Nothing Special   »   [go: up one dir, main page]

WO2022215430A1 - セパレータおよびそれを用いた円筒形二次電池 - Google Patents

セパレータおよびそれを用いた円筒形二次電池 Download PDF

Info

Publication number
WO2022215430A1
WO2022215430A1 PCT/JP2022/010607 JP2022010607W WO2022215430A1 WO 2022215430 A1 WO2022215430 A1 WO 2022215430A1 JP 2022010607 W JP2022010607 W JP 2022010607W WO 2022215430 A1 WO2022215430 A1 WO 2022215430A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
region
resin layer
electrode plate
width
Prior art date
Application number
PCT/JP2022/010607
Other languages
English (en)
French (fr)
Inventor
大輔 古澤
智彦 横山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US18/553,501 priority Critical patent/US20240195013A1/en
Priority to EP22784415.6A priority patent/EP4322308A1/en
Priority to JP2023512879A priority patent/JPWO2022215430A1/ja
Priority to CN202280027336.XA priority patent/CN117178420A/zh
Publication of WO2022215430A1 publication Critical patent/WO2022215430A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to separators and cylindrical secondary batteries using the same.
  • a cylindrical secondary battery includes a bottomed cylindrical case body and an electrode plate group arranged in the case body.
  • the electrode plate assembly is formed by winding a positive electrode plate, a negative electrode plate, and a separator. Conventionally, various separators used in secondary batteries have been proposed.
  • Patent Document 1 Japanese National Publication of International Patent Application No. 2006-525624 discloses "a battery separator membrane coated with a gelatinous polymer in a range of 40 to 60% of the total area of the separator membrane.”
  • Patent Document 2 Japanese Unexamined Patent Application Publication No. 2016-201327 describes a long sheet-like non-aqueous electrolyte 2 comprising a resin substrate layer and a heat-resistant layer formed on one surface of the substrate.
  • a separator for a secondary battery wherein the heat-resistant layer contains heat-resistant fine particles and a binder, and the binder per unit volume contained in the heat-resistant layer located at the end in the width direction orthogonal to the longitudinal direction of the separator The amount is greater than the amount of binder per unit volume contained in the heat-resistant layer located in the central portion including at least the center in the width direction of the separator, and the heat-resistant layer at the end portion has a relatively large amount of the binder.
  • a separator in which the amount of binder per unit volume contained in a region adjacent to the material layer is greater than the amount of binder per unit volume contained in a surface region relatively close to the surface including the surface of the heat-resistant layer. is doing.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2020-64879 discloses that "a porous membrane, an inorganic particle layer formed on at least one surface of the porous membrane and having inorganic particles occupying 80% by volume or more of the entire layer, a porous resin layer formed on the surface of the inorganic particle layer and integrated with the inorganic particle layer.”
  • Cylindrical secondary batteries are required to further improve battery characteristics such as cycle characteristics.
  • one object of the present disclosure is to provide a cylindrical secondary battery with high battery characteristics such as cycle characteristics, and a separator that can be used therein.
  • the separator is a strip-shaped separator having first and second long sides, and includes a base material, an inorganic filler layer laminated on the base material and containing an inorganic filler as a main component, and one of the inorganic filler layers. a resin layer laminated on the portion and containing resin as a main component, at least a portion of the resin layer being formed in a strip-shaped first region and a strip-shaped second region; First and second regions extend adjacent to the first and second long sides, respectively, and a third region between the first region and the second region includes the resin There are portions where no layer is formed.
  • the cylindrical secondary battery includes a battery case including a bottomed cylindrical case main body, and an electrode plate group and an electrolyte arranged in the case main body.
  • the electrode plate group is formed by winding a plate and a separator so that the separator is disposed between the positive electrode plate and the negative electrode plate, and the separator is the separator according to the present disclosure.
  • a cylindrical secondary battery with high battery characteristics such as cycle characteristics can be realized.
  • FIG. 2 is a top view schematically showing an example of the separator of Embodiment 1.
  • FIG. 1B is a diagram schematically showing a cross section taken along line IB-IB of FIG. 1A; 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 4 is a top view schematically showing another example of the separator of Embodiment 1.
  • FIG. 5 is a cross-sectional view schematically showing an example of a cylindrical secondary battery of Embodiment 2;
  • FIG. 4 is a cross-sectional view schematically showing part of a cylindrical secondary battery
  • the separator (S) of this embodiment is a strip-shaped separator having first and second long sides.
  • the separator (S) includes a substrate, an inorganic filler layer laminated on the substrate and containing an inorganic filler as a main component, and a resin layer laminated on a part of the inorganic filler layer and containing a resin as a main component. include. At least part of the resin layer is formed in the strip-shaped first region and the strip-shaped second region. The first and second regions extend adjacent the first and second long sides, respectively. A third region between the first region and the second region has a portion where the resin layer is not formed.
  • the separator (S) can be used as a battery separator, and is particularly preferably used as a cylindrical secondary battery separator. An example of a cylindrical secondary battery will be described later.
  • Layer (L) is a layer laminated on the base material.
  • the layer (L) is laminated on at least one surface of the substrate.
  • the layer (L) may be laminated on only one surface of the substrate.
  • layer (L) may be laminated on both sides of the substrate. In that case the separator comprises two layers (L).
  • the inorganic filler layer is mainly composed of inorganic filler. Specifically, the content of the inorganic filler in the inorganic filler layer is higher than 50% by mass, and may be 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the resin layer contains resin as a main component. Specifically, the resin content in the resin layer may be higher than 50% by mass, 70% by mass or more, 80% by mass or more, or 90% by mass or more.
  • the inorganic filler layer functions as a heat-resistant layer.
  • the inventors of the present application have found that the use of the heat-resistant layer sometimes deteriorates the cycle characteristics. Moreover, the inventors of the present application have found that the heat resistance may be insufficient only with the heat-resistant layer. The present disclosure is based on these new findings.
  • the separator of the present disclosure includes an inorganic filler layer and a resin layer.
  • the inorganic filler layer can improve the heat resistance of the separator. Further, by forming the resin layer only on a part of the inorganic filler layer, the electrolyte can easily flow in the space where the resin layer is not formed, and the cycle characteristics can be improved. Furthermore, by forming the resin layer, the shrinkage of the separator can be suppressed, and the heat resistance of the separator can be further improved.
  • An insulating inorganic filler can be used as the inorganic filler contained in the inorganic filler layer.
  • insulating inorganic filler materials include insulating metal compounds (metal oxides, metal nitrides, metal carbides, etc.), such as aluminum oxide (alumina), titanium oxide (titania), silica, Zirconium oxide (zirconia), magnesium oxide (magnesia) and the like are included.
  • the shape of the inorganic filler is not particularly limited, and may be particulate (spherical, scale-like, etc.) or fibrous.
  • the inorganic filler layer may contain only one type of inorganic filler, or may contain a plurality of types of inorganic fillers. As the inorganic filler, a known insulating inorganic filler used in secondary batteries may be used.
  • the average particle size of the inorganic filler particles may be selected according to the thickness of the inorganic filler layer.
  • the average particle size (median size in volume-based particle size distribution) of the inorganic filler particles may be 2 ⁇ m or less (for example, 1 ⁇ m or less).
  • the average particle size of the inorganic filler particles may be 50 nm or more and may be in the range of 50 nm to 2 ⁇ m.
  • the average particle size is the median size (D 50 ) at which the cumulative volume is 50% in the volume-based particle size distribution.
  • the median diameter is determined using, for example, a laser diffraction/scattering particle size distribution analyzer.
  • the inorganic filler layer preferably contains a binder, and may contain other components.
  • binders include fluororesins, acrylic resins, natural rubbers, synthetic rubbers, and the like.
  • examples of binders include polyvinylidene fluoride (PVdF), styrene-butadiene rubber, acrylonitrile-butadiene rubber, polymethylmethacrylate, polyethylene, nitrocellulose, and the like.
  • PVdF polyvinylidene fluoride
  • styrene-butadiene rubber acrylonitrile-butadiene rubber
  • polymethylmethacrylate polyethylene
  • nitrocellulose nitrocellulose
  • the inorganic filler layer is preferably formed on almost the entire surface of the base material on which the layer (L) is formed.
  • the inorganic filler layer is formed in a range of 80 to 100% (for example, a range of 90 to 100% or a range of 95 to 100%) of the area of the surface of the substrate on which the layer (L) is formed. preferably. In a typical example, the inorganic filler layer is formed on the entire surface of the base material on which the layer (L) is formed.
  • the thickness of the inorganic filler layer should be selected within an appropriate range, taking into account the effect on battery characteristics (heat resistance, etc.).
  • the thickness of the inorganic filler layer may be in the range of 1 ⁇ m to 20 ⁇ m (eg, in the range of 2 ⁇ m to 8 ⁇ m).
  • the resin layer contains resin as its main component.
  • An insulating resin can be used as the main component resin.
  • insulating resins include fluorine resins, acrylic resins, and the like.
  • resins include polyvinylidene fluoride, polyacrylonitrile, polyacrylic acid, and the like.
  • the resin that is the main component of the resin layer and the binder contained in the inorganic filler layer may be the same or different. By making both the same, the adhesion between the inorganic filler layer and the resin layer can be enhanced.
  • the resin layer may contain components other than resin.
  • the resin layer may contain an inorganic filler.
  • the content of the inorganic filler in the resin layer is less than 50% by mass, for example, 20% by mass or less or 10% by mass or less.
  • the inorganic filler contained in the resin layer include the inorganic fillers exemplified as the inorganic filler of the inorganic filler layer.
  • the thickness of the resin layer should be selected within an appropriate range, taking into consideration the effect on battery characteristics (heat resistance, cycle characteristics, etc.).
  • the thickness of the resin layer may be in the range of 0.2 ⁇ m to 20 ⁇ m (eg, in the range of 1 ⁇ m to 8 ⁇ m).
  • Examples of base materials include porous membranes, woven fabrics, and non-woven fabrics made of insulating resin.
  • insulating resins include polyolefin-based resins, polyester-based resins, and the like.
  • Preferred examples of the substrate include polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polyvinylidene fluoride, and the like.
  • the thickness of the base material should be selected in consideration of the type and structure of the battery used.
  • the thickness of the substrate may be in the range of 5 ⁇ m to 20 ⁇ m (eg, in the range of 8 ⁇ m to 15 ⁇ m).
  • the ratio (%) of the area where the resin layer is formed in the first and second regions is preferably higher than the ratio (%) of the area where the resin layer is formed in the third region.
  • the width of the first region and the width of the second region are each preferably 30% or less (for example, 25% or less or 20% or less) of the width of the separator (the width of the base material). With this configuration, the space formed in the third region can be increased.
  • the width of the first region and the width of the second region may each be in the range of 5-30% of the width of the separator (eg, in the range of 10-25%, or in the range of 10-20%).
  • the width of the first region and the width of the second region are typically about the same or the same.
  • the width of the first region may be in the range of 70-140% (eg, in the range of 80-125%) of the width of the second region.
  • the width of the separator means the length of the separator in the direction orthogonal to the longitudinal direction of the separator.
  • the width of each region of the separator means the width of each region in the direction orthogonal to the longitudinal direction of the separator.
  • the width of the electrode plate means the length of the electrode plate in the direction orthogonal to the longitudinal direction of the electrode plate.
  • the third region may include a strip-shaped fourth region extending parallel to the first region.
  • a resin layer is formed in the fourth region.
  • the third region may include a plurality of strip-shaped fourth regions.
  • the resin layers formed in the first, second, and fourth regions may be arranged in stripes along the longitudinal direction of the separator.
  • a resin layer may or may not be formed in the third region. However, the resin layer is not formed on the entire third region.
  • the average thickness Dr ( ⁇ m) of the resin layer may be 0.47 times or less of the total Ds ( ⁇ m) of the average thickness of the substrate and the average thickness of the inorganic filler layer.
  • each average thickness is calculated
  • the ratio of the area where the resin layer is formed is in the range of 5 to 100% (for example, the range of 30 to 100%, the range of 50 to 100%, or the range of 80 to 100%). ).
  • a resin layer may be formed over the entire surfaces of the first region and the second region.
  • the shrinkage ratio R (%) may satisfy (R/100) ⁇ Ws ⁇ 0.25 ⁇ Wr.
  • the resin layer preferably has voids.
  • the inorganic filler layer preferably has voids.
  • the porosity of the resin layer may be in the range of about 40-80%.
  • the porosity of the filler layer may be in the range of about 50-80%.
  • electrolyte permeates the voids to improve ionic conductivity.
  • the resin layer having voids can be formed by applying a kneaded resin and a plasticizer (solvent) onto the inorganic filler layer and then extracting and washing the plasticizer.
  • the inorganic filler layer having voids can be formed by adjusting the binder ratio, particle shape, and particle size distribution. Since voids are generated between inorganic fillers, it is possible to form an inorganic filler layer having voids by forming an inorganic filler layer by a general method.
  • the separator (S) preferably satisfies the following condition (1), and preferably satisfies one, two, three, or four of the following conditions (2) to (5): .
  • the separator (S) may satisfy all of the following conditions (1) to (5).
  • (1) The ratio (%) of the area where the resin layer is formed in the first and second regions is higher than the ratio (%) of the area where the resin layer is formed in the third region.
  • the latter proportion may be in the range of 0 to 0.5 times the former proportion (eg, in the range of 0 to 0.2 times).
  • the ratio of the area where the resin layer is formed is in the range of 5 to 100% (for example, the range of 30 to 100%, the range of 50 to 100%, or the range of 80 to 100%).
  • the width W1 of the first region and the width W2 of the second region are each in the range of 5 to 30% of the width Ws of the separator (the width of the base material) (for example, the range of 5 to 25%, or the range of 10%). ⁇ 20% range).
  • the first long side of the separator and a region having a distance of L1 from the first long side are defined as a first region, and the second long side of the separator and a distance from the second long side are defined as a distance L2.
  • a certain area may be the second area.
  • Distance L1 and distance L2 may each be selected from the lengths exemplified for width W1 above.
  • the area of the portion of the third region where the resin layer is formed is in the range of 0 to 0.8 times the area of the resin layer of the first and second regions (for example, 0 0.5 times or 0 to 0.3 times) is formed in a plurality of stripes and/or a plurality of scattered islands.
  • the stripes may be formed by intermittently formed resin layers.
  • a base material is prepared.
  • a commercially available base material may be used as the base material.
  • the substrate may be manufactured based on known methods.
  • an inorganic filler layer is formed on the substrate.
  • the inorganic filler layer can be formed, for example, by applying a slurry containing an inorganic filler and drying it.
  • a slurry can be prepared by mixing materials including a binder and an inorganic filler.
  • the material may contain a dispersion medium (such as water).
  • a resin layer is formed on a part of the inorganic filler layer.
  • the resin layer may be formed, for example, by coating and curing a resin composition that is the material of the resin layer.
  • a resin composition that is the material of the resin layer.
  • the slurry and the resin composition may be applied by a screen printing method, a transfer method, or the like, or may be applied by an inkjet method or the like.
  • the cylindrical secondary battery according to the present disclosure may be hereinafter referred to as "battery (B)".
  • the battery (B) of the present embodiment includes a battery case including a cylindrical case body with a bottom, and an electrode plate group and an electrolyte arranged in the case body.
  • the case body is sealed with a sealing body, a gasket, and the like.
  • the electrode plate group is formed by winding a positive electrode plate, a negative electrode plate, and a separator so that the separator is arranged between the positive electrode plate and the negative electrode plate.
  • the separator is the separator (separator (S)) of the present embodiment described above.
  • cylindrical secondary batteries examples include nonaqueous electrolyte secondary batteries such as lithium ion secondary batteries.
  • the cylindrical secondary battery may be a non-aqueous electrolyte secondary battery containing a non-aqueous electrolyte.
  • the layer (L) may be laminated on the surface of the two surfaces of the separator (S) facing the positive electrode plate, It may be laminated on the surface facing the negative electrode plate.
  • the layer (L) is preferably laminated on the surface facing the positive electrode side.
  • the base material of the separator (S) is adjacent to the negative electrode plate, and the resin layer is adjacent to the positive electrode plate.
  • the average thickness Dr ( ⁇ m) of the resin layer of the separator is 0.004 times or more (e.g., 0.004 to 0.1 times).
  • Discharged state refers to the state when a battery in a fully charged state is discharged at a constant current (specifically, a current equivalent to 1C), and the discharge is continued until the battery voltage reaches 2.5V.
  • the width Ws (mm) of the separator is preferably larger than the width Wp (mm) of the positive electrode plate and the width Wn (mm) of the negative electrode plate.
  • the width W3 of the third region may be 0.4 times or more the width Wn of the negative electrode plate, and may be in the range of 0.4 to 0.95 times. By setting the width W3 to 0.4 times or more the width Wn, a sufficient space can be provided between the inorganic filler layer and the electrode plate.
  • the widthwise end of the electrode plate adjacent to the resin layer is preferably in contact with the resin layer present in the first region or the second region. That is, the width of the electrode plate adjacent to the resin layer is preferably larger than the width W3 and smaller than the width Ws. According to this configuration, the displacement between the separator and the electrode plate can be particularly suppressed. Similarly, the width of the electrode plate not adjacent to the resin layer is preferably larger than the width W3 and smaller than the width Ws. If the electrode plate adjacent to the resin layer is a positive electrode plate, the electrode plate not adjacent to the resin layer is a negative electrode plate, and if the electrode plate adjacent to the resin layer is a negative electrode plate, the electrode plate not adjacent to the resin layer is used. is the positive plate. That is, the width Wp of the positive electrode plate and the width Wn of the negative electrode plate are preferably larger than the width W3 and smaller than the width Ws.
  • the manufacturing method of the battery (B) is not limited except that the separator (S) is used, and it may be manufactured by a known method.
  • the configuration of the cylindrical battery (B) will be described below.
  • the configuration of the battery is not limited to the following examples.
  • known components may be used.
  • An example in which the battery (B) is a nonaqueous electrolyte secondary battery (more specifically, a lithium ion secondary battery) will be mainly described below. If the battery (B) is another battery, the material may be changed according to the type of battery.
  • the positive plate includes a positive current collector and a positive active material layer formed on the positive current collector.
  • the positive electrode current collector may be a metal foil. Examples of positive electrode current collector materials include aluminum, aluminum alloys, titanium, titanium alloys, stainless steel, and the like.
  • the thickness of the positive electrode current collector may be, for example, in the range of 5 to 300 ⁇ m.
  • the positive electrode active material layer contains a positive electrode active material, and if necessary, may contain other substances (a binder, a conductive agent, etc.).
  • the positive electrode active material and other materials are not limited, and known materials may be used.
  • positive electrode active materials include materials that reversibly absorb and release lithium ions.
  • positive electrode active materials include metal oxides containing lithium.
  • lithium-containing metal oxides include lithium transition metal composite oxides, lithium-nickel-cobalt-aluminum composite oxides, and the like.
  • lithium transition metal composite oxides examples include lithium-manganese composite oxides (eg LiMn 2 O 4 ), lithium-nickel composite oxides (eg LiNiO 2 ), lithium-cobalt composite oxides (eg LiCoO 2 ), and , composite oxides in which part of these transition metal elements are replaced with other metal elements (typical metal elements and/or transition metal elements).
  • the negative plate includes a negative current collector and a negative active material layer formed on the negative current collector.
  • the negative electrode current collector may be a metal foil. Examples of metal materials for the negative electrode current collector include copper, nickel, iron, and alloys containing these metal elements (copper alloys, stainless steel, etc.).
  • the thickness of the negative electrode current collector may be, for example, in the range of 5 to 300 ⁇ m.
  • the negative electrode active material layer contains the negative electrode active material, and may contain other substances (binder, conductive agent, thickener, etc.) as necessary.
  • the negative electrode active material and other materials are not limited, and known materials may be used.
  • examples of negative electrode active materials include materials that reversibly absorb and release lithium ions.
  • examples of negative electrode active materials include carbon materials, silicon, silicon compounds, lithium alloys, and the like.
  • Examples of carbon materials include graphite, coke, ungraphitized carbon, graphitized carbon fiber, amorphous carbon, and the like.
  • a nonaqueous electrolyte having lithium ion conductivity can be used as the electrolyte (electrolytic solution).
  • a typical non-aqueous electrolyte comprises a non-aqueous solvent and lithium ions and anions dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be liquid or gel containing a matrix polymer.
  • a liquid non-aqueous electrolyte can be prepared by dissolving a lithium salt in a non-aqueous solvent.
  • Lithium ions and anions are produced by dissolving a lithium salt (salt of lithium ions and anions) in a non-aqueous solvent.
  • the non-aqueous electrolyte is not particularly limited, and electrolytes used in non-aqueous electrolyte batteries may be used.
  • lithium salt anions examples include BF 4 ⁇ , ClO 4 ⁇ , PF 6 ⁇ , CF 3 SO 3 ⁇ , CF 3 CO 2 ⁇ , anions of imides, anions of oxalate complexes, and the like.
  • non-aqueous solvents examples include esters, ethers, nitriles, amides, and halogen-substituted products thereof (eg, fluorides).
  • the non-aqueous electrolyte may contain only one type of these non-aqueous solvents, or may contain two or more types.
  • esters include carbonates, carboxylates, and the like.
  • examples of cyclic carbonates include ethylene carbonate, propylene carbonate, fluoroethylene carbonate (FEC), and the like.
  • Examples of chain carbonates include dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate and the like.
  • examples of cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone, and the like.
  • chain carboxylic acid esters include ethyl acetate, methyl propionate, methyl fluoropropionate, and the like.
  • a typical battery case includes a case body, a seal, and a gasket disposed between the case body and the seal.
  • the case body is a bottomed cylindrical case having an opening.
  • a known battery case may be used as the battery case.
  • Embodiment 1 describes an example of the separator (S).
  • a top view of the separator 50 of Embodiment 1 is schematically shown in FIG. 1A, and a cross-sectional view taken along line IB-IB in FIG. 1A is schematically shown in FIG. 1B.
  • the separator 50 has a strip shape (elongated rectangular shape) having a first long side 50a and a second long side 50b.
  • the separator 50 includes a strip-shaped base material 51 and a layer 52 laminated on one side of the base material 51 .
  • Layer 52 includes inorganic filler layer 53 and resin layer 54 .
  • the inorganic filler layer 53 is formed on the entire surface of the substrate 51 .
  • At least part of the resin layer 54 is formed in the strip-shaped first region 61 and the strip-shaped second region 62 .
  • the first region 61 and the second region 62 extend adjacent to the first long side 50a and the second long side 50b, respectively.
  • a third region 63 between the first region 61 and the second region 62 has a portion where the resin layer 54 is not formed.
  • the resin layer 54 includes a first resin layer 54a and a second resin layer 54b formed in stripes.
  • the region where the first resin layer 54a is formed is the first region 61
  • the region where the second resin layer 54b is formed is the second region 62.
  • the first long side 50 a is one long side of the first region 61
  • one long side of the second region 62 is one long side of the second region 62 .
  • FIG. 1A shows the resin layer 54 on the entire surface of the first region 61 and the second region 62, and the resin layer 54 is not formed on the third region 63.
  • FIG. 1B shows the width W1 of the first region 61 (the length in the direction perpendicular to the longitudinal direction), the width W2 of the second region 62, the width W3 of the third region 63, and the width of the separator 50 (the base width). The width of the material 51) Ws.
  • the resin layer 54 may be formed in part of the third region 63 .
  • a top view of an example of the separator 50 including such a resin layer 54 is schematically shown in FIG. 2, and a top view of another example is schematically shown in FIG.
  • the third region 63 includes strip-shaped fourth regions 64 extending parallel to the first regions 61 .
  • a strip-shaped third resin layer 54 c is formed on the entire surface of the fourth region 64 .
  • the resin layer 54 may be scattered like islands. Top views of examples of separators 50 including such resin layers 54 are schematically shown in FIGS. 4 to 7. FIG. 4 to 7, the resin layer 54 includes scattered island-shaped resin layers 54e. Note that a band-shaped resin layer and an island-shaped resin layer may be used in combination.
  • island-shaped resin layers 54e are formed only in the first region 61 and the second region 62. In the example shown in FIG. In the example shown in FIGS. 5 and 6, island-shaped resin layers 54e are formed only in the first region 61, the second region 62, and the fourth region 64. In the example shown in FIGS. In the example shown in FIG. 7, the island-shaped resin layer 54 is formed in part of the first region 61, the second region 62, and the third region 63. In the example shown in FIG. Note that the illustrated arrangement of the resin layer 54 is an example, and other arrangements may be applied.
  • Embodiment 2 describes an example of the battery (B).
  • FIG. 10 is a cylindrical secondary battery.
  • Battery 10 includes a battery case including case body 15 , and electrode plate group 14 and electrolyte (not shown) accommodated in case body 15 .
  • the case body 15 is a bottomed cylindrical metal case.
  • the battery case is composed of a case main body 15 , a sealing member 16 for sealing an opening of the case main body 15 , and a gasket 27 .
  • a side wall of the case body 15 has a stepped portion 21 that is annularly formed along the circumferential direction of the case body 15 .
  • a sealing member 16 is arranged on the opening side of the stepped portion 21 .
  • the sealing body 16 includes a filter 22 , a lower valve body 23 , an insulating member 24 , an upper valve body 25 and a cap 26 arranged in order from the inside of the case body 15 .
  • An insulating plate 17 and an insulating plate 18 are arranged at both ends of the electrode plate group 14 in the case main body 15 .
  • the electrode plate group 14 is composed of a strip-shaped positive electrode plate 11 , a strip-shaped negative electrode plate 12 , and a strip-shaped separator 50 . Specifically, the electrode plate group 14 is formed by winding them so that the separator 50 is arranged between the positive electrode plate 11 and the negative electrode plate 12 .
  • the separator 50 is the separator (S) described above.
  • the positive electrode plate 11 is electrically connected via a positive electrode lead 19 to a cap 26 that also serves as a positive electrode terminal.
  • the negative plate 12 is electrically connected via a negative lead 20 to a case body 15 that also serves as a negative terminal.
  • FIG. 9 shows an example using the separator 50 shown in FIG. 1A. 9 shows the width Ws of the separator 50, the width W3 of the third region, the width Wp of the positive electrode plate 11, and the width Wn of the negative electrode plate 12. As shown in FIG.
  • the positive electrode plate 11 includes a positive electrode current collector 11a and positive electrode active material layers 11b formed on both sides of the positive electrode current collector 11a.
  • the negative plate 12 includes a negative current collector 12a and negative active material layers 12b formed on both sides of the negative current collector 12a.
  • the inorganic filler layer 53 and the resin layer 54 are formed on the surface of the substrate 51 facing the positive electrode plate 11 . Since the resin layer 54 is not formed in the third region 63, there may be gaps 54s through which the electrolytic solution can flow. Therefore, the fluidity of the electrolytic solution is increased, and as a result, it is possible to improve battery characteristics such as cycle characteristics.
  • the resin layer 54 island-shaped, gaps 54s in which the resin layer 54 is not formed can be dispersed. As a result, it is possible to particularly improve cycle characteristics.
  • the resin layer 54 by forming the resin layer 54 in stripes, the frictional force between the electrode plate (the positive electrode plate 11 in the example shown in FIG. 9) and the separator 50 can be increased. As a result, it is possible to particularly improve battery characteristics such as heat resistance.
  • Example 1 In Example 1, a plurality of cylindrical secondary batteries were produced and evaluated mainly by changing the separator. A secondary battery was manufactured by the following method.
  • a positive electrode slurry was prepared by adding and mixing medium). The positive electrode slurry was applied to both sides of an aluminum foil (thickness of 15 ⁇ m) as a positive electrode current collector, dried, and then compressed. In this way, a plurality of types of positive electrode plates (thickness 0.15 to 0.35 mm) with different thicknesses were produced.
  • the reason for changing the thickness of the positive electrode plate is to make the ratio of the capacity of the positive electrode and the capacity of the negative electrode constant so that the evaluation results of the cycle test can be compared.
  • an aluminum positive electrode current collector lead was connected to the positive electrode current collector.
  • the width of the separator was 68 mm
  • the width of the positive electrode plate was set to 62.5 mm
  • the width of the separator was 53 mm
  • the width of the positive electrode plate was set to 47.5 mm.
  • a negative electrode current collector lead made of nickel was connected to the negative electrode current collector.
  • the width of the separator was 68 mm
  • the width of the negative electrode plate was set to 65 mm
  • the width of the separator was 53 mm
  • the width of the negative plate was set to 50 mm.
  • the expansion amount of the negative electrode plate was changed by changing the thickness of the negative electrode plate.
  • a polyethylene porous film (average thickness: 10 ⁇ m) was prepared as a base material.
  • the width of the substrate was 53 mm or 68 mm.
  • an inorganic filler layer was formed on the entire surface of one side of the substrate.
  • a resin layer arranged as shown in FIG. 1A was formed.
  • a plurality of types of separators were formed by changing the width (W1 and W2 in FIG. 1B) and thickness of the resin layer. Note that W1 and W2 are assumed to be the same.
  • the shrinkage rate of the separator was changed by changing the degree of polymerization of polyethylene as the base material.
  • the inorganic filler layer was formed by applying a slurry containing an inorganic filler to the substrate and then drying it.
  • the resin layer was formed by applying a resin composition onto the inorganic filler layer and drying it.
  • a resin composition was prepared by mixing polyvinylidene fluoride (PVdF, insulating resin) and NMP (liquid component).
  • the application of the resin composition was performed by a gravure coating method.
  • the thicknesses of the inorganic filler layer and the resin layer were varied by varying the coating amounts of the slurry and resin composition, respectively.
  • An electrode plate group was produced by winding the positive electrode plate, the negative electrode plate, and the separator so that the separator was arranged between the positive electrode plate and the negative electrode plate. At this time, as shown in FIG. 9, the separator was arranged such that the inorganic filler layer and the resin layer faced the positive electrode plate.
  • the electrolytic solution is obtained by mixing ethylene carbonate (EC), ethyl methyl carbonate (EMC), and dimethyl carbonate (DMC) at a volume ratio of 3:3:4, and adding 1 mol/L of LiPF 6 to the mixed solvent. was prepared by dissolving to a concentration of In this manner, a plurality of types of batteries were produced mainly with different separators. The following evaluations were performed on the produced separator and battery.
  • the battery cycle test was performed by repeating a charge/discharge cycle, in which one cycle consisted of a discharge process and a charge/discharge process, at 25° C. 300 times.
  • the discharge process was performed under the condition that the battery voltage was lowered to 2.5 V (rated capacity: 3500 to 4500 mAh) at a current value corresponding to a constant current of 1C.
  • the battery was charged at a constant current value of 0.5C, and after the battery voltage reached 4.2V, the constant voltage was decreased to a current value of 0.02C.
  • the discharge capacity X(0) before the cycle test and the discharge capacity X(300) after repeating the charge/discharge cycle 300 times were measured.
  • the battery was placed in a constant temperature bath, and the internal temperature of the constant temperature bath was raised at a rate of 5° C./min to an arbitrary set temperature. At that time, the temperature at which the battery was short-circuited was defined as the short-circuit temperature Y (°C).
  • the resistance increase rate (%) 100 x (internal resistance of battery to be evaluated)/(internal resistance of comparative battery without resin layer)
  • the “battery for comparison without a resin layer” is any one of the batteries C1 to C3 using a separator without a resin layer. Specifically, among the batteries C1 to C3, a battery using a separator (with a resin layer) having the same width Ws and total Ds as the separator of the battery to be evaluated is defined as a “battery for comparison without a resin layer”. .
  • Amount of expansion of negative electrode plate The amount of expansion of the negative electrode plate was obtained by subtracting the average thickness of the negative electrode plate removed from the battery in the discharged state from the average thickness of the negative electrode plate removed from the battery in the fully charged state. .
  • Table 1 shows some of the battery manufacturing conditions and evaluation results. "Total Ds” in Table 1 indicates the total Ds of the average thickness of the substrate and the average thickness of the inorganic filler layer.
  • Table 2 shows a table obtained by processing part of the data in Table 1.
  • Batteries C1 to C5 are comparative batteries. Batteries A1 to A19 are batteries according to the present disclosure. As shown in the table, Batteries A1 to A19 had higher capacity retention rates than Batteries C1 to C5. It is believed that this is because the fluidity of the electrolytic solution is enhanced by the voids present in the third region. Batteries A1 to A19 exhibited heat resistance equal to or higher than that of batteries C1 to C3 having no resin layer. By setting the value of W1/Ws (the value of W2/Ws) to 30% or less (for example, 29.4% or less), the capacity retention rate can be increased and the cycle characteristics can be improved.
  • W1/Ws the value of W2/Ws
  • the value of W1/Ws (value of W2/Ws) to 10% or more
  • the heat resistance of the battery can be improved.
  • the ratio Q to 2.5 or more
  • the heat resistance of the battery can be improved.
  • the W1/Ws value (W2/Ws value) was in the range of 10 to 30% and the ratio Q was 2.5 or more, both the cycle characteristics and the heat resistance were high.
  • the value of (average thickness Dr of the resin layer)/(total Ds of the average thickness of the base material and the average thickness of the inorganic filler layer) is 0.47 or less (for example, less than 0.47).
  • One battery had a low resistance increase rate.
  • the value of Dr/Ds is preferably in the range of 0.01 to 0.33, more preferably in the range of 0.01 to 0.07.
  • the value of (average thickness Dr of resin layer)/(negative plate expansion amount) be 0.004 or more (for example, 0.006 or more).
  • the phenomenon that the space becomes smaller due to the expansion of the negative electrode and the fluidity of the electrolyte deteriorates can be mitigated by providing a resin layer having a certain thickness or more, and as a result, the cycle characteristics can be improved. .
  • the width W3 of the third region By setting the width W3 of the third region to 0.4 times or more the width Wn of the negative electrode plate, the capacity retention rate can be particularly increased.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Cell Separators (AREA)

Abstract

開示されるセパレータ(50)は、第1および第2の長辺(50a)および(50b)を有する帯状のセパレータである。セパレータ(50)は、基材(51)と、基材(51)上に積層され無機フィラーを主成分とする無機フィラー層(53)と、無機フィラー層(53)の一部の上に積層され樹脂を主成分とする樹脂層(54)とを含む。樹脂層(54)の少なくとも一部は、帯状の第1の領域(61)と帯状の第2の領域(62)とに形成されている。第1および第2の領域(61)および(62)はそれぞれ、第1および第2の長辺(50a)および(50b)に隣接して延びている。第1の領域(61)と第2の領域(62)との間の第3の領域(63)には、樹脂層が形成されていない部分が存在する。

Description

セパレータおよびそれを用いた円筒形二次電池
 本開示は、セパレータおよびそれを用いた円筒形二次電池に関する。
 円筒形二次電池は、有底円筒形のケース本体と、当該ケース本体内に配置された極板群とを含む。極板群は、正極板と負極板とセパレータとを巻回することによって形成されている。従来から、二次電池に用いられる様々なセパレータが提案されている。
 例えば、特許文献1(特表2006-525624号公報)は、「ゲル状ポリマーがセパレータ膜の全面積の40~60%の範囲でコートされた電池用セパレータ膜。」を開示している。
 特許文献2(特開2016-201327号公報)は、「樹脂製の基材層と、該基材の一方の面に形成された耐熱層とを備えた長尺なシート状の非水電解質二次電池用セパレータであって、前記耐熱層は耐熱性微粒子とバインダとを含んでおり、前記セパレータの長尺方向に直交する幅方向における端部に位置する耐熱層に含まれる単位体積当たりのバインダ量は、前記セパレータの前記幅方向における少なくとも中心を含む中央部分に位置する耐熱層に含まれる単位体積当たりのバインダ量よりも多く、且つ、前記端部の前記耐熱層において、相対的に前記基材層に近接する領域に含まれる単位体積あたりのバインダ量が、前記耐熱層の表面を含む相対的に表面に近い表面領域に含まれる単位体積当たりのバインダ量よりも多い、セパレータ。」を開示している。
 特許文献3(特開2020-64879号公報)は、「多孔質膜と、前記多孔質膜の少なくとも一方の表面に形成され、無機粒子が層全体の80体積%以上を占める無機粒子層と、前記無機粒子層の表面に形成され、前記無機粒子層と一体化された多孔質の樹脂層と、を備えるリチウムイオン二次電池用セパレータ。」を開示している。
特表2006-525624号公報 特開2016-201327号公報 特開2020-64879号公報
 円筒形二次電池では、サイクル特性などの電池特性のさらなる向上が求められている。このような状況において、本開示の目的の1つは、サイクル特性などの電池特性が高い円筒形二次電池、およびそれに用いることができるセパレータを提供することである。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
 本開示の一側面は、セパレータに関する。当該セパレータは、第1および第2の長辺を有する帯状のセパレータであって、基材と、前記基材上に積層され無機フィラーを主成分とする無機フィラー層と、前記無機フィラー層の一部の上に積層され樹脂を主成分とする樹脂層と、を含み、前記樹脂層の少なくとも一部は、帯状の第1の領域と帯状の第2の領域とに形成されており、前記第1および第2の領域はそれぞれ、前記第1および第2の長辺に隣接して延びており、前記第1の領域と前記第2の領域との間の第3の領域には、前記樹脂層が形成されていない部分が存在する。
 本開示の他の一側面は、円筒形二次電池に関する。当該円筒形二次電池は、有底円筒形のケース本体を含む電池ケースと、前記ケース本体内に配置された極板群および電解質とを含む円筒形二次電池であって、正極板と負極板とセパレータとを、前記正極板と前記負極板との間に前記セパレータが配置されるように巻回することによって前記極板群が形成されており、前記セパレータは本開示に係るセパレータである。
 本開示によれば、サイクル特性などの電池特性が高い円筒形二次電池を実現できる。
実施形態1のセパレータの一例を模式的に示す上面図である。 図1Aの線IB-IBにおける断面を模式的に示す図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態1のセパレータの他の一例を模式的に示す上面図である。 実施形態2の円筒形二次電池の一例を模式的に示す断面図である。 実施形態2の円筒形二次電池の一部を模式的に示す断面図である。
 以下では、本開示に係る実施形態について例を挙げて説明するが、本開示は以下で説明する例に限定されない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。
 (セパレータ)
 本開示に係るセパレータを、以下では「セパレータ(S)」と称する場合がある。本実施形態のセパレータ(S)は、第1および第2の長辺を有する帯状のセパレータである。セパレータ(S)は、基材と、基材上に積層され無機フィラーを主成分とする無機フィラー層と、無機フィラー層の一部の上に積層され樹脂を主成分とする樹脂層と、を含む。樹脂層の少なくとも一部は、帯状の第1の領域と帯状の第2の領域とに形成されている。当該第1および第2の領域はそれぞれ、第1および第2の長辺に隣接して延びている。第1の領域と前記第2の領域との間の第3の領域には、樹脂層が形成されていない部分が存在する。
 セパレータ(S)は、電池のセパレータに用いることができ、特に、円筒形二次電池のセパレータに好ましく用いられる。円筒形二次電池の例については後述する。
 以下では、無機フィラー層とそれに積層された樹脂層とをまとめて、「層(L)」と称する場合がある。層(L)は、基材に積層された層である。層(L)は、基材の少なくとも一方の面に積層されている。層(L)は、基材の一方の面のみに積層されていてもよい。あるいは、層(L)は、基材の両面に積層されていてもよい。その場合、セパレータは2つの層(L)を含む。
 無機フィラー層は、無機フィラーを主成分とする。具体的には、無機フィラー層に占める無機フィラーの含有率は、50質量%よりも高く、70質量%以上、80質量%以上、または90質量%以上であってもよい。樹脂層は、樹脂を主成分とする。具体的には、樹脂層に占める樹脂の含有率は、50質量%よりも高く、70質量%以上、80質量%以上、または90質量%以上であってもよい。
 無機フィラー層は、耐熱層として機能する。一方、耐熱層を用いた場合、サイクル特性が低下する場合があることを本願発明者らは見出した。また、耐熱層だけでは、耐熱性が不充分となる場合があることを本願発明者らは見出した。本開示は、これらの新たな知見に基づく。
 本開示のセパレータは、無機フィラー層および樹脂層を含む。無機フィラー層によってセパレータの耐熱性を向上させることができる。また、無機フィラー層の一部のみに樹脂層を形成することによって、樹脂層が形成されていない空間において電解質が流動しやすくなり、サイクル特性を向上できる。さらに、樹脂層を形成することによって、セパレータの収縮を抑制することができ、セパレータの耐熱性をさらに向上させることができる。
 無機フィラー層に含まれる無機フィラーには、絶縁性の無機フィラーを用いることができる。絶縁性の無機フィラーの材質の例には、絶縁性の金属化合物(金属酸化物、金属窒化物、金属炭化物など)が含まれ、例えば、酸化アルミニウム(アルミナ)、酸化チタン(チタニア)、シリカ、酸化ジルコニウム(ジルコニア)、酸化マグネシウム(マグネシア)などが含まれる。無機フィラーの形状は特に限定されず、粒子状(球状、鱗片状など)であってもよいし繊維状であってもよい。無機フィラー層は、1種の無機フィラーのみを含んでもよいし、複数種の無機フィラーを含んでもよい。無機フィラーには、二次電池に用いられている公知の絶縁性の無機フィラーを用いてもよい。
 無機フィラー粒子の平均粒子径は、無機フィラー層の厚さに応じて選択すればよい。無機フィラー粒子の平均粒子径(体積基準の粒度分布におけるメジアン径)は、2μm以下(例えば1μm以下)であってもよい。無機フィラー粒子の平均粒子径は、50nm以上であってもよく、50nm~2μmの範囲にあってもよい。ここで、平均粒子径とは、体積基準の粒度分布において累積体積が50%になるメジアン径(D50)である。メジアン径は、例えばレーザ回折/散乱式粒度分布測定装置を用いて求められる。
 無機フィラー層は、結着剤を含むことが好ましく、さらに他の成分を含んでもよい。結着剤の例には、フッ素樹脂、アクリル樹脂、天然ゴム、合成ゴムなどが含まれる。例えば、結着剤の例には、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンゴム、アクリロニトリルブタジエンゴム、ポリメチルメタクリレート、ポリエチレン、ニトロセルロースなどが含まれる。結着剤には、二次電池に用いられている公知の結着剤を用いてもよい。
 無機フィラー層は、基材の表面のうち層(L)が形成される側の表面のほぼ全面に形成されることが好ましい。無機フィラー層は、基材の表面のうち層(L)が形成される側の表面の面積の80~100%の範囲(例えば90~100%の範囲や95~100%の範囲)に形成されることが好ましい。典型的な一例では、無機フィラー層は、基材の表面のうち層(L)が形成される側の表面の全面に形成される。
 無機フィラー層の厚さは、電池の特性(耐熱性など)に対する影響を考慮して、適切な範囲で選択すればよい。無機フィラー層の厚さは、1μm~20μmの範囲(例えば、2μm~8μmの範囲)にあってもよい。
 上述したように、樹脂層は、樹脂を主成分として含む。主成分の樹脂には、絶縁性の樹脂を用いることができる。絶縁性の樹脂の例には、フッ素樹脂、アクリル樹脂、などが含まれる。例えば、樹脂の例には、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリアクリル酸などが含まれる。
 樹脂層の主成分である樹脂と、無機フィラー層に含まれる結着剤とは、同じであってもよいし異なってもよい。両者を同じとすることによって、無機フィラー層と樹脂層との間の接着性を高めることができる。
 樹脂層は、樹脂以外の成分を含んでもよい。例えば、樹脂層は、無機フィラーを含んでもよい。ただし、樹脂層における無機フィラーの含有率は、50質量%未満であり、例えば20質量%以下や10質量%以下である。樹脂層に含まれる無機フィラーの例には、無機フィラー層の無機フィラーとして例示した無機フィラーが含まれる。
 樹脂層の厚さは、電池の特性(耐熱性およびサイクル特性など)に対する影響を考慮して、適切な範囲で選択すればよい。樹脂層の厚さは、0.2μm~20μmの範囲(例えば、1μm~8μmの範囲)にあってもよい。
 基材の例には、絶縁性樹脂製の、多孔膜、織布、および不織布が含まれる。絶縁性樹脂の例には、ポリオレフィン(polyolefin)系樹脂、ポリエステル(Polyester)系樹脂などが含まれる。基材の好ましい例には、ポリエチレン(polyethylene)、ポリプロピレン(polypropylene)、ポリエチレンテレフタレート(Polyethylene terephthalate)、ポリブチレンテレフタレート(polybutylene terephthalate)、ポリフッ化ビニリデンなどが含まれる。
 基材の厚さは、用いられる電池の種類や構造を考慮して選択すればよい。基材の厚さは、5μm~20μmの範囲(例えば、8μm~15μmの範囲)にあってもよい。
 上記第1および第2の領域において樹脂層が形成されている面積の割合(%)は、第3の領域において樹脂層が形成されている面積の割合(%)よりも高いことが好ましい。この構成によれば、第1および第2の領域における樹脂層によって、セパレータと極板との間の摩擦力を大きくできる。セパレータと極板との摩擦力を大きくして耐熱性を向上させるためには、第1および第2の領域における樹脂層の割合を高めることが重要である。一方、第3の領域において樹脂が形成されている面積の割合を小さくすることによって、第3の領域における電解質の流動性を高めることができる。その結果、サイクル特性などの電池特性を特に向上できる。
 第1の領域の幅および第2の領域の幅はそれぞれ、セパレータの幅(基材の幅)の30%以下(例えば、25%以下や20%以下)であることが好ましい。この構成によれば、第3の領域に形成される空間を大きくすることができる。第1の領域の幅および第2の領域の幅はそれぞれ、セパレータの幅の5~30%の範囲(例えば、10~25%の範囲や、10~20%の範囲)にあってもよい。第1の領域の幅と第2の領域の幅とは通常、ほぼ同じであるか同じである。第1の領域の幅は、第2の領域の幅の70~140%の範囲(例えば80~125%の範囲)にあってもよい。この明細書において、セパレータの幅とは、セパレータの長手方向に直交する方向におけるセパレータの長さを意味する。同様に、セパレータの各領域の幅とは、セパレータの長手方向に直交する方向における各領域の幅を意味する。極板の幅とは、極板の長手方向に直交する方向における極板の長さを意味する。
 第3の領域は、第1の領域と平行に延びる帯状の第4の領域を含んでもよい。当該第4の領域には樹脂層が形成されている。なお、第3の領域は、複数の帯状の第4の領域を含んでもよい。第1、第2、および第4の領域に形成される樹脂層は、セパレータの長手方向に沿ってストライプ状に配置されてもよい。
 第3の領域には、樹脂層が形成されていてもよいし、樹脂層が形成されていなくてもよい。ただし、樹脂層は、第3の領域のすべてには形成されない。
 樹脂層の平均厚さDr(μm)は、基材の平均厚さと無機フィラー層の平均厚さとの合計Ds(μm)の0.47倍以下であってもよい。ここで、それぞれの平均厚さは、以下の手順によって求められる。まず、セパレータの断面を、イオンミリング法によって作製する。次に、走査型電子顕微鏡(SEM)を用いてセパレータの断面の像を取得する。得られた断面像より5箇所以上の箇所のセパレータの厚さを測定し、測定された厚さの平均値を平均厚さDrとする。
 第1および第2の領域において、樹脂層が形成されている面積の割合は、5~100%の範囲(例えば30~100%の範囲、50~100%の範囲、または80~100%の範囲)にあってもよい。
 第1の領域および第2の領域の全面に樹脂層が形成されていてもよい。その場合、第1の領域の幅と第2の領域の幅との合計Wr(mm)、セパレータの幅Ws(mm)、および、セパレータを200℃で10分間加熱したときのセパレータの幅方向の収縮率R(%)が、(R/100)×Ws×0.25≦Wrを満たしてもよい。
 樹脂層は空隙を有することが好ましい。同様に、無機フィラー層は空隙を有することが好ましい。樹脂層の空隙率は、40~80%程度の範囲にあってもよい。フィラー層の空隙率は、50~80%程度の範囲にあってもよい。それらの層が空隙を有することによって、空隙に電解質が浸透してイオン伝導性が向上する。空隙を有する樹脂層は、混練りした樹脂、可塑剤(溶媒)を無機フィラー層上に塗布後、可塑剤を抽出洗浄することによって形成できる。空隙を有する無機フィラー層は、バインダー比率、粒子形状、粒度分布を調整することによって形成できる。なお、無機フィラー同士の間に空隙が生じるため、一般的な方法で無機フィラー層を形成することによって、空隙を有する無機フィラー層を形成することが可能である。
 セパレータ(S)は、以下の条件(1)を満たすことが好ましく、さらに以下の条件(2)~(5)のうちの、1つ、2つ、3つ、または4つを満たすことが好ましい。セパレータ(S)は、以下の条件(1)~(5)のすべてを満たしてもよい。
(1)第1および第2の領域において樹脂層が形成されている面積の割合(%)は、第3の領域において樹脂層が形成されている面積の割合(%)よりも高い。後者の割合は、前者の割合の0~0.5倍の範囲(例えば0~0.2倍の範囲)にあってもよい。
(2)第1および第2の領域において、樹脂層が形成されている面積の割合は、5~100%の範囲(例えば30~100%の範囲、50~100%の範囲、または80~100%の範囲)にある。
(3)第1の領域の幅W1および第2の領域の幅W2はそれぞれ、セパレータの幅Ws(基材の幅)の5~30%の範囲(例えば、5~25%の範囲や、10~20%の範囲)にあってもよい。セパレータの第1の長辺と、第1の長辺からの距離が距離L1である領域を第1の領域とし、セパレータの第2の長辺と第2の長辺からの距離が距離L2である領域を第2の領域としてもよい。距離L1および距離L2はそれぞれ、上述した幅W1について例示した長さから選択してもよい。
(4)第3の領域のうち樹脂層が形成されている部分の面積は、第1および第2の領域のうち樹脂層が形成されている面積の0~0.8倍の範囲(例えば0~0.5倍の範囲や、0~0.3倍の範囲)にある
(5)樹脂層は、複数のストライプ状および/または点在する複数の島状に形成されている。樹脂層がストライプ状に配置を有する場合、当該ストライプ状の配置は、断続的に形成された樹脂層によって構成されてもよい。
 (セパレータ(S)の製造方法)
 セパレータ(S)を製造できる限り、製造方法に限定はない。製造方法の一例について以下に説明する。まず、基材を準備する。基材には、市販の基材を用いてもよい。あるいは、公知の方法に基づいて基材を製造してもよい。次に、基材上に無機フィラー層を形成する。無機フィラー層は、例えば、無機フィラーを含むスラリーを塗布して乾燥させることによって、形成できる。スラリーは、結着剤と無機フィラーとを含む材料を混合することによって調製できる。当該材料は、分散媒(水など)を含んでもよい。つぎに、無機フィラー層上の一部に樹脂層を形成する。樹脂層は、例えば、樹脂層の材料となる樹脂組成物を塗布して硬化させることによって形成してもよい。スラリーおよび樹脂組成物の塗布方法に限定はなく、公知の方法を用いてもよい。スラリーおよび樹脂組成物は、スクリーン印刷法や転写法などによって塗布してもよいし、インクジェット法などによって塗布してもよい。
 (円筒形二次電池)
 本開示に係る円筒形二次電池を、以下では、「電池(B)」と称する場合がある。本実施形態の電池(B)は、有底円筒形のケース本体を含む電池ケースと、ケース本体内に配置された極板群および電解質とを含む。ケース本体は、封口体およびガスケットなどによって封口される。極板群は、正極板と負極板とセパレータとを、正極板と負極板との間にセパレータが配置されるように巻回することによって形成されている。セパレータは、上述した本実施形態のセパレータ(セパレータ(S))である。セパレータ(S)を用いることによって、耐熱性およびサイクル特性が高い円筒形二次電池が得られる。
 円筒形二次電池の例には、リチウムイオン二次電池などの非水電解質二次電池などが含まれる。円筒形二次電池は、非水電解質を含む非水電解質二次電池であってもよい。
 セパレータ(S)がただ1つの層(L)を含む場合、層(L)は、セパレータ(S)の2つの表面のうち、正極板に対向している表面に積層されていてもよいし、負極板に対向している表面に積層されていてもよい。基材としてよく用いられるPE(ポリエチレン)の耐酸化耐性の点では、層(L)は、正極側に対向している表面に積層されていることが好ましい。この場合、セパレータ(S)の基材は負極板に隣接し、樹脂層は正極板に隣接する。
 セパレータの樹脂層の平均厚さDr(μm)は、満充電状態における負極板の平均厚さと放電状態における負極板の平均厚さとの差Dn(μm)の0.004倍以上(例えば0.004~0.1倍の範囲)であってもよい。この構成によれば、充電によって負極板が膨張したときでも、無機フィラー層と極板との間に充分な空間を確保できる。ここで、満充電状態とは、電池を定電流(具体的には0.5C相当の電流)で充電して電池電圧が4.2Vに到達した後に、さらに定電圧で充電を継続して充電電流が0.02C相当の電流値に減少するまで充電を行う、という条件で充電したときの状態を意味する。放電状態とは、満充電状態にある電池を定電流(具体的には1C相当の電流)で放電させ、電池電圧が2.5Vになるまで放電を継続する、という条件で放電したときの状態を意味する。負極板の平均厚さは、以下の方法で決定される。まず、充電状態および放電状態のそれぞれの電池を用意して解体し、それぞれの負極板を取り出す。次に、取り出したそれぞれの負極板について、任意に選択した10以上の箇所の厚さを、接触式厚み計によって測定する。測定された厚さの平均値を、それぞれの負極板の平均厚さとする。そして、以下の式で、差Dnを求める。
差Dn=(満充電状態の負極板の平均厚さ)-(放電状態の負極板の平均厚さ)
 セパレータの幅Ws(mm)は、正極板の幅Wp(mm)および負極板の幅Wn(mm)よりも大きいことが好ましい。第3の領域の幅W3は、負極板の幅Wnの0.4倍以上であってもよく、0.4~0.95倍の範囲にあってもよい。幅W3を幅Wnの0.4倍以上とすることによって、無機フィラー層と極板との間に充分な空間を設けることができる。
 樹脂層に隣接する極板の幅方向の端部は、第1の領域または第2の領域に存在する樹脂層と接触することが好ましい。すなわち、樹脂層に隣接する極板の幅は、幅W3よりも大きく幅Wsよりも小さいことが好ましい。この構成によれば、セパレータと極板との間のずれを特に抑制できる。同様に、樹脂層に隣接しない極板の幅も、幅W3よりも大きく幅Wsよりも小さいことが好ましい。なお、樹脂層に隣接する極板が正極板であれば、樹脂層に隣接しない極板は負極板であり、樹脂層に隣接する極板が負極板であれば、樹脂層に隣接しない極板は正極板である。すなわち、正極板の幅Wpおよび負極板の幅Wnはそれぞれ、幅W3よりも大きく幅Wsよりも小さいことが好ましい。
 セパレータ(S)を用いることを除いて電池(B)の製造方法に限定はなく、公知の方法で製造してもよい。
 以下では、本実施形態に係る円筒形の電池(B)の構成の例について説明する。ただし、電池(B)に必須の構成を除き、電池の構成は、以下の例示に限定されない。特に説明がない構成部材については、公知の構成部材を用いてもよい。以下では、電池(B)が、非水電解質二次電池(より詳細にはリチウムイオン二次電池)である例について主に説明する。電池(B)が他の電池である場合には、電池の種類にあわせて材料を変更すればよい。
 (正極板)
 正極板は、正極集電体と、正極集電体上に形成された正極活物質層とを含む。正極集電体は、金属箔であってもよい。正極集電体の材料の例には、アルミニウム、アルミニウム合金、チタン、チタン合金、およびステンレス鋼などが含まれる。正極集電体の厚さは、例えば、5~300μmの範囲にあってもよい。
 正極活物質層は、正極活物質を含み、必要に応じて他の物質(結着剤、導電剤など)を含んでもよい。正極活物質および他の物質に限定はなく、公知の物質を用いてもよい。電池(B)がリチウムイオン二次電池である場合、正極活物質の例には、リチウムイオンを可逆的に吸蔵および放出する物質が含まれる。具体的には、正極活物質の例には、リチウムを含有する金属酸化物などが含まれる。リチウムを含有する金属酸化物の例には、リチウム遷移金属複合酸化物、およびリチウム-ニッケル-コバルト-アルミニウム複合酸化物などが含まれる。リチウム遷移金属複合酸化物の例には、リチウム-マンガン複合酸化物(たとえばLiMn)、リチウム-ニッケル複合酸化物(たとえばLiNiO)、リチウム-コバルト複合酸化物(たとえばLiCoO)、および、これらの遷移金属元素の一部を他の金属元素(典型金属元素および/または遷移金属元素)に置換した複合酸化物などが含まれる。
 (負極板)
 負極板は、負極集電体と、負極集電体上に形成された負極活物質層とを含む。負極集電体は、金属箔であってもよい。負極集電体の金属材料の例には、銅、ニッケル、鉄、およびこれらの金属元素を含む合金(銅合金、ステンレス鋼など)などが含まれる。負極集電体の厚さは、たとえば、5~300μmの範囲にあってもよい。
 負極活物質層は、負極活物質を含み、必要に応じて他の物質(結着剤、導電剤、増粘剤など)を含んでもよい。負極活物質および他の物質に限定はなく、公知の物質を用いてもよい。
 電池(B)がリチウムイオン二次電池である場合、負極活物質の例には、リチウムイオンを可逆的に吸蔵および放出する物質が含まれる。具体的には、負極活物質の例には、炭素材料、ケイ素、ケイ素化合物、およびリチウム合金などが含まれる。炭素材料の例には、黒鉛、コークス、黒鉛化途上炭素、黒鉛化炭素繊維、および非晶質炭素などが含まれる。
 (電解質)
 電池(B)が、リチウムイオン二次電池などの非水電解質二次電池である場合、電解質(電解液)としては、リチウムイオン伝導性を有する非水電解質を用いることができる。典型的な非水電解質は、非水溶媒と、非水溶媒に溶解しているリチウムイオンおよびアニオンとを含む。非水電解質は、液状であってもよいし、マトリックスポリマーを含むゲル状であってもよい。液状の非水電解質は、リチウム塩を非水溶媒に溶解させることによって調製できる。リチウム塩(リチウムイオンとアニオンとの塩)を非水溶媒に溶解させることによって、リチウムイオンおよびアニオンが生成される。非水電解質に特に限定はなく、非水電解質電池に用いられる電解質を用いてもよい。
 リチウム塩のアニオンの例には、BF 、ClO 、PF 、CFSO 、CFCO 、イミド類のアニオン、オキサレート錯体のアニオンなどが含まれる。
 非水溶媒の例には、エステル、エーテル、ニトリル、アミド、および、これらのハロゲン置換体(たとえばフッ化物)などが含まれる。非水電解質は、これらの非水溶媒を1種だけ含んでもよいし、2種以上含んでもよい。
 エステルの例には、炭酸エステル、カルボン酸エステルなどが含まれる。環状炭酸エステルの例には、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート(FEC)などが含まれる。鎖状炭酸エステルの例には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどが含まれる。環状カルボン酸エステルの例には、γ-ブチロラクトン、γ-バレロラクトンなどが含まれる。鎖状カルボン酸エステルの例には、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチルなどが含まれる。
 (電池ケース)
 典型的な電池ケースは、ケース本体と、封口体と、ケース本体と封口体との間に配置されたガスケットとを含む。ケース本体は、開口部を有する有底円筒形のケースである。電池ケースには、公知の電池ケースを用いてもよい。
 以下では、本開示に係るセパレータ(S)および電池(B)の例について、図面を参照して具体的に説明する。以下で説明するセパレータおよび電池の構成要素は、上述した記載に基づいて変更できる。また、以下で説明する事項を、上記の実施形態に適用してもよい。また、本開示に係るセパレータ(S)および電池(B)に必須ではない構成要素は省略することが可能である。なお、理解を容易にするために、以下の図は、部材の縮尺を変更して示す場合がある。
 (実施形態1)
 実施形態1では、セパレータ(S)の一例について説明する。実施形態1のセパレータ50の上面図を図1Aに模式的に示し、図1Aの線IB-IBにおける断面図を図1Bに模式的に示す。セパレータ50は、第1の長辺50aおよび第2の長辺50bを有する帯状の形状(細長い矩形状)を有する。セパレータ50は、帯状の基材51と、基材51の片面に積層された層52とを含む。層52は、無機フィラー層53および樹脂層54を含む。無機フィラー層53は、基材51の片面の全面に形成されている。
 樹脂層54の少なくとも一部は、帯状の第1の領域61と帯状の第2の領域62とに形成されている。第1の領域61および第2の領域62はそれぞれ、第1の長辺50aおよび第2の長辺50bに隣接して延びている。第1の領域61と第2の領域62との間の第3の領域63には、樹脂層54が形成されていない部分が存在する。図1Aに示す一例では、樹脂層54はストライプ状に形成された第1の樹脂層54aおよび第2の樹脂層54bを含む。第1の樹脂層54aが形成されている領域が第1の領域61であり、第2の樹脂層54bが形成されている領域が第2の領域62である。1つの観点では、第1の長辺50aが第1の領域61の1つの長辺となり、第2の領域62の1つの長辺が第2の領域62の1つの長辺となる。
 図1Aに示すセパレータ50では、第1の領域61および第2の領域62の全面に樹脂層54が形成されており、第3の領域63には樹脂層54は形成されていない。図1Bには、第1の領域61の幅W1(長手方向に垂直な方向の長さ)、第2の領域62の幅W2、第3の領域63の幅W3、およびセパレータ50の幅(基材51の幅)Wsを示す。
 樹脂層54は、第3の領域63の一部に形成されていてもよい。そのような樹脂層54を含むセパレータ50の一例の上面図を図2に模式的に示し、他の一例の上面図を図3に模式的に示す。図2および図3に示す例において、第3の領域63は、第1の領域61と平行に延びる帯状の第4の領域64を含む。第4の領域64の全面には帯状の第3の樹脂層54cが形成されている。
 なお、樹脂層54は、島状に点在してもよい。そのような樹脂層54を含むセパレータ50の例の上面図を、図4~図7に模式的に示す。図4~図7において、樹脂層54は点在している島状の樹脂層54eを含む。なお、帯状の樹脂層と、島状の樹脂層とを組み合わせて用いてもよい。
 図4に示す一例では、島状の樹脂層54eが、第1の領域61および第2の領域62のみに形成されている。図5および図6に示す例では、島状の樹脂層54eが、第1の領域61、第2の領域62、および第4の領域64のみに形成されている。図7に示す一例では、島状の樹脂層54が、第1の領域61、第2の領域62、および第3の領域63の一部に形成されている。なお、図示した樹脂層54の配置は例示であり、他の配置を適用してもよい。
 (実施形態2)
 実施形態2では、電池(B)の一例について説明する。実施形態2の電池10の断面図を図8に模式的に示す。電池10は、円筒形の二次電池である。電池10は、ケース本体15を含む電池ケースと、ケース本体15内に収容された極板群14および電解液(図示せず)とを含む。ケース本体15は、有底円筒形の金属製ケースである。電池ケースは、ケース本体15と、ケース本体15の開口部を封口する封口体16およびガスケット27とで構成される。ケース本体15の側壁は、ケース本体15の周方向に沿って環状に形成された段部21を有する。段部21の開口部側に封口体16が配置される。封口体16は、ケース本体15の内側から順に配置された、フィルタ22、下弁体23、絶縁部材24、上弁体25、およびキャップ26を含む。ケース本体15内において、極板群14の両端部のそれぞれには、絶縁板17および絶縁板18が配置されている。
 極板群14は、帯状の正極板11、帯状の負極板12、および帯状のセパレータ50で構成されている。具体的には、それらを、正極板11と負極板12との間にセパレータ50が配置されるように巻回することによって、極板群14が形成される。セパレータ50は、上述したセパレータ(S)である。
 正極板11は、正極リード19を介して、正極端子を兼ねるキャップ26と電気的に接続されている。負極板12は、負極リード20を介して、負極端子を兼ねるケース本体15と電気的に接続されている。
 図8において、極板群14の内部(例えば点線Xで囲んだ領域)には、樹脂層54が無機フィラー層53上の全面に形成されていないことによる隙間(電解液が流動可能な隙間)が存在する。極板群14の一部の拡大図を図9に模式的に示す。図9には、図1Aに示したセパレータ50を用いる一例を示す。なお、図9には、セパレータ50の幅Ws、第3の領域の幅W3、正極板11の幅Wp、および負極板12の幅Wnを示す。
 正極板11は、正極集電体11aと、正極集電体11aの両面に形成された正極活物質層11bとを含む。負極板12は、負極集電体12aと、負極集電体12aの両面に形成された負極活物質層12bとを含む。
 図9に示す一例では、無機フィラー層53および樹脂層54は、基材51の表面のうち正極板11と対向する側の表面に形成されている。第3の領域63には樹脂層54が形成されていないため、電解液が流動可能な隙間54sが存在しうる。そのため、電解液の流動性が高まり、その結果、サイクル特性などの電池特性を向上させることが可能である。樹脂層54を島状とすることによって、樹脂層54が形成されていない隙間54sを分散させることができる。その結果、サイクル特性を特に高めることが可能である。一方、樹脂層54をストライプ状に形成することによって、極板(図9に示す一例では正極板11)とセパレータ50との間の摩擦力を高めることができる。その結果、耐熱性などの電池特性を特に向上させることが可能である。
 実施例によって、本開示に係る電池についてより詳細に説明する。
 (実験例1)
 実施例1では、主にセパレータを変更して複数の円筒形二次電池を作製して評価した。二次電池は、以下の方法で製造した。
 (正極板の作製)
 ニッケルコバルト酸リチウム(正極活物質)100質量部、アセチレンブラック(導電剤)4質量部、およびポリフッ化ビニリデン(PVdF、結着剤)4質量部に、N-メチル-2-ピロリドン(NMP、分散媒)を加えて混合することによって、正極スラリーを調製した。正極スラリーを、正極集電体であるアルミニウム箔(厚さ15μm)の両面に塗布して乾燥した後、圧縮した。このようにして、厚さが異なる複数種の正極板(厚さ0.15~0.35mm)を作製した。正極板の厚さを変更する理由は、正極の容量と負極の容量との比を一定とすることによってサイクル試験の評価結果を比較できるようにするためである。次に、正極集電体にアルミニウム製の正極集電リードを接続した。なお、セパレータの幅が68mmの場合には正極板の幅は62.5mmとし、セパレータの幅が53mmの場合には正極板の幅は47.5mmとした。
 (負極板の作製)
 人造黒鉛粉末(負極活物質)94質量部、SiO(0.5≦X<1.6)6質量部、スチレン-ブタジエンゴム(結着剤)1質量部、カルボキシメチルセルロース(CMC、増粘剤)1質量部を混合して混合物を得た。得られた混合物を脱イオン水に分散させることによって、負極スラリーを調製した。負極集電体である銅箔(厚さ8μm)の両面に、負極スラリーを塗布して乾燥した後、圧縮した。このようにして、厚さが異なる複数種の負極板12(厚さ0.17~0.4mm)を作製した。さらに、負極集電体に、ニッケル製の負極集電リードを接続した。なお、セパレータの幅が68mmの場合には負極板の幅は65mmとし、セパレータの幅が53mmの場合には負極板の幅は50mmとした。なお、負極板の膨張量は、負極板の厚さを変えことによって、変化させた。
 (セパレータの作製)
 まず、基材としてポリエチレン製の多孔質膜(平均厚さ:10μm)を準備した。基材の幅は、53mmまたは68mmとした。次に、基材の片面の全面に無機フィラー層を形成した。さらに、図1Aに示すように配置された樹脂層を形成した。このとき、樹脂層の幅(図1BのW1およびW2)および厚さを変化させて、複数種のセパレータを形成した。なお、W1とW2とは同じとした。なお、セパレータの収縮率は、基材であるポリエチレンの重合度を変えることによって、変化させた。
 無機フィラー層は、無機フィラーを含むスラリーを基材に塗布した後に乾燥させることによって形成した。スラリーは、アルミナの粒子(無機フィラー)と、ポリフッ化ビニリデン(PVdF、結着剤)と、NMP(分散媒)とを、アルミナ:PVdF:NMP=19.4:0.6:80の質量比で混合することによって調製した。スラリーの塗布は、グラビアコート法によって行った。樹脂層は、樹脂組成物を無機フィラー層上に塗布して乾燥させることによって形成した。樹脂組成物は、ポリフッ化ビニリデン(PVdF、絶縁性樹脂)とNMP(液体成分)とを混合することによって調製した。樹脂組成物の塗布はグラビアコート法によって行った。無機フィラー層および樹脂層の厚さはそれぞれ、スラリーおよび樹脂組成物の塗布量を変化させることによって変化させた。
 (電池の作製)
 上記の正極板と負極板とセパレータとを、正極板と負極板との間にセパレータが配置されるように巻回することによって極板群を作製した。このとき、図9に示すように、無機フィラー層および樹脂層が正極板と対向するようにセパレータを配置した。
 次に、得られた極板群と電解液とを電池ケース内に収容して円筒形の非水電解質二次電池を作製した。電解液は、エチレンカーボネート(EC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、3:3:4の体積比で混合し、当該混合溶媒に、LiPFを1moL/Lの濃度となるように溶解させることによって調製した。このようにして、主にセパレータが異なる複数種の電池を作製した。作製されたセパレータおよび電池について、以下の評価を行った。
 (1)セパレータを構成する各層の平均厚さの測定
 セパレータを構成する基材、無機フィラー層、および樹脂層の平均厚さは、上述した方法で測定した。
 (2)セパレータの収縮率
 2枚のガラス板(1枚のガラス板の厚さ:1.0~1.2mm、幅:25.4mm、長さ:76.2mm)の間に2枚のポリテトラフロオロエチレン製シートを配置し、2枚のポリテトラフロオロエチレン製シートの間にセパレータを挟むことによって測定用のサンプルを作り、当該サンプルを水平に配置した。そして、上方のガラス板の上に錘(500g)を配置した状態でサンプルをホットプレート上に配置し、ホットプレートによってサンプルを加熱した。加熱は、200℃で10分間行った。加熱前のセパレータの幅Ws(0)と、加熱後のセパレータの幅Ws(1)とを測定した。そして、以下の式によってセパレータの収縮率R(%)を求めた。
収縮率R(%)=100×Ws(1)/Ws(0)
 (3)電池のサイクル試験および放電容量維持率
 電池のサイクル試験は、放電工程と充放電工程とを1サイクルとする充放電サイクルを、25℃で300回繰り返すことによって行った。放電工程は、定電流1C相当の電流値で電池電圧2.5Vまで低下させる(定格容量3500~4500mAh)という条件で行った。充電工程は、定電流0.5C相当の電流値で充電し電池電圧4.2V到達後に定電圧で0.02C相当の電流値まで減少させるという条件で行った。そして、サイクル試験前の放電容量X(0)と、充放電サイクルを300回繰り返した後の放電容量X(300)とを測定した。そして、測定された値から、以下の式によって放電容量維持率(%)を求めた。
放電容量維持率(%)=100×X(300)/X(0)
 (4)電池の加熱試験
 電池を恒温槽に配置し恒温槽の内部温度を5℃/minの昇温速度で昇温させ、任意の設定温度まで昇温させた。その際に、電池が短絡した温度を、短絡温度Y(℃)とした。
 (5)電池の内部抵抗の評価
 1KHzの交流で電池の内部抵抗を測定した。そして、以下の式によって抵抗の増加率(%)を求めた。
抵抗増加率(%)=100×(評価対象の電池の内部抵抗)/(樹脂層がない比較対象の電池の内部抵抗)
 ここで、「樹脂層がない比較対象の電池」は、樹脂層がないセパレータを用いた電池C1~C3のいずれかである。具体的には、電池C1~C3のうち、評価対象の電池のセパレータ(樹脂層あり)と幅Wsおよび合計Dsが同じセパレータを用いた電池を、「樹脂層がない比較対象の電池」とする。
 (6)負極板の膨張量
 負極板の膨張量は、満充電状態における電池から取り出した負極板の平均厚さから、放電状態における電池から取り出した負極板の平均厚さを差し引くことによって求めた。
 電池の製造条件の一部と評価結果とを表1に示す。表1の「合計Ds」は、基材の平均厚さと無機フィラー層の平均厚さとの合計Dsを示す。また、表1の一部のデータを加工した表を、表2に示す。表2において、比Qは、以下の式で表される比である。比Q=Wr/((R/100)×Ws×0.25)
(式中、Wrは第1の領域の幅W1と第2の領域の幅W2との合計である。Rは、セパレータの収縮率(%)である。Wsは、セパレータの幅である。比Qが1以上である場合、(R/100)×Ws×0.25≦Wrを満たす。)
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
 電池C1~C5は比較例の電池である。電池A1~A19は、本開示に係る電池である。表に示すように、電池A1~A19は、電池C1~C5に比べて容量維持率が高かった。これは、第3の領域に存在する空隙によって、電解液の流動性が高まったためであると考えられる。電池A1~A19は、樹脂層を有さない電池C1~C3と同等以上の耐熱性を示した。W1/Wsの値(W2/Wsの値)を30%以下(例えば29.4%以下)にすることによって、容量維持率を高められ、サイクル特性を向上できる。一方、W1/Wsの値(W2/Wsの値)を10%以上にすることによって、電池の耐熱性を向上できる。また、比Qを2.5以上にすることによって、電池の耐熱性を向上できる。W1/Wsの値(W2/Wsの値)を10~30%の範囲とし、比Qを2.5以上としたとき、サイクル特性および耐熱性が共に高かった。電池A1~A19のうち、(樹脂層の平均厚さDr)/(基材の平均厚さと無機フィラー層の平均厚さとの合計Ds)の値が0.47以下(例えば0.47未満)である電池は、抵抗増加率が低かった。抵抗増加率を低くする観点では、Dr/Dsの値は、0.01~0.33の範囲にあることが好ましく、0.01~0.07の範囲にあることがより好ましい。
 (樹脂層の平均厚さDr)/(負極板膨張量)の値を0.004以上(例えば0.006以上)とすることが好ましい。負極膨張によって空間が小さくなって電解液の流動性が悪くなる現象を、ある一定以上の厚さの樹脂層を設けることで緩和することができ、その結果、サイクル特性を良化させることができる。第3の領域の幅W3を負極板の幅Wnの0.4倍以上とすることによって、容量維持率を特に高めることができる。
 本開示は、セパレータおよび円筒形二次電池に利用できる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
10  :電池
11  :正極板
12  :負極板
14  :極板群
15  :ケース本体
50  :セパレータ
50a :第1の長辺
50b :第2の長辺
51  :基材
53  :無機フィラー層
54  :樹脂層
54e :樹脂層
54s :隙間
61  :第1の領域
62  :第2の領域
63  :第3の領域
64  :第4の領域

Claims (12)

  1.  第1および第2の長辺を有する帯状のセパレータであって、
     基材と、
     前記基材上に積層され無機フィラーを主成分とする無機フィラー層と、
     前記無機フィラー層の一部の上に積層され樹脂を主成分とする樹脂層と、を含み、
     前記樹脂層の少なくとも一部は、帯状の第1の領域と帯状の第2の領域とに形成されており、
     前記第1および第2の領域はそれぞれ、前記第1および第2の長辺に隣接して延びており、
     前記第1の領域と前記第2の領域との間の第3の領域には、前記樹脂層が形成されていない部分が存在する、セパレータ。
  2.  前記第1および第2の領域において前記樹脂層が形成されている面積の割合は、前記第3の領域において前記樹脂層が形成されている面積の割合よりも高い、請求項1に記載のセパレータ。
  3.  前記第1の領域の幅および前記第2の領域の幅はそれぞれ、前記セパレータの幅の30%以下である、請求項1または2に記載のセパレータ。
  4.  前記第3の領域は、前記第1の領域と平行に延びる帯状の第4の領域を含み、
     前記第4の領域には前記樹脂層が形成されている、請求項1~3のいずれか1項に記載のセパレータ。
  5.  前記第3の領域には前記樹脂層が形成されていない、請求項1~3のいずれか1項に記載のセパレータ。
  6.  前記樹脂層の平均厚さは、前記基材の平均厚さと前記無機フィラー層の平均厚さとの合計の0.47倍以下である、請求項1~5のいずれか1項に記載のセパレータ。
  7.  前記第1および第2の領域において、前記樹脂層が形成されている面積の割合は、5~100%の範囲にある、請求項1~6のいずれか1項に記載のセパレータ。
  8.  前記第1の領域および前記第2の領域の全面に前記樹脂層が形成されており、
     前記第1の領域の幅と前記第2の領域の幅との合計Wr(mm)、前記セパレータの幅Ws(mm)、および、前記セパレータを200℃で10分間加熱したときの前記セパレータの幅方向の収縮率R(%)が、(R/100)×Ws×0.25≦Wrを満たす、請求項1~6のいずれか1項に記載のセパレータ。
  9.  前記樹脂層は空隙を有する、請求項1~8のいずれか1項に記載のセパレータ。
  10.  有底円筒形のケース本体を含む電池ケースと、前記ケース本体内に配置された極板群および電解質とを含む円筒形二次電池であって、
     正極板と負極板とセパレータとを、前記正極板と前記負極板との間に前記セパレータが配置されるように巻回することによって前記極板群が形成されており、
     前記セパレータは請求項1~9のいずれか1項に記載のセパレータである円筒形二次電池。
  11.  前記セパレータの前記樹脂層の平均厚さは、満充電状態における前記負極板の平均厚さと放電状態における前記負極板の平均厚さとの差Dnの0.004倍以上である、請求項10に記載の円筒形二次電池。
  12.  非水電解質二次電池である、請求項10または11に記載の円筒形二次電池。
PCT/JP2022/010607 2021-04-09 2022-03-10 セパレータおよびそれを用いた円筒形二次電池 WO2022215430A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/553,501 US20240195013A1 (en) 2021-04-09 2022-03-10 Separator and cylindrical secondary battery in which same is used
EP22784415.6A EP4322308A1 (en) 2021-04-09 2022-03-10 Separator and cylindrical secondary battery in which same is used
JP2023512879A JPWO2022215430A1 (ja) 2021-04-09 2022-03-10
CN202280027336.XA CN117178420A (zh) 2021-04-09 2022-03-10 分隔件和使用分隔件的圆筒形二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021066572 2021-04-09
JP2021-066572 2021-04-09

Publications (1)

Publication Number Publication Date
WO2022215430A1 true WO2022215430A1 (ja) 2022-10-13

Family

ID=83546366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010607 WO2022215430A1 (ja) 2021-04-09 2022-03-10 セパレータおよびそれを用いた円筒形二次電池

Country Status (5)

Country Link
US (1) US20240195013A1 (ja)
EP (1) EP4322308A1 (ja)
JP (1) JPWO2022215430A1 (ja)
CN (1) CN117178420A (ja)
WO (1) WO2022215430A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525624A (ja) 2003-05-30 2006-11-09 エルジー・ケム・リミテッド ゲル状ポリマーで部分コートされたセパレータ膜を用いたリチウム二次電池
JP2014505344A (ja) * 2011-02-15 2014-02-27 エルジー・ケム・リミテッド セパレータ、その製造方法、及びそれを備える電気化学素子
JP2016522553A (ja) * 2013-09-30 2016-07-28 エルジー・ケム・リミテッド リチウム二次電池用セパレーターの製造方法、その方法により製造されたセパレーター、及びこれを含むリチウム二次電池
KR20160126343A (ko) * 2015-04-23 2016-11-02 주식회사 엘지화학 전극 결착성 및 전해액 젖음성이 우수한 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
JP2016201327A (ja) 2015-04-14 2016-12-01 トヨタ自動車株式会社 非水電解質二次電池用セパレータおよびその製造方法
JP2020064879A (ja) 2020-01-21 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウムイオン(lithium ion)二次電池用セパレータ(separator)及びリチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525624A (ja) 2003-05-30 2006-11-09 エルジー・ケム・リミテッド ゲル状ポリマーで部分コートされたセパレータ膜を用いたリチウム二次電池
JP2014505344A (ja) * 2011-02-15 2014-02-27 エルジー・ケム・リミテッド セパレータ、その製造方法、及びそれを備える電気化学素子
JP2016522553A (ja) * 2013-09-30 2016-07-28 エルジー・ケム・リミテッド リチウム二次電池用セパレーターの製造方法、その方法により製造されたセパレーター、及びこれを含むリチウム二次電池
JP2016201327A (ja) 2015-04-14 2016-12-01 トヨタ自動車株式会社 非水電解質二次電池用セパレータおよびその製造方法
KR20160126343A (ko) * 2015-04-23 2016-11-02 주식회사 엘지화학 전극 결착성 및 전해액 젖음성이 우수한 전기화학소자용 분리막 및 이를 포함하는 전기화학소자
JP2020064879A (ja) 2020-01-21 2020-04-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. リチウムイオン(lithium ion)二次電池用セパレータ(separator)及びリチウムイオン二次電池

Also Published As

Publication number Publication date
US20240195013A1 (en) 2024-06-13
CN117178420A (zh) 2023-12-05
EP4322308A1 (en) 2024-02-14
JPWO2022215430A1 (ja) 2022-10-13

Similar Documents

Publication Publication Date Title
KR101888740B1 (ko) 비수전해질 이차 전지용 세퍼레이터 및 그 제조 방법
JP5218873B2 (ja) リチウム二次電池およびその製造方法
KR101671131B1 (ko) 비수 전해액 이차 전지
CN105895852A (zh) 非水电解质二次电池的制造方法
EP2597706B1 (en) Lithium ion secondary battery
JP5818078B2 (ja) 非水電解質二次電池の製造方法
US9847529B2 (en) Nonaqueous electrolyte secondary battery
MX2012013943A (es) Electrodo negativo para bateria secundaria, y proceso para la produccion del mismo.
KR20150083025A (ko) 비수 전해질 2차 전지
WO2021132114A1 (ja) 非水電解質二次電池用負極、及び非水電解質二次電池
JP5737595B2 (ja) 二次電池
CN103872385A (zh) 非水电解质二次电池
CN115336041A (zh) 二次电池
CN113519077B (zh) 非水电解质二次电池
US20220037643A1 (en) Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery
CN105390752A (zh) 非水电解质二次电池及其制造方法和用于非水电解质二次电池的分离器
JP7361340B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
JP6699351B2 (ja) 電極の製造方法および電極の検査方法
JP6008188B2 (ja) 非水電解液二次電池
JP5800196B2 (ja) 非水電解質二次電池およびその製造方法
JP7361339B2 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
CN114730862A (zh) 非水电解质二次电池
US9680153B2 (en) Nonaqueous electrolyte secondary battery
JP2014165038A (ja) 非水電解質二次電池用電極材料とそれを用いた非水電解質二次電池
WO2022215430A1 (ja) セパレータおよびそれを用いた円筒形二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22784415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023512879

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18553501

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022784415

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022784415

Country of ref document: EP

Effective date: 20231109