WO2021054727A1 - 광 효율을 개선한 증강 현실용 광학 장치 - Google Patents
광 효율을 개선한 증강 현실용 광학 장치 Download PDFInfo
- Publication number
- WO2021054727A1 WO2021054727A1 PCT/KR2020/012518 KR2020012518W WO2021054727A1 WO 2021054727 A1 WO2021054727 A1 WO 2021054727A1 KR 2020012518 W KR2020012518 W KR 2020012518W WO 2021054727 A1 WO2021054727 A1 WO 2021054727A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- axis
- augmented reality
- reflecting
- optical
- pupil
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 372
- 210000001747 pupil Anatomy 0.000 claims abstract description 139
- 230000003190 augmentative effect Effects 0.000 claims description 260
- 238000000034 method Methods 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B27/0172—Head mounted characterised by optical features
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/14—Beam splitting or combining systems operating by reflection only
- G02B27/143—Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/0101—Head-up displays characterised by optical features
- G02B2027/0118—Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/01—Head-up displays
- G02B27/017—Head mounted
- G02B2027/0178—Eyeglass type
Definitions
- the present invention relates to an optical device for augmented reality, and more particularly, to an optical device for augmented reality in which the optical efficiency of augmented reality image light emitted from an image output unit and transmitted to a pupil is improved.
- Augmented Reality means providing a virtual image or image generated by a computer or the like superimposed on an actual image of the real world, as is well known.
- an optical system In order to implement such augmented reality, an optical system is required that allows a virtual image or image generated by a device such as a computer to be superimposed on an image of the real world and provided.
- a technique using optical means such as a prism for reflecting or refracting a virtual image using a head mounted display (HMD) or a glasses-type device is known.
- HMD head mounted display
- FIG. 1 and 2 show an example of an optical system used in an apparatus for implementing an augmented reality according to the prior art.
- the augmented reality image light for providing a virtual image is emitted from a display device (not shown), is reflected from the inner surface of the optical means, and then enters the eye box where the user's pupil is located.
- the configuration is used.
- the augmented reality image light emitted from the inner surface (exit pupil) of the optical means cannot enter the eye box as shown in FIG. 1 and thus unused light exists. This becomes a factor that lowers the light efficiency.
- the augmented reality image light emitted from the image output unit cannot be transmitted to the eyebox, so that the augmented reality image light acts as a factor that decreases the light efficiency transmitted to the pupil. have.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an optical device for augmented reality in which the optical efficiency of augmented reality image light transmitted to an eyebox is improved.
- the present invention is for augmented reality in which the optical efficiency of the augmented reality image light transmitted to the eyebox is improved by forming a reflection means for transmitting the augmented reality image light emitted from the image output unit to the pupil in a curved arrangement structure close to the C shape.
- Another object is to provide an optical device.
- the present invention is an augmented reality optical device with improved light efficiency, wherein the augmented reality image light corresponding to the image for augmented reality emitted from the image output unit is transmitted to the pupil of the user's eye.
- Reflecting means for providing an image for augmented reality to a user by reflecting it toward and transmitting it;
- an optical means for transmitting at least a part of the actual object image light, which is the image light emitted from the actual object, toward the pupil of the user's eye, wherein the reflecting means is buried and disposed, wherein the optical means is reflected by the reflecting means.
- At least a portion of the augmented reality image light and the actual object image light is provided with a first surface that is emitted toward the pupil of the user, and a second surface facing the first surface and the actual object image light is incident, and the reflecting means, Includes a plurality of reflectors with a size of 4 mm or less and disposed inside the optical means so as to reflect each of the augmented reality image light transmitted to the reflecting means and transmit them to the pupil of the user, and reflect at least two of the plurality of reflecting parts
- the units provide an optical device for augmented reality with improved light efficiency, characterized in that as the distance from the image output unit increases, closer to the second surface of the optical means.
- the image light for augmented reality emitted from the image output unit may be directly transmitted to the reflecting unit through the interior of the optical unit or may be totally reflected at least once on the inner surface of the optical unit and then transmitted to the reflecting unit. have.
- each of the plurality of reflectors has an angle of at least 45 degrees or less with respect to the front direction from the center of the pupil of the user.
- the reflecting means is composed of a plurality, and when the augmented reality optical device is placed in front of the user's pupil, the front direction from the pupil is referred to as the x-axis, and along the x-axis with respect to a vertical line between the image output unit and the x-axis.
- the plurality of reflecting means is the z They can be arranged at intervals parallel to each other along the axial direction.
- each of the reflecting means may be arranged so that each of the reflecting units constituting each reflecting unit is positioned along an imaginary straight line parallel to the z-axis and any one of the reflecting units constituting the adjacent reflecting unit.
- each of the reflecting means may be arranged so that each reflecting unit constituting each reflecting unit is not positioned along an imaginary straight line parallel to the z-axis with all reflecting units constituting the adjacent reflecting unit.
- the front direction from the pupil is referred to as the x-axis, and parallel to the x-axis with respect to the vertical line between the image output unit and the x-axis, the first surface of the optical means and the
- the plurality of reflective parts are formed in a bar shape extending along the z-axis direction. Can be formed.
- At least some of the reflective parts may have different sizes.
- the spacing of at least some of the reflecting parts may be arranged so as to be different from the spacing of other reflecting parts.
- At least some of the reflective parts may be formed of at least one of a half mirror, a refractive element, and a diffractive element.
- At least some of the reflectors may be coated with a material that absorbs light without reflecting light on a surface opposite to the surface that reflects the augmented reality image light.
- At least some of the reflective portions may have a curved surface.
- the curved surface may be formed as a concave surface that is concave toward the first surface of the optical means or a convex surface that is convex toward the first surface of the optical means.
- the front direction from the pupil is referred to as the x-axis, and parallel to the vertical line between the image output part and the x-axis, and between the first and second surfaces of the optical means.
- the x-axis the front direction from the pupil
- the y-axis the line segment orthogonal to the x-axis and the y-axis
- the z-axis at least some of the reflecting units have a length in the z-axis direction than a length in the x-axis direction. It may be formed to be longer, or may be formed to be longer in the y-axis direction than in the z-axis direction.
- the surface of the reflective portions formed with a length in the z-axis direction longer than the length in the x-axis direction or the reflective portions formed with a length in the y-axis direction longer than the length in the z-axis direction may be a first surface of the optical means. It may be formed as a concave surface that is concave toward the side or a convex surface that is convex toward the first surface of the optical means.
- the augmented reality image light which is image light corresponding to the augmented reality image emitted from the image output unit, is reflected toward the pupil of the user's eye and transmitted.
- Reflecting means for providing an image for augmented reality to a user by doing so;
- an optical means for transmitting at least a part of the actual object image light, which is the image light emitted from the actual object, toward the pupil of the user's eye, wherein the reflecting means is buried and disposed, wherein the optical means is reflected by the reflecting means.
- At least a portion of the augmented reality image light and the actual object image light is provided with a first surface that is emitted toward the pupil of the user, and a second surface facing the first surface and the actual object image light is incident, and the reflecting means,
- a plurality of reflecting units having a size of 4 mm or less are embedded and disposed within the optical unit to reflect each of the augmented reality image light transmitted to the reflecting unit and transmit it to the pupil of the user, and the reflecting unit includes: A first reflecting unit group consisting of reflective units embedded and disposed in the optical unit so as to be closer to the first surface of the optical unit as the distance of is greater, and the optical unit as the distance from the image output unit is further And a second reflecting unit group consisting of reflective units embedded and disposed in the optical means so as to be further away from the first surface of the optical unit, and the distance between the second reflecting unit group and the image emitting unit is the first reflecting unit group It provides an optical device for augmented reality, characterized in that arranged to be greater than the distance of the image output unit.
- the augmented reality image light emitted from the image emitting unit may be directly transmitted to the reflecting unit through the interior of the optical unit or may be totally reflected at least once on the inner surface of the optical unit and then transmitted to the reflecting unit. have.
- each of the plurality of reflectors has an angle of at least 45 degrees or less with respect to a straight line from the center of the pupil of the user to the front direction.
- the reflecting means is composed of a plurality, and when the augmented reality optical device is placed in front of the user's pupil, the front direction from the pupil is referred to as the x-axis, and along the x-axis with respect to a vertical line from the image output portion to the x-axis.
- the plurality of reflecting means is the z They can be arranged at intervals parallel to each other along the axial direction.
- each of the reflecting means may be arranged so that each of the reflecting units constituting each reflecting unit is positioned along an imaginary straight line parallel to the z-axis and any one of the reflecting units constituting the adjacent reflecting unit.
- each of the reflecting means may be arranged so that each reflecting unit constituting each reflecting unit is not positioned along an imaginary straight line parallel to the z-axis with all reflecting units constituting the adjacent reflecting unit.
- the front direction from the pupil is referred to as the x-axis, and parallel to the x-axis with respect to the vertical line from the image output portion to the x-axis, the first surface of the optical means and the
- the plurality of reflective portions are along an imaginary straight line parallel to the z-axis. It may be formed in an elongated bar shape.
- At least some of the plurality of reflective parts may be formed of at least one of a half mirror, a refractive element, and a diffractive element.
- At least some of the plurality of reflectors may be coated with a material that absorbs light without reflecting light on a surface opposite to the surface that reflects the augmented reality image light.
- At least a portion of the surface of the plurality of reflective portions may be formed as a curved surface.
- the front direction from the pupil is referred to as the x-axis, and parallel to the x-axis with respect to the vertical line from the image output portion to the x-axis, the first surface of the optical means and the
- the y-axis any one of the line segments passing between the second planes
- the line segment orthogonal to the x-axis and the y-axis is referred to as the z-axis
- at least some of the plurality of reflective portions are in the x-axis or y-axis direction.
- the length in the z-axis direction may be longer than that in the z-axis direction, or the length in the x-axis or y-axis direction may be longer than the length in the z-axis direction.
- the surfaces of the reflecting portions may be formed as concave surfaces that are concave toward the first surface of the optical means or convex surfaces that are convex toward the first surface of the optical means.
- the reflecting means is composed of a plurality, and when the augmented reality optical device is placed in front of the user's pupil, the front direction from the pupil is referred to as the x-axis, and along the x-axis with respect to a vertical line from the image output portion to the x-axis.
- the y-axis When one of the line segments that are parallel and passing between the first and second surfaces of the optical means is referred to as the y-axis, and the line segment orthogonal to the x-axis and the y-axis is referred to as the z-axis, each of the reflecting means and the optical means At least one reflective means may be disposed such that the distances from the first surface are not all the same.
- an augmented reality optical device capable of improving the optical efficiency of augmented reality image light transmitted to an eyebox.
- the augmented reality image light transmitted to the eyebox has improved light efficiency. It is possible to provide an optical device for reality.
- FIG. 1 and 2 show an example of an optical system used in an apparatus for implementing an augmented reality according to the prior art.
- FIG. 3 is a diagram showing an optical device 100 for augmented reality as disclosed in Patent Document 1.
- FIG 4 is a view showing an augmented reality optical device 200 with improved light efficiency according to the first embodiment of the present invention.
- 5 is a diagram for explaining an arrangement structure of the reflective parts 21 to 29.
- FIGS. 4 to 5 is a perspective view of the augmented reality optical device 200 described in FIGS. 4 to 5.
- FIG 10 and 11 are views for explaining the overall operation of the augmented reality optical device 200 according to the first embodiment of the present invention.
- FIG. 12 is a diagram showing the configuration of an augmented reality optical device 300 according to a modified example of the first embodiment of the present invention.
- FIG. 13 is a diagram showing the configuration of an augmented reality optical device 400 according to another modified embodiment of the first embodiment of the present invention.
- FIG. 14 is a diagram showing the configuration of an augmented reality optical device 500 according to another modified embodiment of the first embodiment of the present invention.
- 15 is a view for explaining that the surfaces of the reflecting portions 21 to 29 are formed in a curved surface.
- 16 is a view showing still another example of the curved shape of the reflecting portions 21 to 29.
- FIG. 17 is a diagram showing an optical device 600 for augmented reality according to a second embodiment of the present invention.
- FIG. 18 is a view for explaining an arrangement structure of the reflectors 21 to 29 described in FIG. 17.
- FIG. 19 is a perspective view of an augmented reality optical device 600 according to a second embodiment of the present invention.
- FIG 20 is a view for explaining the effect of the arrangement structure of the reflective units 21 to 29 of the augmented reality optical device 600 according to the second embodiment of the present invention.
- 21 to 23 are views for explaining the number of times the augmented reality image light is totally reflected by the optical means 30.
- 24 and 25 are views for explaining the overall operation of the optical device 600 for augmented reality.
- 26 is a diagram showing the configuration of an augmented reality optical device 700 according to a modified example of the second embodiment of the present invention.
- FIG. 27 is a diagram showing the configuration of an augmented reality optical device 800 according to still another modified example of the second embodiment of the present invention.
- FIG. 28 is a diagram showing the configuration of an augmented reality optical device 900 according to another modified example of the second embodiment of the present invention.
- 29 to 31 are views for explaining an augmented reality optical device 1000 according to another modified embodiment of the second embodiment of the present invention.
- FIG. 32 shows an optical device 1100 for augmented reality according to another modified embodiment of the second embodiment of the present invention.
- FIG 33 shows an augmented reality optical device 1200 according to another modified embodiment of the second embodiment of the present invention.
- FIG 34 shows an augmented reality optical device 1300 according to another modified embodiment of the second embodiment of the present invention.
- Patent Document 1 The technique described in Patent Document 1 as the prior art is to solve the problems of the apparatus for implementing an augmented reality using an existing optical system as follows.
- the conventional apparatus for implementing augmented reality is to solve the problem that the configuration is complicated and the weight and volume are increased, so that it is inconvenient for the user to wear it, and the manufacturing process is also complicated, so that the manufacturing cost is high.
- the conventional augmented reality implementation apparatus has a limitation in that the virtual image is out of focus when the user changes the focal length when gazing at the real world.
- a configuration such as a prism capable of adjusting the focal length of the virtual image is used, or a variable focal lens capable of changing the focal length of the virtual image according to the change of the focal length of the real world is electrically used.
- Techniques such as controlling have been proposed.
- this technology also has a problem in that a user needs to perform a separate operation or hardware and software such as a separate physical device or processor are required to adjust the focal length of the virtual image.
- the applicant of the present invention can significantly reduce the volume and weight and simplify the manufacturing process by projecting a virtual image onto the retina through the pupil using a reflector having a size smaller than that of a human pupil through Patent Document 1,
- a device for implementing an augmented reality that can always provide a clear virtual image regardless of whether or not the focal length of is changed has been proposed.
- FIG. 3 is a diagram showing an optical device 100 for augmented reality as disclosed in Patent Document 1 above.
- the optical device 100 for augmented reality in FIG. 3 includes an image output section 10, a reflective section 20, and an optical means 30.
- the image output unit 10 is a means for emitting augmented reality image light corresponding to an image for augmented reality, and may be implemented as, for example, a small display device.
- the reflection unit 20 provides an image for augmented reality to the user by reflecting the augmented reality image light emitted from the image output unit 10 toward the user's pupil.
- the reflecting unit 20 has an optical means 30 having an appropriate angle between the image output unit 10 and the pupil so that the image light corresponding to the augmented reality image emitted from the image output unit 10 can be reflected to the pupil. ) It is buried and placed inside.
- the optical means 30 is a means for transmitting at least a part of the actual object image light, which is the image light emitted from the actual object, and may be, for example, a spectacle lens, and a reflection part 20 is embedded in the optical means 30.
- the frame portion 40 is a means for fixing and supporting the image output portion 10 and the optical means 30, for example, may be formed in the form of glasses.
- the reflective part 20 of FIG. 3 is formed to have a size smaller than the average pupil size of a person, that is, 8 mm or less, and by forming the reflective part 20 to be smaller than the average pupil size of a person, the reflective part 20 ), the depth of field for light incident into the pupil can be made almost infinite, that is, the depth of field can be made very deep.
- the depth of field refers to the range recognized as being in focus.
- the focal length for an augmented reality image increases. Therefore, the focal length for the real world while the user gazes at the real world. Even if is changed, the focus of the image for augmented reality, which is a virtual image, is always recognized as being correct regardless of that. This can be seen as a kind of pin hole effect.
- the augmented reality optical device 100 as shown in FIG. 3 can always provide a clear virtual image for an augmented reality image even if the user gazes at a real object existing in the real world and changes the focal length. .
- the present invention is characterized by providing an optical device for augmented reality based on the technology as described in Patent Document 1, hereinafter, an optical device for augmented reality with improved optical efficiency according to the present invention with reference to FIG. 200-1300) will be described in detail.
- FIG 4 is a view showing an augmented reality optical device 200 with improved light efficiency according to the first embodiment of the present invention.
- an augmented reality optical device 200 (hereinafter, simply referred to as "augmented reality optical device 200") with improved optical efficiency includes a reflecting means 20 and an optical means 30 do.
- the image output unit 10 is a means for emitting augmented reality image light, which is an image light corresponding to an augmented reality image, toward the optical means 30, for example, by displaying an augmented reality image on the screen. It may be composed of a display device 11 such as a small LCD that emits light and a collimator 12 that emits light collimated with the augmented reality image light emitted from the display device 11.
- a display device 11 such as a small LCD that emits light
- a collimator 12 that emits light collimated with the augmented reality image light emitted from the display device 11.
- the collimator 12 is not essential and can be omitted.
- a combination of at least one of a collimator 12 and a reflecting means, a refraction means, or a diffraction means for reflecting, refracting or diffracting the augmented reality image light emitted from the display device 11 and transmitting it toward the optical means 30 It is also possible to use a variety of other optical elements composed of.
- the image output unit 10 itself is not a direct object of the present invention and is known by the prior art, and thus a detailed description thereof will be omitted.
- the augmented reality image is a virtual image displayed on the screen of the display device 11 of the image output unit 10 and transmitted to the user's pupil 40 through the reflecting means 20 and optical means 30. It refers to an image, and may be a still image in the form of an image or a moving image.
- This augmented reality image is emitted from the image output unit 10 as augmented reality image light corresponding to the augmented reality image, and is transmitted to the user's pupil 40 through the reflecting means 20 and optical means 30.
- a virtual image is provided to the user, and at the same time, the user is provided with an augmented reality service by directly receiving the real object image light, which is the image light emitted from the real object existing in the real world, through the optical means 30. .
- the image output unit 10 is disposed at the position as shown in FIG. 4, but this is exemplary, and total reflection
- the image output unit 10 is disposed at an appropriate position for transmitting the augmented reality image light to the reflecting means 20 through the optical means 30.
- the image output unit 10 may be disposed at an appropriate position in consideration of the position, angle, and position of the pupil 40 of the reflecting means 20 to be described later.
- the reflecting means 20 reflects and transmits the augmented reality image light corresponding to the augmented reality image emitted from the image output unit 10 toward the pupil 40 of the user's eyes, thereby delivering a virtual image for augmented reality to the user. It is a means of providing an image.
- the reflecting means 20 is composed of a plurality of reflecting portions 21 to 29, and reference numeral 20 refers to the entirety of the plurality of reflecting portions 21 to 29.
- such a reflecting means 20 is embedded and disposed inside the optical means 30. As shown in FIG. 4, such a reflecting means 20 is embedded and disposed inside the optical means 30. As shown in FIG. 4, such a reflecting means 20 is embedded and disposed inside the optical means 30. As shown in FIG. 4, such a reflecting means 20 is embedded and disposed inside the optical means 30. As shown in FIG. 4, such a reflecting means 20 is embedded and disposed inside the optical means 30. As shown in FIG.
- the optical means 30 includes a first surface 31 through which at least a part of the augmented reality image light reflected from the reflecting means 20 and the actual object image light is emitted toward the pupil 40 of the user, A second surface 32 facing the first surface 31 and on which the image light of an object is incident is provided, and the reflecting means 20 includes the first surface 31 and the second surface of the optical means 30. (32) are placed buried in the interior space between.
- the first surface 31 of the optical means 30 becomes a surface facing the user's pupil 40 when the user places the augmented reality optical device 200 in front of the pupil 40
- the second The surface 32 becomes the opposite surface, that is, a surface facing the object in the real world
- the reflecting means 20 is an internal space between the first surface 31 and the second surface 32 of the optical means 30 Is placed in
- the augmented reality image light emitted from the image output unit 10 is totally reflected once on the inner surface of the optical unit 30 and then transmitted to the reflecting unit 20, but this is an example
- the augmented reality image light emitted from the image output unit 10 without using total reflection is directly transmitted to the reflecting unit 20 through the interior of the optical unit 30 or at least 1 from the inner surface of the optical unit 30 After being totally reflected more than once, it may be transmitted to the reflecting means 20.
- the augmented reality image emitted from the image output unit 10 When the augmented reality image light is totally reflected at least once or more on the inner surface of the optical means 30, and the number of total reflections is an even number (2n, n are natural numbers), the augmented reality image emitted from the image output unit 10 As shown in FIG. 4, the light does not first enter the second surface 32 of the optical means 30, but enters toward the first surface 31 and then the second surface 32 and the first surface 31 After total reflection 2n times between, it is transmitted to the reflecting means (20). Accordingly, in this case, the augmented reality image light emitted from the image output unit 10 is emitted toward the first surface 31 unlike in FIG. 4.
- the augmented reality image light is totally reflected at least once or more on the inner surface of the optical means 30, and the number of total reflections is an odd number (2n-1, n is a natural number)
- the augmented reality emitted from the image output unit 10 As shown in FIG. 4, the image light is incident toward the second surface 32 of the optical means 30 and is totally reflected 2n-1 times between the first surface 31 and the second surface 32, It is transmitted to the reflecting means 20.
- the inner surface of the optical means 30 immediately before the augmented reality image light enters the reflecting means 20 becomes the second surface 32.
- the reflecting means 20 includes a plurality of reflecting units 21 to 29, and each of the reflecting units 21 to 29 is augmented reality image light transmitted to the reflecting units 21 to 29. Each of them is appropriately disposed inside the optical means 30 in consideration of the positions of the image output unit 10 and the pupil 40 so as to be transmitted to the pupil 40 of the user.
- FIG. 4 a configuration in which the augmented reality image light emitted from the image output unit 10 is totally reflected once on the second surface 32 of the optical means 30 and transmitted to the reflection units 21 to 29.
- the augmented reality image light incident from the image output unit 10 to the second surface 32 of the optical means 30 is totally reflected from the second surface 32 and is emitted to the reflecting units 21 to 29.
- the inclination angles of the reflectors 21 to 29 are appropriately arranged.
- each of the reflective parts 21 to 29 has a size smaller than the size of a human pupil, that is, 8 mm or less, and more preferably 4 mm to obtain a pinhole effect by deepening the depth as described above with reference to FIG. 3. It is preferably formed as follows.
- each of the reflective parts 21 to 29 is formed to have a size smaller than that of the general pupil size of a person, that is, 8 mm or less, more preferably 4 mm or less, thereby entering the pupil through each of the reflecting parts 21 to 29
- the depth of field for the light can be made close to infinity, i.e., the depth of field can be very deep, so even if the user changes the focal length to the real world while gazing at the real world, the image for augmented reality The focus can create a pin hole effect that makes you perceive it as always right.
- each of the reflective parts 21 to 29 is defined to mean the maximum length between any two points on the edge boundary of each reflecting part 21 to 29.
- each of the reflective parts 21 to 29 is perpendicular to the straight line between the pupil 40 and the reflecting parts 21 to 29 and is formed on a plane including the center of the pupil 40.
- each of the reflecting parts 21 to 29 is totally reflected from the second surface 32 of the optical means 30. It should be arranged so as not to block the image light from being transmitted to the other reflecting units 21 to 29.
- at least two of the plurality of reflecting units 21 to 29, at least two or more reflecting units 25 to 29 are, as the distance from the image output unit 10 increases, the second surface of the optical means 30 It is placed closer to (32).
- at least two of the plurality of reflecting portions 21 to 29, at least two of the reflecting portions 25 to 29, the first surface 31 of the optical means 30 as the distance from the image emitting portion 10 increases. ) that is, it means that it is disposed to be further away from the pupil (40).
- the second surface 32 of the optical means 30 is formed in a curved surface or is disposed at an inclined angle with respect to the pupil 40, at least two or more of the reflecting units 21 to 29 It means that the (25 to 29) are arranged closer to the second surface 32 of the optical means 30 as the distance from the image output unit 10 is greater, the greater the distance from the image output unit 10 is, the pupil It means that there are at least two reflective parts (25 to 29) whose distance from the straight line from (40) to the front direction is closer to the plane perpendicular to the point where the second surface (32) of the optical means (30) meets. do.
- 5 is a diagram for explaining an arrangement structure of the reflective parts 21 to 29.
- the reflective parts 21 to 29 are buried between the first surface 31 and the second surface 32 of the optical means 30, and the optical means 30 may be viewed from the side.
- the reflective parts 21 to 24 have the same distance from the second surface 32 of the optical means 30, but the reflecting parts 25 to 29 have the same distance from the image output part 10, the more optical means It is arranged closer to the second side 32 of (30).
- the reflecting units 21 to 24 are arranged such that a virtual line connecting the center thereof forms a straight line parallel to the second surface 32, and the reflecting unit (25 ⁇ 29) are arranged so that the virtual line connecting the center forms a curved line. That is, the reflective parts 21 to 24 are disposed along a straight line, and the reflective parts 25 to 29 are disposed along a curve.
- FIG. 5 it is shown that the four reflecting units 21 to 24 are arranged along a straight line and the five reflecting units 25 to 29 are arranged along a curve, but this is exemplary, and reflection of straight and curved arrangements It goes without saying that the number of each part can be changed according to the use case. In addition, all of the reflective parts 21 to 29 may be arranged along a curve.
- a straight line or a curved line is a shape in a two-dimensional plane when viewed from the side of the optical means 30, but the image output portion 10 is located on the upper part of the pupil 40 as shown in FIG.
- the reflective portions 21 to 29 may be arranged along a straight line or a curve in a two-dimensional plane when viewed from the upper or lower surface of the optical means 30.
- FIGS. 4 to 5 is a perspective view of the augmented reality optical device 200 described in FIGS. 4 to 5.
- the augmented reality optical device 200 when the augmented reality optical device 200 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and between the image output unit 10 and the x-axis.
- Any one of the line segments passing between the first side 31 and the second side 32 of the optical means 30 while being parallel along the x-axis with respect to the vertical line of is referred to as the y-axis, and is orthogonal to the x-axis and the y-axis.
- the line segment is referred to as the z-axis
- the reflective parts 21 to 29 appear as shown in FIG. 5.
- At least two of the plurality of reflecting units 21 to 29, at least two of the reflecting units 25 to 29, are The further the distance is, the closer to the second side 32 of the optical means 30 in the inner space between the first side 31 and the second side 32 of the optical means 30.
- the plurality of reflectors 21 to 29 are included in any one plane perpendicular to the z-axis when the optical means 30 is viewed from the outside toward a plane perpendicular to the z-axis. Can be placed inside.
- the reflective portions 21 to 24 are disposed close to the first surface 31 of the optical means 30.
- the second surface 32 is the surface on which the image light of the actual object is incident, as described above, and this is the surface where the image light of the augmented reality is finally incident immediately before entering the reflectors 21 to 29 when the total reflection structure is used. It becomes the side that is totally reflected by.
- the reflective parts 25 to 29 are arranged in a curved shape so as to be closer to the second surface 32 side of the optical means 30 as it goes downward. That is, the reflecting portions 25 to 29 are disposed closer to the second surface 32 as the distance from the image emitting portion 10 increases.
- FIG. 7A shows that the reflective parts 21 to 29 have the same structure as described in FIGS. 4 to 6, that is, some of the reflecting parts 21 to 29 (25 to 29) are at a distance from the image output unit 10. The farther it is, the closer it is to the second surface 32, and FIG. 7(b) shows the case where all the reflecting parts 21 to 29 are arranged in a straight line, that is, all the reflecting parts 21 to 29 It shows a case where they are arranged to have the same distance as the second surface 32 regardless of the distance from the image output unit 10.
- all of the reflecting parts 21 to 29 are arranged along a straight line in a direction perpendicular to the front direction in the pupil 40 (that is, all the reflecting parts 21 to 29 are Regardless of the distance from the part 10, since the distance with the second surface 32 of the optical means 30 is the same), in this case, the optical means 30 in the lower reflecting parts 28 and 29 It can be seen that the augmented reality image light totally reflected from the second surface 32 of is not properly reached.
- the reflection units 25 to 29 are disposed closer to the second surface 32 of the optical means 30 as the distance from the image output unit 10 increases. Therefore, it can be seen that the augmented reality image light totally reflected from the second surface 32 of the optical means 30 is transmitted to all of the reflecting units 21 to 29.
- the reflective units 21 to 29 are arranged inclined with an appropriate inclination angle to reflect each of the augmented reality image light transmitted to the reflecting units 21 to 29 and transmit them to the pupil 40 of the user.
- Each of the reflective parts 21 to 29 is disposed to have an inclination angle of at least 45 degrees or less with respect to the front direction from the center of the pupil 40 of the user.
- the reflector 21 is disposed to be inclined to have an inclination angle ⁇ with respect to the front direction of the center of the user's pupil 40, and this inclination angle is preferably 45 degrees or less. This is because when the inclination angle ⁇ of the reflecting unit 21 is 45 degrees or more, the augmented reality image light incident on the reflecting unit 21 cannot be properly transmitted in the direction of the pupil 40.
- FIG. 9A shows the case where the inclination angle ⁇ of the reflector 20 is 45 degrees or less
- FIG. 9B shows the case where the inclination angle ⁇ exceeds 45 degrees, respectively.
- the inclination angle ⁇ of the reflective part 20 is formed to be 45 degrees or less.
- the second surface 32 (input surface) of the optical means 30 It can be seen that the total reflected augmented reality image light converges to the pupil 40 through the reflector 20.
- the dotted line displayed on the outside of the second surface 32 of the optical means 30 is totally reflected from the second surface 32 of the optical means 30 and is incident on the reflective unit 20. It is shown by extending the image light to the outside of the second surface 32 of the optical means 30, and this dotted line can be seen that it meets at a point outside the second surface 32 of the optical means 30, which is reflected It means that the augmented reality image light transmitted to the pupil 40 through the unit 20 converges to the pupil 40.
- FIG. 9 exemplarily shows a case where the augmented reality image light is totally reflected once on the second surface 32 of the optical means 30, but the same applies to the case where total reflection is not used or two or more total reflections are used.
- the image output section 10 is located on the extension line of the second side 32 side of the line connecting the second side 32 and the reflective section 20 of the optical means 30, Likewise in this case, the reflector 20 has an angle of at least 45 degrees or less with respect to the front direction from the center of the pupil 40 of the user.
- the optical means 30 is a means in which the reflective parts 21 to 29 are buried and disposed, and transmits at least a part of the actual object image light, which is the image light emitted from the actual object, toward the pupil 40 of the user's eye.
- the fact that at least a part of the image light of the real object is transmitted toward the pupil 40 means that the light transmittance of the image light of the real object does not necessarily have to be 100%.
- the optical means 30, as described above, directly transmits the image light for augmented reality emitted from the image output section 10 to the reflecting sections 21 to 29 through the interior of the optical means 30 or optically After total reflection at least once on the inner surface of the means 30 is transmitted to the reflectors 21 to 29.
- the optical means 30 includes a first surface 31 through which at least a part of the augmented reality image light and the actual object image light reflected from the reflecting units 21 to 29 are emitted toward the pupil of the user, and the It has a second surface 32 facing the first surface 31 and on which the image light of an object is incident, and the reflective parts 21 to 29 are inside between the first surface 31 and the second surface 32 Is placed in the landfill.
- the optical means 30 may be formed of a lens made of glass or plastic material and other synthetic resin material, and may have various refractive indices and transparency.
- first surface 31 and the second surface 32 of the optical means 30 are shown to be parallel to each other, this is exemplary and may be configured not to be parallel to each other.
- first surface 31 and the second surface 32 of the optical means 30 may be formed as a curved surface. That is, either the first surface 31 or the second surface 32 may be a curved surface, and both the first surface 31 and the second surface 32 may be formed as a curved surface.
- the curved surface may be a concave surface or a convex surface
- the concave surface means that the central part is formed thinner than the edge part when the surface is viewed from the front, and the convex surface is a corresponding surface. When viewed from the front, it means that the central part is formed thicker than the edge part and protrudes convexly.
- FIGS. 4 to 9 are diagrams for explaining the overall operation of the augmented reality optical device 200 according to the embodiment described with reference to FIGS. 4 to 9, in the case of using the total reflection structure as shown in FIG. 4 For.
- reflective parts 21 to 23 are used, in Fig. 10(b) reflective parts 22 to 24 are used, and in Fig. 10(c), reflective parts 23 to 25 are used. And, they convey the augmented reality image light to the eye box in correspondence with the incident angle of the optical path of the augmented reality image light, that is, the exit angle of the optical path of the augmented reality image light emitted from the image output unit 10. Able to know.
- the eye box can be viewed as the largest space in which the user's pupil 40 can be located in viewing the augmented reality image light as it is emitted from the image output unit 10, and the optical means 30
- the second surface 32 of) acts as an input surface, and the augmented reality image light totally reflected from the input surface is all emitted in the direction of the eyebox through the reflectors 21 to 25.
- FIG. 11 is a view showing the augmented reality image light shown in FIGS. 10A, 10B, and 10C, and the augmented reality image light emitted from the image output unit 10 is an input pupil. It is incident through the upper portion of the optical means 30 functioning as, is totally reflected through the second surface 32 of the optical means 30, is reflected through the reflecting unit 20, and then into the exit pupil. It can be seen that it is transmitted to an eye box through the first side 31 of the optical means 30 acting on it.
- the distance between the eye box where the pupil 40 can be located and the optical means 30 is an eye relief.
- the augmented reality image light emitted from the image output unit 10 and totally reflected on the input surface of the optical means 30 is the inclination angle structure and arrangement structure of the reflecting unit 20 as described above. It can be seen that the light efficiency of the augmented reality image light can be remarkably improved since all are transmitted toward the eye box.
- FIG. 12 is a diagram showing the configuration of an augmented reality optical device 300 according to a modified example of the first embodiment of the present invention.
- the augmented reality optical device 300 of the embodiment of FIG. 12 has the same basic configuration as the augmented reality optical device 200 of the embodiment described with reference to FIGS. 4 to 11, but a plurality of reflectors 21 to 29 It is characterized in that a plurality of reflective means 20 are formed.
- the plurality of reflecting means 20 has the following arrangement structure. That is, as described above, when the augmented reality optical device 300 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and the image output unit 10 and the x-axis Any one of the line segments passing between the first side 31 and the second side 32 of the optical means 30 while being parallel along the x-axis with respect to the vertical line between them is referred to as the y-axis, and is orthogonal to the x-axis and the y-axis.
- the plurality of reflecting means 20 may be arranged at intervals parallel to each other along the z-axis direction.
- FIG. 13 is a diagram showing the configuration of an augmented reality optical device 400 according to another modified embodiment of the first embodiment of the present invention.
- the augmented reality optical device 400 of the embodiment of FIG. 13 includes a plurality of reflecting means 20, like the augmented reality optical device 300 of the embodiment described in FIG. 12, but each reflecting means 20, Each of the reflecting units 21 to 29 constituting each reflecting unit 20 is along an imaginary straight line parallel to the z-axis with all reflecting units 21 to 29 constituting the adjacent reflecting unit 20 It characterized in that it is arranged so as not to be located.
- each of the reflecting parts 21 to 29 of the first reflecting means 20 are all reflecting parts 21 to 29 of the second reflecting means 20 It can be seen that they are arranged so that they are not located along an imaginary straight line parallel to the field and the z-axis.
- the reflective parts 21 to 29 of the first reflecting means 20 and the reflecting parts 21 to 29 of the second reflecting means 20 are aligned along a straight line parallel to the z-axis when viewed from the z-axis direction. It can be seen that they are not and are arranged in a staggered manner.
- FIG. 14 is a diagram showing the configuration of an augmented reality optical device 500 according to another modified embodiment of the first embodiment of the present invention.
- the augmented reality optical device 500 of the embodiment of FIG. 14 is basically the same as the augmented reality optical device 200 of the embodiment described with reference to FIGS. It is characterized in that it is formed in a bar shape extending in the axial direction.
- the augmented reality optical device 500 when the augmented reality optical device 500 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and the image output unit 10 and the x-axis Any one of the line segments passing between the first side 31 and the second side 32 of the optical means 30 while being parallel along the x-axis with respect to the vertical line between them is referred to as the y-axis, and is orthogonal to the x-axis and the y-axis.
- the line segment is referred to as the z-axis
- the plurality of reflective portions 21 to 29 are formed in a bar shape extending along the z-axis direction.
- each of the reflecting portions 21 to 29 is preferably formed to be 4 mm or less.
- each of the reflecting portions 21 to 29 may have different sizes. Even in this case, the size of each of the reflecting portions 21 to 29 is preferably formed to be 4 mm or less as described above.
- the reflective parts 21 to 29 are disposed at the same interval, but the spacing of at least some of the reflecting parts 21 to 29 may be arranged so that the spacing of the other reflecting parts 21 to 29 is different from that of the other reflecting parts 21 to 29. have.
- each of the reflecting units 21 to 29 may be configured by means such as a half mirror that partially reflects light.
- At least a part of the reflecting portions 21 to 29 may be formed of a refractive element or diffractive element other than the reflecting means.
- At least a portion of the reflective parts 21 to 29 may be formed of an optical element such as a notch filter that selectively transmits light according to a wavelength.
- At least some of the reflective parts 21 to 29 may be coated with a material that absorbs light without reflecting light on a surface opposite to the surface that reflects the augmented reality image light.
- the reflective portions 21 to 29 may have a curved surface.
- the curved surface may be a concave surface or a convex surface.
- 15 is a diagram for explaining that the surfaces of the reflecting portions 21 to 29 are formed in a curved surface, and only one reflecting portion 21 is shown for convenience of description.
- the surface of the reflective part 21 is formed as a curved surface, and in this case, the surface formed as a curved surface may be formed as a convex surface that is convex toward the first surface 31 of the optical means 30. have.
- a reflective part 21 having a convex surface convex toward the first surface 31 is shown, but this is exemplary and the reflective part 21 is formed to have a concave concave surface toward the first surface 31. May be.
- 16 shows another example of the curved shape of the reflecting units 21 to 29, and only one reflecting unit 21 is shown for convenience of description.
- the reflective part 21 of FIG. 16 is formed in a curved surface, and when the reflective part 21 is placed in front of the user's pupil, the front direction from the pupil is referred to as the x-axis, and between the image output part 10 and the x-axis.
- Any one of the line segments that pass between the first side 31 and the second side 32 of the optical means 30 while being parallel to the vertical line along the x axis is referred to as the y axis, and a line segment orthogonal to the x axis and the y axis
- the length in the z-axis direction is formed longer than the length in the x-axis direction of the reflector 21.
- the reflection part 21 of FIG. 16 is formed to extend in a bar shape in the z-axis direction from the inner surface of the optical means 30, so that the length of the reflective part 21 of a cylindrical shape as a whole is It is characterized in that it is formed in a shape cut in the direction.
- the reflector 21 of FIG. 16 has a length in the z-axis direction longer than the length in the x-axis direction, and is formed as a convex surface that is convex toward the first surface 31 of the optical means 30. You can see that it is done.
- the reflective part 21 has a bar shape that extends in the z-axis direction, but may be formed to have a bar shape that extends in the y-axis direction, that is, the length in the y-axis direction is longer than the length in the z-axis direction. .
- the reflecting part 21 of FIG. 16 is formed in a form in which the overall cylindrical shape is cut in the length direction, it has a rectangular shape when the reflecting part 21 is viewed in the y-axis direction, but this is exemplary, and the y-axis direction When viewed from, the reflective part 21 may be formed to have other shapes, such as a circle, a triangle, and a square as a whole. In addition, the reflective part 21 may be formed in an elliptical shape having a long axis in the x-axis direction when viewed from the y-axis direction.
- a reflective part 21 having a convex surface convex toward the first surface 31 of the optical means 30 is shown, but this is exemplary, and reflects it so as to have a concave surface concave toward the first surface 31. It goes without saying that the part 21 may be formed.
- the reflective part 20 described in the embodiment of FIG. 14 may be formed in the shape as shown in FIG. 16.
- the reflective part 20 of FIG. 14 extends entirely along the z-axis direction inside the optical means 30 and is formed in a single bar shape, but the reflecting part 21 of FIG. 16 is a bar shape of FIG. It can be seen that is formed by dividing.
- FIG. 17 is a diagram showing an optical device 600 for augmented reality according to a second embodiment of the present invention.
- the augmented reality optical device 600 of the second embodiment of FIG. 17 has the same basic configuration as the first embodiment described in FIG. 4, but the arrangement structure of the reflecting units 21 to 29 constituting the reflecting means 20 There is only a difference.
- the reflecting means 20 of the augmented reality optical device 600 of the second embodiment of FIG. 17 includes a first reflecting unit group 20A including a plurality of reflecting units 21 to 24 and a plurality of reflecting units. Consisting of a second reflector group 20B including (25 to 29), the distance between the second reflector group 20B and the image emitter 10 is the first reflector group 20A and the image emitter. It is placed inside the optical means 30 so as to be larger than the distance of (10).
- the reflection portions 21 to 24 constituting the first reflection portion group 20A are closer to the first surface 31 of the optical means 30 as the distance from the image output portion 10 increases.
- the reflective portions 25 to 29 which are buried in the interior of the optical means 30 so as to be arranged, and constitute the second reflecting portion group 20B, are, as the distance from the image emitting portion 10 increases, the optical means 30 ) Is disposed to be buried in the interior of the optical means 30 so as to be further away from the first surface 31.
- At least one of the first surface 31 and the second surface 32 of the optical means 30 is formed in a curved surface or is not parallel to a vertical plane with respect to a straight line in the front direction from the center of the pupil 40 Since it may be formed to have an inclination angle, the further the distance from the image output unit 10 is, the closer it is to the first surface 31 of the optical means 30. As the distance of is greater, it means that it is disposed closer to the vertical plane existing between the first surface 31 and the pupil 40 as a vertical plane with respect to a straight line in the front direction from the pupil 40.
- the further the distance from the image output unit 10 is, the further away from the first surface 32 of the optical means 30 is, the further the distance from the image output unit 10 is from the pupil 40.
- a plane perpendicular to a straight line in the front direction it means that it is disposed to be located farther from the vertical plane existing between the first surface 31 and the pupil 40.
- FIG. 18 is a view for explaining an arrangement structure of the reflectors 21 to 29 described in FIG. 17.
- the reflecting means 20 is composed of a first reflecting unit group 20A and a second reflecting unit group 20B, and the first reflecting unit group 20A includes a plurality of reflective units.
- the portions 21 to 24 are included, and the second reflecting unit group 20B includes a plurality of reflecting units 25 to 29, respectively.
- the plurality of reflecting units 21 to 24 constituting the first reflecting unit group 20A and the plurality of reflecting units 25 to 29 constituting the second reflecting unit group 20B are It is buried in the inner space between the first side 31 and the second side 32, and when the center of the entire reflective parts 21 to 29 is connected with a virtual line, the overall smooth "C"-shaped curve It can be seen that it is arranged to form.
- each of the reflecting units 21 to 24 constituting the first reflecting unit group 20A is shown to have adjacent reflecting units 21 to 24 continuously configured, but this is exemplary.
- the first reflecting unit group 20A may be formed by three reflecting units 21, 25, and 27 that are not adjacent to each other. This is also the case in the case of the second reflector group 20B.
- first reflective unit group 20A and the second reflective unit group 20B may be present.
- all of the plurality of reflecting units 21 to 29 constituting the reflecting means 20 are not necessarily included in any one of the first reflecting unit group 20A and the second reflecting unit group 20B, It goes without saying that the first reflecting unit group 20A and the second reflecting unit group 20B may be formed only with some of the plurality of reflecting units 21 to 29 constituting the reflecting means 20.
- FIGS. 17 and 18 are perspective views of the augmented reality optical device 600 described in FIGS. 17 and 18.
- the augmented reality optical device 600 when the augmented reality optical device 600 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and from the image output unit 10 to the x-axis.
- Any one of the line segments passing between the first side 31 and the second side 32 of the optical means 30 while being parallel along the x-axis with respect to the vertical line of is referred to as the y-axis, and is orthogonal to the x-axis and the y-axis.
- the line segment is referred to as the z axis
- the z axis becomes a line segment passing between the first surface 31 and the second surface 32 of the optical means 30.
- the reflective parts 21 to 29 appear as shown in FIGS. 17 and 18.
- the first reflecting unit group 20A when looking at the optical means 30 or the augmented reality optical device 600 toward a plane perpendicular to the z-axis, among the plurality of reflecting units 21 to 29, the first reflecting unit group 20A is formed.
- the plurality of reflective portions 21 to 24 are embedded and disposed inside the optical means 30 so as to be closer to the first surface 31 of the optical means as the distance from the image output section 10 increases.
- the plurality of reflecting units 25 to 29 constituting the reflecting unit group 20B are separated from the first surface 31 of the optical unit as the distance from the image output unit 10 increases. It is buried inside and placed.
- the distance between the second reflector group 20B and the image emitter 10 is disposed to be greater than the distance between the first reflector group 20A and the image emitter 10, which is on the z-axis of FIG. It means that the first reflector group 20A is disposed above the second reflector group 20B when looking at the optical means 30 toward a vertical plane.
- FIG. 20 is a view for explaining the effect of the arrangement structure of the reflective units 21 to 29 of the augmented reality optical device 600 of FIGS. 17 to 19.
- FIG. 20 shows a case in which the reflective parts 21 to 29 have the arrangement structure as described in FIGS. 17 to 19, and FIG. 20(b) shows all the reflecting parts 21 to 29 in a straight line. In other words, it shows a case where all of the reflectors 21 to 29 are disposed to have the same distance as the first surface 31 regardless of the distance from the image output unit 10.
- the reflective parts 21 to 29 of the second embodiment described with reference to FIGS. 17 to 19 are also in the front direction from the center of the user's pupil 40 as in the first embodiment. It is arranged to have an angle of inclination of at least 45 degrees or less with respect to the straight line to. This is the same as previously described with reference to FIGS. 8 and 9, and thus a detailed description thereof will be omitted.
- the image light for augmented reality emitted from the image output unit 10 is not totally reflected inside the optical unit 30, but is directly transmitted to the reflecting units 21 to 29, or After being totally reflected at least once on the inner surface, it may be transmitted to the reflectors 21 to 29.
- 21 to 23 are views for explaining the number of times that the augmented reality image light is totally reflected by the optical means 30, and only three reflective units 21 to 23 are shown for convenience of explanation.
- the augmented reality image light emitted from the image emitting unit 10 is not totally reflected inside the optical means 30, but is directly transmitted to the reflecting units 21 to 23, and the reflecting units 21 to 23 It can be seen that it is reflected from and transmitted to the pupil 40.
- FIG. 22 can be seen as a case in which the optical means 30 as shown in FIG. 21 is divided into two with respect to the x-axis direction and the bisected line is the second surface 32 of the optical means 30.
- FIG. 23 is a case in which the optical means 30 as shown in FIG. 21 is divided into 3 equal parts with respect to the x-axis direction, and the side closer to the pupil 40 of the 3 equalizing lines is the second surface 32 of the optical means 30 Can be seen as.
- Figs. 21 to 23 the reflective parts 21 to 23 are shown in a form arranged in a straight line when looking at the optical means 30 toward a plane perpendicular to the z-axis, but this is merely for convenience of explanation and The same applies to the case of having the arrangement structure as described with reference to FIGS. 17 to 19.
- 24 and 25 are views for explaining the overall operation of the optical device 600 for augmented reality.
- reflective parts 21 to 23 are used
- reflective parts 22 to 24 are used
- reflective parts 23 to 25 are used. They transmit the augmented reality image light to an eye box corresponding to the incident angle of the optical path of the augmented reality image light, that is, the exit angle of the optical path of the augmented reality image light emitted from the image output unit 10.
- the eye box can be viewed as the largest space in which the user's pupil 40 can be located in viewing the augmented reality image light as it is emitted from the image output unit 10, and the optical means 30
- the first and second surfaces 31 and 32 of) act as input surfaces, and the augmented reality image light totally reflected through them is all emitted in the direction of the eyebox through the reflectors 21 to 25.
- FIG. 25 shows the augmented reality image light shown in (a), (b), and (c) of FIG. 24 together, and the augmented reality image light emitted from the image output unit 10 is an input pupil. It is incident through the upper portion of the optical means 30 functioning as, and is totally reflected twice through the first surface 31 and the second surface 32 of the optical means 30, and then reflecting portions 21 to 25 It can be seen that after being reflected through, it is transmitted to an eye box through the first surface 31 of the optical means 30 acting as an exit pupil.
- the distance between the eye box where the pupil 40 can be located and the optical means 30 is an eye relief.
- the augmented reality image light emitted from the image output unit 10 and totally reflected on the first surface 31 and the second surface 32 of the optical means 30 is as described above. It can be seen that the light efficiency of the augmented reality image light can be remarkably improved since all of the reflective parts 21 to 25 are transmitted toward the eye box by the inclination angle structure and the arrangement structure.
- 26 is a diagram showing the configuration of an augmented reality optical device 700 according to a modified example of the second embodiment of the present invention.
- the augmented reality optical device 700 of the embodiment of FIG. 26 has the same basic configuration as the augmented reality optical device 600 of the second embodiment described in FIG. It is characterized in that a plurality of reflecting means 20 including a first reflecting unit group 20A and a second reflecting unit group 20B including a plurality of reflecting units 25 to 29 are formed.
- the plurality of reflecting means 20 has the following arrangement structure. That is, when the augmented reality optical device 700 or the optical means 30 is placed in front of the user's pupil 40, the front direction of the pupil 40 is referred to as the x-axis, and x from the image output unit 10 When one of the line segments passing between the inner surfaces of the optical means 30 while being parallel along the x-axis with respect to the vertical line to the axis is referred to as the y-axis, and the line segment orthogonal to the x-axis and the y-axis is referred to as the z-axis
- the (20) may be disposed in parallel along the z-axis direction and spaced apart from each other.
- FIG. 27 is a diagram showing the configuration of an augmented reality optical device 800 according to still another modified example of the second embodiment of the present invention.
- the augmented reality optical device 800 of the embodiment of FIG. 27 includes a plurality of reflecting means 20, like the augmented reality optical device 700 of the embodiment described with reference to FIG. 26, but each reflecting means 20, Each of the reflecting units 21 to 29 constituting each reflecting unit 20 is along an imaginary straight line parallel to the z-axis with all reflecting units 21 to 29 constituting the adjacent reflecting unit 20 It characterized in that it is arranged so as not to be located.
- each of the reflecting parts 21 to 29 of the first reflecting means 20 are all reflecting parts 21 to 29 of the second reflecting means 20 It can be seen that they are arranged so that they are not located along an imaginary straight line parallel to the field and the z-axis. That is, the reflective parts 21 to 29 of the first reflecting means 20 and the reflecting parts 21 to 29 of the second reflecting means 20 are not aligned parallel to the z-axis when viewed from the z-axis direction. It can be seen that they are arranged alternately.
- FIG. 28 is a diagram showing the configuration of an augmented reality optical device 900 according to another modified example of the second embodiment of the present invention.
- the augmented reality optical device 900 of the embodiment of FIG. 28 is basically the same as the augmented reality optical device 600 of the embodiment described with reference to FIGS. It is characterized in that it is formed in a (bar) shape.
- each of the reflecting portions 21 to 29 has the following arrangement structure. That is, when the augmented reality optical device 900 or the optical means 30 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and x from the image output unit 10 Any one of the line segments passing between the first side 31 and the second side 32 of the optical means 30 while being parallel along the x axis with respect to the vertical line to the axis is referred to as the y axis, and the x axis and the y axis When the orthogonal line segment is referred to as the z-axis, the plurality of reflective portions 21 to 29 are formed in a bar shape extending along an imaginary straight line parallel to the z-axis.
- the size of the reflective portions 21 to 29 is preferably formed to be 4 mm or less.
- the size of at least a portion of each of the reflective portions 21 to 29 may be configured differently from those of the other reflecting portions 21 to 29. Even in this case, the size of each of the reflecting portions 21 to 29 is preferably formed to be 4 mm or less as described above.
- the reflective parts 21 to 29 are disposed at the same interval, but the spacing of at least some of the reflecting parts 21 to 29 may be arranged so that the spacing of the other reflecting parts 21 to 29 is different from that of the other reflecting parts 21 to 29. have.
- the inclination angle of at least some of the reflecting units 21 to 29 with respect to the x-axis may be configured to be different from those of the other reflecting units 21 to 29.
- each of the reflecting units 21 to 29 may be configured by means such as a half mirror that partially reflects light.
- At least a part of the reflecting portions 21 to 29 may be formed of a refractive element or diffractive element other than the reflecting means.
- At least a portion of the reflective parts 21 to 29 may be formed of an optical element such as a notch filter that selectively transmits light according to a wavelength.
- At least some of the reflective parts 21 to 29 may be coated with a material that absorbs light without reflecting light on a surface opposite to the surface that reflects the augmented reality image light.
- the reflective portions 21 to 29 may have a curved surface.
- the curved surface may be a concave surface or a convex surface.
- the shapes of the reflective parts 21 to 29 may be formed according to the method described with reference to FIGS. 15 and 16.
- FIG. 29 to 31 are views for explaining an augmented reality optical device 1000 according to another modified embodiment of the second embodiment of the present invention
- FIG. 29 is a diagram illustrating an augmented reality optical device 1000 with a pupil 40
- FIG. 30 is a side view of the augmented reality optical device 1000 viewed in the z-axis direction as described above
- FIG. 31 is a y-axis view of the augmented reality optical device 1000 as described above. It is a plan view viewed from the direction.
- the augmented reality optical device 1000 shown in FIGS. 29 to 31 includes a plurality of reflecting means 20 as in the augmented reality optical device 700 of FIG. 26, but each reflecting means 20 and optical means There is a difference in that there is at least one reflective means 20 arranged so that the distance from the first surface 31 of 30 is not all the same.
- the augmented reality optical device 1000 or the optical means 30 when the augmented reality optical device 1000 or the optical means 30 is placed in front of the user's pupil 40, the front direction from the pupil 40 is referred to as the x-axis, and the image output unit One of the line segments passing between the first surface 31 and the second surface 32 of the optical means 30 while being parallel along the x axis with respect to the vertical line from (10) to the x axis is referred to as the y axis, and the x
- the reflecting means 20 arranged so that the distances between the reflecting means 20 and the first surface 31 of the optical means 30 are not all the same. It is characterized in that there is at least one or more.
- the distance between the two reflecting means 20 and the first surface 31 of the optical means 30 indicated by a diagonal line, the two reflecting means 20 and the optical unit indicated by black The distance from the first surface 31 of the means 30, the distance between the one reflecting means 20 in which the interior is shown in white, and the first surface 31 of the optical means 30 are arranged to be different from each other.
- the distance between each of the two reflecting means 20 indicated by a diagonal line and the first surface 31 of the optical means 30 is the same, and each of the two reflecting means 20 and the optical means 30 indicated in black
- the distance from the first surface 31 of) is shown to be the same, but this is exemplary, and the distances between all the reflecting means 20 and the first surface 31 of the optical means 30 may be arranged differently. Of course there is.
- FIG. 32 is a diagram illustrating an augmented reality optical device 1100 according to another modified embodiment of the second embodiment of the present invention, and is a view for explaining various configurations of the image output unit 10.
- the image output unit 10 in the present invention is generally composed of the display device 11 and the collimator 12, as described above, and the image output unit of the augmented reality optical device 1100 of FIG. 32 (
- the collimator 12 of 10) is characterized in that it is implemented by combining the concave mirror 121 and the beam splitter 122.
- the augmented reality image light emitted from the display device 11 is transmitted to the concave mirror 121 by the beam splitter 122, and the augmented reality image light reflected from the concave mirror 121 is a beam It is incident on the second surface 32 of the optical means 30 through the splitter 122, and is transmitted to the pupil 40 through the above-described process.
- FIG 33 shows an augmented reality optical device 1200 according to another modified embodiment of the second embodiment of the present invention.
- the augmented reality optical device 1200 of FIG. 33 is similar to the embodiment of FIG. 32, but is characterized in that the image output unit 10 is configured by arranging two concave mirrors 121 to face each other. That is, in the embodiment of FIG. 33, the augmented reality image light emitted from the display device 11 is transmitted to one concave mirror 121A by the beam splitter 122, and after being reflected by the concave mirror 121A, the beam It passes through the splitter 122 and is transmitted to the concave mirror 121B on the opposite side, and after being reflected again therefrom, it is transmitted to the second surface 32 of the optical means 30 through the beam splitter 122, as described above. It is transmitted to the pupil 40 through the process.
- FIG 34 shows an augmented reality optical device 1300 according to another modified embodiment of the second embodiment of the present invention.
- FIG. 34 is similar to the embodiment of FIG. 32, but differs in that the augmented reality image light emitted from the image output unit 10 is transmitted to the optical means 30 through the auxiliary reflection unit 80. .
- the augmented reality image light emitted from the display device 11 is transmitted to the concave mirror 121 by the beam splitter 122, and the augmented reality image light reflected from the concave mirror 121 Silver passes through the beam splitter 122, is transmitted to the auxiliary reflecting unit 80, is reflected by the auxiliary reflecting unit 80, is transmitted to the second surface 32 of the optical means 30, and is transmitted to the second surface 32 of the optical means 30 through the above-described process. It is transmitted to the pupil 40.
- FIGS. 32 to 34 may be applied to the image output unit 10 of the first embodiment described above as it is.
- the image emitter 10 is essential for the augmented reality optical devices 200 to 1300.
- it may be implemented in the form of an integrated module including the image output unit 10 as described with reference to FIGS. 32 to 34.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
본 발명은, 화상 출사부로부터 출사된 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사 수단; 및 상기 반사 수단이 매립되어 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 광학 수단은, 상기 반사 수단에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사 수단은, 반사 수단으로 전달된 증강 현실 화상광을 각각 반사시켜 사용자의 동공으로 전달하도록 상기 광학 수단의 내부에 매립되어 배치되는 크기 4mm 이하의 복수개의 반사부를 포함하고, 상기 복수개의 반사부들 중 적어도 2 이상의 반사부들은, 상기 화상 출사부로부터의 거리가 멀수록 광학 수단의 제2 면에 더 가깝게 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치를 제공한다.
Description
본 발명은 증강 현실용 광학 장치에 관한 것으로서, 보다 상세하게는 화상 출사부로부터 출사되어 동공으로 전달되는 증강 현실 화상광의 광 효율을 개선한 증강 현실용 광학 장치에 관한 것이다.
증강 현실(Augmented Reality, AR)이라 함은, 주지된 바와 같이, 현실 세계의 실제 영상에 컴퓨터 등에 의해 생성되는 가상의 영상이나 이미지를 겹쳐서 제공하는 것을 의미한다.
이러한 증강 현실을 구현하기 위해서는, 컴퓨터와 같은 디바이스에 의해 생성되는 가상의 영상이나 이미지를 현실 세계의 영상에 겹쳐서 제공할 수 있도록 하는 광학계를 필요로 한다. 이러한 광학계로서는 HMD(Head Mounted Display)나 안경형의 장치를 이용하여 가상 영상을 반사 또는 굴절시키는 프리즘 등과 같은 광학 수단을 사용하는 기술이 알려져 있다.
도 1 및 도 2는 종래 기술에 의한 증강 현실 구현 장치에 사용되는 광학계의 일예를 나타낸 것이다.
도 1을 참조하면, 가상의 영상을 제공하기 위한 증강 현실 화상광은 디스플레이 장치(미도시) 등에서 출사되어 광학 수단의 내면에서 반사된 후 사용자의 동공이 위치하는 영역(eye box)으로 입사하도록 하는 구성을 사용하는데, 이 때 광학 수단의 내면(출사 동공, exit pupil)에서 출사되는 증강 현실 화상광은 도 1에 나타낸 바와 같이 아이박스(eye box)로 입사하지 못하여 사용되지 않는 광이 존재하게 되고 이는 광효율을 저하시키는 요인이 된다.
이는 도 2에 나타낸 바와 같이, 광학 수단의 내부에서 전반사가 일어나는 경우, 출사 동공의 모든 곳에서 모든 방향의 광이 출사되기 때문에 광학 수단으로 입사한 증강 현실 화상광들 중에서 일부는 아이박스로 제대로 입사하지만(0으로 표시), 일부는 아이박스 이외의 방향으로 출사(X로 표시)됨을 알 수 있다.
이와 같이, 종래의 증강 현실 광학 장치에 있어서는 화상 출사부로부터 출사된 증강 현실 화상광 중에서 아이박스로 전달되지 못하는 문제가 있어서, 증강 현실 화상광이 동공으로 전달되는 광 효율을 저하시키는 요인으로 작용하고 있다.
[선행기술문헌]
대한민국 등록특허공보 10-1660519호(2016.09.29 공고)
본 발명은 상기한 바와 같은 문제점을 해결하기 위한 것으로서, 아이박스로 전달되는 증강 현실 화상광의 광 효율을 개선한 증강 현실용 광학 장치를 제공하는 것을 목적으로 한다.
또한, 본 발명은 화상 출사부로부터 출사되는 증강 현실 화상광을 동공에 전달하는 반사 수단을 C자형에 가까운 곡선 배치 구조로 형성함으로써 아이박스로 전달되는 증강 현실 화상광의 광 효율을 개선한 증강 현실용 광학 장치를 제공하는 것을 또 다른 목적으로 한다.
상기한 바와 같은 과제를 해결하기 위하여 본 발명은, 광 효율을 개선한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사 수단; 및 상기 반사 수단이 매립되어 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 광학 수단은, 상기 반사 수단에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사 수단은, 반사 수단으로 전달된 증강 현실 화상광을 각각 반사시켜 사용자의 동공으로 전달하도록 상기 광학 수단의 내부에 매립되어 배치되는 크기 4mm 이하의 복수개의 반사부를 포함하고, 상기 복수개의 반사부들 중 적어도 2 이상의 반사부들은, 상기 화상 출사부로부터의 거리가 멀수록 광학 수단의 제2 면에 더 가깝게 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 화상 출사부로부터 출사되는 증강 현실용 화상광은 상기 광학 수단의 내부를 통해 상기 반사 수단으로 직접 전달되거나 상기 광학 수단의 내면에서 적어도 1회 이상 전반사된 후 상기 반사 수단으로 전달될 수 있다.
또한, 상기 복수개의 반사부 각각은, 사용자의 동공 중심에서 정면 방향에 대해 적어도 45도 이하의 각도를 갖는 것이 바람직하다.
또한, 상기 반사 수단은 복수개로 구성되고, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사 수단은 상기 z축 방향을 따라 평행하게 간격을 두고 배치될 수 있다.
또한, 상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 반사부들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치될 수 있다.
또한, 상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 모든 반사부들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치될 수 있다.
또한, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들은 상기 z축 방향을 따라 연장된 바 형태로 형성될 수 있다.
또한, 상기 반사부들 중 적어도 일부의 크기는 서로 다를 수 있다.
또한, 상기 반사부들 중, 적어도 일부의 반사부들의 간격을 다른 반사부들의 간격과 다르도록 배치할 수 있다.
또한, 상기 반사부들 중 적어도 일부는 하프 미러, 굴절 소자 또는 회절 소자 중 적어도 어느 하나로 형성될 수도 있다.
또한, 상기 반사부들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅할 수 있다.
또한, 상기 반사부들 중 적어도 일부의 표면은 곡면으로 형성될 수 있다.
또한, 상기 곡면으로 형성되는 표면은 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성될 수 있다.
또한, 반사부를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 반사부들 중 적어도 일부는 x축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성되거나, z축 방향으로의 길이보다 y축 방향으로의 길이가 길게 형성될 수도 있다.
또한, 상기 x축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성된 반사부들 또는 z축 방향으로의 길이보다 y축 방향으로의 길이가 길게 형성된 반사부들의 표면은, 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성될 수도 있다.
본 발명의 다른 측면에 의하면, 광 효율을 개선한 증강 현실용 광학 장치로서, 화상 출사부로부터 출사된 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사 수단; 및 상기 반사 수단이 매립되어 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고, 상기 광학 수단은, 상기 반사 수단에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고, 상기 반사 수단은, 반사 수단으로 전달되는 증강 현실 화상광을 각각 반사시켜 사용자의 동공으로 전달하도록 상기 광학 수단의 내부에 매립되어 배치되는 크기 4mm 이하의 복수개의 반사부를 포함하고, 상기 반사 수단은, 상기 화상 출사부로부터의 거리가 멀수록 상기 광학 수단의 제1 면에 더 가깝도록 상기 광학 수단의 내부에 매립되어 배치되는 반사부들로 구성되는 제1 반사부 그룹과, 상기 화상 출사부로부터의 거리가 멀수록 광학 수단의 제1 면에서 더 멀도록 상기 광학 수단의 내부에 매립되어 배치되는 반사부들로 구성되는 제2 반사부 그룹으로 구성되고, 상기 제2 반사부 그룹과 화상 출사부의 거리는, 상기 제1 반사부 그룹과 화상 출사부의 거리보다 크도록 배치된 것을 특징으로 하는 증강 현실용 광학 장치를 제공한다.
여기에서, 상기 화상 출사부로부터 출사되는 증강 현실 화상광은, 상기 광학 수단의 내부를 통해 상기 반사 수단으로 직접 전달되거나 상기 광학 수단의 내면에서 적어도 1회 이상 전반사된 후 상기 반사 수단으로 전달될 수 있다.
또한, 상기 복수개의 반사부 각각은, 사용자의 동공 중심에서 정면 방향으로의 직선에 대해 적어도 45도 이하의 각도를 갖는 것이 바람직하다.
또한, 상기 반사 수단은 복수개로 구성되고, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사 수단은 상기 z축 방향을 따라 평행하게 간격을 두고 배치될 수 있다.
또한, 상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 반사부들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치될 수 있다.
또한, 상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 모든 반사부들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치될 수 있다.
또한, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들은 상기 z축에 평행한 가상의 직선을 따라 연장된 바 형태로 형성될 수 있다.
또한, 상기 복수개의 반사부들 중 적어도 일부는 하프 미러, 굴절 소자 또는 회절 소자 중 적어도 어느 하나로 형성될 수 있다.
또한, 상기 복수개의 반사부들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅될 수 있다.
또한, 상기 복수개의 반사부들 중 적어도 일부의 표면은 곡면으로 형성될 수 있다.
또한, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들 중 적어도 일부는, x축 또는 y축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성되거나, z축 방향으로의 길이보다 x축 또는 y축 방향으로의 길이가 길게 형성될 수 있다.
또한, 상기 반사부들의 표면은, 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성될 수 있다.
또한, 상기 반사 수단은 복수개로 구성되고, 증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 각 반사 수단과 광학 수단의 제1 면과의 거리가 모두 동일하지는 않도록 배치되는 반사 수단이 적어도 하나 이상 존재할 수 있다.
본 발명에 의하면, 아이박스로 전달되는 증강 현실 화상광의 광 효율을 개선할 수 있는 증강 현실용 광학 장치를 제공할 수 있다.
또한, 본 발명에 의하면, 화상 출사부로부터 출사되는 증강 현실 화상광을 동공에 전달하는 반사 수단을 C자형에 가까운 곡선 배치 구조로 형성함으로써 아이박스로 전달되는 증강 현실 화상광의 광 효율을 개선한 증강 현실용 광학 장치를 제공할 수 있다.
도 1 및 도 2는 종래 기술에 의한 증강 현실 구현 장치에 사용되는 광학계의 일예를 나타낸 것이다.
도 3은 특허 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 4는 본 발명의 제1 실시예에 의한 광 효율을 개선한 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 5는 반사부(21~29)들의 배치 구조를 설명하기 위한 도면이다.
도 6은 도 4 내지 도 5에서 설명한 증강 현실용 광학 장치(200)의 사시도를 나타낸 것이다.
도 7은 반사부(21~29)의 배치 구조의 효과를 설명하기 위한 도면이다.
도 8 및 도 9는 반사부(21~29)들의 경사각을 설명하기 위한 도면이다.
도 10 및 도 11은 본 발명의 제1 실시예에 의한 증강 현실용 광학 장치(200)의 전체적인 작용을 설명하기 위한 도면이다.
도 12는 본 발명의 제1 실시예의 변형 실시예에 의한 증강 현실용 광학 장치(300)의 구성을 나타낸 도면이다.
도 13은 본 발명의 제1 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(400)의 구성을 나타낸 도면이다.
도 14는 본 발명의 제1 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(500)의 구성을 나타낸 도면이다.
도 15는 반사부(21~29)의 표면이 곡면으로 형성된 것을 설명하기 위한 도면이다.
도 16은 반사부(21~29)의 곡면 형태의 또 다른 예를 나타낸 도면이다.
도 17는 본 발명의 제2 실시예에 의한 증강 현실용 광학 장치(600)를 나타낸 도면이다.
도 18은 도 17에서 설명한 반사부(21~29)들의 배치 구조를 설명하기 위한 도면이다.
도 19는 본 발명의 제2 실시예에 의한 증강 현실용 광학 장치(600)의 사시도를 나타낸 것이다.
도 20은 본 발명의 제2 실시예에 의한 증강 현실용 광학 장치(600)의 반사부(21~29)의 배치 구조의 효과를 설명하기 위한 도면이다.
도 21 내지 도 23은 증강 현실 화상광이 광학 수단(30)에서 전반사되는 횟수를 설명하기 위한 도면이다.
도 24 및 도 25는 증강 현실용 광학 장치(600)의 전체적인 작용을 설명하기 위한 도면이다.
도 26은 본 발명의 제2 실시예의 변형 실시예에 의한 증강 현실용 광학 장치(700)의 구성을 나타낸 도면이다.
도 27은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(800)의 구성을 나타낸 도면이다.
도 28은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(900)의 구성을 나타낸 도면이다.
도 29 내지 도 31은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1000)를 설명하기 위한 도면이다.
도 32는 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1100)를 나타낸 것이다.
도 33은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1200)를 나타낸 것이다.
도 34는 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1300)를 나타낸 것이다.
이하, 첨부 도면을 참조하여 본 발명에 의한 실시예들을 상세하게 설명하기로 한다.
우선, 본 발명의 기본 원리를 상기 특허 문헌 1을 참조하여 간략하게 설명한다.
상기 종래 기술로서 특허 문헌 1에 기재된 기술은 다음과 같은 기존의 광학계를 이용한 증강 현실 구현 장치의 문제점을 해결하기 위한 것이다.
즉, 기존의 증강 현실 구현 장치는, 구성이 복잡하여 무게와 부피가 커지므로 사용자가 착용하기에 불편함이 있고 제조 공정 또한 복잡하여 제조 비용이 높다는 문제점을 해결하기 위한 것이다.
또한, 기존의 증강 현실 구현 장치는, 사용자가 현실 세계를 응시할 때 초점 거리를 변경하는 경우 가상 영상의 초점이 맞지 않게 된다는 한계가 있다. 이러한 문제점을 해결하기 위하여, 가상 영상에 대한 초점 거리를 조절할 수 있는 프리즘과 같은 구성을 이용하거나 현실 세계에 대한 초점 거리의 변경에 따라 가상 영상의 초점 거리를 변경시킬 수 있는 가변형 초점 렌즈를 전기적으로 제어하는 등의 기술이 제안되어 있다. 그러나, 이러한 기술 또한 가상 영상에 대한 초점 거리를 조절하기 위하여 사용자가 별도의 조작을 해야 하거나 별도의 물리적 장치나 프로세서 등과 같은 하드웨어 및 소프트웨어를 필요로 한다는 점에서 문제가 있다.
따라서, 본 출원인은, 상기 특허 문헌 1을 통해, 사람의 동공보다 작은 크기의 반사부를 이용하여 가상 영상을 동공을 통해 망막에 투영함으로써 부피 및 무게를 현저하게 줄이고 제조 공정을 단순화시킬 수 있으며, 사용자의 초점 거리 변경 여부에 관계없이 항상 선명한 가상 영상을 제공할 수 있는 증강 현실 구현 장치를 제안한 바 있다.
도 3은 상기 특허 문헌 1에 개시된 바와 같은 증강 현실용 광학 장치(100)를 나타낸 도면이다.
도 3의 증강 현실용 광학 장치(100)는, 화상 출사부(10), 반사부(20) 및 광학 수단(30)을 포함한다.
화상 출사부(10)는 증강 현실용 화상에 상응하는 증강 현실 화상광을 출사하는 수단으로서, 예컨대 소형 디스플레이 장치로 구현될 수 있다.
반사부(20)는 화상 출사부(10)로부터 출사된 증강 현실 화상광을 사용자의 동공을 향해 반사시킴으로써 사용자에게 증강 현실용 화상을 제공한다. 반사부(20)는, 화상 출사부(10)로부터 출사되는 증강 현실용 화상에 상응하는 화상광을 동공으로 반사시킬 수 있도록 화상 출사부(10)와 동공 사이에서 적절한 각도를 가지고 광학 수단(30) 내부에 매립되어 배치된다.
광학 수단(30)은 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 투과시키는 수단으로써 예컨대 안경 렌즈일 수 있으며, 광학 수단(30)의 내부에는 반사부(20)가 매립되어 있다.
한편, 프레임부(40)는 화상 출사부(10)와 광학 수단(30)을 고정 및 지지하는 수단으로서, 예컨대 안경 형태로 형성될 수 있다.
도 3의 반사부(20)는, 사람의 평균적인 동공 크기보다 작은 크기 즉, 8mm 이하로 형성되어 있는데, 이와 같이 반사부(20)를 사람의 평균적인 동공 크기보다 작게 형성함으로써 반사부(20)를 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있다.
여기서, 심도라 함은, 초점이 맞는 것으로 인식되는 범위를 말하는데, 심도가 깊어지게 되면 증강 현실용 화상에 대한 초점 거리도 깊어진다는 것을 의미하고 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 그와 관계없이 가상 영상인 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 된다. 이는 일종의 핀홀 효과(pin hole effect)라고 볼 수 있다.
따라서, 도 3에 나타낸 바와 같은 증강 현실용 광학 장치(100)는, 사용자가 실제 세계에 존재하는 실제 사물을 응시하면서 초점 거리를 변경하더라도 증강 현실용 화상에 대해서는 항상 선명한 가상 영상을 제공할 수 있다.
본 발명은 이러한 특허 문헌 1에 기재된 바와 같은 기술에 기초한 증강 현실용 광학 장치를 제공하는 것을 특징으로 하는 바, 이하 도 4 이하를 참조하여 본 발명에 의한 광 효율을 개선한 증강 현실용 광학 장치(200~1300)를 상세하게 설명한다.
[제1 실시예]
도 4는 본 발명의 제1 실시예에 의한 광 효율을 개선한 증강 현실용 광학 장치(200)를 나타낸 도면이다.
도 4를 참조하면, 광 효율을 개선한 증강 현실용 광학 장치(200, 이하, 간단히 "증강 현실용 광학 장치(200)"라 한다)는, 반사 수단(20) 및 광학 수단(30)을 포함한다.
화상 출사부(10)는, 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 광학 수단(30)을 향해 출사하는 수단으로서, 예컨대 증강 현실용 화상을 화면에 표시함으로써 화면을 통해 증강 현실 화상광을 출사하는 소형 LCD와 같은 디스플레이 장치(11)와 디스플레이 장치(11)에서 출사되는 증강 현실 화상광을 시준한 광을 출사하는 콜리메이터(12)로 구성될 수 있다.
콜리메이터(12)는 필수적인 것이 아니며 생략할 수 있다. 또한, 콜리메이터(12)와, 디스플레이 장치(11)로부터 출사되는 증강 현실 화상광을 반사, 굴절 또는 회절시켜서 광학 수단(30)을 향해 전달하는 반사 수단, 굴절 수단 또는 회절 수단 중 적어도 어느 하나의 조합으로 구성되는 기타 다양한 광학 소자를 사용할 수도 있다.
이러한 화상 출사부(10) 자체는 본 발명의 직접적인 목적이 아니며 종래 기술에 의해 알려져 있는 것이므로 여기에서는 상세 설명은 생략한다.
한편, 증강 현실용 화상이라 함은, 화상 출사부(10)의 디스플레이 장치(11)의 화면에 표시되어 반사 수단(20) 및 광학 수단(30)을 통해 사용자의 동공(40)으로 전달되는 가상 화상을 의미하며, 이미지 형태의 정지 영상이거나 동영상과 같은 것일 수 있다.
이러한 증강 현실용 화상은 화상 출사부(10)에서 증강 현실용 화상에 상응하는 증강 현실 화상광으로 출사되어, 반사 수단(20) 및 광학 수단(30)을 통해 사용자의 동공(40)으로 전달됨으로써 사용자에게 가상 화상을 제공하게 되고, 이와 동시에 사용자는 광학 수단(30)을 통해 실제 세계에 존재하는 실제 사물로부터 출사되는 화상광인 실제 사물 화상광을 눈으로 직접 전달받음으로써 증강 현실 서비스를 제공받게 된다.
도 4의 실시예에서는, 광학 수단(30)의 내면에서 1회 전반사되는 구성을 나타내었으므로, 화상 출사부(10)는 도 4에 도시된 바와 같은 위치에 배치되지만, 이는 예시적인 것이며, 전반사 구조를 사용하지 않거나 2회 이상의 전반사를 사용하는 경우 화상 출사부(10)는 증강 현실 화상광을 광학 수단(30)을 통해 반사 수단(20)으로 전달하기 위한 적절한 위치에 배치된다. 어느 경우이거나, 화상 출사부(10)는 후술하는 반사 수단(20)의 위치, 각도 및 동공(40)의 위치를 고려하여 적절한 위치에 배치될 수 있다.
반사 수단(20)은, 화상 출사부(10)로부터 출사된 증강 현실용 화상에 상응하는 증강 현실 화상광을 사용자의 눈의 동공(40)을 향해 반사시켜 전달함으로써 사용자에게 가상 화상인 증강 현실용 화상을 제공하는 수단이다.
도 4에서, 반사 수단(20)은 복수개의 반사부(21~29)로 구성되며, 도면 부호 20은 이러한 복수개의 반사부(21~29) 전체를 통칭하는 것으로 한다.
이러한 반사 수단(20)은, 도 4에 나타낸 바와 같이, 광학 수단(30)의 내부에 매립 배치된다.
후술하는 바와 같이, 광학 수단(30)은, 반사 수단(20)에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공(40)을 향해 출사되는 제1 면(31)과, 상기 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하는데, 반사 수단(20)은 이러한 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부 공간에 매립 배치된다.
광학 수단(30)의 제1 면(31)은, 사용자가 증강 현실용 광학 장치(200)를 동공(40) 정면에 두었을 때 사용자의 동공(40) 쪽을 향하고 있는 면이 되고, 제2 면(32)은 그 반대면 즉, 실제 세계의 사물을 향하는 면이 되며, 반사 수단(20)은 이러한 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부 공간에 배치된다.
한편, 도 4의 실시예에서는, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30)의 내면에서 1회 전반사된 후 반사 수단(20)으로 전달되는 것으로 나타내었으나, 이는 예시적인 것이며, 전반사를 사용하지 않고 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30)의 내부를 통해 반사 수단(20)으로 직접 전달되거나 광학 수단(30)의 내면에서 적어도 1회 이상 전반사된 후 반사 수단(20)으로 전달되도록 할 수도 있다.
증강 현실 화상광이 광학 수단(30)의 내면에서 적어도 1회 이상 전반사되는 경우로서, 전반사 횟수가 짝수(2n, n은 자연수)인 경우에는, 화상 출사부(10)로부터 출사되는 증강 현실용 화상광은 도 4에 나타낸 것과 같이 광학 수단(30)의 제2 면(32)에 먼저 입사하는 것이 아니라 제1 면(31)을 향해 입사한 후 제2 면(32)과 제1 면(31) 사이에서 2n번 전반사된 후, 반사 수단(20)으로 전달된다. 따라서, 이 경우에는 화상 출사부(10)로부터 출사하는 증강 현실 화상광은 도 4에 나타낸 바와는 달리 제1 면(31)을 향해 출사하게 된다.
증강 현실 화상광이 광학 수단(30)의 내면에서 적어도 1회 이상 전반사되는 경우로서, 전반사 횟수가 홀수(2n-1, n은 자연수)인 경우에는, 화상 출사부(10)로부터 출사되는 증강 현실용 화상광은 도 4에 나타낸 것과 마찬가지로 광학 수단(30)의 제2 면(32)을 향해 입사한 후 제1 면(31)과 제2 면(32) 사이에서 2n-1회 전반사된 후, 반사 수단(20)으로 전달된다.
전반사를 사용하는 구성의 경우에는, 어느 경우이거나, 반사 수단(20)으로 증강 현실 화상광이 입사하기 직전의 광학 수단(30)의 내면은 제2 면(32)이 된다.
도 4의 실시예에서, 반사 수단(20)은 복수개의 반사부(21~29)를 포함하며, 각각의 반사부들(21~29)은 반사부들(21~29)로 전달된 증강 현실 화상광을 각각 반사시켜 사용자의 동공(40)으로 전달하도록 화상 출사부(10)와 동공(40)의 위치를 고려하여 광학 수단(30)의 내부에 적절히 배치된다.
도 4에 나타낸 바와 같이, 화상 출사부(10)로부터 출사된 증강 현실 화상광이 광학 수단(30)의 제2 면(32)에서 1회 전반사되어 반사부(21~29)로 전달되는 구성을 사용하는 경우, 화상 출사부(10)로부터 광학 수단(30)의 제2 면(32)으로 입사하는 증강 현실 화상광과 제2 면(32)에서 전반사되어 반사부(21~29)들로 출사하는 증강 현실 화상광 그리고 동공(40)의 위치를 고려하여 반사부(21~29)들의 경사각을 적절하게 배치한다.
한편, 반사부(21~29) 각각은, 앞서 도 3을 참조하여 설명한 바와 같이, 심도를 깊게 하여 핀홀 효과를 얻을 수 있도록 사람의 동공 크기보다 작은 크기 즉, 8mm 이하로, 보다 바람직하게는 4mm 이하로 형성되는 것이 바람직하다.
즉, 반사부(21~29) 각각은, 사람의 일반적인 동공 크기보다 작은 크기 즉, 8mm 이하, 보다 바람직하게는 4mm 이하로 형성되는데, 이에 의해 반사부(21~29) 각각을 통해 동공으로 입사하는 빛에 대한 심도(Depth of Field)를 거의 무한대에 가깝게 즉, 심도를 매우 깊게 할 수 있고, 따라서 사용자가 실제 세계를 응시하면서 실제 세계에 대한 초점 거리를 변경하더라도 이와 관계없이 증강 현실용 화상의 초점은 항상 맞는 것으로 인식하게 하는 핀홀 효과(pin hole effect)를 발생시킬 수 있다.
여기에서, 반사부(21~29) 각각의 크기는, 각 반사부(21~29)의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이를 의미하는 것으로 정의한다.
또한, 반사부(21~29) 각각의 크기는, 동공(40)과 반사부(21~29) 사이의 직선에 수직하면서 동공(40)의 중심을 포함하는 평면에 각 반사부(21~29)를 투영한 정사영의 가장자리 경계선 상의 임의의 두 점 간의 최대 길이일 수 있다.
한편, 반사부(21~29)들이 도 4에 나타낸 바와 같이, 2 이상의 복수개로 형성된 경우, 반사부(21~29) 각각은 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광이 다른 반사부(21~29)에 전달되는 것을 차단하지 않도록 배치되어야 한다. 이를 위하여, 본 실시예에서 복수개의 반사부(21~29) 중 적어도 2 이상의 반사부(25~29)들은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제2 면(32)에 더 가깝게 배치된다. 이는, 바꾸어 말하면, 복수개의 반사부(21~29) 중 적어도 2 이상의 반사부들(25~29)은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(31)에 즉, 동공(40)에 더 멀어지도록 배치된다는 것을 의미한다.
여기에서, 광학 수단(30)의 제2 면(32)이 곡면으로 형성되거나 동공(40)에 대해 경사각을 가지고 배치되는 경우가 있을 수 있으므로, 반사부(21~29) 중 적어도 2 이상의 반사부(25~29)들이 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제2 면(32)에 더 가깝게 배치된다는 것은, 화상 출사부(10)로부터의 거리가 멀수록 동공(40)으로부터 정면 방향으로의 직선이 광학 수단(30)의 제2 면(32)이 만나는 점에 수직한 평면과의 거리가 더 가까운 반사부(25~29)가 적어도 2 이상 존재한다는 것을 의미한다.
도 5는 반사부(21~29)들의 배치 구조를 설명하기 위한 도면이다.
도 5를 참조하면, 반사부(21~29)들은 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이에 매립 배치되어 있으며, 광학 수단(30)을 측면에서 바라보았을 때 반사부(21~24)들은 광학 수단(30)의 제2 면(32)과의 거리가 동일하지만, 반사부(25~29)들은 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제2 면(32)에 더 가깝게 배치되어 있다.
도 5에서는, 광학 수단(30)을 측면에서 바라보았을 때 반사부(21~24)들은 그 중심을 연결한 가상의 선이 제2 면(32)에 평행한 직선을 이루도록 배치되어 있으며, 반사부(25~29)들은 그 중심을 연결한 가상의 선이 곡선을 이루도록 배치되어 있다. 즉, 반사부(21~24)들은 직선을 따라 배치되고, 반사부(25~29)들은 곡선을 따라 배치되어 있다.
도 5에서는, 4개의 반사부(21~24)들이 직선을 따라 배치되고, 5개의 반사부(25~29)들이 곡선을 따라 배치된 것으로 나타내었으나, 이는 예시적인 것이며, 직선 및 곡선 배치의 반사부들 각각의 숫자는 사용예에 따라 변경할 수 있음은 물론이다. 또한, 모든 반사부(21~29)들을 곡선을 따라 배치되도록 할 수도 있다.
여기에서, 직선 또는 곡선이라 함은, 광학 수단(30)의 측면에서 바라보았을 때의 2차원 평면에서의 형태이지만, 화상 출사부(10)가 도 4에 나타낸 바와 같이 동공(40)의 상부에 위치하지 않고 측면에 위치하는 경우에는 반사부(21~29)들은 광학 수단(30)의 상면 또는 하면에서 바라보았을 때의 2차원 평면에서 직선 또는 곡선을 따라 배치될 수도 있다.
도 6은 도 4 내지 도 5에서 설명한 증강 현실용 광학 장치(200)의 사시도를 나타낸 것이다.
도 6을 참조하면, 증강 현실용 광학 장치(200)를 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, z축에 수직한 면을 향해 증강 현실용 광학 장치(200)를 바라보면 반사부(21~29)들은 도 5에 나타낸 것처럼 보이게 된다.
즉, z축에 수직한 면을 향해 광학 수단(30)을 바라보았을 때 복수개의 반사부(21~29)들 중 적어도 2 이상의 반사부(25~29)들은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부 공간에서 광학 수단(30)의 제2 면(32)에 더 가깝게 배치된다.
여기에서, 복수개의 반사부(21~29)들은, 외부에서 z축에 수직한 면을 향해 광학 수단(30)을 바라보았을 때 z축에 수직한 어느 하나의 평면에 포함되도록 광학 수단(30) 내부에 배치될 수 있다.
한편, 도 5 및 도 6에 나타낸 바와 같이, 반사부(21~24)들은 광학 수단(30)의 제1 면(31)쪽에 가깝게 배치되어 있음을 알 수 있다.
여기에서, 제2 면(32)은 전술한 바와 같이 실제 사물 화상광이 입사하는 면이고, 이는 전반사 구조를 사용하는 경우 반사부(21~29)들로 입사하기 직전에 증강 현실 화상광이 최종적으로 전반사되는 면이 된다.
한편, 반사부(25~29)들은, 아래쪽으로 갈수록 광학 수단(30)의 제2 면(32)쪽에 보다 더 가깝게 배치되는 형태로 곡선을 이루어 배치됨을 알 수 있다. 즉, 반사부(25~29)들은 화상 출사부(10)로부터의 거리가 멀수록 제2 면(32)쪽에 더 가깝게 배치된다.
도 7은 반사부(21~29)의 배치 구조의 효과를 설명하기 위한 도면이다.
도 7의 (a)는 반사부(21~29)가 도 4 내지 도 6에서 설명한 바와 같은 구조 즉, 반사부(21~29) 중 일부(25~29)가 화상 출사부(10)로부터 거리가 멀수록 제2 면(32)에 더 가깝게 배치된 경우를 나타낸 것이고, 도 7의 (b)는 모든 반사부(21~29)가 일직선으로 배치된 경우 즉, 모든 반사부(21~29)들이 화상 출사부(10)로부터의 거리에 관계없이 제2 면(32)과 동일한 거리를 갖도록 배치된 경우를 나타낸 것이다.
도 7의 (b)를 참조하면, 모든 반사부(21~29)가 동공(40)에서 정면 방향에 대해 수직한 방향의 일직선을 따라 배치(즉, 모든 반사부(21~29)가 화상 출사부(10)로부터의 거리에 관계없이 광학 수단(30)의 제2 면(32)과의 거리가 동일하게 배치)되어 있으므로, 이 경우 아래쪽의 반사부(28,29)에는 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광이 제대로 도달하지 않음을 알 수 있다.
이에 비해, 도 7의 (a)를 참조하면, 반사부(25~29)들은 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제2 면(32)에 더 가깝게 배치되어 있으므로, 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광은 모든 반사부(21~29)에 전달됨을 알 수 있다.
한편, 반사부(21~29)들은, 전술한 바와 같이, 반사부(21~29)로 전달되는 증강 현실 화상광을 각각 반사시켜 사용자의 동공(40)으로 전달하도록 적절한 경사각을 가지고 경사지게 배치되는데, 각 반사부(21~29)들은, 사용자의 동공(40) 중심에서 정면 방향에 대해 적어도 45도 이하의 경사각을 가지도록 배치된다.
도 8 및 도 9는 반사부(21~29)들의 경사각을 설명하기 위한 도면이다.
도 8에서는, 설명의 편의를 위하여 하나의 반사부(21)만을 나타내었다. 도 8을 참조하면, 반사부(21)는 사용자의 동공(40)의 중심의 정면 방향에 대해 경사각(θ)을 가지도록 경사지게 배치되는데, 이 경사각은 45도 이하인 것이 바람직하다. 이는 반사부(21)의 경사각(θ)이 45도 이상인 경우에는 반사부(21)로 입사하는 증강 현실 화상광을 동공(40) 방향으로 제대로 전달할 수 없기 때문이다.
도 9의 (a)는 반사부(20)의 경사각(θ)이 45도 이하인 경우이고, 도 9의 (b)는 경사각(θ)이 45도를 초과하는 경우를 각각 나타낸 것이다.
도 9의 (a)를 참조하면, 반사부(20)의 경사각(θ)이 45도 이하로 형성되어 있는데, 이 경우 광학 수단(30)의 제2 면(32)(인풋(input) 면)에서 전반사된 증강 현실 화상광이 반사부(20)를 통해 동공(40)으로 수렴하게 됨을 알 수 있다.
도 9의 (a)에서 광학 수단(30)의 제2 면(32) 외부에 표시된 점선은, 광학 수단(30)의 제2 면(32)에서 전반사되어 반사부(20)로 입사하는 증강 현실 화상광을 광학 수단(30)의 제2 면(32) 바깥쪽으로 연장하여 나타낸 것으로, 이 점선은 광학 수단(30)의 제2 면(32) 외부의 한 점에서 만나는 것을 알 수 있으며, 이는 반사부(20)를 통해 동공(40)으로 전달되는 증강 현실 화상광이 동공(40)으로 수렴한다는 것을 의미한다.
한편, 도 9의 (b)에 나타낸 바와 같이, 반사부(20)의 경사각(θ)이 45도를 넘는 경우에는 동공(40)에서 화상광이 출사한 것으로 가정할 때 화상광은 반사부(20)를 통해 수렴하지 않고 발산하게 됨을 알 수 있다. 따라서, 화상 출사부(10)로부터 증강 현실 화상광이 출사하는 경우를 생각해 보면, 증강 현실 화상광의 광 경로는 동공(40)으로 수렴할 수 없으므로 동일한 위치의 인풋 면을 가질 수 없다는 것을 의미하고, 이는 결국 화상 출사부(10)로부터 출사된 증강 현실 화상광이 광학 수단(30)의 내면에서 전반사된 후 반사부(20)를 통해 동공(40)으로 제대로 전달될 수 없다는 것을 의미한다.
도 9는 증강 현실 화상광이 광학 수단(30)의 제2 면(32)에서 1회 전반사되는 경우를 예시적으로 나타낸 것이지만, 전반사를 사용하지 않거나 2회 이상의 전반사를 사용하는 경우에도 마찬가지이다. 전반사를 사용하지 않는 경우에는, 광학 수단(30)의 제2 면(32)과 반사부(20)를 연결한 선의 제2 면(32)쪽의 연장선상에 화상 출사부(10)가 위치하고, 이 경우에도 마찬가지로 반사부(20)는 사용자의 동공(40) 중심에서 정면 방향에 대해 적어도 45도 이하의 각도를 갖는다.
한편, 광학 수단(30)은, 반사부(21~29)가 매립 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공(40)을 향해 투과시키는 수단이다.
여기에서, 실제 사물 화상광의 적어도 일부를 동공(40)을 향해 투과시킨다는 것은 실제 사물 화상광의 빛 투과율이 반드시 100%일 필요는 없다는 의미이다.
또한, 광학 수단(30)은, 전술한 바와 같이, 화상 출사부(10)로부터 출사되는 증강 현실용 화상광을 광학 수단(30)의 내부를 통해 반사부(21~29)로 직접 전달하거나 광학 수단(30)의 내면에서 적어도 1회 이상 전반사시킨 후 반사부(21~29)로 전달한다.
광학 수단(30)은, 전술한 바와 같이, 반사부(21~29)에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면(31)과, 상기 제1 면(31)에 대향하며 실제 사물 화상광이 입사하는 제2 면(32)을 구비하며, 반사부(21~29)는 제1 면(31)과 제2 면(32) 사이의 내부에 매립 배치된다.
광학 수단(30)은, 유리 또는 플라스틱 재질 및 기타 합성 수지재의 렌즈로 형성할 수 있고, 다양한 굴절률 및 투명도를 가질 수 있다.
광학 수단(30)의 제1 면(31)과 제2 면(32)은 서로 평행한 것으로 나타내었으나, 이는 예시적인 것이며 서로 평행하지 않도록 구성할 수도 있다.
또한, 광학 수단(30)의 제1 면(31)과 제2 면(32) 중 적어도 어느 하나는 곡면으로 형성될 수 있다. 즉, 제1 면(31) 또는 제2 면(32) 중 어느 하나가 곡면일 수 있고, 제1 면(31) 및 제2 면(32) 모두 곡면으로 형성될 수 있다.
여기에서, 상기 곡면은 오목면 또는 볼록면일 수 있는데, 오목면이라 함은, 해당 면을 정면에서 보았을 때 중앙 부분이 가장자리 부분보다 얇게 형성되어 오목하게 된 것을 의미하며, 볼록면이라 함은 해당 면을 정면에서 보았을 때 중앙 부분이 가장자리 부분보다 두껍게 형성되어 볼록하게 돌출된 것을 의미하는 것으로 한다.
도 10 및 도 11은 도 4 내지 도 9를 참조하여 설명한 실시예에 의한 증강 현실용 광학 장치(200)의 전체적인 작용을 설명하기 위한 도면으로서, 도 4에 나타낸 바와 같은 전반사 구조를 사용하는 경우에 대한 것이다.
도 10에서는 설명의 편의를 위하여 반사부(21~25)는 5개만을 나타내었다.
도 10의 (a),(b),(c)를 참조하면, 서로 다른 각도의 증강 현실 화상광이 광학 수단(30)의 제2 면(32)에서 전반사된 후, 앞서 설명한 바와 같은 경사각 및 배치 구조를 갖는 반사부(21~25)들에 의해 아이박스(eye box)로 전달됨을 알 수 있다.
도 10의 (a)에서는 반사부(21~23)가 사용되고, 도 10의 (b)에서는 반사부(22~24)가 사용되고, 도 10의 (c)에서는 반사부(23~25)들이 사용되며, 이들은 증강 현실 화상광의 광 경로의 입사각 즉, 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 광 경로의 출사각에 각각 상응하여 증강 현실 화상광을 아이박스(eye box)로 전달함을 알 수 있다.
이 때, 아이박스(eye box)는, 화상 출사부(10)에서 나오는 그대로의 증강 현실 화상광을 보는데 있어서 사용자의 동공(40)이 위치할 수 있는 최대 공간이라고 볼 수 있으며, 광학 수단(30)의 제2 면(32)은 인풋 면으로 작용하고 인풋 면에서 전반사된 증강 현실 화상광은 반사부(21~25)를 통해 모두 아이박스 방향으로 출사된다.
한편, 도 11은 도 10의 (a),(b),(c)에서 나타낸 증강 현실 화상광을 함께 나타낸 것으로서, 화상 출사부(10)에서 출사된 증강 현실 화상광이 입사 동공(input pupil)으로 기능하는 광학 수단(30)의 상부를 통해 입사되어, 광학 수단(30)의 제2 면(32)을 통해 전반사된 후, 반사부(20)를 통해 반사된 후 출사 동공(exit pupil)으로 작용하는 광학 수단(30)의 제1 면(31)을 통해 아이박스(eye box)로 전달됨을 알 수 있다. 여기에서, 동공(40)이 위치할 수 있는 아이박스(eye box)와 광학 수단(30)간의 거리는 아이릴리프(eye relief)가 된다.
도 10 및 도 11에서 나타낸 바와 같이, 화상 출사부(10)로부터 출사되어 광학 수단(30)의 인풋 면에서 전반사된 증강 현실 화상광은 전술한 바와 같은 반사부(20)의 경사각 구조 및 배치 구조에 의하여 모두 아이 박스(eye box)를 향해 전달되므로, 증강 현실 화상광의 광 효율을 현저하게 개선할 수 있음을 알 수 있다.
도 12는 본 발명의 제1 실시예의 변형 실시예에 의한 증강 현실용 광학 장치(300)의 구성을 나타낸 도면이다.
도 12의 실시예의 증강 현실용 광학 장치(300)는, 도 4 내지 도 11을 참조하여 설명한 실시예의 증강 현실용 광학 장치(200)와 기본적인 구성은 동일하되, 복수개의 반사부(21~29)들로 구성되는 반사 수단(20)이 복수개 형성된 것을 특징으로 한다.
여기에서, 복수개의 반사 수단(20)은, 다음과 같은 배치 구조를 갖는다. 즉, 앞서 설명한 바와 같이, 증강 현실용 광학 장치(300)를 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 복수개의 반사 수단(20)은 상기 z축 방향을 따라 서로 평행하게 간격을 두고 배치될 수 있다.
여기에서, 각각의 반사 수단(20)은, 각 반사 수단(20)을 구성하는 각각의 반사부(21~29)들이, 인접하는 반사 수단(20)을 구성하는 반사부(21~29)들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치될 수 있다. 따라서, z축에 수직한 면을 향해 바라 보았을 때 복수개의 반사 수단(20)은 도 5에서 나타낸 바와 동일하게 보이게 된다.
도 12의 실시예에 의하면, 도 4 내지 도 11을 참조하여 설명한 바와 같은 작용 효과를 가지면서 z축 방향의 시야각 및 아이박스(eye box)를 넓힐 수 있는 장점이 있다.
도 13은 본 발명의 제1 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(400)의 구성을 나타낸 도면이다.
도 13의 실시예의 증강 현실용 광학 장치(400)는, 도 12에서 설명한 실시예의 증강 현실용 광학 장치(300)와 같이 반사 수단(20)이 복수개로 구성되지만, 각 반사 수단(20)은, 각 반사 수단(20)을 구성하는 각각의 반사부(21~29)들이, 인접하는 반사 수단(20)을 구성하는 모든 반사부(21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되는 것을 특징으로 한다.
즉, 도 13에 나타낸 바와 같이, z축의 오른쪽 방향으로부터 서로 인접하는 첫번째 반사 수단(20)의 반사부(21~29)들과 두번째 반사 수단(20)의 반사부(21~29)들을 y축 방향의 위쪽(화상 출사부(10)쪽)으로부터 순서대로 비교해 보면, 첫번째 반사 수단(20)의 각각의 반사부(21~29)들은 두번째 반사 수단(20)의 모든 반사부(21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되어 있음을 알 수 있다. 즉, 첫번째 반사 수단(20)의 반사부(21~29)들과 두번째 반사 수단(20)의 반사부(21~29)들은 z축 방향에서 볼 때 z축에 평행한 직선을 따라 나란히 정렬되어 있지 않고 서로 엇갈리게 배치되어 있음을 알 수 있다.
도 14는 본 발명의 제1 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(500)의 구성을 나타낸 도면이다.
도 14의 실시예의 증강 현실용 광학 장치(500)는, 도 4 내지 도 11을 참조하여 설명한 실시예의 증강 현실용 광학 장치(200)와 기본적으로 동일하되, 각 반사부(21~29)들이 z축 방향으로 연장된 바(bar) 형태로 형성된 것을 특징으로 한다.
즉, 앞서 설명한 바와 같이, 증강 현실용 광학 장치(500)를 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 복수개의 반사부(21~29)들은 상기 z축 방향을 따라 연장된 바(bar) 형태로 형성된다.
이러한 경우, z축에 수직한 면을 향해 바라보았을 때 각 반사부(21~29)의 크기는 4mm 이하로 형성되는 것이 바람직하다.
한편, 본 실시예의 경우에도, z축에 수직한 평면을 향해 광학 수단(30)을 바라보았을 때 각 반사부(21~29)들의 형태는 도 5에서 나타낸 바와 동일하게 보이게 된다.
한편, 상기 실시예에 있어서, 각 반사부(21~29)들의 적어도 일부의 크기는 서로 다르게 할 수도 있다. 이러한 경우에도, 각 반사부(21~29)들의 크기는 전술한 바와 같이 4mm 이하로 형성하는 것이 바람직하다.
또한, 각 반사부(21~29)들은 동일한 간격을 두고 배치되는 것이 바람직하지만, 적어도 일부의 반사부(21~29)들의 간격을 다른 반사부(21~29)들의 간격과 다르도록 배치할 수도 있다.
또한, 각 반사부(21~29)들의 적어도 일부는 빛을 부분적으로 반사시키는 하프 미러와 같은 수단으로 구성할 수도 있다.
또한, 반사부(21~29)들의 적어도 일부는, 반사 수단 이외의 기타 굴절 소자 또는 회절 소자로 형성할 수도 있다.
또한, 반사부(21~29)들의 적어도 일부는 빛을 파장에 따라 선택적으로 투과시키는 노치 필터 등과 같은 광학 소자로 구성될 수 있다.
또한, 반사부(21~29)들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅될 수도 있다.
또한, 반사부(21~29)들 중 적어도 일부의 표면을 곡면으로 형성할 수도 있다. 여기에서, 상기 곡면은 오목면 또는 볼록면일 수 있다.
도 15는 반사부(21~29)의 표면이 곡면으로 형성된 것을 설명하기 위한 도면으로서, 설명의 편의를 위해 하나의 반사부(21)만을 나타내었다.
도 15에 나타낸 바와 같이, 반사부(21)의 표면은 곡면으로 형성되어 있으며, 이 경우, 곡면으로 형성되는 표면은 광학 수단(30)의 제1 면(31)쪽으로 볼록한 볼록면으로 형성될 수 있다.
도 15에서는, 제1 면(31)쪽으로 볼록한 볼록면을 갖는 반사부(21)를 나타내었으나, 이는 예시적인 것이며 제1 면(31)쪽으로 오목한 오목면을 가지도록 반사부(21)를 형성할 수도 있다.
도 16은 반사부(21~29)의 곡면 형태의 또 다른 예를 나타낸 것으로서, 설명의 편의를 위해 하나의 반사부(21)만을 나타내었다.
도 16의 반사부(21)는 곡면으로 형성되되, 반사부(21)를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부(10)와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 하면, 반사부(21)의 x축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성된 것을 특징으로 한다.
즉, 도 16의 반사부(21)는 광학 수단(30)의 내면에서 z축 방향으로 바(bar) 형태로 연장되도록 형성되어, 전체적으로는 원통(cylinder)형 형상의 반사부(21)를 길이 방향으로 절개한 형태로 형성된 것을 특징으로 한다.
도시된 바와 같이, 도 16의 반사부(21)는, z축 방향으로의 길이가 x축 방향의 길이보다 길게 형성되며 또한 광학 수단(30)의 제1 면(31)쪽으로 볼록한 볼록면으로 형성되어 있음을 알 수 있다.
한편, 도 16에서 반사부(21)는 z축 방향으로 연장된 바 형태이지만, y축 방향으로 연장된 바 형태가 되도록, 즉 y축 방향의 길이가 z축 방향의 길이보다 길게 형성할 수도 있다.
또한, 도 16의 반사부(21)는 전체적으로 원통형 형상을 길이 방향으로 절개한 형태로 형성되므로 y축 방향에서 반사부(21)를 보았을 때 직사각형 형태를 가지지만, 이는 예시적인 것이며, y축 방향에서 보았을 때 반사부(21)가 전체적으로 원형, 삼각형, 사각형 등 기타 형태를 가지도록 형성할 수도 있다. 또한, 반사부(21)를 y축 방향에서 보았을 때 x축 방향으로 장축을 갖는 타원형으로 형성할 수도 있다.
또한, 도 16에서는 광학 수단(30)의 제1 면(31)쪽으로 볼록한 볼록면을 갖는 반사부(21)를 나타내었으나 이는 예시적인 것이며, 제1 면(31)쪽으로 오목한 오목면을 가지도록 반사부(21)를 형성할 수도 있음은 물론이다.
또한, 도 14의 실시예에서 설명한 반사부(20)를 도 16에 나타낸 바와 같은 형태로 형성할 수도 있다. 이 경우, 도 14의 반사부(20)는 광학 수단(30)의 내부에서 z축 방향을 따라 전체적으로 연장되어 하나의 바 형태로 형성되지만, 도 16의 반사부(21)는 도 14의 바 형태가 분할되어 형성된 것으로 볼 수 있다.
[제2 실시예]
다음으로, 도 17 이하를 참조하여 본 발명에 의한 제2 실시예에 의한 증강 현실용 광학 장치(600~1300)에 대해 설명한다.
도 17는 본 발명의 제2 실시예에 의한 증강 현실용 광학 장치(600)를 나타낸 도면이다.
도 17의 제2 실시예의 증강 현실용 광학 장치(600)는, 도 4에서 설명한 제1 실시예와 기본적인 구성은 동일하되, 반사 수단(20)을 구성하는 반사부(21~29)들의 배치 구조에서만 차이가 있다.
즉, 도 17의 제2 실시예의 증강 현실용 광학 장치(600)의 반사 수단(20)은, 복수개의 반사부(21~24)를 포함하는 제1 반사부 그룹(20A)과 복수개의 반사부(25~29)를 포함하는 제2 반사부 그룹(20B)에 의해 구성되되, 제2 반사부 그룹(20B)과 화상 출사부(10)의 거리는 제1 반사부 그룹(20A)과 화상 출사부(10)의 거리보다 크도록 광학 수단(30)의 내부에 매립되어 배치한다.
여기에서, 제1 반사부 그룹(20A)을 구성하는 반사부(21~24)들은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(31)에 더 가깝도록 광학 수단(30)의 내부에 매립되어 배치되고, 제2 반사부 그룹(20B)을 구성하는 반사부(25~29)들은, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(31)에서 더 멀도록 광학 수단(30)의 내부에 매립되어 배치된다.
여기에서, 광학 수단(30)의 제1 면(31) 및 제2 면(32) 중 적어도 어느 하나가 곡면으로 형성되거나 동공(40) 중심으로부터 정면 방향으로의 직선에 대한 수직 평면과 평행하지 않고 경사각을 가지도록 형성되는 경우가 있을 수 있으므로, 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(31)에 더 가깝게 배치된다는 것은, 화상 출사부(10)로부터의 거리가 멀수록 동공(40)으로부터 정면 방향으로의 직선에 대한 수직 평면으로서 제1 면(31)과 동공(40) 사이에 존재하는 수직 평면에 더 가깝게 배치되는 것을 의미한다.
마찬가지로 화상 출사부(10)로부터의 거리가 멀수록 광학 수단(30)의 제1 면(32)에서 더 멀도록 배치된다는 것은, 화상 출사부(10)로부터의 거리가 멀수록 동공(40)으로부터 정면 방향으로의 직선에 대한 수직 평면으로서 제1 면(31)과 동공(40) 사이에 존재하는 수직 평면에서 더 멀리 위치하도록 배치된다는 것을 의미한다.
기타 구성은 앞서 설명한 제1 실시예와 동일하므로 상세 설명은 생략한다.
도 18은 도 17에서 설명한 반사부(21~29)들의 배치 구조를 설명하기 위한 도면이다.
도 18을 참조하면, 전술한 바와 같이, 반사 수단(20)은 제1 반사부 그룹(20A)과 제2 반사부 그룹(20B)으로 구성되며, 제1 반사부 그룹(20A)은 복수개의 반사부(21~24)를 포함하고, 제2 반사부 그룹(20B)은 복수개의 반사부(25~29)를 각각 포함한다.
제1 반사부 그룹(20A)을 구성하는 복수개의 반사부(21~24)들과 제2 반사부 그룹(20B)을 구성하는 복수개의 반사부(25~29)들은, 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이의 내부 공간에 매립 배치되어 있으며, 반사부(21~29) 전체의 중심을 가상의 선으로 연결하면 전체적으로 완만한 "C"자 형태의 곡선을 형성하도록 배치되어 있음을 알 수 있다.
한편, 도 17 및 도 18에서는, 제1 반사부 그룹(20A)을 구성하는 각각 반사부(21~24)들은 인접하는 반사부(21~24)들이 연속적으로 구성된 것으로 나타내었으나, 이는 예시적인 것이며, 예컨대, 인접하지 않는 3개의 반사부(21,25,27)에 의해 제1 반사부 그룹(20A)을 구성할 수도 있다. 이는 제2 반사부 그룹(20B)의 경우에도 마찬가지이다.
또한, 제1 반사부 그룹(20A) 및 제2 반사부 그룹(20B)은 복수개가 존재하도록 구성할 수도 있음은 물론이다.
또한, 반사 수단(20)을 구성하는 복수개의 반사부(21~29)들 전부가 제1 반사부 그룹(20A) 및 제2 반사부 그룹(20B) 중 어느 하나에 반드시 포함되어야 하는 것은 아니며, 반사 수단(20)을 구성하는 복수개의 반사부(21~29) 중 일부만으로 제1 반사부 그룹(20A) 및 제2 반사부 그룹(20B)을 구성할 수 있음은 물론이다.
도 19는 도 17 및 도 18에서 설명한 증강 현실용 광학 장치(600)의 사시도를 나타낸 것이다.
도 19를 참조하면, 증강 현실용 광학 장치(600)를 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 하면, z축은 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분이 된다. 이 때, z축에 수직한 평면을 향해 광학 수단(30) 또는 증강 현실용 광학 장치(600)를 바라 보았을 때, 반사부(21~29)들은 도 17 및 도 18에 나타낸 것처럼 보이게 된다.
즉, z축에 수직한 평면을 향해 광학 수단(30) 또는 증강 현실용 광학 장치(600)를 바라보았을 때 복수개의 반사부(21~29)들 중, 제1 반사부 그룹(20A)을 구성하는 복수개의 반사부(21~24)는 화상 출사부(10)로부터의 거리가 멀수록 광학 수단의 제1 면(31)에 더 가깝도록 광학 수단(30)의 내부에 매립되어 배치되고, 제2 반사부 그룹(20B)을 구성하는 복수개의 반사부(25~29)는 화상 출사부(10)로부터의 거리가 멀수록 광학 수단의 제1 면(31)에서 더 멀도록 광학 수단(30)의 내부에 매립되어 배치된다.
또한, 제2 반사부 그룹(20B)과 화상 출사부(10)의 거리는, 제1 반사부 그룹(20A)과 화상 출사부(10)의 거리보다 크도록 배치되는데, 이는 도 19의 z축에 수직한 평면을 향해 광학 수단(30)을 바라보았을 때 제1 반사부 그룹(20A)이 제2 반사부 그룹(20B)의 위쪽에 배치된다는 것을 의미한다.
도 20은 도 17 내지 도 19의 증강 현실용 광학 장치(600)의 반사부(21~29)의 배치 구조의 효과를 설명하기 위한 도면이다.
도 20의 (a)는 반사부(21~29)가 도 17 내지 도 19에서 설명한 바와 같은 배치 구조를 갖는 경우를 나타낸 것이고, 도 20의 (b)는 모든 반사부(21~29)가 일직선으로 배치된 경우 즉, 모든 반사부(21~29)들이 화상 출사부(10)로부터의 거리에 관계없이 제1 면(31)과 동일한 거리를 갖도록 배치된 경우를 나타낸 것이다.
도 20의 (b)를 참조하면, 모든 반사부(21~29)가 화상 출사부(10)로부터의 거리에 관계없이 광학 수단(30)의 제2 면(32)과의 거리가 동일하게 배치되어 있으므로, 아래쪽의 반사부(28,29)에는 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광이 제대로 도달하지 않음을 알 수 있다.
이에 비해, 도 20의 (a)를 참조하면, 반사부(24~29)들이 도 17 내지 도 19를 참조하여 설명한 바와 같이 배치되기 때문에, 광학 수단(30)의 제2 면(32)에서 전반사된 증강 현실 화상광은 모든 반사부(21~29)에 전달됨을 알 수 있다.
한편, 도 17 내지 도 19를 참조하여 설명한 제2 실시예의 반사부(21~29)들 또한 제1 실시예에서와 마찬가지로 각 반사부(21~29)들은 사용자의 동공(40) 중심에서 정면 방향으로의 직선에 대해 적어도 45도 이하의 경사각을 가지도록 배치된다. 이는 앞서 도 8 및 도 9를 참조하여 설명한 바와 동일하므로, 상세 설명은 생략한다.
한편, 전술한 바와 같이, 화상 출사부(10)로부터 출사되는 증강 현실용 화상광은 광학 수단(30)의 내부에서 전반사되지 않고 반사부(21~29)로 직접 전달되거나 광학 수단(30)의 내면에서 적어도 1회 이상 전반사된 후 반사부(21~29)로 전달될 수 있다.
도 21 내지 도 23은 증강 현실 화상광이 광학 수단(30)에서 전반사되는 횟수를 설명하기 위한 도면으로서, 설명의 편의를 위해 반사부(21~23)는 3개만을 나타내었다.
도 21은 증강 현실 화상광이 광학 수단(30) 내부에서 전반사되지 않는 경우를 나타낸 것이다.
도 21에 나타낸 바와 같이, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30) 내부에서 전반사되지 않고 반사부(21~23)로 직접 전달되고, 반사부(21~23)에서 반사된 후 동공(40)으로 전달됨을 알 수 있다.
도 22는 증강 현실 화상광이 광학 수단(30) 내부에서 1회 전반사되는 경우를 나타낸 것이다.
도 22에 나타낸 바와 같이, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30)의 제2 면(32)에서 1회 전반사된 후 반사부(21~23)로 전달되고, 이후 반사부(21~23)에서 반사되어 동공(40)으로 전달됨을 알 수 있다. 도 22는 도 21에 나타낸 바와 같은 광학 수단(30)을 x축 방향에 대해 2등분하고 2등분선을 광학 수단(30)의 제2 면(32)으로 한 경우로 볼 수 있다.
도 23은 증강 현실 화상광이 광학 수단(30) 내부에서 2회 전반사되는 경우를 나타낸 것이다.
도 23을 참조하면, 화상 출사부(10)로부터 출사되는 증강 현실 화상광은 광학 수단(30)의 제1 면(31)에서 전반사되고 이후 제2 면(32)에서 다시 전반사된 후 반사부(21~23)로 전달되고, 이후 반사부(21~23)에서 다시 반사되어 동공(40)으로 전달됨을 알 수 있다. 도 23은 도 21에 나타낸 바와 같은 광학 수단(30)을 x축 방향에 대해 3등분하고 3등분선 중 동공(40)쪽에 가까운 쪽을 광학 수단(30)의 제2 면(32)으로 한 경우로 볼 수 있다.
도 21 내지 도 23에서, 반사부(21~23)는 z축에 수직한 평면을 향해 광학 수단(30)을 바라 보았을 때 직선으로 배치된 형태로 나타내었으나, 이는 단순히 설명의 편의를 위한 것이며 도 17 내지 도 19를 참조하여 설명한 바와 같은 배치 구조를 갖는 경우에도 마찬가지이다.
도 24 및 도 25는 증강 현실용 광학 장치(600)의 전체적인 작용을 설명하기 위한 도면이다.
도 24 및 도 25는, 광학 수단(30)의 내부에서 2회 전반사가 이루어지는 경우를 예시적으로 나타낸 것으로서, 설명의 편의를 위해 반사부(21~25)는 5개만을 나타내었다.
도 24의 (a),(b),(c)를 참조하면, 서로 다른 각도의 증강 현실 화상광이 광학 수단(30)의 제1 면(31) 및 제2 면(32)에서 각각 전반사된 후, 앞서 설명한 바와 같은 경사각 및 배치 구조를 갖는 반사부(21~25)들에 의해 아이박스(eye box)로 전달됨을 알 수 있다.
도 24의 (a)에서는 반사부(21~23)가 사용되고, 도 24의 (b)에서는 반사부(22~24)가 사용되고, 도 24의 (c)에서는 반사부(23~25)들이 사용되며, 이들은 증강 현실 화상광의 광 경로의 입사각 즉, 화상 출사부(10)로부터 출사되는 증강 현실 화상광의 광 경로의 출사각에 각각 상응하여 증강 현실 화상광을 아이박스(eye box)로 전달한다. 이 때, 아이박스(eye box)는, 화상 출사부(10)에서 나오는 그대로의 증강 현실 화상광을 보는데 있어서 사용자의 동공(40)이 위치할 수 있는 최대 공간이라고 볼 수 있으며, 광학 수단(30)의 제1 면(31) 및 제2 면(32)은 인풋 면으로 작용하고 이들을 통해 전반사된 증강 현실 화상광은 반사부(21~25)를 통해 모두 아이박스 방향으로 출사된다.
한편, 도 25는 도 24의 (a),(b),(c)에서 나타낸 증강 현실 화상광을 함께 나타낸 것으로서, 화상 출사부(10)에서 출사된 증강 현실 화상광이 입사 동공(input pupil)으로 기능하는 광학 수단(30)의 상부를 통해 입사되어, 광학 수단(30)의 제1 면(31) 및 제2 면(32)을 통해 2회 전반사된 후, 반사부(21~25)를 통해 반사된 후 출사 동공(exit pupil)으로 작용하는 광학 수단(30)의 제1 면(31)을 통해 아이박스(eye box)로 전달됨을 알 수 있다. 여기에서, 동공(40)이 위치할 수 있는 아이박스(eye box)와 광학 수단(30)간의 거리는 아이릴리프(eye relief)가 된다.
도 24 및 도 25에서 나타낸 바와 같이, 화상 출사부(10)로부터 출사되어 광학 수단(30)의 제1 면(31) 및 제2 면(32)에서 전반사된 증강 현실 화상광은 전술한 바와 같은 반사부(21~25)의 경사각 구조 및 배치 구조에 의하여 모두 아이 박스(eye box)를 향해 전달되므로, 증강 현실 화상광의 광 효율을 현저하게 개선할 수 있음을 알 수 있다.
도 26은 본 발명의 제2 실시예의 변형 실시예에 의한 증강 현실용 광학 장치(700)의 구성을 나타낸 도면이다.
도 26의 실시예의 증강 현실용 광학 장치(700)는, 도 17에서 설명한 제2 실시예의 증강 현실용 광학 장치(600)와 기본적인 구성은 동일하되, 복수개의 반사부(21~24)를 포함하는 제1 반사부 그룹(20A) 및 복수개의 반사부(25~29)를 포함하는 제2 반사부 그룹(20B)으로 구성되는 반사 수단(20)이 복수개 형성된 것을 특징으로 한다.
여기에서, 복수개의 반사 수단(20)은, 다음과 같은 배치 구조를 갖는다. 즉, 증강 현실용 광학 장치(700) 또는 광학 수단(30)을 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 내면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 반사 수단(20)들은 상기 z축 방향을 따라 평행하게 서로 간격을 두고 배치될 수 있다.
여기에서, 각각의 반사 수단(20)은, 각 반사 수단(20)을 구성하는 각각의 반사부(21~29)들이, 인접하는 반사 수단(20)을 구성하는 반사부(21~29)들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 평행하게 위치하도록 나란히 배치될 수 있다. 따라서, z축에 수직한 평면을 향해 광학 수단(30)을 바라 보았을 때 복수개의 반사 수단(20)들은 도 17 및 도 18에서 나타낸 바와 동일하게 보이게 된다.
도 26의 실시예에 의하면, 도 17 내지 도 19를 참조하여 설명한 바와 같은 작용 효과를 가지면서 시야각과 z축 방향의 아이박스(eye box)를 넓힐 수 있는 장점이 있다.
도 27은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(800)의 구성을 나타낸 도면이다.
도 27의 실시예의 증강 현실용 광학 장치(800)는, 도 26에서 설명한 실시예의 증강 현실용 광학 장치(700)와 같이 반사 수단(20)이 복수개로 구성되지만, 각 반사 수단(20)은, 각 반사 수단(20)을 구성하는 각각의 반사부(21~29)들이, 인접하는 반사 수단(20)을 구성하는 모든 반사부(21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되는 것을 특징으로 한다.
즉, 도 27에 나타낸 바와 같이, z축의 오른쪽 방향으로부터 서로 인접하는 첫번째 반사 수단(20)의 반사부(21~29)들과 두번째 반사 수단(20)의 반사부(21~29)들을 y축 방향의 위쪽(화상 출사부(10)쪽)으로부터 순서대로 비교해 보면, 첫번째 반사 수단(20)의 각각의 반사부(21~29)들은 두번째 반사 수단(20)의 모든 반사부(21~29)들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되어 있음을 알 수 있다. 즉, 첫번째 반사 수단(20)의 반사부(21~29)들과 두번째 반사 수단(20)의 반사부(21~29)들은 z축 방향에서 볼 때 z축에 평행하게 나란히 정렬되어 있지 않고 서로 엇갈리게 배치되어 있음을 알 수 있다.
도 28은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(900)의 구성을 나타낸 도면이다.
도 28의 실시예의 증강 현실용 광학 장치(900)는, 도 17 및 도 18을 참조하여 설명한 실시예의 증강 현실용 광학 장치(600)와 기본적으로 동일하되, 각 반사부(21~29)들이 바(bar) 형태로 형성된 것을 특징으로 한다.
여기에서, 각 반사부(21~29)들은, 다음과 같은 배치 구조를 갖는다. 즉, 증강 현실용 광학 장치(900) 또는 광학 수단(30)을 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 복수개의 반사부(21~29)들은 상기 z축에 평행한 가상의 직선을 따라 연장된 바(bar) 형태로 형성된다.
본 실시예의 경우에도, 광학 수단(30)을 z축에 수직한 평면을 향해 바라 보았을 때 각 반사부(21~29)들의 형태는 도 17 및 도 18에서 나타낸 바와 동일하게 보이게 된다.
본 실시예의 경우, z축에 수직한 평면을 향해 바라 보았을 때 반사부(21~29)들의 크기는 4mm 이하로 형성되는 것이 바람직하다.
한편, 제2 실시예 및 제2 실시예의 변형 실시예들에 있어서, 각 반사부(21~29)들의 적어도 일부의 크기는 다른 반사부(21~29)들과 다르게 구성할 수도 있다. 이러한 경우에도, 각 반사부(21~29)들의 크기는 전술한 바와 같이 4mm 이하로 형성하는 것이 바람직하다.
또한, 각 반사부(21~29)들은 동일한 간격을 두고 배치되는 것이 바람직하지만, 적어도 일부의 반사부(21~29)들의 간격을 다른 반사부(21~29)들의 간격과 다르도록 배치할 수도 있다.
또한, 적어도 일부의 반사부(21~29)들의 x축에 대한 경사각을 다른 반사부(21~29)들과 다르도록 구성할 수도 있다.
또한, 각 반사부(21~29)들의 적어도 일부는 빛을 부분적으로 반사시키는 하프 미러와 같은 수단으로 구성할 수도 있다.
또한, 반사부(21~29)들의 적어도 일부는, 반사 수단 이외의 기타 굴절 소자 또는 회절 소자로 형성할 수도 있다.
또한, 반사부(21~29)들의 적어도 일부는 빛을 파장에 따라 선택적으로 투과시키는 노치 필터 등과 같은 광학 소자로 구성될 수 있다.
또한, 반사부(21~29)들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅될 수도 있다.
또한, 반사부(21~29)들 중 적어도 일부의 표면을 곡면으로 형성할 수도 있다. 여기에서, 상기 곡면은 오목면 또는 볼록면일 수 있다.
여기에서, 반사부(21~29)들의 형상은 도 15 및 도 16에서 설명한 바와 같은 방식에 따라 형성될 수도 있다.
도 29 내지 도 31은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1000)를 설명하기 위한 도면으로서, 도 29는 증강 현실용 광학 장치(1000)를 동공(40)쪽에서 바라 본 정면도이고, 도 30은 증강 현실용 광학 장치(1000)를 전술한 바와 같은 z축 방향에서 바라 본 측면도이고, 도 31은 증강 현실용 광학 장치(1000)를 전술한 바와 같은 y축 방향에서 바라 본 평면도이다.
도 29 내지 도 31에 나타낸 증강 현실용 광학 장치(1000)는 도 26의 증강 현실용 광학 장치(700)와 동일하게 반사 수단(20)이 복수개로 구성되지만, 각 반사 수단(20)과 광학 수단(30)의 제1 면(31)과의 거리가 모두 동일하지는 않도록 배치되는 반사 수단(20)이 적어도 하나 이상 존재한다는 점에서 차이가 있다.
즉, 전술한 바와 같이, 증강 현실용 광학 장치(1000) 또는 광학 수단(30)을 사용자의 동공(40) 정면에 두었을 때, 동공(40)에서 정면 방향을 x축이라 하고, 화상 출사부(10)로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단(30)의 제1 면(31)과 제2 면(32) 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 각 반사 수단(20)과 광학 수단(30)의 제1 면(31)과의 거리가 모두 동일하지는 않도록 배치되는 반사 수단(20)이 적어도 하나 이상 존재하는 것을 특징으로 한다.
이는 바꾸어 말하면, 도 30에 나타낸 바와 같이, z축에 수직한 평면을 향해 광학 수단(30)을 바라보았을 때 복수개의 반사 수단(20) 중 적어도 일부는 겹쳐서 보이지 않도록 배치된다는 것을 의미한다.
도 29 내지 도 31의 실시예에서는, 사선으로 나타낸 2개의 반사 수단(20)과 광학 수단(30)의 제1 면(31)과의 거리, 검은색으로 나타낸 2개의 반사 수단(20)과 광학 수단(30)의 제1 면(31)과의 거리, 내부를 흰색으로 나타낸 1개의 반사 수단(20)과 광학 수단(30)의 제1 면(31)과의 거리는 서로 상이하도록 배치된다. 여기에서, 사선으로 나타낸 2개의 반사 수단(20) 각각과 광학 수단(30)의 제1 면(31)과의 거리는 동일하고, 검은색으로 나타낸 2개의 반사 수단(20) 각각과 광학 수단(30)의 제1 면(31)과의 거리는 동일한 것으로 나타내었으나 이는 예시적인 것이며, 모든 반사 수단(20)들과 광학 수단(30)의 제1 면(31)과의 거리를 전부 상이하게 배치할 수도 있음은 물론이다.
도 29 내지 도 31의 실시예에서의 반사 수단(20)의 배치 구조는 제1 실시예에도 그대로 적용할 수 있음은 물론이다.
도 32는 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1100)를 나타낸 것으로서, 화상 출사부(10)의 다양한 구성을 설명하기 위한 도면이다.
본 발명에서의 화상 출사부(10)는, 일반적으로는 전술한 바와 같이, 디스플레이 장치(11)와 콜리메이터(12)로 구성되는데, 도 32의 증강 현실용 광학 장치(1100)의 화상 출사부(10)의 콜리메이터(12)는, 오목 거울(121)과 빔 스플리터(122)를 조합하여 구현하였다는 점을 특징으로 한다.
도 32에 도시한 바와 같이, 디스플레이 장치(11)로부터 출사된 증강 현실 화상광은 빔 스플리터(122)에 의해 오목 거울(121)로 전달되고 오목 거울(121)에서 반사된 증강 현실 화상광은 빔 스플리터(122)를 통해 광학 수단(30)의 제2 면(32)으로 입사하고, 전술한 바와 같은 과정을 통해 동공(40)으로 전달된다.
도 33은 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1200)를 나타낸 것이다.
도 33의 증강 현실용 광학 장치(1200)는 도 32의 실시예와 유사하되, 2개의 오목 거울(121)을 서로 대향하도록 배치하여 화상 출사부(10)를 구성했다는 점을 특징으로 한다. 즉, 도 33의 실시예에서는, 디스플레이 장치(11)로부터 출사된 증강 현실 화상광은 빔 스플리터(122)에 의해 하나의 오목 거울(121A)로 전달되고, 오목 거울(121A)에서 반사된 후 빔 스플리터(122)를 통과하여 반대편의 오목 거울(121B)로 전달되고, 여기에서 다시 반사된 후 빔 스플리터(122)를 통해 광학 수단(30)의 제2 면(32)으로 전달되어 전술한 바와 같은 과정을 통해 동공(40)으로 전달된다.
도 34는 본 발명의 제2 실시예의 또 다른 변형 실시예에 의한 증강 현실용 광학 장치(1300)를 나타낸 것이다.
도 34의 실시예는 도 32의 실시예와 유사하지만, 화상 출사부(10)에서 출사된 증강 현실 화상광이 보조 반사부(80)를 통해 광학 수단(30)으로 전달된다는 점에서 차이가 있다.
즉, 도 34의 실시예에서는, 디스플레이 장치(11)로부터 출사된 증강 현실 화상광은 빔 스플리터(122)에 의해 오목 거울(121)로 전달되고, 오목 거울(121)에서 반사된 증강 현실 화상광은 빔 스플리터(122)를 통과하여 보조 반사부(80)로 전달되고 보조 반사부(80)에 의해 반사되어 광학 수단(30)의 제2 면(32)으로 전달되어 전술한 바와 같은 과정을 통해 동공(40)으로 전달된다.
도 32 내지 도 34의 실시예는 화상 출사부(10)의 구성을 예시한 것이며, 이외에도 기타 다양한 형태로 화상 출사부(10)를 구성할 수 있음은 물론이다.
또한, 도 32 내지 도 34의 실시예는 앞서 설명한 제1 실시예의 화상 출사부(10)에도 그대로 적용될 수 있음은 물론이다.
이상에서, 본 발명의 바람직한 실시예를 참조하여 본 발명의 구성을 설명하였으나 본 발명은 상기 실시예에 한정되는 것이 아님은 물론이며, 본 발명의 범위 내에서 다양한 수정 및 변형 실시가 가능함은 물론이다.
예컨대, 상기 실시예들에서는 증강 현실용 광학 장치(200~1300)는 화상 출사부(10)와 독립적으로 제조될 수 있으므로 화상 출사부(10)는 증강 현실용 광학 장치(200~1300)의 필수 구성 요소는 아닌 것으로 설명하였으나, 도 32 내지 도 34에서 설명한 바와 같이 화상 출사부(10)를 포함하는 일체형의 모듈 형태로 구현하는 것도 가능하다.
Claims (28)
- 광 효율을 개선한 증강 현실용 광학 장치로서,화상 출사부로부터 출사된 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사 수단; 및상기 반사 수단이 매립되어 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고,상기 광학 수단은, 상기 반사 수단에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,상기 반사 수단은, 반사 수단으로 전달된 증강 현실 화상광을 각각 반사시켜 사용자의 동공으로 전달하도록 상기 광학 수단의 내부에 매립되어 배치되는 크기 4mm 이하의 복수개의 반사부를 포함하고,상기 복수개의 반사부들 중 적어도 2 이상의 반사부들은, 상기 화상 출사부로부터의 거리가 멀수록 광학 수단의 제2 면에 더 가깝게 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 화상 출사부로부터 출사되는 증강 현실용 화상광은 상기 광학 수단의 내부를 통해 상기 반사 수단으로 직접 전달되거나 상기 광학 수단의 내면에서 적어도 1회 이상 전반사된 후 상기 반사 수단으로 전달되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 복수개의 반사부 각각은, 사용자의 동공 중심에서 정면 방향에 대해 적어도 45도 이하의 각도를 갖는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사 수단은 복수개로 구성되고,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사 수단은 상기 z축 방향을 따라 평행하게 간격을 두고 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 4에 있어서,상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 반사부들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 4에 있어서,상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 모든 반사부들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들은 상기 z축 방향을 따라 연장된 바 형태로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사부들 중 적어도 일부의 크기는 서로 다른 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사부들 중, 적어도 일부의 반사부들의 간격을 다른 반사부들의 간격과 다르도록 배치한 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사부들 중 적어도 일부는 하프 미러, 굴절 소자 또는 회절 소자 중 적어도 어느 하나로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사부들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 1에 있어서,상기 반사부들 중 적어도 일부의 표면은 곡면으로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 12에 있어서,상기 곡면으로 형성되는 표면은 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 12에 있어서,반사부를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부와 x축 사이의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 반사부들 중 적어도 일부는 x축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성되거나, z축 방향으로의 길이보다 y축 방향으로의 길이가 길게 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 14에 있어서,상기 x축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성된 반사부들 또는 z축 방향으로의 길이보다 y축 방향으로의 길이가 길게 형성된 반사부들의 표면은, 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 광 효율을 개선한 증강 현실용 광학 장치로서,화상 출사부로부터 출사된 증강 현실용 화상에 상응하는 화상광인 증강 현실 화상광을 사용자의 눈의 동공을 향해 반사시켜 전달함으로써 사용자에게 증강 현실용 화상을 제공하는 반사 수단; 및상기 반사 수단이 매립되어 배치되며, 실제 사물로부터 출사된 화상광인 실제 사물 화상광의 적어도 일부를 사용자의 눈의 동공을 향해 투과시키는 광학 수단을 포함하고,상기 광학 수단은, 상기 반사 수단에서 반사된 증강 현실 화상광과 실제 사물 화상광의 적어도 일부가 사용자의 동공을 향해 출사되는 제1 면과, 상기 제1 면에 대향하며 실제 사물 화상광이 입사하는 제2 면을 구비하고,상기 반사 수단은, 반사 수단으로 전달되는 증강 현실 화상광을 각각 반사시켜 사용자의 동공으로 전달하도록 상기 광학 수단의 내부에 매립되어 배치되는 크기 4mm 이하의 복수개의 반사부를 포함하고,상기 반사 수단은, 상기 화상 출사부로부터의 거리가 멀수록 상기 광학 수단의 제1 면에 더 가깝도록 상기 광학 수단의 내부에 매립되어 배치되는 반사부들로 구성되는 제1 반사부 그룹과, 상기 화상 출사부로부터의 거리가 멀수록 광학 수단의 제1 면에서 더 멀도록 상기 광학 수단의 내부에 매립되어 배치되는 반사부들로 구성되는 제2 반사부 그룹으로 구성되고,상기 제2 반사부 그룹과 화상 출사부의 거리는, 상기 제1 반사부 그룹과 화상 출사부의 거리보다 크도록 배치된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 화상 출사부로부터 출사되는 증강 현실 화상광은, 상기 광학 수단의 내부를 통해 상기 반사 수단으로 직접 전달되거나 상기 광학 수단의 내면에서 적어도 1회 이상 전반사된 후 상기 반사 수단으로 전달되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 복수개의 반사부 각각은, 사용자의 동공 중심에서 정면 방향으로의 직선에 대해 적어도 45도 이하의 각도를 갖는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 반사 수단은 복수개로 구성되고,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사 수단은 상기 z축 방향을 따라 평행하게 간격을 두고 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 19에 있어서,상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 반사부들 중 어느 하나와 z축에 평행한 가상의 직선을 따라 위치하도록 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 19에 있어서,상기 각 반사 수단은, 각 반사 수단을 구성하는 각각의 반사부들이, 인접하는 반사 수단을 구성하는 모든 반사부들과 z축에 평행한 가상의 직선을 따라 위치하지 않도록 배치되는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들은 상기 z축에 평행한 가상의 직선을 따라 연장된 바 형태로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 복수개의 반사부들 중 적어도 일부는 하프 미러, 굴절 소자 또는 회절 소자 중 적어도 어느 하나로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 복수개의 반사부들 중 적어도 일부는, 증강 현실 화상광을 반사시키는 면의 반대면에 빛을 반사하지 않고 흡수하는 재질로 코팅된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 복수개의 반사부들 중 적어도 일부의 표면은 곡면으로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 25에 있어서,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 복수개의 반사부들 중 적어도 일부는, x축 또는 y축 방향으로의 길이보다 z축 방향으로의 길이가 길게 형성되거나, z축 방향으로의 길이보다 x축 또는 y축 방향으로의 길이가 길게 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 26에 있어서,상기 반사부들의 표면은, 광학 수단의 제1 면쪽으로 오목한 오목면 또는 광학 수단의 제1 면쪽으로 볼록한 볼록면으로 형성된 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
- 청구항 16에 있어서,상기 반사 수단은 복수개로 구성되고,증강 현실용 광학 장치를 사용자의 동공 정면에 두었을 때, 동공에서 정면 방향을 x축이라 하고, 화상 출사부로부터 x축으로의 수직선에 대해 x축을 따라 평행하면서 광학 수단의 제1 면과 제2 면 사이를 지나는 선분 중 어느 하나를 y축이라 하고, 상기 x축 및 y축과 직교하는 선분을 z축이라 할 때, 상기 각 반사 수단과 광학 수단의 제1 면과의 거리가 모두 동일하지는 않도록 배치되는 반사 수단이 적어도 하나 이상 존재하는 것을 특징으로 하는 광 효율을 개선한 증강 현실용 광학 장치.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080062687.5A CN114341708B (zh) | 2019-09-18 | 2020-09-16 | 改善光效率的增强现实用光学装置 |
JP2022516683A JP7357976B2 (ja) | 2019-09-18 | 2020-09-16 | 光効率を改善した拡張現実用光学装置 |
EP20864635.6A EP4033288A4 (en) | 2019-09-18 | 2020-09-16 | AUGMENTED REALITY OPTICAL DEVICE HAVING IMPROVED OPTICAL EFFICIENCY |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0114729 | 2019-09-18 | ||
KR1020190114729A KR102192942B1 (ko) | 2019-09-18 | 2019-09-18 | 광 효율을 개선한 증강 현실용 광학 장치 |
KR1020190173543A KR102323201B1 (ko) | 2019-12-24 | 2019-12-24 | 광 효율 개선을 위한 곡선 배치 반사 구조를 갖는 증강 현실용 광학 장치 |
KR10-2019-0173543 | 2019-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021054727A1 true WO2021054727A1 (ko) | 2021-03-25 |
Family
ID=74869477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/012518 WO2021054727A1 (ko) | 2019-09-18 | 2020-09-16 | 광 효율을 개선한 증강 현실용 광학 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11536963B2 (ko) |
EP (1) | EP4033288A4 (ko) |
JP (1) | JP7357976B2 (ko) |
CN (1) | CN114341708B (ko) |
WO (1) | WO2021054727A1 (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021054727A1 (ko) * | 2019-09-18 | 2021-03-25 | 주식회사 레티널 | 광 효율을 개선한 증강 현실용 광학 장치 |
KR102436597B1 (ko) * | 2020-09-09 | 2022-08-26 | 주식회사 레티널 | 직선 배치 광학 구조를 갖는 증강 현실용 광학 장치 및 광학 수단의 제조 방법 |
CN113219667B (zh) * | 2021-04-30 | 2022-07-22 | 歌尔股份有限公司 | 光学镜组和头戴显示设备 |
WO2023026515A1 (ja) * | 2021-08-24 | 2023-03-02 | ソニーセミコンダクタソリューションズ株式会社 | 表示装置 |
CN113934006A (zh) * | 2021-10-27 | 2022-01-14 | 歌尔光学科技有限公司 | 光学模组和头戴显示设备 |
CN116413911A (zh) * | 2021-12-31 | 2023-07-11 | 北京耐德佳显示技术有限公司 | 一种超薄型镜片、使用其的虚像成像装置和近眼显示器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101660519B1 (ko) | 2015-03-09 | 2016-09-29 | 하정훈 | 증강 현실 구현 장치 |
JP2017044853A (ja) * | 2015-08-26 | 2017-03-02 | 株式会社東芝 | 表示装置 |
JP2018041096A (ja) * | 2017-10-30 | 2018-03-15 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置並びに光学デバイスの製造方法 |
KR20180028339A (ko) * | 2016-09-08 | 2018-03-16 | 주식회사 레티널 | 광학 장치 |
US20180149869A1 (en) * | 2015-06-09 | 2018-05-31 | Nokia Technologies Oy | Apparatus and Method for Near Eye Display |
JP2019109435A (ja) * | 2017-12-20 | 2019-07-04 | セイコーエプソン株式会社 | 表示装置 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5459172B2 (ja) | 2010-10-21 | 2014-04-02 | セイコーエプソン株式会社 | 導光板及びこれを備える虚像表示装置 |
US10073201B2 (en) * | 2012-10-26 | 2018-09-11 | Qualcomm Incorporated | See through near-eye display |
DE102013219622B4 (de) * | 2013-09-27 | 2021-01-14 | tooz technologies GmbH | Optisches Element und Anzeigevorrichtung mit einem solchen optischen Element |
WO2015081313A2 (en) | 2013-11-27 | 2015-06-04 | Magic Leap, Inc. | Virtual and augmented reality systems and methods |
US9377623B2 (en) | 2014-08-11 | 2016-06-28 | Microsoft Technology Licensing, Llc | Waveguide eye tracking employing volume Bragg grating |
US10429646B2 (en) * | 2015-10-28 | 2019-10-01 | Google Llc | Free space optical combiner with prescription integration |
DE102015122131B3 (de) * | 2015-12-17 | 2017-03-02 | Carl Zeiss Smart Optics Gmbh | Brillenglas für eine auf den Kopf eines Benutzers aufsetzbare und ein Bild erzeugende Anzeigevorrichtung sowie Anzeigevorrichtung mit einem solchen Brillenglas |
US10649209B2 (en) * | 2016-07-08 | 2020-05-12 | Daqri Llc | Optical combiner apparatus |
JP2019012259A (ja) * | 2017-06-30 | 2019-01-24 | セイコーエプソン株式会社 | 虚像表示装置 |
US11163163B2 (en) * | 2017-07-03 | 2021-11-02 | Holovisions | Augmented reality (AR) eyewear with at least one quasi Fresnel reflector (QFR) |
US10859834B2 (en) * | 2017-07-03 | 2020-12-08 | Holovisions | Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear |
US10989921B2 (en) * | 2017-12-29 | 2021-04-27 | Letinar Co., Ltd. | Augmented reality optics system with pinpoint mirror |
US11221486B2 (en) * | 2018-12-10 | 2022-01-11 | Auroratech Company | AR headsets with improved pinhole mirror arrays |
WO2020146683A1 (en) * | 2019-01-09 | 2020-07-16 | Daqri, Llc | Non-uniform sub-pupil reflectors and methods in optical waveguides for ar, hmd and hud applications |
KR20190106879A (ko) * | 2019-05-08 | 2019-09-18 | 엘지전자 주식회사 | 전자 디바이스 |
WO2021054727A1 (ko) * | 2019-09-18 | 2021-03-25 | 주식회사 레티널 | 광 효율을 개선한 증강 현실용 광학 장치 |
WO2021085960A1 (ko) * | 2019-11-01 | 2021-05-06 | 주식회사 레티널 | 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치 |
-
2020
- 2020-09-16 WO PCT/KR2020/012518 patent/WO2021054727A1/ko unknown
- 2020-09-16 EP EP20864635.6A patent/EP4033288A4/en active Pending
- 2020-09-16 JP JP2022516683A patent/JP7357976B2/ja active Active
- 2020-09-16 CN CN202080062687.5A patent/CN114341708B/zh active Active
- 2020-09-17 US US17/024,503 patent/US11536963B2/en active Active
-
2022
- 2022-10-06 US US17/961,207 patent/US20230033762A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101660519B1 (ko) | 2015-03-09 | 2016-09-29 | 하정훈 | 증강 현실 구현 장치 |
US20180149869A1 (en) * | 2015-06-09 | 2018-05-31 | Nokia Technologies Oy | Apparatus and Method for Near Eye Display |
JP2017044853A (ja) * | 2015-08-26 | 2017-03-02 | 株式会社東芝 | 表示装置 |
KR20180028339A (ko) * | 2016-09-08 | 2018-03-16 | 주식회사 레티널 | 광학 장치 |
JP2018041096A (ja) * | 2017-10-30 | 2018-03-15 | セイコーエプソン株式会社 | 光学デバイス及び画像表示装置並びに光学デバイスの製造方法 |
JP2019109435A (ja) * | 2017-12-20 | 2019-07-04 | セイコーエプソン株式会社 | 表示装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4033288A4 |
Also Published As
Publication number | Publication date |
---|---|
CN114341708A (zh) | 2022-04-12 |
JP2022549597A (ja) | 2022-11-28 |
EP4033288A4 (en) | 2023-11-15 |
CN114341708B (zh) | 2024-09-24 |
US11536963B2 (en) | 2022-12-27 |
EP4033288A1 (en) | 2022-07-27 |
US20210080729A1 (en) | 2021-03-18 |
JP7357976B2 (ja) | 2023-10-10 |
US20230033762A1 (en) | 2023-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021054727A1 (ko) | 광 효율을 개선한 증강 현실용 광학 장치 | |
WO2022080627A1 (ko) | 직선 배치 광학 구조를 갖는 컴팩트형 증강 현실용 광학 장치 및 광학 수단의 제조 방법 | |
WO2021085960A1 (ko) | 고스트 이미지 차단 기능 및 광 시야각을 갖는 컴팩트형 증강 현실용 광학 장치 | |
WO2020242085A1 (en) | Augmented reality device for adjusting focus region according to direction of user's view and operating method of the same | |
WO2019124769A1 (en) | Optical system and wearable display apparatus having the same | |
EP3818431A1 (en) | Augmented reality device for adjusting focus region according to direction of user's view and operating method of the same | |
WO2016080708A1 (en) | Wearable device and method for outputting virtual image | |
WO2022255579A1 (ko) | 굴절 공간을 구비하는 증강 현실용 광학 장치 | |
WO2021246777A1 (en) | Device and method for displaying augmented reality | |
WO2020096188A1 (ko) | 증강 현실용 광학 장치 | |
WO2023063555A1 (ko) | 회절 소자를 이용한 콜리메이터를 구비하는 컴팩트형 증강 현실용 광학 장치 | |
WO2021125903A1 (en) | Wearable device including eye tracking apparatus and operation method of the wearable device | |
WO2023128168A1 (ko) | 내장 콜리메이터 및 음굴절 광학 소자를 이용한 컴팩트 증강 현실용 광학 장치 | |
WO2017023057A1 (ko) | 렌즈, 광학 장치 및 이를 포함하는 가상 현실 구현을 위한 헤드 장착 표시 장치 | |
WO2020045914A1 (ko) | 전반사 구조를 갖는 투과형 hmd 광학시스템 | |
WO2020004850A1 (ko) | 홀로그램 광학 소자를 이용한 웨어러블 스마트 광학시스템 | |
WO2022270852A1 (ko) | 가변 초점 렌즈를 포함하는 증강 현실 디바이스 및 그 동작 방법 | |
WO2021034096A1 (ko) | 시력 보정 기능을 구비하는 증강 현실용 광학 장치 | |
WO2018074623A1 (ko) | 굴절식 광학 스크린 및 이를 이용한 플로팅 홀로그램 시스템 | |
WO2023033263A1 (ko) | 회절 소자를 이용한 컴팩트형 증강 현실용 광학 장치 | |
WO2019083143A1 (en) | DISPLAY DEVICE | |
WO2016017885A1 (en) | Screen and laser display apparatus using the same | |
WO2016137274A1 (ko) | 프론트 라이트 유닛 및 영상 표시 장치 | |
WO2021215704A1 (ko) | 마이크로 프리즘 어레이 기반의 증강 현실 광학계 | |
WO2019164380A1 (ko) | 웨어러블 글래스 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20864635 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022516683 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020864635 Country of ref document: EP Effective date: 20220419 |