Nothing Special   »   [go: up one dir, main page]

WO2022255579A1 - 굴절 공간을 구비하는 증강 현실용 광학 장치 - Google Patents

굴절 공간을 구비하는 증강 현실용 광학 장치 Download PDF

Info

Publication number
WO2022255579A1
WO2022255579A1 PCT/KR2021/019287 KR2021019287W WO2022255579A1 WO 2022255579 A1 WO2022255579 A1 WO 2022255579A1 KR 2021019287 W KR2021019287 W KR 2021019287W WO 2022255579 A1 WO2022255579 A1 WO 2022255579A1
Authority
WO
WIPO (PCT)
Prior art keywords
space
optical
optical element
augmented reality
refraction
Prior art date
Application number
PCT/KR2021/019287
Other languages
English (en)
French (fr)
Inventor
이광복
Original Assignee
주식회사 레티널
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 레티널 filed Critical 주식회사 레티널
Priority to US18/550,082 priority Critical patent/US20240151978A1/en
Publication of WO2022255579A1 publication Critical patent/WO2022255579A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4227Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant in image scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1842Gratings for image generation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements

Definitions

  • the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality capable of more precisely adjusting the performance of an optical system by forming a refraction space for refracting virtual video image light inside an optical means. .
  • Augmented Reality means overlapping a virtual image provided by a computer or the like with a real image of the real world. That is, it refers to a technology that simultaneously provides virtual image information augmented from visual information of the real world to a user.
  • An apparatus for realizing such augmented reality requires an optical combiner that enables simultaneous observation of virtual images and real images in the real world.
  • an optical synthesizer a half mirror method and a holographic/diffractive optical element (HOE/DOE) method are known.
  • the semi-mirror method has a problem in that the transmittance of the virtual image is low and it is difficult to provide a comfortable fit because the volume and weight increase to provide a wide viewing angle.
  • a technology such as a so-called LOE (Light guide Optical Element) in which a plurality of small half mirrors are placed inside a waveguide has also been proposed, but this technology also has a half mirror of a virtual image inside the waveguide. Since it has to pass through several times, the manufacturing process is complicated and there is a limitation that the light uniformity is generally lowered.
  • LOE Light guide Optical Element
  • the holographic/diffractive optical element method generally uses a nanostructured grating or a diffraction grating, and since they are manufactured in a very precise process, they have a limitation in that the manufacturing cost is high and the yield for mass production is low. In addition, due to the difference in diffraction efficiency according to the wavelength band and the incident angle, it has limitations in terms of color uniformity and low sharpness of the image. Holographic/diffractive optical elements are often used with waveguides such as the LOEs described above, and thus still suffer from the same problems.
  • FIG. 1 is a diagram showing an optical device 100 for augmented reality as described in Prior Art Document 1.
  • the optical device 100 for augmented reality of FIG. 1 includes an optical unit 10 , a reflection unit 20 and an image output unit 30 .
  • the optical means 10 is a means for transmitting real object image light, which is image light emitted from objects in the real world, while emitting virtual image image light reflected by the reflector 20 to the pupil 40, Inside, the reflector 20 is buried and disposed.
  • the optical means 10 may be formed of, for example, a transparent material such as a spectacle lens, and may be fixed by a frame (not shown) such as a spectacle frame.
  • the image emitter 30 is means for emitting virtual image light, for example, a micro display device that displays a virtual image on a screen and emits virtual image image light corresponding to the displayed virtual image, and image light emitted from the micro display device. may be provided with a collimator for collimating the
  • the reflector 20 is a means for reflecting the virtual video image light emitted from the image emitter 30 and transmitting it toward the pupil 40 of the user.
  • the reflector 20 of FIG. 1 is formed to have a smaller size than a human pupil. Since it is known that the size of a typical human pupil is about 4 to 8 mm, it is preferable to form the reflector 20 to be 8 mm or less. By forming the reflector 20 to a thickness of 8 mm or less, the depth of field for light entering the pupil 40 through the reflector 20 can be made almost infinite, that is, very deep.
  • the depth of field refers to a range recognized as being in focus.
  • the focal length of the virtual image correspondingly increases. Therefore, even if the user changes the focal length of the real world while gazing at the real world, it is recognized that the focus of the virtual image is always correct regardless of this. This can be regarded as a kind of pinhole effect.
  • the reflector 20 by forming the reflector 20 smaller than the pupil, the user can always observe a clear virtual image even if the user changes the focal length of the real object.
  • the device shown in FIG. 1 has limitations in that the overall size, thickness, and volume of the device increase because the viewing angle is narrow and an optical means such as a collimator is used for the image output unit 30 .
  • FIG. 2 is a diagram showing an optical device 200 for augmented reality as disclosed in Prior Art Document 2.
  • a plurality of reflectors 20 are disposed, and the function of a collimator inside the optical means 10 is provided. There is a difference in that the auxiliary reflector 50 is disposed.
  • the optical device 200 for augmented reality of FIG. 2 operates as follows.
  • a virtual image emitted from the image output unit 30 is totally reflected on the inner surface of the optical means 10 and then transferred to the secondary reflector 50 .
  • the virtual image reflected by the auxiliary reflector 50 is totally reflected again on the inner surface of the optical means 10 and then transmitted to the reflector 20, and the reflector 20 reflects the virtual image and transmits it to the pupil 40. do.
  • the optical device 200 for augmented reality of FIG. 2 can provide a wider viewing angle because the plurality of reflectors 20 are disposed.
  • the collimator function is performed by the auxiliary reflector 50 disposed inside the optical means 10 without using a collimator in the image output unit 30, so that the overall size, volume, weight, thickness, etc. of the device form factor can be significantly reduced.
  • the optical device 200 for augmented reality of FIG. 2 has a problem in that the overall design of the optical system is not easy because the overall performance of the optical system is excessively dependent on the auxiliary reflector 50 .
  • An object of the present invention is to provide an optical device for augmented reality capable of more precisely adjusting the performance of an optical system by forming a refracting space for refracting virtual video image light inside an optical unit.
  • the present invention arranges an optical element that performs a function of a collimator inside an optical means and uses the optical element and a refraction space together to provide a clearer virtual image and augmented reality capable of adjusting the focal length of the virtual image. Another object is to provide an optical device for use.
  • the present invention provides a first optical element for transmitting virtual video image light transmitted from an image output unit to a second optical element; a second optical element that transfers the virtual video image light transmitted from the first optical element toward a pupil of a user's eye; optical means in which the first optical element and the second optical element are buried; and a refracting space formed inside the optical unit, wherein the refracting space has a first surface on which the first optical element is disposed and a second surface opposite to the first surface, and the image output unit
  • the virtual video image light emitted from the refracting space enters the first optical element through the second surface of the refraction space, is reflected from the first optical element, and then exits through the second surface of the refraction space to form the second optical element.
  • It provides an optical device for augmented reality having a refraction space characterized in that it is transferred to an optical element.
  • the virtual video image light emitted from the image emitting unit is totally reflected on the first surface of the optical means, enters the first optical element through the second surface of the refraction space, and is reflected by the first optical element.
  • Video image light may be emitted toward the first surface of the optical means through the second surface of the refracting space, and may be transmitted to the second optical element after being totally reflected by the first surface of the optical means.
  • the first optical element may be a reflective unit.
  • the first optical element is any one of a refractive optical element, a diffractive optical element (DOE), a holographic optical element (HOE), and a fresnel mirror.
  • DOE diffractive optical element
  • HOE holographic optical element
  • fresnel mirror any one of a refractive optical element, a diffractive optical element (DOE), a holographic optical element (HOE), and a fresnel mirror.
  • the first optical element when viewed from the front, may be formed in a bar shape extending closer to the second optical element toward both left and right ends from a central portion.
  • the refraction space may have an empty interior.
  • the inside of the refraction space may be a vacuum.
  • the inside of the refractive space may be filled with a medium having a refractive index different from that of the optical means.
  • the medium may be a gas, liquid or solid having a refractive index different from that of the optical means.
  • the medium may be a phase change material whose refractive index changes according to at least one of voltage difference, temperature and pressure conditions.
  • the virtual video image light emitted from the image emitter is refracted on the second surface of the refraction space, enters the first optical element, is reflected by the first optical element, and then is reflected on the second surface of the refraction space. It can be refracted again and emitted.
  • the second surface of the refraction space may be formed as a plane.
  • the second surface of the refracting space may be formed as a curved surface.
  • the second surface of the refraction space may be convex with respect to directions in which augmented reality image light is incident and emitted.
  • the second surface of the refraction space may be concave with respect to directions in which augmented reality image light is incident and emitted.
  • the second surface of the refracting space may be formed as a free curved surface.
  • the second surface of the refracting space may be formed in the form of a Fresnel lens.
  • the second surface of the refraction space may be formed of any one of a diffractive optical element (DOE) and a holographic optical element (HOE).
  • DOE diffractive optical element
  • HOE holographic optical element
  • the second optical element may be composed of a plurality of optical modules.
  • the plurality of optical modules may be arranged so that the virtual video image light transmitted from the first optical element is not blocked by other optical modules.
  • an auxiliary refraction space may be formed between the image output unit and the first optical element inside the optical unit.
  • auxiliary refraction space may be formed in any one shape of a convex lens or a concave lens when viewed from the side.
  • the surface of the auxiliary refraction space may be formed as a free curved surface.
  • auxiliary refraction space may refract and emit virtual video image light emitted from the image emitter.
  • the auxiliary refraction space may have an empty interior.
  • the inside of the auxiliary refraction space may be a vacuum.
  • the inside of the auxiliary refractive space may be filled with a medium having a refractive index different from that of the optical means.
  • the medium may be a gas, liquid or solid having a refractive index different from that of the optical means.
  • the medium may be a phase change material whose refractive index changes according to at least one of voltage difference, temperature and pressure conditions.
  • an optical device for augmented reality capable of more precisely adjusting the performance of an optical system by forming a refracting space for refracting virtual video image light inside an optical unit.
  • an optical element that performs the function of a collimator inside the optical means and using the optical element and the refraction space together, a clearer virtual image is provided, while the focal length of the virtual image can be adjusted
  • An optical device for augmented reality may be provided.
  • FIG. 1 is a diagram showing an optical device 100 for augmented reality as described in Prior Art Document 1.
  • FIG. 2 is a diagram showing an optical device 200 for augmented reality as disclosed in Prior Art Document 2.
  • 3 to 5 are views for explaining an optical device 300 for augmented reality according to an embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the refraction space 60 .
  • FIG. 7 is a diagram for explaining an optical path in the refracting space 60 and the first optical element 50. Referring to FIG.
  • FIG 8 shows an overall optical path in the optical device 300 for augmented reality.
  • FIG. 9 is a cross-sectional view of an optical device 400 according to another embodiment of the present invention.
  • FIG. 10 is a diagram for explaining an optical path in the refraction space 60 and the first optical element 50 of the optical device 400 of FIG. 9 .
  • FIG. 11 is a cross-sectional view of an optical device 500 according to another embodiment of the present invention.
  • FIG. 12 is a diagram for explaining an optical path in the refraction space 60 and the first optical element 50 of the optical device 500 of FIG. 11 .
  • FIG. 13 is a diagram showing optical devices 600 and 700 according to another embodiment of the present invention.
  • 3 to 5 are views for explaining an optical device 300 for augmented reality according to an embodiment of the present invention.
  • FIG. 3 is a perspective view
  • FIG. 4 is a front view
  • FIG. 5 is a cross-sectional view taken along line A-A′ of FIG. 4 .
  • the optical device 300 for augmented reality (hereinafter simply referred to as "optical device 300") of the present embodiment includes a first optical element 50, a second optical element 20, optical means 10 and a refractive space 60 .
  • the first optical element 50 performs a function of transmitting virtual image light emitted from the image output unit 30 and transferred to the second optical element 20 .
  • the image emitting unit 30 is a means for displaying a virtual image and emitting virtual image image light corresponding to the virtual image, for example, a conventionally known one such as a small LCD, OLED, LCoS, etc. It may be a micro display device.
  • the virtual video image light emitted from the image emitting unit 30 is transferred to the first optical element 50 buried inside the optical means 10 .
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected on the first surface 11 of the optical means 10 and then transmitted to the first optical element 50. do.
  • the virtual video image light emitted from the image emitting unit 30 may be directly transferred to the first optical element 50 without undergoing total reflection on the inner surface of the optical means 10 .
  • the total reflection may be transmitted to the first optical element 50 after being totally reflected twice or more on at least one of the first surface 11 and the second surface 12 of the optical means 10 .
  • the image output unit 30 may further include an optical element composed of a combination of at least one or more of a reflection unit, a refraction unit, and a diffraction unit.
  • the optical element reflects, refracts, or diffracts the virtual video image light emitted from the micro display device and transmits it to the first optical element 50 of the optical means 10 .
  • the image output unit 30 is shown as being disposed above the upper surface 14 of the optical means 10, but this is exemplary and may be disposed in other positions, of course.
  • the first optical element 50 is buried inside the optical means 10 . That is, the first optical element 50 is spaced apart from the first surface 11, the second surface 12, the third surface 13, and the fourth surface 14 of the optical means 10, respectively, and the optical means ( 10) is placed in the inner space.
  • the first surface 11 is defined as a surface on which real world image light enters
  • the second surface 12 is defined as a surface on which real world image light and virtual video image light exit.
  • the third surface 13 is the bottom surface of the optical means 10
  • the fourth surface 14 is the upper surface of the optical means 10 and is a surface on which the virtual video image light emitted from the image output unit 30 is incident.
  • the first optical element 50 is inside the optical means 10 so as to face the image output unit 30 with the second optical element 20 therebetween.
  • the virtual video image light emitted from the image emitting unit 30 and totally reflected on the first surface 11 of the optical means 10 and incident is transmitted to the first surface of the optical means 10.
  • the light is emitted toward the first surface 11 and transmitted to the second optical element 20 .
  • the first optical element 50 includes the image emitting unit 30 and the second optical element 50 to transfer the virtual image image light emitted from the image emitting unit 30 to the second optical element 20 .
  • the element 20 and the pupil 40 it may be disposed at an appropriate position in the internal space of the optical means 10.
  • the first optical element 50 extends closer to the second optical element 20 toward both left and right ends from the central portion, so as to have an overall gentle "U” shape. It may be formed in the form of a bar (bar) of the form.
  • the length of the first optical element 50 in the horizontal direction when viewed from the front is formed to correspond to the length of the second optical element 20 in the horizontal direction. This is to allow the first optical element 50 to better perform its function as a collimator to be described later.
  • the surface of the first optical element 50 is preferably formed as a curved surface.
  • the surface of the first optical element 50 may be formed to be concave with respect to the direction in which the virtual video image light is incident. This is also to enable the first optical element 50 to better perform its function as a collimator to be described later.
  • the length of the first optical element 50 in the width direction may be formed within an appropriate range in consideration of factors such as ghost image, optical path, optical performance, and form factor.
  • the length of the first optical element 50 in the width direction means the length between both ends of the first optical element 50 when the optical device 300 is viewed from the side, as shown in FIG. 5 .
  • the first optical element 50 is a reflection unit capable of reflecting and emitting incident virtual video image light.
  • the first optical element 50 may be formed of a material having a high reflectance of 100% or close to 100%, such as a metal material.
  • the first reflective optical element 50 may be formed of a means such as a half mirror that partially reflects and partially transmits light.
  • the first optical element 50 may be any one of a refractive optical element, a diffractive optical element (DOE), a holographic optical element (HOE), and a fresnel mirror. It can also be formed into one.
  • DOE diffractive optical element
  • HOE holographic optical element
  • fresnel mirror a fresnel mirror
  • the first optical element 50 may be formed of an optical element such as a notch filter that selectively transmits light according to a wavelength.
  • a surface opposite to the surface on which the virtual video image light is incident and emitted of the first optical element 50 may be coated with an absorber that absorbs light.
  • a refractive space 60 is formed inside the optical means 10 , and the first optical element 50 is disposed inside the refractive space 60 .
  • the first optical element 50 may be inclined so that its surface faces the first surface 11 of the optical means 10 .
  • FIG. 6 is a diagram for explaining the refraction space 60, showing only the optical means 10 and the refraction space 60.
  • the refracting space 60 is formed inside the optical means 10 and faces the first surface 61 on which the first optical element 50 is disposed and the first surface 61. It has a second surface 62, which is a surface to do.
  • the ends of the first surface 61 and the second surface 62 are spaced apart from each other to have a slight gap therebetween.
  • this is exemplary, and the ends of the first surface 61 and the second surface 62 may be formed to contact each other, of course.
  • the first surface 61 and the second surface 62 are made of the same material as the optical means 10.
  • the first surface 61 has a shape and size corresponding to the shape and size of the first optical element 50 .
  • the first surface 61 also corresponds to the shape of the first optical element 50 when viewed from the front. It has a gentle “U” shape.
  • the position of the refractive space 60 is determined according to the position where the first optical element 50 is to be placed, it is preferable to determine the position of the first optical element 50 and then form the refractive space 60 at the corresponding position. desirable.
  • the second surface 62 of the refracting space 60 serves as a surface through which virtual image light enters and exits.
  • the virtual video image light emitted from the image emitting unit 30 is totally reflected by the first surface 11 of the optical means 10 and passes through the second surface 62 of the refraction space 60. , and enters the first optical element 50 through the second surface 62 of the refractive space 60 .
  • the virtual video image light reflected by the first optical element 50 is emitted through the second surface 62 of the refraction space 60, and is totally reflected on the first surface 11 of the optical means 10. It is transmitted to the second optical element 20 .
  • the surface of the second face 62 of the refraction space 60 is formed as a plane.
  • the surface of the second surface 62 may be formed in a curved surface such as a convex surface or a concave surface.
  • the inside of the refraction space 60 may be formed as an empty space.
  • the inside of the refractive space 60 may be filled with a medium having a refractive index different from that of the optical means 10 .
  • the optical means 10 When the optical means 10 is made of glass or plastic, its refractive index is around 1.5, so the refractive space 60 can be filled with a medium having a different refractive index.
  • the refractive space 60 may be filled with air having a refractive index of about 1.0003 or other gases other than air having a value close to 1.
  • the refractive index of vacuum is 1, it is also possible to make the refraction space 60 a vacuum state.
  • a liquid may be used as the medium.
  • the inside of the optical means 10 may be filled with water.
  • other liquids having a refractive index different from that of the optical means 10 may be used as a medium for filling the refractive space 60 .
  • a solid having a refractive index different from that of the optical means 10 may be used as a medium.
  • various other materials having a refractive index different from the refractive index of the optical means 10 may be used as a medium.
  • phase change material whose refractive index changes according to at least one of conditions such as a voltage difference, temperature, and pressure may be filled in the refraction space 60 .
  • a phase-change material used in a hologram memory or an optical storage device has a characteristic in that a refractive index is changed depending on conditions such as temperature or pressure during crystallization after energy is applied.
  • Representative materials used in optical storage devices include Sb2Se3, Ge2Sb2Te5, and TeOx (0 ⁇ x ⁇ 2) represented by GeSbTe (GST). These materials are heated to a high temperature using a laser and then rapidly cooled to form an amorphous state. When it is slowly cooled, it changes to a crystalline phase, and at this time, a difference in refractive index between the crystalline phase and the amorphous phase occurs.
  • Representative materials used in hologram memories and the like include acrylate-based copolymers, and the refractive index is changed by exposure through a laser.
  • the phase-change material is filled in the refraction space 60, and the second surface 62 of the refraction space 60 is formed by the difference in refractive index between the meta-material and the optical means 10 using the refractive index change according to the conditions of the phase-change material. It is possible to adjust the refraction condition in
  • meta-materials whose refractive index can be changed by electrical or chemical methods may be used as a medium.
  • the medium filling the refractive space 60 is preferably formed of a transparent material or a translucent material.
  • the virtual video image light passing through the second surface 62 is refracted on the second surface 62 and incident thereon. or go out
  • virtual video image light entering the first optical element 50 is refracted on the second surface 62 of the refracting space 60, and virtual video image light exiting the first optical element 50 is It is refracted again on the second surface 62 and emitted.
  • FIG. 7 is a view for explaining an optical path in the refracting space 60 and the first optical element 50, and is a cross-sectional view taken along line A-A' of FIG. 4.
  • virtual video image light passes through the second surface 62 of the refraction space 60, and at this time, after being refracted due to the difference in refractive index between the optical means 10 and the refraction space 60, the first It enters the optical element 50.
  • the virtual video image light has a refraction angle greater than the incident angle.
  • the virtual video image light After being reflected by the first optical element 50, the virtual video image light passes through the second surface 62 and is emitted to the outside. At this time, the virtual video image light has a refraction angle smaller than the incident angle.
  • the refracting space 60 in particular, the second surface 62 is a collimator for collimating the virtual image image light emitted from the image emitting unit 30 and passing it along with the first optical element 50 and emitting it as parallel light ( function as a collimator).
  • the light may be transmitted as collimated parallel light to the second optical element 20 .
  • FIG 8 shows an overall optical path in the optical device 300 for augmented reality.
  • FIG. 8 is the same as the cross-sectional view of FIG. 5, but the optical path of the virtual video image light in the refraction space 60 and the first optical element 50 is shown, and the second optical element 20 is shown for convenience of description. There is a difference only in that only two of the plurality of constituting optical modules are shown.
  • the virtual video image light in the refraction space 60 is shown as a straight line as if it is not refracted when passing through the second surface 62, but this is briefly shown for convenience of explanation, and actually as shown in FIG. It should be noted that it is refracted.
  • virtual video image light (L1, L2) emitted from any one point of the image output unit 30 is totally reflected on the first surface 11 of the optical means 10 to form a refracting space 60. Incident to the second surface (62).
  • the refracting space 60 Since the refracting space 60 has a refractive index different from that of the optical means 10, the virtual video image light L1 and L2 incident on the second surface 62 passes through the second surface 62 as shown in FIG. After being refracted, it enters the first optical element 50 .
  • the virtual video image lights L1 and L2 incident to the first optical element 50 are reflected by the first optical element 50 and then emitted toward the second surface 62, and as described in FIG. After being refracted again on the second surface 62, it is emitted toward the first surface 11 of the optical means 10. At this time, the emitted virtual video image lights L1 and L2 become parallel lights collimated by the refraction space 60 and the first optical element 50 as described above.
  • the virtual video image lights L1 and L2 totally reflected again by the first surface 11 of the optical means 10 are transmitted to the second optical element 20, and the second optical element 20 enters the virtual video image.
  • the light (L1, L2) is transmitted toward the pupil (40) of the user's eye.
  • the virtual image light L1 and L2 emitted from one point of the image output unit 30 is transmitted to the user's pupil 40 in the form of parallel light.
  • the degree of freedom and convenience of design compared to the case of using only the first optical element 50 as a collimator. It can increase the tolerance range required in the optical system, and more sophisticated performance control of the optical system becomes possible.
  • the second surface 62 of the refracting space 60 is shown as being flat in the above embodiment, this is exemplary and may be formed into a curved surface or other shapes.
  • FIG. 9 is a cross-sectional view of an optical device 400 according to another embodiment of the present invention.
  • FIG. 9 is the same as the optical device 300 of the embodiment described with reference to FIGS. 3 to 8 , but the second surface 62 of the refraction space 60 allows the virtual image light L1 and L2 to be incident. And there is a difference in that it is formed convex with respect to the emission direction.
  • the angle of refraction of the virtual image light L1 and L2 when passing through the second surface 62 of the refraction space 60 is different from that of the above-described embodiment.
  • the virtual video image light in the refraction space 60 is shown as a straight line as if it is not refracted when passing through the second surface 62, but this is briefly shown for convenience of explanation, and actually as shown in FIG. It should be noted that it is refracted.
  • FIG. 10 is a view for explaining an optical path in the refracting space 60 and the first optical element 50 of the optical device 400 of FIG. 9 and is a cross-sectional view taken along line A-A' of FIG. 4 .
  • the virtual video image light reflected by the first optical element 50 passes through the second surface 62 and is emitted to the outside.
  • the refraction angle of the virtual video image light has a smaller value than that of FIG. have
  • the virtual image light L1 and L2 refracted on the second surface 62 of the refraction space 60 and emitted are totally reflected on the first surface 11 of the optical means 10. and transmitted to the pupil 40 of the user's eye through the second optical element 20.
  • the virtual image light L1 and L2 transmitted to the pupil 40 of the user's eye is not parallel light but a pupil 40. It has a form converging toward the central axis of (40).
  • the function of the collimator can be performed by using the first optical element 50 and the refraction space 60 together, so that the optical path of the virtual image emitted from the image output unit 30 can be seen more clearly. can be finely tuned.
  • FIG. 11 is a cross-sectional view of an optical device 500 according to another embodiment of the present invention.
  • FIG. 11 is also the same as the optical device 300 of the embodiment described with reference to FIGS. 3 to 8 , but the second surface 62 of the refraction space 60 allows the virtual video image lights L1 and L2 to enter. And there is a difference in that it is formed concave with respect to the emitting direction.
  • the virtual video image light in the refraction space 60 is shown as a straight line as if it is not refracted when passing through the second surface 62, but this is briefly shown for convenience of explanation, and actually as shown in FIG. It should be noted that it is refracted.
  • FIG. 12 is a view for explaining an optical path in the refracting space 60 and the first optical element 50 of the optical device 500 of FIG. 11, and is a cross-sectional view taken along line A-A' of FIG. 4.
  • the virtual video image light reflected by the first optical element 50 passes through the second surface 62 and is emitted toward the first surface 11 of the optical means 10.
  • the virtual video image light The refraction angle has a larger value than that of FIG. 7 .
  • the virtual image light L1 and L2 refracted on the second surface 62 of the refraction space 60 and emitted are totally reflected on the first surface 11 of the optical means 10. and transmitted to the pupil 40 of the user's eye through the second optical element 20.
  • the virtual image light L1 and L2 transmitted to the pupil 40 of the user's eye is not parallel light but a pupil 40. It has a form that diverges outward from the central axis of (40).
  • the function of the collimator can be performed by using the first optical element 50 and the refraction space 60 together, so that the optical path of the virtual image emitted from the image output unit 30 can be seen more clearly. can be finely tuned.
  • the second surface 62 of the refracting space 60 may be formed as a free curved surface.
  • the free curved surface may be a curved surface including at least one of a concave surface and a convex surface.
  • the free curved surface may be a curved surface having a non-rotationally symmetrical shape rather than rotationally symmetrical shape.
  • the free curved surface may be an arbitrary surface having asymmetry about any axis, unlike a spherical surface or a rotationally symmetric aspherical surface.
  • the second surface 62 of the refractive space 60 may be formed in the form of a Fresnel lens.
  • the second surface 62 of the refractive space 60 may be formed of any one of a diffractive optical element (DOE) and a holographic optical element (HOE).
  • DOE diffractive optical element
  • HOE holographic optical element
  • the second optical element 20 performs a function of transmitting the virtual video image light transmitted from the first optical element 50 toward the pupil 40 of the user's eye.
  • the second optical element 20 is also buried inside the optical means 10 . That is, the second optical element 20 is spaced apart from the first surface 11, the second surface 12, the third surface 13, and the fourth surface 14 of the optical means 10, respectively, and the optical means ( 10), and transmits the virtual video image light transmitted from the first optical element 50 toward the pupil 40 of the user's eye.
  • the second optical element 20 may be composed of a plurality of optical modules arranged in a matrix form when viewed from the front, as shown in FIGS. 3 to 5 in order to widen the viewing angle.
  • the second optical element 20 is collectively referred to as a plurality of optical modules.
  • the virtual video image light emitted from the first optical element 50 is emitted toward the first surface 11 of the optical means 10, After being totally reflected again on the first surface 11 of the optical means 10, it is transmitted to the second optical element 20.
  • the virtual video image light emitted from the image emitting unit 30 is transmitted to the second optical element 20 via the first optical element 50 and the first surface 11 of the optical means 10. Therefore, the optical modules constituting the second optical element 20 are arranged to have an appropriate inclination angle with respect to the second surface 12 of the optical means 10 in consideration of this light path.
  • the second optical element 20 is a reflection unit that reflects incident virtual video image light and emits it to the pupil 40 .
  • the second optical element 20 may be formed of a material having a high reflectance of 100% or close to 100%, such as a metal material.
  • the second optical element 20 may be configured with means such as a half mirror that partially reflects and partially transmits light.
  • the second optical element 20 may be formed of any one of a refractive optical element, a diffractive optical element (DOE), and a holographic optical element (HOE).
  • DOE diffractive optical element
  • HOE holographic optical element
  • the second optical element 20 may be formed of an optical element such as a notch filter that selectively transmits light according to a wavelength.
  • each of the plurality of optical modules constituting the second optical element 20 has a size smaller than the size of a human pupil, that is, 8 mm or less, to obtain a pinhole effect by deepening the depth of field. , more preferably 4 mm or less.
  • the depth of field for the light incident to the pupil 40 by the optical modules can be almost infinite, that is, the depth of field can be made very deep, so that the user can see the real world while gazing at the real world. Even if the focal length of the image is changed, a pinhole effect may be generated, in which the focus of the virtual image is always recognized as correct regardless of this.
  • each optical module is defined as the maximum length between any two points on the edge boundary line of each optical module.
  • each optical module is between any two points on the edge boundary line of the orthographic projection of each optical module on a plane perpendicular to the straight line between the pupil 40 and the optical module and including the center of the pupil 40. can be of maximum length.
  • the size of the optical modules is preferably larger than 0.3 mm.
  • each of the optical modules may have a circular shape.
  • the optical modules may be formed in an elliptical shape so that the optical modules appear circular when viewed from the pupil 40 .
  • each of the plurality of optical modules is arranged so that the virtual video image light transmitted from the first optical element 50 is not blocked by other optical modules.
  • FIG. 5 when the optical device 300 is viewed from the side, it is preferable to arrange the plurality of optical modules in an oblique or gently curved form rather than in a vertical line.
  • the first optical element 50 and the second optical element 20 are buried, and transmits real world image light transmitted from the real world to the pupil 40 of the user's eye; As described above, it performs a function of transferring the virtual video image light transmitted from the second optical element 20 to the pupil 40 of the user's eye.
  • the refracting space 60 is formed inside the optical means 10, and the first optical element 50 is disposed on the first surface 61 of the refracting space 60.
  • FIG. 13 is a side view illustrating optical devices 600 and 700 according to still another embodiment of the present invention.
  • optical devices 600 and 700 of FIG. 13 are the same as the above-described embodiments, but further include auxiliary refractive spaces 70 and 80 disposed between the image output unit 30 and the first optical element 50. There is a difference in
  • auxiliary refractive spaces 70 and 80 of FIG. 13 can be applied to all of the above-described embodiments, and since other components are the same as those of the above-described embodiments, only the auxiliary refractive spaces 70 and 80 are shown.
  • the auxiliary refractive spaces 70 and 80 may have the same shape as the convex lens shown on the left or the concave lens shown on the right, and the virtual image output from the image output unit 30. It refracts and emits light.
  • auxiliary refractive spaces 70 and 80 can refract and emit incident virtual video image light, performance of the optical system by using them together with the first optical element 50 and the refractive space 60 as described above. It has the advantage that the adjustment can be performed more precisely.
  • surfaces of the auxiliary refractive spaces 70 and 80 may also be formed as free curved surfaces.
  • auxiliary refractive spaces 70 and 80 may be formed as an empty space, similar to the aforementioned refractive space 60 .
  • auxiliary refractive spaces 70 and 80 may be filled with a medium having a refractive index different from that of the optical means 10 .
  • the medium filled in the auxiliary refractive spaces 70 and 80 various other materials such as liquid, gas, and solid having a refractive index different from that of the optical means 10 may be used.
  • phase change material whose refractive index changes according to at least one of conditions such as a voltage difference, temperature, and pressure may be filled in the auxiliary refractive spaces 70 and 80 .
  • other meta materials whose refractive index can be changed by electrical or chemical methods may be used as a medium filled in the secondary refractive spaces 70 and 80 .
  • the medium filling the auxiliary refractive spaces 70 and 80 is preferably formed of a transparent material or a translucent material.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

본 발명은, 화상 출사부로부터 출사되어 전달되는 가상 영상 화상광을 제2 광학 소자로 전달하는 제1 광학 소자; 상기 제1 광학 소자로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달하는 제2 광학 소자; 상기 제1 광학 소자 및 제2 광학 소자가 매립 배치되는 광학 수단; 및 상기 광학 수단 내부에 형성되는 굴절 공간을 포함하고, 상기 굴절 공간은, 상기 제1 광학 소자가 배치되는 제1 면과, 상기 제1 면에 대향하는 면인 제2 면을 가지고, 상기 화상 출사부로부터 출사된 가상 영상 화상광은, 상기 굴절 공간의 제2 면을 통해 상기 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 후 상기 굴절 공간의 제2 면을 통해 출사하여 상기 제2 광학 소자로 전달되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치를 제공한다.

Description

굴절 공간을 구비하는 증강 현실용 광학 장치
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 광학 수단 내부에 가상 영상 화상광을 굴절시키는 굴절 공간을 형성하여 광학계의 성능을 보다 정교하게 조절할 수 있는 증강 현실용 광학 장치에 관한 것이다.
증강 현실(AR, Augmented Reality)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 제공되는 가상 영상을 겹쳐서 제공하는 것을 의미한다. 즉, 현실 세계의 시각 정보에서 확장된(augmented) 가상 영상 정보를 사용자에게 동시에 제공하는 기술을 의미한다.
이러한 증강 현실을 구현하기 위한 장치는, 가상 영상을 현실 세계의 실제 영상과 동시에 관찰할 수 있도록 하는 광학 합성기(optical combiner)를 필요로 한다. 이러한 광학 합성기로서는, 반거울(half mirror) 방식과 홀로그래픽/회절 광학 소자(Holographic/Diffractive Optical Element : HOE/DOE) 방식이 알려져 있다.
그러나, 반거울 방식은, 가상 영상의 투과율이 낮다는 문제점과 넓은 시야각을 제공하기 위해 부피 및 무게가 증가하므로 편안한 착용감을 제공하기 어렵다는 문제점이 있다. 부피와 무게를 줄이기 위하여 복수개의 소형 반거울을 도파로(waveguide) 내부에 배치하는 이른바 LOE(Light guide Optical Element) 등과 같은 기술도 제안되고 있으나, 이러한 기술 또한 도파로 내부에서 가상 영상의 화상광이 반거울을 여러번 통과해야 하기 때문에 제조 공정이 복잡하고 일반적으로 광균일도가 낮아진다는 한계가 있다.
또한, 홀로그래픽/회절 광학 소자 방식은, 일반적으로 나노 구조 격자나 회절격자를 사용하는데, 이들은 매우 정밀한 공정으로 제작되기 때문에 제작 단가가 높고 양산을 위한 수율이 낮다는 한계점을 갖는다. 또한 파장 대역 및 입사 각도에 따른 회절 효율의 차이로 인하여 색상 균일도 측면 및 영상의 선명도가 낮다는 한계점을 갖는다. 홀로그래픽/회절 광학 소자는, 전술한 LOE와 같은 도파로(waveguide)와 함께 사용되는 경우가 많은데, 따라서 마찬가지의 문제점도 여전히 가지고 있다.
또한, 종래의 광학 합성기들은, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있다. 이를 해결하기 위하여 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘을 이용하거나 전기적으로 초점 거리를 제어할 수 있는 가변형 초점 렌즈를 이용하는 기술이 제안된 바 있다. 그러나, 이러한 기술 또한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 초점 거리 제어를 위한 별도의 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
이와 같은 종래 기술의 문제점을 해결하기 위하여, 본 출원인은 사람의 동공보다 작은 크기의 핀미러(pin mirror) 형태의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영하는 기술을 개발한 바 있다(선행 기술 문헌 1 참조).
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 1의 증강 현실용 광학 장치(100)는, 광학 수단(10), 반사부(20) 및 화상 출사부(30)를 포함한다.
광학 수단(10)은 실제 세계의 사물로부터 출사된 화상광인 실제 사물 화상광을 투과시키는 한편 반사부(20)에서 반사된 가상 영상 화상광을 동공(40)으로 출사하는 기능을 수행하는 수단으로서, 그 내부에는 반사부(20)가 매립 배치되어 있다.
광학 수단(10)은 예컨대 안경 렌즈와 같은 투명 재질로 형성될 수 있으며, 안경테와 같은 프레임(미도시)에 의해 고정될 수 있다.
화상 출사부(30)는 가상 영상 화상광을 출사하는 수단으로서, 예컨대 가상 영상을 화면에 표시하고 표시된 가상 영상에 상응하는 가상 영상 화상광을 출사하는 마이크로 디스플레이 장치와 마이크로 디스플레이 장치로부터 출사하는 화상광을 평행광으로 시준하기 위한 콜리메이터(collimator)를 구비할 수 있다
반사부(20)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 반사시켜 사용자의 동공(40)을 향해 전달하는 수단이다.
도 1의 반사부(20)는 사람의 동공보다 작은 크기로 형성된다. 사람의 일반적인 동공의 크기는 4~8mm 정도인 것으로 알려져 있으므로, 반사부(20)는 8mm 이하로 형성하는 것이 바람직하다. 반사부(20)를 8mm 이하로 형성함으로써, 반사부(20)를 통해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 매우 깊게 할 수 있다.
여기서, 심도(Depth of Field)라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지면 그에 상응하여 가상 영상에 대한 초점 거리도 길어진다. 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점이 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pinhole effect)라고 볼 수 있다.
따라서, 반사부(20)를 동공보다 작은 크기로 형성함으로써, 사용자가 실제 사물에 대한 초점 거리를 변경하더라도 사용자는 항상 선명한 가상 영상을 관찰할 수 있다.
그러나, 도 1과 같은 장치는, 시야각이 좁고, 화상 출사부(30)에 콜리메이터와 같은 광학 수단을 사용하기 때문에 장치의 전체적인 크기, 두께 및 부피가 커진다는 한계가 있다.
본 출원인은 이러한 문제를 해결하기 위해서, 화상 출사부(30)에 콜리메이터를 사용하지 않고 광학 수단(10) 내부에 콜리메이터를 배치한 기술을 제안한 바 있다(선행 기술 문헌 2 참조).
도 2는 선행 기술 문헌 2에 개시된 바와 같은 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 2의 증강 현실용 광학 장치(200)는 도 1의 증강 현실용 광학 장치(100)와 비교해 볼 때, 반사부(20)가 복수개 배치되어 있으며, 광학 수단(10) 내부에 콜리메이터의 기능을 수행하는 보조 반사부(50)가 배치된다는 점에서 차이가 있다.
도 2의 증강 현실용 광학 장치(200)는 다음과 같이 동작한다.
우선, 화상 출사부(30)에서 출사된 가상 영상은 광학 수단(10)의 내면에서 전반사된 후 보조 반사부(50)로 전달된다. 보조 반사부(50)에서 반사된 가상 영상은 광학 수단(10)의 내면에서 다시 전반사된 후 반사부(20)로 전달되고, 반사부(20)는 가상 영상을 반사시켜 동공(40)으로 전달한다.
이와 같은 도 2의 증강 현실용 광학 장치(200)는 복수개의 반사부(20)가 배치되어 있기 때문에 보다 넓은 시야각을 제공할 수 있다. 또한, 화상 출사부(30)에 콜리메이터를 사용하지 않고 광학 수단(10) 내부에 배치된 보조 반사부(50)에 의해 콜리메이터의 기능을 수행하도록 함으로써, 장치의 전체적인 크기, 부피, 무게, 두께 등의 폼팩터를 현저하게 줄일 수 있다.
그러나, 도 2의 증강 현실용 광학 장치(200)는 전체적인 광학계의 성능이 보조 반사부(50)에 지나치게 의존하므로 광학계의 전체적인 설계가 쉽지 않다는 문제가 있다.
[선행기술문헌 1]
대한민국 등록특허공보 제10-1660519호(2016.09.29 공고)
[선행기술문헌 2]
대한민국 등록특허공보 제10-2200144호(2021.01.08 공고)
본 발명은 광학 수단 내부에 가상 영상 화상광을 굴절시키는 굴절 공간을 형성하여 광학계의 성능을 보다 정교하게 조절할 수 있는 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 광학 수단 내부에 콜리메이터의 기능을 수행하는 광학 소자를 배치하고 상기 광학 소자와 굴절 공간을 함께 사용함으로써 가상 영상을 보다 선명하게 제공하는 한편 가상 영상의 초점 거리를 조절할 수 있는 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 화상 출사부로부터 출사되어 전달되는 가상 영상 화상광을 제2 광학 소자로 전달하는 제1 광학 소자; 상기 제1 광학 소자로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달하는 제2 광학 소자; 상기 제1 광학 소자 및 제2 광학 소자가 매립 배치되는 광학 수단; 및 상기 광학 수단 내부에 형성되는 굴절 공간을 포함하고, 상기 굴절 공간은, 상기 제1 광학 소자가 배치되는 제1 면과, 상기 제1 면에 대향하는 면인 제2 면을 가지고, 상기 화상 출사부로부터 출사된 가상 영상 화상광은, 상기 굴절 공간의 제2 면을 통해 상기 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 후 상기 굴절 공간의 제2 면을 통해 출사하여 상기 제2 광학 소자로 전달되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 화상 출사부로부터 출사한 가상 영상 화상광은 광학 수단의 제1 면에서 전반사되어 상기 굴절 공간의 제2 면을 통해 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 가상 영상 화상광은 상기 굴절 공간의 제2 면을 통해 상기 광학 수단의 제1 면을 향해 출사하고, 상기 광학 수단의 제1 면에서 전반사된 후 제2 광학 소자로 전달될 수 있다.
또한, 상기 제1 광학 소자는 반사 수단일 수 있다.
또한, 상기 제1 광학 소자는, 굴절 소자(Refractive Optical Element), 회절 광학 소자(Diffractive Optical Element, DOE), 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 및 프레넬 미러(fresnel mirror) 중 어느 하나로 형성될 수 있다.
또한, 상기 제1 광학 소자는, 정면에서 보았을 때 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 제2 광학 소자에 더 가깝도록 연장되는 바 형태로 형성될 수 있다.
또한, 상기 굴절 공간은 내부가 빈 것일 수 있다.
또한, 상기 굴절 공간의 내부는 진공일 수 있다.
또한, 상기 굴절 공간의 내부는, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
또한, 상기 매질은, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 기체, 액체 또는 고체일 수 있다.
또한, 상기 매질은 전압 차이, 온도 및 압력 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질일 수 있다.
또한, 상기 화상 출사부로부터 출사된 가상 영상 화상광은, 상기 굴절 공간의 제2 면에서 굴절되어 상기 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 후 상기 굴절 공간의 제2 면에서 다시 굴절되어 출사할 수 있다.
또한, 상기 굴절 공간의 제2 면은 평면으로 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은 곡면으로 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은, 증강 현실 화상광이 입사 및 출사하는 방향에 대해 볼록하게 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은, 증강 현실 화상광이 입사 및 출사하는 방향에 대해 오목하게 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은 자유 곡면으로 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은, 프레넬 렌즈의 형태로 형성될 수 있다.
또한, 상기 굴절 공간의 제2 면은, 회절 광학 소자(Diffractive Optical Element, DOE) 및 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 중 어느 하나로 형성될 수 있다.
또한, 상기 제2 광학 소자는, 복수개의 광학 모듈로 구성될 수 있다.
또한, 상기 복수개의 광학 모듈들은, 상기 제1 광학 소자로부터 전달되는 가상 영상 화상광이 다른 광학 모듈들에 의해 차단되지 않도록 배치될 수 있다.
또한, 상기 광학 수단 내부의 상기 화상 출사부와 제1 광학 소자 사이에 보조 굴절 공간이 형성될 수 있다.
또한, 상기 보조 굴절 공간은, 측면에서 보았을 때 볼록 렌즈 또는 오목 렌즈 중 어느 하나의 형상으로 형성될 수 있다.
또한, 상기 보조 굴절 공간의 표면은 자유 곡면으로 형성될 수 있다.
또한, 상기 보조 굴절 공간은 화상 출사부에서 출사한 가상 영상 화상광을 굴절시켜 출사할 수 있다.
또한, 상기 보조 굴절 공간은 내부가 빈 것일 수 있다.
또한, 상기 보조 굴절 공간의 내부는 진공일 수 있다.
또한, 상기 보조 굴절 공간의 내부는, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
또한, 상기 매질은, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 기체, 액체 또는 고체일 수 있다.
또한, 상기 매질은 전압 차이, 온도 및 압력 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질일 수 있다.
본 발명에 의하면, 광학 수단 내부에 가상 영상 화상광을 굴절시키는 굴절 공간을 형성하여 광학계의 성능을 보다 정교하게 조절할 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
또한, 본 발명에 의하면, 광학 수단 내부에 콜리메이터의 기능을 수행하는 광학 소자를 배치하고 상기 광학 소자와 굴절 공간을 함께 사용함으로써 가상 영상을 보다 선명하게 제공하는 한편 가상 영상의 초점 거리를 조절할 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
도 1은 선행 기술 문헌 1에 기재된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 2는 선행 기술 문헌 2에 개시된 바와 같은 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 3 내지 도 5는 본 발명의 일실시예에 의한 증강 현실용 광학 장치(300)를 설명하기 위한 도면이다.
도 6은 굴절 공간(60)을 설명하기 위한 도면이다.
도 7은 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면이다.
도 8은 증강 현실용 광학 장치(300)에서의 전체적인 광경로를 나타낸 것이다.
도 9는 본 발명의 다른 실시예에 의한 광학 장치(400)의 단면도이다.
도 10은 도 9의 광학 장치(400)의 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면이다.
도 11은 본 발명의 또 다른 실시예에 의한 광학 장치(500)의 단면도이다.
도 12는 도 11의 광학 장치(500)의 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면이다.
도 13은 본 발명의 또 다른 실시예에 의한 광학 장치(600, 700)를 나타낸 도면이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예를 상세하게 설명하기로 한다.
도 3 내지 도 5는 본 발명의 일실시예에 의한 증강 현실용 광학 장치(300)를 설명하기 위한 도면이다.
도 3은 사시도, 도 4는 정면도를 나타낸 것이고, 도 5는 도 4의 A-A′선을 따른 단면도를 나타낸 것이다.
도 3 내지 도 5를 참조하면, 본 실시예의 증강 현실용 광학 장치(300, 이하 간단히 "광학 장치(300)"라 한다)는, 제1 광학 소자(50), 제2 광학 소자(20), 광학 수단(10) 및 굴절 공간(60)을 포함한다.
제1 광학 소자(50)는, 화상 출사부(30)로부터 출사되어 전달되는 가상 영상 화상광(virtual image light)을 제2 광학 소자(20)로 전달하는 기능을 수행한다.
여기에서, 화상 출사부(30)는, 가상 영상(virtual image)을 표시하고 가상 영상에 상응하는 화상광인 가상 영상 화상광을 출사하는 수단으로서, 예컨대 소형의 LCD, OLED, LCoS 등과 같이 종래 알려져 있는 마이크로 디스플레이 장치일 수 있다.
화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내부에 매립 배치된 제1 광학 소자(50)로 전달된다. 이 때, 화상 출사부(30)에서 출사된 가상 영상 화상광은, 도 8에 나타낸 바와 같이, 광학 수단(10)의 제1 면(11)에서 전반사된 후 제1 광학 소자(50)로 전달된다.
다만, 이는 예시적인 것이며, 화상 출사부(30)에서 출사된 가상 영상 화상광은 광학 수단(10)의 내면에서의 전반사를 거치지 않고, 제1 광학 소자(50)로 직접 전달될 수 있다. 또한, 광학 수단(10)의 제1 면(11) 및 제2 면(12) 중 적어도 어느 하나에서 2회 이상 전반사되어 제1 광학 소자(50)로 전달될 수도 있음은 물론이다.
한편, 화상 출사부(30)는, 반사 수단, 굴절 수단 및 회절 수단 중 적어도 어느 하나 이상의 조합으로 구성되는 광학 소자를 더 포함할 수 있다. 이 경우, 광학 소자는 마이크로 디스플레이 장치에서 출사된 가상 영상 화상광을 반사, 굴절 또는 회절시켜서 광학 수단(10)의 제1 광학 소자(50)로 전달한다.
도 3 내지 도 5에서, 화상 출사부(30)는 광학 수단(10)의 상면(14) 위쪽에 배치된 것으로 나타내었으나, 이는 예시적인 것이며 기타 다른 위치에 배치될 수도 있음은 물론이다.
한편, 제1 광학 소자(50)는 광학 수단(10)의 내부에 매립 배치된다. 즉, 제1 광학 소자(50)는 광학 수단(10)의 제1 면(11), 제2 면(12), 제3 면(13) 및 제4 면(14)와 각각 이격되어 광학 수단(10)의 내부 공간에 배치된다.
여기에서, 제1 면(11)은, 실제 세계 화상광이 입사하는 면이고, 제2 면(12)은 실제 세계 화상광과 가상 영상 화상광이 출사하는 면인 것으로 정의한다. 또한, 제3 면(13)은 광학 수단(10)의 저면이고 제4 면(14)은 광학 수단(10)의 상면으로서 화상 출사부(30)로부터 출사된 가상 영상 화상광이 입사하는 면인 것으로 정의한다.
제1 광학 소자(50)는, 도 3 내지 도 5의 광학 장치(300)에서는, 제2 광학 소자(20)를 사이에 두고 화상 출사부(30)와 대향하도록 광학 수단(10)의 내부에 매립되어 배치되며, 도 8에 나타낸 바와 같이, 화상 출사부(30)로부터 출사하여 광학 수단(10)의 제1 면(11)에서 전반사되어 입사하는 가상 영상 화상광을 광학 수단(10)의 제1 면(11)을 향해 출사하여 제2 광학 소자(20)로 전달되도록 한다.
다만, 이는 예시적인 것이며, 제1 광학 소자(50)는 화상 출사부(30)로부터 출사된 가상 영상 화상광을 제2 광학 소자(20)로 전달할 수 있도록 화상 출사부(30), 제2 광학 소자(20) 및 동공(40)의 상대적인 위치 및 각도를 고려하여 광학 수단(10)의 내부 공간의 적절한 위치에 배치될 수 있다.
한편, 제1 광학 소자(50)는 정면에서 보았을 때 도 4에 나타낸 바와 같이 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 제2 광학 소자(20)에 더 가깝도록 연장되어, 전체적으로 완만한 "U"자 형태의 바(bar) 형태로 형성될 수 있다.
또한, 제1 광학 소자(50)는, 도 4에 나타낸 바와 같이, 정면에서 보았을 때 가로 방향의 길이가 제2 광학 소자(20)의 가로 방향의 길이에 상응하도록 형성된다. 이는 제1 광학 소자(50)가 후술하는 콜리메이터로서의 기능을 보다 잘 수행할 수 있도록 하기 위한 것이다.
또한, 제1 광학 소자(50)의 표면은 곡면으로 형성되는 것이 바람직하다.
예컨대, 제1 광학 소자(50)의 표면은 도 5에 나타낸 바와 같이 가상 영상 화상광이 입사하는 방향에 대해 오목하도록 형성될 수 있다. 이 또한 제1 광학 소자(50)가 후술하는 콜리메이터로서의 기능을 보다 잘 수행할 수 있도록 하기 위한 것이다.
한편, 제1 광학 소자(50)의 폭 방향의 길이는 고스트 이미지, 광경로, 광학 성능 및 폼팩터 등의 요인을 고려하여 적절한 범위로 형성할 수 있다. 여기에서, 제1 광학 소자(50)의 폭 방향의 길이는, 도 5에서와 같이 광학 장치(300)를 측면에서 바라보았을 때 제1 광학 소자(50)의 양 단부 사이의 길이를 의미한다.
한편, 제1 광학 소자(50)는 입사하는 가상 영상 화상광을 반사시켜 출사할 수 있는 반사 수단인 것이 바람직하다. 예컨대, 금속재 등과 같이 100% 또는 100%에 거의 근접하는 높은 반사율을 갖는 재질로 제1 광학 소자(50)를 형성할 수 있다.
또한, 제1 반사 광학 소자(50)는 빛을 부분적으로 반사시키고 부분적으로 투과시키는 하프 미러(half mirror)와 같은 수단으로 구성할 수도 있다.
또는, 제1 광학 소자(50)는 굴절 소자(Refractive Optical Element), 회절 광학 소자(Diffractive Optical Element, DOE), 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 및 프레넬 미러(fresnel mirror) 중 어느 하나로 형성될 수도 있다.
또한, 제1 광학 소자(50)는 빛을 파장에 따라 선택적으로 투과시키는 노치 필터(notch filter) 등과 같은 광학 소자로 형성할 수도 있다.
또한, 제1 광학 소자(50)의 가상 영상 화상광이 입사 및 출사하는 면의 반대면을 빛을 흡수하는 흡수재로 코팅 형성할 수도 있다.
한편, 광학 수단(10) 내부에는 굴절 공간(60)이 형성되며, 제1 광학 소자(50)는 굴절 공간(60)의 내부에 배치된다.
또한, 제1 광학 소자(50)는, 도 3 내지 도 5에 나타낸 바와 같이, 그 표면이 광학 수단(10)의 제1 면(11)을 향하도록 경사지게 배치될 수 있다.
도 6은 굴절 공간(60)을 설명하기 위한 도면으로서, 광학 수단(10)과 굴절 공간(60)만을 나타낸 것이다.
도 6에 나타낸 바와 같이, 굴절 공간(60)은 광학 수단(10) 내부에 형성되며, 제1 광학 소자(50)가 배치되는 제1 면(61)과, 상기 제1 면(61)에 대향하는 면인 제2 면(62)을 갖는다.
도시된 바와 같이, 상기 제1 면(61)과 제2 면(62)의 단부는 약간의 간격을 가지도록 이격되어 형성되는 것이 바람직하다. 다만, 이는 예시적인 것이며, 제1 면(61)과 제2 면(62)의 단부는 서로 접하도록 형성할 수도 있음은 물론이다.
굴절 공간(60)은 광학 수단(10) 제조시에 광학 수단(10) 내부에 형성되는 공간이므로, 제1 면(61)과 제2 면(62)은 광학 수단(10)의 재질과 동일한 재질을 갖는다.
또한, 제1 면(61)에는 제1 광학 소자(50)가 배치되기 때문에, 제1 면(61)은 제1 광학 소자(50)의 형태 및 크기에 상응하는 형태 및 크기를 갖는다.
도 3 내지 도 5에서, 제1 광학 소자(50)는 정면에서 보았을 때 완만한 "U"자 형태이므로, 제1 면(61) 또한 정면에서 보았을 때 제1 광학 소자(50)의 형태와 상응하도록 완만한 "U"자 형태를 갖는다.
굴절 공간(60)의 위치는, 제1 광학 소자(50)가 배치되어야 할 위치에 따라 결정되므로, 제1 광학 소자(50)의 위치를 결정한 후 해당 위치에 굴절 공간(60)을 형성하는 것이 바람직하다.
굴절 공간(60)의 제2 면(62)은 가상 영상 화상광이 입사하고 출사하는 면으로 작용한다.
예컨대, 도 8에 나타낸 바와 같이, 화상 출사부(30)로부터 출사된 가상 영상 화상광은 광학 수단(10)의 제1 면(11)에서 전반사되어 굴절 공간(60)의 제2 면(62)으로 향하고, 굴절 공간(60)의 제2 면(62)을 통해 제1 광학 소자(50)로 입사한다. 또한, 제1 광학 소자(50)에서 반사된 가상 영상 화상광은 굴절 공간(60)의 제2 면(62)을 통해 출사하며, 광학 수단(10)의 제1 면(11)에서 전반사된 후 제2 광학 소자(20)로 전달된다.
도 6에서, 굴절 공간(60)의 제2 면(62)의 표면은 평면으로 형성되어 있다. 다만, 이는 예시적인 것이며 후술하는 바와 같이, 제2 면(62)의 표면은 볼록면 또는 오목면과 같은 곡면으로 형성될 수도 있다.
한편, 굴절 공간(60)의 내부는 빈 공간으로 형성할 수 있다.
또한, 굴절 공간(60)의 내부는 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
광학 수단(10)이 유리나 플라스틱 재질로 형성된 경우, 그 굴절률은 1.5 내외이므로, 굴절 공간(60)에는 이와 다른 값의 굴절률을 갖는 매질로 채울 수 있다.
예컨대, 굴절률이 1.0003 정도인 공기 또는 1에 가까운 값을 갖는 공기 이외의 기타 기체로 굴절 공간(60)을 채울 수 있다.
또한, 진공은 굴절률이 1이므로, 굴절 공간(60)을 진공 상태로 하는 것도 가능하다.
한편, 매질로서는 액체를 사용할 수도 있다. 예컨대, 물은 1.33 정도의 굴절률을 가지므로, 광학 수단(10)의 내부를 물로 채울 수도 있다. 이외에도, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 기타 액체를 굴절 공간(60)의 내부에 채우는 매질로 사용할 수도 있다.
또한, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 고체를 매질로 사용할 수도 있다.
이외에도, 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 기타 다양한 물질을 매질로 사용할 수 있다.
한편, 굴절 공간(60)의 내부에는 전압 차이, 온도 및 압력 등의 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질이 충전될 수도 있다.
예컨대, 홀로그램 메모리, 광 저장 장치등에 사용되는 상변화 물질은 에너지를 가한 이후 결정화시키는 과정에서 온도나 압력 등과 같은 조건에 따라 굴절률이 달라지는 특성을 갖는다.
광 저장 장치에 사용되는 대표적인 물질로 GeSbTe(GST)로 대표되는 Sb2Se3, Ge2Sb2Te5 와 TeOx(0<x<2)등이 있고, 이러한 물질들은 레이저를 이용하여 고온으로 가열한 이후, 급격히 냉각시키면 비결정상으로 변화하고, 서서히 냉각시키면 결정상으로 변화하는데, 이 때 결정상과 비결정상의 굴절률의 차이가 발생한다.
홀로그램 메모리 등에 사용되는 대표적인 물질로는 아크릴레이트계 공중합체 등이 있고, 레이저를 통한 노광에 의해 굴절률이 변화하게 된다.
이러한 상변화 물질을 굴절 공간(60)에 채우고, 상변화 물질의 조건에 따른 굴절률 변화를 이용하여 메타 물질과 광학 수단(10)의 굴절률 차이에 의해 굴절 공간(60)의 제2 면(62)에서의 굴절 조건을 조절할 수 있다.
또한, 전기적 또는 화학적 방법에 의해 굴절률이 변경될 수 있는 기타 메타 물질을 매질로 사용할 수도 있다.
한편, 굴절 공간(60)에 충전되는 매질은 투명재 또는 반투명재로 형성하는 것이 바람직하다.
이와 같이, 굴절 공간(60)에는 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질이 충전되므로, 제2 면(62)을 통과하는 가상 영상 화상광은 제2 면(62)에서 굴절되어 입사 또는 출사하게 된다.
즉, 제1 광학 소자(50)로 입사하는 가상 영상 화상광은, 굴절 공간(60)의 제2 면(62)에서 굴절되고, 제1 광학 소자(50)로부터 출사하는 가상 영상 화상광은 제2 면(62)에서 다시 굴절되어 출사하게 된다.
도 7은 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면으로서, 도 4의 A-A′선을 따른 단면도를 나타낸 것이다.
도 7을 참조하면, 가상 영상 화상광은 굴절 공간(60)의 제2 면(62)을 통과하는데, 이 때 광학 수단(10)과 굴절 공간(60)의 굴절률 차이로 인하여 굴절된 후 제1 광학 소자(50)로 입사한다.
도 7에서는 매질의 굴절률이 광학 수단(10)의 굴절률보다 낮은 것으로 가정하였으므로, 가상 영상 화상광은 입사각보다 큰 각도의 굴절각을 갖게 된다.
가상 영상 화상광은 제1 광학 소자(50)에서 반사된 후 다시 제2 면(62)을 통과하여 외부로 출사되며, 이 때 가상 영상 화상광은 입사각보다 작은 각도의 굴절각을 갖게 된다.
따라서, 굴절 공간(60), 특히 제2 면(62)은 제1 광학 소자(50)와 함께 화상 출사부(30)로부터 출사되어 전달되는 가상 영상 화상광을 시준하여 평행광으로 출사하는 콜리메이터(collimator)로서의 기능을 수행한다.
즉, 굴절 공간(60)의 내부에 충전된 매질의 굴절률과 제1 광학 소자(50)의 표면 형상의 특성을 적절하게 조합함으로써, 화상 출사부(30)의 어느 한 점에서 출사된 가상 영상 화상광이 제2 광학 소자(20)로 시준된 평행광으로 전달될 수 있도록 할 수 있다.
도 8은 증강 현실용 광학 장치(300)에서의 전체적인 광경로를 나타낸 것이다.
도 8은 도 5의 단면도와 동일하되, 굴절 공간(60) 및 제1 광학 소자(50)에서의 가상 영상 화상광의 광 경로가 표시되어 있으며, 설명의 편의를 위해 제2 광학 소자(20)를 구성하는 복수개의 광학 모듈을 2개만 나타내었다는 점에서만 차이가 있다.
도 8에서 굴절 공간(60)에서 가상 영상 화상광은 제2 면(62)을 통과할 때 굴절되지 않는 것처럼 직선으로 나타내었으나, 이는 설명의 편의를 위해 간략히 나타낸 것이고, 실제로는 도 7에서와 같이 굴절된다는 점을 유의해야 한다.
도 8을 참조하면, 화상 출사부(30)의 어느 한 점에서 출사된 가상 영상 화상광(L1, L2)은 광학 수단(10)의 제1 면(11)에서 전반사되어 굴절 공간(60)의 제2 면(62)으로 입사한다.
굴절 공간(60)은 광학 수단(10)과 다른 굴절률을 가지므로, 제2 면(62)으로 입사한 가상 영상 화상광(L1, L2)은 도 7에 나타낸 바와 같이 제2 면(62)에서 굴절된 후 제1 광학 소자(50)로 입사한다.
제1 광학 소자(50)로 입사한 가상 영상 화상광(L1, L2)은 제1 광학 소자(50)에서 반사된 후 다시 제2 면(62)을 향해 출사하고, 도 7에서 설명한 바와 같이 제2 면(62)에서 다시 굴절된 후 광학 수단(10)의 제1 면(11)을 향해 출사한다. 이 때, 출사되는 가상 영상 화상광(L1,L2)은 전술한 바와 같이 굴절 공간(60) 및 제1 광학 소자(50)에 의해 시준된 평행광이 된다.
광학 수단(10)의 제1 면(11)에서 다시 전반사된 가상 영상 화상광(L1, L2)은 제2 광학 소자(20)로 전달되고, 제2 광학 소자(20)는 입사하는 가상 영상 화상광(L1,L2)을 사용자의 눈의 동공(40)을 향해 전달한다.
따라서, 화상 출사부(30)의 한 점에서 출사된 가상 영상 화상광(L1, L2)는 사용자의 동공(40)으로 평행광의 형태로 전달됨을 알 수 있다.
이와 같이, 제1 광학 소자(50) 및 굴절 공간(60)을 함께 이용하여 콜리메이터의 기능을 수행하도록 함으로써, 콜리메이터로서 제1 광학 소자(50)만을 사용하는 경우에 비하여, 설계의 자유도 및 편의성을 높이고 광학계에서 요구되는 공차 범위를 증가시킬 수 있으며 보다 정교한 광학계의 성능 조절이 가능하게 된다.
한편, 상기 실시예에서 굴절 공간(60)의 제2 면(62)은 평면인 것으로 나타내었으나, 이는 예시적인 것이며 곡면이나 기타 다른 형상으로 형성할 수도 있다.
도 9는 본 발명의 다른 실시예에 의한 광학 장치(400)의 단면도이다.
도 9의 실시예는 도 3 내지 도 8을 참조하여 설명한 실시예의 광학 장치(300)와 동일하되, 굴절 공간(60)의 제2 면(62)이 가상 영상 화상광(L1, L2)이 입사 및 출사하는 방향에 대해 볼록하게 형성되었다는 점에서 차이가 있다.
따라서, 가상 영상 화상광(L1, L2)은 굴절 공간(60)의 제2 면(62)을 통과할 때의 굴절각이 앞서 설명한 실시예와는 달라지게 된다.
도 9에서도 굴절 공간(60)에서의 가상 영상 화상광은 제2 면(62)을 통과할 때 굴절되지 않는 것처럼 직선으로 나타내었으나, 이는 설명의 편의를 위해 간략히 나타낸 것이고, 실제로는 도 10과 같이 굴절된다는 점을 유의해야 한다.
도 10은 도 9의 광학 장치(400)의 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면으로서, 도 4의 A-A′선을 따른 단면도를 나타낸 것이다.
도 10에 나타낸 바와 같이, 가상 영상 화상광은 굴절 공간(60)의 제2 면(62)으로 입사할 때, 앞서 설명한 바와 같이, 광학 수단(10)과 굴절 공간(60)의 굴절률 차이로 인하여 굴절되는데, 제2 면(62)이 볼록면으로 형성되어 있으므로, 도 7의 경우에 비해 굴절각이 더 작아진다.
한편, 제1 광학 소자(50)에서 반사된 가상 영상 화상광은 다시 제2 면(62)을 통과하여 외부로 출사되는데, 이 때 가상 영상 화상광의 굴절각은 도 7의 경우에 비해 더 작은 값을 갖는다.
따라서, 도 9에 나타낸 바와 같이, 굴절 공간(60)의 제2 면(62)에서 굴절되어 출사한 가상 영상 화상광(L1, L2)은 광학 수단(10)의 제1 면(11)에서 전반사되어 제2 광학 소자(20)를 통해 사용자의 눈의 동공(40)으로 전달되는데, 이 때 사용자의 눈의 동공(40)으로 전달되는 가상 영상 화상광(L1, L2)는 평행광이 아니라 동공(40)의 중심축을 향해 수렴하는 형태를 가진다.
이와 같은 성질을 이용하면, 제1 광학 소자(50)와 굴절 공간(60)을 함께 이용하여 콜리메이터의 기능을 수행하도록 할 수 있으므로, 화상 출사부(30)에서 출사된 가상 영상의 광경로를 보다 정교하게 조절할 수 있다.
도 11은 본 발명의 또 다른 실시예에 의한 광학 장치(500)의 단면도이다.
도 11의 실시예 또한 도 3 내지 도 8을 참조하여 설명한 실시예의 광학 장치(300)와 동일하지만, 굴절 공간(60)의 제2 면(62)이 가상 영상 화상광(L1, L2)이 입사 및 출사하는 방향에 대해 오목하게 형성되었다는 점에서 차이가 있다.
도 11에서도 굴절 공간(60)에서의 가상 영상 화상광은 제2 면(62)을 통과할 때 굴절되지 않는 것처럼 직선으로 나타내었으나, 이는 설명의 편의를 위해 간략히 나타낸 것이고, 실제로는 도 12와 같이 굴절된다는 점을 유의해야 한다.
도 12는 도 11의 광학 장치(500)의 굴절 공간(60) 및 제1 광학 소자(50)에서의 광경로를 설명하기 위한 도면으로서, 도 4의 A-A′선을 따른 단면도를 나타낸 것이다.
도 12에 나타낸 바와 같이, 가상 영상 화상광은 굴절 공간(60)의 제2 면(62)으로 입사할 때, 앞서 설명한 바와 같이, 광학 수단(10)과 굴절 공간(60)의 굴절률 차이로 인하여 굴절되는데, 제2 면(62)이 오목면으로 형성되어 있으므로, 도 7의 경우에 비해 굴절각이 더 커진다.
한편, 제1 광학 소자(50)에서 반사된 가상 영상 화상광은 다시 제2 면(62)을 통과하여 광학 수단(10)의 제1 면(11)을 향해 출사하는데, 이 때 가상 영상 화상광의 굴절각은 도 7의 경우에 비해 더 큰 값을 갖는다.
따라서, 도 11에 나타낸 바와 같이, 굴절 공간(60)의 제2 면(62)에서 굴절되어 출사한 가상 영상 화상광(L1, L2)은 광학 수단(10)의 제1 면(11)에서 전반사되어 제2 광학 소자(20)를 통해 사용자의 눈의 동공(40)으로 전달되는데, 이 때 사용자의 눈의 동공(40)으로 전달되는 가상 영상 화상광(L1, L2)는 평행광이 아니라 동공(40)의 중심축에서 바깥쪽으로 발산하는 형태를 가진다.
이와 같은 성질을 이용하면, 제1 광학 소자(50)와 굴절 공간(60)을 함께 이용하여 콜리메이터의 기능을 수행하도록 할 수 있으므로, 화상 출사부(30)에서 출사된 가상 영상의 광경로를 보다 정교하게 조절할 수 있다.
한편, 굴절 공간(60)의 제2 면(62)은, 자유 곡면으로 형성될 수도 있다. 여기에서, 자유 곡면이란, 오목면 및 볼록면 중 적어도 어느 하나를 포함하는 곡면일 수 있다. 또한, 자유 곡면이란, 회전 대칭이 아닌 비회전 대칭의 형상을 갖는 곡면일 수도 있다. 또한, 자유곡면은 구면이나 회전 대칭 비구면과는 달리 어떠한 축에 대해서도 비대칭성을 갖는 임의의 면일 수도 있다.
한편, 굴절 공간(60)의 제2 면(62)은, 프레넬 렌즈의 형태로 형성될 수도 있다.
또한, 굴절 공간(60)의 제2 면(62)은, 회절 광학 소자(Diffractive Optical Element, DOE) 및 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 중 어느 하나로 형성될 수도 있다.
다음으로, 제2 광학 소자(20)에 대해 설명한다.
제2 광학 소자(20)는, 제1 광학 소자(50)로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공(40)을 향해 전달하는 기능을 수행한다.
제2 광학 소자(20) 또한 광학 수단(10)의 내부에 매립 배치된다. 즉, 제2 광학 소자(20)는 광학 수단(10)의 제1 면(11), 제2 면(12), 제3 면(13) 및 제4 면(14)와 각각 이격되어 광학 수단(10)의 내부 공간에 배치되어, 제1 광학 소자(50)로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공(40)을 향해 전달한다.
제2 광학 소자(20)는, 시야각을 넓히기 위하여, 도 3 내지 도 5에 나타낸 바와 같이, 정면에서 보았을 때 행렬 형태로 배치되는 복수개의 광학 모듈들로 구성될 수 있다. 본 명세서에서, 제2 광학 소자(20)는 복수개의 광학 모듈들 전체를 통칭하여 부르는 것으로 한다.
도 3 내지 도 5의 광학 장치(300)에서는, 전술한 바와 같이, 제1 광학 소자(50)에서 출사된 가상 영상 화상광은 광학 수단(10)의 제1 면(11)을 향해 출사하고, 광학 수단(10)의 제1 면(11)에서 다시 전반사된 후 제2 광학 소자(20)로 전달된다.
전술한 바와 같이, 화상 출사부(30)로부터 출사된 가상 영상 화상광은 제1 광학 소자(50) 및 광학 수단(10)의 제1 면(11)을 거쳐 제2 광학 소자(20)로 전달되므로, 제2 광학 소자(20)를 구성하는 광학 모듈들은 이러한 광 경로를 고려하여 광학 수단(10)의 제2 면(12)에 대해 적절한 경사각을 가지도록 배치된다.
한편, 제2 광학 소자(20)는, 입사하는 가상 영상 화상광을 반사시켜 동공(40)으로 출사하는 반사 수단인 것이 바람직하다. 예컨대, 금속재 등과 같이 100% 또는 100%에 거의 근접하는 높은 반사율을 갖는 재질로 제2 광학 소자(20)를 형성할 수 있다.
또한, 제2 광학 소자(20)는, 빛을 부분적으로 반사시키고 부분적으로 투과시키는 하프 미러(half mirror)와 같은 수단으로 구성할 수도 있다.
또한, 제2 광학 소자(20)는 굴절 소자(Refractive Optical Element), 회절 광학 소자(Diffractive Optical Element, DOE) 및 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 중 어느 하나로 형성될 수도 있다.
또한, 제2 광학 소자(20)는 빛을 파장에 따라 선택적으로 투과시키는 노치 필터(notch filter) 등과 같은 광학 소자로 형성할 수도 있다.
한편, 제2 광학 소자(20)를 구성하는 복수개의 광학 모듈들 각각은, 앞서 설명한 바와 같이, 심도를 깊게 하여 핀홀 효과(pinhole effect)를 얻을 수 있도록 사람의 동공 크기보다 작은 크기 즉, 8mm 이하, 보다 바람직하게는 4mm 이하로 형성하는 것이 바람직하다.
이에 의하여, 광학 모듈들에 의해 동공(40)으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있고, 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 가상 영상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과(pinhole effect)를 발생시킬 수 있다.
여기에서, 각각의 광학 모듈의 크기라 함은, 각 광학 모듈의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이를 의미하는 것으로 정의한다.
또한, 각각의 광학 모듈의 크기는, 동공(40)과 광학 모듈 사이의 직선에 수직하면서 동공(40)의 중심을 포함하는 평면에 각 광학 모듈을 투영한 정사영의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이일 수 있다.
다만, 광학 모듈들의 크기가 지나치게 작은 경우에는 회절(diffraction) 현상이 커지기 때문에, 광학 모듈들의 크기는 0.3mm 보다는 크게 하는 것이 바람직하다.
또한, 광학 모듈들 각각의 형상은 원형일 수 있다.
또한, 동공(40)에서 광학 모듈들을 바라보았을 때 원형으로 보이도록 광학 모듈들을 타원형으로 형성할 수도 있다.
한편, 복수개의 광학 모듈들 각각은, 제1 광학 소자(50)로부터 전달되는 가상 영상 화상광이 다른 광학 모듈들에 의해 차단되지 않도록 배치된다. 이를 위하여, 복수개의 광학 모듈들은 도 5에 나타낸 바와 같이 광학 장치(300)를 측면에서 보았을 때 수직선상에 나란하게 배치되지 않고 사선이나 완만한 곡선 형태로 배치하는 것이 바람직하다.
다음으로, 광학 수단(10)에 대해 설명한다.
광학 수단(10)은 제1 광학 소자(50) 및 제2 광학 소자(20)가 매립 배치되며, 실제 세계로부터 전달되는 실제 세계 화상광을 투과시켜 사용자의 눈의 동공(40)으로 전달하고, 전술한 바와 같이 제2 광학 소자(20)에서 전달되는 가상 영상 화상광을 사용자의 눈의 동공(40)으로 전달하는 기능을 수행한다.
또한, 전술한 바와 같이, 광학 수단(10)의 내부에는 굴절 공간(60)이 형성되며, 굴절 공간(60)의 제1 면(61)에 제1 광학 소자(50)가 배치된다.
도 13은 본 발명의 또 다른 실시예에 의한 광학 장치(600,700)를 나타낸 측면도이다.
도 13의 광학 장치(600,700)는, 전술한 실시예들과 동일하되, 화상 출사부(30)와 제1 광학 소자(50) 사이에 배치된 보조 굴절 공간(70,80)을 더 포함한다는 점에서 차이가 있다.
도 13의 보조 굴절 공간(70,80)은 전술한 실시예들에 모두 적용할 수 있으며, 기타 구성 요소들은 전술한 실시예들과 동일하므로 생략하였으며 보조 굴절 공간(70, 80)만을 나타내었다.
보조 굴절 공간(70,80)은 측면에서 보았을 때, 좌측에 도시된 볼록 렌즈와 같은 형상 또는 우측에 도시된 오목 렌즈와 같은 형상을 가질 수 있으며, 화상 출사부(30)에서 출사된 가상 영상 화상광을 굴절시켜 출사시킨다.
이러한 보조 굴절 공간(70,80)은 입사하는 가상 영상 화상광을 굴절시켜 출사시킬 수 있기 때문에, 전술한 바와 같이, 제1 광학 소자(50) 및 굴절 공간(60)과 함께 사용함으로써 광학계의 성능 조절을 보다 정교하게 수행할 수 있다는 장점을 갖는다.
한편, 보조 굴절 공간(70,80)의 표면 또한 자유 곡면으로 형성될 수도 있다.
또한, 보조 굴절 공간(70,80)의 내부는, 전술한 굴절 공간(60)과 마찬가지로, 빈 공간으로 형성할 수 있다.
또한, 보조 굴절 공간(70,80)의 내부는 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 매질로 충전될 수 있다.
또한, 보조 굴절 공간(70,80)의 내부를 진공 상태로 하는 것도 가능하다.
한편, 보조 굴절 공간(70,80)의 내부에 충전되는 매질로서는 광학 수단(10)의 굴절률과 다른 굴절률을 갖는 액체, 기체, 고체 등 기타 다양한 물질을 사용할 수 있다.
한편, 보조 굴절 공간(70,80)의 내부에는 전압 차이, 온도 및 압력 등의 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질이 충전될 수도 있다. 또한, 전기적 또는 화학적 방법에 의해 굴절률이 변경될 수 있는 기타 메타 물질을 보조 굴절 공간(70,80) 내부에 충전되는 매질로 사용할 수도 있다.
한편, 보조 굴절 공간(70,80)에 충전되는 매질은 투명재 또는 반투명재로 형성하는 것이 바람직하다.
이상에서, 본 발명에 의한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되는 것이 아니며, 첨부한 청구범위에 의해 파악되는 본 발명의 범위 내에서 다양한 수정 및 변형 실시가 가능하다는 점을 유의해야 한다.

Claims (29)

  1. 화상 출사부로부터 출사되어 전달되는 가상 영상 화상광을 제2 광학 소자로 전달하는 제1 광학 소자;
    상기 제1 광학 소자로부터 전달되는 가상 영상 화상광을 사용자의 눈의 동공을 향해 전달하는 제2 광학 소자;
    상기 제1 광학 소자 및 제2 광학 소자가 매립 배치되는 광학 수단; 및
    상기 광학 수단 내부에 형성되는 굴절 공간
    을 포함하고,
    상기 굴절 공간은, 상기 제1 광학 소자가 배치되는 제1 면과, 상기 제1 면에 대향하는 면인 제2 면을 가지고,
    상기 화상 출사부로부터 출사된 가상 영상 화상광은, 상기 굴절 공간의 제2 면을 통해 상기 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 후 상기 굴절 공간의 제2 면을 통해 출사하여 상기 제2 광학 소자로 전달되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  2. 청구항 1에 있어서,
    상기 화상 출사부로부터 출사한 가상 영상 화상광은 광학 수단의 제1 면에서 전반사되어 상기 굴절 공간의 제2 면을 통해 제1 광학 소자로 입사하고,
    상기 제1 광학 소자에서 반사된 가상 영상 화상광은 상기 굴절 공간의 제2 면을 통해 상기 광학 수단의 제1 면을 향해 출사하고, 상기 광학 수단의 제1 면에서 전반사된 후 제2 광학 소자로 전달되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  3. 청구항 1에 있어서,
    상기 제1 광학 소자는 반사 수단인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  4. 청구항 1에 있어서,
    상기 제1 광학 소자는, 굴절 소자(Refractive Optical Element), 회절 광학 소자(Diffractive Optical Element, DOE), 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 및 프레넬 미러(fresnel mirror) 중 어느 하나로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  5. 청구항 1에 있어서,
    상기 제1 광학 소자는, 정면에서 보았을 때 중앙 부분에서 좌우의 양 단부쪽으로 갈수록 제2 광학 소자에 더 가깝도록 연장되는 바 형태로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  6. 청구항 1에 있어서,
    상기 굴절 공간은 내부가 빈 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  7. 청구항 1에 있어서,
    상기 굴절 공간의 내부는 진공인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  8. 청구항 1에 있어서,
    상기 굴절 공간의 내부는, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  9. 청구항 8에 있어서,
    상기 매질은, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 기체, 액체 또는 고체인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  10. 청구항 8에 있어서,
    상기 매질은 전압 차이, 온도 및 압력 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  11. 청구항 1에 있어서,
    상기 화상 출사부로부터 출사된 가상 영상 화상광은, 상기 굴절 공간의 제2 면에서 굴절되어 상기 제1 광학 소자로 입사하고, 상기 제1 광학 소자에서 반사된 후 상기 굴절 공간의 제2 면에서 다시 굴절되어 출사하는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  12. 청구항 1에 있어서,
    상기 굴절 공간의 제2 면은 평면으로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  13. 청구항 1에 있어서,
    상기 굴절 공간의 제2 면은 곡면으로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  14. 청구항 13에 있어서,
    상기 굴절 공간의 제2 면은, 증강 현실 화상광이 입사 및 출사하는 방향에 대해 볼록하게 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  15. 청구항 13에 있어서,
    상기 굴절 공간의 제2 면은, 증강 현실 화상광이 입사 및 출사하는 방향에 대해 오목하게 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  16. 청구항 1에 있어서,
    상기 굴절 공간의 제2 면은 자유 곡면으로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  17. 청구항 1에 있어서,
    상기 굴절 공간의 제2 면은, 프레넬 렌즈의 형태로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  18. 청구항 1에 있어서,
    상기 굴절 공간의 제2 면은, 회절 광학 소자(Diffractive Optical Element, DOE) 및 홀로그래픽 광학 소자(Holographic Optical Element, HOE) 중 어느 하나로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  19. 청구항 1에 있어서,
    상기 제2 광학 소자는, 복수개의 광학 모듈로 구성되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  20. 청구항 19에 있어서,
    상기 복수개의 광학 모듈들은, 상기 제1 광학 소자로부터 전달되는 가상 영상 화상광이 다른 광학 모듈들에 의해 차단되지 않도록 배치되는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  21. 청구항 1에 있어서,
    상기 광학 수단 내부의 상기 화상 출사부와 제1 광학 소자 사이에 보조 굴절 공간이 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  22. 청구항 21에 있어서,
    상기 보조 굴절 공간은, 측면에서 보았을 때 볼록 렌즈 또는 오목 렌즈 중 어느 하나의 형상으로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  23. 청구항 21에 있어서,
    상기 보조 굴절 공간의 표면은 자유 곡면으로 형성된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  24. 청구항 21에 있어서,
    상기 보조 굴절 공간은 화상 출사부에서 출사한 가상 영상 화상광을 굴절시켜 출사하는 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  25. 청구항 21에 있어서,
    상기 보조 굴절 공간은 내부가 빈 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  26. 청구항 21에 있어서,
    상기 보조 굴절 공간의 내부는 진공인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  27. 청구항 21에 있어서,
    상기 보조 굴절 공간의 내부는, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 매질로 충전된 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  28. 청구항 27에 있어서,
    상기 매질은, 상기 광학 수단의 굴절률과 다른 굴절률을 갖는 기체, 액체 또는 고체인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
  29. 청구항 27에 있어서,
    상기 매질은 전압 차이, 온도 및 압력 조건 중 적어도 어느 하나에 따라 굴절률이 변화하는 상변화 물질인 것을 특징으로 하는 굴절 공간을 구비하는 증강 현실용 광학 장치.
PCT/KR2021/019287 2021-06-03 2021-12-17 굴절 공간을 구비하는 증강 현실용 광학 장치 WO2022255579A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/550,082 US20240151978A1 (en) 2021-06-03 2021-12-17 Optical device for augmented reality having refractive space

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0072301 2021-06-03
KR1020210072301A KR102563215B1 (ko) 2021-06-03 2021-06-03 굴절 공간을 구비하는 증강 현실용 광학 장치

Publications (1)

Publication Number Publication Date
WO2022255579A1 true WO2022255579A1 (ko) 2022-12-08

Family

ID=76599321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/019287 WO2022255579A1 (ko) 2021-06-03 2021-12-17 굴절 공간을 구비하는 증강 현실용 광학 장치

Country Status (3)

Country Link
US (1) US20240151978A1 (ko)
KR (1) KR102563215B1 (ko)
WO (1) WO2022255579A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563215B1 (ko) * 2021-06-03 2023-08-03 주식회사 레티널 굴절 공간을 구비하는 증강 현실용 광학 장치
KR102627825B1 (ko) * 2021-08-30 2024-01-23 주식회사 레티널 회절 소자를 이용한 컴팩트형 증강 현실용 광학 장치
KR102678105B1 (ko) * 2021-10-12 2024-06-26 주식회사 레티널 회절 소자를 이용한 콜리메이터를 구비하는 컴팩트형 증강 현실용 광학 장치
KR102660339B1 (ko) * 2021-10-22 2024-04-26 인하대학교 산학협력단 핀미러 홀로그래픽 광학 소자 배열을 이용해 확장된 아이박스를 갖는 도파관 형태의 투과형 맥스웰리안 근안 디스플레이
KR102713445B1 (ko) * 2021-12-27 2024-10-04 주식회사 레티널 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
KR102687259B1 (ko) * 2021-12-28 2024-07-22 주식회사 레티널 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211322A1 (en) * 2013-01-28 2014-07-31 David D. Bohn Projection optical system for coupling image light to a near-eye display
JP6287131B2 (ja) * 2013-12-02 2018-03-07 セイコーエプソン株式会社 虚像表示装置
JP2020512574A (ja) * 2017-02-23 2020-04-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. 可変屈折力反射体を有するディスプレイシステム
KR20210053249A (ko) * 2019-11-01 2021-05-11 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
KR102252287B1 (ko) * 2020-06-12 2021-05-14 주식회사 레티널 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
KR20210075918A (ko) * 2021-06-03 2021-06-23 주식회사 레티널 굴절 공간을 구비하는 증강 현실용 광학 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886822A (en) * 1996-10-08 1999-03-23 The Microoptical Corporation Image combining system for eyeglasses and face masks
KR101660519B1 (ko) 2015-03-09 2016-09-29 하정훈 증강 현실 구현 장치
KR102200144B1 (ko) 2019-11-01 2021-01-08 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211322A1 (en) * 2013-01-28 2014-07-31 David D. Bohn Projection optical system for coupling image light to a near-eye display
JP6287131B2 (ja) * 2013-12-02 2018-03-07 セイコーエプソン株式会社 虚像表示装置
JP2020512574A (ja) * 2017-02-23 2020-04-23 マジック リープ, インコーポレイテッドMagic Leap,Inc. 可変屈折力反射体を有するディスプレイシステム
KR20210053249A (ko) * 2019-11-01 2021-05-11 주식회사 레티널 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
KR102252287B1 (ko) * 2020-06-12 2021-05-14 주식회사 레티널 소형 반사부를 이용한 카메라 모듈 및 이를 이용한 증강 현실용 광학 장치
KR20210075918A (ko) * 2021-06-03 2021-06-23 주식회사 레티널 굴절 공간을 구비하는 증강 현실용 광학 장치

Also Published As

Publication number Publication date
US20240151978A1 (en) 2024-05-09
KR102563215B1 (ko) 2023-08-03
KR20210075918A (ko) 2021-06-23

Similar Documents

Publication Publication Date Title
WO2022255579A1 (ko) 굴절 공간을 구비하는 증강 현실용 광학 장치
WO2019124769A1 (en) Optical system and wearable display apparatus having the same
WO2023063555A1 (ko) 회절 소자를 이용한 콜리메이터를 구비하는 컴팩트형 증강 현실용 광학 장치
WO2023033263A1 (ko) 회절 소자를 이용한 컴팩트형 증강 현실용 광학 장치
KR102661322B1 (ko) 섬유 스캐닝 프로젝터를 위한 방법 및 시스템
WO2023128168A1 (ko) 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2021054727A1 (ko) 광 효율을 개선한 증강 현실용 광학 장치
US6204975B1 (en) Reflective micro-display system
CA2258094C (en) Compact display system with two stage magnification and immersed beam splitter
WO2020235816A1 (en) Glasses-type display apparatus
WO2016204433A1 (en) Head mounted display apparatus
WO2021085960A1 (ko) 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치
WO2009154419A2 (ko) 도트사이트 모드 및 스코프 모드 겸용 광학식 조준경
WO2020045914A1 (ko) 전반사 구조를 갖는 투과형 hmd 광학시스템
WO2023128167A1 (ko) 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치
WO2022080627A1 (ko) 직선 배치 광학 구조를 갖는 컴팩트형 증강 현실용 광학 장치 및 광학 수단의 제조 방법
WO2010114586A1 (en) Beam segmentor for enlarging viewing aperture of microdisplay
WO2020096188A1 (ko) 증강 현실용 광학 장치
WO2020004850A1 (ko) 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템
WO2023146157A1 (ko) 편광 광학 소자를 이용한 증강 현실용 광학 장치
WO2021034096A1 (ko) 시력 보정 기능을 구비하는 증강 현실용 광학 장치
EP3811144A1 (en) Glasses-type display apparatus
WO2023017923A1 (ko) 회절 소자를 이용한 증강 현실용 광학 장치
WO2018074623A1 (ko) 굴절식 광학 스크린 및 이를 이용한 플로팅 홀로그램 시스템
WO2022045707A1 (en) Augmented reality device based on waveguide with holographic diffractive grating structure and apparatus for recording the holographic diffractive grating structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21944330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550082

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21944330

Country of ref document: EP

Kind code of ref document: A1