化ガリウム膜、酸化ゲルマニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ランタン膜、酸化ネオジム膜、酸化ハフニウム膜、及び酸化タンタル膜などが挙げられる。窒化絶縁膜としては、窒化シリコン膜及び窒化アルミニウム膜などが挙げられる。酸化窒化絶縁膜としては、酸化窒化シリコン膜、酸化窒化アルミニウム膜などが挙げられる。窒化酸化絶縁膜としては、窒化酸化シリコン膜、窒化酸化アルミニウム膜などが挙げられる。特にALD法により形成した酸化アルミニウム膜、酸化ハフニウム膜、酸化シリコン膜などの無機絶縁膜を絶縁層125に適用することで、ピンホールが少なく、EL層を保護する機能に優れた絶縁層125を形成することができる。
 なお、本明細書などにおいて、酸化窒化物とは、その組成として、窒素よりも酸素の含有量が多い材料を指し、窒化酸化物とは、その組成として、酸素よりも窒素の含有量が多い材料を指す。例えば、酸化窒化シリコンと記載した場合は、その組成として窒素よりも酸素の含有量が多い材料を指し、窒化酸化シリコンと記載した場合は、その組成として、酸素よりも窒素の含有量が多い材料を示す。
 絶縁層125の形成は、スパッタリング法、CVD法、PLD法、ALD法などを用いることができる。絶縁層125は、被覆性が良好なALD法を用いて形成することが好ましい。
 樹脂層126としては、有機材料を有する絶縁層を好適に用いることができる。例えば、樹脂層126として、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、イミド樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シリコーン樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等を適用することができる。また、樹脂層126として、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いてもよい。
 また、樹脂層126として、感光性の樹脂を用いることができる。感光性の樹脂としてはフォトレジストを用いてもよい。感光性の樹脂は、ポジ型の材料、またはネガ型の材料を用いることができる。
 また、樹脂層126として、着色された材料(例えば、黒色の顔料を含む材料など)を用いることで、隣接する画素からの迷光を遮断し、混色を抑制する機能を付与してもよい。
 また、絶縁層125と、樹脂層126との間に、反射膜(例えば、銀、パラジウム、銅、チタン、及びアルミニウムなどの中から選ばれる一または複数を含む金属膜)を設け、発光層から射出される光を上記反射膜により反射させ、光取り出し効率を向上させる機能を付与してもよい。
 樹脂層126の上面は、平坦であるほど好ましいが、表面が緩やかな曲面形状となる場合がある。図1B等では、樹脂層126の上面が凹部と凸部とを有する波型形状を有する例を示しているが、これに限られない。例えば樹脂層126の上面は、凸面、凹面、または平面であってもよい。
 保護層121としては、無機絶縁膜と、有機絶縁膜の積層膜を用いることもできる。例えば、一対の無機絶縁膜の間に、有機絶縁膜を挟んだ構成とすることが好ましい。さらに有機絶縁膜が平坦化膜として機能することが好ましい。これにより、有機絶縁膜の上面を平坦なものとすることができるため、その上の無機絶縁膜の被覆性が向上し、バリア性を高めることができる。また、保護層121の上面が平坦となるため、保護層121の上方に構造物(例えばカラーフィルタ、タッチセンサの電極、またはレンズアレイなど)を設ける場合に、下方の構造に起因する凹凸形状の影響を軽減できるため好ましい。
 保護層121としては、例えば、少なくとも無機絶縁膜を含む単層構造または積層構造とすることができる。無機絶縁膜としては、例えば、酸化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハフニウム膜などの酸化物膜または窒化物膜が挙げられる。または、保護層121としてインジウムガリウム酸化物、インジウムガリウム亜鉛酸化物などの半導体材料を用いてもよい。
 図1Cには、接続電極111Cと共通電極113とが電気的に接続する接続部130を示している。接続部130では、接続電極111C上に、有機層114を介して共通電極113が設けられている。また、接続電極111Cの側面に接して絶縁層125が設けられ、当該絶縁層125上に樹脂層126が設けられている。
 なお、接続部130に有機層114を設けなくてもよい。その場合、接続部130では、接続電極111C上に共通電極113が接して設けられ、共通電極113を覆って保護層121が設けられる。
 続いて、スリット120及びその近傍の好ましい構成について、詳細に説明する。図2Aは、図1Bにおける発光素子110Rの一部、発光素子110Gの一部、及びこれらの間の領域を含む断面概略図である。
 図2Aに示すように、画素電極111の端部は、テーパー形状であることが好ましい。これにより、有機層115等の段差被覆性を高めることができる。なお、本明細書等において、対象物の端部がテーパー形状であるとは、その端部の領域において表面と被形成面との成す角度が0度より大きく90度未満であり、端部から連続的に厚さが増加するような断面形状を有することをいう。なお、ここでは画素電極111R等が単層構造である場合を示しているが、複数の層を積層してもよい。
 画素電極111Rを覆って有機層115が設けられている。また画素電極111Gを覆って有機層115が設けられている。これら有機層115は、一続きの膜がスリット120で分断されることで形成されている。
 スリット120よりも発光素子110R側において、有機層115を覆って有機層112Rが設けられている。また、スリット120よりも発光素子110G側において、有機層115上に層135Rが設けられている。層135Rは、有機層112Rとなる膜の一部が、スリット120で分断されて、発光素子110G側に残存した切れ端ともいうことができる。
 また、スリット120よりも発光素子110G側において、有機層115を覆って有機層112Gが設けられている。また、スリット120よりも発光素子110R側において、有機層112R上に層135Gが設けられている。層135Gは、有機層112Gとなる膜の一部が、スリット120で分断されて、発光素子110R側に残存した切れ端ともいうことができる。
 有機層112Rの端部(側面)と、層135Rの端部とは、スリット120を挟んで対向して設けられている。同様に、有機層112Gの端部と、層135Gの端部とは、スリット120を挟んで対向して設けられている。
 なお、スリット120の位置及び幅、有機層112Rの形成位置、有機層112Gの形成位置などによって、層135Rと層135Gの一方または双方が形成されない場合もある。具体的には、スリット120を形成する前における有機層112Rの端部が、スリット120の形成位置と重なる場合には、層135Rが形成されない場合がある。
 有機層112R及び層135Gを覆って、有機層116が設けられている。また有機層112G及び層135Rを覆って、有機層116が設けられている。これら有機層116は、有機層115と同様に、一続きの膜がスリット120で分断されることで形成されている。
 絶縁層125は、スリット120の内部に設けられ、一対の有機層115の側面、有機層112Rの側面、有機層112Gの側面、層135Rの側面、層135Gの側面、及び一対の有機層116の側面に接して設けられる。また、絶縁層125は、基板101の上面を覆って設けられる。
 樹脂層126は、絶縁層125の上面及び側面に接して設けられている。樹脂層126は、有機層114の被形成面の凹部を平坦化する機能を有する。
 有機層116、絶縁層125、及び樹脂層126の上面を覆って、有機層114、共通電極113、及び保護層121がこの順で形成されている。なお、有機層114は不要であれば設けなくてもよい。
 ここで、層135R及び層135Gは、有機層112Rまたは有機層112Gとなる膜の端部に位置する部分である。FMMを用いた成膜方法では、有機膜の厚さは、端部に近いほど徐々に薄くなる傾向があるため、層135R及び層135Gは、有機層112Rまたは有機層112Gよりも厚さの薄い部分を有する。層135R及び層135Gは、断面観察で確認できない程度に厚さが薄い場合がある。また、層135Rまたは層135Gが存在していても、層135Rと有機層112Gとの境界、または層135Gと有機層112Rとの境界は、断面観察で確認することが困難な場合もある。
 一方、層135R及び層135Gには、発光性の化合物(例えば蛍光材料、燐光材料、または量子ドットなど)が含まれているため、平面視において、紫外光または可視光などの光を照射することで、フォトルミネッセンスによる発光が得られる。この発光を光学顕微鏡等で観察することで、層135R及び層135Gの存在を確認することができる。具体的には、層135Rが位置する部分には、層135Rと有機層112Gとが重なっているため、当該部分に紫外光などを照射すると、層135Rからの光と有機層112Gからの光の両方が確認される。また、発光スペクトル、波長、発光色などから、層135Rまたは層135Gが、有機層112Rまたは有機層112Gと同一の材料を含むことを確認することができる。また、層135R、層135Gに含まれる化合物を推定することもできる場合がある。
 なおここでは、有機層112Rと有機層112GとをFMMを用いて作り分け、他の有機層(有機層115、有機層116)は、一続きの膜として形成した例を示したが、これに限られない。例えば有機層115、有機層116のいずれか一方、または双方も、FMMを用いて作り分けてもよい。このとき、スリット120の近傍には、層135R等と同様に、有機層115または有機層116の切れ端が残存する場合がある。
 図2Bは、発光素子110Gの一部、受光素子110Sの一部、及びこれらの間に位置するスリット120の断面概略図を示している。
 スリット120よりも発光素子110G側において、有機層112G上に層135Sが設けられている。層135Sは、有機層155となる膜の一部が、スリット120で分断されて、発光素子110G側に残存した切れ端ともいうことができる。層135Sと有機層155とは、スリット120を挟んで対向して設けられている。
 また、スリット120よりも受光素子110S側において、有機層115と有機層155に挟まれるように層135Gが設けられている。層135Gと有機層112Gとは、スリット120を挟んで対向して設けられている。
 図2A及び図2Bに示す拡大図では、発光素子110Rと発光素子110Gの間の領域、及び発光素子110Gと受光素子110Sの間の領域について説明したが、発光素子110Rと発光素子110Bの間、発光素子110Gと発光素子110Bの間、発光素子110Rと受光素子110Sの間、発光素子110Bと受光素子110Sの間についても同様の構成を有する。
 図3A及び図3Bは、それぞれ絶縁層125を有さない場合の断面概略図である。図3Aにおいて、樹脂層126は一対の有機層115の側面、有機層112Rの側面、有機層112Gの側面、層135Rの側面、層135Gの側面、及び一対の有機層116の側面に接して設けられる。また図3Bにおいて、樹脂層126は有機層155の側面及び層135Sの側面に接して設けられる。
 このとき、樹脂層126となる膜の形成時に用いる溶媒によって、EL層またはPD層の一部が溶解してしまう場合がある。そのため、絶縁層125を設けない場合には、樹脂層126の溶媒として、水、またはエチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、またはグリセリンなどのアルコールを用いることが好ましい。なお、これに限られず、EL層及びPD層を溶解しない、または溶解しにくい溶媒を用いればよい。
 このように、本発明の一態様の表示装置は、画素電極の端部を覆う絶縁物が設けられない構造とすることができる。別言すると、画素電極と、EL層との間に絶縁物が設けられない構成である。当該構成とすることで、EL層からの発光を効率よく取り出すことができるため、視野角依存性を極めて小さくすることができる。例えば、本発明の一態様の表示装置においては、視野角(斜め方向から画面を見たときの、一定のコントラスト比が維持される最大の角度)を100°以上180°未満、好ましくは150°以上170°以下の範囲とすることができる。なお、上記の視野角については、上下、及び左右のそれぞれに適用することができる。本発明の一態様の表示装置とすることで、視野角特性が向上し、画像の視認性を高めることが可能となる。
[変形例]
 図4A及び図4Bは、それぞれ図2A、図2Bの変形例である。図4A、図4Bでは、画素電極の端部を覆う絶縁層131が設けられる場合の例を示している。
 絶縁層131は、有機層115の被形成面を平坦化する機能を有する。絶縁層131の端部は、テーパー形状であることが好ましい。また、絶縁層131に有機樹脂を用いることで、その表面を緩やかな曲面とすることができる。そのため、絶縁層131の上に形成される膜の被覆性を高めることができる。
 絶縁層131に用いることのできる材料としては、例えばアクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 図4A、図4Bに示すように、絶縁層131は、スリット120と重なる領域に、凹部を有していてもよい。この凹部は、スリット120を形成するためのエッチングの際に、絶縁層131の上部の一部がエッチングされることにより形成されうる。絶縁層125の一部は、絶縁層131の当該凹部に嵌るように形成されるため、これらの密着性を高めることができる。
 スリット120は、絶縁層131と重なる領域に設けられる。また、層135R、層135G、及び層135Sも、絶縁層131と重なる領域に設けられる。
 図5A、図5Bは、絶縁層131上に絶縁層132を設けた場合の例である。
 絶縁層132は、絶縁層131を介して画素電極111の端部と重なる。また、絶縁層132は、絶縁層131の端部を覆って設けられる。また、絶縁層132は、画素電極111の上面と接する部分を有する。
 絶縁層132は、その端部がテーパー形状であることが好ましい。これにより、絶縁層132の端部を覆って設けられるEL層など、絶縁層132の上に形成される膜の段差被覆性を高めることができる。
 また、絶縁層132は、その厚さが絶縁層131よりも薄いことが好ましい。絶縁層132を薄く形成することで、絶縁層132上に形成される膜の段差被覆性を高めることができる。
 絶縁層132に用いることのできる無機絶縁材料としては、例えば、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、または酸化ハフニウムなどの、酸化物または窒化物を用いることができる。また、酸化イットリウム、酸化ジルコニウム、酸化ガリウム、酸化タンタル、酸化マグネシウム、酸化ランタン、酸化セリウム、及び酸化ネオジム等を用いてもよい。
 また、絶縁層132は、上記無機絶縁材料を含む膜を積層してもよい。例えば、窒化シリコン膜上に酸化シリコン膜または酸化窒化シリコン膜を積層した積層構造、酸化アルミニウム膜上に酸化シリコン膜または酸化窒化シリコン膜を積層した積層構造、などとすることができる。酸化シリコン膜及び酸化窒化シリコン膜は特にエッチングされにくい膜であるため、上側に配置することが好ましい。また、窒化シリコン膜及び酸化アルミニウム膜は、水、水素、酸素等が拡散しにくい膜であるため、絶縁層131側に配置することで絶縁層131から脱離するガスが発光素子に拡散することを防ぐバリア層として機能する。
 スリット120は、絶縁層132と重なる領域に設けられる。また、層135R、層135Gも、絶縁層132と重なる領域に設けられる。
 絶縁層132を設けることにより、スリット120の形成時に、絶縁層131の上面がエッチングされることを防ぐことができる。
[構成例2]
 以下では、より具体的な構成例について説明する。
 図6Aは、以下で例示する表示装置の断面概略図である。図6Aでは、発光素子110R、発光素子110G、発光素子110B、受光素子110S、及び接続部130を含む領域の断面を示している。また、図6Bは、発光素子110Rと発光素子110Gの間に位置するスリット120及びその近傍を拡大した断面概略図である。
 発光素子110Bは、画素電極111B、有機層115、有機層112B、有機層116、有機層114、及び共通電極113を有する。また、図6Aには、スリット120で分断された有機層112Bの一部(切れ端)である層135Bが、発光素子110R近傍、及び受光素子110S近傍に設けられている。
 画素電極111の下方には、導電層161、導電層162、及び樹脂層163が設けられている。
 導電層161は、絶縁層105上に設けられている。導電層161は、絶縁層105に設けられた開口において、絶縁層105を貫通する部分を有する。導電層161は、絶縁層105の下方に位置する配線、トランジスタ、または電極など(図示しない)と、画素電極111とを電気的に接続する配線または電極として機能する。
 導電層161は、絶縁層105の開口に位置する部分に凹部が形成される。樹脂層163は、当該凹部を埋めるように設けられ、平坦化膜として機能する。樹脂層163の上面は、平坦であるほど好ましいが、表面が緩やかな曲面形状となる場合がある。図6A等では、樹脂層163の上面が凹部と凸部とを有する波型形状を有する例を示しているが、これに限られない。例えば樹脂層163の上面は、凸面、凹面、または平面であってもよい。
 導電層161及び樹脂層163上に、導電層162が設けられている。導電層162は、導電層161と画素電極111とを電気的に接続する電極としての機能を有する。
 ここで、発光素子110を上面射出型の発光素子とする場合には、導電層162として、可視光に対して反射性を有する膜を用い、画素電極111として、可視光に対して透過性を有する膜を用いることで、導電層162を反射電極として機能させることができる。さらに、絶縁層105の開口部(コンタクト部ともいう)の上部にも、樹脂層163を介して導電層162及び画素電極111を設けることができるため、コンタクト部と重なる部分も発光領域とすることができる。そのため、開口率を高めることができる。
 同様に、受光素子110Sを上方からの光を受光する光電変換素子とする場合には、導電層162に反射性の膜を、画素電極111に透光性の膜を用いることができる。さらにコンタクト部も受光領域として機能させることができるため、受光面積が拡大し、受光感度を高めることができる。
 また、各画素電極111の厚さを異ならせてもよい。このとき、画素電極111をマイクロキャビティのための光学調整層として用いることができる。マイクロキャビティを用いる場合には、共通電極として透過性及び反射性を有する膜を用いる。
 図6A及び図6Bでは、樹脂層126の形状が上記とは異なる例を示している。
 図6Bに示すように、樹脂層126の上部は、スリット120よりも幅が広い形状を有している。後述するように、絶縁層125は、樹脂層126をエッチングマスクとして加工するため、樹脂層126の上部に覆われる部分が残存する。さらに表示装置の作製工程で用いる犠牲層145の一部も、同様の理由で残存している。具体的には、スリット120の近傍において、有機層116上に犠牲層145が設けられる。また、絶縁層125の一部は、犠牲層145の上面を覆って設けられている。また、犠牲層145と絶縁層125を覆って、樹脂層126が設けられている。
 このとき、絶縁層125の端部と、犠牲層145の端部は、それぞれテーパー形状を有していることが好ましい。これにより、有機層114等の段差被覆性を高めることができる。
 図6A、図6Bに示すように、層135R、層135G、層135B、及び層135Sは、それぞれ絶縁層125と接し、且つ、絶縁層125、犠牲層145、及び樹脂層126と重なる領域を有する。
[作製方法例]
 以下では、本発明の一態様の表示装置の作製方法の一例について、図面を参照して説明する。ここでは、上記図6Aで示した表示装置を例に挙げて説明する。図7A乃至図10Cは、以下で例示する表示装置の作製方法例の、各工程における断面概略図である。また図7A等では、右側に接続部130及びその近傍における断面概略図を合わせて示している。
 なお、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スパッタリング法、化学気相堆積(CVD:Chemical Vapor Deposition)法、真空蒸着法、パルスレーザー堆積(PLD:Pulsed Laser Deposition)法、原子層堆積(ALD:Atomic Layer Deposition)法等を用いて形成することができる。CVD法としては、プラズマ化学気相堆積(PECVD:Plasma Enhanced CVD)法、または熱CVD法などがある。また、熱CVD法のひとつに、有機金属化学気相堆積(MOCVD:Metal Organic CVD)法がある。
 また、表示装置を構成する薄膜(絶縁膜、半導体膜、導電膜等)は、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコート等の方法により形成することができる。
 また、表示装置を構成する薄膜を加工する際には、フォトリソグラフィ法等を用いることができる。それ以外に、ナノインプリント法、サンドブラスト法、リフトオフ法などにより薄膜を加工してもよい。また、メタルマスクなどの遮蔽マスクを用いた成膜方法により、島状の薄膜を直接形成してもよい。
 フォトリソグラフィ法としては、代表的には以下の2つの方法がある。一つは、加工したい薄膜上にレジストマスクを形成して、エッチング等により当該薄膜を加工し、レジストマスクを除去する方法である。もう一つは、感光性を有する薄膜を成膜した後に、露光、現像を行って、当該薄膜を所望の形状に加工する方法である。
 フォトリソグラフィ法において、露光に用いる光は、例えばi線(波長365nm)、g線(波長436nm)、h線(波長405nm)、またはこれらを混合させた光を用いることができる。そのほか、紫外線、KrFレーザ光、またはArFレーザ光等を用いることもできる。また、液浸露光技術により露光を行ってもよい。また、露光に用いる光として、極端紫外(EUV:Extreme Ultra−violet)光、X線などを用いてもよい。また、露光に用いる光に換えて、電子ビームを用いることもできる。極端紫外光、X線または電子ビームを用いると、極めて微細な加工が可能となるため好ましい。なお、電子ビームなどのビームを走査することにより露光を行う場合には、フォトマスクは不要である。
 薄膜のエッチングには、ドライエッチング法、ウェットエッチング法、サンドブラスト法などを用いることができる。
〔基板101の準備〕
 基板101としては、少なくとも後の熱処理に耐えうる程度の耐熱性を有する基板を用いることができる。基板101として、絶縁性基板を用いる場合には、ガラス基板、石英基板、サファイア基板、セラミック基板、有機樹脂基板などを用いることができる。また、シリコン、炭化シリコンなどを材料とした単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウム等の化合物半導体基板、SOI基板などの半導体基板を用いることができる。
 特に、基板101として、上記半導体基板または絶縁性基板上に、トランジスタなどの半導体素子を含む半導体回路が形成された基板を用いることが好ましい。当該半導体回路は、例えば画素回路、ゲート線駆動回路(ゲートドライバ)、ソース線駆動回路(ソースドライバ)などを構成していることが好ましい。また、上記に加えて演算回路、記憶回路などが構成されていてもよい。
 基板101の最上部には、絶縁層105を設ける。絶縁層105には、基板101に設けられたトランジスタ、配線、または電極等に達する開口を複数設ける。当該開口は、フォトリソグラフィ法により形成することができる。
 絶縁層105としては、無機絶縁材料、または有機絶縁材料を用いることができる。
〔導電層161、樹脂層163、導電層162、画素電極111の形成〕
 絶縁層105上に導電層161となる導電膜を成膜する。このとき絶縁層105の開口に起因して、導電膜には凹部が形成される。
 続いて、当該導電膜の凹部に樹脂層163を形成する。
 樹脂層163として、感光性の樹脂を用いることが好ましい。このとき、まず樹脂膜を成膜したのち、フォトマスクを介して樹脂膜を露光し、その後現像処理を行うことにより、樹脂層163を形成することができる。その後、樹脂層163の上面の高さを調整するために、アッシング等により樹脂層163の上部をエッチングしてもよい。
 また、樹脂層163として、非感光性の樹脂を用いる場合には、樹脂膜を成膜した後に、厚さが最適になるように、アッシング等により導電層161となる導電膜の表面が露出するまで、樹脂膜の上部をエッチングすることで、樹脂層163を形成することができる。
 続いて、導電層161となる導電膜、及び樹脂層163上に導電層162となる導電膜を成膜する。その後、2層の導電膜上に、フォトリソグラフィ法によりレジストマスクを形成し、導電膜の不要な部分をエッチングにより除去する。その後、レジストマスクを除去することで、導電層161と導電層162とを同一工程で形成することができる。
 なお、ここでは、導電層161と導電層162とを同一のフォトマスクを用いて同一工程で形成したが、導電層161と導電層162とを別のフォトマスクを用いて個別に形成してもよい。このとき、平面視において導電層161が導電層162の輪郭よりも内側に包含されるように、導電層161と導電層162を加工することが好ましい。
 続いて、導電層161及び導電層162を覆って、導電膜を形成し、当該導電膜の一部をエッチングにより除去することで、画素電極111及び接続電極111Cを形成する(図7A)。このとき、図7Aに示すように、導電層161及び導電層162を包含するように、画素電極111及び接続電極111Cを形成すると、導電層161及び導電層162が、画素電極111等の形成時のエッチング雰囲気に曝されないため、好ましい。
〔有機層115の形成〕
 続いて、画素電極111上に、有機層115を成膜する(図7B)。有機層115は、FMMを用いることなく、成膜することが好ましい。
 なお、FMMを用いて有機層115を作り分けてもよい。その場合には、後の有機層112R等の記載を援用できる。
 有機層115は、好ましくは真空蒸着法により形成することができる。なお、これに限られず、スパッタリング法、またはインクジェット法等により形成することもできる。また、上述した成膜方法を適宜用いることができる。
〔有機層112R、有機層112G、有機層112B、有機層155の形成〕
 続いて、有機層115上であって、画素電極111Rと重なる領域を包含するように、島状の有機層112Rを形成する。
 有機層112Rは、FMMを介した真空蒸着法により形成することが好ましい。なお、FMMを用いたスパッタリング法、またはインクジェット法を用いて島状の有機層112Rを形成してもよい。
 図7Cには、FMM151Rを介して有機層112Rを成膜している様子を示している。図7Cでは、被形成面が下側になるように基板を反転した状態で成膜する、いわゆるフェイスダウン方式で成膜している様子を示している。
 FMMを用いた蒸着法などでは、FMMの開口パターンよりも広い範囲に蒸着される場合が多い。そのため、図7C中の破線で示すように、画素電極111Rのパターンと開口パターンが同じFMM151Rを用いた場合であっても、画素電極111Rと隣接する画素電極の間の領域にまで有機層112Rが成膜されうる。
 続いて、FMM151Gを用いて、画素電極111G上に有機層112Gを形成する(図8A)。
 有機層112Gは、有機層112Rと同様に、画素電極111Gよりも外側にまで広がったパターンが形成される。その結果、図9A中の領域RGに示すように、有機層112R上に有機層112Gが積層された部分が形成される。
 続いて、FMM151B(図示しない)を用いて、画素電極111B上に有機層112Bを形成する。その後、FMM151Sを用いて、画素電極111S上に有機層155を形成する。
 有機層112B及び有機層155も、有機層112R及び有機層112Gと同様に、画素電極111Bまたは画素電極111Sよりも外側に広がったパターンが形成される。その結果、図8B中に示すように、有機層112G上に有機層112Bが積層された領域GB、有機層112B上に有機層155が積層された領域BS、有機層112R上に有機層155が積層された領域RSが形成される。また、ここでは示さないが、有機層112G上に有機層155が積層された領域、有機層112R上に有機層112Bが積層された領域なども形成される。
 ここで、接続電極111C上には、有機層112R、有機層112G、有機層112B、及び有機層155を形成しないことが好ましい。
 なお、ここでは有機層112R、有機層112G、有機層112B、有機層155の順で形成したが、形成順はこれに限られない。
〔有機層116の形成〕
 続いて、有機層112R、有機層112G、有機層112B、及び有機層155を覆って、有機層116を形成する(図8(C))。有機層116は、有機層115と同様の方法により形成することができる。
〔犠牲膜144の形成〕
 続いて、有機層116を覆って犠牲膜144を形成する。
 犠牲膜144は、有機層115、有機層112、有機層155、及び有機層116のエッチング処理に対する耐性の高い膜、すなわちエッチングの選択比の大きい膜を用いることができる。また、犠牲膜144は、後述する犠牲膜146などの犠牲膜とのエッチングの選択比の大きい膜を用いることができる。さらに、犠牲膜144は、有機層115、有機層112、有機層155、及び有機層116へのダメージの少ないウェットエッチング法により除去可能な膜を用いることが特に好ましい。
 犠牲膜144としては、例えば、金属膜、合金膜、金属酸化物膜、半導体膜、無機絶縁膜などの無機膜を好適に用いることができる。犠牲膜144は、スパッタリング法、蒸着法、CVD法、ALD法などの各種成膜方法により形成することができる。
 特に、ALD法は被形成層に対する成膜ダメージが小さいため、有機層116上に直接形成する犠牲膜144は、ALD法を用いて形成することが好ましい。
 犠牲膜144としては、例えば金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、チタン、アルミニウム、イットリウム、ジルコニウム、及びタンタルなどの金属材料、または該金属材料を含む合金材料を用いることができる。特に、アルミニウムまたは銀などの低融点材料を用いることが好ましい。
 また、犠牲膜144としては、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)などの金属酸化物を用いることができる。さらに、酸化インジウム、インジウム亜鉛酸化物(In−Zn酸化物)、インジウムスズ酸化物(In−Sn酸化物)、インジウムチタン酸化物(In−Ti酸化物)、インジウムスズ亜鉛酸化物(In−Sn−Zn酸化物)、インジウムチタン亜鉛酸化物(In−Ti−Zn酸化物)、インジウムガリウムスズ亜鉛酸化物(In−Ga−Sn−Zn酸化物)などを用いることができる。またはシリコンを含むインジウムスズ酸化物などを用いることもできる。
 なお、上記ガリウムに代えて元素M(Mは、アルミニウム、シリコン、ホウ素、イットリウム、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、またはマグネシウムから選ばれた一種または複数種)を用いた場合にも適用できる。特に、Mは、ガリウム、アルミニウム、またはイットリウムから選ばれた一種または複数種とすることが好ましい。
 また、犠牲膜144としては、酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの酸化物、窒化シリコン、窒化アルミニウムなどの窒化物、または酸化窒化シリコンなどの酸窒化物を用いることができる。このような無機絶縁材料は、スパッタリング法、CVD法、またはALD法等の成膜方法を用いて形成することができる。
 また、犠牲膜144として、少なくともEL層の最上部に位置する有機層116に対して、化学的に安定な溶媒に溶解しうる材料を用いてもよい。特に、水またはアルコールに溶解する材料を、犠牲膜144に好適に用いることができる。犠牲膜144を成膜する際には、水またはアルコールなどの溶媒に溶解させた状態で、湿式の成膜方法で塗布した後に、溶媒を蒸発させるための加熱処理を行うことが好ましい。このとき、減圧雰囲気下での加熱処理を行うことで、低温且つ短時間で溶媒を除去できるため、EL層への熱的なダメージを低減することができ、好ましい。
 犠牲膜144の形成に用いることのできる湿式の成膜方法としては、スピンコート、ディップ、スプレー塗布、インクジェット、ディスペンス、スクリーン印刷、オフセット印刷、ドクターナイフ法、スリットコート、ロールコート、カーテンコート、ナイフコートなどがある。
 犠牲膜144としては、ポリビニルアルコール(PVA)、ポリビニルブチラール、ポリビニルピロリドン、ポリエチレングリコール、ポリグリセリン、プルラン、水溶性のセルロース、またはアルコール可溶性のポリアミド樹脂などの有機材料を用いることができる。
〔犠牲膜146の形成〕
 続いて、犠牲膜144上に、犠牲膜146を形成する。
 犠牲膜146は、後に犠牲膜144をエッチングする際のハードマスクとして用いる膜である。また、後の犠牲膜146の加工時には、犠牲膜144が露出する。したがって、犠牲膜144と犠牲膜146とは、互いにエッチングの選択比の大きい膜の組み合わせを選択する。そのため、犠牲膜144のエッチング条件、及び犠牲膜146のエッチング条件に応じて、犠牲膜146に用いることのできる膜を選択することができる。
 犠牲膜146は、様々な材料の中から、犠牲膜144のエッチング条件、及び犠牲膜146のエッチング条件に応じて、選択することができる。例えば、上記犠牲膜144に用いることのできる膜の中から選択することができる。
 例えば、犠牲膜146として、酸化物膜を用いることができる。代表的には、酸化シリコン、酸化窒化シリコン、酸化アルミニウム、酸化窒化アルミニウム、酸化ハフニウム、酸化窒化ハフニウムなどの酸化物膜または酸窒化物膜を用いることもできる。
 また、犠牲膜146としては、例えば窒化物膜を用いることができる。具体的には、窒化シリコン、窒化アルミニウム、窒化ハフニウム、窒化チタン、窒化タンタル、窒化タングステン、窒化ガリウム、窒化ゲルマニウムなどの窒化物を用いることもできる。
 例えば、犠牲膜144として、ALD法により形成した酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用い、犠牲膜146として、スパッタリング法により形成した、インジウムガリウム亜鉛酸化物(In−Ga−Zn酸化物、IGZOとも表記する)などの、インジウムを含む金属酸化物を用いることが好ましい。または、犠牲膜146として、タングステン、モリブデン、銅、アルミニウム、チタン、及びタンタルなどの金属または、当該金属を含む合金を用いることが好ましい。
 また、犠牲膜146として、有機層115、有機層112、有機層155、及び有機層116などに用いることのできる有機膜を用いてもよい。例えば、有機層115、有機層112、有機層155、または有機層116に用いる有機膜と同じ膜を、犠牲膜146に用いることができる。このような有機膜を用いることで、有機層115、有機層112、有機層155、有機層116などと成膜装置を共通に用いることができるため、好ましい。さらに、後の犠牲層をマスクとして、有機層115、有機層112、有機層155、及び有機層116等をエッチングする際に、同時に除去できるため、工程を簡略化できる。
〔レジストマスク143の形成〕
 続いて、犠牲膜146上であって、画素電極111R、画素電極111G、画素電極111B、画素電極111S、及び接続電極111Cとそれぞれ重なる位置に、レジストマスク143を形成する(図9A)。
 レジストマスク143は、ポジ型のレジスト材料、またはネガ型のレジスト材料など、感光性の樹脂を含むレジスト材料を用いることができる。
 ここで、犠牲膜146を有さずに、犠牲膜144上にレジストマスク143を形成する場合、犠牲膜144にピンホールなどの欠陥が存在すると、レジスト材料の溶媒によって、有機層115、有機層112、有機層155、及び有機層116等が溶解してしまう恐れがある。犠牲膜146を用いることで、このような不具合が生じることを防ぐことができる。
 なお、レジスト材料の溶媒に、有機層115、有機層112、有機層155及び有機層116を溶解しない材料を用いる場合などでは、犠牲膜146を用いずに、犠牲膜144上に直接、レジストマスク143を形成してもよい場合がある。
〔犠牲膜146のエッチング〕
 続いて、犠牲膜146の、レジストマスク143に覆われない一部をエッチングにより除去し、犠牲層147を形成する。
 犠牲膜146のエッチングの際、犠牲膜144が当該エッチングにより除去されないように、選択比の高いエッチング条件を用いることが好ましい。犠牲膜146のエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いることで、犠牲層147のパターンの縮小を抑制できる。
〔レジストマスク143の除去〕
 続いて、レジストマスク143を除去する。
 レジストマスク143の除去は、ウェットエッチングまたはドライエッチングにより行うことができる。特に、酸素ガスをエッチングガスに用いたドライエッチング(プラズマアッシングともいう)により、レジストマスク143を除去することが好ましい。
 このとき、レジストマスク143の除去は、有機層116が犠牲膜144に覆われた状態で行われるため、有機層115、有機層112、有機層155、及び有機層116への影響が抑制されている。特に、有機層115、有機層112、有機層155、及び有機層116が酸素に触れると、電気特性に悪影響を及ぼす場合があるため、プラズマアッシングなどの、酸素ガスを用いたエッチングを行う場合には好適である。また、レジストマスク143をウェットエッチングにより除去する場合であっても、有機層116等が薬液に触れないため、有機層116等が溶解してしまうことを防ぐことができる。
〔犠牲膜144のエッチング〕
 続いて、犠牲層147をハードマスクとして用いて、犠牲膜144の一部をエッチングにより除去し、犠牲層145を形成する(図9B)。
 犠牲膜144のエッチングは、ウェットエッチングまたはドライエッチングにより行うことができるが、ドライエッチングを用いると、パターンの縮小を抑制できるため好ましい。
〔有機層116、有機層112、有機層155、有機層115のエッチング〕
 続いて、犠牲層145に覆われない有機層116、有機層112、有機層155、有機層115の一部をエッチングにより除去し、スリット120を形成する。このとき同時に、接続電極111Cの上面も露出される。
 このとき、有機層112R、有機層112G、有機層112B、及び有機層155の一部がエッチングにより分断されることで、有機層112Rの切れ端である層135R、有機層112Gの切れ端である層135G、有機層112Bの切れ端である層135B、及び有機層155の切れ端である層135Sが形成される。
 特に有機層116、有機層112、有機層155、及び有機層115のエッチングには、酸素を主成分に含まないエッチングガスを用いたドライエッチングを用いることが好ましい。これにより、有機層116、有機層112、有機層155、及び有機層115の変質を抑制し、信頼性の高い表示装置を実現できる。酸素を主成分に含まないエッチングガスとしては、例えばCF、C、SF、CHF、Cl、HO、BCl、HまたはHeなどの貴ガスが挙げられる。また、上記ガスと、酸素を含まない希釈ガスとの混合ガスをエッチングガスに用いることができる。
 なお、有機層116、有機層112、有機層155、有機層115のエッチングは上記に限られず、他のガスを用いたドライエッチングにより行ってもよいし、ウェットエッチングにより行ってもよい。
 また、有機層116、有機層112、有機層155、及び有機層115のエッチングに、酸素ガスまたは酸素ガスを含む混合ガスをエッチングガスに用いたドライエッチングを用いると、エッチング速度を高めることができる。そのため、エッチング速度を十分な速さに維持しつつ、低パワーの条件でのエッチングが可能なため、エッチングによるダメージを低減できる。さらに、エッチング時に生じる反応生成物の付着などの不具合を抑制することができる。例えば、上記酸素を主成分に含まないエッチングガスに、酸素ガスを加えた混合ガスを、エッチングガスに用いることができる。
 有機層116、有機層112、有機層155、及び有機層115のエッチングの際に、絶縁層105が露出する。そのため、絶縁層105には、有機層115のエッチングに対して耐性の高い膜を用いることが好ましい。なお、有機層115のエッチングの際に、絶縁層105の上部がエッチングされ、有機層115に覆われない部分が薄膜化する場合がある。
 なお、有機層116、有機層112、有機層155、または有機層115のエッチングの際に、同時に犠牲層147をエッチングしてもよい。有機層116、有機層112、有機層155、または有機層115と、犠牲層147とを同一処理によりエッチングすることで、工程を簡略化することができ、表示装置の作製コストを削減することができるため好ましい。
〔犠牲層の除去〕
 続いて、犠牲層147を除去し、犠牲層145の上面を露出させる(図9C)。このとき、犠牲層145は残したままとしておくことが好ましい。なお、この時点で犠牲層147を除去しなくてもよい。
〔絶縁膜125fの形成〕
 続いて、犠牲層145及びスリット120を覆って、絶縁膜125fを成膜する。
 絶縁膜125fは、EL層に水などの不純物が拡散することを防ぐバリア層として機能する。絶縁膜125fは、段差被覆性に優れたALD法により形成すると、EL層の側面を好適に被覆することができるため好ましい。
 絶縁膜125fは、犠牲層145と同じ膜を用いると、後の工程で同時にエッチングすることができるため好ましい。例えば、絶縁膜125fと、犠牲層145に、ALD法により形成した酸化アルミニウム、酸化ハフニウム、酸化シリコンなどの無機絶縁材料を用いることが好ましい。
 なお、絶縁膜125fに用いることのできる材料はこれに限られず、上記犠牲膜144に用いることのできる材料を適宜用いることができる。
〔樹脂層126の形成〕
 続いて、スリット120と重なる領域に、樹脂層126を形成する(図10A)。樹脂層126は、樹脂層163と同様の方法により形成することができる。
 ここでは、樹脂層126をスリット120の幅よりも大きな幅になるように形成した場合の例を示す。
〔絶縁膜125f、犠牲層145のエッチング〕
 続いて、絶縁膜125f及び犠牲層145について、樹脂層126に覆われない部分をエッチングにより除去し、有機層116の上面を露出させる。これにより、樹脂層126に覆われる領域に、絶縁層125、及び犠牲層145が形成される(図10B)。
 絶縁膜125fと犠牲層145のエッチングは同一工程で行うことが好ましい。特に、犠牲層145のエッチングは、有機層116へのエッチングダメージの低いウェットエッチングにより行うことが好ましい。例えば、水酸化テトラメチルアンモニウム(TMAH)水溶液、希フッ酸、シュウ酸、リン酸、酢酸、硝酸、またはこれらの混合液体を用いたウェットエッチングを用いることが好ましい。
 または、絶縁膜125f及び犠牲層145のいずれか一方または双方を、水またはアルコールなどの溶媒に溶解させることで除去することが好ましい。ここで、絶縁膜125f及び犠牲層145を溶解しうるアルコールとしては、エチルアルコール、メチルアルコール、イソプロピルアルコール(IPA)、またはグリセリンなど、様々なアルコールを用いることができる。
 絶縁膜125f及び犠牲層145を除去した後に、有機層115、有機層112、有機層155、有機層116等の内部に含まれる水、及び表面に吸着する水を除去するため、乾燥処理を行うことが好ましい。例えば、不活性ガス雰囲気または減圧雰囲気下における加熱処理を行うことが好ましい。加熱処理は、基板温度として50℃以上200℃以下、好ましくは60℃以上150℃以下、より好ましくは70℃以上120℃以下の温度で行うことができる。減圧雰囲気とすることで、より低温で乾燥が可能であるため好ましい。
〔有機層114の形成〕
 続いて、有機層116、絶縁層125、犠牲層145、及び樹脂層126等を覆って有機層114を成膜する。
 有機層114は、有機層115などと同様の方法で成膜することができる。蒸着法により有機層114を成膜する場合には、有機層114が接続電極111C上に成膜されないように、遮蔽マスクを用いて成膜してもよい。
〔共通電極113の形成〕
 続いて、有機層114を覆って共通電極113を形成する。
 共通電極113は、蒸着法またはスパッタリング法などの成膜方法により形成することができる。または、蒸着法で形成した膜と、スパッタリング法で形成した膜を積層させてもよい。
 共通電極113は、有機層114が成膜される領域を包含するように、共通電極113を形成することが好ましい。すなわち、有機層114の端部が、共通電極113と重畳する構成とすることができる。共通電極113は、遮蔽マスクを用いて形成してもよい。
 図10Cでは、接続部130として、接続電極111Cと共通電極113との間に、有機層114が挟持された例を示している。このとき、有機層114としては、できるだけ電気抵抗の低い材料を用いることが好ましい。または、できるだけ薄く形成することで、有機層114の厚さ方向の電気抵抗を低減することが好ましい。例えば、有機層114として、厚さ1nm以上5nm以下、好ましくは1nm以上3nm以下の電子注入性または正孔注入性の材料を用いることで、接続電極111Cと共通電極113との間の電気抵抗を無視できる程度に小さくできる場合がある。
〔保護層の形成〕
 続いて、共通電極113上に、保護層121を形成する(図10C)。保護層121に用いる無機絶縁膜の成膜には、スパッタリング法、PECVD法、またはALD法を用いることが好ましい。特にALD法は、段差被覆性に優れ、ピンホールなどの欠陥が生じにくいため、好ましい。また、有機絶縁膜の成膜には、インクジェット法を用いると、所望のエリアに均一な膜を形成できるため好ましい。
 以上により、図6Aに示す表示装置を作製することができる。
 なお、上記では、樹脂層126がスリット120よりも幅が広くなるように形成した場合の例を示したが、樹脂層126の幅とスリット120の幅が一致するように形成してもよい。
 図11Aは、絶縁膜125fを形成した後に、樹脂層126を形成した時点での断面概略図である。
 例えば、図11Aに示すように、スリット120よりも幅の広い樹脂層126を形成した後に、アッシングなどにより、樹脂層126の上部をエッチングすることにより、スリット120の内部にのみ樹脂層126を形成することができる。このとき、樹脂層126の上面を、隣接する有機層116の上面の高さになるべく近づけることが好ましい。これにより、スリット120と重なる部分と、その両端の段差を低減でき、有機層114等の段差被覆性を向上させることができる。
 続いて、上記と同様に絶縁膜125f及び犠牲層145をエッチングする(図11B)。このとき、犠牲層145が樹脂層126に覆われる部分がないため、犠牲層145は切れ端が残存することなく、除去される。
 続いて、上記と同様に有機層114、共通電極113、及び保護層121を形成することで、図11Cに示すような表示装置を作製することができる。
 また、図11Cでは、接続電極111Cと共通電極113との間に、有機層114が設けられない場合の例を示している。接続電極111Cと共通電極113とが接しているため、これらの間の接触抵抗を極めて小さくすることができ、消費電力を低減できる。
 以上が、表示装置の作製方法例についての説明である。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の表示装置の構成例について説明する。ここでは画像を表示可能な表示装置として説明するが、発光素子を光源として用いることで、表示装置として使用することができる。
 また、本実施の形態の表示装置は、高解像度の表示装置または大型な表示装置とすることができる。したがって、本実施の形態の表示装置は、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、スマートフォン、腕時計型端末、タブレット端末、携帯情報端末、音響再生装置の表示部に用いることもできる。
[表示装置400]
 図12に、表示装置400の斜視図を示し、図13Aに、表示装置400の断面図を示す。
 表示装置400は、基板452と基板451とが貼り合わされた構成を有する。図12では、基板452を破線で明示している。
 表示装置400は、表示部462、回路464、配線465等を有する。図12では表示装置400にIC473及びFPC472が実装されている例を示している。そのため、図13に示す構成は、表示装置400、IC(集積回路)、及びFPCを有する表示モジュールということもできる。
 回路464としては、例えば走査線駆動回路を用いることができる。
 配線465は、表示部462及び回路464に信号及び電力を供給する機能を有する。当該信号及び電力は、FPC472を介して外部から配線465に入力されるか、またはIC473から配線465に入力される。
 図12では、COG(Chip On Glass)方式またはCOF(Chip on Film)方式等により、基板451にIC473が設けられている例を示す。IC473は、例えば走査線駆動回路または信号線駆動回路などを有するICを適用できる。なお、表示装置400及び表示モジュールは、ICを設けない構成としてもよい。また、ICを、COF方式等により、FPCに実装してもよい。
 図13Aに、表示装置400の、FPC472を含む領域の一部、回路464の一部、表示部462の一部、及び、接続部を含む領域の一部をそれぞれ切断したときの断面の一例を示す。図13Aでは、表示部462のうち、特に、緑色の光(G)を発する発光素子430bと、反射光(L)を受光する受光素子440を含む領域を切断したときの断面の一例を示す。
 図13Aに示す表示装置400は、基板451と基板452の間に、トランジスタ252、トランジスタ260、トランジスタ258、発光素子430b、及び受光素子440等を有する。
 発光素子430b、及び受光素子440には、上記で例示した発光素子または受光素子を適用することができる。
 ここで、表示装置の画素が、互いに異なる色を発する発光素子を有する副画素を3種類有する場合、当該3つの副画素としては、赤色(R)、緑色(G)、青色(B)の3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。当該副画素を4つ有する場合、当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。または、副画素が赤外光を発する発光素子を備えていてもよい。
 また、受光素子440としては、赤色、緑色、または青色の波長域の光に感度を有する光電変換素子、または、赤外の波長域の光に感度を有する光電変換素子を用いることができる。
 基板452と保護層416とは接着層442を介して接着されている。接着層442は、発光素子430b及び受光素子440それぞれと重ねて設けられており、表示装置400には、固体封止構造が適用されている。基板452には、遮光層417が設けられている。
 発光素子430b、受光素子440は、画素電極として、導電層411a、導電層411b、及び導電層411cを有する。導電層411bは、可視光に対して反射性を有し、反射電極として機能する。導電層411cは、可視光に対して透過性を有し、光学調整層として機能する。
 発光素子430bが有する導電層411aは、絶縁層294に設けられた開口を介して、トランジスタ260が有する導電層272bと接続されている。トランジスタ260は、発光素子の駆動を制御する機能を有する。一方、受光素子440が有する導電層411aは、トランジスタ258が有する導電層272bと電気的に接続されている。トランジスタ258は、受光素子440を用いた露光のタイミングなどを制御する機能を有する。
 画素電極を覆って、EL層412GまたはPD層412Sが設けられている。EL層412Gの側面、及びPD層412Sの側面に接して、絶縁層421が設けられ、絶縁層421の凹部を埋めるように、樹脂層422が設けられている。EL層412G及びPD層412Sを覆って、有機層414、共通電極413、及び保護層416が設けられている。発光素子を覆う保護層416を設けることで、発光素子に水などの不純物が入り込むことを抑制し、発光素子の信頼性を高めることができる。
 また、絶縁層421に接して、層415G及び層415Sが設けられている。層415Gは、EL層412Gと同一の材料を含み、層415Sは、PD層412Sと同一の材料を含む。
 発光素子430bが発する光Gは、基板452側に射出される。受光素子440は、基板452を介して入射した光Lを受光し、電気信号に変換する。基板452には、可視光に対する透過性が高い材料を用いることが好ましい。
 トランジスタ252、トランジスタ260、及びトランジスタ258は、いずれも基板451上に形成されている。これらのトランジスタは、同一の材料及び同一の工程により作製することができる。
 なお、トランジスタ252、トランジスタ260、及びトランジスタ258は、異なる構成を有するように、作り分けられていてもよい。例えば、バックゲートの有無が異なるトランジスタを作り分けてもよいし、半導体、ゲート電極、ゲート絶縁層、ソース電極及びドレイン電極について、材料または厚さの一方又は双方が異なるトランジスタを作り分けてもよい。
 基板451と絶縁層262とは接着層455によって貼り合わされている。
 表示装置400の作製方法としては、まず、絶縁層262、各トランジスタ、各発光素子、受光素子等が設けられた作製基板と、遮光層417が設けられた基板452と、を接着層442によって貼り合わせる。そして、作製基板を剥離し露出した面に基板451を貼ることで、作製基板上に形成した各構成要素を、基板451に転置する。基板451及び基板452は、それぞれ、可撓性を有することが好ましい。これにより、表示装置400の可撓性を高めることができる。
 基板451の、基板452が重ならない領域には、接続部254が設けられている。接続部254では、配線465が導電層466及び接続層292を介してFPC472と電気的に接続されている。導電層466は、画素電極と同一の導電膜を加工して得ることができる。これにより、接続部254とFPC472とを接続層292を介して電気的に接続することができる。
 トランジスタ252、トランジスタ260及びトランジスタ258は、ゲートとして機能する導電層271、ゲート絶縁層として機能する絶縁層261、チャネル形成領域281i及び一対の低抵抗領域281nを有する半導体層281、一対の低抵抗領域281nの一方と接続する導電層272a、一対の低抵抗領域281nの他方と接続する導電層272b、ゲート絶縁層として機能する絶縁層275、ゲートとして機能する導電層273、並びに、導電層273を覆う絶縁層265を有する。絶縁層261は、導電層271とチャネル形成領域281iとの間に位置する。絶縁層275は、導電層273とチャネル形成領域281iとの間に位置する。
 導電層272a及び導電層272bは、それぞれ、絶縁層265に設けられた開口を介して低抵抗領域281nと接続される。導電層272a及び導電層272bのうち、一方はソースとして機能し、他方はドレインとして機能する。
 図13Aでは、絶縁層275が半導体層の上面及び側面を覆う例を示す。導電層272a及び導電層272bは、それぞれ、絶縁層275及び絶縁層265に設けられた開口を介して低抵抗領域281nと接続される。
 一方、図13Bに示すトランジスタ259では、絶縁層275は、半導体層281のチャネル形成領域281iと重なり、低抵抗領域281nとは重ならない。例えば、導電層273をマスクとして絶縁層275を加工することで、図13Bに示す構造を作製できる。図13Bでは、絶縁層275及び導電層273を覆って絶縁層265が設けられ、絶縁層265の開口を介して、導電層272a及び導電層272bがそれぞれ低抵抗領域281nと接続されている。さらに、トランジスタを覆う絶縁層268を設けてもよい。
 本実施の形態の表示装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
 トランジスタ252、トランジスタ260、及びトランジスタ258には、チャネルが形成される半導体層を2つのゲートで挟持する構成が適用されている。2つのゲートを接続し、これらに同一の信号を供給することによりトランジスタを駆動してもよい。または、2つのゲートのうち、一方に閾値電圧を制御するための電位を与え、他方に駆動のための電位を与えることで、トランジスタの閾値電圧を制御してもよい。
 トランジスタの半導体層に用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、単結晶半導体、または単結晶以外の結晶性を有する半導体、(微結晶半導体、多結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。単結晶半導体または結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
 トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。つまり、本実施の形態の表示装置は、金属酸化物をチャネル形成領域に用いたトランジスタ(以下、OSトランジスタ)を用いることが好ましい。
 トランジスタの半導体層に用いる金属酸化物のバンドギャップは、2eV以上が好ましく、2.5eV以上がより好ましい。バンドギャップの大きい金属酸化物を用いることで、OSトランジスタのオフ電流を低減することができる。
 金属酸化物は、少なくともインジウムまたは亜鉛を有することが好ましく、インジウム及び亜鉛を有することがより好ましい。例えば、金属酸化物は、インジウムと、M(Mは、ガリウム、アルミニウム、イットリウム、スズ、シリコン、ホウ素、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、及びコバルトから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、ガリウム、アルミニウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましく、ガリウムがより好ましい。なお、インジウムと、Mと、亜鉛とを有する金属酸化物を、以降ではIn−M−Zn酸化物と呼ぶ場合がある。
 金属酸化物がIn−M−Zn酸化物の場合、当該In−M−Zn酸化物におけるInの原子数比はMの原子数比以上であることが好ましい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:1:1またはその近傍の組成、In:M:Zn=1:1:1.2またはその近傍の組成、In:M:Zn=2:1:3またはその近傍の組成、In:M:Zn=3:1:2またはその近傍の組成、In:M:Zn=4:2:3またはその近傍の組成、In:M:Zn=4:2:4.1またはその近傍の組成、In:M:Zn=5:1:3またはその近傍の組成、In:M:Zn=5:1:6またはその近傍の組成、In:M:Zn=5:1:7またはその近傍の組成、In:M:Zn=5:1:8またはその近傍の組成、In:M:Zn=6:1:6またはその近傍の組成、In:M:Zn=5:2:5またはその近傍の組成、等が挙げられる。なお、近傍の組成とは、所望の原子数比の±30%の範囲を含む。金属酸化物中のインジウムの原子数比を大きくすることで、トランジスタのオン電流、または電界効果移動度などを高めることができる。
 例えば、金属元素の原子数比がIn:Ga:Zn=4:2:3またはその近傍の組成と記載する場合、Inを4としたとき、Gaが1以上3以下であり、Znが2以上4以下である場合を含む。また、金属元素の原子数比がIn:Ga:Zn=5:1:6またはその近傍の組成と記載する場合、Inを5としたときに、Gaが0.1より大きく2以下であり、Znが5以上7以下である場合を含む。また、金属元素の原子数比がIn:Ga:Zn=1:1:1またはその近傍の組成と記載する場合、Inを1としたときに、Gaが0.1より大きく2以下であり、Znが0.1より大きく2以下である場合を含む。
 また、In−M−Zn酸化物におけるInの原子数比はMの原子数比未満であってもよい。このようなIn−M−Zn酸化物の金属元素の原子数比として、In:M:Zn=1:3:2またはその近傍の組成、In:M:Zn=1:3:3またはその近傍の組成、In:M:Zn=1:3:4またはその近傍の組成、等が挙げられる。金属酸化物中のMの原子数比を大きくすることで、In−M−Zn酸化物のバンドギャップをより大きくし、光負バイアスストレス試験に対する耐性を高めることが可能となる。具体的には、トランジスタのNBTIS(Negative Bias Temperature Illumination Stress)試験で測定される、しきい値電圧の変化量またはシフト電圧(Vsh)の変化量を小さくすることができる。なお、シフト電圧(Vsh)は、トランジスタのドレイン電流(Id)−ゲート電圧(Vg)カーブにおいて、カーブ上の傾きが最大である点における接線が、Id=1pAの直線と交差するVgで定義される。
 または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
 特に低温ポリシリコンは比較的移動度が高く、ガラス基板上に形成可能であるため、表示装置に好適に用いることができる。例えば、駆動回路が有するトランジスタ252などに低温ポリシリコンを半導体層に用いたトランジスタを適用し、画素に設けられるトランジスタ260、トランジスタ258などに、酸化物半導体を半導体層に用いたトランジスタを適用することができる。
 または、トランジスタの半導体層は、半導体として機能する層状物質を有してもよい。層状物質とは、層状の結晶構造を有する材料群の総称である。層状の結晶構造は、共有結合またはイオン結合によって形成される層が、ファンデルワールス力のような、共有結合またはイオン結合よりも弱い結合を介して積層している構造である。層状物質は、単位層内における電気伝導性が高く、つまり、2次元電気伝導性が高い。半導体として機能し、かつ、2次元電気伝導性の高い材料をチャネル形成領域に用いることで、オン電流の大きいトランジスタを提供することができる。
 上記層状物質として、例えば、グラフェン、シリセン、カルコゲン化物などが挙げられる。カルコゲン化物は、カルコゲン(第16族に属する元素)を含む化合物である。また、カルコゲン化物として、遷移金属カルコゲナイド、13族カルコゲナイドなどが挙げられる。トランジスタの半導体層として適用可能な遷移金属カルコゲナイドとして、具体的には、硫化モリブデン(代表的にはMoS)、セレン化モリブデン(代表的にはMoSe)、モリブデンテルル(代表的にはMoTe)、硫化タングステン(代表的にはWS)、セレン化タングステン(代表的にはWSe)、タングステンテルル(代表的にはWTe)、硫化ハフニウム(代表的にはHfS)、セレン化ハフニウム(代表的にはHfSe)、硫化ジルコニウム(代表的にはZrS)、セレン化ジルコニウム(代表的にはZrSe)などが挙げられる。
 なお、図13Aに示す表示装置は、OSトランジスタを有し、且つ発光素子間の共通層が分離された構成である。当該構成とすることで、トランジスタに流れうるリーク電流、及び隣接する発光素子間に流れうるリーク電流(横リーク電流、サイドリーク電流などともいう)を、極めて低くすることができる。また、上記構成とすることで、表示装置に画像を表示した場合に、観察者が画像のきれ、画像のするどさ、高い彩度及び高いコントラスト比のいずれか一または複数を観測できる。なお、トランジスタに流れうるリーク電流、及び発光素子間の横リーク電流が極めて低い構成とすることで、黒表示時に生じうる光漏れ(いわゆる黒浮き)などが限りなく少ない表示(真黒表示ともいう)とすることができる。
 特に、MML構造の発光デバイスの中でも、色塗分け構造(SBS構造)を適用することで、発光素子の間に設けられる層(例えば、発光素子の間で共通して用いる有機層、共通層ともいう)が分断された構成となるため、サイドリークがない、またはサイドリークが極めて少ない表示とすることができる。
 回路464が有するトランジスタと、表示部462が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路464が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、表示部462が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
 トランジスタを覆う絶縁層の少なくとも一層に、水及び水素などの不純物が拡散しにくい材料を用いることが好ましい。これにより、当該絶縁層をバリア層として機能させることができる。このような構成とすることで、トランジスタに外部から不純物が拡散することを効果的に抑制でき、表示装置の信頼性を高めることができる。
 絶縁層261、絶縁層262、絶縁層265、絶縁層268、及び絶縁層275としては、それぞれ、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の無機絶縁膜を2以上積層して用いてもよい。
 ここで、有機絶縁膜は、無機絶縁膜に比べてバリア性が低いことが多い。そのため、有機絶縁膜は、表示装置400の端部近傍に開口を有することが好ましい。これにより、表示装置400の端部から有機絶縁膜を介して不純物が入り込むことを抑制することができる。または、有機絶縁膜の端部が表示装置400の端部よりも内側にくるように有機絶縁膜を形成し、表示装置400の端部に有機絶縁膜が露出しないようにしてもよい。
 平坦化層として機能する絶縁層294には、有機絶縁膜が好適である。有機絶縁膜に用いることができる材料としては、アクリル樹脂、ポリイミド樹脂、エポキシ樹脂、ポリアミド樹脂、ポリイミドアミド樹脂、シロキサン樹脂、ベンゾシクロブテン系樹脂、フェノール樹脂、及びこれら樹脂の前駆体等が挙げられる。
 基板452の基板451側の面には、遮光層417を設けることが好ましい。また、基板452の外側には各種光学部材を配置することができる。光学部材としては、偏光板、位相差板、光拡散層(拡散フィルムなど)、反射防止層、及び集光フィルム等が挙げられる。また、基板452の外側には、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
 図13Aには、接続部278を示している。接続部278において、共通電極413と配線とが電気的に接続する。図13Aでは、当該配線として、画素電極と同一の積層構造を適用した場合の例を示している。
 基板451及び基板452には、それぞれ、ガラス、石英、セラミック、サファイア、樹脂、金属、合金、半導体などを用いることができる。発光素子からの光を取り出す側の基板には、該光を透過する材料を用いる。基板451及び基板452に可撓性を有する材料を用いると、表示装置の可撓性を高めることができる。また、基板451または基板452として偏光板を用いてもよい。
 基板451及び基板452としては、それぞれ、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板451及び基板452の一方または双方に、可撓性を有する程度の厚さのガラスを用いてもよい。
 なお、表示装置に円偏光板を重ねる場合、表示装置が有する基板には、光学等方性の高い基板を用いることが好ましい。光学等方性が高い基板は、複屈折が小さい(複屈折量が小さい、ともいえる)。
 光学等方性が高い基板のリタデーション(位相差)値の絶対値は、30nm以下が好ましく、20nm以下がより好ましく、10nm以下がさらに好ましい。
 光学等方性が高いフィルムとしては、トリアセチルセルロース(TAC、セルローストリアセテートともいう)フィルム、シクロオレフィンポリマー(COP)フィルム、シクロオレフィンコポリマー(COC)フィルム、及びアクリルフィルム等が挙げられる。
 また、基板としてフィルムを用いる場合、フィルムが吸水することで、表示パネルにしわが発生するなどの形状変化が生じる恐れがある。そのため、基板には、吸水率の低いフィルムを用いることが好ましい。例えば、吸水率が1%以下のフィルムを用いることが好ましく、0.1%以下のフィルムを用いることがより好ましく、0.01%以下のフィルムを用いることがさらに好ましい。
 接着層としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラール)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
 接続層292としては、異方性導電フィルム(ACF:Anisotropic Conductive Film)、異方性導電ペースト(ACP:Anisotropic Conductive Paste)などを用いることができる。
 トランジスタのゲート、ソース及びドレインのほか、表示装置を構成する各種配線及び電極などの導電層に用いることのできる材料としては、アルミニウム、チタン、クロム、ニッケル、銅、イットリウム、ジルコニウム、モリブデン、銀、タンタル、及びタングステンなどの金属、並びに、当該金属を主成分とする合金などが挙げられる。これらの材料を含む膜を単層で、または積層構造として用いることができる。
 また、透光性を有する導電材料としては、酸化インジウム、インジウム錫酸化物、インジウム亜鉛酸化物、酸化亜鉛、ガリウムを含む酸化亜鉛などの導電性酸化物またはグラフェンを用いることができる。または、金、銀、白金、マグネシウム、ニッケル、タングステン、クロム、モリブデン、鉄、コバルト、銅、パラジウム、及びチタンなどの金属材料、または、該金属材料を含む合金材料を用いることができる。または、該金属材料の窒化物(例えば、窒化チタン)などを用いてもよい。なお、金属材料、または、合金材料(またはそれらの窒化物)を用いる場合には、透光性を有する程度に薄くすることが好ましい。また、上記材料の積層膜を導電層として用いることができる。例えば、銀とマグネシウムの合金とインジウムスズ酸化物の積層膜などを用いると、導電性を高めることができるため好ましい。これらは、表示装置を構成する各種配線及び電極などの導電層、及び、発光素子が有する導電層(画素電極または共通電極として機能する導電層)にも用いることができる。
 各絶縁層に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態3)
 本実施の形態では、本発明の一態様の表示装置について説明する。
 本発明の一態様の表示装置は、受光素子(受光デバイスともいう)と発光素子(発光デバイスともいう)を有する。または、本発明の一態様の表示装置は、受発光素子(受発光デバイスともいう)と発光素子とを有する構成としてもよい。
 まず、受光素子と発光素子とを有する表示装置について説明する。
 本発明の一態様の表示装置は、受発光部に、受光素子と発光素子とを有する。本発明の一態様の表示装置は、受発光部に、発光素子がマトリクス状に配置されており、当該受発光部で画像を表示することができる。また、当該受発光部には、受光素子がマトリクス状に配置されており、受発光部は、撮像機能及びセンシング機能の一方または双方も有する。受発光部は、イメージセンサ、タッチセンサなどに用いることができる。つまり、受発光部で光を検出することで、画像を撮像すること、対象物(指、ペンなど)のタッチ操作を検出することができる。さらに、本発明の一態様の表示装置は、発光素子をセンサの光源として利用することができる。したがって、表示装置と別に受光部及び光源を設けなくてよく、電子機器の部品点数を削減することができる。
 本発明の一態様の表示装置では、受発光部が有する発光素子が発した光を対象物が反射(または散乱)した際、受光素子がその反射光(または散乱光)を検出できるため、暗い場所でも、撮像、タッチ操作の検出などが可能である。
 本発明の一態様の表示装置が有する発光素子は、表示素子(表示デバイスともいう)として機能する。
 発光素子としては、OLED、QLEDなどのEL素子(ELデバイスともいう)を用いることが好ましい。EL素子が有する発光物質としては、蛍光を発する物質(蛍光材料)、燐光を発する物質(燐光材料)、熱活性化遅延蛍光を示す物質(熱活性化遅延蛍光(TADF)材料)などが挙げられる。また、発光素子として、マイクロLEDなどのLEDを用いることもできる。EL素子が有する発光物質としては、有機化合物だけでなく、無機化合物(量子ドット材料など)を用いることができる。
 本発明の一態様の表示装置は、受光素子を用いて、光を検出する機能を有する。
 受光素子をイメージセンサに用いる場合、表示装置は、受光素子を用いて、画像を撮像することができる。例えば、表示装置は、スキャナとして用いることができる。
 本発明の一態様の表示装置が適用された電子機器は、イメージセンサとしての機能を用いて、指紋、掌紋などの生体情報に係るデータを取得することができる。つまり、表示装置に、生体認証用センサを内蔵させることができる。表示装置が生体認証用センサを内蔵することで、表示装置とは別に生体認証用センサを設ける場合に比べて、電子機器の部品点数を少なくでき、電子機器の小型化及び軽量化が可能である。
 また、受光素子をタッチセンサに用いる場合、表示装置は、受光素子を用いて、対象物のタッチ操作を検出することができる。
 受光素子としては、例えば、pn型またはpin型のフォトダイオードを用いることができる。受光素子は、受光素子に入射する光を検出し電荷を発生させる光電変換素子(光電変換デバイスともいう)として機能する。受光素子に入射する光量に基づき、受光素子から発生する電荷量が決まる。
 特に、受光素子として、有機化合物を含む層を有する有機フォトダイオードを用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な装置に適用できる。
 本発明の一態様では、発光素子として有機EL素子(有機ELデバイスともいう)を用い、受光素子として有機フォトダイオードを用いる。有機EL素子及び有機フォトダイオードは、同一基板上に形成することができる。したがって、有機EL素子を用いた表示装置に有機フォトダイオードを内蔵することができる。
 有機EL素子及び有機フォトダイオードを構成する全ての層を作り分ける場合、成膜工程数が膨大になってしまう。しかしながら有機フォトダイオードは、有機EL素子と共通の構成にできる層が多いため、共通の構成にできる層は一括で成膜することで、成膜工程の増加を抑制することができる。
 例えば、一対の電極のうち一方(共通電極)を、受光素子及び発光素子で共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受光素子及び発光素子で共通の層としてもよい。このように、受光素子及び発光素子が共通の層を有することで、成膜回数及びマスクの数を減らすことができ、表示装置の作製工程及び作製コストを削減することができる。また、表示装置の既存の製造装置及び製造方法を用いて、受光素子を有する表示装置を作製することができる。
 次に、受発光素子と発光素子を有する表示装置について説明する。なお、上記と同様の機能、作用、効果等については、説明を省略することがある。
 本発明の一態様の表示装置において、いずれかの色を呈する副画素は、発光素子の代わりに受発光素子を有し、その他の色を呈する副画素は、発光素子を有する。受発光素子は、光を発する機能(発光機能)と、受光する機能(受光機能)と、の双方を有する。例えば、画素が、赤色の副画素、緑色の副画素、青色の副画素の3つの副画素を有する場合、少なくとも1つの副画素が受発光素子を有し、他の副画素は発光素子を有する構成とする。したがって、本発明の一態様の表示装置の受発光部は、受発光素子と発光素子との双方を用いて画像を表示する機能を有する。
 受発光素子が、発光素子と受光素子を兼ねることで、画素に含まれる副画素の数を増やさずに、画素に受光機能を付与することができる。これにより、画素の開口率(各副画素の開口率)、及び、表示装置の精細度を維持したまま、表示装置の受発光部に、撮像機能及びセンシング機能の一方または双方を付加することができる。したがって、本発明の一態様の表示装置は、発光素子を有する副画素とは別に、受光素子を有する副画素を設ける場合に比べ、画素の開口率を高くでき、また、高精細化が容易である。
 本発明の一態様の表示装置は、受発光部に、受発光素子と発光素子がマトリクス状に配置されており、当該受発光部で画像を表示することができる。また、受発光部は、イメージセンサ、タッチセンサなどに用いることができる。本発明の一態様の表示装置は、発光素子をセンサの光源として利用することができる。そのため暗い場所でも、撮像、タッチ操作の検出などが可能である。
 受発光素子は、有機EL素子と有機フォトダイオードを組み合わせて作製することができる。例えば、有機EL素子の積層構造に、有機フォトダイオードの活性層を追加することで、受発光素子を作製することができる。さらに、有機EL素子と有機フォトダイオードを組み合わせて作製する受発光素子は、有機EL素子と共通の構成にできる層を一括で成膜することで、成膜工程の増加を抑制することができる。
 例えば、一対の電極のうち一方(共通電極)を、受発光素子及び発光素子で共通の層とすることができる。また、例えば、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層の少なくとも1つを、受発光素子及び発光素子で共通の層としてもよい。
 なお、受発光素子が有する層は、受発光素子が、受光素子として機能する場合と、発光素子として機能する場合と、で、機能が異なることがある。本明細書中では、受発光素子が発光素子として機能する場合における機能に基づいて構成要素を呼称する。
 本実施の形態の表示装置は、発光素子及び受発光素子を用いて、画像を表示する機能を有する。つまり、発光素子及び受発光素子は、表示素子として機能する。
 本実施の形態の表示装置は、受発光素子を用いて、光を検出する機能を有する。受発光素子は、受発光素子自身が発する光よりも短波長の光を検出することができる。
 受発光素子をイメージセンサに用いる場合、本実施の形態の表示装置は、受発光素子を用いて、画像を撮像することができる。また、受発光素子をタッチセンサに用いる場合、本実施の形態の表示装置は、受発光素子を用いて、対象物のタッチ操作を検出することができる。
 受発光素子は、光電変換素子として機能する。受発光素子は、上記発光素子の構成に、受光素子の活性層を追加することで作製することができる。受発光素子には、例えば、pn型またはpin型のフォトダイオードの活性層を用いることができる。
 特に、受発光素子には、有機化合物を含む層を有する有機フォトダイオードの活性層を用いることが好ましい。有機フォトダイオードは、薄型化、軽量化、及び大面積化が容易であり、また、形状及びデザインの自由度が高いため、様々な装置に適用できる。
 以下では、本発明の一態様の表示装置の一例である表示装置について、図面を用いてより具体的に説明する。
[表示装置の構成例1]
〔構成例1−1〕
 図14Aに、表示パネル200の模式図を示す。表示パネル200は、基板201、基板202、受光素子212、発光素子211R、発光素子211G、発光素子211B、機能層203等を有する。
 発光素子211R、発光素子211G、発光素子211B、及び受光素子212は、基板201と基板202の間に設けられている。発光素子211R、発光素子211G、発光素子211Bは、それぞれ赤色(R)、緑色(G)、または青色(B)の光を発する。なお以下では、発光素子211R、発光素子211G及び発光素子211Bを区別しない場合に、発光素子211と表記する場合がある。
 表示パネル200は、マトリクス状に配置された複数の画素を有する。1つの画素は、1つ以上の副画素を有する。1つの副画素は、1つの発光素子を有する。例えば、画素には、副画素を3つ有する構成(R、G、Bの3色、または、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色など)、または、副画素を4つ有する構成(R、G、B、白色(W)の4色、または、R、G、B、Yの4色など)を適用できる。さらに、画素は、受光素子212を有する。受光素子212は、全ての画素に設けられていてもよく、一部の画素に設けられていてもよい。また、1つの画素が複数の受光素子212を有していてもよい。
 図14Aには、基板202の表面に指220が触れる様子を示している。発光素子211Gが発する光の一部は、基板202と指220との接触部で反射される。そして、反射光の一部が、受光素子212に入射されることにより、指220が基板202に接触したことを検出することができる。すなわち、表示パネル200はタッチパネルとして機能することができる。
 機能層203は、発光素子211R、発光素子211G、発光素子211Bを駆動する回路、及び、受光素子212を駆動する回路を有する。機能層203には、スイッチ、トランジスタ、容量、配線などが設けられる。なお、発光素子211R、発光素子211G、発光素子211B、及び受光素子212をパッシブマトリクス方式で駆動させる場合には、スイッチ、トランジスタなどを設けない構成としてもよい。
 表示パネル200は、指220の指紋を検出する機能を有することが好ましい。図14Bには、基板202に指220が触れている状態における接触部の拡大図を模式的に示している。また、図14Bには、交互に配列した発光素子211と受光素子212を示している。
 指220は凹部及び凸部により指紋が形成されている。そのため、図14Bに示すように指紋の凸部が基板202に触れている。
 ある表面、界面などから反射される光には、正反射と拡散反射とがある。正反射光は入射角と反射角が一致する、指向性の高い光であり、拡散反射光は、強度の角度依存性が低い、指向性の低い光である。指220の表面から反射される光は、正反射と拡散反射のうち拡散反射の成分が支配的となる。一方、基板202と大気との界面から反射される光は、正反射の成分が支配的となる。
 指220と基板202との接触面または非接触面で反射され、これらの直下に位置する受光素子212に入射される光の強度は、正反射光と拡散反射光とを足し合わせたものとなる。上述のように指220の凹部では基板202と指220が接触しないため、正反射光(実線矢印で示す)が支配的となり、凸部ではこれらが接触するため、指220からの拡散反射光(破線矢印で示す)が支配的となる。したがって、凹部の直下に位置する受光素子212で受光する光の強度は、凸部の直下に位置する受光素子212よりも高くなる。これにより、指220の指紋を撮像することができる。
 受光素子212の配列間隔は、指紋の2つの凸部間の距離、好ましくは隣接する凹部と凸部間の距離よりも小さい間隔とすることで、鮮明な指紋の画像を取得することができる。人の指紋の凹部と凸部の間隔は概ね200μmであることから、例えば受光素子212の配列間隔は、400μm以下、好ましくは200μm以下、より好ましくは150μm以下、さらに好ましくは100μm以下、さらに好ましくは50μm以下であって、1μm以上、好ましくは10μm以上、より好ましくは20μm以上とする。
 表示パネル200で撮像した指紋の画像の例を図14Cに示す。図14Cには、撮像範囲223内に、指220の輪郭を破線で、接触部221の輪郭を一点鎖線で示している。接触部221内において、受光素子212に入射する光量の違いによって、コントラストの高い指紋222を撮像することができる。
 表示パネル200は、タッチパネル、ペンタブレットとしても機能させることができる。図14Dには、スタイラス225の先端を基板202に接触させた状態で、破線矢印の方向に滑らせている様子を示している。
 図14Dに示すように、スタイラス225の先端と、基板202の接触面で拡散される拡散反射光が、当該接触面と重なる部分に位置する受光素子212に入射することで、スタイラス225の先端の位置を高精度に検出することができる。
 図14Eには、表示パネル200で検出したスタイラス225の軌跡226の例を示している。表示パネル200は、高い位置精度でスタイラス225等の被検出体の位置検出が可能であるため、描画アプリケーション等において、高精細な描画を行うことも可能である。また、静電容量式のタッチセンサ、電磁誘導型のタッチペン等を用いた場合とは異なり、絶縁性の高い被検出体であっても位置検出が可能であるため、スタイラス225の先端部の材料は問われず、様々な筆記用具(例えば筆、ガラスペン、羽ペンなど)を用いることもできる。
 ここで、図14F乃至図14Hに、表示パネル200に適用可能な画素の一例を示す。
 図14F、及び図14Gに示す画素は、それぞれ赤色(R)の発光素子211R、緑色(G)の発光素子211G、青色(B)の発光素子211Bと、受光素子212を有する。画素は、それぞれ発光素子211R、発光素子211G、発光素子211B、及び受光素子212を駆動するための画素回路を有する。
 図14Fは、2×2のマトリクス状に、3つの発光素子と1つの受光素子が配置されている例である。図14Gは、3つの発光素子が一列に配列し、その下側に、横長の1つの受光素子212が配置されている例である。
 図14Hに示す画素は、白色(W)の発光素子211Wを有する例である。ここでは、4つの発光素子が一列に配置され、その下側に受光素子212が配置されている。
 なお、画素の構成は上記に限られず、様々な配置方法を採用することができる。
〔構成例1−2〕
 以下では、可視光を呈する発光素子と、赤外光を呈する発光素子と、受光素子と、を備える構成の例について説明する。
 図15Aに示す表示パネル200Aは、図14Aで例示した構成に加えて、発光素子211IRを有する。発光素子211IRは、赤外光IRを発する発光素子である。またこのとき、受光素子212には、少なくとも発光素子211IRが発する赤外光IRを受光することのできる素子を用いることが好ましい。また、受光素子212として、可視光と赤外光の両方を受光することのできる素子を用いることがより好ましい。
 図15Aに示すように、基板202に指220が触れると、発光素子211IRから発せられた赤外光IRが指220により反射され、当該反射光の一部が受光素子212に入射されることにより、指220の位置情報を取得することができる。
 図15B乃至図15Dに、表示パネル200Aに適用可能な画素の一例を示す。
 図15Bは、3つの発光素子が一列に配列し、その下側に、発光素子211IRと、受光素子212とが横に並んで配置されている例である。また、図15Cは、発光素子211IRを含む4つの発光素子が一列に配列し、その下側に、受光素子212が配置されている例である。
 また、図15Dは、発光素子211IRを中心にして、四方に3つの発光素子と、受光素子212が配置されている例である。
 なお、図15B乃至図15Dに示す画素において、発光素子同士、及び発光素子と受光素子とは、それぞれの位置を交換可能である。
〔構成例1−3〕
 以下では、可視光を呈する発光素子と、可視光を呈し、且つ可視光を受光する受発光素子と、を備える構成の例について説明する。
 図16Aに示す表示パネル200Bは、発光素子211B、発光素子211G、及び受発光素子213Rを有する。受発光素子213Rは、赤色(R)の光を発する発光素子としての機能と、可視光を受光する光電変換素子としての機能と、を有する。図16Aでは、受発光素子213Rが、発光素子211Gが発する緑色(G)の光を受光する例を示している。なお、受発光素子213Rは、発光素子211Bが発する青色(B)の光を受光してもよい。また、受発光素子213Rは、緑色の光と青色の光の両方を受光してもよい。
 例えば、受発光素子213Rは、自身が発する光よりも短波長の光を受光することが好ましい。または、受発光素子213Rは、自身が発する光よりも長波長の光(例えば赤外光)を受光する構成としてもよい。受発光素子213Rは、自身が発する光と同程度の波長を受光する構成としてもよいが、その場合は自身が発する光をも受光してしまい、発光効率が低下してしまう恐れがある。そのため、受発光素子213Rは、発光スペクトルのピークと、吸収スペクトルのピークとができるだけ重ならないように構成されることが好ましい。
 また、ここでは受発光素子が発する光は、赤色の光に限られない。また、発光素子が発する光も、緑色の光と青色の光の組み合わせに限定されない。例えば受発光素子として、緑色または青色の光を発し、且つ、自身が発する光とは異なる波長の光を受光する素子とすることができる。
 このように、受発光素子213Rが、発光素子と受光素子とを兼ねることにより、一画素に配置する素子の数を減らすことができる。そのため、高精細化、高開口率化、高解像度化などが容易となる。
 図16B乃至図16Iに、表示パネル200Bに適用可能な画素の一例を示す。
 図16Bは、受発光素子213R、発光素子211G、及び発光素子211Bが一列に配列されている例である。図16Cは、発光素子211Gと発光素子211Bが縦方向に交互に配列し、これらの横に受発光素子213Rが配置されている例である。
 図16Dは、2×2のマトリクス状に、3つの発光素子(発光素子211G、発光素子211B、及び発光素子211Xと一つの受発光素子が配置されている例である。発光素子211Xは、R、G、B以外の光を呈する素子である。R、G、B以外の光としては、白色(W)、黄色(Y)、シアン(C)、マゼンタ(M)、赤外光(IR)、紫外光(UV)等の光が挙げられる。発光素子211Xが赤外光を呈する場合、受発光素子は、赤外光を検出する機能、または、可視光及び赤外光の双方を検出する機能を有することが好ましい。センサの用途に応じて、受発光素子が検出する光の波長を決定することができる。
 図16Eには、2つ分の画素を示している。点線で囲まれた3つの素子を含む領域が1つの画素に相当する。画素はそれぞれ発光素子211G、発光素子211B、及び受発光素子213Rを有する。図16Eに示す左の画素では、受発光素子213Rと同じ行に発光素子211Gが配置され、受発光素子213Rと同じ列に発光素子211Bが配置されている。図16Eに示す右の画素では、受発光素子213Rと同じ行に発光素子211Gが配置され、発光素子211Gと同じ列に発光素子211Bが配置されている。図16Eに示す画素レイアウトでは、奇数行と偶数行のいずれにおいても、受発光素子213R、発光素子211G、及び発光素子211Bが繰り返し配置されており、かつ、各列において、奇数行と偶数行では互いに異なる色の発光素子または受発光素子が配置される。
 図16Fには、ペンタイル配列が適用された4つの画素を示しており、隣接する2つの画素は組み合わせの異なる2色の光を呈する発光素子または受発光素子を有する。なお、図16Fでは、発光素子または受発光素子の上面形状を示している。
 図16Fに示す左上の画素と右下の画素は、受発光素子213Rと発光素子211Gを有する。また右上の画素と左下の画素は、発光素子211Gと発光素子211Bを有する。すなわち、図16Fに示す例では、各画素に発光素子211Gが設けられている。
 発光素子及び受発光素子の上面形状は特に限定されず、円、楕円、多角形、角の丸い多角形等とすることができる。図16F等では、発光素子及び受発光素子の上面形状として、略45度傾いた正方形(ひし形)である例を示している。なお、各色の発光素子及び受発光素子の上面形状は、互いに異なっていてもよく、一部または全ての色で同じであってもよい。
 また、各色の発光素子及び受発光素子の発光領域(または受発光領域)のサイズは、互いに異なっていてもよく、一部または全ての色で同じであってもよい。例えば図16Fにおいて、各画素に設けられる発光素子211Gの発光領域の面積を他の素子の発光領域(または受発光領域)よりも小さくしてもよい。
 図16Gは、図16Fに示す画素配列の変形例である。具体的には、図16Gの構成は、図16Fの構成を45度回転させることで得られる。図16Fでは、1つの画素に2つの素子を有するとして説明したが、図16Gに示すように、4つの素子により1つの画素が構成されていると捉えることもできる。
 図16Hは、図16Fに示す画素配列の変形例である。図16Hに示す左上の画素と右下の画素は、受発光素子213Rと発光素子211Gを有する。また右上の画素と左下の画素は、受発光素子213Rと発光素子211Bを有する。すなわち、図16Hに示す例では、各画素に受発光素子213Rが設けられている。各画素に受発光素子213Rが設けられているため、図16Hに示す構成は、図16Fに示す構成に比べて、高い精細度で撮像を行うことができる。これにより、例えば、生体認証の精度を高めることができる。
 図16Iは、図16Hで示す画素配列の変形例であり、当該画素配列を45度回転させることで得られる構成である。
 図16Iでは、4つの素子(2つの発光素子と2つの受発光素子)により1つの画素が構成されることとして説明を行う。このように、1つの画素が、受光機能を有する受発光素子を複数有することで、高い精細度で撮像を行うことができる。したがって、生体認証の精度を高めることができる。例えば、撮像の精細度を、表示の精細度のルート2倍とすることができる。
 図16Hまたは図16Iに示す構成が適用された表示装置は、p個(pは2以上の整数)の第1の発光素子と、q個(qは2以上の整数)の第2の発光素子と、r個(rはpより大きく、qより大きい整数)の受発光素子と、を有する。pとrはr=2pを満たす。また、p、q、rはr=p+qを満たす。第1の発光素子と第2の発光素子のうち一方が緑色の光を発し、他方が青色の光を発する。受発光素子は、赤色の光を発し、かつ、受光機能を有する。
 例えば、受発光素子を用いて、タッチ操作の検出を行う場合、光源からの発光がユーザーに視認されにくいことが好ましい。青色の光は、緑色の光よりも視認性が低いため、青色の光を発する発光素子を光源とすることが好ましい。したがって、受発光素子は、青色の光を受光する機能を有することが好ましい。なお、これに限られず、受発光素子の感度に応じて、光源とする発光素子を適宜選択することができる。
 以上のように、本実施の形態の表示装置には、様々な配列の画素を適用することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態4)
 本実施の形態では、本発明の一態様である受発光装置に用いることができる発光素子(発光デバイスともいう)、及び受光素子(受光デバイスともいう)について説明する。
 本明細書等において、メタルマスク、またはFMM(ファインメタルマスク、高精細なメタルマスク)を用いて作製されるデバイスをMM(メタルマスク)構造のデバイスと呼称する場合がある。また、本明細書等において、メタルマスク、またはFMMを用いることなく作製されるデバイスをMML(メタルマスクレス)構造のデバイスと呼称する場合がある。
 なお、本明細書等において、各色の発光デバイス(ここでは青(B)、緑(G)、及び赤(R))で、発光層を作り分ける、または発光層を塗り分ける構造をSBS(Side By Side)構造と呼ぶ場合がある。また、本明細書等において、白色光を発することのできる発光デバイスを白色発光デバイスと呼ぶ場合がある。なお、白色発光デバイスは、着色層(たとえば、カラーフィルタ)と組み合わせることで、フルカラーの表示装置とすることができる。
 また、発光デバイスは、シングル構造と、タンデム構造とに大別することができる。シングル構造のデバイスは、一対の電極間に1つの発光ユニットを有し、当該発光ユニットは、1以上の発光層を含む構成とすることが好ましい。シングル構造で白色発光を得るには、2以上の発光層の各々の発光が補色の関係となるような発光層を選択すればよい。例えば、第1の発光層の発光色と第2の発光層の発光色を補色の関係になるようにすることで、発光デバイス全体として白色発光する構成を得ることができる。また、発光層を3つ以上有する発光デバイスの場合も同様である。
 タンデム構造のデバイスは、一対の電極間に2以上の複数の発光ユニットを有し、各発光ユニットは、1以上の発光層を含む構成とすることが好ましい。各発光ユニットにおいて、同じ色の光を発する発光層を用いることで、所定の電流当たりの輝度が高められ、且つ、シングル構造と比較して信頼性の高い発光デバイスとすることができる。タンデム構造で白色発光を得るには、複数の発光ユニットの発光層からの光を合わせて白色発光が得られる構成とすればよい。なお、白色発光が得られる発光色の組み合わせについては、シングル構造の構成と同様である。なお、タンデム構造のデバイスにおいて、複数の発光ユニットの間には、電荷発生層などの中間層を設けると好適である。
 また、上述の白色発光デバイス(シングル構造またはタンデム構造)と、SBS構造の発光デバイスと、を比較した場合、SBS構造の発光デバイスは、白色発光デバイスよりも消費電力を低くすることができる。消費電力を低く抑えたい場合においては、SBS構造の発光デバイスを用いると好適である。一方で、白色発光デバイスは、製造プロセスがSBS構造の発光デバイスよりも簡単であるため、製造コストを低くすることができる、又は製造歩留まりを高くすることができるため、好適である。
[デバイス構造]
 次に、本発明の一態様の表示装置に用いることができる、発光素子、受光素子、及び受発光素子の詳細な構成について説明する。
 本発明の一態様の表示装置は、発光素子が形成されている基板とは反対方向に光を射出するトップエミッション型、発光素子が形成されている基板側に光を射出するボトムエミッション型、両面に光を射出するデュアルエミッション型のいずれであってもよい。
 本実施の形態では、トップエミッション型の表示装置を例に挙げて説明する。
 なお、本明細書等において、特に説明のない限り、要素(発光素子、発光層など)を複数有する構成を説明する場合であっても、各々の要素に共通する事項を説明する場合には、アルファベットを省略して説明する。例えば、発光層383R及び発光層383G等に共通する事項を説明する場合に、発光層383と記す場合がある。
 図17Aに示す表示装置380Aは、受光素子370PD、赤色(R)の光を発する発光素子370R、緑色(G)の光を発する発光素子370G、及び、青色(B)の光を発する発光素子370Bを有する。
 各発光素子は、画素電極371、正孔注入層381、正孔輸送層382、発光層、電子輸送層384、電子注入層385、及び共通電極375をこの順で積層して有する。発光素子370Rは、発光層383Rを有し、発光素子370Gは、発光層383Gを有し、発光素子370Bは、発光層383Bを有する。発光層383Rは、赤色の光を発する発光物質を有し、発光層383Gは、緑色の光を発する発光物質を有し、発光層383Bは、青色の光を発する発光物質を有する。
 発光素子は、画素電極371と共通電極375との間に電圧を印加することで、共通電極375側に光を射出する電界発光素子である。
 受光素子370PDは、画素電極371、正孔注入層381、正孔輸送層382、活性層373、電子輸送層384、電子注入層385、及び共通電極375をこの順で積層して有する。
 受光素子370PDは、表示装置380Aの外部から入射される光を受光し、電気信号に変換する、光電変換素子である。
 本実施の形態では、発光素子及び受光素子のいずれにおいても、画素電極371が陽極として機能し、共通電極375が陰極として機能するものとして説明する。つまり、受光素子は、画素電極371と共通電極375との間に逆バイアスをかけて駆動することで、受光素子に入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
 本実施の形態の表示装置では、受光素子370PDの活性層373に有機化合物を用いる。受光素子370PDは、活性層373以外の層を、発光素子と共通の構成にすることができる。そのため、発光素子の作製工程に、活性層373を成膜する工程を追加するのみで、発光素子の形成と並行して受光素子370PDを形成することができる。また、発光素子と受光素子370PDとを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示装置に受光素子370PDを内蔵することができる。
 表示装置380Aでは、受光素子370PDの活性層373と、発光素子の発光層383と、を作り分ける以外は、受光素子370PDと発光素子が共通の構成である例を示す。ただし、受光素子370PDと発光素子の構成はこれに限定されない。受光素子370PDと発光素子は、活性層373と発光層383のほかにも、互いに作り分ける層を有していてもよい。受光素子370PDと発光素子は、共通で用いられる層(共通層)を1層以上有することが好ましい。これにより、作製工程を大幅に増やすことなく、表示装置に受光素子370PDを内蔵することができる。
 画素電極371と共通電極375のうち、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
 本実施の形態の表示装置が有する発光素子には、微小光共振器(マイクロキャビティ)構造が適用されていることが好ましい。したがって、発光素子が有する一対の電極の一方は、可視光に対する透過性及び反射性を有する電極(半透過・半反射電極)を有することが好ましく、他方は、可視光に対する反射性を有する電極(反射電極)を有することが好ましい。発光素子がマイクロキャビティ構造を有することで、発光層から得られる発光を両電極間で共振させ、発光素子から射出される光を強めることができる。
 なお、半透過・半反射電極は、反射電極と可視光に対する透過性を有する電極(透明電極ともいう)との積層構造とすることができる。
 透明電極の光の透過率は、40%以上とする。例えば、発光素子には、可視光(波長400nm以上750nm未満の光)の透過率が40%以上である電極を用いることが好ましい。半透過・半反射電極の可視光の反射率は、10%以上95%以下、好ましくは30%以上80%以下とする。反射電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。なお、発光素子が近赤外光(波長750nm以上1300nm以下の光)を発する場合、これらの電極の近赤外光の透過率または反射率は、可視光の透過率または反射率と同様に、上記の数値範囲を満たすことが好ましい。
 発光素子は少なくとも発光層383を有する。発光素子は、発光層383以外の層として、正孔注入性の高い物質、正孔輸送性の高い物質、正孔ブロック材料、電子輸送性の高い物質、電子注入性の高い物質、電子ブロック材料、またはバイポーラ性の物質(電子輸送性及び正孔輸送性が高い物質)等を含む層をさらに有していてもよい。
 例えば、発光素子及び受光素子は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のうち1層以上を共通の構成とすることができる。また、発光素子及び受光素子は、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層のうち1層以上を互いに作り分けることができる。
 正孔注入層は、陽極から正孔輸送層に正孔を注入する層であり、正孔注入性の高い材料を含む層である。正孔注入性の高い材料としては、芳香族アミン化合物、または正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることができる。
 発光素子において、正孔輸送層は、正孔注入層によって、陽極から注入された正孔を発光層に輸送する層である。受光素子において、正孔輸送層は、活性層において入射した光に基づき発生した正孔を陽極に輸送する層である。正孔輸送層は、正孔輸送性材料を含む層である。正孔輸送性材料としては、1×10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)、芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
 発光素子において、電子輸送層は、電子注入層によって、陰極から注入された電子を発光層に輸送する層である。受光素子において、電子輸送層は、活性層において入射した光に基づき発生した電子を陰極に輸送する層である。電子輸送層は、電子輸送性材料を含む層である。電子輸送性材料としては、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
 電子注入層は、陰極から電子輸送層に電子を注入する層であり、電子注入性の高い材料を含む層である。電子注入性の高い材料としては、アルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。電子注入性の高い材料としては、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いることもできる。
 発光層383は、発光物質を含む層である。発光層383は、1種または複数種の発光物質を有することができる。発光物質としては、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの発光色を呈する物質を適宜用いる。また、発光物質として、近赤外光を発する物質を用いることもできる。
 発光物質としては、蛍光材料、燐光材料、TADF材料、量子ドット材料などが挙げられる。
 蛍光材料としては、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
 燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
 発光層383は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料、アシスト材料等)を有していてもよい。1種または複数種の有機化合物としては、正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料、またはTADF材料を用いてもよい。
 発光層383は、例えば、燐光材料と、励起錯体を形成しやすい組み合わせである正孔輸送性材料及び電子輸送性材料と、を有することが好ましい。このような構成とすることにより、励起錯体から発光物質(燐光材料)へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光を得ることができる。この構成により、発光素子の高効率、低電圧駆動、長寿命を同時に実現できる。
 励起錯体を形成する材料の組み合わせとしては、正孔輸送性材料のHOMO準位(最高被占有軌道準位)が電子輸送性材料のHOMO準位以上の値であると好ましい。正孔輸送性材料のLUMO準位(最低空軌道準位)が電子輸送性材料のLUMO準位以上の値であると好ましい。材料のLUMO準位及びHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位及び酸化電位)から導出することができる。
 励起錯体の形成は、例えば正孔輸送性材料の発光スペクトル、電子輸送性材料の発光スペクトル、及びこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(または長波長側に新たなピークを持つ)現象を観測することにより確認することができる。または、正孔輸送性材料の過渡フォトルミネッセンス(PL)、電子輸送性材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、または遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性材料の過渡EL、電子輸送性を有する材料の過渡EL、及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
 活性層373は、半導体を含む。当該半導体としては、シリコンなどの無機半導体、及び、有機化合物を含む有機半導体が挙げられる。本実施の形態では、活性層373が有する半導体として、有機半導体を用いる例を示す。有機半導体を用いることで、発光層383と、活性層373と、を同じ方法(例えば、真空蒸着法)で形成することができ、製造装置を共通化できるため好ましい。
 活性層373が有するn型半導体の材料としては、フラーレン(例えばC60、C70等)、フラーレン誘導体等の電子受容性の有機半導体材料が挙げられる。フラーレンは、サッカーボールのような形状を有し、当該形状はエネルギー的に安定である。フラーレンは、HOMO準位及びLUMO準位の双方が深い(低い)。フラーレンは、LUMO準位が深いため、電子受容性(アクセプター性)が極めて高い。通常、ベンゼンのように、平面にπ電子共役(共鳴)が広がると、電子供与性(ドナー性)が高くなるが、フラーレンは球体形状であるため、π電子共役が大きく広がっているにも関わらず、電子受容性が高くなる。電子受容性が高いと、電荷分離を高速に効率よく起こすため、受光素子として有益である。C60、C70ともに可視光領域に広い吸収帯を有しており、特にC70はC60に比べてπ電子共役系が大きく、長波長領域にも広い吸収帯を有するため好ましい。そのほか、フラーレン誘導体としては、[6,6]−Phenyl−C71−butyric acid methyl ester(略称:PC70BM)、[6,6]−Phenyl−C61−butyric acid methyl ester(略称:PC60BM)、1’,1’’,4’,4’’−Tetrahydro−di[1,4]methanonaphthaleno[1,2:2’,3’,56,60:2’’,3’’][5,6]fullerene−C60(略称:ICBA)などが挙げられる。
 また、n型半導体の材料としては、例えば、N,N’−ジメチル−3,4,9,10−ペリレンテトラカルボン酸ジイミド(略称:Me−PTCDI)などのペリレンテトラカルボン酸誘導体が挙げられる。
 また、n型半導体の材料としては、例えば、2,2’−(5,5’−(チエノ[3,2−b ]チオフェン−2,5−ジイル)ビス(チオフェン−5,2−ジイル))ビス(メタン−1−イル−1−イリデン)ジマロノニトリル(略称:FT2TDMN)が挙げられる。
 また、n型半導体の材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、ナフタレン誘導体、アントラセン誘導体、クマリン誘導体、ローダミン誘導体、トリアジン誘導体、キノン誘導体等が挙げられる。
 活性層373が有するp型半導体の材料としては、銅(II)フタロシアニン(Copper(II) phthalocyanine;CuPc)、テトラフェニルジベンゾペリフランテン(Tetraphenyldibenzoperiflanthene;DBP)、亜鉛フタロシアニン(Zinc Phthalocyanine;ZnPc)、スズフタロシアニン(SnPc)、キナクリドン、ルブレン等の電子供与性の有機半導体材料が挙げられる。
 また、p型半導体の材料としては、カルバゾール誘導体、チオフェン誘導体、フラン誘導体、芳香族アミン骨格を有する化合物等が挙げられる。さらに、p型半導体の材料としては、ナフタレン誘導体、アントラセン誘導体、ピレン誘導体、トリフェニレン誘導体、フルオレン誘導体、ピロール誘導体、ベンゾフラン誘導体、ベンゾチオフェン誘導体、インドール誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、インドロカルバゾール誘導体、ポルフィリン誘導体、フタロシアニン誘導体、ナフタロシアニン誘導体、キナクリドン誘導体、ルブレン誘導体、テトラセン誘導体、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体等が挙げられる。
 電子供与性の有機半導体材料のHOMO準位は、電子受容性の有機半導体材料のHOMO準位よりも浅い(高い)ことが好ましい。電子供与性の有機半導体材料のLUMO準位は、電子受容性の有機半導体材料のLUMO準位よりも浅い(高い)ことが好ましい。
 電子受容性の有機半導体材料として、球状のフラーレンを用い、電子供与性の有機半導体材料として、平面に近い形状の有機半導体材料を用いることが好ましい。似た形状の分子同士は集まりやすい傾向にあり、同種の分子が凝集すると、分子軌道のエネルギー準位が近いため、キャリア輸送性を高めることができる。
 例えば、活性層373は、n型半導体とp型半導体と共蒸着して形成することが好ましい。または、活性層373は、n型半導体とp型半導体とを積層して形成してもよい。
 発光素子及び受光素子には低分子系化合物及び高分子系化合物のいずれを用いることもでき、無機化合物を含んでいてもよい。発光素子及び受光素子を構成する層は、それぞれ、蒸着法(真空蒸着法を含む)、転写法、印刷法、インクジェット法、塗布法等の方法で形成することができる。
 例えば、正孔輸送性材料または電子ブロック材料として、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)などの高分子化合物、及び、モリブデン酸化物、ヨウ化銅(CuI)などの無機化合物を用いることができる。また、電子輸送性材料または正孔ブロック材料として、酸化亜鉛(ZnO)などの無機化合物、ポリエチレンイミンエトキシレート(PEIE)などの有機化合物を用いることができる。受光デバイスは、例えば、PEIEとZnOとの混合膜を有していてもよい。
 また、活性層373に、ドナーとして機能するPoly[[4,8−bis[5−(2−ethylhexyl)−2−thienyl]benzo[1,2−b:4,5−b’]dithiophene−2,6−diyl]−2,5−thiophenediyl[5,7−bis(2−ethylhexyl)−4,8−dioxo−4H,8H−benzo[1,2−c:4,5−c’]dithiophene−1,3−diyl]]polymer(略称:PBDB−T)、または、PBDB−T誘導体などの高分子化合物を用いることができる。例えば、PBDB−TまたはPBDB−T誘導体にアクセプター材料を分散させる方法などが使用できる。
 図17Bに示す表示装置380Bは、受光素子370PDと発光素子370Rが同一の構成である点で、表示装置380Aと異なる。
 受光素子370PDと発光素子370Rは、活性層373と発光層383Rを共通して有する。
 ここで、受光素子370PDは、検出したい光よりも長波長の光を発する発光素子と共通の構成にすることが好ましい。例えば、青色の光を検出する構成の受光素子370PDは、発光素子370R及び発光素子370Gの一方または双方と同様の構成にすることができる。例えば、緑色の光を検出する構成の受光素子370PDは、発光素子370Rと同様の構成にすることができる。
 受光素子370PDと、発光素子370Rと、を共通の構成にすることで、受光素子370PDと、発光素子370Rと、が互いに作り分ける層を有する構成に比べて、成膜工程の数及びマスクの数を削減することができる。したがって、表示装置の作製工程及び作製コストを削減することができる。
 また、受光素子370PDと、発光素子370Rと、を共通の構成にすることで、受光素子370PDと、発光素子370Rと、が互いに作り分ける層を有する構成に比べて、位置ずれに対するマージンを狭くできる。これにより、画素の開口率を高めることができ、表示装置の光取り出し効率を高めることができる。これにより、発光素子の寿命を延ばすことができる。また、表示装置は、高い輝度を表現することができる。また、表示装置の高精細度化も可能である。
 発光層383Rは、赤色の光を発する発光材料を有する。活性層373は、赤色よりも短波長の光(例えば、緑色の光及び青色の光の一方または双方)を吸収する有機化合物を有する。活性層373は、赤色の光を吸収しにくく、かつ、赤色よりも短波長の光を吸収する有機化合物を有することが好ましい。これにより、発光素子370Rからは赤色の光が効率よく取り出され、受光素子370PDは、高い精度で赤色よりも短波長の光を検出することができる。
 また、表示装置380Bでは、発光素子370R及び受光素子370PDが同一の構成である例を示すが、発光素子370R及び受光素子370PDは、それぞれ異なる厚さの光学調整層を有していてもよい。
 図18A及び図18Bに示す表示装置380Cは、赤色(R)の光を発し、かつ、受光機能を有する受発光素子370SR、発光素子370G、及び、発光素子370Bを有する。発光素子370Gと発光素子370Bの構成は、上記表示装置380A等を援用できる。
 受発光素子370SRは、画素電極371、正孔注入層381、正孔輸送層382、活性層373、発光層383R、電子輸送層384、電子注入層385、及び共通電極375をこの順で積層して有する。受発光素子370SRは、上記表示装置380Bで例示した発光素子370R及び受光素子370PDと同一の構成である。
 図18Aでは、受発光素子370SRが発光素子として機能する場合を示す。図18Aでは、発光素子370Bが青色の光を発し、発光素子370Gが緑色の光を発し、受発光素子370SRが赤色の光を発している例を示す。
 図18Bでは、受発光素子370SRが受光素子として機能する場合を示す。図18Bでは、受発光素子370SRが、発光素子370Bが発する青色の光と、発光素子370Gが発する緑色の光を受光している例を示す。
 発光素子370B、発光素子370G、及び受発光素子370SRは、それぞれ、画素電極371及び共通電極375を有する。本実施の形態では、画素電極371が陽極として機能し、共通電極375が陰極として機能する場合を例に挙げて説明する。受発光素子370SRは、画素電極371と共通電極375との間に逆バイアスをかけて駆動することで、受発光素子370SRに入射する光を検出し、電荷を発生させ、電流として取り出すことができる。
 受発光素子370SRは、発光素子に、活性層373を追加した構成ということができる。つまり、発光素子の作製工程に、活性層373を成膜する工程を追加するのみで、発光素子の形成と並行して受発光素子370SRを形成することができる。また、発光素子と受発光素子とを同一基板上に形成することができる。したがって、作製工程を大幅に増やすことなく、表示部に撮像機能及びセンシング機能の一方または双方を付与することができる。
 発光層383Rと活性層373との積層順は限定されない。図18A及び図18Bでは、正孔輸送層382上に活性層373が設けられ、活性層373上に発光層383Rが設けられている例を示す。発光層383Rと活性層373の積層順を入れ替えてもよい。
 また、受発光素子は、正孔注入層381、正孔輸送層382、電子輸送層384、及び電子注入層385のうち少なくとも1層を有していなくてもよい。また、受発光素子は、正孔ブロック層、電子ブロック層など、他の機能層を有していてもよい。
 受発光素子において、光を取り出す側の電極には、可視光を透過する導電膜を用いる。また、光を取り出さない側の電極には、可視光を反射する導電膜を用いることが好ましい。
 受発光素子を構成する各層の機能及び材料は、発光素子及び受光素子を構成する各層の機能及び材料と同様であるため、詳細な説明は省略する。
 図18C乃至図18Gに、受発光素子の積層構造の例を示す。
 図18Cに示す受発光素子は、第1の電極377、正孔注入層381、正孔輸送層382、発光層383R、活性層373、電子輸送層384、電子注入層385、及び第2の電極378を有する。
 図18Cは、正孔輸送層382上に発光層383Rが設けられ、発光層383R上に活性層373が積層された例である。
 図18A乃至図18Cに示すように、活性層373と発光層383Rとは、互いに接していてもよい。
 また、活性層373と発光層383Rとの間には、バッファ層が設けられることが好ましい。このとき、バッファ層は、正孔輸送性及び電子輸送性を有することが好ましい。例えば、バッファ層には、バイポーラ性の物質を用いることが好ましい。または、バッファ層として、正孔注入層、正孔輸送層、電子輸送層、電子注入層、正孔ブロック層、及び電子ブロック層等のうち少なくとも1層を用いることができる。図18Dには、バッファ層として正孔輸送層382を用いる例を示す。
 活性層373と発光層383Rとの間にバッファ層を設けることで、発光層383Rから活性層373に励起エネルギーが移動することを抑制できる。また、バッファ層を用いて、マイクロキャビティ構造の光路長(キャビティ長)を調整することもできる。したがって、活性層373と発光層383Rとの間にバッファ層を有する受発光素子からは、高い発光効率を得ることができる。
 図18Eは、正孔注入層381上に正孔輸送層382−1、活性層373、正孔輸送層382−2、発光層383Rの順で積層された積層構造を有する例である。正孔輸送層382−2は、バッファ層として機能する。正孔輸送層382−1と正孔輸送層381−2とは、同じ材料を含んでいてもよいし、異なる材料を含んでいてもよい。また、正孔輸送層381−2の代わりに、上述したバッファ層に用いることのできる層を用いてもよい。また、活性層373と、発光層383Rの位置を入れ替えてもよい。
 図18Fに示す受発光素子は、正孔輸送層382を有さない点で、図18Aに示す受発光素子と異なる。このように、受発光素子は、正孔注入層381、正孔輸送層382、電子輸送層384、及び電子注入層385のうち少なくとも1層を有していなくてもよい。また、受発光素子は、正孔ブロック層、電子ブロック層など、他の機能層を有していてもよい。
 図18Gに示す受発光素子は、活性層373及び発光層383Rを有さず、発光層と活性層を兼ねる層389を有する点で、図18Aに示す受発光素子と異なる。
 発光層と活性層を兼ねる層としては、例えば、活性層373に用いることができるn型半導体と、活性層373に用いることができるp型半導体と、発光層383Rに用いることができる発光物質と、の3つの材料を含む層を用いることができる。
 なお、n型半導体とp型半導体との混合材料の吸収スペクトルの最も低エネルギー側の吸収帯と、発光物質の発光スペクトル(PLスペクトル)の最大ピークと、は互いに重ならないことが好ましく、十分に離れていることがより好ましい。
(実施の形態5)
 本実施の形態では、本発明の一態様の受光デバイス等を有する表示装置の例について説明する。
 本実施の形態の表示装置において、画素は、互いに異なる色を発する発光デバイスを有する副画素を、複数種有する構成とすることができる。例えば、画素は、副画素を3種類有する構成とすることができる。当該3つの副画素としては、赤色(R)、緑色(G)、青色(B)の3色の副画素、黄色(Y)、シアン(C)、及びマゼンタ(M)の3色の副画素などが挙げられる。または、画素は副画素を4種類有する構成とすることができる。当該4つの副画素としては、R、G、B、白色(W)の4色の副画素、R、G、B、Yの4色の副画素などが挙げられる。
 副画素の配列に特に限定はなく、様々な方法を適用することができる。副画素の配列としては、例えば、ストライプ配列、Sストライプ配列、マトリクス配列、デルタ配列、ベイヤー配列、ペンタイル配列などが挙げられる。
 また、副画素の上面形状としては、例えば、三角形、四角形(長方形、正方形を含む)、五角形などの多角形、これら多角形の角が丸い形状、楕円形、または円形などが挙げられる。ここでいう副画素の上面形状は、発光デバイスの発光領域の上面形状に相当する。
 画素に、発光デバイス及び受光デバイスを有する表示装置では、画素が受光機能を有するため、画像を表示しながら、対象物の接触または近接を検出することができる。例えば、表示装置が有する副画素全てで画像を表示するだけでなく、一部の副画素は、光源としての光を呈し、残りの副画素で画像を表示することもできる。
 図19A、図19B、図19Cに示す画素は、副画素G、副画素B、副画素R、及び、副画素PSを有する。
 図19Aに示す画素には、ストライプ配列が適用されている。図19Bに示す画素には、マトリクス配列が適用されている。
 図19Cに示す画素の配列は、1つの副画素(副画素B)の隣に、3つの副画素(副画素R、副画素G、副画素S)が縦に3つ並んだ構成を有する。
 図19D、図19E、図19Fに示す画素は、副画素G、副画素B、副画素R、副画素IR、及び副画素PSを有する。
 図19D、図19E、図19Fでは、1つの画素が、2行にわたって設けられている例を示す。上の行(1行目)には、3つの副画素(副画素G、副画素B、副画素R)が設けられ、下の行(2行目)には2つの副画素(1つの副画素PSと、1つの副画素IR)が設けられている。
 図19Dでは、縦長の副画素G、副画素B、副画素Rが横に3つ並び、その下側に副画素PSと、横長の副画素IRと、が横に並んだ構成を有する。図19Eでは、横長の副画素G及び副画素Rが縦方向に2つ並び、その横に縦長の副画素Bが並び、それらの下側に、横長の副画素IRと、縦長の副画素PSが横に並んだ構成を有する。図19Fでは、縦長の副画素R、副画素G、副画素Bが横に3つ並び、それらの下側に横長の副画素IRと縦長の副画素PSが横に並んだ構成を有する。図19E及び図19Fでは、副画素IRの面積が最も大きく、副画素PSの面積が副画素等と同程度である場合を示している。
 なお、副画素のレイアウトは図19A乃至図19Fの構成に限られない。
 副画素Rは、赤色の光を発する発光デバイスを有する。副画素Gは、緑色の光を発する発光デバイスを有する。副画素Bは、青色の光を発する発光デバイスを有する。副画素IRは、赤外光を発する発光デバイスを有する。副画素PSは、受光デバイスを有する。副画素PSが検出する光の波長は特に限定されないが、副画素PSが有する受光デバイスは、副画素R、副画素G、副画素B、または副画素IRが有する発光デバイスが発する光に感度を有することが好ましい。例えば、青色、紫色、青紫色、緑色、黄緑色、黄色、橙色、赤色などの波長域の光、及び、赤外の波長域の光のうち、一つまたは複数を検出することが好ましい。
 副画素PSの受光面積は、他の副画素の発光面積よりも小さい。受光面積が小さいほど、撮像範囲が狭くなり、撮像結果のボケの抑制、及び、解像度の向上が可能となる。そのため、副画素PSを用いることで、高精細または高解像度の撮像を行うことができる。例えば、副画素PSを用いて、指紋、掌紋、虹彩、脈形状(静脈形状、動脈形状を含む)、または顔などを用いた個人認証のための撮像を行うことができる。
 また、副画素PSは、タッチセンサ(ダイレクトタッチセンサともいう)またはニアタッチセンサ(ホバーセンサ、ホバータッチセンサ、非接触センサ、タッチレスセンサともいう)などに用いることができる。例えば、副画素PSは、赤外光を検出することが好ましい。これにより、暗い場所でも、タッチ検出が可能となる。
 ここで、タッチセンサまたはニアタッチセンサは、対象物(指、手、またはペンなど)の近接もしくは接触を検出することができる。タッチセンサは、表示装置と、対象物とが、直接接することで、対象物を検出できる。また、ニアタッチセンサは、対象物が表示装置に接触しなくても、当該対象物を検出することができる。例えば、表示装置と、対象物との間の距離が0.1mm以上300mm以下、好ましくは3mm以上50mm以下の範囲で表示装置が当該対象物を検出できる構成であると好ましい。当該構成とすることで、表示装置に対象物が直接触れずに操作することが可能となる、別言すると非接触(タッチレス)で表示装置を操作することが可能となる。上記構成とすることで、表示装置に汚れ、または傷がつくリスクを低減することができる、または対象物が表示装置に付着した汚れ(例えば、ゴミ、またはウィルスなど)に直接触れずに、表示装置を操作することが可能となる。
 なお、高精細な撮像を行うため、副画素PSは、表示装置が有する全ての画素に設けられていることが好ましい。一方で、副画素PSは、タッチセンサまたはニアタッチセンサなどに用いる場合は、指紋などを撮像する場合と比較して高い精度が求められないため、表示装置が有する一部の画素に設けられていればよい。表示装置が有する副画素PSの数を、副画素R等の数よりも少なくすることで、検出速度を高めることができる。
 図19Gに、受光デバイスを有する副画素の画素回路の一例を示し、図19Hに、発光デバイスを有する副画素の画素回路の一例を示す。
 図19Gに示す画素回路PIX1は、受光デバイスPD、トランジスタM11、トランジスタM12、トランジスタM13、トランジスタM14、及び容量素子C2を有する。ここでは、受光デバイスPDとして、フォトダイオードを用いた例を示している。
 受光デバイスPDは、アノードが配線V1と電気的に接続し、カソードがトランジスタM11のソースまたはドレインの一方と電気的に接続する。トランジスタM11は、ゲートが配線TXと電気的に接続し、ソースまたはドレインの他方が容量素子C2の一方の電極、トランジスタM12のソースまたはドレインの一方、及びトランジスタM13のゲートと電気的に接続する。トランジスタM12は、ゲートが配線RESと電気的に接続し、ソースまたはドレインの他方が配線V2と電気的に接続する。トランジスタM13は、ソースまたはドレインの一方が配線V3と電気的に接続し、ソースまたはドレインの他方がトランジスタM14のソースまたはドレインの一方と電気的に接続する。トランジスタM14は、ゲートが配線SEと電気的に接続し、ソースまたはドレインの他方が配線OUT1と電気的に接続する。
 配線V1、配線V2、及び配線V3には、それぞれ定電位が供給される。受光デバイスPDを逆バイアスで駆動させる場合には、配線V2に、配線V1の電位よりも高い電位を供給する。トランジスタM12は、配線RESに供給される信号により制御され、トランジスタM13のゲートに接続するノードの電位を、配線V2に供給される電位にリセットする機能を有する。トランジスタM11は、配線TXに供給される信号により制御され、受光デバイスPDに流れる電流に応じて上記ノードの電位が変化するタイミングを制御する機能を有する。トランジスタM13は、上記ノードの電位に応じた出力を行う増幅トランジスタとして機能する。トランジスタM14は、配線SEに供給される信号により制御され、上記ノードの電位に応じた出力を配線OUT1に接続する外部回路で読み出すための選択トランジスタとして機能する。
 図19Hに示す画素回路PIX2は、発光デバイスEL、トランジスタM15、トランジスタM16、トランジスタM17、及び容量素子C3を有する。ここでは、発光デバイスELとして、発光ダイオードを用いた例を示している。特に、発光デバイスELとして、有機EL素子を用いることが好ましい。
 トランジスタM15は、ゲートが配線VGと電気的に接続し、ソースまたはドレインの一方が配線VSと電気的に接続し、ソースまたはドレインの他方が、容量素子C3の一方の電極、及びトランジスタM16のゲートと電気的に接続する。トランジスタM16のソースまたはドレインの一方は配線V4と電気的に接続し、他方は、発光デバイスELのアノード、及びトランジスタM17のソースまたはドレインの一方と電気的に接続する。トランジスタM17は、ゲートが配線MSと電気的に接続し、ソースまたはドレインの他方が配線OUT2と電気的に接続する。発光デバイスELのカソードは、配線V5と電気的に接続する。
 配線V4及び配線V5には、それぞれ定電位が供給される。発光デバイスELのアノード側を高電位に、カソード側をアノード側よりも低電位にすることができる。トランジスタM15は、配線VGに供給される信号により制御され、画素回路PIX2の選択状態を制御するための選択トランジスタとして機能する。また、トランジスタM16は、ゲートに供給される電位に応じて発光デバイスELに流れる電流を制御する駆動トランジスタとして機能する。トランジスタM15が導通状態のとき、配線VSに供給される電位がトランジスタM16のゲートに供給され、その電位に応じて発光デバイスELの発光輝度を制御することができる。トランジスタM17は配線MSに供給される信号により制御され、トランジスタM16と発光デバイスELとの間の電位を、配線OUT2を介して外部に出力する機能を有する。
 ここで、画素回路PIX1が有するトランジスタM11、トランジスタM12、トランジスタM13、及びトランジスタM14、並びに、画素回路PIX2が有するトランジスタM15、トランジスタM16、及びトランジスタM17には、それぞれチャネルが形成される半導体層に金属酸化物(酸化物半導体)を用いたトランジスタを適用することが好ましい。
 シリコンよりもバンドギャップが広く、かつキャリア密度の小さい金属酸化物を用いたトランジスタは、極めて小さいオフ電流を実現することができる。そのため、その小さいオフ電流により、トランジスタと直列に接続された容量素子に蓄積した電荷を長期間に亘って保持することが可能である。そのため、特に容量素子C2または容量素子C3に直列に接続されるトランジスタM11、トランジスタM12、及びトランジスタM15には、酸化物半導体が適用されたトランジスタを用いることが好ましい。また、これ以外のトランジスタも同様に酸化物半導体を適用したトランジスタを用いることで、作製コストを低減することができる。
 例えば、室温下における、チャネル幅1μmあたりのOSトランジスタのオフ電流値は、1aA(1×10−18A)以下、1zA(1×10−21A)以下、または1yA(1×10−24A)以下とすることができる。なお、室温下における、チャネル幅1μmあたりのSiトランジスタのオフ電流値は、1fA(1×10−15A)以上1pA(1×10−12A)以下である。したがって、OSトランジスタのオフ電流は、Siトランジスタのオフ電流よりも10桁程度低いともいえる。
 また、トランジスタM11乃至トランジスタM17に、チャネルが形成される半導体にシリコンを適用したトランジスタを用いることもできる。特に単結晶シリコンまたは多結晶シリコンなどの結晶性の高いシリコンを用いることで、高い電界効果移動度を実現することができ、より高速な動作が可能となるため好ましい。
 また、トランジスタM11乃至トランジスタM17のうち、一以上に酸化物半導体を適用したトランジスタを用い、それ以外にシリコンを適用したトランジスタを用いる構成としてもよい。
 なお、図19G、図19Hにおいて、トランジスタをnチャネル型のトランジスタとして表記しているが、pチャネル型のトランジスタを用いることもできる。
 画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタは、同一基板上に並べて形成されることが好ましい。特に、画素回路PIX1が有するトランジスタと画素回路PIX2が有するトランジスタとを1つの領域内に混在させて周期的に配列する構成とすることが好ましい。
 また、受光デバイスPDまたは発光デバイスELと重なる位置に、トランジスタ及び容量素子の一方又は双方を有する層を1つまたは複数設けることが好ましい。これにより、各画素回路の実効的な占有面積を小さくでき、高精細な受光部または表示部を実現できる。
 画素回路に含まれる発光デバイスELの発光輝度を高くする場合、発光デバイスELに流す電流量を大きくする必要がある。そのためには、画素回路に含まれている駆動トランジスタのソース−ドレイン間電圧を高くする必要がある。OSトランジスタは、Siトランジスタと比較して、ソース−ドレイン間において耐圧が高いため、OSトランジスタのソース−ドレイン間には高い電圧を印加することができる。これにより、画素回路に含まれる駆動トランジスタをOSトランジスタとすることで、発光デバイスに流れる電流量を大きくし、発光デバイスの発光輝度を高くすることができる。
 また、トランジスタが飽和領域で動作する場合において、OSトランジスタは、Siトランジスタよりも、ゲート−ソース間電圧の変化に対して、ソース−ドレイン間電流の変化を小さくすることができる。このため、画素回路に含まれる駆動トランジスタとしてOSトランジスタを適用することによって、ゲート−ソース間電圧の変化によって、ソース−ドレイン間に流れる電流を細かく定めることができるため、発光デバイスに流れる電流量を制御することができる。このため、画素回路における階調を大きくすることができる。
 また、トランジスタが飽和領域で動作するときに流れる電流の飽和特性において、OSトランジスタは、ソース−ドレイン間電圧が徐々に高くなった場合においても、Siトランジスタよりも安定した電流(飽和電流)を流すことができる。そのため、OSトランジスタを駆動トランジスタとして用いることで、例えば、EL材料が含まれる発光デバイスの電流−電圧特性にばらつきが生じた場合においても、発光デバイスに安定した電流を流すことができる。つまり、OSトランジスタは、飽和領域で動作する場合において、ソース−ドレイン間電圧を高くしても、ソース−ドレイン間電流がほぼ変化しないため、発光デバイスの発光輝度を安定させることができる。
 上記のとおり、画素回路に含まれる駆動トランジスタにOSトランジスタを用いることで、「黒浮きの抑制」、「発光輝度の上昇」、「多階調化」、「発光デバイスのばらつきの抑制」などを図ることができる。
 また、本発明の一態様の表示装置は、リフレッシュレートを可変にすることができる。例えば、表示装置に表示されるコンテンツに応じてリフレッシュレートを調整(例えば、0.01Hz以上240Hz以下の範囲で調整)して消費電力を低減させることができる。また、リフレッシュレートを低下させた駆動により、表示装置の消費電力を低減する駆動をアイドリングストップ(IDS)駆動と呼称してもよい。
 また、上記のリフレッシュレートに応じて、タッチセンサ、またはニアタッチセンサの駆動周波数を変化させてもよい。例えば、表示装置のリフレッシュレートが120Hzの場合、タッチセンサ、またはニアタッチセンサの駆動周波数を120Hzよりも高い周波数(代表的には240Hz)とする構成とすることができる。当該構成とすることで、低消費電力が実現でき、且つタッチセンサ、またはニアタッチセンサの応答速度を高めることが可能となる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態6)
 本実施の形態では、高精細な表示装置について説明する。
[表示パネルの構成例]
 VR向け、AR向けなどの装着型の電子機器では、視差を用いることで3D画像を提供することができる。その場合、右目用の画像を右目の視界内に、左目用の画像を左目の視界内に、それぞれ表示する必要がある。ここで、表示装置の表示部の形状として、横長の矩形形状としてもよいが、右目及び左目の視界の外側に設けられる画素は、表示に寄与しないため、当該画素には常に黒色が表示されることとなる。
 そこで、表示パネルの表示部として、右目用と左目用の2つの領域に分け、表示に寄与しない外側の領域には画素を配置しない構成とすることが好ましい。これにより、画素の書き込みに要する消費電力を低減できる。また、ソース線、ゲート線などの負荷が小さくなるため、フレームレートの高い表示が可能となる。これにより、滑らかな動画を表示できるため、現実感を高めることができる。
 図20Aには、表示パネルの構成例を示している。図20Aでは、基板701の内側に、左目用の表示部702Lと、右目用の表示部702Rが配置されている。なお、基板701上には、表示部702L、表示部702Rのほかに、駆動回路、配線、IC、FPCなどが配置されていてもよい。
 図20Aに示す表示部702L、表示部702Rは、正方形の上面形状を有している。
 また、表示部702L、表示部702Rの上面形状は、他の正多角形であってもよい。図20Bは、正六角形とした場合の例を示し、図20Cは、正八角形とした場合の例を示し、図20Dは、正十角形とした場合の例を示し、図20Eは、正十二角形とした場合の例を示している。このように、角が偶数個である多角形を用いることで、表示部の形状を左右対称にすることができる。なお、正多角形ではない多角形を用いてもよい。また、角の丸い正多角形、または多角形を用いてもよい。
 なお、マトリクス状に配置された画素により表示部を構成するため、各表示部の輪郭の直線部分は、厳密には直線にはならず、階段状である部分が存在しうる。特に、画素の配列方向と平行でない直線部分では、階段状の上面形状となる。ただし、ユーザには画素の形状が視認されない状態で視聴されるため、表示部の斜めの輪郭が厳密には階段状であっても、直線とみなすことができる。同様に表示部の輪郭の曲線部分が厳密には階段状であったとしても、これを曲線とみなすことができる。
 また、図20Fは、表示部702L、表示部702Rの上面形状を円とした場合の例を示している。
 また、表示部702L、表示部702Rの上面形状は、それぞれ左右非対称であってもよい。また、それぞれ正多角形でなくてもよい。
 図20Gには、表示部702L、表示部702Rの上面形状を、それぞれ左右非対称な八角形とした場合の例を示している。また、図20Hには、正七角形とした場合の例を示している。このように、表示部702L、表示部702Rの上面形状を、それぞれ左右非対称な形状とした場合でも、表示部702Lと表示部702Rとは、左右対称に配置することが好ましい。これにより、違和感のない画像を提供することができる。
 上記では、表示部を2つに分ける構成について説明したが、一続きの形状としてもよい。
 図20Iは、図20Fにおける2つの円形の表示部702を繋げた例である。また、図20Jは、図20Cにおける2つの正八角形の表示部702を繋げた例である。
 以上が、表示パネルの構成例についての説明である。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態7)
 本実施の形態では、上記の実施の形態で説明したOSトランジスタに用いることができる金属酸化物(酸化物半導体ともいう)について説明する。
 OSトランジスタに用いる金属酸化物は、少なくともインジウムまたは亜鉛を有することが好ましく、インジウム及び亜鉛を有することがより好ましい。例えば、金属酸化物は、インジウムと、M(Mは、ガリウム、アルミニウム、イットリウム、スズ、シリコン、ホウ素、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、マグネシウム、及びコバルトから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、ガリウム、アルミニウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましく、ガリウムがより好ましい。
 また、金属酸化物は、スパッタリング法、有機金属化学気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学気相成長(CVD:Chemical Vapor Deposition)法、または、原子層堆積(ALD:Atomic Layer Deposition)法などにより形成することができる。
 以降では、金属酸化物の一例として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物について説明する。なお、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物を、In−Ga−Zn酸化物と呼ぶ場合がある。
<結晶構造の分類>
 酸化物半導体の結晶構造としては、アモルファス(completely amorphousを含む)、CAAC(c−axis−aligned crystalline)、nc(nanocrystalline)、CAC(cloud−aligned composite)、単結晶(single crystal)、及び多結晶(poly crystal)等が挙げられる。
 なお、膜または基板の結晶構造は、X線回折(XRD:X−Ray Diffraction)スペクトルを用いて評価することができる。例えば、GIXD(Grazing−Incidence XRD)測定で得られるXRDスペクトルを用いて評価することができる。なお、GIXD法は、薄膜法またはSeemann−Bohlin法ともいう。また、以下では、GIXD測定で得られるXRDスペクトルを、単に、XRDスペクトルと記す場合がある。
 例えば、石英ガラス基板では、XRDスペクトルのピークの形状がほぼ左右対称である。一方で、結晶構造を有するIn−Ga−Zn酸化物膜では、XRDスペクトルのピークの形状が左右非対称である。XRDスペクトルのピークの形状が左右非対称であることは、膜中または基板中の結晶の存在を明示している。別言すると、XRDスペクトルのピークの形状で左右対称でないと、膜または基板は非晶質状態であるとは言えない。
 また、膜または基板の結晶構造は、極微電子線回折法(NBED:Nano Beam Electron Diffraction)によって観察される回折パターン(極微電子線回折パターンともいう)にて評価することができる。例えば、石英ガラス基板の回折パターンでは、ハローが観察され、石英ガラスは、非晶質状態であることが確認できる。また、室温成膜したIn−Ga−Zn酸化物膜の回折パターンでは、ハローではなく、スポット状のパターンが観察される。このため、室温成膜したIn−Ga−Zn酸化物は、単結晶または多結晶でもなく、非晶質状態でもない、中間状態であり、非晶質状態であると結論することはできないと推定される。
<<酸化物半導体の構造>>
 なお、酸化物半導体は、構造に着目した場合、上記とは異なる分類となる場合がある。例えば、酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体と、に分けられる。非単結晶酸化物半導体としては、例えば、上述のCAAC−OS、及びnc−OSがある。また、非単結晶酸化物半導体には、多結晶酸化物半導体、擬似非晶質酸化物半導体(a−like OS:amorphous−like oxide semiconductor)、非晶質酸化物半導体、などが含まれる。
 ここで、上述のCAAC−OS、nc−OS、及びa−like OSの詳細について、説明を行う。
[CAAC−OS]
 CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。
 なお、上記複数の結晶領域のそれぞれは、1つまたは複数の微小な結晶(最大径が10nm未満である結晶)で構成される。結晶領域が1つの微小な結晶で構成されている場合、当該結晶領域の最大径は10nm未満となる。また、結晶領域が多数の微小な結晶で構成されている場合、当該結晶領域の大きさは、数十nm程度となる場合がある。
 また、In−Ga−Zn酸化物において、CAAC−OSは、インジウム(In)、及び酸素を有する層(以下、In層)と、ガリウム(Ga)、亜鉛(Zn)、及び酸素を有する層(以下、(Ga,Zn)層)とが積層した、層状の結晶構造(層状構造ともいう)を有する傾向がある。なお、インジウムとガリウムは、互いに置換可能である。よって、(Ga,Zn)層にはインジウムが含まれる場合がある。また、In層にはガリウムが含まれる場合がある。なお、In層には亜鉛が含まれる場合もある。当該層状構造は、例えば、高分解能TEM(Transmission Electron Microscope)像において、格子像として観察される。
 CAAC−OS膜に対し、例えば、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、c軸配向を示すピークが2θ=31°またはその近傍に検出される。なお、c軸配向を示すピークの位置(2θの値)は、CAAC−OSを構成する金属元素の種類、組成などにより変動する場合がある。
 また、例えば、CAAC−OS膜の電子線回折パターンにおいて、複数の輝点(スポット)が観測される。なお、あるスポットと別のスポットとは、試料を透過した入射電子線のスポット(ダイレクトスポットともいう)を対称中心として、点対称の位置に観測される。
 上記特定の方向から結晶領域を観察した場合、当該結晶領域内の格子配列は、六方格子を基本とするが、単位格子は正六角形とは限らず、非正六角形である場合がある。また、上記歪みにおいて、五角形、七角形などの格子配列を有する場合がある。なお、CAAC−OSにおいて、歪み近傍においても、明確な結晶粒界(グレインバウンダリー)を確認することはできない。即ち、格子配列の歪みによって、結晶粒界の形成が抑制されていることがわかる。これは、CAAC−OSが、a−b面方向において酸素原子の配列が稠密でないこと、金属原子が置換することで原子間の結合距離が変化すること、などによって、歪みを許容することができるためと考えられる。
 なお、明確な結晶粒界が確認される結晶構造は、いわゆる多結晶(polycrystal)と呼ばれる。結晶粒界は、再結合中心となり、キャリアが捕獲されトランジスタのオン電流の低下、電界効果移動度の低下などを引き起こす可能性が高い。よって、明確な結晶粒界が確認されないCAAC−OSは、トランジスタの半導体層に好適な結晶構造を有する結晶性の酸化物の一つである。なお、CAAC−OSを構成するには、Znを有する構成が好ましい。例えば、In−Zn酸化物、及びIn−Ga−Zn酸化物は、In酸化物よりも結晶粒界の発生を抑制できるため好適である。
 CAAC−OSは、結晶性が高く、明確な結晶粒界が確認されない酸化物半導体である。よって、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。また、酸化物半導体の結晶性は不純物の混入、欠陥の生成などによって低下する場合があるため、CAAC−OSは不純物及び欠陥(酸素欠損など)の少ない酸化物半導体ともいえる。従って、CAAC−OSを有する酸化物半導体は、物理的性質が安定する。そのため、CAAC−OSを有する酸化物半導体は熱に強く、信頼性が高い。また、CAAC−OSは、製造工程における高い温度(所謂サーマルバジェット)に対しても安定である。従って、OSトランジスタにCAAC−OSを用いると、製造工程の自由度を広げることが可能となる。
[nc−OS]
 nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。別言すると、nc−OSは、微小な結晶を有する。なお、当該微小な結晶の大きさは、例えば、1nm以上10nm以下、特に1nm以上3nm以下であることから、当該微小な結晶をナノ結晶ともいう。また、nc−OSは、異なるナノ結晶間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。従って、nc−OSは、分析方法によっては、a−like OS、または非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OS膜に対し、XRD装置を用いて構造解析を行うと、θ/2θスキャンを用いたOut−of−plane XRD測定では、結晶性を示すピークが検出されない。また、nc−OS膜に対し、ナノ結晶よりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子線回折(制限視野電子線回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OS膜に対し、ナノ結晶の大きさと近いかナノ結晶より小さいプローブ径(例えば1nm以上30nm以下)の電子線を用いる電子線回折(ナノビーム電子線回折ともいう。)を行うと、ダイレクトスポットを中心とするリング状の領域内に複数のスポットが観測される電子線回折パターンが取得される場合がある。
[a−like OS]
 a−like OSは、nc−OSと非晶質酸化物半導体との間の構造を有する酸化物半導体である。a−like OSは、鬆または低密度領域を有する。即ち、a−like OSは、nc−OS及びCAAC−OSと比べて、結晶性が低い。また、a−like OSは、nc−OS及びCAAC−OSと比べて、膜中の水素濃度が高い。
<<酸化物半導体の構成>>
 次に、上述のCAC−OSの詳細について、説明を行う。なお、CAC−OSは材料構成に関する。
[CAC−OS]
 CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、及びZnの原子数比のそれぞれを、[In]、[Ga]、及び[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 また、In−Ga−Zn酸化物におけるCAC−OSとは、In、Ga、Zn、及びOを含む材料構成において、一部にGaを主成分とする領域と、一部にInを主成分とする領域とが、それぞれモザイク状であり、これらの領域がランダムに存在している構成をいう。よって、CAC−OSは、金属元素が不均一に分布した構造を有していると推測される。
 CAC−OSは、例えば基板を意図的に加熱しない条件で、スパッタリング法により形成することができる。また、CAC−OSをスパッタリング法で形成する場合、成膜ガスとして、不活性ガス(代表的にはアルゴン)、酸素ガス、及び窒素ガスの中から選ばれたいずれか一つまたは複数を用いればよい。また、成膜時の成膜ガスの総流量に対する酸素ガスの流量比は低いほど好ましい。例えば、成膜時の成膜ガスの総流量に対する酸素ガスの流量比を0%以上30%未満、好ましくは0%以上10%以下とする。
 また、例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 ここで、第1の領域は、第2の領域と比較して、導電性が高い領域である。つまり、第1の領域を、キャリアが流れることにより、金属酸化物としての導電性が発現する。従って、第1の領域が、金属酸化物中にクラウド状に分布することで、高い電界効果移動度(μ)が実現できる。
 一方、第2の領域は、第1の領域と比較して、絶縁性が高い領域である。つまり、第2の領域が、金属酸化物中に分布することで、リーク電流を抑制することができる。
 従って、CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、及び良好なスイッチング動作を実現することができる。
 また、CAC−OSを用いたトランジスタは、信頼性が高い。従って、CAC−OSは、表示装置をはじめとするさまざまな半導体装置に最適である。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS、CAC−OS、nc−OS、CAAC−OSのうち、二種以上を有していてもよい。
<酸化物半導体を有するトランジスタ>
 続いて、上記酸化物半導体をトランジスタに用いる場合について説明する。
 上記酸化物半導体をトランジスタに用いることで、高い電界効果移動度のトランジスタを実現することができる。また、信頼性の高いトランジスタを実現することができる。
 トランジスタには、キャリア濃度の低い酸化物半導体を用いることが好ましい。例えば、酸化物半導体のキャリア濃度は1×1017cm−3以下、好ましくは1×1015cm−3以下、さらに好ましくは1×1013cm−3以下、より好ましくは1×1011cm−3以下、さらに好ましくは1×1010cm−3未満であり、1×10−9cm−3以上である。なお、酸化物半導体膜のキャリア濃度を低くする場合においては、酸化物半導体膜中の不純物濃度を低くし、欠陥準位密度を低くすればよい。本明細書等において、不純物濃度が低く、欠陥準位密度の低いことを高純度真性または実質的に高純度真性と言う。なお、キャリア濃度の低い酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ場合がある。
 また、高純度真性または実質的に高純度真性である酸化物半導体膜は、欠陥準位密度が低いため、トラップ準位密度も低くなる場合がある。
 また、酸化物半導体のトラップ準位に捕獲された電荷は、消失するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、トラップ準位密度の高い酸化物半導体にチャネル形成領域が形成されるトランジスタは、電気特性が不安定となる場合がある。
 従って、トランジスタの電気特性を安定にするためには、酸化物半導体中の不純物濃度を低減することが有効である。また、酸化物半導体中の不純物濃度を低減するためには、近接する膜中の不純物濃度も低減することが好ましい。不純物としては、水素、窒素、アルカリ金属、アルカリ土類金属、鉄、ニッケル、シリコン等がある。なお、酸化物半導体中の不純物とは、例えば、酸化物半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物と言える。
<不純物>
 ここで、酸化物半導体中における各不純物の影響について説明する。
 酸化物半導体において、第14族元素の一つであるシリコンまたは炭素が含まれると、酸化物半導体において欠陥準位が形成される。このため、酸化物半導体におけるシリコンまたは炭素の濃度と、酸化物半導体との界面近傍のシリコンまたは炭素の濃度(二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)により得られる濃度)を、2×1018atoms/cm以下、好ましくは2×1017atoms/cm以下とする。
 また、酸化物半導体にアルカリ金属またはアルカリ土類金属が含まれると、欠陥準位を形成し、キャリアを生成する場合がある。従って、アルカリ金属またはアルカリ土類金属が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、SIMSにより得られる酸化物半導体中のアルカリ金属またはアルカリ土類金属の濃度を、1×1018atoms/cm以下、好ましくは2×1016atoms/cm以下にする。
 また、酸化物半導体において、窒素が含まれると、キャリアである電子が生じ、キャリア濃度が増加し、n型化しやすい。この結果、窒素が含まれている酸化物半導体を半導体に用いたトランジスタはノーマリーオン特性となりやすい。または、酸化物半導体において、窒素が含まれると、トラップ準位が形成される場合がある。この結果、トランジスタの電気特性が不安定となる場合がある。このため、SIMSにより得られる酸化物半導体中の窒素濃度を、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下にする。
 また、酸化物半導体に含まれる水素は、金属原子と結合する酸素と反応して水になるため、酸素欠損を形成する場合がある。該酸素欠損に水素が入ることで、キャリアである電子が生成される場合がある。また、水素の一部が金属原子と結合する酸素と結合して、キャリアである電子を生成することがある。従って、水素が含まれている酸化物半導体を用いたトランジスタはノーマリーオン特性となりやすい。このため、酸化物半導体中の水素はできる限り低減されていることが好ましい。具体的には、SIMSにより得られる酸化物半導体中の水素濃度を、1×1020atoms/cm未満、好ましくは1×1019atoms/cm未満、より好ましくは5×1018atoms/cm未満、さらに好ましくは1×1018atoms/cm未満にする。
 不純物が十分に低減された酸化物半導体をトランジスタのチャネル形成領域に用いることで、安定した電気特性を付与することができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
(実施の形態8)
 本実施の形態では、本発明の一態様の電子機器について図21乃至図24を用いて説明する。
 本実施の形態の電子機器は、本発明の一態様の表示装置を有する。本発明の一態様の表示装置は、高精細化、高解像度化、大型化のそれぞれが容易である。したがって、本発明の一態様の表示装置は、様々な電子機器の表示部に用いることができる。
 また、本発明の一態様の表示装置は、低いコストで作製できるため、電子機器の製造コストを低減することができる。
 電子機器としては、例えば、テレビジョン装置、デスクトップ型もしくはノート型のパーソナルコンピュータ、コンピュータ用などのモニタ、デジタルサイネージ、パチンコ機などの大型ゲーム機などの比較的大きな画面を備える電子機器の他、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機、携帯型ゲーム機、携帯情報端末、音響再生装置、などが挙げられる。
 特に、本発明の一態様の表示装置は、精細度を高めることが可能なため、比較的小さな表示部を有する電子機器に好適に用いることができる。このような電子機器としては、例えば腕時計型、ブレスレット型などの情報端末機(ウェアラブル機器)、並びに、ヘッドマウントディスプレイなどのVR向け機器、メガネ型のAR向け機器など、頭部に装着可能なウェアラブル機器等が挙げられる。また、ウェアラブル機器としては、SR(Substitutional Reality)向け機器、及び、MR(Mixed Reality)向け機器も挙げられる。
 本発明の一態様の表示装置は、HD(画素数1280×720)、FHD(画素数1920×1080)、WQHD(画素数2560×1440)、WQXGA(画素数2560×1600)、4K2K(画素数3840×2160)、8K4K(画素数7680×4320)といった極めて高い解像度を有していることが好ましい。特に4K2K、8K4K、又はそれ以上の解像度とすることが好ましい。また、本発明の一態様の表示装置における画素密度(精細度)は、300ppi以上が好ましく、500ppi以上がより好ましく、1000ppi以上がより好ましく、2000ppi以上がより好ましく、3000ppi以上がより好ましく、5000ppi以上がより好ましく、7000ppi以上がさらに好ましい。このように高い解像度または高い精細度を有する表示装置を用いることで、携帯型または家庭用途などのパーソナルユースの電子機器において、臨場感及び奥行き感などをより高めることが可能となる。
 本実施の形態の電子機器は、家屋もしくはビルの内壁もしくは外壁、または、自動車の内装もしくは外装の曲面に沿って組み込むことができる。
 本実施の形態の電子機器は、アンテナを有していてもよい。アンテナで信号を受信することで、表示部で映像及び情報等の表示を行うことができる。また、電子機器がアンテナ及び二次電池を有する場合、アンテナを、非接触電力伝送に用いてもよい。
 本実施の形態の電子機器は、センサ(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)を有していてもよい。
 本実施の形態の電子機器は、様々な機能を有することができる。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)を実行する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出す機能等を有することができる。
 図21Aに示す電子機器6500は、スマートフォンとして用いることのできる携帯情報端末機である。
 電子機器6500は、筐体6501、表示部6502、電源ボタン6503、ボタン6504、スピーカ6505、マイク6506、カメラ6507、及び光源6508等を有する。表示部6502はタッチパネル機能を備える。
 表示部6502に、本発明の一態様の表示装置を適用することができる。
 図21Bは、筐体6501のマイク6506側の端部を含む断面概略図である。
 筐体6501の表示面側には透光性を有する保護部材6510が設けられ、筐体6501と保護部材6510に囲まれた空間内に、表示パネル6511、光学部材6512、タッチセンサパネル6513、プリント基板6517、バッテリ6518等が配置されている。
 保護部材6510には、表示パネル6511、光学部材6512、及びタッチセンサパネル6513が接着層(図示しない)により固定されている。
 表示部6502よりも外側の領域において、表示パネル6511の一部が折り返されており、当該折り返された部分にFPC6515が接続されている。FPC6515には、IC6516が実装されている。FPC6515は、プリント基板6517に設けられた端子に接続されている。
 表示パネル6511には本発明の一態様のフレキシブルディスプレイ(可撓性を有する表示装置)を適用することができる。そのため、極めて軽量な電子機器を実現できる。また、表示パネル6511が極めて薄いため、電子機器の厚さを抑えつつ、大容量のバッテリ6518を搭載することもできる。また、表示パネル6511の一部を折り返して、画素部の裏側にFPC6515との接続部を配置することにより、狭額縁の電子機器を実現できる。
 図22Aにテレビジョン装置の一例を示す。テレビジョン装置7100は、筐体7101に表示部7000が組み込まれている。ここでは、スタンド7103により筐体7101を支持した構成を示している。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22Aに示すテレビジョン装置7100の操作は、筐体7101が備える操作スイッチ、及び、別体のリモコン操作機7111により行うことができる。または、表示部7000にタッチセンサを備えていてもよく、指等で表示部7000に触れることでテレビジョン装置7100を操作してもよい。リモコン操作機7111は、当該リモコン操作機7111から出力する情報を表示する表示部を有していてもよい。リモコン操作機7111が備える操作キーまたはタッチパネルにより、チャンネル及び音量の操作を行うことができ、表示部7000に表示される映像を操作することができる。
 なお、テレビジョン装置7100は、受信機及びモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができる。また、モデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者同士など)の情報通信を行うことも可能である。
 図22Bに、ノート型パーソナルコンピュータの一例を示す。ノート型パーソナルコンピュータ7200は、筐体7211、キーボード7212、ポインティングデバイス7213、外部接続ポート7214等を有する。筐体7211に、表示部7000が組み込まれている。
 表示部7000に、本発明の一態様の表示装置を適用することができる。
 図22C及び図22Dに、デジタルサイネージの一例を示す。
 図22Cに示すデジタルサイネージ7300は、筐体7301、表示部7000、及びスピーカ7303等を有する。さらに、LEDランプ、操作キー(電源スイッチ、または操作スイッチを含む)、接続端子、各種センサ、マイクロフォン等を有することができる。
 図22Dは円柱状の柱7401に取り付けられたデジタルサイネージ7400である。デジタルサイネージ7400は、柱7401の曲面に沿って設けられた表示部7000を有する。
 図22C及び図22Dにおいて、表示部7000に、本発明の一態様の表示装置を適用することができる。
 表示部7000が広いほど、一度に提供できる情報量を増やすことができる。また、表示部7000が広いほど、人の目につきやすく、例えば、広告の宣伝効果を高めることができる。
 表示部7000にタッチパネルを適用することで、表示部7000に画像または動画を表示するだけでなく、使用者が直感的に操作することができ、好ましい。また、路線情報もしくは交通情報などの情報を提供するための用途に用いる場合には、直感的な操作によりユーザビリティを高めることができる。
 また、図22C及び図22Dに示すように、デジタルサイネージ7300またはデジタルサイネージ7400は、ユーザが所持するスマートフォン等の情報端末機7311または情報端末機7411と無線通信により連携可能であることが好ましい。例えば、表示部7000に表示される広告の情報を、情報端末機7311または情報端末機7411の画面に表示させることができる。また、情報端末機7311または情報端末機7411を操作することで、表示部7000の表示を切り替えることができる。
 また、デジタルサイネージ7300またはデジタルサイネージ7400に、情報端末機7311または情報端末機7411の画面を操作手段(コントローラ)としたゲームを実行させることもできる。これにより、不特定多数のユーザが同時にゲームに参加し、楽しむことができる。
 図23Aは、ファインダー8100を取り付けた状態のカメラ8000の外観を示す図である。
 カメラ8000は、筐体8001、表示部8002、操作ボタン8003、シャッターボタン8004等を有する。またカメラ8000には、着脱可能なレンズ8006が取り付けられている。なお、カメラ8000は、レンズ8006と筐体とが一体となっていてもよい。
 カメラ8000は、シャッターボタン8004を押す、またはタッチパネルとして機能する表示部8002をタッチすることにより撮像することができる。
 筐体8001は、電極を有するマウントを有し、ファインダー8100のほか、ストロボ装置等を接続することができる。
 ファインダー8100は、筐体8101、表示部8102、ボタン8103等を有する。
 筐体8101は、カメラ8000のマウントと係合するマウントにより、カメラ8000に取り付けられている。ファインダー8100はカメラ8000から受信した映像等を表示部8102に表示させることができる。
 ボタン8103は、電源ボタン等としての機能を有する。
 カメラ8000の表示部8002、及びファインダー8100の表示部8102に、本発明の一態様の表示装置を適用することができる。なお、ファインダーが内蔵されたカメラ8000であってもよい。
 図23Bは、ヘッドマウントディスプレイ8200の外観を示す図である。
 ヘッドマウントディスプレイ8200は、装着部8201、レンズ8202、本体8203、表示部8204、ケーブル8205等を有している。また装着部8201には、バッテリ8206が内蔵されている。
 ケーブル8205は、バッテリ8206から本体8203に電力を供給する。本体8203は無線受信機等を備え、受信した映像情報を表示部8204に表示させることができる。また、本体8203はカメラを備え、使用者の眼球またはまぶたの動きの情報を入力手段として用いることができる。
 また、装着部8201には、使用者に触れる位置に、使用者の眼球の動きに伴って流れる電流を検知可能な複数の電極が設けられ、視線を認識する機能を有していてもよい。また、当該電極に流れる電流により、使用者の脈拍をモニタする機能を有していてもよい。また、装着部8201には、温度センサ、圧力センサ、加速度センサ等の各種センサを有していてもよく、使用者の生体情報を表示部8204に表示する機能、使用者の頭部の動きに合わせて表示部8204に表示する映像を変化させる機能などを有していてもよい。
 表示部8204に、本発明の一態様の表示装置を適用することができる。
 図23C乃至図23Eは、ヘッドマウントディスプレイ8300の外観を示す図である。ヘッドマウントディスプレイ8300は、筐体8301と、表示部8302と、バンド状の固定具8304と、一対のレンズ8305と、を有する。
 使用者は、レンズ8305を通して、表示部8302の表示を視認することができる。なお、表示部8302を湾曲して配置させると、使用者が高い臨場感を感じることができるため好ましい。また、表示部8302の異なる領域に表示された別の画像を、レンズ8305を通して視認することで、視差を用いた3次元表示等を行うこともできる。なお、表示部8302を1つ設ける構成に限られず、表示部8302を2つ設け、使用者の片方の目につき1つの表示部を配置してもよい。
 表示部8302に、本発明の一態様の表示装置を適用することができる。本発明の一態様の表示装置は、極めて高い精細度を実現することも可能である。例えば、図23Eのようにレンズ8305を用いて表示を拡大して視認される場合でも、使用者に画素が視認されにくい。つまり、表示部8302を用いて、使用者に現実感の高い映像を視認させることができる。
 図23Fは、ゴーグル型のヘッドマウントディスプレイ8400の外観を示す図である。ヘッドマウントディスプレイ8400は、一対の筐体8401と、装着部8402と、緩衝部材8403と、を有する。一対の筐体8401内には、それぞれ、表示部8404及びレンズ8405が設けられる。一対の表示部8404に互いに異なる画像を表示させることで、視差を用いた3次元表示を行うことができる。
 使用者は、レンズ8405を通して表示部8404を視認することができる。レンズ8405はピント調整機構を有し、使用者の視力に応じて位置を調整することができる。表示部8404は、正方形または横長の長方形であることが好ましい。これにより、臨場感を高めることができる。
 装着部8402は、使用者の顔のサイズに応じて調整でき、かつ、ずれ落ちることのないよう、可塑性及び弾性を有することが好ましい。また、装着部8402の一部は、骨伝導イヤフォンとして機能する振動機構を有していることが好ましい。これにより、別途イヤフォン、スピーカなどの音響機器を必要とせず、装着しただけで映像と音声を楽しむことができる。なお、筐体8401内に、無線通信により音声データを出力する機能を有していてもよい。
 装着部8402と緩衝部材8403は、使用者の顔(額、頬など)に接触する部分である。緩衝部材8403が使用者の顔と密着することにより、光漏れを防ぐことができ、より没入感を高めることができる。緩衝部材8403は、使用者がヘッドマウントディスプレイ8400を装着した際に使用者の顔に密着するよう、柔らかな素材を用いることが好ましい。例えばゴム、シリコーンゴム、ウレタン、スポンジなどの素材を用いることができる。また、スポンジ等の表面を布、革(天然皮革または合成皮革)、などで覆ったものを用いると、使用者の顔と緩衝部材8403との間に隙間が生じにくく光漏れを好適に防ぐことができる。また、このような素材を用いると、肌触りが良いことに加え、寒い季節などに装着した際に、使用者に冷たさを感じさせないため好ましい。緩衝部材8403または装着部8402などの、使用者の肌に触れる部材は、取り外し可能な構成とすると、クリーニングまたは交換が容易となるため好ましい。
 図24A乃至図24Fに示す電子機器は、筐体9000、表示部9001、スピーカ9003、操作キー9005(電源スイッチ、または操作スイッチを含む)、接続端子9006、センサ9007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、においまたは赤外線を検知、検出、または測定する機能を含むもの)、マイクロフォン9008、等を有する。
 図24A乃至図24Fに示す電子機器は、様々な機能を有する。例えば、様々な情報(静止画、動画、テキスト画像など)を表示部に表示する機能、タッチパネル機能、カレンダー、日付または時刻などを表示する機能、様々なソフトウェア(プログラム)によって処理を制御する機能、無線通信機能、記録媒体に記録されているプログラムまたはデータを読み出して処理する機能、等を有することができる。なお、電子機器の機能はこれらに限られず、様々な機能を有することができる。電子機器は、複数の表示部を有していてもよい。また、電子機器にカメラ等を設け、静止画または動画を撮影し、記録媒体(外部またはカメラに内蔵)に保存する機能、撮影した画像を表示部に表示する機能、等を有していてもよい。
 表示部9001に、本発明の一態様の表示装置を適用することができる。
 図24A乃至図24Fに示す電子機器の詳細について、以下説明を行う。
 図24Aは、携帯情報端末9101を示す斜視図である。携帯情報端末9101は、例えばスマートフォンとして用いることができる。なお、携帯情報端末9101は、スピーカ9003、接続端子9006、センサ9007等を設けてもよい。また、携帯情報端末9101は、文字及び画像情報をその複数の面に表示することができる。図24Aでは3つのアイコン9050を表示した例を示している。また、破線の矩形で示す情報9051を表示部9001の他の面に表示することもできる。情報9051の一例としては、電子メール、SNS、電話などの着信の通知、電子メール、SNSなどの題名、送信者名、日時、時刻、バッテリの残量、アンテナ受信の強度などがある。または、情報9051が表示されている位置にはアイコン9050などを表示してもよい。
 図24Bは、携帯情報端末9102を示す斜視図である。携帯情報端末9102は、表示部9001の3面以上に情報を表示する機能を有する。ここでは、情報9052、情報9053、情報9054がそれぞれ異なる面に表示されている例を示す。例えば使用者は、洋服の胸ポケットに携帯情報端末9102を収納した状態で、携帯情報端末9102の上方から観察できる位置に表示された情報9053を確認することもできる。使用者は、携帯情報端末9102をポケットから取り出すことなく表示を確認し、例えば電話を受けるか否かを判断できる。
 図24Cは、腕時計型の携帯情報端末9200を示す斜視図である。携帯情報端末9200は、例えばスマートウォッチ(登録商標)として用いることができる。また、表示部9001はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、携帯情報端末9200を、例えば無線通信可能なヘッドセットと相互通信させることによって、ハンズフリーで通話することもできる。また、携帯情報端末9200は、接続端子9006により、他の情報端末と相互にデータ伝送を行うこと、及び、充電を行うこともできる。なお、充電動作は無線給電により行ってもよい。
 図24D乃至図24Fは、折り畳み可能な携帯情報端末9201を示す斜視図である。また、図24Dは携帯情報端末9201を展開した状態、図24Fは折り畳んだ状態、図24Eは図24Dと図24Fの一方から他方に変化する途中の状態の斜視図である。携帯情報端末9201は、折り畳んだ状態では可搬性に優れ、展開した状態では継ぎ目のない広い表示領域により表示の一覧性に優れる。携帯情報端末9201が有する表示部9001は、ヒンジ9055によって連結された3つの筐体9000に支持されている。例えば、表示部9001は、曲率半径0.1mm以上150mm以下で曲げることができる。
 本実施の形態で例示した構成例、及びそれらに対応する図面等は、少なくともその一部を他の構成例、または図面等と適宜組み合わせることができる。
 本実施の形態は、少なくともその一部を本明細書中に記載する他の実施の形態と適宜組み合わせて実施することができる。
100:表示装置、101:基板、105:絶縁層、110:発光素子、110B:発光素子、110G:発光素子、110R:発光素子、110S:受光素子、111:画素電極、111B:画素電極、111C:接続電極、111G:画素電極、111R:画素電極、111S:画素電極、112:有機層、112B:有機層、112G:有機層、112R:有機層、113:共通電極、114:有機層、115:有機層、116:有機層、120:スリット、121:保護層、125:絶縁層、125f:絶縁膜、126:樹脂層、130:接続部、131:絶縁層、132:絶縁層、135B:層、135G:層、135R:層、135S:層、143:レジストマスク、144:犠牲膜、145:犠牲層、146:犠牲膜、147:犠牲層、151B:FMM、151G:FMM、151R:FMM、151S:FMM、155:有機層、161:導電層、162:導電層、163:樹脂層

Claims (9)

  1.  第1の発光素子と、受光素子と、を有し、
     前記第1の発光素子は、第1の画素電極、第1の有機層、及び共通電極が、この順で積層され、
     前記受光素子は、第2の画素電極、第2の有機層、及び前記共通電極が、この順で積層され、
     前記第1の有機層は、第1の発光層を含み、
     前記第2の有機層は、光電変換層を含み、
     前記第1の発光素子と、前記受光素子との間の領域に、第1の層、及び第2の層を有し、
     前記第1の層は、前記第2の有機層と重畳し、且つ、前記第1の有機層と同一の材料を含み、
     前記第2の層は、前記第1の有機層と重畳し、且つ、前記第2の有機層と同一の材料を含み、
     前記第1の発光素子と、前記受光素子との間の領域において、前記第1の有機層の端部と、前記第1の層の端部とが対向して設けられ、
     前記第1の発光素子と、前記受光素子との間の領域において、前記第2の有機層の端部と、前記第2の層の端部とが対向して設けられる、
     表示装置。
  2.  請求項1において、
     第2の発光素子を有し、
     前記第2の発光素子は、第3の画素電極、第3の有機層、及び前記共通電極が、この順で積層され、
     前記第3の有機層は、第2の発光層を含み、
     前記第2の発光素子と、前記第1の発光素子との間の領域に、第3の層と、第4の層を有し、
     前記第3の層は、前記第3の有機層と重畳し、且つ、前記第1の有機層と同一の材料を含み、
     前記第4の層は、前記第1の有機層と重畳し、且つ、前記第3の有機層と同一の材料を含み、
     前記第2の発光素子と、前記第1の発光素子との間の領域において、前記第1の有機層の端部と、前記第3の層の端部とが対向して設けられ、
     前記第2の発光素子と、前記第1の発光素子との間の領域において、前記第3の有機層の端部と、前記第4の層の端部とが対向して設けられる、
     表示装置。
  3.  請求項1または請求項2において、
     樹脂層を有し、
     前記樹脂層は、前記第1の発光素子と、前記受光素子との間の領域に位置し、
     前記第1の有機層の端部と、前記第1の層の端部とは、前記樹脂層を挟んで対向し、
     前記第2の有機層の端部と、前記第2の層の端部とは、前記樹脂層を挟んで対向する、
     表示装置。
  4.  請求項1乃至請求項3のいずれか一において、
     第1の絶縁層を有し、
     前記第1の絶縁層は、前記第1の発光素子と、前記受光素子との間に位置し、
     前記第1の絶縁層は、前記第1の有機層の端部、前記第2の有機層の端部、前記第1の層の端部、及び前記第2の層の端部に接する、
     表示装置。
  5.  第1の画素電極及び第2の画素電極を並べて形成する第1の工程と、
     前記第1の画素電極上に、第1のメタルマスクを用いて島状の第1の有機層を形成する第2の工程と、
     前記第2の画素電極上に、第2のメタルマスクを用いて島状の第2の有機層を形成する第3の工程と、
     前記第1の画素電極と前記第2の画素電極との間の領域において前記第1の有機層と前記第2の有機層とをそれぞれエッチングにより分断する第4の工程と、
     前記第1の有機層及び前記第2の有機層を覆って、共通電極を形成する第5の工程と、を有し、
     前記第1の有機層は、発光性の有機化合物を含み、
     前記第2の有機層は、光電変換材料を含む、
     表示装置の作製方法。
  6.  請求項5において、
     前記第4の工程の後であって、前記第5の工程の前に、
     前記エッチングにより形成されたスリット内に、樹脂層を形成する第6の工程を有する、
     表示装置の作製方法。
  7.  請求項6において、
     前記樹脂層には、感光性の有機樹脂を用いる、
     表示装置の作製方法。
  8.  請求項6または請求項7において、
     前記第4の工程の後であって、前記第6の工程の前に、
     前記エッチングによって露出した前記第1の有機層の側面、及び前記第2の有機層の側面に接して、第1の絶縁層を形成する第7の工程を有する、
     表示装置の作製方法。
  9.  請求項8において、
     前記第1の絶縁層には、原子層堆積法により形成した酸化金属膜を用いる、
     表示装置の作製方法。
PCT/IB2022/053306 2021-04-22 2022-04-08 表示装置、及び表示装置の作製方法 WO2022224070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023515410A JPWO2022224070A1 (ja) 2021-04-22 2022-04-08
CN202280027309.2A CN117178314A (zh) 2021-04-22 2022-04-08 显示装置及显示装置的制造方法
KR1020237037983A KR20230171443A (ko) 2021-04-22 2022-04-08 표시 장치, 및 표시 장치의 제작 방법
US18/284,612 US20240164175A1 (en) 2021-04-22 2022-04-08 Display apparatus and method for manufacturing display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072674 2021-04-22
JP2021-072674 2021-04-22

Publications (1)

Publication Number Publication Date
WO2022224070A1 true WO2022224070A1 (ja) 2022-10-27

Family

ID=83721997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2022/053306 WO2022224070A1 (ja) 2021-04-22 2022-04-08 表示装置、及び表示装置の作製方法

Country Status (6)

Country Link
US (1) US20240164175A1 (ja)
JP (1) JPWO2022224070A1 (ja)
KR (1) KR20230171443A (ja)
CN (1) CN117178314A (ja)
TW (1) TW202247458A (ja)
WO (1) WO2022224070A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043464A1 (en) * 2009-08-18 2011-02-24 Samsung Mobile Display Co., Ltd. Touch screen display apparatus and method of manufacturing the same
JP2012216338A (ja) * 2011-03-31 2012-11-08 Sony Corp 表示装置およびその製造方法
WO2014024582A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 受発光素子及び受発光装置
JP2014175165A (ja) * 2013-03-08 2014-09-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2019192448A (ja) * 2018-04-24 2019-10-31 株式会社ジャパンディスプレイ 表示装置
JP2020053523A (ja) * 2018-09-26 2020-04-02 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
JP2020520056A (ja) * 2017-05-17 2020-07-02 アップル インコーポレイテッドApple Inc. 横方向の漏れを低減した有機発光ダイオードディスプレイ
US20200274110A1 (en) * 2019-02-27 2020-08-27 Int Tech Co., Ltd. Method for manufacturing electroluminescent device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102079188B1 (ko) 2012-05-09 2020-02-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 전자 기기

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043464A1 (en) * 2009-08-18 2011-02-24 Samsung Mobile Display Co., Ltd. Touch screen display apparatus and method of manufacturing the same
JP2012216338A (ja) * 2011-03-31 2012-11-08 Sony Corp 表示装置およびその製造方法
WO2014024582A1 (ja) * 2012-08-09 2014-02-13 ソニー株式会社 受発光素子及び受発光装置
JP2014175165A (ja) * 2013-03-08 2014-09-22 Semiconductor Energy Lab Co Ltd 発光装置
JP2020520056A (ja) * 2017-05-17 2020-07-02 アップル インコーポレイテッドApple Inc. 横方向の漏れを低減した有機発光ダイオードディスプレイ
JP2019192448A (ja) * 2018-04-24 2019-10-31 株式会社ジャパンディスプレイ 表示装置
JP2020053523A (ja) * 2018-09-26 2020-04-02 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
US20200274110A1 (en) * 2019-02-27 2020-08-27 Int Tech Co., Ltd. Method for manufacturing electroluminescent device

Also Published As

Publication number Publication date
KR20230171443A (ko) 2023-12-20
US20240164175A1 (en) 2024-05-16
CN117178314A (zh) 2023-12-05
TW202247458A (zh) 2022-12-01
JPWO2022224070A1 (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
WO2022248984A1 (ja) 表示装置
WO2023047239A1 (ja) 表示装置
WO2022224070A1 (ja) 表示装置、及び表示装置の作製方法
WO2022238808A1 (ja) 表示装置、及び表示装置の作製方法
WO2022189916A1 (ja) 表示装置、及び表示装置の作製方法
WO2022248971A1 (ja) 表示装置、及び表示装置の作製方法
WO2022248973A1 (ja) 表示装置
WO2023012577A1 (ja) 表示装置
WO2022175789A1 (ja) 表示装置
WO2022238805A1 (ja) 半導体装置、表示装置、及び半導体装置の作製方法
WO2023002280A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
US20240155880A1 (en) Display apparatus, display module, electronic device, and method of manufacturing display apparatus
US20240381737A1 (en) Display Apparatus
US20240138223A1 (en) Display apparatus, display module, electronic device, and method of manufacturing display apparatus
WO2022269408A1 (ja) 表示装置、表示装置の作製方法、表示モジュール、及び電子機器
US20220384536A1 (en) Display apparatus, method for manufacturing display apparatus, display module, and electronic device
WO2022185149A1 (ja) 表示装置、表示モジュール、電子機器、及び、表示装置の作製方法
WO2023052913A1 (ja) 表示装置
US20240099070A1 (en) Display apparatus, display module, electronic device, and method of manufacturing display apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515410

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18284612

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237037983

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237037983

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791195

Country of ref document: EP

Kind code of ref document: A1