Nothing Special   »   [go: up one dir, main page]

WO2022255428A1 - Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element - Google Patents

Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element Download PDF

Info

Publication number
WO2022255428A1
WO2022255428A1 PCT/JP2022/022397 JP2022022397W WO2022255428A1 WO 2022255428 A1 WO2022255428 A1 WO 2022255428A1 JP 2022022397 W JP2022022397 W JP 2022022397W WO 2022255428 A1 WO2022255428 A1 WO 2022255428A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ring
optionally substituted
carbon atoms
formula
Prior art date
Application number
PCT/JP2022/022397
Other languages
French (fr)
Japanese (ja)
Inventor
司 長谷川
一毅 岡部
延軍 李
大輔 弘
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202280039377.0A priority Critical patent/CN117480156A/en
Priority to KR1020237041516A priority patent/KR20240016969A/en
Priority to JP2023525903A priority patent/JPWO2022255428A1/ja
Publication of WO2022255428A1 publication Critical patent/WO2022255428A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Definitions

  • the present invention provides an aromatic compound that can be used in an organic electroluminescent device (hereinafter sometimes referred to as "OLED” or “device”), an organic electroluminescent device having the compound, and the organic electroluminescent device.
  • OLED organic electroluminescent device
  • the present invention relates to a display device and a lighting device, a composition containing the compound and the solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device.
  • OLED organic electroluminescent device
  • An organic electroluminescent device typically has a hole-injection layer, a hole-transport layer, an organic light-emitting layer, an electron-transport layer, etc. between an anode and a cathode. Materials suitable for each of these layers are being developed, and the development of red, green, and blue emission colors is progressing.
  • coating-type OLEDs which are more efficient in material utilization than conventional evaporation-type OLEDs and can reduce manufacturing costs.
  • Patent Document 1 reports an OLED material using an aromatic compound containing a triazine structure, such as the following compound (C-1), as a charge transport material for a phosphorescent compound.
  • Patent Document 2 reports an OLED material using an aromatic compound containing a triazine and a spirobifluorene structure, such as compounds (C-2) to (C-4) below, as a material for the life improving layer.
  • the above compound (C-1) has a glass transition temperature as low as 93°C and does not have sufficient heat resistance.
  • the above compounds (C-2) to (C-4) are used as the charge transport material of the light-emitting layer, the electron mobility is insufficient and the device efficiency and device life are low.
  • the durability to alcohol solvents for laminating a thin film by a wet film forming method using an alcohol solvent on the thin film formed from the above compounds (C-1) to (C-4) is not sufficient. .
  • the present invention has been made in view of the above-mentioned conventional circumstances, and provides an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent durability to alcohol solvents in thin films.
  • the challenge is to
  • the present invention also provides an organic electroluminescent device containing the compound, a display device and a lighting device comprising the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device.
  • the task is to provide
  • alcohol solvent may be referred to as “alcohol-based solvent” or “alcohol-based solvent”.
  • the gist of the present invention is as follows ⁇ 1> to ⁇ 21>.
  • G 1 and G 2 each independently represent formula (3) below, and G 3 represents formula (4) below.
  • L 2 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked
  • Ar 2 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked
  • a2 represents an integer of 1 to 5;
  • L 3 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked, a3 represents an integer of 1 to 5; ) ⁇ 2> The aromatic compound according to ⁇ 1>, wherein G 1 is represented by the following formula (2).
  • L 1 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked
  • Ar 1 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked
  • a 1 represents an integer of 0 to 5;
  • ⁇ 4> The aromatic compound according to ⁇ 2> or ⁇ 3>, wherein L 1 to L 3 are each independently a 1,3-phenylene group or a 1,4-phenylene group.
  • ⁇ 5> The aromatic compound according to any one of ⁇ 1> to ⁇ 4>, which has a molecular weight of 1200 or more.
  • ⁇ 6> An organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, The organic layer has a layer containing an organic electroluminescence device material, An organic electroluminescent device, wherein the organic electroluminescent device material is the aromatic compound according to any one of ⁇ 1> to ⁇ 5>.
  • ⁇ 7> The organic electroluminescent device according to ⁇ 6>, wherein the layer containing the organic electroluminescent device material is a light-emitting layer.
  • a display device comprising the organic electroluminescent element according to ⁇ 6> or ⁇ 7>.
  • a lighting device comprising the organic electroluminescent element according to ⁇ 6> or ⁇ 7>.
  • composition for an organic electroluminescence device comprising the aromatic compound according to any one of ⁇ 1> to ⁇ 5> and a solvent.
  • composition for an organic electroluminescence device according to ⁇ 10> further comprising a phosphorescent material and a charge transport material.
  • the charge-transporting material is a compound represented by the following formula (240) or a compound represented by the following formula (260).
  • Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • R 611 and R 612 are each independently a deuterium atom, a halogen atom, or an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • n 611 and n 612 are each independently an integer of 0-4.
  • each of Ar 21 to Ar 35 is independently a hydrogen atom, an optionally substituted phenyl group or an optionally substituted phenyl group, 2 to 10, unbranched or It represents a branched and linked monovalent group.
  • each of Ar 611 and Ar 612 in the formula (240) is independently a monovalent group in which a plurality of optionally substituted benzene rings are bonded in a chain or branched manner A composition for an electroluminescence device.
  • R 611 and R 612 in formula (240) are each independently an optionally substituted monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms.
  • a composition for an organic electroluminescence device ⁇ 15> The composition for an organic electroluminescence element according to any one of ⁇ 12> to ⁇ 14>, wherein n 611 and n 612 in formula (240) are each independently 0 or 1.
  • Ar 21 , Ar 25 , Ar 26 , Ar 30 , Ar 31 and Ar 35 are hydrogen atoms
  • Ar 22 to Ar 24 , Ar 27 to Ar 29 , and Ar 32 to Ar 34 are hydrogen atoms, phenyl groups, or structures selected from the following formulas (261-1) to (261-9).
  • the composition for an organic electroluminescence element according to ⁇ 12>, wherein these structures may have the substituents.
  • a method for forming a thin film comprising a step of forming a film from the composition for an organic electroluminescent device according to any one of ⁇ 10> to ⁇ 16> by a wet film-forming method.
  • a method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode comprising: A method for producing an organic electroluminescent device, comprising forming the organic layer by a wet film-forming method using the composition for an organic electroluminescent device according to any one of ⁇ 10> to ⁇ 16>.
  • the solvent contained in the electron transport layer composition is an alcohol solvent.
  • an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent durability to alcohol solvents in thin films.
  • an organic electroluminescent device having the compound, a display device and a lighting device having the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device are provided. can provide.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescence device of the present invention.
  • the aromatic compound of the present invention is represented by the following formula (1).
  • G 1 and G 2 each independently represent formula (3) below, and G 3 represents formula (4) below.
  • L 2 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked
  • Ar 2 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked
  • a2 represents an integer of 1 to 5;
  • L 3 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked, a3 represents an integer of 1 to 5; )
  • G1 is preferably represented by the following formula (2).
  • L 1 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked
  • Ar 1 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked
  • a 1 represents an integer of 0 to 5;
  • the aromatic compound of the present invention has a spirobifluorene structure represented by formula (4), and therefore has a high glass transition temperature.
  • the aromatic compound of the present invention since the triazine skeleton and the spirobifluorene structure are bonded via a structure larger than that of biphenyl, steric hindrance due to the spirobifluorene structure can be suppressed and the electron transport property is high.
  • the aromatic compound of the present invention has a biphenyl group to which the spirobifluorene structure represented by formula (4) is bonded at the meta position, and thus has high solubility. Since the compound of the present invention has a large molecular weight and at least one spirobifluorene structure, it has excellent resistance to alcohol solvents after film formation.
  • the LUMO orbital is easily localized in the triazine structure represented by formula (1), and the HOMO orbital is localized in the spirobifluorene structure represented by formula (3). It is easy to be tarnished and the durability can be improved.
  • aromatic compound of the present invention it is possible to easily provide an organic electroluminescence device that has excellent driving stability and can be driven at a low driving voltage and with high efficiency.
  • the organic electroluminescent device of the present invention containing the aromatic compound of the present invention has excellent electrochemical stability, low driving voltage and high efficiency. Therefore, the organic electroluminescence device of the present invention can be used as a flat panel display (for example, an OA computer display or a wall-mounted TV), an in-vehicle display device, a mobile phone display, or a light source (for example, a copier (light sources for liquid crystal displays and instruments, backlight sources for instruments), display boards, and indicator lamps, and their technical value is great.
  • a flat panel display for example, an OA computer display or a wall-mounted TV
  • an in-vehicle display device for example, a mobile phone display, or a light source (for example, a copier (light sources for liquid crystal displays and instruments, backlight sources for instruments), display boards, and indicator lamps, and their technical value is great.
  • Ar 1 and Ar 2 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted monovalent carbon number of 60 or less or an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms represents a group in which a plurality of groups selected from groups are linked;
  • Examples of monovalent aromatic hydrocarbon groups having 60 or less carbon atoms include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetraphenylene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, biphenyl ring, or a monovalent group of a terphenyl ring.
  • Examples of monovalent heteroaromatic groups having 60 or less carbon atoms include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring , pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quino
  • a phenyl group a group in which a plurality of phenyl groups are linked, or a naphthyl group, and more preferably a phenyl group or a group in which a plurality of phenyl groups are linked.
  • L 1 , L 2 , L 3 > L 1 , L 2 and L 3 are each independently an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent carbon
  • a heteroaromatic group having a number of 60 or less, or an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted divalent carbon number of 60 or less represents a group in which a plurality of groups selected from heteroaromatic groups are linked.
  • divalent aromatic hydrocarbon groups having 60 or less carbon atoms examples include divalent benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring. group.
  • divalent heteroaromatic groups having 60 or less carbon atoms include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring , pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline
  • a phenyl group a group in which a plurality of phenyl groups are linked, or a naphthyl group, and more preferably a phenyl group or a group in which a plurality of phenyl groups are linked.
  • a 1,3-phenylene group or a 1,4-phenylene group is more preferable.
  • a 1 represents an integer of 0 to 5
  • a 2 and a 3 each independently represent an integer of 1 to 5
  • a1 and a3 are preferably 3 or less, more preferably 2 or less, particularly preferably 1
  • a2 is preferably 4 or less, further preferably 3 or less.
  • a plurality of L 1 to L 3 may be the same or different.
  • At least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 is a partial structure represented by the following formula (11), a partial structure represented by the following formula (12), from the viewpoint of compound solubility and durability. ) and at least one partial structure selected from the partial structure represented by the following formula (13).
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • At least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 has at least the partial structure represented by formula (11) or the partial structure represented by formula (12). have. More preferably, each of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 has at least the partial structure represented by formula (11) or the partial structure represented by formula (12). Particularly preferably, (L 2 ) a2 has a partial structure represented by formula (11) and a partial structure represented by formula (12).
  • Formula (12) is preferably the following formula (12-2).
  • Formula (12) is more preferably formula (12-3) below.
  • the partial structure represented by formula (11) and the partial structure represented by formula (12) it is more preferable to have at least one partial structure selected from the following formulas (14) to (18), which is a structure containing a plurality of structures selected from:
  • the structure containing a plurality of structures selected from the partial structure represented by the formula (11) and the partial structure represented by the formula (12) is, for example, the formula (14), such as the following formula (14a), the formula It is a partial structure having one partial structure represented by (11) and two partial structures represented by formula (12).
  • At least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 is at least the partial structure represented by formula (14) or the moiety represented by formula (15) have a structure.
  • Formula (14) is preferably the following formula (14-2).
  • Formula (14) is more preferably formula (14-3) below.
  • Formula (15) is preferably the following formula (15-2).
  • Formula (15) is more preferably formula (15-3) below.
  • Formula (17) is preferably the following formula (17-2).
  • Formula (18) is preferably the following formula (18-2).
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • formulas (14) to (20) formulas (14-3) and (15-3) are preferred, and formula (14-3) is more preferred.
  • Substituent group Z includes an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, and a cyano group. , an aralkyl group, an aromatic hydrocarbon group, or a heteroaromatic group.
  • the alkyl group includes, for example, a methyl group, an ethyl group, a branched, straight-chain or cyclic propyl group, a branched, straight-chain or cyclic butyl group, a branched, straight-chain or cyclic pentyl group, a branched, straight-chain or cyclic A hexyl group, a branched, straight-chain or cyclic octyl group, a branched, straight-chain or cyclic nonyl group, a branched, straight-chain or cyclic dodecyl group, etc., usually having 1 or more carbon atoms, preferably 4 or more, and usually Linear, branched or cyclic alkyl groups with 24 or less, preferably 10 or less are mentioned.
  • a methyl group, an ethyl group, a branched, linear or cyclic propyl group, and a branched, linear or cyclic butyl group are preferred, and a branched propyl group is particularly preferred.
  • alkenyl groups include alkenyl groups having usually 2 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as vinyl groups.
  • alkynyl groups include alkynyl groups having usually 2 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as ethynyl groups.
  • alkoxy groups include alkoxy groups having usually 1 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as methoxy and ethoxy groups.
  • the aryloxy group includes, for example, an aryloxy group or heteroaryl having usually 4 or more, preferably 5 or more carbon atoms and usually 36 or less, preferably 24 or less, such as phenoxy group, naphthoxy group, pyridyloxy group, etc.
  • An oxy group can be mentioned.
  • the alkoxycarbonyl group includes, for example, an alkoxycarbonyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methoxycarbonyl group and an ethoxycarbonyl group.
  • the acyl group includes, for example, an acyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as an acetyl group and a benzoyl group.
  • halogen atoms include halogen atoms such as fluorine atoms and chlorine atoms.
  • the haloalkyl group includes, for example, a haloalkyl group having usually 1 or more carbon atoms, usually 12 or less, preferably 6 or less, such as a trifluoromethyl group.
  • the alkylthio group includes, for example, an alkylthio group having usually 1 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methylthio group or an ethylthio group.
  • arylthio group examples include arylthio groups having usually 4 or more, preferably 5 or more carbon atoms and usually 36 or less, preferably 24 or less carbon atoms such as phenylthio, naphthylthio, and pyridylthio groups.
  • the silyl group includes, for example, a silyl group having usually 2 or more, preferably 3 or more carbon atoms, and usually 36 or less, preferably 24 or less carbon atoms such as trimethylsilyl group and triphenylsilyl group.
  • Siloxy groups include, for example, siloxy groups having usually 2 or more, preferably 3 or more carbon atoms and usually 36 or less, preferably 24 or less carbon atoms such as trimethylsiloxy and triphenylsiloxy groups.
  • aralkyl groups include benzyl, 2-phenylethyl, 2-phenylpropyl-2-yl, 2-phenylbutyl-2-yl, 3-phenylpentyl-3-yl, 3-phenyl- 1-propyl group, 4-phenyl-1-butyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, 8-phenyl-1-octyl group, etc. and an aralkyl group having usually 7 or more, preferably 9 or more carbon atoms and usually 30 or less, preferably 18 or less, more preferably 10 or less carbon atoms.
  • aromatic hydrocarbon group examples include, for example, benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring.
  • An aromatic hydrocarbon group having a number of 30 or less, preferably 18 or less, more preferably 10 or less can be mentioned.
  • heteroaromatic groups include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolo imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, A pyrimidine ring, a triazine ring, a quinoline ring, an iso
  • an alkyl group, an alkoxy group, an aralkyl group and an aromatic hydrocarbon group are preferable, and an alkyl group having 10 or less carbon atoms, an aralkyl group having 30 or less carbon atoms, and an aralkyl group having 30 or less carbon atoms are more preferable.
  • each substituent in the substituent group Z may further have a substituent.
  • additional substituents the same substituents as those described above (substituent group Z) can be used.
  • the substituents in the substituent group Z preferably have no further substituents.
  • the molecular weight of the aromatic compound of the present invention is preferably 1,000 or more, more preferably 1,100 or more, most preferably 1,200 or more, and preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Yes, and most preferably 2000 or less.
  • the aromatic compound of the present invention can be produced, for example, according to the method described in Examples.
  • the aromatic compound of the present invention is preferably used as an organic electroluminescent element material for an organic layer of an organic electroluminescent element, and the organic layer is preferably a light-emitting layer.
  • An organic electroluminescent device can have, for example, an anode and a cathode on a substrate, and an organic layer between the anode and the cathode.
  • the aromatic compound of the present invention is used in the light-emitting layer, it is preferably used as a host material for the light-emitting layer.
  • the organic layer containing the aromatic compound of the present invention may be formed by a vapor deposition method or by a wet film formation method.
  • the aromatic compound of the present invention when used in the organic layer of an organic electroluminescent device, the aromatic compound of the present invention is also referred to as a material for organic electroluminescent devices.
  • composition When the organic layer containing the aromatic compound of the present invention is formed by a wet film formation method, at least the aromatic compound represented by the formula (1) and a solvent (hereinafter sometimes referred to as "organic solvent” ) is wet film-formed. That is, the composition of the present invention contains at least the aromatic compound represented by formula (1) and an organic solvent.
  • composition of the present invention is suitably used as a composition for organic electroluminescent elements for forming organic electroluminescent elements.
  • the composition of the present invention preferably further contains a luminescent material, and is suitably used as a composition for forming a luminescent layer of an organic electroluminescent device.
  • a luminescent material a phosphorescent luminescent material is preferable.
  • the composition of the present invention preferably further contains a light-emitting material and a charge-transporting material, and is suitably used as a composition for forming a light-emitting layer of an organic electroluminescence device.
  • a luminescent material a phosphorescent luminescent material is preferable.
  • Organic solvent contained in the composition of the present invention is a volatile liquid component used for forming the layer containing the aromatic compound of the present invention by wet film formation.
  • the organic solvent is not particularly limited as long as it is an organic solvent in which the aromatic compound of the present invention, which is the solute, and the luminescent material described later are well dissolved.
  • Preferred organic solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, tetralin and methylnaphthalene; Halogenated aromatic hydrocarbons such as chlorobenzene and trichlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 - aromatic ethers such as dimethylanisole, 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, prop
  • alkanes, aromatic hydrocarbons, aromatic ethers, and aromatic esters are preferred, and aromatic hydrocarbons, aromatic ethers, and aromatic esters are more preferred. , aromatic hydrocarbons and aromatic esters are particularly preferred.
  • One type of these organic solvents may be used alone, or two or more types may be used in any combination and ratio.
  • the boiling point of the organic solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 380°C or lower, preferably 350°C or lower, more preferably 330°C or lower. If the boiling point of the organic solvent is below this range, the film formation stability may decrease due to evaporation of the solvent from the composition during wet film formation. If the boiling point of the organic solvent exceeds this range, there is a possibility that the film formation stability will decrease due to the residual solvent after film formation during wet film formation.
  • a uniform coating film can be produced. If the number of organic solvents having a boiling point of 150° C. or higher is less than one, it is considered that a uniform film may not be formed during coating.
  • the composition of the present invention is preferably a composition for forming a light-emitting layer, and in this case, it preferably further contains a light-emitting material.
  • a luminescent material refers to a component that mainly emits light in the composition for an organic electroluminescent element of the present invention, and corresponds to a dopant component in an organic electroluminescent device.
  • the light-emitting material a known material can be applied, and a fluorescent light-emitting material or a phosphorescent light-emitting material can be used singly or in combination, but from the viewpoint of internal quantum efficiency, phosphorescent light-emitting materials are preferable.
  • phosphorescent material is a material that emits light from an excited triplet state.
  • metal complex compounds containing Ir, Pt, Eu, etc. are typical examples, and materials containing metal complexes are preferable as the structure of the material.
  • the long-period periodic table (unless otherwise specified, the long-period periodic table ) include Werner-type complexes or organometallic complex compounds containing a metal selected from Groups 7 to 11 as a central metal.
  • a compound represented by the following formula (201) or a compound represented by the following formula (205) is preferable, and a compound represented by the following formula (201) is more preferable.
  • M is a metal selected from Groups 7 to 11 of the periodic table, such as ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold, and europium.
  • Ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
  • R 201 and R 202 each independently represent a structure represented by formula (202) above, and "*" represents bonding to ring A1 or ring A2.
  • R 201 and R 202 may be the same or different, and when multiple R 201 and R 202 are present, they may be the same or different.
  • Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
  • Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
  • the substituents bonded to ring A1, the substituents bonded to ring A2, or the substituents bonded to ring A1 and the substituents bonded to ring A2 may be bonded to each other to form a ring.
  • B 201 -L 200 -B 202 represents an anionic bidentate ligand.
  • B 201 and B 202 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring.
  • L 200 represents a single bond or an atomic group forming a bidentate ligand together with B 201 and B 202 .
  • B 201 -L 200 -B 202 When there are multiple groups of B 201 -L 200 -B 202 , they may be the same or different.
  • i1 and i2 each independently represent an integer of 0 or more and 12 or less.
  • i3 is an integer greater than or equal to 0 up to the number that can be substituted for Ar 202 .
  • j is an integer greater than or equal to 0 up to the number that can be substituted for Ar 201 .
  • k1 and k2 are each independently an integer of 0 or more, with the upper limit being the number that can be substituted on ring A1 and ring A2.
  • m is an integer of 1-3.
  • the aromatic hydrocarbon ring for ring A1 is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, A fluorene ring is preferred.
  • the aromatic heterocyclic ring in ring A1 is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing any one of a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom, more preferably a furan ring or a benzofuran ring. , thiophene ring, and benzothiophene ring.
  • the ring A1 is more preferably a benzene ring, a naphthalene ring or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, most preferably a benzene ring.
  • the aromatic heterocyclic ring in ring A2 is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing either a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom, Specifically, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, oxazole ring, thiazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, Naphthyridine ring, phenanthridine ring, More preferred are pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, benzothiazole ring, benzoxazole ring, quinoline ring, isoquinoline ring, quinoxaline ring and quinazoline ring,
  • a preferred combination of ring A1 and ring A2 is represented by (ring A1-ring A2), (benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring-quinazoline ring), (benzene ring-imidazole ring), (benzene ring-benzothiazole ring) .
  • the substituents that ring A1 and ring A2 may have may be arbitrarily selected, but are preferably one or more substituents selected from the group S of substituents described below.
  • the aromatic hydrocarbon ring structure is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms, Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, and fluorene ring are preferred. More preferably, a benzene ring, a naphthalene ring, or a fluorene ring, A benzene ring is most preferred.
  • Ar 201 , Ar 202 and Ar 203 is a fluorene ring optionally having a substituent
  • the 9- and 9′-positions of the fluorene ring have a substituent or are bonded to the adjacent structure. preferably.
  • Ar 201 , Ar 202 and Ar 203 is a benzene ring optionally having a substituent
  • at least one benzene ring is preferably bonded to the adjacent structure at the ortho- or meta-position.
  • at least one benzene ring is attached to the adjacent structure at the meta position.
  • the aromatic heterocyclic ring structure is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing either a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom, Specifically, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, oxazole ring, thiazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, naphthyridine ring, phenanthridine ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring, More preferred are pyridine ring, pyrimidine ring, triazine ring, carbazole
  • Ar 201 , Ar 202 and Ar 203 is a carbazole ring optionally having a substituent
  • the N-position of the carbazole ring may have a substituent or be bonded to an adjacent structure. preferable.
  • the aliphatic hydrocarbon structure is an aliphatic hydrocarbon structure having a linear, branched, or cyclic structure, preferably an aliphatic hydrocarbon having 1 to 24 carbon atoms, more preferably aliphatic hydrocarbons having 1 to 12 carbon atoms, More preferred are aliphatic hydrocarbons having 1 to 8 carbon atoms.
  • i1 and i2 are each independently preferably an integer of 1-12, more preferably an integer of 1-8, more preferably an integer of 1-6. Within this range, improved solubility and improved charge transport properties can be expected.
  • i3 preferably represents an integer of 0 to 5, more preferably an integer of 0 to 2, more preferably 0 or 1.
  • j preferably represents an integer of 0 to 2, more preferably 0 or 1.
  • k1 and k2 preferably represent integers of 0 to 3, more preferably integers of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the substituents that Ar 201 , Ar 202 and Ar 203 may have can be arbitrarily selected, but are preferably one or more substituents selected from the group S of substituents described later, more preferably hydrogen It is an atom, an alkyl group or an aryl group, particularly preferably a hydrogen atom or an alkyl group, most preferably unsubstituted (hydrogen atom).
  • the substituent is preferably a group selected from the following substituent group S.
  • An alkoxy group preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and still more preferably an alkoxy group having 1 to 6 carbon atoms.
  • an aryloxy group preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, still more preferably an aryloxy group having 6 to 12 carbon atoms, particularly preferably an aryloxy group having 6 carbon atoms; aryloxy group.
  • a heteroaryloxy group preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
  • an alkylamino group preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms;
  • An arylamino group preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
  • An aralkyl group preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and still more preferably an aralkyl group having 7 to 12 carbon atoms.
  • a heteroaralkyl group preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms.
  • an alkenyl group preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, particularly preferably an alkenyl group having 2 to 6 carbon atoms .
  • An alkynyl group preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms.
  • an aryl group preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, particularly preferably an aryl group having 6 to 14 carbon atoms .
  • a heteroaryl group preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, particularly preferably 3 to 3 carbon atoms 14 heteroaryl groups.
  • alkylsilyl group preferably an alkylsilyl group having 1 to 20 carbon atoms, more preferably an alkylsilyl group having 1 to 12 carbon atoms.
  • An arylsilyl group preferably an arylsilyl group in which the aryl group has 6 to 20 carbon atoms, more preferably an arylsilyl group in which the aryl group has 6 to 14 carbon atoms.
  • an alkylcarbonyl group preferably an alkylcarbonyl group having 2 to 20 carbon atoms
  • - an arylcarbonyl group preferably an arylcarbonyl group having 7 to 20 carbon atoms
  • one or more hydrogen atoms may be replaced with fluorine atoms, or one or more hydrogen atoms may be replaced with deuterium atoms.
  • aryl is an aromatic hydrocarbon and heteroaryl is an aromatic heterocycle.
  • an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and at least one hydrogen atom of these groups is fluorine.
  • substituent group S may further have a substituent selected from the substituent group S as a substituent.
  • Preferred groups, more preferred groups, further preferred groups, particularly preferred groups, and most preferred groups of the substituents which may be present are the same as the preferred groups in Substituent Group S and the like.
  • Ar 201 is a benzene ring structure, i1 is 1 to 6, and at least one of the benzene rings is bonded to the adjacent structure at the ortho- or meta-position. This structure is expected to improve the solubility and the charge transport property.
  • Ar 201 is an aromatic hydrocarbon structure or an aromatic heterocyclic structure, i1 is 1 to 6, Ar 202 is an aliphatic hydrocarbon structure, i2 is 1-12, preferably 3-8, Ar 203 is a benzene ring structure and i3 is 0 or 1.
  • Ar 201 is preferably the above aromatic hydrocarbon structure, more preferably a structure in which 1 to 5 benzene rings are linked, and more preferably one benzene ring. This structure is expected to improve the solubility and the charge transport property.
  • Ar 201 and Ar 202 are benzene ring structures
  • Ar 203 is a biphenyl or terphenyl structure
  • i1 and i2 are 1 to 6
  • i3 is 2
  • j is 2. This structure is expected to improve the solubility and the charge transport property.
  • R 211 , R 212 and R 213 represent substituents.
  • the substituent is not particularly limited, it is preferably a group selected from the substituent group S described above.
  • Ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom, which may have a substituent.
  • Ring B3 is preferably a pyridine ring.
  • the substituent that ring B3 may have is not particularly limited, it is preferably a group selected from the substituent group S described above.
  • phosphorescent material represented by formula (201) is not particularly limited, specific examples include the following structures.
  • Me means a methyl group and Ph means a phenyl group.
  • M2 represents a metal and T represents a carbon or nitrogen atom.
  • R 92 to R 95 each independently represent a substituent. However, when T is a nitrogen atom, R94 and R95 do not exist.
  • M2 represents a metal.
  • Specific examples include metals selected from groups 7 to 11 of the periodic table. Among them, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold are preferred, and divalent metals such as platinum and palladium are particularly preferred.
  • R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;
  • R94 and R95 each independently represent a substituent represented by the same examples as R92 and R93 . Also, when T is a nitrogen atom, there is no R94 or R95 directly bonded to said T.
  • R 92 to R 95 may further have a substituent.
  • Substituents can be the aforementioned substituents exemplified for R 92 and R 93 .
  • any two or more groups selected from R 92 to R 95 may be linked together to form a ring.
  • the molecular weight of the phosphorescent material is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Further, the molecular weight of the phosphorescent material is usually 1000 or more, preferably 1100 or more, more preferably 1200 or more. It is believed that within this molecular weight range, the phosphorescent light-emitting materials do not aggregate with each other and are uniformly mixed with the compound of the present invention and/or other charge-transporting materials, so that a light-emitting layer with high light-emitting efficiency can be obtained.
  • the molecular weight of the phosphorescent light-emitting material has a high Tg, melting point, decomposition temperature, etc., and the phosphorescent light-emitting material and the formed light-emitting layer have excellent heat resistance, and the film quality due to gas generation, recrystallization, molecular migration, etc. A large value is preferable from the viewpoint that it is difficult to cause a decrease in the concentration of impurities and an increase in the concentration of impurities due to thermal decomposition of the material.
  • the molecular weight of the phosphorescent light-emitting material is preferably small in terms of facilitating purification of the organic compound.
  • composition of the present invention is a composition for forming a light-emitting layer, it preferably contains a charge-transporting material other than the aromatic compound of the present invention as a further host material in addition to the aromatic compound of the present invention.
  • the charge-transporting material used as the host material of the light-emitting layer is a material having a skeleton with excellent charge-transporting properties, and is selected from electron-transporting materials, hole-transporting materials, and bipolar materials capable of transporting both electrons and holes. preferably Furthermore, in the present invention, the charge transport material also includes a material that adjusts the charge transport property.
  • skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structure, quinacridone structure, triphenylene structure, carbazole structure, pyrene structure, anthracene structure, phenanthroline structure, quinoline structure, pyridine structure, pyrimidine structure, triazine structure, oxadiazole structure, imidazole structure, and the like.
  • the compound represented by the formula (1) functions as an electron-transporting material, it is preferable to further include a hole-transporting material as a charge-transporting material.
  • a hole-transporting material is a compound having a structure with excellent hole-transporting properties, and among the skeletons with excellent charge-transporting properties, a carbazole structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, or a pyrene structure. is preferable as a structure having excellent hole-transporting properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is more preferable. Particularly preferred is a compound represented by formula (240) described later.
  • the charge-transporting material used as the host material of the light-emitting layer is preferably a compound having a condensed ring structure of three or more rings, and at least a compound having two or more condensed ring structures of three or more rings or a condensed ring of five or more rings.
  • Compounds having one are more preferred. These compounds increase the rigidity of the molecules, making it easier to obtain the effect of suppressing the degree of molecular motion in response to heat.
  • the 3 or more condensed rings and the 5 or more condensed rings preferably have an aromatic hydrocarbon ring or an aromatic heterocyclic ring from the viewpoint of charge transportability and material durability.
  • condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, Carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure and the like.
  • a carbazole structure or an indolocarbazole structure is more preferred from the viewpoint of resistance to electric charge.
  • the material for adjusting the charge-transporting property is preferably a compound represented by the formula (260) described later, which is a compound having a structure in which a large number of benzene rings are linked.
  • this compound By including this compound as a host material, it is thought that the excitons generated in the light-emitting layer are efficiently recombined to increase the light-emitting efficiency. deterioration is suppressed, and the driving life is lengthened.
  • composition of the present invention is a composition for forming a light-emitting layer
  • a compound represented by the formula (240) described later and/or the formula (260) described later It is preferable to contain a compound represented by as a charge transport material. Inclusion of such a compound as an additional host material is preferable from the viewpoint of charge balance adjustment in the light-emitting layer and from the viewpoint of luminous efficiency.
  • the charge-transporting material used as the host material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility.
  • a light-emitting layer formed using a material having excellent flexibility is preferable as a light-emitting layer of an organic electroluminescent device formed on a flexible substrate.
  • the charge-transporting material used as the host material contained in the light-emitting layer is a polymeric material, the molecular weight is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 500,000 or less, It is more preferably 10,000 or more and 100,000 or less.
  • the charge transport material used as the host material of the light emitting layer is easy to synthesize and purify, easy to design the electron transport performance and hole transport performance, and easy to adjust the viscosity when dissolved in a solvent. From the viewpoint of, it is preferably a low molecular weight.
  • the charge-transporting material used as the host material contained in the light-emitting layer is a low-molecular-weight material
  • the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less.
  • a wet film formation method is preferably 1,000 or more, more preferably 1,100 or more, and particularly preferably 1,200 or more.
  • Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • R 611 and R 612 are each independently a deuterium atom, a halogen atom, or an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms
  • n 611 and n 612 are each independently an integer of 0-4.
  • Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • the number of carbon atoms in the aromatic hydrocarbon group is preferably 6-50, more preferably 6-30, still more preferably 6-18.
  • Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms.
  • Ar 611 and Ar 612 are preferably each independently a phenyl group, a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner; a monovalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner; a monovalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branch, or a monovalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner; and more preferably a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding is not critical.
  • Ar 611 and Ar 612 are each independently particularly preferably a monovalent group in which a plurality of optionally substituted benzene rings are bonded in a chain or branched manner, and each independently represents a plurality of benzene Most preferably, the ring is a multi-chain or branched monovalent group.
  • the number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above.
  • a monovalent structure in which 1 to 4 benzene rings are connected a monovalent structure in which 1 to 4 benzene rings and a naphthalene ring are connected, 1 in which 1 to 4 benzene rings and a phenanthrene ring are connected
  • aromatic hydrocarbon groups may have substituents.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z2.
  • Preferred substituents are the preferred substituents of the substituent group Z2.
  • At least one of Ar 611 and Ar 612 preferably has at least one partial structure selected from the following formulas (72-1) to (72-7) from the viewpoint of compound solubility and durability.
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
  • At least one of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-4) and formula (72-7). More preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-3) and formula (72-7). Particularly preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formula (72-1), formula (72-2) and formula (72-7).
  • Formula (72-2) is preferably the following formula (72-2-2).
  • the formula (72-2) is more preferably the following formula (72-2-3).
  • the partial structure that at least one of Ar 611 and Ar 612 preferably has is the partial structure represented by formula (72-1) and the partial structure represented by formula (72-2).
  • R 611 and R 612 are independently a deuterium atom, a halogen atom such as a fluorine atom, or an optionally substituted monovalent aromatic hydrocarbon having 6 to 50 carbon atoms.
  • a monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent is preferred.
  • the aromatic hydrocarbon group is preferably a monovalent group having an aromatic hydrocarbon structure having 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
  • Specific examples of the monovalent aromatic hydrocarbon group are the same as those of Ar 611 , and the same is true of the preferred aromatic hydrocarbon group, and the phenyl group is particularly preferred.
  • aromatic hydrocarbon groups may have a substituent.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the group of substituents Z2 described later. Preferred substituents are the preferred substituents of the substituent group Z2 described later.
  • n611 , n612 > n 611 and n 612 are each independently an integer of 0-4. It is preferably 0 to 2, more preferably 0 or 1.
  • Substituent group Z2 includes an alkyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, A group consisting of an arylthio group, a silyl group, a siloxy group, a cyano group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. These substituents may contain any structure of linear, branched and cyclic.
  • substituent group Z2 include the following structures. For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group, dodecyl group, etc.
  • the number of carbon atoms is usually 1 or more, preferably 4 or more, usually 24 or less, preferably 12 or less, more preferably 8 or less, and still more preferably 6 or less, linear, branched , or a cyclic alkyl group;
  • an aryloxy group or heteroaryloxy group having usually 4 or more carbon atoms, preferably 5 or more carbon atoms, usually 36 or less, preferably 24 or less carbon atoms such as phenoxy group, naphthoxy group, pyridyloxy group, etc.
  • an alkyl group, an alkoxy group, a diarylamino group, an aromatic hydrocarbon group, or an aromatic heterocyclic group is preferred.
  • the substituent is preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, more preferably an aromatic hydrocarbon group, and further preferably has no substituent.
  • the substituent is preferably an alkyl group or an alkoxy group.
  • each substituent in the substituent group Z2 may further have a substituent.
  • substituent group Z2 examples include the same substituents as those described above (substituent group Z2).
  • Each substituent that the substituent group Z2 may have is preferably an alkyl group having 8 or less carbon atoms, an alkoxy group having 8 or less carbon atoms, or a phenyl group, more preferably an alkyl group having 6 or less carbon atoms, It is an alkoxy group having 6 or less carbon atoms or a phenyl group, and each substituent in the substituent group Z2 more preferably does not have a further substituent from the viewpoint of charge transport properties.
  • ⁇ G> G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • the number of carbon atoms in the aromatic hydrocarbon group of G is preferably 6-50, more preferably 6-30, more preferably 6-18.
  • Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms.
  • G is preferably single bond, a phenylene group, a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner; a divalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner; a divalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branched manner, or a divalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner; and more preferably a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding does not matter.
  • the number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above.
  • a bivalent structure in which 1 to 4 benzene rings are linked a bivalent structure in which 1 to 4 benzene rings and a naphthalene ring are linked, 1 to 4 benzene rings and a phenanthrene ring are linked It is a bivalent structure, or a bivalent structure in which 1 to 4 benzene rings and a tetraphenylene ring are linked.
  • aromatic hydrocarbon groups may have substituents.
  • the substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z2.
  • Preferred substituents are the preferred substituents of the substituent group Z2.
  • the compound represented by the formula (240) is a low-molecular-weight material, and has a molecular weight of preferably 3,000 or less, more preferably 2,500 or less, still more preferably 2,000 or less, and particularly preferably 1 , 500 or less, usually 300 or more, preferably 350 or more, more preferably 400 or more.
  • composition for forming a light-emitting layer of the present invention may contain only one compound represented by the formula (240), or may contain two or more compounds.
  • composition for forming a light-emitting layer of the present invention contains a compound represented by the following formula (260).
  • each of Ar 21 to Ar 35 is independently a hydrogen atom, an optionally substituted phenyl group or an optionally substituted phenyl group, 2 to 10, unbranched or It represents a branched and linked monovalent group.
  • Ar 21 to Ar 35 are optionally substituted phenyl groups or 2 to 10 optionally substituted phenyl groups are unbranched or branched and linked monovalent
  • the substituent that the phenyl group may have when it is a group is preferably an alkyl group.
  • alkyl group as a substituent usually has 1 or more and 12 or less carbon atoms, preferably 8 or less, more preferably 6 or less, and more preferably 4 or less, linear, branched or cyclic Alkyl group, specifically methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group , a cyclohexyl group, and a 2-ethylhexyl group.
  • Ar 21 , Ar 25 , Ar 26 , Ar 30 , Ar 31 and Ar 35 are preferably hydrogen atoms.
  • at least one of Ar 22 to Ar 24 is a phenyl group which may have a substituent or 2 to 10 phenyl groups which may have a substituent, which are unbranched or branched and linked 1 and/or at least one of Ar 22 to Ar 24 and at least one of Ar 27 to Ar 29 is a phenyl group optionally having the substituent or having the substituent It is preferably an unbranched or branched monovalent group having 2 to 10 phenyl groups which may be substituted.
  • Ar 22 to Ar 24 , Ar 27 to Ar 29 and Ar 32 to Ar 34 are selected from hydrogen atoms, phenyl groups, and the following formulas (261-1) to (261-9) is either
  • These structures may have the substituents described above, and may be substituted with alkyl groups as the substituents, for example. From the viewpoint of improving the solubility, it is preferably substituted with an alkyl group. From the viewpoint of charge transportability and durability during driving of the device, it is preferable not to have a substituent.
  • the compound represented by the formula (260) is a low-molecular-weight material, and has a molecular weight of preferably 3,000 or less, more preferably 2,500 or less, particularly preferably 2,000 or less, and most preferably 1 , 500 or less, usually 300 or more, preferably 350 or more, more preferably 400 or more.
  • the compound represented by formula (260) is not particularly limited, and examples thereof include the following compounds.
  • composition for forming a light-emitting layer of the present invention may contain only one compound represented by the formula (260), or may contain two or more compounds.
  • composition for organic electroluminescence elements of the present invention may contain various other solvents, if necessary, in addition to the solvent and luminescent material described above.
  • other solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and dimethylsulfoxide.
  • composition for organic electroluminescence elements of the present invention may contain various additives such as a leveling agent and an antifoaming agent.
  • a photocurable resin or a thermosetting resin is used for the purpose of curing and insolubilizing after film formation. can also be included.
  • the solid content concentration in the composition for organic electroluminescent elements is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.5% by mass or more,
  • the content is most preferably 1% by mass or more, and usually 80% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, and most preferably 20% by mass or less.
  • the solid content concentration is within this range, it is easy to form a thin film having a desired film thickness with a uniform thickness, which is preferable.
  • the preferred compounding ratio of the aromatic hydrocarbon compound of the present invention to all the host materials contained in the light-emitting layer is as follows. All host materials refer to all host materials other than the aromatic hydrocarbon compound of the present invention and the aromatic hydrocarbon compound of the present invention.
  • the mass ratio of the compound of the present invention to the mass of all host materials of 100 is 5 or more. , preferably 10 or more, more preferably 15 or more, more preferably 20 or more, particularly preferably 30 or more, 99 or less, preferably 95 or less, further preferably 90 or less, more preferably 80 or less, particularly preferably is 70 or less.
  • the molar ratio of the compound of the present invention to the total host material is preferably 5 mol% or more. is 10 mol% or more, more preferably 20 mol% or more, more preferably 25 mol% or more, particularly preferably 30 mol% or more, 90 mol% or less, preferably 80 mol% or less, more preferably is 70 mol % or less, particularly preferably 60 mol % or less.
  • the mass ratio of the light-emitting material to the mass of all host materials of 100 is 0.1.
  • it is preferably 0.5 or more, more preferably 1 or more, most preferably 2 or more, 100 or less, preferably 60 or less, further preferably 50 or less, most preferably 40 or less. If this ratio falls below the lower limit or exceeds the upper limit, the luminous efficiency may drop significantly.
  • composition for an organic electroluminescent element of the present invention is a solute comprising the aromatic compound of the present invention, the above-mentioned luminescent material as necessary, and various additives such as a leveling agent and an antifoaming agent that can be added as necessary. is prepared by dissolving in a suitable solvent.
  • the solute is usually dissolved while stirring the liquid.
  • the dissolution step may be performed at room temperature, but if the dissolution rate is slow, the dissolution may be performed by heating.
  • a filtering step such as filtering may be performed as necessary.
  • composition properties, physical properties, etc. moisture concentration
  • moisture concentration moisture concentration
  • the amount of water contained in the composition of the present invention is usually 1% by mass or less, preferably 0.1% by mass or less, and more preferably 0.01% by mass or less.
  • the composition of the present invention is preferably in a uniform liquid state at room temperature in order to improve stability in a wet film formation process, for example, ejection stability from a nozzle in an inkjet film formation method.
  • the uniform liquid state at room temperature means that the composition is a liquid consisting of a uniform phase and does not contain a particle component having a particle size of 0.1 ⁇ m or more in the composition.
  • the viscosity of the composition of the present invention at 25° C. is usually 2 mPa ⁇ s or more, preferably 3 mPa ⁇ s or more, more preferably 5 mPa ⁇ s or more, and usually 1000 mPa ⁇ s or less, preferably 100 mPa ⁇ s or less. , more preferably 50 mPa ⁇ s or less.
  • the surface tension of the composition of the present invention is high, the wettability of the film-forming liquid to the substrate is lowered, the leveling property of the liquid film is poor, and the film-forming surface is easily disturbed during drying. may occur
  • the surface tension of the composition of the present invention at 20°C is usually less than 50 mN/m, preferably less than 40 mN/m.
  • the vapor pressure of the composition of the present invention at 25°C is usually 50 mmHg or less, preferably 10 mmHg or less, more preferably 1 mmHg or less.
  • a film forming method using the composition of the present invention is a wet film forming method.
  • the wet film-forming method is a method in which a composition is applied to form a liquid film, dried to remove the organic solvent, and a film is formed.
  • the composition of the present invention is a composition for an organic electroluminescence device
  • the organic layer of the organic electroluminescence device can be formed by a thin film forming method comprising a step of forming a film from the composition by a wet film formation method.
  • the composition of the present invention contains a light-emitting material, a light-emitting layer can be formed by this method.
  • coating methods include spin coating, dip coating, die coating, bar coating, blade coating, roll coating, spray coating, capillary coating, inkjet, nozzle printing, screen printing, and gravure. It refers to a method of forming a film by employing a wet film-forming method such as a printing method or a flexographic printing method, and drying the coating film.
  • a wet film-forming method such as a printing method or a flexographic printing method, and drying the coating film.
  • the spin coating method, the spray coating method, the inkjet method, the nozzle printing method, and the like are preferable.
  • an inkjet method or a nozzle printing method is preferable, and an inkjet method is particularly preferable.
  • drying method is not particularly limited, natural drying, reduced pressure drying, heat drying, or reduced pressure drying while heating can be used as appropriate. Heat drying may be carried out in order to further remove residual organic solvent after natural drying or vacuum drying.
  • the reduced pressure drying is carried out at a pressure equal to or lower than the vapor pressure of the organic solvent contained in the composition for forming the light-emitting layer.
  • the heating method is not particularly limited, but heating with a hot plate, heating in an oven, infrared heating, etc. can be used.
  • the heating time is generally 80° C. or higher, preferably 100° C. or higher, more preferably 110° C. or higher, and preferably 200° C. or lower, more preferably 150° C. or lower.
  • the heating time is usually 1 minute or longer, preferably 2 minutes or longer, usually 60 minutes or shorter, preferably 30 minutes or shorter, and more preferably 20 minutes or shorter.
  • an electron transport layer is formed on the light emitting layer.
  • composition for forming an electron transport layer in the invention contains at least an electron transport layer material and a solvent.
  • a solvent for the composition for forming the electron transport layer an alcohol-based solvent is preferable.
  • an electron transport layer material of the electron transport layer-forming composition an electron transport material soluble in the alcohol solvent is preferable.
  • aliphatic alcohols with 3 or more carbon atoms are preferred. Aliphatic alcohols having 6 or more carbon atoms are more preferable because they easily dissolve the electron-transporting material, have a moderately high boiling point, and easily form a flat film.
  • Preferred aliphatic alcohol solvents include 1-butanol, isobutyl alcohol, 2-hexanol, 1,2-hexanediol, 1-hexanol, 1-heptanol, 3,5,5-trimethyl-1-hexanol, 2-methyl-2- Pentanol, 4-methyl-3-heptanol, 3-methyl-2-pentanol, 4-methyl-1-pentanol, 1-nonen-3-ol, 4-heptanol, 1-methoxy-2-propanol, 3-methyl-1-pentane tanol, 4-octanol, 3,3-diethoxy-1-propanol, 3-(methylamino)-1-propanol and the like.
  • a solvent two or more of these alcohols may be mixed.
  • FIG. 1 shows a schematic diagram (cross section) of a structural example of the organic electroluminescence device 8 .
  • 1 is a substrate
  • 2 is an anode
  • 3 is a hole injection layer
  • 4 is a hole transport layer
  • 5 is a light emitting layer
  • 6 is an electron transport layer
  • 7 is a cathode.
  • the substrate 1 serves as a support for the organic electroluminescence element, and is usually made of a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Among these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are preferred.
  • the substrate is preferably made of a material having a high gas barrier property because deterioration of the organic electroluminescence element due to outside air is unlikely to occur. Therefore, especially when using a material having low gas barrier properties such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate to improve the gas barrier properties.
  • the anode 2 has the function of injecting holes into the layer on the light-emitting layer 5 side.
  • Anode 2 is typically made of metals such as aluminum, gold, silver, nickel, palladium, platinum; metal oxides such as indium and/or tin oxide; metal halides such as copper iodide; carbon black and poly(3 -methylthiophene), polypyrrole, and polyaniline.
  • metals such as aluminum, gold, silver, nickel, palladium, platinum
  • metal oxides such as indium and/or tin oxide
  • metal halides such as copper iodide
  • the formation of the anode 2 is usually carried out by dry methods such as sputtering and vacuum deposition.
  • an appropriate binder resin solution may be used. It can also be formed by dispersing and coating on a substrate.
  • a conductive polymer a thin film can be formed directly on a substrate by electrolytic polymerization, or an anode can be formed by coating a conductive polymer on a substrate (Appl. Phys. Lett., 60 2711, 1992).
  • the anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first layer of the anode.
  • the thickness of the anode 2 may be determined according to the required transparency and material. When particularly high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably the thickness is such that the visible light transmittance is 80% or more.
  • the thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the thickness of the anode 2 may be arbitrarily set according to the required strength, etc. In this case, the thickness of the anode 2 may be the same as that of the substrate.
  • the impurity on the anode 2 is removed and its ionization potential is changed by treating with ultraviolet rays/ozone, oxygen plasma, argon plasma, etc. before the film formation. is preferably adjusted to improve the hole injection property.
  • a layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer.
  • the layer closer to the anode side may be called the hole injection layer 3 .
  • the hole injection layer 3 is preferably formed in order to enhance the function of transporting holes from the anode 2 to the light emitting layer 5 side.
  • the hole injection layer 3 is usually formed on the anode 2 .
  • the thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
  • the method for forming the hole injection layer may be a vacuum deposition method or a wet film formation method. From the viewpoint of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
  • a general method for forming a hole injection layer will be described below. preferably formed.
  • the composition for forming a hole injection layer usually contains a hole-transporting compound for a hole-injection layer that becomes the hole-injection layer 3 .
  • the hole injection layer-forming composition usually further contains a solvent. It is preferable that the composition for forming a hole injection layer has a high hole-transporting property and can efficiently transport the injected holes. For this reason, it is preferable that the hole mobility is large and that impurities that become traps are less likely to occur during manufacture or use. Moreover, it is preferable that it has excellent stability, a small ionization potential, and a high transparency to visible light.
  • the hole injection layer when the hole injection layer is in contact with the light-emitting layer, it is preferable to use a material that does not quench light emitted from the light-emitting layer or that forms an exciplex with the light-emitting layer so as not to lower the light emission efficiency.
  • the hole-transporting compound for the hole-injection layer is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole-injection layer.
  • hole-transporting compounds include aromatic amine-based compounds, phthalocyanine-based compounds, porphyrin-based compounds, oligothiophene-based compounds, polythiophene-based compounds, benzylphenyl-based compounds, and tertiary amines linked with fluorene groups. compounds, hydrazone-based compounds, silazane-based compounds, quinacridone-based compounds, and the like.
  • aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, in terms of amorphousness and visible light transparency.
  • the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
  • the type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of easily obtaining uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1000 or more and 1000000 or less (polymeric compound in which repeating units are linked) ) is preferably used.
  • a film-forming composition (hole injection Layer-forming composition) is prepared. Then, the hole injection layer 3 is formed by coating the hole injection layer forming composition on the layer (usually the anode) corresponding to the lower layer of the hole injection layer to form a film and drying it.
  • the concentration of the hole-transporting compound in the hole-injection layer-forming composition is arbitrary as long as it does not significantly impair the effects of the present invention. , a higher value is preferable from the viewpoint that defects are less likely to occur in the hole injection layer. Specifically, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. is preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • solvents examples include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents.
  • ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
  • aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole.
  • PGMEA propylene glycol-1-monomethyl ether acetate
  • 1,2-dimethoxybenzene 1,3-dimethoxybenzen
  • ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
  • aromatic hydrocarbon solvents examples include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. be done.
  • amide-based solvents examples include N,N-dimethylformamide and N,N-dimethylacetamide.
  • dimethyl sulfoxide and the like can also be used.
  • Formation of the hole injection layer 3 by a wet film-forming method is usually carried out by preparing a composition for forming a hole injection layer and then applying it on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2). It is carried out by coating and forming a film on the surface and drying it.
  • the coating film is usually dried by heating, drying under reduced pressure, or the like.
  • the hole injection layer 3 is formed by a vacuum deposition method
  • one or more of the constituent materials of the hole injection layer 3 are usually placed in a crucible placed in a vacuum vessel (two or more materials are placed in separate crucibles), and the inside of the vacuum chamber is evacuated to about 10 ⁇ 4 Pa by a vacuum pump.
  • the crucible is heated (usually each crucible is heated when two or more materials are used) to evaporate while controlling the amount of evaporation of the material in the crucible (when two or more materials are used, (usually independently controlling the amount of evaporation) to form a hole-injecting layer on the anode on the substrate placed facing the crucible.
  • a mixture thereof can be placed in a crucible, heated and evaporated to form the hole injection layer.
  • the degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention. 12.0 ⁇ 10 ⁇ 4 Pa) or less.
  • the vapor deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 ⁇ /second or more and 5.0 ⁇ /second or less.
  • the film formation temperature during vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but is preferably 10° C. or higher and 50° C. or lower.
  • hole injection layer 3 may be crosslinked in the same manner as the hole transport layer 4 described later.
  • the hole transport layer 4 is a layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side.
  • the hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to form this layer in terms of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5. .
  • the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5 . Further, when the hole injection layer 3 described above is present, it is formed between the hole injection layer 3 and the light emitting layer 5 .
  • the film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • a material that forms the hole transport layer 4 is preferably a material that has a high hole transport property and can efficiently transport the injected holes. Therefore, it is preferable that the ionization potential is low, the transparency to visible light is high, the hole mobility is high, the stability is excellent, and impurities that act as traps are less likely to occur during manufacture or use. In many cases, since the hole transport layer 4 is in contact with the light emitting layer 5, it does not quench the light emitted from the light emitting layer 5 or form an exciplex with the light emitting layer 5 to reduce the efficiency. is preferred.
  • any material can be used as long as it is a material conventionally used as a constituent material of a hole transport layer.
  • compounds include those exemplified.
  • polyvinylcarbazole derivatives polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes. derivatives, poly(p-phenylene vinylene) derivatives and the like.
  • These may be alternating copolymers, random polymers, block polymers or graft copolymers.
  • a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer may be used.
  • polyarylamine derivatives and polyarylene derivatives are preferred.
  • a polymer containing a repeating unit represented by the following formula (II) is preferred.
  • a polymer composed of repeating units represented by the following formula (II) is preferable, and in this case, Ar a or Ar b may be different in each repeating unit.
  • Ar a and Ar b each independently represent an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group .
  • polyarylene derivatives include polymers having arylene groups such as optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups in their repeating units.
  • polyarylene derivative a polymer having repeating units represented by the following formula (III-1) and/or the following formula (III-2) is preferable.
  • R a , R b , R c and R d are each independently an alkyl group, an alkoxy group, a phenylalkyl group, a phenylalkoxy group, a phenyl group, a phenoxy group, an alkylphenyl group, represents an alkoxyphenyl group, an alkylcarbonyl group, an alkoxycarbonyl group or a carboxy group, and t and s each independently represents an integer of 0 to 3.
  • t or s is 2 or more, a plurality of groups contained in one molecule may be the same or different, and adjacent Ra or Rb may form a ring.
  • R e and R f are each independently synonymous with R a , R b , R c or R d in formula (III-1) above.
  • r and u are each independently represents an integer of 0 to 3. When r or u is 2 or more, a plurality of R e and R f contained in one molecule may be the same or different, and adjacent R e or R f may form a ring together, and X represents an atom or a group of atoms constituting a 5- or 6-membered ring.
  • X include an oxygen atom, an optionally substituted boron atom, an optionally substituted nitrogen atom, an optionally substituted silicon atom, and an optionally substituted an optionally substituted phosphorus atom, an optionally substituted sulfur atom, an optionally substituted carbon atom, or a group formed by combining these atoms.
  • polyarylene derivative has a repeating unit represented by the following formula (III-3) in addition to the repeating unit represented by the above formula (III-1) and/or the above formula (III-2). is preferred.
  • Ar c to Ar i each independently represent an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group; and v and w each independently represent 0 or 1.
  • a composition for forming a hole transport layer is prepared in the same manner as in the formation of the hole injection layer 3, and after wet film formation, heat drying is performed. .
  • the hole-transporting layer-forming composition contains a solvent in addition to the hole-transporting compound described above.
  • the solvent to be used is the same as that used for the composition for forming the hole injection layer.
  • the film formation conditions, heat drying conditions, etc. are the same as in the case of forming the hole injection layer 3 .
  • the film forming conditions and the like are the same as in the case of forming the hole injection layer 3 described above.
  • the hole-transporting layer 4 may contain various light-emitting materials, electron-transporting compounds, binder resins, coatability improvers, etc., in addition to the above hole-transporting compounds.
  • the hole transport layer 4 may be a layer formed by cross-linking a cross-linking compound.
  • the crosslinkable compound is a compound having a crosslinkable group, and forms a network polymer compound by crosslinking.
  • crosslinkable groups include groups derived from cyclic ethers such as oxetane and epoxy; groups derived from unsaturated double bonds such as vinyl, trifluorovinyl, styryl, acryl, methacryloyl, and cinnamoyl; Examples thereof include groups derived from cyclobutene.
  • the crosslinkable compound may be a monomer, oligomer, or polymer.
  • the crosslinkable compound may have only one type, or may have two or more types in any combination and ratio.
  • a hole-transporting compound having a crosslinkable group is preferably used as the crosslinkable compound.
  • the hole-transporting compound include those exemplified above, and examples of the cross-linking compound include those in which a cross-linking group is bonded to the main chain or side chain of these hole-transporting compounds. be done.
  • the crosslinkable group is preferably bonded to the main chain via a linking group such as an alkylene group.
  • the hole-transporting compound is preferably a polymer containing a repeating unit having a crosslinkable group. is preferably a polymer having repeating units linked directly or via a linking group.
  • a composition for forming a hole transport layer is usually prepared by dissolving or dispersing the cross-linking compound in a solvent, and the film is formed by wet film formation. to cross-link.
  • the film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
  • the light-emitting layer 5 is a layer that functions to emit light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 7 when an electric field is applied between a pair of electrodes. .
  • the light-emitting layer 5 is a layer formed between the anode 2 and the cathode 7, and the light-emitting layer is formed between the hole-injection layer and the cathode, if there is a hole-injection layer on the anode, and the anode If there is a hole-transport layer on top, it is formed between the hole-transport layer and the cathode.
  • the organic electroluminescent device in the present invention preferably contains the aromatic compound and the luminescent material of the present invention as the luminescent layer.
  • the film thickness of the light-emitting layer 5 is arbitrary as long as it does not significantly impair the effects of the present invention. However, a thicker film is preferable because defects are less likely to occur in the film. . Therefore, it is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, more preferably 100 nm or less.
  • the light-emitting layer 5 contains at least a material having light-emitting properties (light-emitting material), and preferably contains one or more host materials.
  • a hole-blocking layer may be provided between the light-emitting layer 5 and an electron-injecting layer, which will be described later.
  • the hole-blocking layer is a layer laminated on the light-emitting layer 5 so as to be in contact with the interface of the light-emitting layer 5 on the cathode 7 side.
  • This hole-blocking layer has the role of blocking holes moving from the anode 2 from reaching the cathode 7 and the role of efficiently transporting electrons injected from the cathode 7 toward the light-emitting layer 5.
  • the physical properties required for the material constituting the hole blocking layer include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet level (T 1 ). is high.
  • Examples of materials for the hole blocking layer that satisfy these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum, bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum, and the like.
  • mixed ligand complexes bis (2-methyl-8-quinolato) aluminum- ⁇ -oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes such as metal complexes, distyrylbiphenyl derivatives and the like Styryl compounds (JP-A-11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole ( JP-A-7-41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like.
  • the compound having at least one pyridine ring substituted at the 2,4,6 positions described in WO 2005/022962 is also preferable as a material for the hole blocking layer.
  • the hole blocking layer There are no restrictions on the method of forming the hole blocking layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
  • the thickness of the hole-blocking layer is arbitrary as long as it does not significantly impair the effects of the present invention, but it is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. .
  • the electron transport layer 6 is provided between the light emitting layer 5 and the cathode 7 for the purpose of further improving the current efficiency of the device.
  • the electron transport layer 6 is made of a compound that can efficiently transport electrons injected from the cathode 7 toward the light emitting layer 5 between electrodes to which an electric field is applied.
  • the electron-transporting compound used in the electron-transporting layer 6 is a compound that has high electron injection efficiency from the cathode 7, high electron mobility, and can efficiently transport the injected electrons. is required.
  • the electron-transporting compound used in the electron-transporting layer include, for example, a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), 10-hydroxybenzo[h] quinoline metal complexes, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent No. 5645948), quinoxaline compounds (Japanese Patent Laid-Open No.
  • the film thickness of the electron transport layer 6 is usually 1 nm or more, preferably 5 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
  • the electron transport layer 6 is formed on the hole blocking layer by a wet film forming method or a vacuum vapor deposition method in the same manner as described above.
  • a vacuum deposition method is usually used.
  • the electron transport layer can be formed on the light-emitting layer containing the aromatic compound of the invention by a wet film-forming method.
  • the electron injection layer may be provided to efficiently inject electrons injected from the cathode 7 into the electron transport layer 6 or the light emitting layer 5 .
  • the material forming the electron injection layer be a metal with a low work function.
  • examples thereof include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like.
  • the film thickness is preferably 0.1 nm or more and 5 nm or less.
  • an organic electron-transporting material typified by a nitrogen-containing heterocyclic compound such as bathophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) also improves electron injection and transport properties and achieves excellent film quality. It is preferable because it enables
  • the thickness of the electron injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
  • the electron injection layer is formed by laminating the light emitting layer 5 or the hole blocking layer or the electron transport layer 6 thereon by a wet film forming method or a vacuum deposition method.
  • the details of the wet film formation method are the same as those of the light-emitting layer described above.
  • the hole-blocking layer, electron-transporting layer, and electron-injecting layer are formed into a single layer by co-doping the electron-transporting material and the lithium complex.
  • the cathode 7 plays a role of injecting electrons into a layer (an electron injection layer, a light-emitting layer, or the like) on the light-emitting layer 5 side.
  • the material of the cathode 7 it is possible to use the material used for the anode 2, but in terms of efficient electron injection, it is preferable to use a metal with a low work function, such as tin or magnesium. , indium, calcium, aluminum, and silver, or alloys thereof. Specific examples include low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
  • the cathode made of a metal with a low work function by stacking a metal layer that has a high work function and is stable against the atmosphere on the cathode.
  • Metals to be laminated include, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
  • the film thickness of the cathode is usually the same as that of the anode.
  • the organic electroluminescence device of the present invention may further have other layers as long as they do not significantly impair the effects of the present invention. That is, it may have any of the other layers described above between the anode and cathode.
  • the organic electroluminescence device of the present invention has a structure opposite to that described above. It is also possible to laminate the injection layer and the anode in this order.
  • the organic electroluminescent element of the present invention When the organic electroluminescent element of the present invention is applied to an organic electroluminescent device, it may be used as a single organic electroluminescent element or may be used in a configuration in which a plurality of organic electroluminescent elements are arranged in an array. A configuration in which anodes and cathodes are arranged in an XY matrix may be used.
  • An organic electroluminescent device uses the composition for an organic electroluminescent device described above.
  • An organic electroluminescent device can have, for example, an anode and a cathode on a substrate, and an organic layer between the anode and the cathode.
  • One aspect of the method for producing an organic electroluminescent device of the present invention can include a step of forming an organic layer by a wet film-forming method using the composition for an organic electroluminescent device described above.
  • the organic layer can be, for example, an emissive layer.
  • the organic layer includes a light-emitting layer and an electron-transporting layer, and the light-emitting layer is formed by a wet film-forming method using the composition for an organic electroluminescent device described above. and a step of forming the electron transport layer by a wet film-forming method using an electron transport layer composition containing an electron transport material and a solvent, in this order.
  • the solvent contained in the electron transport layer composition can be an alcohol solvent.
  • the electron transport layer formed by the wet film formation method can be formed so as to be directly laminated on the light emitting layer formed by the wet film formation method.
  • the organic EL display device (organic electroluminescence element display device or display device) of the present invention comprises the organic electroluminescence element of the present invention.
  • the type and structure of the organic EL display device of the present invention are not particularly limited, and the organic electroluminescence device of the present invention can be assembled according to a conventional method.
  • the organic EL display device of the present invention can be manufactured by the method described in "Organic EL Display” (Ohmsha, August 20, 2004, by Shizuo Tokito, Chihaya Adachi, and Hideyuki Murata). can be formed.
  • the organic EL lighting (organic electroluminescence device lighting or lighting device) of the present invention comprises the organic electroluminescence device of the present invention.
  • the type and structure of the organic EL lighting of the present invention are not particularly limited, and the organic electroluminescence device of the present invention can be assembled according to a conventional method.
  • compound 1-f (7.8 g, 11.7 mmol) and compound 1-g (7.7 g, 10.6 mmol) were subjected to nitrogen bubbling in THF (50 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 15 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (0.12 g, 0.11 mmol) was added, and the mixture was heated and stirred at 75° C. for 4 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane.
  • compound 2-e 3.3 g, 9.28 mmol
  • compound 2-f 3.6 g, 9.28 mmol
  • nitrogen bubbling toluene 40 mL
  • ethanol 20 mL
  • triphosphate A potassium aqueous solution (2.0 mol/L, 20 mL) was added in order.
  • Pd(PPh 3 ) 4 (0.11 g, 0.093 mmol) was added and heated with stirring at 90° C. for 4 hours. After cooling to room temperature, a saturated sodium chloride aqueous solution was added, and extraction was performed using toluene.
  • the compounds (H-1) to (H-3) of the present invention and the comparative compound (C-2) had a solubility in CHB of 12.0% by mass or more.
  • the substrate on which the compound film was formed was set in a spin coater, 150 ⁇ l of the test solvent was dropped onto the substrate, and after dropping, the substrate was allowed to stand for 60 seconds to conduct a solvent resistance test.
  • the substrate was spun at 1500 rpm for 30 seconds and then at 4000 rpm for 30 seconds to spin out the dropped solvent.
  • This substrate was dried on a hot plate at 100° C. for 10 minutes.
  • the film thickness change before and after the solvent resistance test was estimated from each film thickness difference.
  • the film thickness after film formation of each compound and the test solvent used are as follows.
  • Comparative compound (C-1) A film of 54 nm was formed using the comparative compound (C-1), and a solvent resistance test was conducted using 1-butanol as the test solvent.
  • the solvent resistance of the compound after film formation was evaluated based on the following criteria. ⁇ : No decrease in film thickness was observed. x: A film thickness reduction of 5 nm or more was observed. Table 3 shows the results of the solvent resistance test.
  • Example 1 An organic electroluminescence device was produced by the following method.
  • An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate to a thickness of 50 nm (manufactured by Geomatec, a sputter-deposited product) was subjected to a 2 mm-wide stripe using ordinary photolithography and etching with hydrochloric acid. was patterned to form an anode.
  • the substrate on which the ITO pattern is formed in this manner is washed with ultrasonic waves using an aqueous solution of surfactant, washed with ultrapure water, ultrasonically washed with ultrapure water, and washed with ultrapure water in this order, and then dried with compressed air.
  • composition for forming a hole injection layer 3.0% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-1) and 0.6% by weight of an electron-accepting compound (HI-1) was dissolved in ethyl benzoate to prepare a composition.
  • This solution was spin-coated on the substrate in the atmosphere and dried on a hot plate in the atmosphere at 240° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm, which was used as a hole injection layer.
  • a charge-transporting polymer compound having the following structural formula (HT-1) was dissolved in 1,3,5-trimethylbenzene to prepare a 2.0% by weight solution.
  • This solution was spin-coated on the substrate on which the hole injection layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 230° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm. was formed to form a hole transport layer.
  • This solution was spin-coated in a nitrogen glove box onto the substrate on which the hole transport layer had been applied and dried on a hot plate in the nitrogen glove box at 120° C. for 20 minutes to form a uniform thin film with a thickness of 40 nm. was formed to form a light-emitting layer.
  • the substrate on which up to the light-emitting layer was formed was placed in a vacuum deposition apparatus, and the inside of the apparatus was evacuated to 2 ⁇ 10 ⁇ 4 Pa or less.
  • the following structural formula (ET-1) and 8-hydroxyquinolinolatritium were co-deposited on the light-emitting layer at a film thickness ratio of 2:3 by a vacuum vapor deposition method to form an electron-transporting layer having a film thickness of 30 nm. formed.
  • a striped shadow mask with a width of 2 mm was adhered to the substrate so as to be orthogonal to the ITO stripes of the anode as a mask for cathode evaporation, and aluminum was heated with a molybdenum boat to form an aluminum layer with a thickness of 80 nm. formed to form the cathode.
  • an organic electroluminescence device having a light-emitting area of 2 mm ⁇ 2 mm was obtained.
  • Example 2 An organic electroluminescence device was produced in the same manner as in Example 1, except that the compound (H-2) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
  • Example 3 An organic electroluminescence device was produced in the same manner as in Example 1, except that the compound (H-3) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
  • Example 1 An organic electroluminescence device was produced in the same manner as in Example 1, except that the comparative compound (C-2) was used instead of the compound (H-1) as the material of the light-emitting layer.
  • Example 4 An organic electroluminescence device was produced in the same manner as in Example 1, except that the light-emitting layer was formed as follows. As materials for the light-emitting layer, the compound (H-1) was 2.7% by weight, the following compound (HH-2) was 2.7% by weight, and the compound (D-1) was cyclohexyl at a concentration of 1.6% by weight. It was made to melt
  • the composition for forming a light emitting layer was spin-coated on the substrate on which the hole transport layer was formed in a nitrogen glove box, dried on a hot plate in the nitrogen glove box at 120 ° C. for 20 minutes, and a uniform film thickness of 70 nm. A thin film was formed to form a light-emitting layer.
  • Example 5 An organic electroluminescence device was produced in the same manner as in Example 4, except that the compound (H-2) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
  • Example 6 An organic electroluminescence device was produced in the same manner as in Example 4, except that the compound (H-3) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
  • Comparative Example 2 An organic electroluminescence device was produced in the same manner as in Example 4, except that the comparative compound (C-2) was used instead of the compound (H-1) as the material of the light-emitting layer.
  • the present invention can provide an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent resistance to alcohol solvents in thin films.
  • the present invention also provides an organic electroluminescent device containing the compound, a display device and a lighting device comprising the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device. can provide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention addresses the problem of providing an aromatic compound which has excellent heat resistance, excellent solubility, and excellent electron-transporting properties and which gives thin films having excellent resistance to alcohol solvents. The present invention relates to: an aromatic compound represented by formula (1); an organic electroluminescent element including an organic layer which comprises the aromatic compound as a material for organic electroluminescent elements; a composition for organic electroluminescent elements which comprises the aromatic compound and a solvent; and a method for producing the organic electroluminescent element. (In formula (1), G1, G2, and G3 respectively have the same meanings as defined in the specification.)

Description

芳香族化合物、有機電界発光素子、組成物及び有機電界発光素子の製造方法Aromatic compound, organic electroluminescent device, composition, and method for producing organic electroluminescent device
 本発明は、有機電界発光素子(以下、「OLED」又は「素子」と称す場合がある。)に用いることができる芳香族化合物および、当該化合物を有する有機電界発光素子、当該有機電界発光素子を有する表示装置及び照明装置、当該化合物及び溶剤を含有する組成物、薄膜形成方法及び有機電界発光素子の製造方法に関する。 The present invention provides an aromatic compound that can be used in an organic electroluminescent device (hereinafter sometimes referred to as "OLED" or "device"), an organic electroluminescent device having the compound, and the organic electroluminescent device. The present invention relates to a display device and a lighting device, a composition containing the compound and the solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device.
 近年、薄膜型の電界発光素子としては、無機材料を使用したものに代わり、有機薄膜を用いた有機電界発光素子の開発が行われるようになっている。有機電界発光素子(OLED)は、通常、陽極と陰極の間に、正孔注入層、正孔輸送層、有機発光層、電子輸送層などを有する。この各層に適した材料が開発されつつあり、発光色も赤、緑、青と、それぞれ開発が進んでいる。また、従来の蒸着型と比較して材料利用効率が高く、製造コストを下げることができる塗布型OLEDの研究が進められている。 In recent years, as thin-film electroluminescent elements, instead of those using inorganic materials, organic electroluminescent elements using organic thin films have been developed. An organic electroluminescent device (OLED) typically has a hole-injection layer, a hole-transport layer, an organic light-emitting layer, an electron-transport layer, etc. between an anode and a cathode. Materials suitable for each of these layers are being developed, and the development of red, green, and blue emission colors is progressing. In addition, research is being conducted on coating-type OLEDs, which are more efficient in material utilization than conventional evaporation-type OLEDs and can reduce manufacturing costs.
 塗布型OLEDにおいては、有機電界発光素子の長寿命化やより低い消費電力での駆動が求められている。有機電界発光素子の寿命や消費電力改善に影響を及ぼす原因は様々な因子が考えられるが、例えば寿命に関しては、有機電界発光素子を構成する材料の熱耐久性や、結晶性が大きな影響を及ぼすものと考えられている。 For coating-type OLEDs, there is a demand for longer life of organic electroluminescent elements and driving with lower power consumption. Various factors can be considered to affect the lifetime and power consumption improvement of an organic electroluminescent device. For example, the thermal durability and crystallinity of the materials that make up the organic electroluminescent device have a large effect on the lifetime. is considered a thing.
 また、有機電界発光素子を湿式成膜法で製造するためには、使用される材料はすべて有機溶媒に溶解してインクとして使用できるものである必要がある。使用材料が溶解性に劣ると、長時間加熱するなどの操作を要するため、使用前に材料が劣化してしまう可能性がある。さらに、溶液状態で長時間均一状態を保持することができないと、溶液から材料の析出が起こり、インクジェット装置などによる成膜が不可能となる。湿式成膜法に使用される材料には、有機溶媒に速やかに溶解すること、溶解した後析出せず均一状態を保持すること、という2つの意味での溶解性が求められる。 In addition, in order to manufacture organic electroluminescent elements by the wet film-forming method, all the materials used must be able to dissolve in organic solvents and be used as ink. If the material to be used has poor solubility, the material may deteriorate before use because an operation such as heating for a long period of time is required. Furthermore, if the uniform state cannot be maintained for a long time in a solution state, the material will precipitate out of the solution, making it impossible to form a film using an inkjet device or the like. Materials used in the wet film-forming method are required to have solubility in two senses: rapid dissolution in an organic solvent and maintenance of a homogeneous state without precipitating after dissolution.
 特許文献1には、燐光発光性化合物の電荷輸送材料として、下記化合物(C-1)などのトリアジン構造を含む芳香族化合物を用いたOLED用材料が報告されている。 Patent Document 1 reports an OLED material using an aromatic compound containing a triazine structure, such as the following compound (C-1), as a charge transport material for a phosphorescent compound.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 特許文献2には、寿命改善層材料として、下記化合物(C-2)~(C-4)などのトリアジンとスピロビフルオレン構造を含む芳香族化合物を用いたOLED用材料が報告されている。 Patent Document 2 reports an OLED material using an aromatic compound containing a triazine and a spirobifluorene structure, such as compounds (C-2) to (C-4) below, as a material for the life improving layer.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
国際公開第2012/137958号WO2012/137958 米国特許第9960363号明細書U.S. Pat. No. 9,960,363
 しかしながら、上記化合物(C-1)では、ガラス転移温度が93℃と低く耐熱性が十分ではない。上記化合物(C-2)~(C-4)を発光層の電荷輸送材料として使用するには、電子移動度が十分でなく、素子効率及び素子寿命が低い。さらに、上記化合物(C-1)~(C-4)から成膜された薄膜の上に、アルコール溶媒を使用した湿式成膜法による薄膜を積層するためのアルコール溶媒への耐久性が十分でない。 However, the above compound (C-1) has a glass transition temperature as low as 93°C and does not have sufficient heat resistance. When the above compounds (C-2) to (C-4) are used as the charge transport material of the light-emitting layer, the electron mobility is insufficient and the device efficiency and device life are low. Furthermore, the durability to alcohol solvents for laminating a thin film by a wet film forming method using an alcohol solvent on the thin film formed from the above compounds (C-1) to (C-4) is not sufficient. .
 本発明は上記従来の実情に鑑みてなされたものであり、優れた耐熱性、優れた溶解性、優れた電子輸送性、優れた薄膜のアルコール溶媒への耐久性を有する芳香族化合物を提供することを課題とする。 The present invention has been made in view of the above-mentioned conventional circumstances, and provides an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent durability to alcohol solvents in thin films. The challenge is to
 また、本発明は、当該化合物を有する有機電界発光素子、当該有機電界発光素子を有する表示装置及び照明装置、当該化合物及び溶剤を含有する組成物、薄膜形成方法及び有機電界発光素子の製造方法を提供することを課題とする。 The present invention also provides an organic electroluminescent device containing the compound, a display device and a lighting device comprising the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device. The task is to provide
 なお、本明細書において、「アルコール溶媒」を「アルコール系溶剤」又は「アルコール系溶媒」と称す場合がある。 In this specification, "alcohol solvent" may be referred to as "alcohol-based solvent" or "alcohol-based solvent".
 本発明者らが鋭意検討した結果、トリアジンとスピロビフルオレン構造の芳香族化合物を用いることにより、上記課題を解決できることを見出し、本発明に到達した。 As a result of extensive studies, the present inventors have found that the above problems can be solved by using triazine and an aromatic compound having a spirobifluorene structure, and have arrived at the present invention.
 即ち、本発明の要旨は、次の<1>~<21>のとおりである。
<1>
 下記式(1)で表される芳香族化合物。
That is, the gist of the present invention is as follows <1> to <21>.
<1>
An aromatic compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(1)中、G及びGは、各々独立に、下記式(3)を表し、Gは、下記式(4)を表す。) (In formula (1), G 1 and G 2 each independently represent formula (3) below, and G 3 represents formula (4) below.)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(式(3)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは1~5の整数を表す。)
(In formula (3), an asterisk (*) represents a bond with formula (1),
L 2 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
Ar 2 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
a2 represents an integer of 1 to 5; )
Figure JPOXMLDOC01-appb-C000012

(式(4)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは1~5の整数を表す。)
<2>
 Gが、下記式(2)で表される<1>に記載の芳香族化合物。
Figure JPOXMLDOC01-appb-C000012

(In formula (4), an asterisk (*) represents a bond with formula (1),
L 3 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
a3 represents an integer of 1 to 5; )
<2>
The aromatic compound according to <1>, wherein G 1 is represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(2)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは0~5の整数を表す。)
<3>
 L~Lが、各々独立に、フェニル基またはフェニル基が複数連結した基である、<2>に記載の芳香族化合物。
<4>
 L~Lが、各々独立に、1,3-フェニレン基又は1,4-フェニレン基である、<2>又は<3>に記載の芳香族化合物。
<5>
 分子量が1200以上である<1>~<4>のいずれか1つに記載の芳香族化合物。
<6>
 基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子であって、
 前記有機層が、有機電界発光素子用材料を含む層を有し、
 前記有機電界発光素子用材料が<1>~<5>のいずれか1つに記載の芳香族化合物である、有機電界発光素子。
<7>
 前記有機電界発光素子用材料を含む層が発光層である、<6>に記載の有機電界発光素子。
<8>
 <6>又は<7>に記載の有機電界発光素子を有する、表示装置。
<9>
 <6>又は<7>に記載の有機電界発光素子を有する、照明装置。
(In formula (2), an asterisk (*) represents a bond with formula (1),
L 1 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
Ar 1 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
a 1 represents an integer of 0 to 5; )
<3>
The aromatic compound according to <2>, wherein each of L 1 to L 3 is independently a phenyl group or a group in which a plurality of phenyl groups are linked.
<4>
The aromatic compound according to <2> or <3>, wherein L 1 to L 3 are each independently a 1,3-phenylene group or a 1,4-phenylene group.
<5>
The aromatic compound according to any one of <1> to <4>, which has a molecular weight of 1200 or more.
<6>
An organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode,
The organic layer has a layer containing an organic electroluminescence device material,
An organic electroluminescent device, wherein the organic electroluminescent device material is the aromatic compound according to any one of <1> to <5>.
<7>
The organic electroluminescent device according to <6>, wherein the layer containing the organic electroluminescent device material is a light-emitting layer.
<8>
A display device comprising the organic electroluminescent element according to <6> or <7>.
<9>
A lighting device comprising the organic electroluminescent element according to <6> or <7>.
<10>
 <1>~<5>のいずれか1つに記載の芳香族化合物及び溶剤を含有する、有機電界発光素子用組成物。
<11>
 さらに、燐光発光材料及び電荷輸送材料を含有する、<10>に記載の有機電界発光素子用組成物。
<12>
 前記電荷輸送材料が、下記式(240)で表される化合物、又は、下記式(260)で表される化合物である、<11>に記載の有機電界発光素子用組成物。
<10>
A composition for an organic electroluminescence device, comprising the aromatic compound according to any one of <1> to <5> and a solvent.
<11>
The composition for an organic electroluminescence device according to <10>, further comprising a phosphorescent material and a charge transport material.
<12>
The composition for an organic electroluminescent element according to <11>, wherein the charge-transporting material is a compound represented by the following formula (240) or a compound represented by the following formula (260).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(240)中、
 Ar611、Ar612は各々独立に、置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基を表し、
 R611、R612は各々独立に、重水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基であり、
 Gは、単結合、又は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表し、
 n611、n612は各々独立に0~4の整数である。)
(In formula (240),
Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
R 611 and R 612 are each independently a deuterium atom, a halogen atom, or an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
n 611 and n 612 are each independently an integer of 0-4. )
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(式(260)中、Ar21~Ar35は各々独立に、水素原子、置換基を有してもよいフェニル基又は置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基を表す。)
<13>
 前記式(240)におけるAr611及びAr612が各々独立に、置換基を有してもよいベンゼン環が複数鎖状又は分岐して結合した1価の基である、<12>に記載の有機電界発光素子用組成物。
<14>
 前記式(240)におけるR611及びR612が各々独立に置換基を有していてもよい炭素数6~30の1価の芳香族炭化水素基である、<12>又は<13>に記載の有機電界発光素子用組成物。
<15>
 前記式(240)におけるn611及びn612が各々独立に0又は1である、<12>~<14>のいずれか1つに記載の有機電界発光素子用組成物。
<16>
 前記式(260)において、Ar21、Ar25、Ar26、Ar30、Ar31及びAr35は水素原子であり、
 Ar22~Ar24、Ar27~Ar29、及びAr32~Ar34は、水素原子、フェニル基、及び、下記式(261-1)~(261-9)から選択される構造のいずれかであり、これらの構造は前記置換基を有してよい、<12>に記載の有機電界発光素子用組成物。
(In the formula (260), each of Ar 21 to Ar 35 is independently a hydrogen atom, an optionally substituted phenyl group or an optionally substituted phenyl group, 2 to 10, unbranched or It represents a branched and linked monovalent group.)
<13>
The organic according to <12>, wherein each of Ar 611 and Ar 612 in the formula (240) is independently a monovalent group in which a plurality of optionally substituted benzene rings are bonded in a chain or branched manner A composition for an electroluminescence device.
<14>
<12> or <13>, wherein R 611 and R 612 in formula (240) are each independently an optionally substituted monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. A composition for an organic electroluminescence device.
<15>
The composition for an organic electroluminescence element according to any one of <12> to <14>, wherein n 611 and n 612 in formula (240) are each independently 0 or 1.
<16>
In the formula (260), Ar 21 , Ar 25 , Ar 26 , Ar 30 , Ar 31 and Ar 35 are hydrogen atoms,
Ar 22 to Ar 24 , Ar 27 to Ar 29 , and Ar 32 to Ar 34 are hydrogen atoms, phenyl groups, or structures selected from the following formulas (261-1) to (261-9). The composition for an organic electroluminescence element according to <12>, wherein these structures may have the substituents.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
<17>
 <10>~<16>のいずれか1つに記載の有機電界発光素子用組成物を湿式成膜法にて成膜する工程を有する、薄膜形成方法。
<18>
 基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子の製造方法であって、
 前記有機層を、<10>~<16>のいずれか1つに記載の有機電界発光素子用組成物を用いて湿式成膜法にて形成する工程を含む、有機電界発光素子の製造方法。
<19>
 前記有機層が発光層である、<18>に記載の有機電界発光素子の製造方法。
<20>
 基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子の製造方法であって、
 前記有機層が、発光層と電子輸送層を含み
 前記発光層を、<10>~<16>のいずれか1つに記載の有機電界発光素子用組成物を用いて湿式成膜法で形成する工程と、
 前記電子輸送層を、電子輸送材料及び溶剤を含む電子輸送層用組成物を用いて湿式成膜法で形成する工程と、をこの順で含む有機電界発光素子の製造方法。
<21>
 前記電子輸送層用組成物に含まれる溶剤が、アルコール系溶媒である<20>に記載の有機電界発光素子の製造方法。
<17>
A method for forming a thin film, comprising a step of forming a film from the composition for an organic electroluminescent device according to any one of <10> to <16> by a wet film-forming method.
<18>
A method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, the method comprising:
A method for producing an organic electroluminescent device, comprising forming the organic layer by a wet film-forming method using the composition for an organic electroluminescent device according to any one of <10> to <16>.
<19>
The method for producing an organic electroluminescence device according to <18>, wherein the organic layer is a light-emitting layer.
<20>
A method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, the method comprising:
The organic layer includes a light-emitting layer and an electron-transporting layer, and the light-emitting layer is formed by a wet film-forming method using the composition for an organic electroluminescent element according to any one of <10> to <16>. process and
forming the electron transport layer by a wet film-forming method using an electron transport layer composition containing an electron transport material and a solvent, in this order.
<21>
The method for producing an organic electroluminescence device according to <20>, wherein the solvent contained in the electron transport layer composition is an alcohol solvent.
 本発明により、優れた耐熱性、優れた溶解性、優れた電子輸送性、優れた薄膜のアルコール溶媒への耐久性を有する芳香族化合物を提供することができる。 According to the present invention, it is possible to provide an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent durability to alcohol solvents in thin films.
 また、本発明により、当該化合物を有する有機電界発光素子、当該有機電界発光素子を有する表示装置及び照明装置、当該化合物及び溶剤を含有する組成物、薄膜形成方法及び有機電界発光素子の製造方法を提供することができる。 In addition, according to the present invention, an organic electroluminescent device having the compound, a display device and a lighting device having the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device are provided. can provide.
図1は、本発明の有機電界発光素子の構造の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the structure of the organic electroluminescence device of the present invention.
 以下に、本発明の実施の形態を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変形して実施することができる。 Although the embodiments of the present invention will be described in detail below, the present invention is not limited to the following embodiments, and can be variously modified within the scope of the gist of the invention.
 本発明において、「置換基を有していてもよい」とは、置換基を1以上有していてもよいことを意味するものとする。 In the present invention, "optionally having a substituent" means that it may have one or more substituents.
<本発明の芳香族化合物>
 本発明の芳香族化合物は、下記式(1)で表される。
<Aromatic compound of the present invention>
The aromatic compound of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(式(1)中、G及びGは、各々独立に、下記式(3)を表し、Gは、下記式(4)を表す。) (In formula (1), G 1 and G 2 each independently represent formula (3) below, and G 3 represents formula (4) below.)
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
(式(3)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは1~5の整数を表す。)
(In formula (3), an asterisk (*) represents a bond with formula (1),
L 2 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
Ar 2 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
a2 represents an integer of 1 to 5; )
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
(式(4)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは1~5の整数を表す。)
(In formula (4), an asterisk (*) represents a bond with formula (1),
L 3 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
a3 represents an integer of 1 to 5; )
 電子輸送性の観点から、Gは、下記式(2)で表されることが好ましい。 From the viewpoint of electron transport properties, G1 is preferably represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
(式(2)中、アスタリスク(*)は、式(1)との結合を表し、
 Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
 aは0~5の整数を表す。)
(In formula (2), an asterisk (*) represents a bond with formula (1),
L 1 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
Ar 1 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
a 1 represents an integer of 0 to 5; )
 本発明において、有効な効果が得られる作用機構は、以下のように推定される。 In the present invention, the action mechanism by which effective effects are obtained is presumed as follows.
 本発明の芳香族化合物は、式(4)で表されるスピロビフルオレン構造を有するため、ガラス転移温度が高い。本発明の芳香族化合物は、トリアジン骨格とスピロビフルオレン構造がビフェニルよりも大きな構造を介して結合していることにより、スピロビフルオレン構造による立体障害を抑制でき、電子輸送性が高い。また、本発明の芳香族化合物は、式(4)で表されるスピロビフルオレン構造がメタ位で結合したビフェニル基を有するため、溶解性が高い。本発明の化合物は、分子量が大きく、スピロビフルオレン構造を少なくとも1つ有するため、成膜後は優れたアルコール溶媒に対する耐性がある。 The aromatic compound of the present invention has a spirobifluorene structure represented by formula (4), and therefore has a high glass transition temperature. In the aromatic compound of the present invention, since the triazine skeleton and the spirobifluorene structure are bonded via a structure larger than that of biphenyl, steric hindrance due to the spirobifluorene structure can be suppressed and the electron transport property is high. In addition, the aromatic compound of the present invention has a biphenyl group to which the spirobifluorene structure represented by formula (4) is bonded at the meta position, and thus has high solubility. Since the compound of the present invention has a large molecular weight and at least one spirobifluorene structure, it has excellent resistance to alcohol solvents after film formation.
 また、本発明の芳香族化合物のフロンティア分子軌道では、LUMO軌道が式(1)で表されるトリアジン構造に局在化しやすく、HOMO軌道が式(3)で表されるスピロビフルオレン構造に局在化しやすく耐久性を向上できる。 In addition, in the frontier molecular orbital of the aromatic compound of the present invention, the LUMO orbital is easily localized in the triazine structure represented by formula (1), and the HOMO orbital is localized in the spirobifluorene structure represented by formula (3). It is easy to be tarnished and the durability can be improved.
 本発明の芳香族化合物を用いて、駆動安定性に優れ、かつ低駆動電圧及び高効率で駆動可能な有機電界発光素子を容易に提供することができる。 Using the aromatic compound of the present invention, it is possible to easily provide an organic electroluminescence device that has excellent driving stability and can be driven at a low driving voltage and with high efficiency.
 本発明の芳香族化合物を含む本発明の有機電界発光素子は、電気化学的安定性に優れ、駆動電圧が低く高効率である。そのため、本発明の有機電界発光素子は、フラットパネル・ディスプレイ(例えば、OAコンピュータ用ディスプレイや壁掛けテレビ)、車載表示素子、携帯電話表示や面発光体としての特徴を生かした光源(例えば、複写機の光源、液晶ディスプレイや計器類のバックライト光源)、表示板、標識灯への応用が考えられ、その技術的価値は大きいものである。 The organic electroluminescent device of the present invention containing the aromatic compound of the present invention has excellent electrochemical stability, low driving voltage and high efficiency. Therefore, the organic electroluminescence device of the present invention can be used as a flat panel display (for example, an OA computer display or a wall-mounted TV), an in-vehicle display device, a mobile phone display, or a light source (for example, a copier (light sources for liquid crystal displays and instruments, backlight sources for instruments), display boards, and indicator lamps, and their technical value is great.
<Ar、Ar
 Ar、Arは、各々独立に、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基を表す。
<Ar 1 , Ar 2 >
Ar 1 and Ar 2 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted monovalent carbon number of 60 or less or an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms represents a group in which a plurality of groups selected from groups are linked;
 1価の炭素数60以下の芳香族炭化水素基の例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、テトラフェニレン環、クリセン環、ピレン環、ベンゾアントラセン環、ペリレン環、ビフェニル環、又はターフェニル環の1価の基が挙げられる。 Examples of monovalent aromatic hydrocarbon groups having 60 or less carbon atoms include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, tetraphenylene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, biphenyl ring, or a monovalent group of a terphenyl ring.
 1価の炭素数60以下のヘテロ芳香族基の例としてはフラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、又はアズレン環の1価の基が挙げられる。 Examples of monovalent heteroaromatic groups having 60 or less carbon atoms include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring , pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, perimidine ring, quinazoline ring, quinazolinone ring, or azulene ring.
 化合物の溶解性、耐久性の観点から、フェニル基、フェニル基が複数連結した基、又はナフチル基であることが好ましく、フェニル基、又はフェニル基が複数連結した基がより好ましい。 From the viewpoint of solubility and durability of the compound, it is preferably a phenyl group, a group in which a plurality of phenyl groups are linked, or a naphthyl group, and more preferably a phenyl group or a group in which a plurality of phenyl groups are linked.
<L、L、L
 L、L、Lは、各々独立に、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基を表す。
<L 1 , L 2 , L 3 >
L 1 , L 2 and L 3 are each independently an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent carbon A heteroaromatic group having a number of 60 or less, or an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms and an optionally substituted divalent carbon number of 60 or less represents a group in which a plurality of groups selected from heteroaromatic groups are linked.
 2価の炭素数60以下の芳香族炭化水素基の例としては、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環の2価の基が挙げられる。 Examples of divalent aromatic hydrocarbon groups having 60 or less carbon atoms include divalent benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring. group.
 2価の炭素数60以下のヘテロ芳香族基の例としてはフラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、又はアズレン環の2価の基が挙げられる。 Examples of divalent heteroaromatic groups having 60 or less carbon atoms include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrroloimidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring , pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, cinnoline ring, quinoxaline ring, perimidine ring, quinazoline ring, quinazolinone ring or azulene ring.
 化合物の溶解性、耐久性の観点から、フェニル基、フェニル基が複数連結した基、又はナフチル基であることが好ましく、フェニル基、又はフェニル基が複数連結した基がより好ましい。これらのうち、1,3-フェニレン基又は1,4-フェニレン基がさらに好ましい。 From the viewpoint of solubility and durability of the compound, it is preferably a phenyl group, a group in which a plurality of phenyl groups are linked, or a naphthyl group, and more preferably a phenyl group or a group in which a plurality of phenyl groups are linked. Among these, a 1,3-phenylene group or a 1,4-phenylene group is more preferable.
<a~a
 aは0~5の整数を表し、a及びaは、各々独立に、1~5の整数を表す。化合物の溶解性及び、耐久性の観点から、a及びaは3以下が好ましく、2以下がさらに好ましく、1が特に好ましく、aは4以下が好ましく、3以下がさらに好ましい。
<a1 to a3>
a 1 represents an integer of 0 to 5, and a 2 and a 3 each independently represent an integer of 1 to 5; From the viewpoint of solubility and durability of the compound, a1 and a3 are preferably 3 or less, more preferably 2 or less, particularly preferably 1, and a2 is preferably 4 or less, further preferably 3 or less.
 a~aが2以上の場合、複数のL~Lは同一であっても異なってもよい。 When a 1 to a 3 are 2 or more, a plurality of L 1 to L 3 may be the same or different.
<(La1、(La2、(La3
 (La1、(La2、(La3の少なくとも一つは、化合物の溶解性及び耐久性の観点から、下記式(11)で表される部分構造、下記式(12)で表される部分構造、及び下記式(13)で表される部分構造から選択される少なくとも一つの部分構造を有することが好ましい。
<(L 1 ) a1 , (L 2 ) a2 , (L 3 ) a3 >
At least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 is a partial structure represented by the following formula (11), a partial structure represented by the following formula (12), from the viewpoint of compound solubility and durability. ) and at least one partial structure selected from the partial structure represented by the following formula (13).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式(11)~式(13)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。以降の記載においても、特に断りの無い限り*の定義は同様である。 In each of the above formulas (11) to (13), * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure. In the following description, the definition of * is the same unless otherwise specified.
 より好ましくは、(La1、(La2、(La3の少なくとも一つは、少なくとも式(11)で表される部分構造又は式(12)で表される部分構造を有する。
 さらに好ましくは、(La1、(La2、(La3がそれぞれ、少なくとも式(11)で表される部分構造又は式(12)で表される部分構造を有する。
 特に好ましくは、(La2が、式(11)で表される部分構造及び式(12)で表される部分構造を有する。
More preferably, at least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 has at least the partial structure represented by formula (11) or the partial structure represented by formula (12). have.
More preferably, each of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 has at least the partial structure represented by formula (11) or the partial structure represented by formula (12).
Particularly preferably, (L 2 ) a2 has a partial structure represented by formula (11) and a partial structure represented by formula (12).
 式(12)として好ましくは、下記式(12-2)である。 Formula (12) is preferably the following formula (12-2).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(12)としてよりさらに好ましくは、下記式(12-3)である。 Formula (12) is more preferably formula (12-3) below.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 また、式(11)で表される部分構造及び式(12)で表される部分構造を有する場合としては、式(11)で表される部分構造及び式(12)で表される部分構造から選択される構造を複数含む構造である、下記式(14)~下記式(18)から選択される少なくとも一つの部分構造を有することがさらに好ましい。 Further, in the case of having the partial structure represented by formula (11) and the partial structure represented by formula (12), the partial structure represented by formula (11) and the partial structure represented by formula (12) It is more preferable to have at least one partial structure selected from the following formulas (14) to (18), which is a structure containing a plurality of structures selected from:
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 式(11)で表される部分構造及び式(12)で表される部分構造から選択される構造を複数含む構造とは、例えば式(14)は、下記式(14a)の様に、式(11)で表される部分構造を1つと、式(12)で表される部分構造を2つ有する部分構造である。 The structure containing a plurality of structures selected from the partial structure represented by the formula (11) and the partial structure represented by the formula (12) is, for example, the formula (14), such as the following formula (14a), the formula It is a partial structure having one partial structure represented by (11) and two partial structures represented by formula (12).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 また、さらに好ましくは、(La1、(La2、(La3の少なくとも一つは、少なくとも式(14)で表される部分構造又は式(15)で表される部分構造を有する。 Still more preferably, at least one of (L 1 ) a1 , (L 2 ) a2 and (L 3 ) a3 is at least the partial structure represented by formula (14) or the moiety represented by formula (15) have a structure.
 式(14)として好ましくは、下記式(14-2)である。 Formula (14) is preferably the following formula (14-2).
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 式(14)としてさらに好ましくは、下記式(14-3)である。 Formula (14) is more preferably formula (14-3) below.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 式(15)として好ましくは、下記式(15-2)である。 Formula (15) is preferably the following formula (15-2).
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
 式(15)としてさらに好ましくは、下記式(15-3)である。 Formula (15) is more preferably formula (15-3) below.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 式(17)として好ましくは、下記式(17-2)である。 Formula (17) is preferably the following formula (17-2).
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 式(18)として好ましくは、下記式(18-2)である。 Formula (18) is preferably the following formula (18-2).
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 また、式(13)で表される部分構造を含む構造として、下記式(19)で表される部分構造又は下記式(20)で表される部分構造を有することがより好ましい。 Further, it is more preferable to have a partial structure represented by the following formula (19) or a partial structure represented by the following formula (20) as the structure containing the partial structure represented by the formula (13).
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式(14)~式(20)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。 In each of the above formulas (14) to (20), * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure.
 式(14)~式(20)の中で、式(14-3)及び式(15-3)が好ましく、式(14-3)がさらに好ましい。 Among formulas (14) to (20), formulas (14-3) and (15-3) are preferred, and formula (14-3) is more preferred.
<置換基>
 Ar~Ar、L~Lが有していてもよい置換基としては、置換基群Zの中から選択することができる。
<Substituent>
The substituents that Ar 1 to Ar 2 and L 1 to L 3 may have may be selected from the substituent group Z.
[置換基群Z]
 置換基群Zとしては、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、アラルキル基、芳香族炭化水素基、又はヘテロ芳香族基が挙げられる。
[Substituent group Z]
Substituent group Z includes an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, an arylthio group, a silyl group, a siloxy group, and a cyano group. , an aralkyl group, an aromatic hydrocarbon group, or a heteroaromatic group.
 アルキル基としては、例えば、メチル基、エチル基、分岐、直鎖又は環状のプロピル基、分岐、直鎖又は環状のブチル基、分岐、直鎖又は環状のペンチル基、分岐、直鎖又は環状のヘキシル基、分岐、直鎖又は環状のオクチル基、分岐、直鎖又は環状のノニル基、分岐、直鎖又は環状のドデシル基等の、炭素数が通常1以上、好ましくは4以上であり、通常24以下、好ましくは10以下である、直鎖、分岐、又は環状のアルキル基が挙げられる。化合物の安定性の観点から、メチル基、エチル基、分岐、直鎖又は環状のプロピル基、分岐、直鎖又は環状のブチル基が好ましく、特に好ましくは分岐状のプロピル基である。 The alkyl group includes, for example, a methyl group, an ethyl group, a branched, straight-chain or cyclic propyl group, a branched, straight-chain or cyclic butyl group, a branched, straight-chain or cyclic pentyl group, a branched, straight-chain or cyclic A hexyl group, a branched, straight-chain or cyclic octyl group, a branched, straight-chain or cyclic nonyl group, a branched, straight-chain or cyclic dodecyl group, etc., usually having 1 or more carbon atoms, preferably 4 or more, and usually Linear, branched or cyclic alkyl groups with 24 or less, preferably 10 or less are mentioned. From the viewpoint of compound stability, a methyl group, an ethyl group, a branched, linear or cyclic propyl group, and a branched, linear or cyclic butyl group are preferred, and a branched propyl group is particularly preferred.
 アルケニル基としては、例えば、ビニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルケニル基が挙げられる。 Examples of alkenyl groups include alkenyl groups having usually 2 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as vinyl groups.
 アルキニル基としては、例えば、エチニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルキニル基が挙げられる。 Examples of alkynyl groups include alkynyl groups having usually 2 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as ethynyl groups.
 アルコキシ基としては、例えば、メトキシ基、エトキシ基等の、炭素数が通常1以上であり、通常24以下、好ましくは12以下であるアルコキシ基が挙げられる。 Examples of alkoxy groups include alkoxy groups having usually 1 or more carbon atoms and usually 24 or less, preferably 12 or less carbon atoms such as methoxy and ethoxy groups.
 アリールオキシ基としては、例えば、フェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が通常4以上、好ましくは5以上であり、通常36以下、好ましくは24以下であるアリールオキシ基若しくはヘテロアリールオキシ基が挙げられる。 The aryloxy group includes, for example, an aryloxy group or heteroaryl having usually 4 or more, preferably 5 or more carbon atoms and usually 36 or less, preferably 24 or less, such as phenoxy group, naphthoxy group, pyridyloxy group, etc. An oxy group can be mentioned.
 アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアルコキシカルボニル基が挙げられる。 The alkoxycarbonyl group includes, for example, an alkoxycarbonyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methoxycarbonyl group and an ethoxycarbonyl group.
 アシル基としては、例えば、アセチル基、ベンゾイル基等の、炭素数が通常2以上であり、通常24以下、好ましくは12以下であるアシル基が挙げられる。 The acyl group includes, for example, an acyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as an acetyl group and a benzoyl group.
 ハロゲン原子としては、例えば、フッ素原子、塩素原子等のハロゲン原子が挙げられる。 Examples of halogen atoms include halogen atoms such as fluorine atoms and chlorine atoms.
 ハロアルキル基としては、例えば、トリフルオロメチル基等の、炭素数が通常1以上であり、通常12以下、好ましくは6以下のハロアルキル基が挙げられる。 The haloalkyl group includes, for example, a haloalkyl group having usually 1 or more carbon atoms, usually 12 or less, preferably 6 or less, such as a trifluoromethyl group.
 アルキルチオ基としては、例えば、メチルチオ基、エチルチオ基等の、炭素数が通常1以上であり、通常24以下、好ましくは12以下のアルキルチオ基が挙げられる。 The alkylthio group includes, for example, an alkylthio group having usually 1 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methylthio group or an ethylthio group.
 アリールチオ基としては、例えば、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が通常4以上、好ましくは5以上であり、通常36以下、好ましくは24以下であるアリールチオ基が挙げられる。 Examples of the arylthio group include arylthio groups having usually 4 or more, preferably 5 or more carbon atoms and usually 36 or less, preferably 24 or less carbon atoms such as phenylthio, naphthylthio, and pyridylthio groups.
 シリル基としては、例えば、トリメチルシリル基、トリフェニルシリル基等の、炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシリル基が挙げられる。 The silyl group includes, for example, a silyl group having usually 2 or more, preferably 3 or more carbon atoms, and usually 36 or less, preferably 24 or less carbon atoms such as trimethylsilyl group and triphenylsilyl group.
 シロキシ基としては、例えば、トリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が通常2以上、好ましくは3以上であり、通常36以下、好ましくは24以下であるシロキシ基が挙げられる。 Siloxy groups include, for example, siloxy groups having usually 2 or more, preferably 3 or more carbon atoms and usually 36 or less, preferably 24 or less carbon atoms such as trimethylsiloxy and triphenylsiloxy groups.
 アラルキル基としては、例えば、ベンジル基、2-フェニルエチル基、2-フェニルプロピル-2-イル基、2-フェニルブチル-2-イル基、3-フェニルペンチル-3-イル基、3-フェニル-1-プロピル基、4-フェニル-1-ブチル基、5-フェニル-1-ペンチル基、6-フェニル-1-ヘキシル基、7-フェニル-1-ヘプチル基、8-フェニル-1-オクチル基等の、炭素数が通常7以上、好ましくは9以上であり、通常30以下、好ましくは18以下、さらに好ましくは10以下であるアラルキル基が挙げられる。 Examples of aralkyl groups include benzyl, 2-phenylethyl, 2-phenylpropyl-2-yl, 2-phenylbutyl-2-yl, 3-phenylpentyl-3-yl, 3-phenyl- 1-propyl group, 4-phenyl-1-butyl group, 5-phenyl-1-pentyl group, 6-phenyl-1-hexyl group, 7-phenyl-1-heptyl group, 8-phenyl-1-octyl group, etc. and an aralkyl group having usually 7 or more, preferably 9 or more carbon atoms and usually 30 or less, preferably 18 or less, more preferably 10 or less carbon atoms.
 芳香族炭化水素基としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは10以下である芳香族炭化水素基が挙げられる。 Examples of the aromatic hydrocarbon group include, for example, benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, or perylene ring. An aromatic hydrocarbon group having a number of 30 or less, preferably 18 or less, more preferably 10 or less can be mentioned.
 ヘテロ芳香族基としては、例えば、フラン環、ベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、ジベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シンノリン環、キノキサリン環、ペリミジン環、キナゾリン環、キナゾリノン環、又はアズレン環等の、炭素数が通常4以上、通常30以下、好ましくは18以下、さらに好ましくは12以下であるヘテロ芳香族基が挙げられる。 Examples of heteroaromatic groups include furan ring, benzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, dibenzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, indole ring, carbazole ring, pyrrolo imidazole ring, pyrrolopyrazole ring, pyrrolopyrrole ring, thienopyrrole ring, thienothiophene ring, furopyrrole ring, furofuran ring, thienofuran ring, benzisoxazole ring, benzisothiazole ring, benzimidazole ring, pyridine ring, pyrazine ring, pyridazine ring, A pyrimidine ring, a triazine ring, a quinoline ring, an isoquinoline ring, a cinnoline ring, a quinoxaline ring, a perimidine ring, a quinazoline ring, a quinazolinone ring, or an azulene ring having usually 4 or more carbon atoms, usually 30 or less, preferably 18 or less, and further Heteroaromatic groups, preferably 12 or less, are mentioned.
 上記置換基群Zの中でも、好ましくは、アルキル基、アルコキシ基、アラルキル基、芳香族炭化水素基であり、より好ましくは、炭素数10以下のアルキル基、炭素数30以下のアラルキル基、炭素数30以下の芳香族炭化水素基であり、さらに好ましくは、炭素数30以下の芳香族炭化水素基であり、特に好ましくは、置換基を有さないことである。 Among the substituent group Z, an alkyl group, an alkoxy group, an aralkyl group and an aromatic hydrocarbon group are preferable, and an alkyl group having 10 or less carbon atoms, an aralkyl group having 30 or less carbon atoms, and an aralkyl group having 30 or less carbon atoms are more preferable. It is an aromatic hydrocarbon group of 30 or less, more preferably an aromatic hydrocarbon group of 30 or less carbon atoms, and particularly preferably having no substituent.
 また、上記置換基群Zの各置換基は更に置換基を有していてもよい。それらの更なる置換基としては、上記置換基(置換基群Z)と同じのものを用いることができる。上記置換基群Zの置換基は、電荷輸送性の観点からは、さらなる置換基を有さないことが好ましい。 Further, each substituent in the substituent group Z may further have a substituent. As such additional substituents, the same substituents as those described above (substituent group Z) can be used. From the viewpoint of charge transport properties, the substituents in the substituent group Z preferably have no further substituents.
<分子量>
 本発明の芳香族化合物の分子量は、1000以上が好ましく、さらに好ましくは1100以上であり、最も好ましくは1200以上であり、5000以下が好ましく、さらに好ましくは4000以下であり、特に好ましくは3000以下であり、最も好ましくは2000以下である。
<Molecular weight>
The molecular weight of the aromatic compound of the present invention is preferably 1,000 or more, more preferably 1,100 or more, most preferably 1,200 or more, and preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Yes, and most preferably 2000 or less.
<具体例>
 以下に、本発明の芳香族化合物の具体例を示すが、本発明はこれらに限定されるものではない。
<Specific example>
Specific examples of the aromatic compound of the invention are shown below, but the invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
<芳香族化合物の製造方法>
 本発明の芳香族化合物は、例えば、実施例に記載する方法に準じて製造できる。
<Method for producing aromatic compound>
The aromatic compound of the present invention can be produced, for example, according to the method described in Examples.
[芳香族化合物の用途]
 本発明の芳香族化合物は、有機電界発光素子用材料として、有機電界発光素子の有機層に用いることが好ましく、有機層としては発光層であることが好ましい。有機電界発光素子は、例えば、基板上に、陽極及び陰極を有し、陽極と陰極の間に有機層を有することができる。本発明の芳香族化合物を発光層に用いる場合は発光層のホスト材料として用いることが好ましい。
[Uses of aromatic compounds]
The aromatic compound of the present invention is preferably used as an organic electroluminescent element material for an organic layer of an organic electroluminescent element, and the organic layer is preferably a light-emitting layer. An organic electroluminescent device can have, for example, an anode and a cathode on a substrate, and an organic layer between the anode and the cathode. When the aromatic compound of the present invention is used in the light-emitting layer, it is preferably used as a host material for the light-emitting layer.
 本発明の芳香族化合物を含む有機層は蒸着法で形成してもよいし、湿式成膜法で形成してもよい。 The organic layer containing the aromatic compound of the present invention may be formed by a vapor deposition method or by a wet film formation method.
 本明細書において、本発明の芳香族化合物を有機電界発光素子の有機層に用いる場合、本発明の芳香族化合物を有機電界発光素子用材料とも称する。 In this specification, when the aromatic compound of the present invention is used in the organic layer of an organic electroluminescent device, the aromatic compound of the present invention is also referred to as a material for organic electroluminescent devices.
[組成物]
 本発明の芳香族化合物を含む有機層を湿式成膜法にて成膜する場合、少なくとも、前記式(1)で表される芳香族化合物及び溶剤(以下、「有機溶媒」と称す場合がある。)を含む組成物を湿式成膜する。すなわち、本発明の組成物は、少なくとも前記式(1)で表される芳香族化合物及び有機溶媒を含む。
[Composition]
When the organic layer containing the aromatic compound of the present invention is formed by a wet film formation method, at least the aromatic compound represented by the formula (1) and a solvent (hereinafter sometimes referred to as "organic solvent" ) is wet film-formed. That is, the composition of the present invention contains at least the aromatic compound represented by formula (1) and an organic solvent.
 本発明の組成物は、有機電界発光素子を形成するための有機電界発光素子用組成物として好適に用いられる。 The composition of the present invention is suitably used as a composition for organic electroluminescent elements for forming organic electroluminescent elements.
 本発明の組成物はさらに、発光材料を含むことが好ましく、有機電界発光素子の発光層形成用組成物として好適に用いられる。発光材料としては、燐光発光材料が好ましい。 The composition of the present invention preferably further contains a luminescent material, and is suitably used as a composition for forming a luminescent layer of an organic electroluminescent device. As the luminescent material, a phosphorescent luminescent material is preferable.
 本発明の組成物はさらに、発光材料及び電荷輸送材料を含むことが好ましく、有機電界発光素子の発光層形成用組成物として好適に用いられる。発光材料としては、燐光発光材料が好ましい。 The composition of the present invention preferably further contains a light-emitting material and a charge-transporting material, and is suitably used as a composition for forming a light-emitting layer of an organic electroluminescence device. As the luminescent material, a phosphorescent luminescent material is preferable.
<有機溶剤>
 本発明の組成物に含有される有機溶媒は、湿式成膜により本発明の芳香族化合物を含む層を形成するために用いる、揮発性を有する液体成分である。
<Organic solvent>
The organic solvent contained in the composition of the present invention is a volatile liquid component used for forming the layer containing the aromatic compound of the present invention by wet film formation.
 該有機溶媒は、溶質である本発明の芳香族化合物及び後述の発光材料が良好に溶解する有機溶媒であれば特に限定されない。 The organic solvent is not particularly limited as long as it is an organic solvent in which the aromatic compound of the present invention, which is the solute, and the luminescent material described later are well dissolved.
 好ましい有機溶媒としては、例えば、n-デカン、シクロヘキサン、エチルシクロヘキサン、デカリン、ビシクロヘキサン等のアルカン類;トルエン、キシレン、メシチレン、フェニルシクロヘキサン、テトラリン、メチルナフタレン等の芳香族炭化水素類;クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等のハロゲン化芳香族炭化水素類;1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール、ジフェニルエーテル等の芳香族エーテル類;酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル類;シクロヘキサノン、シクロオクタノン、フェンコン等の脂環族ケトン類;シクロヘキサノール、シクロオクタノール等の脂環族アルコール類;メチルエチルケトン、ジブチルケトン等の脂肪族ケトン類;ブタノール、ヘキサノール等の脂肪族アルコール類;エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル類;等が挙げられる。 Preferred organic solvents include, for example, alkanes such as n-decane, cyclohexane, ethylcyclohexane, decalin and bicyclohexane; aromatic hydrocarbons such as toluene, xylene, mesitylene, phenylcyclohexane, tetralin and methylnaphthalene; Halogenated aromatic hydrocarbons such as chlorobenzene and trichlorobenzene; 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, anisole, phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3 - aromatic ethers such as dimethylanisole, 2,4-dimethylanisole and diphenyl ether; aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate and n-butyl benzoate; Alicyclic ketones such as cyclohexanone, cyclooctanone and fenchone; Alicyclic alcohols such as cyclohexanol and cyclooctanol; Aliphatic ketones such as methyl ethyl ketone and dibutyl ketone; Aliphatic alcohols such as butanol and hexanol; aliphatic ethers such as glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA);
 これらの中でも、粘度と沸点の観点から、アルカン類、芳香族炭化水素類、芳香族エーテル類、芳香族エステル類が好ましく、芳香族炭化水素類、芳香族エーテル類及び芳香族エステル類がさらに好ましく、芳香族炭化水素類及び芳香族エステル類が特に好ましい。 Among these, from the viewpoint of viscosity and boiling point, alkanes, aromatic hydrocarbons, aromatic ethers, and aromatic esters are preferred, and aromatic hydrocarbons, aromatic ethers, and aromatic esters are more preferred. , aromatic hydrocarbons and aromatic esters are particularly preferred.
 これらの有機溶媒は1種類を単独で用いてもよく、また2種類以上を任意の組み合わせ、及び比率で用いてもよい。 One type of these organic solvents may be used alone, or two or more types may be used in any combination and ratio.
 用いる有機溶媒の沸点は通常80℃以上、好ましくは100℃以上、より好ましくは120℃以上、また、通常380℃以下、好ましくは350℃以下、より好ましくは330℃以下である。有機溶媒の沸点がこの範囲を下回ると、湿式成膜時において、組成物からの溶媒蒸発により、成膜安定性が低下する可能性がある。有機溶媒の沸点がこの範囲を上回ると、湿式成膜時において、成膜後の溶媒残留により、成膜安定性が低下する可能性がある。 The boiling point of the organic solvent used is usually 80°C or higher, preferably 100°C or higher, more preferably 120°C or higher, and usually 380°C or lower, preferably 350°C or lower, more preferably 330°C or lower. If the boiling point of the organic solvent is below this range, the film formation stability may decrease due to evaporation of the solvent from the composition during wet film formation. If the boiling point of the organic solvent exceeds this range, there is a possibility that the film formation stability will decrease due to the residual solvent after film formation during wet film formation.
 特に、上記有機溶媒のうち、沸点が150℃以上の有機溶媒を2種以上と組み合わせることにより、均一な塗布膜を作製することができる。沸点150℃以上の有機溶媒が1つ以下であると、塗布時に均一な膜が形成されない場合があると考えられる。 In particular, by combining two or more organic solvents having a boiling point of 150° C. or higher among the above organic solvents, a uniform coating film can be produced. If the number of organic solvents having a boiling point of 150° C. or higher is less than one, it is considered that a uniform film may not be formed during coating.
<発光材料>
 本発明の組成物は発光層形成用組成物であることが好ましく、この場合、更に発光材料を含有することが好ましい。発光材料とは、本発明の有機電界発光素子用組成物において、主として発光する成分を指し、有機電界発光デバイスにおけるドーパント成分に当たる。
<Luminescent material>
The composition of the present invention is preferably a composition for forming a light-emitting layer, and in this case, it preferably further contains a light-emitting material. A luminescent material refers to a component that mainly emits light in the composition for an organic electroluminescent element of the present invention, and corresponds to a dopant component in an organic electroluminescent device.
 発光材料としては、公知材料を適用可能であり、蛍光発光材料或いは燐光発光材料を単独若しくは複数を混合して使用できるが、内部量子効率の観点から、好ましくは、燐光発光材料である。 As the light-emitting material, a known material can be applied, and a fluorescent light-emitting material or a phosphorescent light-emitting material can be used singly or in combination, but from the viewpoint of internal quantum efficiency, phosphorescent light-emitting materials are preferable.
(燐光発光材料)
 燐光発光材料とは、励起三重項状態から発光を示す材料をいう。例えば、Ir、Pt、Euなどを有する金属錯体化合物がその代表例であり、材料の構造として、金属錯体を含むものが好ましい。
(Phosphorescent material)
A phosphorescent material is a material that emits light from an excited triplet state. For example, metal complex compounds containing Ir, Pt, Eu, etc. are typical examples, and materials containing metal complexes are preferable as the structure of the material.
 金属錯体の中でも、三重項状態を経由して発光する燐光発光性有機金属錯体として、長周期型周期表(以下、特に断り書きの無い限り「周期表」という場合には、長周期型周期表を指すものとする。)第7~11族から選ばれる金属を中心金属として含むウェルナー型錯体又は有機金属錯体化合物が挙げられる。このような燐光発光材料としては、下記式(201)で表わされる化合物、又は後述の式(205)で表わされる化合物が好ましく、より好ましくは下記式(201)で表わされる化合物である。 Among metal complexes, the long-period periodic table (unless otherwise specified, the long-period periodic table ) include Werner-type complexes or organometallic complex compounds containing a metal selected from Groups 7 to 11 as a central metal. As such a phosphorescent material, a compound represented by the following formula (201) or a compound represented by the following formula (205) is preferable, and a compound represented by the following formula (201) is more preferable.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
 Mは、周期表第7~11族から選ばれる金属であり、例えば、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金、金、ユウロピウムが挙げられる。 M is a metal selected from Groups 7 to 11 of the periodic table, such as ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum, gold, and europium.
 環A1は置換基を有していてもよい芳香族炭化水素環構造又は置換基を有していてもよい芳香族複素環構造を表す。 Ring A1 represents an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
 環A2は置換基を有していてもよい芳香族複素環構造を表す。 Ring A2 represents an aromatic heterocyclic structure which may have a substituent.
 R201、R202は各々独立に上記式(202)で表わされる構造であり、“*”は環A1又は環A2と結合することを表す。R201、R202は同じであっても異なっていてもよく、R201、R202がそれぞれ複数存在する場合、それらは同じであっても異なっていてもよい。 R 201 and R 202 each independently represent a structure represented by formula (202) above, and "*" represents bonding to ring A1 or ring A2. R 201 and R 202 may be the same or different, and when multiple R 201 and R 202 are present, they may be the same or different.
 Ar201、Ar203は、各々独立に、置換基を有していてもよい芳香族炭化水素環構造、又は置換基を有していてもよい芳香族複素環構造を表す。 Ar 201 and Ar 203 each independently represent an optionally substituted aromatic hydrocarbon ring structure or an optionally substituted aromatic heterocyclic ring structure.
 Ar202は、置換基を有していてもよい芳香族炭化水素環構造、置換基を有していてもよい芳香族複素環構造、又は置換基を有していてもよい脂肪族炭化水素構造を表す。 Ar 202 is an optionally substituted aromatic hydrocarbon ring structure, an optionally substituted aromatic heterocyclic ring structure, or an optionally substituted aliphatic hydrocarbon structure represents
 環A1に結合する置換基同士、環A2に結合する置換基同士、又は環A1に結合する置換基と環A2に結合する置換基同士は、互いに結合して環を形成してもよい。 The substituents bonded to ring A1, the substituents bonded to ring A2, or the substituents bonded to ring A1 and the substituents bonded to ring A2 may be bonded to each other to form a ring.
 B201-L200-B202は、アニオン性の2座配位子を表す。B201及びB202は、それぞれ独立に、炭素原子、酸素原子又は窒素原子を表し、これらの原子は環を構成する原子であってもよい。L200は、単結合、又は、B201及びB202とともに2座配位子を構成する原子団を表す。B201-L200-B202が複数存在する場合、それらは同一でも異なっていてもよい。 B 201 -L 200 -B 202 represents an anionic bidentate ligand. B 201 and B 202 each independently represent a carbon atom, an oxygen atom or a nitrogen atom, and these atoms may be atoms constituting a ring. L 200 represents a single bond or an atomic group forming a bidentate ligand together with B 201 and B 202 . When there are multiple groups of B 201 -L 200 -B 202 , they may be the same or different.
 i1、i2はそれぞれ独立に、0以上12以下の整数を表す。
 i3は、Ar202に置換可能な数を上限とする0以上の整数である。
 jは、Ar201に置換可能な数を上限とする0以上の整数である。
 k1、k2はそれぞれ独立に、環A1、環A2に置換可能な数を上限とする0以上の整数である。
 mは1~3の整数である。
i1 and i2 each independently represent an integer of 0 or more and 12 or less.
i3 is an integer greater than or equal to 0 up to the number that can be substituted for Ar 202 .
j is an integer greater than or equal to 0 up to the number that can be substituted for Ar 201 .
k1 and k2 are each independently an integer of 0 or more, with the upper limit being the number that can be substituted on ring A1 and ring A2.
m is an integer of 1-3.
 環A1における芳香族炭化水素環としては、好ましくは炭素数6~30の芳香族炭化水素環であり、具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましい。 The aromatic hydrocarbon ring for ring A1 is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms, and specifically includes a benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, A fluorene ring is preferred.
 環A1における芳香族複素環としては、ヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環が好ましく、さらに好ましくは、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環である。 The aromatic heterocyclic ring in ring A1 is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing any one of a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom, more preferably a furan ring or a benzofuran ring. , thiophene ring, and benzothiophene ring.
 環A1としてより好ましくは、ベンゼン環、ナフタレン環、フルオレン環であり、特に好ましくはベンゼン環又はフルオレン環であり、最も好ましくはベンゼン環である。 The ring A1 is more preferably a benzene ring, a naphthalene ring or a fluorene ring, particularly preferably a benzene ring or a fluorene ring, most preferably a benzene ring.
 環A2における芳香族複素環としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環であり、
 具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環が挙げられ、
 さらに好ましくは、ピリジン環、ピラジン環、ピリミジン環、イミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、
 より好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環であり、
 最も好ましくは、ピリジン環、イミダゾール環、ベンゾチアゾール環、キノリン環、キノキサリン環、キナゾリン環である。
The aromatic heterocyclic ring in ring A2 is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing either a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom,
Specifically, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, oxazole ring, thiazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, Naphthyridine ring, phenanthridine ring,
More preferred are pyridine ring, pyrazine ring, pyrimidine ring, imidazole ring, benzothiazole ring, benzoxazole ring, quinoline ring, isoquinoline ring, quinoxaline ring and quinazoline ring,
More preferred are pyridine ring, imidazole ring, benzothiazole ring, quinoline ring, isoquinoline ring, quinoxaline ring and quinazoline ring,
Most preferred are pyridine ring, imidazole ring, benzothiazole ring, quinoline ring, quinoxaline ring and quinazoline ring.
 環A1と環A2の好ましい組合せとしては、(環A1-環A2)で表記すると、
 (ベンゼン環-ピリジン環)、(ベンゼン環-キノリン環)、(ベンゼン環-キノキサリン環)、(ベンゼン環-キナゾリン環)、(ベンゼン環-イミダゾール環)、(ベンゼン環-ベンゾチアゾール環)である。
A preferred combination of ring A1 and ring A2 is represented by (ring A1-ring A2),
(benzene ring-pyridine ring), (benzene ring-quinoline ring), (benzene ring-quinoxaline ring), (benzene ring-quinazoline ring), (benzene ring-imidazole ring), (benzene ring-benzothiazole ring) .
 環A1、環A2が有していてもよい置換基は任意に選択できるが、好ましくは後述の置換基群Sから選ばれる1種又は複数種の置換基である。 The substituents that ring A1 and ring A2 may have may be arbitrarily selected, but are preferably one or more substituents selected from the group S of substituents described below.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族炭化水素環構造である場合、
 芳香族炭化水素環構造としては、好ましくは炭素数6~30の芳香族炭化水素環であり、
 具体的には、ベンゼン環、ナフタレン環、アントラセン環、トリフェニリル環、アセナフテン環、フルオランテン環、フルオレン環が好ましく、
 より好ましくは、ベンゼン環、ナフタレン環、フルオレン環が好ましく、
 最も好ましくはベンゼン環である。
When any of Ar 201 , Ar 202 and Ar 203 is an optionally substituted aromatic hydrocarbon ring structure,
The aromatic hydrocarbon ring structure is preferably an aromatic hydrocarbon ring having 6 to 30 carbon atoms,
Specifically, benzene ring, naphthalene ring, anthracene ring, triphenylyl ring, acenaphthene ring, fluoranthene ring, and fluorene ring are preferred.
More preferably, a benzene ring, a naphthalene ring, or a fluorene ring,
A benzene ring is most preferred.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいフルオレン環である場合、フルオレン環の9位及び9’位は、置換基を有するか又は隣接する構造と結合していることが好ましい。 When any of Ar 201 , Ar 202 and Ar 203 is a fluorene ring optionally having a substituent, the 9- and 9′-positions of the fluorene ring have a substituent or are bonded to the adjacent structure. preferably.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいベンゼン環である場合、少なくとも一つのベンゼン環がオルト位又はメタ位で隣接する構造と結合していることが好ましく、少なくとも一つのベンゼン環がメタ位で隣接する構造と結合していることがより好ましい。 When any one of Ar 201 , Ar 202 and Ar 203 is a benzene ring optionally having a substituent, at least one benzene ring is preferably bonded to the adjacent structure at the ortho- or meta-position. , more preferably, at least one benzene ring is attached to the adjacent structure at the meta position.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよい芳香族複素環構造である場合、
 芳香族複素環構造としては、好ましくはヘテロ原子として窒素原子、酸素原子、又は硫黄原子のいずれかを含む、炭素数3~30の芳香族複素環であり、
 具体的には、ピリジン環、ピリミジン環、ピラジン環、トリアジン環、イミダゾール環、オキサゾール環、チアゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、ベンゾイミダゾール環、キノリン環、イソキノリン環、キノキサリン環、キナゾリン環、ナフチリジン環、フェナントリジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環が挙げられ、
 さらに好ましくは、ピリジン環、ピリミジン環、トリアジン環、カルバゾール環、ジベンゾフラン環、ジベンゾチオフェン環である。
When any of Ar 201 , Ar 202 and Ar 203 is an aromatic heterocyclic structure optionally having a substituent,
The aromatic heterocyclic ring structure is preferably an aromatic heterocyclic ring having 3 to 30 carbon atoms containing either a nitrogen atom, an oxygen atom, or a sulfur atom as a heteroatom,
Specifically, pyridine ring, pyrimidine ring, pyrazine ring, triazine ring, imidazole ring, oxazole ring, thiazole ring, benzothiazole ring, benzoxazole ring, benzimidazole ring, quinoline ring, isoquinoline ring, quinoxaline ring, quinazoline ring, naphthyridine ring, phenanthridine ring, carbazole ring, dibenzofuran ring, dibenzothiophene ring,
More preferred are pyridine ring, pyrimidine ring, triazine ring, carbazole ring, dibenzofuran ring and dibenzothiophene ring.
 Ar201、Ar202、Ar203のいずれかが置換基を有していてもよいカルバゾール環である場合、カルバゾール環のN位は、置換基を有するか又は隣接する構造と結合していることが好ましい。 When any of Ar 201 , Ar 202 and Ar 203 is a carbazole ring optionally having a substituent, the N-position of the carbazole ring may have a substituent or be bonded to an adjacent structure. preferable.
 Ar202が置換基を有していてもよい脂肪族炭化水素構造である場合、
 脂肪族炭化水素構造としては、直鎖、分岐鎖、又は環状構造を有する脂肪族炭化水素構造であり、
 好ましくは炭素数が1以上24以下の脂肪族炭化水素であり、
 さらに好ましくは炭素数が1以上12以下の脂肪族炭化水素であり、
 より好ましくは炭素数が1以上8以下の脂肪族炭化水素である。
When Ar 202 is an optionally substituted aliphatic hydrocarbon structure,
The aliphatic hydrocarbon structure is an aliphatic hydrocarbon structure having a linear, branched, or cyclic structure,
preferably an aliphatic hydrocarbon having 1 to 24 carbon atoms,
more preferably aliphatic hydrocarbons having 1 to 12 carbon atoms,
More preferred are aliphatic hydrocarbons having 1 to 8 carbon atoms.
 i1、i2はそれぞれ独立に、好ましくは1~12の整数、さらに好ましくは1~8の整数、より好ましくは1~6の整数である。この範囲であることにより、溶解性向上、電荷輸送性向上が見込まれる。 i1 and i2 are each independently preferably an integer of 1-12, more preferably an integer of 1-8, more preferably an integer of 1-6. Within this range, improved solubility and improved charge transport properties can be expected.
 i3は好ましくは0~5の整数を表し、さらに好ましくは0~2の整数、より好ましくは0又は1である。 i3 preferably represents an integer of 0 to 5, more preferably an integer of 0 to 2, more preferably 0 or 1.
 jは好ましくは0~2の整数を表し、さらに好ましくは0又は1である。 j preferably represents an integer of 0 to 2, more preferably 0 or 1.
 k1、k2は好ましくは0~3の整数を表し、さらに好ましくは1~3の整数であり、より好ましくは1又は2であり、特に好ましくは1である。 k1 and k2 preferably represent integers of 0 to 3, more preferably integers of 1 to 3, more preferably 1 or 2, and particularly preferably 1.
 Ar201、Ar202、Ar203が有していてもよい置換基は任意に選択できるが、好ましくは後述の置換基群Sから選ばれる1種又は複数種の置換基であり、より好ましくは水素原子、アルキル基、アリール基であり、特に好ましくは水素原子、アルキル基、であり、最も好ましくは無置換(水素原子)である。 The substituents that Ar 201 , Ar 202 and Ar 203 may have can be arbitrarily selected, but are preferably one or more substituents selected from the group S of substituents described later, more preferably hydrogen It is an atom, an alkyl group or an aryl group, particularly preferably a hydrogen atom or an alkyl group, most preferably unsubstituted (hydrogen atom).
 特に断りのない場合、置換基としては、次の置換基群Sから選ばれる基が好ましい。 Unless otherwise specified, the substituent is preferably a group selected from the following substituent group S.
<置換基群S>
・アルキル基、好ましくは炭素数1~20のアルキル基、より好ましくは炭素数1~12のアルキル基、さらに好ましくは炭素数1~8のアルキル基、特に好ましくは炭素数1~6のアルキル基。
・アルコキシ基、好ましくは炭素数1~20のアルコキシ基、より好ましくは炭素数1~12のアルコキシ基、さらに好ましくは炭素数1~6のアルコキシ基。
・アリールオキシ基、好ましくは炭素数6~20のアリールオキシ基、より好ましくは炭素数6~14のアリールオキシ基、さらに好ましくは炭素数6~12のアリールオキシ基、特に好ましくは炭素数6のアリールオキシ基。
・ヘテロアリールオキシ基、好ましくは炭素数3~20のヘテロアリールオキシ基、より好ましくは炭素数3~12のヘテロアリールオキシ基。
・アルキルアミノ基、好ましくは炭素数1~20のアルキルアミノ基、より好ましくは炭素数1~12のアルキルアミノ基。
・アリールアミノ基、好ましくは炭素数6~36のアリールアミノ基、より好ましくは炭素数6~24のアリールアミノ基。
・アラルキル基、好ましくは炭素数7~40のアラルキル基、より好ましくは炭素数7~18のアラルキル基、さらに好ましくは炭素数7~12のアラルキル基。
・ヘテロアラルキル基、好ましくは炭素数7~40のヘテロアラルキル基、より好ましくは炭素数7~18のヘテロアラルキル基。
・アルケニル基、好ましくは炭素数2~20のアルケニル基、より好ましくは炭素数2~12のアルケニル基、さらに好ましくは炭素数2~8のアルケニル基、特に好ましくは炭素数2~6のアルケニル基。
・アルキニル基、好ましくは炭素数2~20のアルキニル基、より好ましくは炭素数2~12のアルキニル基。
・アリール基、好ましくは炭素数6~30のアリール基、より好ましくは炭素数6~24のアリール基、さらに好ましくは炭素数6~18のアリール基、特に好ましくは炭素数6~14のアリール基。
・ヘテロアリール基、好ましくは炭素数3~30のヘテロアリール基、より好ましくは炭素数3~24のヘテロアリール基、さらに好ましくは炭素数3~18のヘテロアリール基、特に好ましくは炭素数3~14のヘテロアリール基。
・アルキルシリル基、好ましくはアルキル基の炭素数が1~20であるアルキルシリル基、より好ましくはアルキル基の炭素数が1~12であるアルキルシリル基。
・アリールシリル基、好ましくはアリール基の炭素数が6~20であるアリールシリル基、より好ましくはアリール基の炭素数が6~14であるアリールシリル基。
・アルキルカルボニル基、好ましくは炭素数2~20のアルキルカルボニル基。
・アリールカルボニル基、好ましくは炭素数7~20のアリールカルボニル基。
・水素原子、重水素原子、フッ素原子、シアノ基、又は、-SF
<Substituent group S>
- an alkyl group, preferably an alkyl group having 1 to 20 carbon atoms, more preferably an alkyl group having 1 to 12 carbon atoms, more preferably an alkyl group having 1 to 8 carbon atoms, particularly preferably an alkyl group having 1 to 6 carbon atoms .
- An alkoxy group, preferably an alkoxy group having 1 to 20 carbon atoms, more preferably an alkoxy group having 1 to 12 carbon atoms, and still more preferably an alkoxy group having 1 to 6 carbon atoms.
- an aryloxy group, preferably an aryloxy group having 6 to 20 carbon atoms, more preferably an aryloxy group having 6 to 14 carbon atoms, still more preferably an aryloxy group having 6 to 12 carbon atoms, particularly preferably an aryloxy group having 6 carbon atoms; aryloxy group.
- A heteroaryloxy group, preferably a heteroaryloxy group having 3 to 20 carbon atoms, more preferably a heteroaryloxy group having 3 to 12 carbon atoms.
- an alkylamino group, preferably an alkylamino group having 1 to 20 carbon atoms, more preferably an alkylamino group having 1 to 12 carbon atoms;
- An arylamino group, preferably an arylamino group having 6 to 36 carbon atoms, more preferably an arylamino group having 6 to 24 carbon atoms.
- An aralkyl group, preferably an aralkyl group having 7 to 40 carbon atoms, more preferably an aralkyl group having 7 to 18 carbon atoms, and still more preferably an aralkyl group having 7 to 12 carbon atoms.
- A heteroaralkyl group, preferably a heteroaralkyl group having 7 to 40 carbon atoms, more preferably a heteroaralkyl group having 7 to 18 carbon atoms.
- an alkenyl group, preferably an alkenyl group having 2 to 20 carbon atoms, more preferably an alkenyl group having 2 to 12 carbon atoms, still more preferably an alkenyl group having 2 to 8 carbon atoms, particularly preferably an alkenyl group having 2 to 6 carbon atoms .
- An alkynyl group, preferably an alkynyl group having 2 to 20 carbon atoms, more preferably an alkynyl group having 2 to 12 carbon atoms.
- an aryl group, preferably an aryl group having 6 to 30 carbon atoms, more preferably an aryl group having 6 to 24 carbon atoms, still more preferably an aryl group having 6 to 18 carbon atoms, particularly preferably an aryl group having 6 to 14 carbon atoms .
- a heteroaryl group, preferably a heteroaryl group having 3 to 30 carbon atoms, more preferably a heteroaryl group having 3 to 24 carbon atoms, still more preferably a heteroaryl group having 3 to 18 carbon atoms, particularly preferably 3 to 3 carbon atoms 14 heteroaryl groups.
An alkylsilyl group, preferably an alkylsilyl group having 1 to 20 carbon atoms, more preferably an alkylsilyl group having 1 to 12 carbon atoms.
- An arylsilyl group, preferably an arylsilyl group in which the aryl group has 6 to 20 carbon atoms, more preferably an arylsilyl group in which the aryl group has 6 to 14 carbon atoms.
- an alkylcarbonyl group, preferably an alkylcarbonyl group having 2 to 20 carbon atoms;
- an arylcarbonyl group, preferably an arylcarbonyl group having 7 to 20 carbon atoms;
- A hydrogen atom, a deuterium atom, a fluorine atom, a cyano group, or -SF 5 .
 以上の基は一つ以上の水素原子がフッ素原子で置き換えられているか、若しくは1つ以上の水素原子が重水素原子で置き換えらえられていてもよい。 In the above groups, one or more hydrogen atoms may be replaced with fluorine atoms, or one or more hydrogen atoms may be replaced with deuterium atoms.
 特に断りのない限り、アリールは芳香族炭化水素であり、ヘテロアリールは芳香族複素環である。 Unless otherwise specified, aryl is an aromatic hydrocarbon and heteroaryl is an aromatic heterocycle.
(置換基群Sの中の好ましい基)
 これら置換基群Sのうち、
 好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基、これらの基の一つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は、-SFであり、
 より好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、これらの基の一つ以上の水素原子がフッ素原子で置き換えられている基、フッ素原子、シアノ基、又は、-SFであり、
 さらに好ましくは、アルキル基、アルコキシ基、アリールオキシ基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基、アルキルシリル基、アリールシリル基であり、
 特に好ましくはアルキル基、アリールアミノ基、アラルキル基、アルケニル基、アリール基、ヘテロアリール基であり、
 最も好ましくはアルキル基、アリールアミノ基、アラルキル基、アリール基、ヘテロアリール基である。
(Preferred Group in Substituent Group S)
Among these substituent group S,
Preferably, an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group, and at least one hydrogen atom of these groups is fluorine. a group substituted with an atom, a fluorine atom, a cyano group, or -SF5 ,
More preferably, an alkyl group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, a group in which one or more hydrogen atoms of these groups are replaced with a fluorine atom, a fluorine atom, a cyano group, or , −SF 5 , and
more preferably an alkyl group, an alkoxy group, an aryloxy group, an arylamino group, an aralkyl group, an alkenyl group, an aryl group, a heteroaryl group, an alkylsilyl group, an arylsilyl group,
Particularly preferred are alkyl groups, arylamino groups, aralkyl groups, alkenyl groups, aryl groups and heteroaryl groups,
Most preferred are alkyl groups, arylamino groups, aralkyl groups, aryl groups and heteroaryl groups.
 これら置換基群Sは、さらに置換基群Sから選ばれる置換基を置換基として有していてもよい。有していてもよい置換基の好ましい基、より好ましい基、さらに好ましい基、特に好ましい基、最も好ましい基は置換基群Sの中の好ましい基等と同様である。 These substituent group S may further have a substituent selected from the substituent group S as a substituent. Preferred groups, more preferred groups, further preferred groups, particularly preferred groups, and most preferred groups of the substituents which may be present are the same as the preferred groups in Substituent Group S and the like.
(式(201)の好ましい構造)
 前記式(201)中の前記式(202)で表される構造のなかでも、ベンゼン環が連結した基を有する構造、環A1又は環A2に、アルキル基若しくはアラルキル基が結合した芳香族炭化水素基若しくは芳香族複素環基を有する構造、環A1又は環A2に、デンドロンが結合した構造が好ましい。
(preferred structure of formula (201))
Among the structures represented by the above formula (202) in the above formula (201), a structure having a group to which a benzene ring is linked, an aromatic hydrocarbon in which an alkyl group or an aralkyl group is bonded to ring A1 or ring A2 A structure having a group or an aromatic heterocyclic group, and a structure in which a dendron is bonded to ring A1 or ring A2 are preferable.
 ベンゼン環が連結した基を有する構造においては、
 Ar201がベンゼン環構造であり、i1が1~6であり、少なくとも一つの前記ベンゼン環がオルト位又はメタ位で隣接する構造と結合している。
 この構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
In a structure having a group to which a benzene ring is linked,
Ar 201 is a benzene ring structure, i1 is 1 to 6, and at least one of the benzene rings is bonded to the adjacent structure at the ortho- or meta-position.
This structure is expected to improve the solubility and the charge transport property.
 環A1又は環A2に、アルキル基若しくはアラルキル基が結合した芳香族炭化水素基若しくは芳香族複素環基を有する構造においては、
 Ar201が芳香族炭化水素構造又は芳香族複素環構造であり、i1が1~6であり、
 Ar202が脂肪族炭化水素構造であり、i2が1~12であり、好ましくは3~8であり、
 Ar203がベンゼン環構造であり、i3が0又は1である。
 この構造の場合、好ましくは、Ar201は前記芳香族炭化水素構造であり、さらに好ましくはベンゼン環が1~5連結した構造であり、より好ましくはベンゼン環1つである。
 この構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
In a structure having an aromatic hydrocarbon group or aromatic heterocyclic group to which an alkyl group or an aralkyl group is bonded to ring A1 or ring A2,
Ar 201 is an aromatic hydrocarbon structure or an aromatic heterocyclic structure, i1 is 1 to 6,
Ar 202 is an aliphatic hydrocarbon structure, i2 is 1-12, preferably 3-8,
Ar 203 is a benzene ring structure and i3 is 0 or 1.
In this structure, Ar 201 is preferably the above aromatic hydrocarbon structure, more preferably a structure in which 1 to 5 benzene rings are linked, and more preferably one benzene ring.
This structure is expected to improve the solubility and the charge transport property.
 環A1又は環A2に、デンドロンが結合した構造においては、
 Ar201、Ar202がベンゼン環構造であり、
 Ar203がビフェニル又はターフェニル構造であり、
 i1、i2が1~6であり、i3が2であり、jが2である。
 この構造であることによって、溶解性が向上し、かつ電荷輸送性が向上することが期待される。
In a structure in which a dendron is bound to ring A1 or ring A2,
Ar 201 and Ar 202 are benzene ring structures,
Ar 203 is a biphenyl or terphenyl structure,
i1 and i2 are 1 to 6, i3 is 2, and j is 2.
This structure is expected to improve the solubility and the charge transport property.
 B201-L200-B202で表される構造のうち、下記式(203)又は(204)で表される構造が好ましい。 Among the structures represented by B 201 -L 200 -B 202 , structures represented by the following formula (203) or (204) are preferable.
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 R211、R212、R213は置換基を表す。
 置換基は特に限定されないが、好ましくは前記置換基群Sから選択される基である。
R 211 , R 212 and R 213 represent substituents.
Although the substituent is not particularly limited, it is preferably a group selected from the substituent group S described above.
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
 環B3は、置換基を有していてもよい、窒素原子を含む芳香族複素環構造を表す。
 環B3は好ましくはピリジン環である。
 環B3が有してもよい置換基は特に限定されないが、好ましくは前記置換基群Sから選択される基である。
Ring B3 represents an aromatic heterocyclic structure containing a nitrogen atom, which may have a substituent.
Ring B3 is preferably a pyridine ring.
Although the substituent that ring B3 may have is not particularly limited, it is preferably a group selected from the substituent group S described above.
 式(201)で表わされる燐光発光材料としては特に限定はされないが、具体的には以下の構造が挙げられる。
 なお、Meはメチル基を意味し、Phはフェニル基を意味する。
Although the phosphorescent material represented by formula (201) is not particularly limited, specific examples include the following structures.
In addition, Me means a methyl group and Ph means a phenyl group.
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
 ここで、下記式(205)で表わされる化合物について説明する。 Here, the compound represented by the following formula (205) will be explained.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
 式(205)中、Mは金属を表し、Tは炭素原子又は窒素原子を表す。R92~R95は、それぞれ独立に置換基を表す。但し、Tが窒素原子の場合は、R94及びR95は存在しない。 In formula (205), M2 represents a metal and T represents a carbon or nitrogen atom. R 92 to R 95 each independently represent a substituent. However, when T is a nitrogen atom, R94 and R95 do not exist.
 式(205)中、Mは金属を表す。具体例としては、周期表第7~11族から選ばれる金属が挙げられる。中でも好ましくは、ルテニウム、ロジウム、パラジウム、銀、レニウム、オスミウム、イリジウム、白金又は金が挙げられ、特に好ましくは、白金、パラジウム等の2価の金属が挙げられる。 In formula (205), M2 represents a metal. Specific examples include metals selected from groups 7 to 11 of the periodic table. Among them, ruthenium, rhodium, palladium, silver, rhenium, osmium, iridium, platinum and gold are preferred, and divalent metals such as platinum and palladium are particularly preferred.
 また、式(205)において、R92及びR93は、それぞれ独立に、水素原子、ハロゲン原子、アルキル基、アラルキル基、アルケニル基、シアノ基、アミノ基、アシル基、アルコキシカルボニル基、カルボキシル基、アルコキシ基、アルキルアミノ基、アラルキルアミノ基、ハロアルキル基、水酸基、アリールオキシ基、芳香族炭化水素基又は芳香族複素環基を表す。 In formula (205), R 92 and R 93 each independently represent a hydrogen atom, a halogen atom, an alkyl group, an aralkyl group, an alkenyl group, a cyano group, an amino group, an acyl group, an alkoxycarbonyl group, a carboxyl group, represents an alkoxy group, an alkylamino group, an aralkylamino group, a haloalkyl group, a hydroxyl group, an aryloxy group, an aromatic hydrocarbon group or an aromatic heterocyclic group;
 更に、Tが炭素原子の場合、R94及びR95は、それぞれ独立に、R92及びR93と同様の例示物で表される置換基を表す。また、Tが窒素原子の場合は該Tに直接結合するR94又はR95は存在しない。 Furthermore, when T is a carbon atom, R94 and R95 each independently represent a substituent represented by the same examples as R92 and R93 . Also, when T is a nitrogen atom, there is no R94 or R95 directly bonded to said T.
 また、R92~R95は、更に置換基を有していてもよい。置換基としては、R92及びR93として挙げた前記の置換基とすることができる。更に、R92~R95のうち任意の2つ以上の基が互いに連結して環を形成してもよい。 In addition, R 92 to R 95 may further have a substituent. Substituents can be the aforementioned substituents exemplified for R 92 and R 93 . Furthermore, any two or more groups selected from R 92 to R 95 may be linked together to form a ring.
(分子量)
 燐光発光材料の分子量は、好ましくは5000以下、更に好ましくは4000以下、特に好ましくは3000以下である。また、燐光発光材料の分子量は、通常1000以上、好ましくは1100以上、更に好ましくは1200以上である。この分子量範囲であることによって、燐光発光材料同士が凝集せず本発明の化合物及び/又は他の電荷輸送材料と均一に混合し、発光効率の高い発光層を得ることができると考えられる。
(molecular weight)
The molecular weight of the phosphorescent material is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. Further, the molecular weight of the phosphorescent material is usually 1000 or more, preferably 1100 or more, more preferably 1200 or more. It is believed that within this molecular weight range, the phosphorescent light-emitting materials do not aggregate with each other and are uniformly mixed with the compound of the present invention and/or other charge-transporting materials, so that a light-emitting layer with high light-emitting efficiency can be obtained.
 燐光発光材料の分子量は、Tgや融点、分解温度等が高く、燐光発光材料及び形成された発光層の耐熱性に優れる点、及び、ガス発生、再結晶化及び分子のマイグレーション等に起因する膜質の低下や材料の熱分解に伴う不純物濃度の上昇等が起こり難い点では大きいことが好ましい。一方、燐光発光材料の分子量は、有機化合物の精製が容易である点では小さいことが好ましい。 The molecular weight of the phosphorescent light-emitting material has a high Tg, melting point, decomposition temperature, etc., and the phosphorescent light-emitting material and the formed light-emitting layer have excellent heat resistance, and the film quality due to gas generation, recrystallization, molecular migration, etc. A large value is preferable from the viewpoint that it is difficult to cause a decrease in the concentration of impurities and an increase in the concentration of impurities due to thermal decomposition of the material. On the other hand, the molecular weight of the phosphorescent light-emitting material is preferably small in terms of facilitating purification of the organic compound.
[電荷輸送材料]
 本発明の組成物が発光層形成用組成物である場合、本発明の芳香族化合物に加え、さらなるホスト材料として本発明の芳香族化合物以外の電荷輸送材料を含有することが好ましい。
[Charge transport material]
When the composition of the present invention is a composition for forming a light-emitting layer, it preferably contains a charge-transporting material other than the aromatic compound of the present invention as a further host material in addition to the aromatic compound of the present invention.
 発光層のホスト材料として用いられる電荷輸送材料は、電荷輸送性に優れる骨格を有する材料であり、電子輸送材料、正孔輸送性材料及び電子と正孔の両方を輸送可能な両極性材料から選ばれることが好ましい。さらに、本発明において、電荷輸送材料とは電荷輸送性を調整する材料も含むものとする。 The charge-transporting material used as the host material of the light-emitting layer is a material having a skeleton with excellent charge-transporting properties, and is selected from electron-transporting materials, hole-transporting materials, and bipolar materials capable of transporting both electrons and holes. preferably Furthermore, in the present invention, the charge transport material also includes a material that adjusts the charge transport property.
 電荷輸送性に優れる骨格としては、具体的には、芳香族構造、芳香族アミン構造、トリアリールアミン構造、ジベンゾフラン構造、ナフタレン構造、フェナントレン構造、フタロシアニン構造、ポルフィリン構造、チオフェン構造、ベンジルフェニル構造、フルオレン構造、キナクリドン構造、トリフェニレン構造、カルバゾール構造、ピレン構造、アントラセン構造、フェナントロリン構造、キノリン構造、ピリジン構造、ピリミジン構造、トリアジン構造、オキサジアゾール構造又はイミダゾール構造等が挙げられる。 Specific examples of skeletons with excellent charge transport properties include aromatic structures, aromatic amine structures, triarylamine structures, dibenzofuran structures, naphthalene structures, phenanthrene structures, phthalocyanine structures, porphyrin structures, thiophene structures, benzylphenyl structures, fluorene structure, quinacridone structure, triphenylene structure, carbazole structure, pyrene structure, anthracene structure, phenanthroline structure, quinoline structure, pyridine structure, pyrimidine structure, triazine structure, oxadiazole structure, imidazole structure, and the like.
 本発明の組成物において、前記式(1)で表される化合物が電子輸送材料として機能するため、さらに正孔輸送性材料を電荷輸送材料として含むことが好ましい。正孔輸送性材料は、正孔輸送性に優れた構造を有する化合物であり、前記電荷輸送性に優れる骨格の中でも、カルバゾール構造、ジベンゾフラン構造、トリアリールアミン構造、ナフタレン構造、フェナントレン構造又はピレン構造が正孔輸送性に優れた構造として好ましく、カルバゾール構造、ジベンゾフラン構造又はトリアリールアミン構造がさらに好ましい。特に好ましくは、後述する式(240)で表される化合物である。 In the composition of the present invention, since the compound represented by the formula (1) functions as an electron-transporting material, it is preferable to further include a hole-transporting material as a charge-transporting material. A hole-transporting material is a compound having a structure with excellent hole-transporting properties, and among the skeletons with excellent charge-transporting properties, a carbazole structure, a dibenzofuran structure, a triarylamine structure, a naphthalene structure, a phenanthrene structure, or a pyrene structure. is preferable as a structure having excellent hole-transporting properties, and a carbazole structure, a dibenzofuran structure, or a triarylamine structure is more preferable. Particularly preferred is a compound represented by formula (240) described later.
 発光層のホスト材料として用いられる電荷輸送材料は、3環以上の縮合環構造を有する化合物であることが好ましく、3環以上の縮合環構造を2以上有する化合物又は5環以上の縮合環を少なくとも1つ有する化合物であることがさらに好ましい。これらの化合物であることで、分子の剛直性が増し、熱に応答する分子運動の程度を抑制する効果が得られ易くなる。さらに、3環以上の縮合環及び5環以上の縮合環は、芳香族炭化水素環又は芳香族複素環を有することが電荷輸送性及び材料の耐久性の点で好ましい。 The charge-transporting material used as the host material of the light-emitting layer is preferably a compound having a condensed ring structure of three or more rings, and at least a compound having two or more condensed ring structures of three or more rings or a condensed ring of five or more rings. Compounds having one are more preferred. These compounds increase the rigidity of the molecules, making it easier to obtain the effect of suppressing the degree of molecular motion in response to heat. Further, the 3 or more condensed rings and the 5 or more condensed rings preferably have an aromatic hydrocarbon ring or an aromatic heterocyclic ring from the viewpoint of charge transportability and material durability.
 3環以上の縮合環構造としては、具体的には、アントラセン構造、フェナントレン構造、ピレン構造、クリセン構造、ナフタセン構造、トリフェニレン構造、フルオレン構造、ベンゾフルオレン構造、インデノフルオレン構造、インドロフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造、ジベンゾチオフェン構造等が挙げられる。 Specific examples of condensed ring structures having three or more rings include anthracene structure, phenanthrene structure, pyrene structure, chrysene structure, naphthacene structure, triphenylene structure, fluorene structure, benzofluorene structure, indenofluorene structure, indolofluorene structure, Carbazole structure, indenocarbazole structure, indolocarbazole structure, dibenzofuran structure, dibenzothiophene structure and the like.
 電荷輸送性ならびに溶解性の観点から、フェナントレン構造、フルオレン構造、インデノフルオレン構造、カルバゾール構造、インデノカルバゾール構造、インドロカルバゾール構造、ジベンゾフラン構造及びジベンゾチオフェン構造からなる群より選択される少なくとも1つが好ましく、電荷に対する耐久性の観点から、カルバゾール構造又はインドロカルバゾール構造がさらに好ましい。 At least one selected from the group consisting of a phenanthrene structure, a fluorene structure, an indenofluorene structure, a carbazole structure, an indenocarbazole structure, an indolocarbazole structure, a dibenzofuran structure, and a dibenzothiophene structure, from the viewpoints of charge transportability and solubility. A carbazole structure or an indolocarbazole structure is more preferred from the viewpoint of resistance to electric charge.
 発光層のホスト材料として用いられる電荷輸送材料の内、電荷輸送性を調整する材料としては、ベンゼン環が多数連結した構造を有する化合物である後述の式(260)で表される化合物が好ましい。この化合物をホスト材料として含むことで、発光層内で生成したエキシトンが効率よく再結合して発光効率が高くなると考えられ、また、発光層内の電荷の輸送性が適切に調整されて発光材料の劣化が抑制され、駆動寿命が長くなると考えられる。 Among the charge-transporting materials used as the host material of the light-emitting layer, the material for adjusting the charge-transporting property is preferably a compound represented by the formula (260) described later, which is a compound having a structure in which a large number of benzene rings are linked. By including this compound as a host material, it is thought that the excitons generated in the light-emitting layer are efficiently recombined to increase the light-emitting efficiency. deterioration is suppressed, and the driving life is lengthened.
 本発明の組成物が発光層形成用組成物である場合、電子輸送性に優れる本発明の化合物に加え、後述する式(240)で表される化合物、及び/又は、後述する式(260)で表される化合物を電荷輸送材料として含有することが好ましい。このような化合物をさらなるホスト材料として含むことが、発光層内での電荷バランス調整の観点及び、発光効率の観点から好ましい。 When the composition of the present invention is a composition for forming a light-emitting layer, in addition to the compound of the present invention having excellent electron transport properties, a compound represented by the formula (240) described later and/or the formula (260) described later It is preferable to contain a compound represented by as a charge transport material. Inclusion of such a compound as an additional host material is preferable from the viewpoint of charge balance adjustment in the light-emitting layer and from the viewpoint of luminous efficiency.
 発光層のホスト材料として用いられる電荷輸送材料は、可撓性に優れる観点では高分子材料であることが好ましい。可撓性に優れる材料を用いて形成された発光層は、フレキシブル基板上に形成された有機電界発光素子の発光層として好ましい。発光層に含まれるホスト材料として用いられる電荷輸送材料が高分子材料である場合、分子量は、好ましくは5,000以上1,000,000以下、さらに好ましくは10,000以上、500,000以下、より好ましくは10,000以上100,000以下である。 The charge-transporting material used as the host material of the light-emitting layer is preferably a polymeric material from the viewpoint of excellent flexibility. A light-emitting layer formed using a material having excellent flexibility is preferable as a light-emitting layer of an organic electroluminescent device formed on a flexible substrate. When the charge-transporting material used as the host material contained in the light-emitting layer is a polymeric material, the molecular weight is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 500,000 or less, It is more preferably 10,000 or more and 100,000 or less.
 また、発光層のホスト材料として用いられる電荷輸送材料は、合成及び精製のしやすさ、電子輸送性能及び正孔輸送性能の設計のしやすさ、溶媒に溶解した時の粘度調整のしやすさの観点から、低分子であることが好ましい。発光層に含まれるホスト材料として用いられる電荷輸送材料が低分子材料である場合、分子量は、5,000以下が好ましく、さらに好ましくは4,000以下であり、特に好ましくは3,000以下であり、最も好ましくは2,000以下であり、通常600以上、好ましくは800以上、より好ましくは1,100以上であり、発光層上に接して形成する層が湿式成膜法にて形成される場合は、好ましくは1,000以上であり、さらに好ましくは1,100以上であり、特に好ましくは1,200以上である。 In addition, the charge transport material used as the host material of the light emitting layer is easy to synthesize and purify, easy to design the electron transport performance and hole transport performance, and easy to adjust the viscosity when dissolved in a solvent. From the viewpoint of, it is preferably a low molecular weight. When the charge-transporting material used as the host material contained in the light-emitting layer is a low-molecular-weight material, the molecular weight is preferably 5,000 or less, more preferably 4,000 or less, and particularly preferably 3,000 or less. , most preferably 2,000 or less, usually 600 or more, preferably 800 or more, more preferably 1,100 or more, when the layer formed in contact with the light emitting layer is formed by a wet film formation method is preferably 1,000 or more, more preferably 1,100 or more, and particularly preferably 1,200 or more.
 <式(240)で表される化合物>
Figure JPOXMLDOC01-appb-C000067
<Compound Represented by Formula (240)>
Figure JPOXMLDOC01-appb-C000067
(式(240)中、
 Ar611、Ar612は各々独立に、置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基を表し、
 R611、R612は各々独立に、重水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基であり、
 Gは、単結合、又は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表し、
 n611、n612は各々独立に0~4の整数である。)
(In formula (240),
Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
R 611 and R 612 are each independently a deuterium atom, a halogen atom, or an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
n 611 and n 612 are each independently an integer of 0-4. )
<Ar611、Ar612
 Ar611、Ar612は各々独立に、置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基を表す。
 芳香族炭化水素基の炭素数としては、好ましくは6~50、より好ましくは6~30、さらに好ましくは6~18である。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素構造の1価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の1価の基が挙げられる。芳香族炭化水素環が複数連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。
<Ar 611 , Ar 612 >
Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms.
The number of carbon atoms in the aromatic hydrocarbon group is preferably 6-50, more preferably 6-30, still more preferably 6-18. Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms. Above, usually 30 or less, preferably 18 or less, more preferably 14 or less monovalent group of aromatic hydrocarbon structure, or a plurality of structures selected from these structures are bonded in a chain or branched and a monovalent group having a structure such as When a plurality of aromatic hydrocarbon rings are linked, a structure in which 2 to 8 rings are linked is usually mentioned, and a structure in which 2 to 5 rings are linked is preferable. When a plurality of aromatic hydrocarbon rings are linked, the same structure may be linked, or different structures may be linked.
 Ar611、Ar612は好ましくは、各々独立に
 フェニル基、
 複数のベンゼン環が複数鎖状又は分岐して結合した1価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのナフタレン環が鎖状又は分岐して結合した1価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのフェナントレン環が鎖状又は分岐して結合した1価の基、又は、
 1つ又は複数のベンゼン環及び少なくとも1つのテトラフェニレン環が鎖状又は分岐して結合した1価の基、
であり、さらに好ましくは、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であり、いずれの場合も結合の順序は問わない。
 Ar611、Ar612は、各々独立に、置換基を有してもよい複数のベンゼン環が鎖状又は分岐して結合した1価の基であることが特に好ましく、各々独立に、複数のベンゼン環が複数鎖状又は分岐して結合した1価の基であることが最も好ましい。
Ar 611 and Ar 612 are preferably each independently a phenyl group,
a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner;
a monovalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner;
a monovalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branch, or
a monovalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner;
and more preferably a monovalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding is not critical.
Ar 611 and Ar 612 are each independently particularly preferably a monovalent group in which a plurality of optionally substituted benzene rings are bonded in a chain or branched manner, and each independently represents a plurality of benzene Most preferably, the ring is a multi-chain or branched monovalent group.
 結合するベンゼン環、ナフタレン環、フェナントレン環及びテトラフェニレン環の数は前記の通り、通常2~8であり、2~5が好ましい。中でも好ましくは、ベンゼン環が1~4個連結した1価の構造、ベンゼン環が1~4個及びナフタレン環が連結した1価の構造、ベンゼン環が1~4個及びフェナントレン環が連結した1価の構造、又は、ベンゼン環が1~4個及びテトラフェニレン環が連結した1価の構造である。 The number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above. Among them, preferably, a monovalent structure in which 1 to 4 benzene rings are connected, a monovalent structure in which 1 to 4 benzene rings and a naphthalene ring are connected, 1 in which 1 to 4 benzene rings and a phenanthrene ring are connected It is a valent structure or a monovalent structure in which 1 to 4 benzene rings and a tetraphenylene ring are linked.
 これら芳香族炭化水素基は、置換基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には置換基群Z2から選択することが出来る。好ましい置換基は前記置換基群Z2の好ましい置換基である。 These aromatic hydrocarbon groups may have substituents. The substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z2. Preferred substituents are the preferred substituents of the substituent group Z2.
 Ar611、Ar612の少なくとも一方は、化合物の溶解性及び耐久性の観点から、下記式(72-1)~(72-7)から選択される少なくとも1つの部分構造を有することが好ましい。 At least one of Ar 611 and Ar 612 preferably has at least one partial structure selected from the following formulas (72-1) to (72-7) from the viewpoint of compound solubility and durability.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
 上記式(72-1)~式(72-7)それぞれにおいて、*は隣接する構造との結合又は水素原子を表し、2つ存在する*の少なくとも一方は隣接する構造との結合位置を表す。以降の記載においても、特に断りの無い限り*の定義は同様である。 In each of the above formulas (72-1) to (72-7), * represents a bond with an adjacent structure or a hydrogen atom, and at least one of the two * represents a bonding position with an adjacent structure. In the following description, the definition of * is the same unless otherwise specified.
 より好ましくは、Ar611、Ar612の少なくとも一方は、式(72-1)~(72-4)及び式(72-7)から選択される少なくとも1つの部分構造を有する。
 さらに好ましくは、Ar611、Ar612がそれぞれ、式(72-1)~(72-3)及び式(72-7)から選択される少なくとも1つの部分構造を有する。
 特に好ましくは、Ar611、Ar612がそれぞれ、式(72-1)、式(72-2)及び式(72-7)から選択される少なくとも1つの部分構造を有する。
More preferably, at least one of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-4) and formula (72-7).
More preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formulas (72-1) to (72-3) and formula (72-7).
Particularly preferably, each of Ar 611 and Ar 612 has at least one partial structure selected from formula (72-1), formula (72-2) and formula (72-7).
 式(72-2)として好ましくは、下記式(72-2-2)である。 Formula (72-2) is preferably the following formula (72-2-2).
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
 式(72-2)としてよりさらに好ましくは、下記式(72-2-3)である。 The formula (72-2) is more preferably the following formula (72-2-3).
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
 また、化合物の溶解性及び耐久性の観点からAr611、Ar612の少なくとも1つが有することが好ましい部分構造として、式(72-1)で表される部分構造及び式(72-2)で表される部分構造を有する部分構造が挙げられる。 Further, from the viewpoint of the solubility and durability of the compound, the partial structure that at least one of Ar 611 and Ar 612 preferably has is the partial structure represented by formula (72-1) and the partial structure represented by formula (72-2). A partial structure having a partial structure that is
<R611、R612
 R611、R612は各々独立に、重水素原子、フッ素原子等のハロゲン原子、置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素である。
 好ましくは置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基である。
 芳香族炭化水素基としては、より好ましくは炭素数6~30、さらに好ましくは6~18、特に好ましくは6~10である芳香族炭化水素構造の1価の基が挙げられる。
 1価の芳香族炭化水素基としては具体的には前記Ar611と同様であり、好ましい芳香族炭化水素基も同様であり、特に好ましくはフェニル基である。
 これら芳香族炭化水素基は、置換基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には後述する置換基群Z2から選択することが出来る。好ましい置換基は前記後述する置換基群Z2の好ましい置換基である。
< R611 , R612 >
Each of R 611 and R 612 is independently a deuterium atom, a halogen atom such as a fluorine atom, or an optionally substituted monovalent aromatic hydrocarbon having 6 to 50 carbon atoms.
A monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms which may have a substituent is preferred.
The aromatic hydrocarbon group is preferably a monovalent group having an aromatic hydrocarbon structure having 6 to 30 carbon atoms, more preferably 6 to 18 carbon atoms, and particularly preferably 6 to 10 carbon atoms.
Specific examples of the monovalent aromatic hydrocarbon group are the same as those of Ar 611 , and the same is true of the preferred aromatic hydrocarbon group, and the phenyl group is particularly preferred.
These aromatic hydrocarbon groups may have a substituent. The substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the group of substituents Z2 described later. Preferred substituents are the preferred substituents of the substituent group Z2 described later.
<n611、n612
 n611、n612は各々独立に、0~4の整数である。好ましくは0~2であり、さらに好ましくは0又は1である。
< n611 , n612 >
n 611 and n 612 are each independently an integer of 0-4. It is preferably 0 to 2, more preferably 0 or 1.
<置換基>
 Ar611、Ar612、R611、R612が1価の芳香族炭化水素基である場合、有してよい置換基は下記置換基群Z2から選択される置換基が好ましい。
<Substituent>
When Ar 611 , Ar 612 , R 611 and R 612 are monovalent aromatic hydrocarbon groups, the substituents they may have are preferably substituents selected from the following substituent group Z2.
<置換基群Z2>
 置換基群Z2は、アルキル基、アルコキシ基、アリールオキシ基、ヘテロアリールオキシ基、アルコキシカルボニル基、ジアルキルアミノ基、ジアリールアミノ基、アリールアルキルアミノ基、アシル基、ハロゲン原子、ハロアルキル基、アルキルチオ基、アリールチオ基、シリル基、シロキシ基、シアノ基、芳香族炭化水素基、及び芳香族複素環基よりなる群である。これらの置換基は直鎖、分岐及び環状のいずれの構造を含んでいてもよい。
<Substituent Group Z2>
Substituent group Z2 includes an alkyl group, an alkoxy group, an aryloxy group, a heteroaryloxy group, an alkoxycarbonyl group, a dialkylamino group, a diarylamino group, an arylalkylamino group, an acyl group, a halogen atom, a haloalkyl group, an alkylthio group, A group consisting of an arylthio group, a silyl group, a siloxy group, a cyano group, an aromatic hydrocarbon group, and an aromatic heterocyclic group. These substituents may contain any structure of linear, branched and cyclic.
 置換基群Z2として、より具体的には、以下の構造が挙げられる。
 例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、ドデシル基等の、炭素数が通常1以上であり、好ましくは4以上であり、通常24以下であり、好ましくは12以下であり、より好ましくは8以下であり、さらに好ましくは6以下である、直鎖、分岐、又は環状のアルキル基;
 例えば、メトキシ基、エトキシ基等の、炭素数が通常1以上であり、通常24以下であり、好ましくは12以下であるアルコキシ基;
 例えば、フェノキシ基、ナフトキシ基、ピリジルオキシ基等の、炭素数が通常4以上であり、好ましくは5以上であり、通常36以下であり、好ましくは24以下である、アリールオキシ基若しくはヘテロアリールオキシ基;
 例えば、メトキシカルボニル基、エトキシカルボニル基等の、炭素数が通常2以上であり、通常24以下であり、好ましくは12以下であるアルコキシカルボニル基;
 例えば、ジメチルアミノ基、ジエチルアミノ基等の、炭素数が通常2以上であり、通常24以下であり、好ましくは12以下であるジアルキルアミノ基;
 例えば、ジフェニルアミノ基、ジトリルアミノ基等の、炭素数が通常10以上であり、好ましくは12以上であり、通常36以下であり、好ましくは24以下のジアリールアミノ基;
 例えば、フェニルメチルアミノ基等の、炭素数が通常7以上であり、通常36以下であり、好ましくは24以下であるアリールアルキルアミノ基;
 例えば、アセチル基、ベンゾイル基等の、炭素数が通常2以上であり、通常24以下であり、好ましくは12以下であるアシル基;
 例えば、フッ素原子、塩素原子等のハロゲン原子;
 例えば、トリフルオロメチル基等の、炭素数が通常1以上であり、通常12以下であり、好ましくは6以下であるハロアルキル基;
 例えば、メチルチオ基、エチルチオ基等の、炭素数が通常1以上であり、通常24以下であり、好ましくは12以下であるアルキルチオ基;
 例えば、フェニルチオ基、ナフチルチオ基、ピリジルチオ基等の、炭素数が通常4以上であり、好ましくは5以上であり、通常36以下であり、好ましくは24以下であるアリールチオ基;
 例えば、トリメチルシリル基、トリフェニルシリル基等の、炭素数が通常2以上であり、好ましくは3以上であり、通常36以下であり、好ましくは24以下であるシリル基;
 例えば、トリメチルシロキシ基、トリフェニルシロキシ基等の、炭素数が通常2以上であり、好ましくは3以上であり、通常36以下であり、好ましくは24以下であるシロキシ基;
 シアノ基;
 例えば、フェニル基、ナフチル基等の、炭素数が通常6以上であり、通常36以下であり、好ましくは24以下である芳香族炭化水素基;
 例えば、チエニル基、ピリジル基等の、炭素数が通常3以上であり、好ましくは4以上であり、通常36以下であり、好ましくは24以下である芳香族複素環基。
More specific examples of the substituent group Z2 include the following structures.
For example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group, cyclohexyl group, dodecyl group, etc. , the number of carbon atoms is usually 1 or more, preferably 4 or more, usually 24 or less, preferably 12 or less, more preferably 8 or less, and still more preferably 6 or less, linear, branched , or a cyclic alkyl group;
An alkoxy group having usually 1 or more carbon atoms, usually 24 or less, preferably 12 or less carbon atoms, such as a methoxy group or an ethoxy group;
For example, an aryloxy group or heteroaryloxy group having usually 4 or more carbon atoms, preferably 5 or more carbon atoms, usually 36 or less, preferably 24 or less carbon atoms such as phenoxy group, naphthoxy group, pyridyloxy group, etc. group;
For example, an alkoxycarbonyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methoxycarbonyl group or an ethoxycarbonyl group;
For example, a dialkylamino group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a dimethylamino group or a diethylamino group;
For example, a diarylamino group having usually 10 or more carbon atoms, preferably 12 or more carbon atoms, usually 36 or less, preferably 24 or less carbon atoms, such as a diphenylamino group or a ditolylamino group;
For example, an arylalkylamino group having usually 7 or more carbon atoms, usually 36 or less, preferably 24 or less, such as a phenylmethylamino group;
For example, an acyl group having usually 2 or more carbon atoms, usually 24 or less, preferably 12 or less, such as an acetyl group or a benzoyl group;
Halogen atoms such as, for example, fluorine atoms and chlorine atoms;
For example, a haloalkyl group having usually 1 or more carbon atoms, usually 12 or less, preferably 6 or less, such as a trifluoromethyl group;
For example, an alkylthio group having usually 1 or more carbon atoms, usually 24 or less, preferably 12 or less, such as a methylthio group or an ethylthio group;
arylthio groups having usually 4 or more, preferably 5 or more, usually 36 or less, preferably 24 or less carbon atoms, such as phenylthio, naphthylthio, and pyridylthio groups;
For example, a silyl group having usually 2 or more carbon atoms, preferably 3 or more carbon atoms, usually 36 or less, preferably 24 or less carbon atoms, such as a trimethylsilyl group or a triphenylsilyl group;
a siloxy group having usually 2 or more carbon atoms, preferably 3 or more carbon atoms, usually 36 or less, preferably 24 or less carbon atoms, such as a trimethylsiloxy group or a triphenylsiloxy group;
cyano group;
aromatic hydrocarbon groups having usually 6 or more carbon atoms, usually 36 or less, preferably 24 or less, such as phenyl group and naphthyl group;
For example, an aromatic heterocyclic group having usually 3 or more, preferably 4 or more, and usually 36 or less, preferably 24 or less carbon atoms such as thienyl group or pyridyl group.
 上記の置換基群Z2の中でも、好ましくは、アルキル基、アルコキシ基、ジアリールアミノ基、芳香族炭化水素基、又は芳香族複素環基である。電荷輸送性の観点からは、置換基としては芳香族炭化水素基又は芳香族複素環基が好ましく、より好ましくは芳香族炭化水素基であり、置換基を有さないことがさらに好ましい。溶解性向上の観点からは、置換基としてはアルキル基又はアルコキシ基が好ましい。 Among the substituent group Z2 described above, an alkyl group, an alkoxy group, a diarylamino group, an aromatic hydrocarbon group, or an aromatic heterocyclic group is preferred. From the viewpoint of charge transport properties, the substituent is preferably an aromatic hydrocarbon group or an aromatic heterocyclic group, more preferably an aromatic hydrocarbon group, and further preferably has no substituent. From the viewpoint of improving solubility, the substituent is preferably an alkyl group or an alkoxy group.
 また、上記置換基群Z2の各置換基は更に置換基を有していてもよい。それら置換基としては、上記置換基(置換基群Z2)と同じのものが挙げられる。上記置換基群Z2が有してもよい各置換基は、好ましくは、炭素数8以下のアルキル基、炭素数8以下のアルコキシ基、又はフェニル基、より好ましくは炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、又はフェニル基であり、上記置換基群Z2の各置換基は、電荷輸送性の観点からは、さらなる置換基を有さないことがより好ましい。 Further, each substituent in the substituent group Z2 may further have a substituent. Examples of these substituents include the same substituents as those described above (substituent group Z2). Each substituent that the substituent group Z2 may have is preferably an alkyl group having 8 or less carbon atoms, an alkoxy group having 8 or less carbon atoms, or a phenyl group, more preferably an alkyl group having 6 or less carbon atoms, It is an alkoxy group having 6 or less carbon atoms or a phenyl group, and each substituent in the substituent group Z2 more preferably does not have a further substituent from the viewpoint of charge transport properties.
<G>
 Gは、単結合、又は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表す。
<G>
G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms.
 Gの芳香族炭化水素基の炭素数は、好ましくは6~50、さらに好ましくは6~30、より好ましくは6~18である。芳香族炭化水素基としては、具体的には、ベンゼン環、ナフタレン環、アントラセン環、テトラフェニレン環、フェナントレン環、クリセン環、ピレン環、ベンゾアントラセン環、又はペリレン環等の、炭素数が通常6以上、通常30以下、好ましくは18以下、さらに好ましくは14以下である芳香族炭化水素構造の2価の基、又は、これらの構造から選択された複数の構造が鎖状に又は分岐して結合した構造の2価の基が挙げられる。芳香族炭化水素環が複数連結する場合は、通常、2~8個連結した構造が挙げられ、2~5個連結した構造であることが好ましい。芳香族炭化水素環が複数連結する場合、同一の構造が連結してもよく、異なる構造が連結してもよい。 The number of carbon atoms in the aromatic hydrocarbon group of G is preferably 6-50, more preferably 6-30, more preferably 6-18. Specific examples of the aromatic hydrocarbon group include a benzene ring, naphthalene ring, anthracene ring, tetraphenylene ring, phenanthrene ring, chrysene ring, pyrene ring, benzanthracene ring, perylene ring, and the like, which usually have 6 carbon atoms. Above, usually 30 or less, preferably 18 or less, more preferably 14 or less divalent groups of aromatic hydrocarbon structures, or a plurality of structures selected from these structures are linked in a chain or branched manner and a divalent group having a structure such as When a plurality of aromatic hydrocarbon rings are linked, a structure in which 2 to 8 rings are linked is usually mentioned, and a structure in which 2 to 5 rings are linked is preferable. When a plurality of aromatic hydrocarbon rings are linked, the same structure may be linked, or different structures may be linked.
 Gは、好ましくは、
 単結合、
 フェニレン基、
 複数のベンゼン環が複数鎖状又は分岐して結合した2価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのナフタレン環が鎖状又は分岐して結合した2価の基、
 1つ又は複数のベンゼン環及び少なくとも1つのフェナントレン環が鎖状又は分岐して結合した2価の基、又は、
 1つ又は複数のベンゼン環及び少なくとも1つのテトラフェニレン環が鎖状又は分岐して結合した2価の基、
であり、さらに好ましくは、複数のベンゼン環が複数鎖状又は分岐して結合した2価の基であり、いずれの場合も結合の順序は問わない。
G is preferably
single bond,
a phenylene group,
a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner;
a divalent group in which one or more benzene rings and at least one naphthalene ring are linked in a chain or branched manner;
a divalent group in which one or more benzene rings and at least one phenanthrene ring are linked in a chain or branched manner, or
a divalent group in which one or more benzene rings and at least one tetraphenylene ring are linked in a chain or branched manner;
and more preferably a divalent group in which a plurality of benzene rings are bonded in a chain or branched manner, and in any case, the order of bonding does not matter.
 結合するベンゼン環、ナフタレン環、フェナントレン環及びテトラフェニレン環の数は前記の通り、通常2~8であり、2~5が好ましい。中でもさらに好ましくは、ベンゼン環が1~4個連結した2価の構造、ベンゼン環が1~4個及びナフタレン環が連結した2価の構造、ベンゼン環が1~4個及びフェナントレン環が連結した2価の構造、又は、ベンゼン環が1~4個及びテトラフェニレン環が連結した2価の構造である。 The number of bonded benzene rings, naphthalene rings, phenanthrene rings and tetraphenylene rings is usually 2-8, preferably 2-5, as described above. Among them, more preferably, a bivalent structure in which 1 to 4 benzene rings are linked, a bivalent structure in which 1 to 4 benzene rings and a naphthalene ring are linked, 1 to 4 benzene rings and a phenanthrene ring are linked It is a bivalent structure, or a bivalent structure in which 1 to 4 benzene rings and a tetraphenylene ring are linked.
 これら芳香族炭化水素基は、置換基を有してもよい。芳香族炭化水素基が有してよい置換基は前述の通りであり、具体的には前記置換基群Z2から選択することが出来る。好ましい置換基は前記置換基群Z2の好ましい置換基である。 These aromatic hydrocarbon groups may have substituents. The substituents that the aromatic hydrocarbon group may have are as described above, and specifically can be selected from the substituent group Z2. Preferred substituents are the preferred substituents of the substituent group Z2.
<分子量>
 前記式(240)で表される化合物は低分子材料であり、分子量は3,000以下が好ましく、より好ましくは2,500以下であり、さらに好ましくは2,000以下であり、特に好ましくは1,500以下であり、通常300以上、好ましくは350以上、より好ましくは400以上である。
<Molecular weight>
The compound represented by the formula (240) is a low-molecular-weight material, and has a molecular weight of preferably 3,000 or less, more preferably 2,500 or less, still more preferably 2,000 or less, and particularly preferably 1 , 500 or less, usually 300 or more, preferably 350 or more, more preferably 400 or more.
<前記式(240)で表される化合物IVの具体例>
 以下に、前記式(240)で表される化合物IVの好ましい具体例を示すが、本発明はこれらに限定されるものではない。
<Specific examples of compound IV represented by the above formula (240)>
Preferable specific examples of compound IV represented by formula (240) are shown below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
 本発明の発光層形成用組成物には、前記式(240)で表される化合物として1種のみが含まれていてもよく、2種以上が含まれていてもよい。 The composition for forming a light-emitting layer of the present invention may contain only one compound represented by the formula (240), or may contain two or more compounds.
[化合物:式(260)で表される化合物]
 一実施形態における本発明の発光層形成用組成物は、下記式(260)で表される化合物を含有する。
[Compound: compound represented by formula (260)]
In one embodiment, the composition for forming a light-emitting layer of the present invention contains a compound represented by the following formula (260).
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
(式(260)中、Ar21~Ar35は各々独立に、水素原子、置換基を有してもよいフェニル基又は置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基を表す。) (In the formula (260), each of Ar 21 to Ar 35 is independently a hydrogen atom, an optionally substituted phenyl group or an optionally substituted phenyl group, 2 to 10, unbranched or It represents a branched and linked monovalent group.)
 式(260)における、Ar21~Ar35が置換基を有してもよいフェニル基又は置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基である場合の該フェニル基が有してもよい置換基は、アルキル基であることが好ましい。 In the formula (260), Ar 21 to Ar 35 are optionally substituted phenyl groups or 2 to 10 optionally substituted phenyl groups are unbranched or branched and linked monovalent The substituent that the phenyl group may have when it is a group is preferably an alkyl group.
<置換基としてのアルキル基>
 置換基としてのアルキル基は、炭素数が通常1以上、12以下であり、好ましくは8以下であり、さらに好ましくは6以下であり、より好ましくは4以下の、直鎖、分岐、又は環状のアルキル基であり、具体的には、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、シクロヘキシル基、2-エチルヘキシル基が挙げられる。
<Alkyl group as a substituent>
The alkyl group as a substituent usually has 1 or more and 12 or less carbon atoms, preferably 8 or less, more preferably 6 or less, and more preferably 4 or less, linear, branched or cyclic Alkyl group, specifically methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, tert-butyl group, n-hexyl group , a cyclohexyl group, and a 2-ethylhexyl group.
 前記式(260)において、Ar21、Ar25、Ar26、Ar30、Ar31及びAr35は好ましくは水素原子である。また、Ar22~Ar24の少なくとも一つが、前記置換基を有してもよいフェニル基又は前記置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基であること、及び/又は、Ar22~Ar24の少なくとも一つ、及び、Ar27~Ar29の少なくとも一つが、前記置換基を有してもよいフェニル基又は前記置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基であることが好ましい。
 さらに好ましくは、Ar22~Ar24、Ar27~Ar29、及びAr32~Ar34が、水素原子、フェニル基、及び、下記式(261-1)~(261-9)から選択される構造のいずれかである。
 これらの構造は、前記置換基を有してよく、例えば、前記置換基としてのアルキル基で置換されていてもよい。溶解性を向上させる観点ではアルキル基で置換されていることが好ましい。電荷輸送性、素子駆動時の耐久性の観点からは、置換基を有しないことが好ましい。
In formula (260), Ar 21 , Ar 25 , Ar 26 , Ar 30 , Ar 31 and Ar 35 are preferably hydrogen atoms. Further, at least one of Ar 22 to Ar 24 is a phenyl group which may have a substituent or 2 to 10 phenyl groups which may have a substituent, which are unbranched or branched and linked 1 and/or at least one of Ar 22 to Ar 24 and at least one of Ar 27 to Ar 29 is a phenyl group optionally having the substituent or having the substituent It is preferably an unbranched or branched monovalent group having 2 to 10 phenyl groups which may be substituted.
More preferably, structures in which Ar 22 to Ar 24 , Ar 27 to Ar 29 and Ar 32 to Ar 34 are selected from hydrogen atoms, phenyl groups, and the following formulas (261-1) to (261-9) is either
These structures may have the substituents described above, and may be substituted with alkyl groups as the substituents, for example. From the viewpoint of improving the solubility, it is preferably substituted with an alkyl group. From the viewpoint of charge transportability and durability during driving of the device, it is preferable not to have a substituent.
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000073
 前記式(260)で表される化合物がこのような構造を含むことで、発光層内の電荷の輸送性を適度に調整でき、発光効率が高くなると考えられる。また、このような構造を含むことで、溶解性及び、素子駆動時の耐久性に優れると考えられる。 By including such a structure in the compound represented by the formula (260), it is considered that the charge transport property in the light-emitting layer can be appropriately adjusted and the luminous efficiency is increased. In addition, it is considered that by including such a structure, the solubility and the durability during driving of the device are excellent.
<分子量>
 前記式(260)で表される化合物は低分子材料であり、分子量は3,000以下が好ましく、更に好ましくは2,500以下であり、特に好ましくは2,000以下であり、最も好ましくは1,500以下であり、通常300以上、好ましくは350以上、より好ましくは400以上である。
<Molecular weight>
The compound represented by the formula (260) is a low-molecular-weight material, and has a molecular weight of preferably 3,000 or less, more preferably 2,500 or less, particularly preferably 2,000 or less, and most preferably 1 , 500 or less, usually 300 or more, preferably 350 or more, more preferably 400 or more.
<式(260)で表される化合物の具体例>
 式(260)で表される化合物は特に限定されないが、例えば以下のような化合物が挙げられる。
<Specific examples of compounds represented by formula (260)>
The compound represented by formula (260) is not particularly limited, and examples thereof include the following compounds.
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000074
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000075
 本発明の発光層形成用組成物には、前記式(260)で表される化合物として1種のみが含まれていてもよく、2種以上が含まれていてもよい。 The composition for forming a light-emitting layer of the present invention may contain only one compound represented by the formula (260), or may contain two or more compounds.
[その他の成分]
 本発明の有機電界発光素子用組成物は、前述した溶剤及び発光材料以外にも、必要に応じて、各種の他の溶剤を含んでいてもよい。このような他の溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、ジメチルスルホキシド等が挙げられる。
[Other ingredients]
The composition for organic electroluminescence elements of the present invention may contain various other solvents, if necessary, in addition to the solvent and luminescent material described above. Examples of such other solvents include amides such as N,N-dimethylformamide and N,N-dimethylacetamide, and dimethylsulfoxide.
 また、本発明の有機電界発光素子用組成物は、レベリング剤や消泡剤等の各種添加剤を含んでいてもよい。
 更に、2層以上の層を湿式成膜法により積層する際に、これらの層が相溶することを防ぐため、成膜後に硬化させて不溶化させる目的で光硬化性樹脂や、熱硬化性樹脂を含有させておくこともできる。
Moreover, the composition for organic electroluminescence elements of the present invention may contain various additives such as a leveling agent and an antifoaming agent.
Furthermore, when laminating two or more layers by a wet film formation method, in order to prevent these layers from becoming compatible, a photocurable resin or a thermosetting resin is used for the purpose of curing and insolubilizing after film formation. can also be included.
[配合比]
 有機電界発光素子用組成物中の固形分濃度〔本発明の芳香族炭化水素化合物、発光材料、本発明の芳香族炭化水素化合物以外のホスト材料及び必要に応じて添加可能な成分(レベリング剤など)などを含む全ての固形分の濃度〕は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、さらに好ましくは0.5質量%以上、最も好ましくは1質量%以上であり、通常80質量%以下、好ましくは50質量%以下、より好ましくは40質量%以下、さらに好ましくは30質量%以下、最も好ましくは20質量%以下である。固形分濃度がこの範囲であると、所望の膜厚の薄膜を均一な厚みで形成しやすく、好ましい。
[Blending ratio]
The solid content concentration in the composition for organic electroluminescent elements [the aromatic hydrocarbon compound of the present invention, the light-emitting material, the host material other than the aromatic hydrocarbon compound of the present invention, and the components that can be added as necessary (leveling agents, etc. ) is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and still more preferably 0.5% by mass or more, The content is most preferably 1% by mass or more, and usually 80% by mass or less, preferably 50% by mass or less, more preferably 40% by mass or less, even more preferably 30% by mass or less, and most preferably 20% by mass or less. When the solid content concentration is within this range, it is easy to form a thin film having a desired film thickness with a uniform thickness, which is preferable.
 発光層に含まれる全ホスト材料に対する本発明の芳香族炭化水素化合物の好ましい配合比は以下の通りである。尚、全ホスト材料とは、本発明の芳香族炭化水素化合物及び本発明の芳香族炭化水素化合物以外の全てのホスト材料のことを指す。 The preferred compounding ratio of the aromatic hydrocarbon compound of the present invention to all the host materials contained in the light-emitting layer is as follows. All host materials refer to all host materials other than the aromatic hydrocarbon compound of the present invention and the aromatic hydrocarbon compound of the present invention.
 本発明の有機電界発光素子用組成物における、全ホスト材料の質量100に対する本発明の化合物の質量比、すなわち、発光層中の全ホスト材料の質量100に対する本発明の化合物の質量比は5以上、好ましくは10以上、さらに好ましくは15以上、より好ましくは20以上、特に好ましくは30以上であり、99以下、好ましくは95以下、さらに好ましくは90以下であり、より好ましくは80以下、特に好ましくは70以下である。 In the composition for an organic electroluminescent element of the present invention, the mass ratio of the compound of the present invention to the mass of all host materials of 100, that is, the mass ratio of the compound of the present invention to the mass of all host materials in the light-emitting layer of 100 is 5 or more. , preferably 10 or more, more preferably 15 or more, more preferably 20 or more, particularly preferably 30 or more, 99 or less, preferably 95 or less, further preferably 90 or less, more preferably 80 or less, particularly preferably is 70 or less.
 また、本発明の有機電界発光素子用組成物における、全ホスト材料に対する本発明の化合物のモル比、すなわち、発光層中の全ホスト材料に対する本発明の化合物のモル比は5モル%以上、好ましくは10モル%以上、さらに好ましくは20モル%以上であり、より好ましくは25モル%以上であり、特に好ましくは30モル%以上であり、90モル%以下、好ましくは80モル%以下、さらに好ましくは70モル%以下であり、特に好ましくは60モル%以下である。 Further, in the composition for an organic electroluminescence device of the present invention, the molar ratio of the compound of the present invention to the total host material, that is, the molar ratio of the compound of the present invention to the total host material in the light-emitting layer is preferably 5 mol% or more. is 10 mol% or more, more preferably 20 mol% or more, more preferably 25 mol% or more, particularly preferably 30 mol% or more, 90 mol% or less, preferably 80 mol% or less, more preferably is 70 mol % or less, particularly preferably 60 mol % or less.
 また、本発明の有機電界発光素子用組成物における、全ホスト材料の質量100に対する発光材料の質量比、すなわち、発光層中の全ホスト材料の質量100に対する発光材料の質量比は、0.1以上、好ましくは0.5以上、さらに好ましくは1以上であり、最も好ましくは2以上であり、100以下、好ましくは60以下、さらに好ましくは50以下、最も好ましくは40以下である。この比が下限を下回ったり、上限を超えたりすると、著しく発光効率が低下する恐れがある。 Further, in the composition for an organic electroluminescent element of the present invention, the mass ratio of the light-emitting material to the mass of all host materials of 100, that is, the mass ratio of the light-emitting material to the mass of all host materials in the light-emitting layer of 100 is 0.1. Above, it is preferably 0.5 or more, more preferably 1 or more, most preferably 2 or more, 100 or less, preferably 60 or less, further preferably 50 or less, most preferably 40 or less. If this ratio falls below the lower limit or exceeds the upper limit, the luminous efficiency may drop significantly.
[組成物の調製方法]
 本発明の有機電界発光素子用組成物は、本発明の芳香族化合物、必要に応じて前述した発光材料、及び必要に応じて添加可能なレベリング剤や消泡剤等の各種添加剤よりなる溶質を、適当な溶剤に溶解させることにより調製される。
[Method for preparing composition]
The composition for an organic electroluminescent element of the present invention is a solute comprising the aromatic compound of the present invention, the above-mentioned luminescent material as necessary, and various additives such as a leveling agent and an antifoaming agent that can be added as necessary. is prepared by dissolving in a suitable solvent.
 溶解工程に要する時間を短縮するため、及び本発明の有機電界発光素子用組成物中の溶質濃度を均一に保つため、通常、液を撹拌しながら溶質を溶解させる。溶解工程は常温で行ってもよいが、溶解速度が遅い場合は加熱して溶解させることもできる。溶解工程終了後、必要に応じて、フィルタリング等の濾過工程を経由してもよい。 In order to shorten the time required for the dissolving step and to keep the solute concentration in the composition for organic electroluminescent elements of the present invention uniform, the solute is usually dissolved while stirring the liquid. The dissolution step may be performed at room temperature, but if the dissolution rate is slow, the dissolution may be performed by heating. After completion of the dissolving step, a filtering step such as filtering may be performed as necessary.
[組成物の性状、物性等]
(水分濃度)
 有機電界発光素子を、本発明の組成物を用いた湿式成膜法により層形成して製造する場合、組成物中に水分が存在すると、形成された膜に水分が混入して膜の均一性が損なわれるため、本発明の組成物中の水分含有量はできるだけ少ない方が好ましい。また一般に、有機電界発光素子には、陰極等の水分により著しく劣化する材料が多く使用されているため、組成物中に水分が存在した場合、乾燥後の膜中に水分が残留し、素子の特性を低下させる可能性が考えられ好ましくない。
[Composition properties, physical properties, etc.]
(moisture concentration)
When an organic electroluminescence device is produced by forming layers by a wet film-forming method using the composition of the present invention, if water is present in the composition, the formed film will be contaminated with water, resulting in poor film uniformity. It is preferred that the water content in the compositions of the present invention is as low as possible, as this impairs the In general, organic electroluminescence devices use many materials such as cathodes that are significantly deteriorated by moisture. Possibility of deteriorating the characteristics is considered, which is not preferable.
 具体的には、本発明の組成物中に含まれる水分量は、通常1質量%以下、好ましくは0.1質量%以下、より好ましくは0.01質量%以下である。 Specifically, the amount of water contained in the composition of the present invention is usually 1% by mass or less, preferably 0.1% by mass or less, and more preferably 0.01% by mass or less.
 組成物中の水分濃度の測定方法としては、日本工業規格「化学製品の水分測定法」(JIS K0068:2001)に記載の方法が好ましく、例えば、カールフィッシャー試薬法(JIS K0211-1348)等により分析することができる。 As a method for measuring the water concentration in the composition, the method described in Japanese Industrial Standards "Method for measuring water content in chemical products" (JIS K0068: 2001) is preferable, for example, by the Karl Fischer reagent method (JIS K0211-1348). can be analyzed.
(均一性)
 本発明の組成物は、湿式成膜プロセスでの安定性、例えば、インクジェット成膜法におけるノズルからの吐出安定性を高めるためには、常温で均一な液状であることが好ましい。常温で均一な液状とは、組成物が均一相からなる液体であり、かつ組成物中に粒径0.1μm以上の粒子成分を含有しないことをいう。
(uniformity)
The composition of the present invention is preferably in a uniform liquid state at room temperature in order to improve stability in a wet film formation process, for example, ejection stability from a nozzle in an inkjet film formation method. The uniform liquid state at room temperature means that the composition is a liquid consisting of a uniform phase and does not contain a particle component having a particle size of 0.1 μm or more in the composition.
(物性)
 本発明の組成物の粘度が極端に低粘度の場合は、例えば成膜工程における過度の液膜流動による塗面不均一、インクジェット成膜におけるノズル吐出不良等が起こりやすくなる。本発明の組成物の粘度が極端に高粘度の場合は、インクジェット成膜におけるノズル目詰まり等が起こりやすくなる。
(physical properties)
When the viscosity of the composition of the present invention is extremely low, for example, excessive liquid film flow in the film formation process tends to cause non-uniformity of the coated surface, nozzle discharge failure in ink jet film formation, and the like. If the viscosity of the composition of the present invention is extremely high, nozzle clogging and the like tend to occur during inkjet film formation.
 このため、本発明の組成物の25℃における粘度は、通常2mPa・s以上、好ましくは3mPa・s以上、より好ましくは5mPa・s以上であり、通常1000mPa・s以下、好ましくは100mPa・s以下、より好ましくは50mPa・s以下である。 Therefore, the viscosity of the composition of the present invention at 25° C. is usually 2 mPa·s or more, preferably 3 mPa·s or more, more preferably 5 mPa·s or more, and usually 1000 mPa·s or less, preferably 100 mPa·s or less. , more preferably 50 mPa·s or less.
 また、本発明の組成物の表面張力が高い場合は、基板に対する成膜用液の濡れ性が低下する、液膜のレベリング性が悪く、乾燥時の成膜面乱れが起こりやすくなる等の問題が発生する場合がある In addition, when the surface tension of the composition of the present invention is high, the wettability of the film-forming liquid to the substrate is lowered, the leveling property of the liquid film is poor, and the film-forming surface is easily disturbed during drying. may occur
 このため、本発明の組成物の20℃における表面張力は、通常50mN/m未満、好ましくは40mN/m未満である。 Therefore, the surface tension of the composition of the present invention at 20°C is usually less than 50 mN/m, preferably less than 40 mN/m.
 更に、本発明の組成物の蒸気圧が高い場合は、溶剤の蒸発による溶質濃度の変化等の問題が起こりやすくなる場合がある。 Furthermore, when the vapor pressure of the composition of the present invention is high, problems such as changes in solute concentration due to evaporation of the solvent may easily occur.
 このため、本発明の組成物の25℃における蒸気圧は、通常50mmHg以下、好ましくは10mmHg以下、より好ましくは1mmHg以下である。 Therefore, the vapor pressure of the composition of the present invention at 25°C is usually 50 mmHg or less, preferably 10 mmHg or less, more preferably 1 mmHg or less.
[成膜方法]
 本発明の組成物による成膜方法は、湿式成膜法である。湿式成膜法とは、組成物を塗布して液膜を形成し、乾燥して有機溶媒を除去し、膜を形成する方法である。本発明の組成物が有機電界発光素子用組成物である場合、かかる組成物を湿式成膜法にて成膜する工程を有する薄膜形成方法により有機電界発光素子の有機層を形成することが出来る。また、本発明の組成物が発光材料を含む場合、この方法で発光層を形成することが出来る。塗布方法としては、例えば、スピンコート法、ディップコート法、ダイコート法、バーコート法、ブレードコート法、ロールコート法、スプレーコート法、キャピラリーコート法、インクジェット法、ノズルプリンティング法、スクリーン印刷法、グラビア印刷法、フレキソ印刷法等の湿式で成膜させる方法を採用し、塗布膜を乾燥させて膜形成を行う方法をいう。これらの成膜方法の中でも、スピンコート法、スプレーコート法、インクジェット法、ノズルプリンティング法等が好ましい。有機電界発光素子を備えた有機EL表示装置を製造する場合は、インクジェット法又はノズルプリンティング法が好ましく、インクジェット法が特に好ましい。
[Deposition method]
A film forming method using the composition of the present invention is a wet film forming method. The wet film-forming method is a method in which a composition is applied to form a liquid film, dried to remove the organic solvent, and a film is formed. When the composition of the present invention is a composition for an organic electroluminescence device, the organic layer of the organic electroluminescence device can be formed by a thin film forming method comprising a step of forming a film from the composition by a wet film formation method. . Moreover, when the composition of the present invention contains a light-emitting material, a light-emitting layer can be formed by this method. Examples of coating methods include spin coating, dip coating, die coating, bar coating, blade coating, roll coating, spray coating, capillary coating, inkjet, nozzle printing, screen printing, and gravure. It refers to a method of forming a film by employing a wet film-forming method such as a printing method or a flexographic printing method, and drying the coating film. Among these film forming methods, the spin coating method, the spray coating method, the inkjet method, the nozzle printing method, and the like are preferable. In the case of manufacturing an organic EL display device having an organic electroluminescence element, an inkjet method or a nozzle printing method is preferable, and an inkjet method is particularly preferable.
 乾燥方法は特に限定されないが、自然乾燥、減圧乾燥、加熱乾燥、又は、加熱しながらの減圧乾燥を適宜用いることができる。加熱乾燥は、自然乾燥又は減圧乾燥の後、更に残留有機溶媒を除去するために実施してもよい。 Although the drying method is not particularly limited, natural drying, reduced pressure drying, heat drying, or reduced pressure drying while heating can be used as appropriate. Heat drying may be carried out in order to further remove residual organic solvent after natural drying or vacuum drying.
 減圧乾燥は、発光層形成用組成物に含まれる有機溶媒の蒸気圧以下に減圧することが好ましい。 It is preferable that the reduced pressure drying is carried out at a pressure equal to or lower than the vapor pressure of the organic solvent contained in the composition for forming the light-emitting layer.
 加熱する場合は、加熱方法は特に限定されないが、ホットプレートによる加熱、オーブン内での加熱、赤外線加熱等を用いることができる。加熱時間は通常80℃以上、100℃以上が好ましく、110℃以上がさらに好ましく、また、200℃以下が好ましく、150℃以下がさらに好ましい。 When heating, the heating method is not particularly limited, but heating with a hot plate, heating in an oven, infrared heating, etc. can be used. The heating time is generally 80° C. or higher, preferably 100° C. or higher, more preferably 110° C. or higher, and preferably 200° C. or lower, more preferably 150° C. or lower.
 加熱時間は、通常1分以上であり、2分以上が好ましく、通常60分以下であり、30分以下が好ましく、20分以下がさらに好ましい。 The heating time is usually 1 minute or longer, preferably 2 minutes or longer, usually 60 minutes or shorter, preferably 30 minutes or shorter, and more preferably 20 minutes or shorter.
[電子輸送層]
 後述するように、有機電界発光素子では、発光層上に電子輸送層を形成する。本発明においては、本発明の組成物で発光層を形成し、該発光層上に接して電子輸送層を湿式成膜法にて形成することが好ましい。
[Electron transport layer]
As will be described later, in the organic electroluminescent device, an electron transport layer is formed on the light emitting layer. In the present invention, it is preferable to form a light-emitting layer from the composition of the present invention and form an electron transport layer on the light-emitting layer by a wet film-forming method.
[電子輸送層形成用組成物]
 本発明における電子輸送層形成用組成物は、少なくとも電子輸送層材料及び溶剤を含む。電子輸送層形成用組成物の溶剤としては、アルコール系溶剤が好ましい。電子輸送層形成用組成物の電子輸送層材料としては、前記アルコール系溶剤に可溶である電子輸送材料が好ましい。
[Composition for Forming Electron Transport Layer]
The composition for forming an electron transport layer in the invention contains at least an electron transport layer material and a solvent. As the solvent for the composition for forming the electron transport layer, an alcohol-based solvent is preferable. As the electron transport layer material of the electron transport layer-forming composition, an electron transport material soluble in the alcohol solvent is preferable.
 アルコール系溶剤としては、炭素数3以上の脂肪族アルコールが好ましい。電子輸送材料を溶解しやすい点及び、適度に高い沸点を有し、平坦な膜を形成しやすい点から、炭素数6以上の脂肪族アルコールが更に好ましい。 As the alcohol-based solvent, aliphatic alcohols with 3 or more carbon atoms are preferred. Aliphatic alcohols having 6 or more carbon atoms are more preferable because they easily dissolve the electron-transporting material, have a moderately high boiling point, and easily form a flat film.
 好ましい脂肪族アルコール溶媒としては、1-ブタノール、イソブチルアルコール、2-ヘキサノール、1,2-ヘキサンジオール、1-ヘキサノール、1-ヘプタノール、3,5,5-トリメチルー1-ヘキサノール、2-メチルー2-ペンタノール、4-メチルー3-ヘプタノール、3-メチルー2-ペンタノール、4-メチルー1-ペンタノール、1-ノネンー3-オール、4-ヘプタノール、1-メトキシー2-プロパノール、3-メチルー1-ペンタノール、4-オクタノール、3,3-ジエトキシー1-プルパノール、3-(メチルアミノ)-1-プロパノール等が挙げられる。溶剤としてこれらアルコールから2種以上混合してもよい。 Preferred aliphatic alcohol solvents include 1-butanol, isobutyl alcohol, 2-hexanol, 1,2-hexanediol, 1-hexanol, 1-heptanol, 3,5,5-trimethyl-1-hexanol, 2-methyl-2- Pentanol, 4-methyl-3-heptanol, 3-methyl-2-pentanol, 4-methyl-1-pentanol, 1-nonen-3-ol, 4-heptanol, 1-methoxy-2-propanol, 3-methyl-1-pentane tanol, 4-octanol, 3,3-diethoxy-1-propanol, 3-(methylamino)-1-propanol and the like. As a solvent, two or more of these alcohols may be mixed.
[湿式成膜による電子輸送層形成方法]
 湿式成膜による電子輸送層形成方法は、前記発光層の成膜方法で述べた湿式成膜に記載の方法を用いることが好ましい。
[Method for Forming Electron Transport Layer by Wet Film Formation]
As the method for forming the electron transport layer by wet film formation, it is preferable to use the method described in the wet film formation described in the film formation method for the light-emitting layer.
[有機電界発光素子]
 本発明の有機電界発光素子の構造の一例として、図1に有機電界発光素子8の構造例の模式図(断面)を示す。図1において、1は基板、2は陽極、3は正孔注入層、4は正孔輸送層、5は発光層、6は電子輸送層、7は陰極を各々表す。
[Organic electroluminescent device]
As an example of the structure of the organic electroluminescence device of the present invention, FIG. 1 shows a schematic diagram (cross section) of a structural example of the organic electroluminescence device 8 . In FIG. 1, 1 is a substrate, 2 is an anode, 3 is a hole injection layer, 4 is a hole transport layer, 5 is a light emitting layer, 6 is an electron transport layer, and 7 is a cathode.
[基板]
 基板1は、有機電界発光素子の支持体となるものであり、通常、石英やガラスの板、金属板や金属箔、プラスチックフィルムやシート等が用いられる。これらのうち、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホン等の透明な合成樹脂の板が好ましい。基板は、外気による有機電界発光素子の劣化が起こり難いことからガスバリア性の高い材質とするのが好ましい。このため、特に合成樹脂製の基板等のようにガスバリア性の低い材質を用いる場合は、基板の少なくとも片面に緻密なシリコン酸化膜等を設けてガスバリア性を上げるのが好ましい。
[substrate]
The substrate 1 serves as a support for the organic electroluminescence element, and is usually made of a quartz or glass plate, a metal plate or metal foil, a plastic film or sheet, or the like. Among these, glass plates and transparent synthetic resin plates such as polyester, polymethacrylate, polycarbonate and polysulfone are preferred. The substrate is preferably made of a material having a high gas barrier property because deterioration of the organic electroluminescence element due to outside air is unlikely to occur. Therefore, especially when using a material having low gas barrier properties such as a synthetic resin substrate, it is preferable to provide a dense silicon oxide film or the like on at least one side of the substrate to improve the gas barrier properties.
[陽極]
 陽極2は、発光層5側の層に正孔を注入する機能を担う。
[anode]
The anode 2 has the function of injecting holes into the layer on the light-emitting layer 5 side.
 陽極2は、通常、アルミニウム、金、銀、ニッケル、パラジウム、白金等の金属;インジウム及び/又はスズの酸化物等の金属酸化物;ヨウ化銅等のハロゲン化金属;カーボンブラック及びポリ(3-メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等により構成される。 Anode 2 is typically made of metals such as aluminum, gold, silver, nickel, palladium, platinum; metal oxides such as indium and/or tin oxide; metal halides such as copper iodide; carbon black and poly(3 -methylthiophene), polypyrrole, and polyaniline.
 陽極2の形成は、通常、スパッタリング法、真空蒸着法等の乾式法により行われることが多い。また、銀等の金属微粒子、ヨウ化銅等の微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等を用いて陽極を形成する場合には、適当なバインダー樹脂溶液に分散させて、基板上に塗布することにより形成することもできる。また、導電性高分子の場合は、電解重合により直接基板上に薄膜を形成したり、基板上に導電性高分子を塗布して陽極を形成することもできる(Appl.Phys.Lett.,60巻,2711頁,1992年)。 The formation of the anode 2 is usually carried out by dry methods such as sputtering and vacuum deposition. In addition, when the anode is formed using metal fine particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., an appropriate binder resin solution may be used. It can also be formed by dispersing and coating on a substrate. In the case of a conductive polymer, a thin film can be formed directly on a substrate by electrolytic polymerization, or an anode can be formed by coating a conductive polymer on a substrate (Appl. Phys. Lett., 60 2711, 1992).
 陽極2は、通常、単層構造であるが、適宜、積層構造としてもよい。陽極2が積層構造である場合、1層目の陽極上に異なる導電材料を積層してもよい。 The anode 2 usually has a single-layer structure, but may have a laminated structure as appropriate. When the anode 2 has a laminated structure, different conductive materials may be laminated on the first layer of the anode.
 陽極2の厚みは、必要とされる透明性と材質等に応じて決めればよい。特に高い透明性が必要とされる場合は、可視光の透過率が60%以上となる厚みが好ましく、可視光の透過率が80%以上となる厚みが更に好ましい。陽極2の厚みは、通常5nm以上、好ましくは10nm以上であり、また、通常1000nm以下、好ましくは500nm以下である。一方、透明性が不要な場合は、陽極2の厚みは必要な強度等に応じて任意に厚みとすればよく、この場合、陽極2は基板と同一の厚みでもよい。 The thickness of the anode 2 may be determined according to the required transparency and material. When particularly high transparency is required, the thickness is preferably such that the visible light transmittance is 60% or more, and more preferably the thickness is such that the visible light transmittance is 80% or more. The thickness of the anode 2 is usually 5 nm or more, preferably 10 nm or more, and usually 1000 nm or less, preferably 500 nm or less. On the other hand, when transparency is not required, the thickness of the anode 2 may be arbitrarily set according to the required strength, etc. In this case, the thickness of the anode 2 may be the same as that of the substrate.
 陽極2の表面に他の層を成膜する場合は、成膜前に、紫外線/オゾン、酸素プラズマ、アルゴンプラズマ等の処理を施すことにより、陽極2上の不純物を除去すると共に、そのイオン化ポテンシャルを調整して正孔注入性を向上させておくことが好ましい。 When another layer is formed on the surface of the anode 2, the impurity on the anode 2 is removed and its ionization potential is changed by treating with ultraviolet rays/ozone, oxygen plasma, argon plasma, etc. before the film formation. is preferably adjusted to improve the hole injection property.
[正孔注入層]
 陽極2側から発光層5側に正孔を輸送する機能を担う層は、通常、正孔注入輸送層又は正孔輸送層と呼ばれる。そして、陽極2側から発光層5側に正孔を輸送する機能を担う層が2層以上ある場合に、より陽極側に近い方の層を正孔注入層3と呼ぶことがある。正孔注入層3は、陽極2から発光層5側に正孔を輸送する機能を強化する点で、形成されることが好ましい。正孔注入層3を形成する場合、通常、正孔注入層3は、陽極2上に形成される。
[Hole injection layer]
A layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side is usually called a hole injection transport layer or a hole transport layer. When there are two or more layers that function to transport holes from the anode 2 side to the light emitting layer 5 side, the layer closer to the anode side may be called the hole injection layer 3 . The hole injection layer 3 is preferably formed in order to enhance the function of transporting holes from the anode 2 to the light emitting layer 5 side. When forming the hole injection layer 3 , the hole injection layer 3 is usually formed on the anode 2 .
 正孔注入層3の膜厚は、通常1nm以上、好ましくは5nm以上、また、通常1000nm以下、好ましくは500nm以下である。 The thickness of the hole injection layer 3 is usually 1 nm or more, preferably 5 nm or more, and usually 1000 nm or less, preferably 500 nm or less.
 正孔注入層の形成方法は、真空蒸着法でも、湿式成膜法でもよい。成膜性が優れる点では、湿式成膜法により形成することが好ましい。 The method for forming the hole injection layer may be a vacuum deposition method or a wet film formation method. From the viewpoint of excellent film-forming properties, it is preferable to form the film by a wet film-forming method.
 以下に、一般的な正孔注入層の形成方法について説明するが、本発明の有機電界発光素子において、正孔注入層は、上記の有機電界発光素子用組成物を用いて湿式成膜法により形成されることが好ましい。 A general method for forming a hole injection layer will be described below. preferably formed.
 正孔注入層形成用組成物は、通常、正孔注入層3となる正孔注入層用正孔輸送性化合物を含む。また、正孔注入層形成用組成物は、湿式成膜法の場合は、通常、更に溶媒も含む。正孔注入層形成用組成物は、正孔輸送性が高く、注入された正孔を効率よく輸送できるのが好ましい。このため、正孔移動度が大きく、トラップとなる不純物が製造時や使用時等に発生し難いことが好ましい。また、安定性に優れ、イオン化ポテンシャルが小さく、可視光に対する透明性が高いことが好ましい。特に、正孔注入層が発光層と接する場合は、発光層からの発光を消光しないものや発光層とエキサイプレックスを形成して、発光効率を低下させないものが好ましい。 The composition for forming a hole injection layer usually contains a hole-transporting compound for a hole-injection layer that becomes the hole-injection layer 3 . In the case of the wet film-forming method, the hole injection layer-forming composition usually further contains a solvent. It is preferable that the composition for forming a hole injection layer has a high hole-transporting property and can efficiently transport the injected holes. For this reason, it is preferable that the hole mobility is large and that impurities that become traps are less likely to occur during manufacture or use. Moreover, it is preferable that it has excellent stability, a small ionization potential, and a high transparency to visible light. In particular, when the hole injection layer is in contact with the light-emitting layer, it is preferable to use a material that does not quench light emitted from the light-emitting layer or that forms an exciplex with the light-emitting layer so as not to lower the light emission efficiency.
 正孔注入層用正孔輸送性化合物としては、陽極から正孔注入層への電荷注入障壁の観点から、4.5eV~6.0eVのイオン化ポテンシャルを有する化合物が好ましい。このような正孔輸送性化合物の例としては、芳香族アミン系化合物、フタロシアニン系化合物、ポルフィリン系化合物、オリゴチオフェン系化合物、ポリチオフェン系化合物、ベンジルフェニル系化合物、フルオレン基で3級アミンを連結した化合物、ヒドラゾン系化合物、シラザン系化合物、キナクリドン系化合物等が挙げられる。 The hole-transporting compound for the hole-injection layer is preferably a compound having an ionization potential of 4.5 eV to 6.0 eV from the viewpoint of a charge injection barrier from the anode to the hole-injection layer. Examples of such hole-transporting compounds include aromatic amine-based compounds, phthalocyanine-based compounds, porphyrin-based compounds, oligothiophene-based compounds, polythiophene-based compounds, benzylphenyl-based compounds, and tertiary amines linked with fluorene groups. compounds, hydrazone-based compounds, silazane-based compounds, quinacridone-based compounds, and the like.
 上述の例示化合物のうち、非晶質性及び可視光透過性の点から、芳香族アミン化合物が好ましく、芳香族三級アミン化合物が特に好ましい。ここで、芳香族三級アミン化合物とは、芳香族三級アミン構造を有する化合物であって、芳香族三級アミン由来の基を有する化合物も含む。 Among the exemplified compounds described above, aromatic amine compounds are preferred, and aromatic tertiary amine compounds are particularly preferred, in terms of amorphousness and visible light transparency. Here, the aromatic tertiary amine compound is a compound having an aromatic tertiary amine structure, and includes a compound having a group derived from an aromatic tertiary amine.
 芳香族三級アミン化合物の種類は、特に制限されないが、表面平滑化効果により均一な発光を得やすい点から、重量平均分子量が1000以上、1000000以下の高分子化合物(繰り返し単位が連なる重合型化合物)を用いることが好ましい。 The type of the aromatic tertiary amine compound is not particularly limited, but from the viewpoint of easily obtaining uniform light emission due to the surface smoothing effect, a polymer compound having a weight average molecular weight of 1000 or more and 1000000 or less (polymeric compound in which repeating units are linked) ) is preferably used.
 湿式成膜法により正孔注入層3を形成する場合、通常、正孔注入層となる材料を溶解できる溶剤(正孔注入層用溶剤)と混合して成膜用の組成物(正孔注入層形成用組成物)を調製する。そして、この正孔注入層形成用組成物を正孔注入層の下層に該当する層(通常は、陽極)上に塗布して成膜し、乾燥させることにより正孔注入層3を形成する。 When the hole injection layer 3 is formed by a wet film-forming method, a film-forming composition (hole injection Layer-forming composition) is prepared. Then, the hole injection layer 3 is formed by coating the hole injection layer forming composition on the layer (usually the anode) corresponding to the lower layer of the hole injection layer to form a film and drying it.
 正孔注入層形成用組成物中における正孔輸送性化合物の濃度は、本発明の効果を著しく損なわない限り任意であるが、膜厚の均一性の点では、低い方が好ましく、また、一方、正孔注入層に欠陥が生じ難い点では、高い方が好ましい。具体的には、0.01質量%以上であるのが好ましく、0.1質量%以上であるのが更に好ましく、0.5質量%以上であるのが特に好ましく、また、一方、70質量%以下であるのが好ましく、60質量%以下であるのが更に好ましく、50質量%以下であるのが特に好ましい。 The concentration of the hole-transporting compound in the hole-injection layer-forming composition is arbitrary as long as it does not significantly impair the effects of the present invention. , a higher value is preferable from the viewpoint that defects are less likely to occur in the hole injection layer. Specifically, it is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, particularly preferably 0.5% by mass or more, and on the other hand, 70% by mass. is preferably 60% by mass or less, and particularly preferably 50% by mass or less.
 溶剤としては、例えば、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤、アミド系溶剤等が挙げられる。 Examples of solvents include ether-based solvents, ester-based solvents, aromatic hydrocarbon-based solvents, and amide-based solvents.
 エーテル系溶剤としては、例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコール-1-モノメチルエーテルアセタート(PGMEA)等の脂肪族エーテル及び1,2-ジメトキシベンゼン、1,3-ジメトキシベンゼン、アニソール、フェネトール、2-メトキシトルエン、3-メトキシトルエン、4-メトキシトルエン、2,3-ジメチルアニソール、2,4-ジメチルアニソール等の芳香族エーテル等が挙げられる。 Examples of ether-based solvents include aliphatic ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol-1-monomethyl ether acetate (PGMEA), 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, and anisole. , phenetole, 2-methoxytoluene, 3-methoxytoluene, 4-methoxytoluene, 2,3-dimethylanisole and 2,4-dimethylanisole.
 エステル系溶剤としては、例えば、酢酸フェニル、プロピオン酸フェニル、安息香酸メチル、安息香酸エチル、安息香酸プロピル、安息香酸n-ブチル等の芳香族エステル等が挙げられる。 Examples of ester-based solvents include aromatic esters such as phenyl acetate, phenyl propionate, methyl benzoate, ethyl benzoate, propyl benzoate, and n-butyl benzoate.
 芳香族炭化水素系溶剤としては、例えば、トルエン、キシレン、シクロヘキシルベンゼン、3-イソプロピルビフェニル、1,2,3,4-テトラメチルベンゼン、1,4-ジイソプロピルベンゼン、シクロヘキシルベンゼン、メチルナフタレン等が挙げられる。 Examples of aromatic hydrocarbon solvents include toluene, xylene, cyclohexylbenzene, 3-isopropylbiphenyl, 1,2,3,4-tetramethylbenzene, 1,4-diisopropylbenzene, cyclohexylbenzene, and methylnaphthalene. be done.
 アミド系溶剤としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等が挙げられる。 Examples of amide-based solvents include N,N-dimethylformamide and N,N-dimethylacetamide.
 これらの他、ジメチルスルホキシド等も用いることができる。 In addition to these, dimethyl sulfoxide and the like can also be used.
 正孔注入層3の湿式成膜法による形成は、通常、正孔注入層形成用組成物を調製後に、これを、正孔注入層3の下層に該当する層(通常は、陽極2)上に塗布成膜し、乾燥することにより行われる。 Formation of the hole injection layer 3 by a wet film-forming method is usually carried out by preparing a composition for forming a hole injection layer and then applying it on a layer corresponding to the lower layer of the hole injection layer 3 (usually the anode 2). It is carried out by coating and forming a film on the surface and drying it.
 正孔注入層3は、通常、成膜後に、加熱や減圧乾燥等により塗布膜を乾燥させる。 After forming the hole injection layer 3, the coating film is usually dried by heating, drying under reduced pressure, or the like.
 真空蒸着法により正孔注入層3を形成する場合には、通常、正孔注入層3の構成材料の1種類又は2種類以上を真空容器内に設置された坩堝に入れ(2種類以上の材料を用いる場合は、通常各々を別々の坩堝に入れ)、真空容器内を真空ポンプで10-4Pa程度まで排気する。その後、坩堝を加熱して(2種類以上の材料を用いる場合は、通常各々の坩堝を加熱して)、坩堝内の材料の蒸発量を制御しながら蒸発させ(2種類以上の材料を用いる場合は、通常それぞれ独立して蒸発量を制御しながら蒸発させ)、坩堝に向き合って置かれた基板上の陽極上に正孔注入層を形成する。なお、2種類以上の材料を用いる場合は、それらの混合物を坩堝に入れ、加熱、蒸発させて正孔注入層を形成することもできる。 When the hole injection layer 3 is formed by a vacuum deposition method, one or more of the constituent materials of the hole injection layer 3 are usually placed in a crucible placed in a vacuum vessel (two or more materials are placed in separate crucibles), and the inside of the vacuum chamber is evacuated to about 10 −4 Pa by a vacuum pump. After that, the crucible is heated (usually each crucible is heated when two or more materials are used) to evaporate while controlling the amount of evaporation of the material in the crucible (when two or more materials are used, (usually independently controlling the amount of evaporation) to form a hole-injecting layer on the anode on the substrate placed facing the crucible. When two or more materials are used, a mixture thereof can be placed in a crucible, heated and evaporated to form the hole injection layer.
 蒸着時の真空度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1×10-6Torr(0.13×10-4Pa)以上、9.0×10-6Torr(12.0×10-4Pa)以下である。蒸着速度は、本発明の効果を著しく損なわない限り限定されないが、通常0.1Å/秒以上、5.0Å/秒以下である。蒸着時の成膜温度は、本発明の効果を著しく損なわない限り限定されないが、好ましくは10℃以上、50℃以下で行われる。 The degree of vacuum during vapor deposition is not limited as long as it does not significantly impair the effects of the present invention. 12.0×10 −4 Pa) or less. The vapor deposition rate is not limited as long as it does not significantly impair the effects of the present invention, but is usually 0.1 Å/second or more and 5.0 Å/second or less. The film formation temperature during vapor deposition is not limited as long as the effects of the present invention are not significantly impaired, but is preferably 10° C. or higher and 50° C. or lower.
 なお、正孔注入層3は、後述の正孔輸送層4と同様に架橋されていてもよい。 Note that the hole injection layer 3 may be crosslinked in the same manner as the hole transport layer 4 described later.
[正孔輸送層]
 正孔輸送層4は、陽極2側から発光層5側に正孔を輸送する機能を担う層である。正孔輸送層4は、本発明の有機電界発光素子では、必須の層では無いが、陽極2から発光層5に正孔を輸送する機能を強化する点では、この層を形成することが好ましい。正孔輸送層4を形成する場合、通常、正孔輸送層4は、陽極2と発光層5の間に形成される。また、上述の正孔注入層3がある場合は、正孔注入層3と発光層5の間に形成される。
[Hole transport layer]
The hole transport layer 4 is a layer that functions to transport holes from the anode 2 side to the light emitting layer 5 side. The hole transport layer 4 is not an essential layer in the organic electroluminescent device of the present invention, but it is preferable to form this layer in terms of enhancing the function of transporting holes from the anode 2 to the light emitting layer 5. . When forming the hole transport layer 4 , the hole transport layer 4 is usually formed between the anode 2 and the light emitting layer 5 . Further, when the hole injection layer 3 described above is present, it is formed between the hole injection layer 3 and the light emitting layer 5 .
 正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、一方、通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer 4 is usually 5 nm or more, preferably 10 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
 正孔輸送層4を形成する材料としては、正孔輸送性が高く、かつ、注入された正孔を効率よく輸送することができる材料であることが好ましい。そのために、イオン化ポテンシャルが小さく、可視光の光に対して透明性が高く、正孔移動度が大きく、安定性に優れ、トラップとなる不純物が製造時や使用時に発生しにくいことが好ましい。また、多くの場合、正孔輸送層4は、発光層5に接するため、発光層5からの発光を消光したり、発光層5との間でエキサイプレックスを形成して効率を低下させたりしないことが好ましい。 A material that forms the hole transport layer 4 is preferably a material that has a high hole transport property and can efficiently transport the injected holes. Therefore, it is preferable that the ionization potential is low, the transparency to visible light is high, the hole mobility is high, the stability is excellent, and impurities that act as traps are less likely to occur during manufacture or use. In many cases, since the hole transport layer 4 is in contact with the light emitting layer 5, it does not quench the light emitted from the light emitting layer 5 or form an exciplex with the light emitting layer 5 to reduce the efficiency. is preferred.
 このような正孔輸送層4の材料としては、従来、正孔輸送層の構成材料として用いられている材料であればよく、例えば、前述の正孔注入層3に使用される正孔輸送性化合物として例示したものが挙げられる。また、アリールアミン誘導体、フルオレン誘導体、スピロ誘導体、カルバゾール誘導体、ピリジン誘導体、ピラジン誘導体、ピリミジン誘導体、トリアジン誘導体、キノリン誘導体、フェナントロリン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、シロール誘導体、オリゴチオフェン誘導体、縮合多環芳香族誘導体、金属錯体などが挙げられる。 As the material for such a hole transport layer 4, any material can be used as long as it is a material conventionally used as a constituent material of a hole transport layer. Examples of compounds include those exemplified. Also, arylamine derivatives, fluorene derivatives, spiro derivatives, carbazole derivatives, pyridine derivatives, pyrazine derivatives, pyrimidine derivatives, triazine derivatives, quinoline derivatives, phenanthroline derivatives, phthalocyanine derivatives, porphyrin derivatives, silole derivatives, oligothiophene derivatives, condensed polycyclic aromatic group derivatives, metal complexes, and the like.
 また、例えば、ポリビニルカルバゾール誘導体、ポリアリールアミン誘導体、ポリビニルトリフェニルアミン誘導体、ポリフルオレン誘導体、ポリアリーレン誘導体、テトラフェニルベンジジンを含有するポリアリーレンエーテルサルホン誘導体、ポリアリーレンビニレン誘導体、ポリシロキサン誘導体、ポリチオフェン誘導体、ポリ(p-フェニレンビニレン)誘導体等が挙げられる。これらは、交互共重合体、ランダム重合体、ブロック重合体又はグラフト共重合体のいずれであってもよい。また、主鎖に枝分かれがあり末端部が3つ以上ある高分子や、所謂デンドリマーであってもよい。 Also, for example, polyvinylcarbazole derivatives, polyarylamine derivatives, polyvinyltriphenylamine derivatives, polyfluorene derivatives, polyarylene derivatives, polyarylene ether sulfone derivatives containing tetraphenylbenzidine, polyarylene vinylene derivatives, polysiloxane derivatives, polythiophenes. derivatives, poly(p-phenylene vinylene) derivatives and the like. These may be alternating copolymers, random polymers, block polymers or graft copolymers. Also, a polymer having a branched main chain and three or more terminal portions, or a so-called dendrimer may be used.
 中でも、ポリアリールアミン誘導体やポリアリーレン誘導体が好ましい。
 ポリアリールアミン誘導体としては、下記式(II)で表される繰り返し単位を含む重合体が好ましい。特に、下記式(II)で表される繰り返し単位からなる重合体が好ましく、この場合、繰り返し単位それぞれにおいて、Ar又はArが異なっているものであってもよい。
Among them, polyarylamine derivatives and polyarylene derivatives are preferred.
As the polyarylamine derivative, a polymer containing a repeating unit represented by the following formula (II) is preferred. In particular, a polymer composed of repeating units represented by the following formula (II) is preferable, and in this case, Ar a or Ar b may be different in each repeating unit.
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000076
(式(II)中、Ar及びArは、それぞれ独立して、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。) (In formula (II), Ar a and Ar b each independently represent an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group .)
 ポリアリーレン誘導体としては、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基などのアリーレン基をその繰り返し単位に有する重合体が挙げられる。 Examples of polyarylene derivatives include polymers having arylene groups such as optionally substituted aromatic hydrocarbon groups or optionally substituted aromatic heterocyclic groups in their repeating units. .
 ポリアリーレン誘導体としては、下記式(III-1)及び/又は下記式(III-2)からなる繰り返し単位を有する重合体が好ましい。 As the polyarylene derivative, a polymer having repeating units represented by the following formula (III-1) and/or the following formula (III-2) is preferable.
Figure JPOXMLDOC01-appb-C000077
Figure JPOXMLDOC01-appb-C000077
(式(III-1)中、R、R、R及びRは、それぞれ独立に、アルキル基、アルコキシ基、フェニルアルキル基、フェニルアルコキシ基、フェニル基、フェノキシ基、アルキルフェニル基、アルコキシフェニル基、アルキルカルボニル基、アルコキシカルボニル基又はカルボキシ基を表す。t及びsは、それぞれ独立に、0~3の整数を表す。t又はsが2以上の場合、一分子中に含まれる複数のR又はRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。) (In formula (III-1), R a , R b , R c and R d are each independently an alkyl group, an alkoxy group, a phenylalkyl group, a phenylalkoxy group, a phenyl group, a phenoxy group, an alkylphenyl group, represents an alkoxyphenyl group, an alkylcarbonyl group, an alkoxycarbonyl group or a carboxy group, and t and s each independently represents an integer of 0 to 3. When t or s is 2 or more, a plurality of groups contained in one molecule may be the same or different, and adjacent Ra or Rb may form a ring. )
Figure JPOXMLDOC01-appb-C000078
Figure JPOXMLDOC01-appb-C000078
(式(III-2)中、R及びRは、それぞれ独立に、上記式(III-1)におけるR、R、R又はRと同義である。r及びuは、それぞれ独立に、0~3の整数を表す。r又はuが2以上の場合、一分子中に含まれる複数のR及びRは同一であっても異なっていてもよく、隣接するR又はR同士で環を形成していてもよい。Xは、5員環又は6員環を構成する原子又は原子群を表す。) (In formula (III-2), R e and R f are each independently synonymous with R a , R b , R c or R d in formula (III-1) above. r and u are each independently represents an integer of 0 to 3. When r or u is 2 or more, a plurality of R e and R f contained in one molecule may be the same or different, and adjacent R e or R f may form a ring together, and X represents an atom or a group of atoms constituting a 5- or 6-membered ring.)
 Xの具体例としては、酸素原子、置換基を有していてもよいホウ素原子、置換基を有していてもよい窒素原子、置換基を有していてもよいケイ素原子、置換基を有していてもよいリン原子、置換基を有していてもよいイオウ原子、置換基を有していてもよい炭素原子又はこれらが結合してなる基である。 Specific examples of X include an oxygen atom, an optionally substituted boron atom, an optionally substituted nitrogen atom, an optionally substituted silicon atom, and an optionally substituted an optionally substituted phosphorus atom, an optionally substituted sulfur atom, an optionally substituted carbon atom, or a group formed by combining these atoms.
 また、ポリアリーレン誘導体としては、上記式(III-1)及び/又は上記式(III-2)からなる繰り返し単位に加えて、さらに下記式(III-3)で表される繰り返し単位を有することが好ましい。 Further, the polyarylene derivative has a repeating unit represented by the following formula (III-3) in addition to the repeating unit represented by the above formula (III-1) and/or the above formula (III-2). is preferred.
Figure JPOXMLDOC01-appb-C000079
Figure JPOXMLDOC01-appb-C000079
(式(III-3)中、Ar~Arは、それぞれ独立に、置換基を有していてもよい芳香族炭化水素基又は置換基を有していてもよい芳香族複素環基を表す。v及びwは、それぞれ独立に0又は1を表す。) (In formula (III-3), Ar c to Ar i each independently represent an optionally substituted aromatic hydrocarbon group or an optionally substituted aromatic heterocyclic group; and v and w each independently represent 0 or 1.)
 上記式(III-1)~(III-3)の具体例及びポリアリーレン誘導体の具体例等は、日本国特開2008-98619号公報に記載のものなどが挙げられる。 Specific examples of the above formulas (III-1) to (III-3) and specific examples of polyarylene derivatives include those described in Japanese Patent Application Laid-Open No. 2008-98619.
 湿式成膜法で正孔輸送層4を形成する場合は、上記正孔注入層3の形成と同様にして、正孔輸送層形成用組成物を調製した後、湿式成膜後、加熱乾燥させる。 When the hole transport layer 4 is formed by a wet film formation method, a composition for forming a hole transport layer is prepared in the same manner as in the formation of the hole injection layer 3, and after wet film formation, heat drying is performed. .
 正孔輸送層形成用組成物は、上述の正孔輸送性化合物の他、溶剤を含有する。用いる溶剤は上記正孔注入層形成用組成物に用いたものと同様である。また、成膜条件、加熱乾燥条件等も正孔注入層3の形成の場合と同様である。 The hole-transporting layer-forming composition contains a solvent in addition to the hole-transporting compound described above. The solvent to be used is the same as that used for the composition for forming the hole injection layer. Further, the film formation conditions, heat drying conditions, etc. are the same as in the case of forming the hole injection layer 3 .
 真空蒸着法により正孔輸送層を形成する場合もまた、その成膜条件等は上記正孔注入層3の形成の場合と同様である。 In the case of forming the hole transport layer by vacuum evaporation, the film forming conditions and the like are the same as in the case of forming the hole injection layer 3 described above.
 正孔輸送層4は、上記正孔輸送性化合物の他、各種の発光材料、電子輸送性化合物、バインダー樹脂、塗布性改良剤などを含有していてもよい。 The hole-transporting layer 4 may contain various light-emitting materials, electron-transporting compounds, binder resins, coatability improvers, etc., in addition to the above hole-transporting compounds.
 また、正孔輸送層4は、架橋性化合物を架橋して形成される層であってもよい。架橋性化合物は、架橋性基を有する化合物であって、架橋することにより網目状高分子化合物を形成する。 Further, the hole transport layer 4 may be a layer formed by cross-linking a cross-linking compound. The crosslinkable compound is a compound having a crosslinkable group, and forms a network polymer compound by crosslinking.
 この架橋性基の例を挙げると、オキセタン、エポキシなどの環状エーテル由来の基;ビニル基、トリフルオロビニル基、スチリル基、アクリル基、メタクリロイル、シンナモイル等の不飽和二重結合由来の基;ベンゾシクロブテン由来の基などが挙げられる。 Examples of crosslinkable groups include groups derived from cyclic ethers such as oxetane and epoxy; groups derived from unsaturated double bonds such as vinyl, trifluorovinyl, styryl, acryl, methacryloyl, and cinnamoyl; Examples thereof include groups derived from cyclobutene.
 架橋性化合物は、モノマー、オリゴマー、ポリマーのいずれであってもよい。架橋性化合物は1種のみを有していてもよく、2種以上を任意の組み合わせ及び比率で有していてもよい。 The crosslinkable compound may be a monomer, oligomer, or polymer. The crosslinkable compound may have only one type, or may have two or more types in any combination and ratio.
 架橋性化合物としては、架橋性基を有する正孔輸送性化合物を用いることが好ましい。正孔輸送性化合物としては、上記の例示したものが挙げられ、架橋性化合物としては、これら正孔輸送性化合物に対して、架橋性基が主鎖又は側鎖に結合しているものが挙げられる。特に架橋性基は、アルキレン基等の連結基を介して、主鎖に結合していることが好ましい。また、特に正孔輸送性化合物としては、架橋性基を有する繰り返し単位を含む重合体であることが好ましく、上記式(II)や式(III-1)~(III-3)に架橋性基が直接又は連結基を介して結合した繰り返し単位を有する重合体であることが好ましい。 A hole-transporting compound having a crosslinkable group is preferably used as the crosslinkable compound. Examples of the hole-transporting compound include those exemplified above, and examples of the cross-linking compound include those in which a cross-linking group is bonded to the main chain or side chain of these hole-transporting compounds. be done. In particular, the crosslinkable group is preferably bonded to the main chain via a linking group such as an alkylene group. In particular, the hole-transporting compound is preferably a polymer containing a repeating unit having a crosslinkable group. is preferably a polymer having repeating units linked directly or via a linking group.
 架橋性化合物を架橋して正孔輸送層4を形成するには、通常、架橋性化合物を溶剤に溶解又は分散した正孔輸送層形成用組成物を調製して、湿式成膜により成膜して架橋させる。 In order to form the hole transport layer 4 by cross-linking the cross-linking compound, a composition for forming a hole transport layer is usually prepared by dissolving or dispersing the cross-linking compound in a solvent, and the film is formed by wet film formation. to cross-link.
 このようにして形成される正孔輸送層4の膜厚は、通常5nm以上、好ましくは10nm以上であり、また、通常300nm以下、好ましくは100nm以下である。 The film thickness of the hole transport layer 4 thus formed is usually 5 nm or more, preferably 10 nm or more, and usually 300 nm or less, preferably 100 nm or less.
[発光層]
 発光層5は、一対の電極間に電界が与えられた時に、陽極2から注入される正孔と陰極7から注入される電子が再結合することにより励起され、発光する機能を担う層である。発光層5は、陽極2と陰極7の間に形成される層であり、発光層は、陽極の上に正孔注入層がある場合は、正孔注入層と陰極の間に形成され、陽極の上に正孔輸送層がある場合は、正孔輸送層と陰極の間に形成される。
[Light emitting layer]
The light-emitting layer 5 is a layer that functions to emit light by being excited by recombination of holes injected from the anode 2 and electrons injected from the cathode 7 when an electric field is applied between a pair of electrodes. . The light-emitting layer 5 is a layer formed between the anode 2 and the cathode 7, and the light-emitting layer is formed between the hole-injection layer and the cathode, if there is a hole-injection layer on the anode, and the anode If there is a hole-transport layer on top, it is formed between the hole-transport layer and the cathode.
 本発明における有機電界発光素子は、前記の通り、発光層として本発明の芳香族化合物及び発光材料を含むことが好ましい。 As described above, the organic electroluminescent device in the present invention preferably contains the aromatic compound and the luminescent material of the present invention as the luminescent layer.
 発光層5の膜厚は、本発明の効果を著しく損なわない限り任意であるが、膜に欠陥が生じ難い点では厚い方が好ましく、また、一方、薄い方が低駆動電圧としやすい点で好ましい。このため、3nm以上であるのが好ましく、5nm以上であるのが更に好ましく、また、一方、通常200nm以下であるのが好ましく、100nm以下であるのが更に好ましい。 The film thickness of the light-emitting layer 5 is arbitrary as long as it does not significantly impair the effects of the present invention. However, a thicker film is preferable because defects are less likely to occur in the film. . Therefore, it is preferably 3 nm or more, more preferably 5 nm or more, and on the other hand, it is usually preferably 200 nm or less, more preferably 100 nm or less.
 発光層5は、少なくとも、発光の性質を有する材料(発光材料)を含有するとともに、好ましくは、1つまたは複数のホスト材料を含有する。 The light-emitting layer 5 contains at least a material having light-emitting properties (light-emitting material), and preferably contains one or more host materials.
[正孔阻止層]
 発光層5と後述の電子注入層との間に、正孔阻止層を設けてもよい。正孔阻止層は、発光層5の上に、発光層5の陰極7側の界面に接するように積層される層である。
[Hole blocking layer]
A hole-blocking layer may be provided between the light-emitting layer 5 and an electron-injecting layer, which will be described later. The hole-blocking layer is a layer laminated on the light-emitting layer 5 so as to be in contact with the interface of the light-emitting layer 5 on the cathode 7 side.
 この正孔阻止層は、陽極2から移動してくる正孔を陰極7に到達するのを阻止する役割と、陰極7から注入された電子を効率よく発光層5の方向に輸送する役割とを有する。正孔阻止層を構成する材料に求められる物性としては、電子移動度が高く正孔移動度が低いこと、エネルギーギャップ(HOMO、LUMOの差)が大きいこと、励起三重項準位(T)が高いことが挙げられる。 This hole-blocking layer has the role of blocking holes moving from the anode 2 from reaching the cathode 7 and the role of efficiently transporting electrons injected from the cathode 7 toward the light-emitting layer 5. have. The physical properties required for the material constituting the hole blocking layer include high electron mobility and low hole mobility, a large energy gap (difference between HOMO and LUMO), and an excited triplet level (T 1 ). is high.
 このような条件を満たす正孔阻止層の材料としては、例えば、ビス(2-メチル-8-キノリノラト)(フェノラト)アルミニウム、ビス(2-メチル-8-キノリノラト)(トリフェニルシラノラト)アルミニウム等の混合配位子錯体、ビス(2-メチル-8-キノラト)アルミニウム-μ-オキソ-ビス-(2-メチル-8-キノリラト)アルミニウム二核金属錯体等の金属錯体、ジスチリルビフェニル誘導体等のスチリル化合物(日本国特開平11-242996号公報)、3-(4-ビフェニルイル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール等のトリアゾール誘導体(日本国特開平7-41759号公報)、バソクプロイン等のフェナントロリン誘導体(日本国特開平10-79297号公報)等が挙げられる。更に、国際公開第2005/022962号に記載の2,4,6位が置換されたピリジン環を少なくとも1個有する化合物も、正孔阻止層の材料として好ましい。 Examples of materials for the hole blocking layer that satisfy these conditions include bis(2-methyl-8-quinolinolato)(phenolato)aluminum, bis(2-methyl-8-quinolinolato)(triphenylsilanolate)aluminum, and the like. mixed ligand complexes, bis (2-methyl-8-quinolato) aluminum-μ-oxo-bis- (2-methyl-8-quinolato) aluminum binuclear metal complexes such as metal complexes, distyrylbiphenyl derivatives and the like Styryl compounds (JP-A-11-242996), triazole derivatives such as 3-(4-biphenylyl)-4-phenyl-5-(4-tert-butylphenyl)-1,2,4-triazole ( JP-A-7-41759), phenanthroline derivatives such as bathocuproine (JP-A-10-79297), and the like. Furthermore, the compound having at least one pyridine ring substituted at the 2,4,6 positions described in WO 2005/022962 is also preferable as a material for the hole blocking layer.
 正孔阻止層の形成方法に制限はない。従って、湿式成膜法、蒸着法や、その他の方法で形成できる。 There are no restrictions on the method of forming the hole blocking layer. Therefore, it can be formed by a wet film forming method, a vapor deposition method, or other methods.
 正孔阻止層の膜厚は、本発明の効果を著しく損なわない限り任意であるが、通常0.3nm以上、好ましくは0.5nm以上であり、また、通常100nm以下、好ましくは50nm以下である。 The thickness of the hole-blocking layer is arbitrary as long as it does not significantly impair the effects of the present invention, but it is usually 0.3 nm or more, preferably 0.5 nm or more, and usually 100 nm or less, preferably 50 nm or less. .
[電子輸送層]
 電子輸送層6は素子の電流効率をさらに向上させることを目的として、発光層5と陰極7との間に設けられる。
[Electron transport layer]
The electron transport layer 6 is provided between the light emitting layer 5 and the cathode 7 for the purpose of further improving the current efficiency of the device.
 電子輸送層6は、電界を与えられた電極間において陰極7から注入された電子を効率よく発光層5の方向に輸送することができる化合物より形成される。電子輸送層6に用いられる電子輸送性化合物としては、陰極7からの電子注入効率が高く、かつ、高い電子移動度を有し、注入された電子を効率よく輸送することができる化合物であることが必要である。 The electron transport layer 6 is made of a compound that can efficiently transport electrons injected from the cathode 7 toward the light emitting layer 5 between electrodes to which an electric field is applied. The electron-transporting compound used in the electron-transporting layer 6 is a compound that has high electron injection efficiency from the cathode 7, high electron mobility, and can efficiently transport the injected electrons. is required.
 電子輸送層に用いる電子輸送性化合物としては、具体的には、例えば、8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体(日本国特開昭59-194393号公報)、10-ヒドロキシベンゾ[h]キノリンの金属錯体、オキサジアゾール誘導体、ジスチリルビフェニル誘導体、シロール誘導体、3-ヒドロキシフラボン金属錯体、5-ヒドロキシフラボン金属錯体、ベンズオキサゾール金属錯体、ベンゾチアゾール金属錯体、トリスベンズイミダゾリルベンゼン(米国特許第5645948号明細書)、キノキサリン化合物(日本国特開平6-207169号公報)、フェナントロリン誘導体(日本国特開平5-331459号公報)、2-tert-ブチル-9,10-N,N’-ジシアノアントラキノンジイミン、n型水素化非晶質炭化シリコン、n型硫化亜鉛、n型セレン化亜鉛等が挙げられる。 Specific examples of the electron-transporting compound used in the electron-transporting layer include, for example, a metal complex such as an aluminum complex of 8-hydroxyquinoline (Japanese Patent Laid-Open No. 59-194393), 10-hydroxybenzo[h] quinoline metal complexes, oxadiazole derivatives, distyrylbiphenyl derivatives, silole derivatives, 3-hydroxyflavone metal complexes, 5-hydroxyflavone metal complexes, benzoxazole metal complexes, benzothiazole metal complexes, trisbenzimidazolylbenzene (US Patent No. 5645948), quinoxaline compounds (Japanese Patent Laid-Open No. 6-207169), phenanthroline derivatives (Japanese Patent Laid-Open No. 5-331459), 2-tert-butyl-9,10-N,N'-dicyano Anthraquinonediimine, n-type hydrogenated amorphous silicon carbide, n-type zinc sulfide, n-type zinc selenide, and the like.
 電子輸送層6の膜厚は、通常1nm以上、好ましくは5nm以上であり、また、通常300nm以下、好ましくは100nm以下である。 The film thickness of the electron transport layer 6 is usually 1 nm or more, preferably 5 nm or more, and is usually 300 nm or less, preferably 100 nm or less.
 電子輸送層6は、前記と同様にして湿式成膜法、或いは真空蒸着法により正孔阻止層上に積層することにより形成される。通常は、真空蒸着法が用いられる。
 本発明においては、前述のように、本発明の芳香族化合物を含む発光層上に、湿式成膜法にて電子輸送層を形成することが出来る。
The electron transport layer 6 is formed on the hole blocking layer by a wet film forming method or a vacuum vapor deposition method in the same manner as described above. A vacuum deposition method is usually used.
In the invention, as described above, the electron transport layer can be formed on the light-emitting layer containing the aromatic compound of the invention by a wet film-forming method.
[電子注入層]
 電子注入層は、陰極7から注入された電子を効率よく、電子輸送層6又は発光層5へ注入するために設けられてもよい。
[Electron injection layer]
The electron injection layer may be provided to efficiently inject electrons injected from the cathode 7 into the electron transport layer 6 or the light emitting layer 5 .
 電子注入を効率よく行うには、電子注入層を形成する材料は、仕事関数の低い金属が好ましい。例としては、ナトリウムやセシウム等のアルカリ金属、バリウムやカルシウム等のアルカリ土類金属等が用いられる。その膜厚は通常0.1nm以上、5nm以下が好ましい。 In order to efficiently perform electron injection, it is preferable that the material forming the electron injection layer be a metal with a low work function. Examples thereof include alkali metals such as sodium and cesium, alkaline earth metals such as barium and calcium, and the like. The film thickness is preferably 0.1 nm or more and 5 nm or less.
 更に、バソフェナントロリン等の含窒素複素環化合物や8-ヒドロキシキノリンのアルミニウム錯体等の金属錯体に代表される有機電子輸送材料に、ナトリウム、カリウム、セシウム、リチウム、ルビジウム等のアルカリ金属をドープする(日本国特開平10-270171号公報、日本国特開2002-100478号公報、日本国特開2002-100482号公報等に記載)ことも、電子注入・輸送性が向上し優れた膜質を両立させることが可能となるため好ましい。 Furthermore, an organic electron-transporting material typified by a nitrogen-containing heterocyclic compound such as bathophenanthroline or a metal complex such as an aluminum complex of 8-hydroxyquinoline is doped with an alkali metal such as sodium, potassium, cesium, lithium or rubidium ( JP-A-10-270171, JP-A-2002-100478, JP-A-2002-100482, etc.) also improves electron injection and transport properties and achieves excellent film quality. It is preferable because it enables
 電子注入層の膜厚は、通常5nm以上、好ましくは10nm以上であり、また通常200nm以下、好ましくは100nm以下の範囲である。 The thickness of the electron injection layer is usually 5 nm or more, preferably 10 nm or more, and usually 200 nm or less, preferably 100 nm or less.
 電子注入層は、湿式成膜法或いは真空蒸着法により、発光層5又はその上の正孔阻止層や電子輸送層6上に積層することにより形成される。
 湿式成膜法の場合の詳細は、前述の発光層の場合と同様である。
The electron injection layer is formed by laminating the light emitting layer 5 or the hole blocking layer or the electron transport layer 6 thereon by a wet film forming method or a vacuum deposition method.
The details of the wet film formation method are the same as those of the light-emitting layer described above.
 正孔阻止層、電子輸送層、電子注入層を電子輸送材料とリチウム錯体共ドープの操作で一層にする場合にもある。 In some cases, the hole-blocking layer, electron-transporting layer, and electron-injecting layer are formed into a single layer by co-doping the electron-transporting material and the lithium complex.
[陰極]
 陰極7は、発光層5側の層(電子注入層又は発光層など)に電子を注入する役割を果たす。
[cathode]
The cathode 7 plays a role of injecting electrons into a layer (an electron injection layer, a light-emitting layer, or the like) on the light-emitting layer 5 side.
 陰極7の材料としては、前記の陽極2に使用される材料を用いることが可能であるが、効率良く電子注入を行なう上では、仕事関数の低い金属を用いることが好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀等の金属又はそれらの合金等が用いられる。具体例としては、例えば、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金等の低仕事関数の合金電極等が挙げられる。 As the material of the cathode 7, it is possible to use the material used for the anode 2, but in terms of efficient electron injection, it is preferable to use a metal with a low work function, such as tin or magnesium. , indium, calcium, aluminum, and silver, or alloys thereof. Specific examples include low work function alloy electrodes such as magnesium-silver alloys, magnesium-indium alloys, and aluminum-lithium alloys.
 有機電界発光素子の安定性の点では、陰極の上に、仕事関数が高く、大気に対して安定な金属層を積層して、低仕事関数の金属からなる陰極を保護することが好ましい。積層する金属としては、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金等の金属が挙げられる。 From the viewpoint of the stability of the organic electroluminescent device, it is preferable to protect the cathode made of a metal with a low work function by stacking a metal layer that has a high work function and is stable against the atmosphere on the cathode. Metals to be laminated include, for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum.
 陰極の膜厚は通常、陽極と同様である。 The film thickness of the cathode is usually the same as that of the anode.
[その他の層]
 本発明の有機電界発光素子は、本発明の効果を著しく損なわなければ、更に他の層を有していてもよい。すなわち、陽極と陰極との間に、上述の他の任意の層を有していてもよい。
[Other layers]
The organic electroluminescence device of the present invention may further have other layers as long as they do not significantly impair the effects of the present invention. That is, it may have any of the other layers described above between the anode and cathode.
[その他の素子構成]
 本発明の有機電界発光素子は、上述の説明とは逆の構造、即ち、例えば、基板上に陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、陽極の順に積層することも可能である。
[Other device configurations]
The organic electroluminescence device of the present invention has a structure opposite to that described above. It is also possible to laminate the injection layer and the anode in this order.
 本発明の有機電界発光素子を有機電界発光装置に適用する場合は、単一の有機電界発光素子として用いても、複数の有機電界発光素子がアレイ状に配置された構成にして用いても、陽極と陰極がX-Yマトリックス状に配置された構成にして用いてもよい。 When the organic electroluminescent element of the present invention is applied to an organic electroluminescent device, it may be used as a single organic electroluminescent element or may be used in a configuration in which a plurality of organic electroluminescent elements are arranged in an array. A configuration in which anodes and cathodes are arranged in an XY matrix may be used.
[有機電界発光素子の製造方法]
 本発明の有機電界発光素子の製造方法は、上述の有機電界発光素子用組成物を用いる。有機電界発光素子は、例えば、基板上に、陽極及び陰極を有し、陽極と陰極の間に有機層を有することができる。
[Method for producing organic electroluminescent device]
The method for producing an organic electroluminescent device of the present invention uses the composition for an organic electroluminescent device described above. An organic electroluminescent device can have, for example, an anode and a cathode on a substrate, and an organic layer between the anode and the cathode.
 本発明の有機電界発光素子の製造方法の一態様として、有機層を、上述の有機電界発光素子用組成物を用いて湿式成膜法にて形成する工程を含むことができる。有機層は、例えば、発光層であることができる。 One aspect of the method for producing an organic electroluminescent device of the present invention can include a step of forming an organic layer by a wet film-forming method using the composition for an organic electroluminescent device described above. The organic layer can be, for example, an emissive layer.
 本発明の有機電界発光素子の製造方法の別の一態様として、有機層が、発光層と電子輸送層を含み、発光層を、上述の有機電界発光素子用組成物を用いて湿式成膜法で形成する工程と、電子輸送層を、電子輸送材料及び溶剤を含む電子輸送層用組成物を用いて湿式成膜法で形成する工程と、をこの順で含むことができる。電子輸送層用組成物に含まれる溶剤は、アルコール系溶媒であることができる。また、湿式成膜法で形成される電子輸送層は、湿式成膜法で形成された発光層に直接積層されるように形成することができる。 As another aspect of the method for producing an organic electroluminescent device of the present invention, the organic layer includes a light-emitting layer and an electron-transporting layer, and the light-emitting layer is formed by a wet film-forming method using the composition for an organic electroluminescent device described above. and a step of forming the electron transport layer by a wet film-forming method using an electron transport layer composition containing an electron transport material and a solvent, in this order. The solvent contained in the electron transport layer composition can be an alcohol solvent. Also, the electron transport layer formed by the wet film formation method can be formed so as to be directly laminated on the light emitting layer formed by the wet film formation method.
 <有機EL表示装置>
 本発明の有機EL表示装置(有機電界発光素子表示装置又は表示装置)は、本発明の有機電界発光素子を備える。本発明の有機EL表示装置の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
<Organic EL display device>
The organic EL display device (organic electroluminescence element display device or display device) of the present invention comprises the organic electroluminescence element of the present invention. The type and structure of the organic EL display device of the present invention are not particularly limited, and the organic electroluminescence device of the present invention can be assembled according to a conventional method.
 例えば、「有機ELディスプレイ」(オーム社、平成16年8月20日発行、時任静士、安達千波矢、村田英幸著)に記載されているような方法で、本発明の有機EL表示装置を形成することができる。 For example, the organic EL display device of the present invention can be manufactured by the method described in "Organic EL Display" (Ohmsha, August 20, 2004, by Shizuo Tokito, Chihaya Adachi, and Hideyuki Murata). can be formed.
 <有機EL照明>
 本発明の有機EL照明(有機電界発光素子照明又は照明装置)は、本発明の有機電界発光素子を備える。本発明の有機EL照明の型式や構造については特に制限はなく、本発明の有機電界発光素子を用いて常法に従って組み立てることができる。
<Organic EL lighting>
The organic EL lighting (organic electroluminescence device lighting or lighting device) of the present invention comprises the organic electroluminescence device of the present invention. The type and structure of the organic EL lighting of the present invention are not particularly limited, and the organic electroluminescence device of the present invention can be assembled according to a conventional method.
 以下、実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。なお、下記の実施例における各種の条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と下記実施例の値又は実施例同士の値との組合せで規定される範囲であってもよい。 Although the present invention will be described in more detail below with reference to examples, the present invention is not limited to the following examples as long as the gist thereof is not exceeded. Various conditions and values of evaluation results in the following examples have the meaning of preferable upper or lower limit values in the embodiments of the present invention. It may be a range defined by a value in an example or a combination of values between examples.
 なお、本明細書では、Acはアセチル基を意味し、Phはフェニル基を意味し、dppfは1,1’-ビス(ジフェニルホスフィノ)フェロセンを意味し、DMSOはジメチルスルホキシドを意味する。化合物1-g、比較化合物(C-1)は特許文献1(国際公開第2012/137958号)に記載の方法に従って合成した。 In this specification, Ac means an acetyl group, Ph means a phenyl group, dppf means 1,1'-bis(diphenylphosphino)ferrocene, and DMSO means dimethylsulfoxide. Compound 1-g and comparative compound (C-1) were synthesized according to the method described in Patent Document 1 (International Publication No. 2012/137958).
<合成実施例1:化合物(H-1)の合成例>
(化合物1-cの合成)
<Synthesis Example 1: Synthesis Example of Compound (H-1)>
(Synthesis of compound 1-c)
Figure JPOXMLDOC01-appb-C000080
Figure JPOXMLDOC01-appb-C000080
 化合物1-a(15.0g、41.6mmol)、化合物1-b(14.9g、41.6mmol)に窒素バブリングを行ったトルエン(100mL)、エタノール(50mL)、リン酸三カリウム水溶液(2.0mol/L、50mL)を順に加え、50℃に加熱した。その後、PdCl(PPh(0.29g、0.41mmol)を加え、65℃で2時間撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物1-c(収量21.6g、収率95%)を得た。 Compound 1-a (15.0 g, 41.6 mmol) and compound 1-b (14.9 g, 41.6 mmol) were subjected to nitrogen bubbling toluene (100 mL), ethanol (50 mL), tripotassium phosphate aqueous solution (2 .0 mol/L, 50 mL) was sequentially added and heated to 50°C. PdCl 2 (PPh 3 ) 2 (0.29 g, 0.41 mmol) was then added and stirred at 65° C. for 2 hours. After cooling to room temperature, a saturated sodium chloride aqueous solution was added, and extraction was performed using toluene. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 1-c (21.6 g, 95% yield).
(化合物1-dの合成) (Synthesis of compound 1-d)
Figure JPOXMLDOC01-appb-C000081
Figure JPOXMLDOC01-appb-C000081
 化合物1-c(21.6g、39.5mmol)、ビス(ピナコラトジボロン)(15.0g、59.2mmol)、酢酸カリウム(11.6g、118.5mmol)に脱水DMSO(200mL)を加え、50℃に加熱した。PdCl(dppf)CHCl(1.61g、1.98mmol)を加え、90℃で3時間撹拌した。室温まで冷却後、蒸留水を加え、吸引ろ過を行った。ろ取物をトルエンに溶解し、飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物1-d(収量20.5g、収率87%)を得た。 Dehydrated DMSO (200 mL) was added to compound 1-c (21.6 g, 39.5 mmol), bis(pinacolatodiboron) (15.0 g, 59.2 mmol) and potassium acetate (11.6 g, 118.5 mmol). , and heated to 50°C. PdCl 2 (dppf)CH 2 Cl 2 (1.61 g, 1.98 mmol) was added and stirred at 90° C. for 3 hours. After cooling to room temperature, distilled water was added and suction filtration was performed. The filtrate was dissolved in toluene, washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 1-d (20.5 g, 87% yield).
(化合物1-eの合成) (Synthesis of compound 1-e)
Figure JPOXMLDOC01-appb-C000082
Figure JPOXMLDOC01-appb-C000082
 化合物1-d(20.5g、34.4mmol)、1-ブロモ-4-ヨードベンゼン(9.75g、34.4mmol)に窒素バブリングを行ったトルエン(100mL)、エタノール(50mL)、リン酸三カリウム水溶液(2.0mol/L、50mL)を順に加え、50℃に加熱した。その後、PdCl(PPh(0.24g、0.34mmol)を加え、65℃で2時間撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物1-e(収量17.8g、収率83%)を得た。 Compound 1-d (20.5 g, 34.4 mmol), 1-bromo-4-iodobenzene (9.75 g, 34.4 mmol) were subjected to nitrogen bubbling toluene (100 mL), ethanol (50 mL), triphosphate A potassium aqueous solution (2.0 mol/L, 50 mL) was sequentially added and heated to 50°C. PdCl 2 (PPh 3 ) 2 (0.24 g, 0.34 mmol) was then added and stirred at 65° C. for 2 hours. After cooling to room temperature, a saturated sodium chloride aqueous solution was added, and extraction was performed using toluene. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 1-e (17.8 g, 83% yield).
(化合物1-fの合成) (Synthesis of compound 1-f)
Figure JPOXMLDOC01-appb-C000083
Figure JPOXMLDOC01-appb-C000083
 化合物1-e(16.8g、26.9mmol)、ビス(ピナコラトジボロン)(10.3g、40.4mmol)、酢酸カリウム(7.92g、80.7mmol)に脱水DMSO(200mL)を加え、50℃に加熱した。PdCl(dppf)CHCl(1.10g、1.35mmol)を加え、90℃で2時間撹拌した。室温まで冷却後、蒸留水を加え、吸引ろ過を行った。ろ取物をトルエンに溶解し、飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物1-f(収量16.2g、収率90%)を得た。 Dehydrated DMSO (200 mL) was added to compound 1-e (16.8 g, 26.9 mmol), bis(pinacolatodiboron) (10.3 g, 40.4 mmol) and potassium acetate (7.92 g, 80.7 mmol). , and heated to 50°C. PdCl 2 (dppf)CH 2 Cl 2 (1.10 g, 1.35 mmol) was added and stirred at 90° C. for 2 hours. After cooling to room temperature, distilled water was added and suction filtration was performed. The filtrate was dissolved in toluene, washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 1-f (16.2 g, 90% yield).
(化合物(H-1)の合成) (Synthesis of compound (H-1))
Figure JPOXMLDOC01-appb-C000084
Figure JPOXMLDOC01-appb-C000084
 窒素雰囲気下、化合物1-f(7.8g、11.7mmol)、化合物1-g(7.7g、10.6mmol)に窒素バブリングを行ったTHF(50mL)、リン酸三カリウム水溶液(2.0mol/L、15mL)を順に加えた。その後、Pd(PPh(0.12g、0.11mmol)を加え、75℃で4時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、ジクロロメタンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物(H-1)(収量10.7g、収率81%)を得た。 Under a nitrogen atmosphere, compound 1-f (7.8 g, 11.7 mmol) and compound 1-g (7.7 g, 10.6 mmol) were subjected to nitrogen bubbling in THF (50 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 15 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (0.12 g, 0.11 mmol) was added, and the mixture was heated and stirred at 75° C. for 4 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound (H-1) (10.7 g, 81% yield).
<合成実施例2:化合物(H-2)の合成例>
(化合物2-bの合成)
<Synthesis Example 2: Synthesis Example of Compound (H-2)>
(Synthesis of compound 2-b)
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000085
 窒素雰囲気下、化合物2-a(19.6g、50.9mmol)に脱水THF(100mL)を加え、-75℃に冷却した。その後、n-BuLi(1.58mol/L、32.2mL)を滴下し、-75℃で3時間撹拌した。調製した溶液を、-100℃まで冷却した塩化シアヌル(18.8g、101.8mmol)の脱水THF(100mL)溶液に滴下した。室温に昇温後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、酢酸エチルを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物2-b(収量6.5g、収率28%)を得た。 In a nitrogen atmosphere, dehydrated THF (100 mL) was added to compound 2-a (19.6 g, 50.9 mmol) and cooled to -75°C. After that, n-BuLi (1.58 mol/L, 32.2 mL) was added dropwise and stirred at -75°C for 3 hours. The prepared solution was added dropwise to a solution of cyanuric chloride (18.8 g, 101.8 mmol) in dry THF (100 mL) cooled to -100°C. After raising the temperature to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 2-b (6.5 g, 28% yield).
(化合物2-dの合成) (Synthesis of compound 2-d)
Figure JPOXMLDOC01-appb-C000086
Figure JPOXMLDOC01-appb-C000086
 窒素雰囲気下、化合物2-b(4.7g、10.3mmol)、化合物2-c(4.5g、10.3mmol)に窒素バブリングを行ったTHF(100mL)、リン酸三カリウム水溶液(2.0mol/L、13mL)を順に加えた。その後、Pd(PPh(0.12g、0.10mmol)を加え、55℃で8時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、ジクロロメタンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物2-d(収量4.9g、収率66%)を得た。 Under a nitrogen atmosphere, compound 2-b (4.7 g, 10.3 mmol) and compound 2-c (4.5 g, 10.3 mmol) were subjected to nitrogen bubbling in THF (100 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 13 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (0.12 g, 0.10 mmol) was added and heated with stirring at 55° C. for 8 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 2-d (4.9 g, 66% yield).
(化合物2-gの合成) (Synthesis of compound 2-g)
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-C000087
 窒素雰囲気下、化合物2-e(3.3g、9.28mmol)、化合物2-f(3.6g、9.28mmol)に窒素バブリングを行ったトルエン(40mL)、エタノール(20mL)、リン酸三カリウム水溶液(2.0mol/L、20mL)を順に加えた。その後、Pd(PPh(0.11g、0.093mmol)を加え、90℃で4時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液を加え、トルエンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物2-g(収量2.6g、収率45%)を得た。 Under a nitrogen atmosphere, compound 2-e (3.3 g, 9.28 mmol) and compound 2-f (3.6 g, 9.28 mmol) were subjected to nitrogen bubbling toluene (40 mL), ethanol (20 mL), triphosphate A potassium aqueous solution (2.0 mol/L, 20 mL) was added in order. After that, Pd(PPh 3 ) 4 (0.11 g, 0.093 mmol) was added and heated with stirring at 90° C. for 4 hours. After cooling to room temperature, a saturated sodium chloride aqueous solution was added, and extraction was performed using toluene. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 2-g (2.6 g, 45% yield).
(化合物2-hの合成) (Synthesis of compound 2-h)
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-C000088
 化合物2-g(2.6g、4.17mmol)、ビス(ピナコラトジボロン)(1.6g、6.25mmol)、酢酸カリウム(1.2g、12.5mmol)に脱水DMSO(50mL)を加え、50℃に加熱した。PdCl(dppf)CHCl(0.17g、0.21mmol)を加え、90℃で7時間撹拌した。室温まで冷却後、蒸留水を加え、吸引ろ過を行った。ろ取物をジクロロメタンに溶解し、飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物2-h(収量0.89g、収率32%)を得た。 Dehydrated DMSO (50 mL) was added to compound 2-g (2.6 g, 4.17 mmol), bis(pinacolatodiboron) (1.6 g, 6.25 mmol) and potassium acetate (1.2 g, 12.5 mmol). , and heated to 50°C. PdCl 2 (dppf)CH 2 Cl 2 (0.17 g, 0.21 mmol) was added and stirred at 90° C. for 7 hours. After cooling to room temperature, distilled water was added and suction filtration was performed. The filtrate was dissolved in dichloromethane, washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 2-h (0.89 g, 32% yield).
(化合物(H-2)の合成) (Synthesis of compound (H-2))
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000089
 窒素雰囲気下、化合物2-d(0.64g、0.88mmol)、化合物2-h(0.59g、0.88mmol)に窒素バブリングを行ったTHF(30mL)、リン酸三カリウム水溶液(2.0mol/L、3mL)を順に加えた。その後、Pd(PPh(10mg、0.0088mmol)を加え、70℃で5時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、ジクロロメタンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物(H-2)(収量0.69g、収率64%)を得た。 Under a nitrogen atmosphere, compound 2-d (0.64 g, 0.88 mmol) and compound 2-h (0.59 g, 0.88 mmol) were subjected to nitrogen bubbling in THF (30 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 3 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (10 mg, 0.0088 mmol) was added and heated with stirring at 70° C. for 5 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound (H-2) (0.69 g, 64% yield).
<化合物(H-3)の合成例>
(化合物3―bの合成)
<Synthesis example of compound (H-3)>
(Synthesis of compound 3-b)
Figure JPOXMLDOC01-appb-C000090
Figure JPOXMLDOC01-appb-C000090
 窒素雰囲気下、化合物3-a(22.1g、57.3mmol)に脱水THF(100mL)を加え、-75℃に冷却した。その後、n-BuLi(1.58mol/L、36.3mL)を滴下し、-75℃で3時間撹拌した。調製した溶液を、-100℃まで冷却した塩化シアヌル(4.75g、25.8mmol)の脱水THF(100mL)溶液に滴下した。室温に昇温後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、酢酸エチルを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物3-b(収量5.5g、収率29%)を得た。 In a nitrogen atmosphere, dehydrated THF (100 mL) was added to compound 3-a (22.1 g, 57.3 mmol) and cooled to -75°C. After that, n-BuLi (1.58 mol/L, 36.3 mL) was added dropwise and stirred at -75°C for 3 hours. The prepared solution was added dropwise to a solution of cyanuric chloride (4.75 g, 25.8 mmol) in dry THF (100 mL) cooled to -100°C. After raising the temperature to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using ethyl acetate. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound 3-b (5.5 g, 29% yield).
(化合物(H-3)の合成) (Synthesis of compound (H-3))
Figure JPOXMLDOC01-appb-C000091
Figure JPOXMLDOC01-appb-C000091
 窒素雰囲気下、化合物3-b(0.85g、1.18mmol)、化合物2-h(0.79g、1.18mmol)に窒素バブリングを行ったTHF(30mL)、リン酸三カリウム水溶液(2.0mol/L、10mL)を順に加えた。その後、Pd(PPh(60mg、0.012mmol)を加え、70℃で3時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、ジクロロメタンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、化合物(H-3)(収量0.72g、収率50%)を得た。 Under a nitrogen atmosphere, compound 3-b (0.85 g, 1.18 mmol) and compound 2-h (0.79 g, 1.18 mmol) were subjected to nitrogen bubbling in THF (30 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 10 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (60 mg, 0.012 mmol) was added, and the mixture was heated and stirred at 70° C. for 3 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain compound (H-3) (0.72 g, 50% yield).
(比較化合物(C-2)の合成) (Synthesis of comparative compound (C-2))
Figure JPOXMLDOC01-appb-C000092
Figure JPOXMLDOC01-appb-C000092
 窒素雰囲気下、化合物C2-a(1.16g、2.49mmol)、化合物C2-b(0.89g、2.49mmol)に窒素バブリングを行ったTHF(15mL)、リン酸三カリウム水溶液(2.0mol/L、5mL)を順に加えた。その後、Pd(PPh(29mg、0.025mmol)を加え、70℃で5時間加熱撹拌した。室温まで冷却後、飽和塩化ナトリウム水溶液と1Nの希塩酸を加え、ジクロロメタンを用いて抽出を行った。有機層を飽和塩化ナトリウム水溶液にて洗浄し、硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィーに処し、比較化合物(C-2)(収量1.0g、収率60%)を得た。 Under a nitrogen atmosphere, compound C2-a (1.16 g, 2.49 mmol) and compound C2-b (0.89 g, 2.49 mmol) were subjected to nitrogen bubbling in THF (15 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 5 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (29 mg, 0.025 mmol) was added, and the mixture was heated and stirred at 70° C. for 5 hours. After cooling to room temperature, a saturated aqueous sodium chloride solution and 1N dilute hydrochloric acid were added, and extraction was performed using dichloromethane. The organic layer was washed with a saturated aqueous sodium chloride solution, dried over magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography to obtain Comparative Compound (C-2) (1.0 g, 60% yield).
(比較化合物(C-3)の合成) (Synthesis of comparative compound (C-3))
Figure JPOXMLDOC01-appb-C000093
Figure JPOXMLDOC01-appb-C000093
 窒素雰囲気下、化合物C3-a(1.15g、2.74mmol)、化合物C3-b(1.18g、3.29mmol)に窒素バブリングを行ったTHF(20mL)、リン酸三カリウム水溶液(2.0mol/L、6mL)を順に加えた。その後、Pd(PPh(32mg、0.027mmol)を加え、70℃で5時間加熱撹拌した。室温まで冷却後、固体を濾過した。ろ取物をメタノール、アセトン、ジクロロメタンで洗浄し、減圧下で乾燥させ、比較化合物(C-3)(収量1.3g、収率68%)を得た。 Under a nitrogen atmosphere, compound C3-a (1.15 g, 2.74 mmol) and compound C3-b (1.18 g, 3.29 mmol) were subjected to nitrogen bubbling in THF (20 mL), tripotassium phosphate aqueous solution (2. 0 mol/L, 6 mL) were sequentially added. After that, Pd(PPh 3 ) 4 (32 mg, 0.027 mmol) was added, and the mixture was heated and stirred at 70° C. for 5 hours. After cooling to room temperature, the solid was filtered. The filtered product was washed with methanol, acetone and dichloromethane and dried under reduced pressure to obtain Comparative Compound (C-3) (1.3 g, 68% yield).
<化合物(H-1)~(H-3)、比較化合物(C-1)の評価>
 各化合物のガラス転移温度(Tg)を、示差走査熱量測定(DSC)により評価した。
 各化合物のイオン化ポテンシャル(Ip)を、光電子分光法により評価した。
 各化合物の電子親和力(Ea)を、吸収スペクトルの吸収端から算出したバンドギャップ(Eg)からIpを引くことで算出した。
 結果を表1に示す。
<Evaluation of compounds (H-1) to (H-3) and comparative compound (C-1)>
The glass transition temperature (Tg) of each compound was evaluated by differential scanning calorimetry (DSC).
The ionization potential (Ip) of each compound was evaluated by photoelectron spectroscopy.
The electron affinity (Ea) of each compound was calculated by subtracting Ip from the bandgap (Eg) calculated from the absorption edge of the absorption spectrum.
Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000094
Figure JPOXMLDOC01-appb-T000094
 なお、比較化合物(C-1)~(C-3)は、下記に示すものを用いた。 The following comparative compounds (C-1) to (C-3) were used.
<化合物(H-1)~(H-3)、比較化合物(C-1)~(C-3)の溶解性評価>
 また、各化合物のシクロへキシルベンゼン(CHB)に対する溶解性評価として、1~2mL程度のシクロへキシルベンゼン溶液(各化合物の濃度:12.0質量%)を調製し、当該溶液に各化合物が溶解したか否かを評価した。結果を表2に示す。表2中の列「12.0質量%CHB溶液」中の「〇」は当該溶液に化合物が溶解したことを意味し、「×」は当該溶液に化合物が溶解しなかったことを意味する。
<Solubility evaluation of compounds (H-1) to (H-3) and comparative compounds (C-1) to (C-3)>
In addition, to evaluate the solubility of each compound in cyclohexylbenzene (CHB), a cyclohexylbenzene solution of about 1 to 2 mL (concentration of each compound: 12.0% by mass) was prepared, and each compound was added to the solution. It was evaluated whether it was dissolved or not. Table 2 shows the results. "O" in the column "12.0 mass% CHB solution" in Table 2 means that the compound was dissolved in the solution, and "X" means that the compound was not dissolved in the solution.
 本発明の化合物(H-1)~(H-3)及び比較化合物(C-2)は、CHBに対する溶解性は12.0質量%以上であった。 The compounds (H-1) to (H-3) of the present invention and the comparative compound (C-2) had a solubility in CHB of 12.0% by mass or more.
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-T000095
Figure JPOXMLDOC01-appb-C000096
Figure JPOXMLDOC01-appb-C000096
<成膜後の化合物(H-1)~(H-2)、比較化合物(C-1)の耐溶剤性評価>
 成膜後の各化合物の耐溶剤性を以下のようにして評価した。
 まず、試験対象とする化合物を1.5質量%でトルエンに溶解させた溶液を調製した。窒素グローブボックス中にて、この溶液をガラス基板上に滴下してスピンコートを行い、ホットプレート上で100℃10分間乾燥させて試験対象の化合物膜を形成した。
<Solvent resistance evaluation of compounds (H-1) to (H-2) and comparative compound (C-1) after film formation>
The solvent resistance of each compound after film formation was evaluated as follows.
First, a solution was prepared by dissolving 1.5% by mass of a compound to be tested in toluene. In a nitrogen glove box, this solution was dropped onto a glass substrate, spin-coated, and dried on a hot plate at 100° C. for 10 minutes to form a compound film to be tested.
 次いで、化合物膜を成膜した基板をスピンコーターにセットし、試験溶媒を150μl基板上に滴下し、滴下後60秒間静置して耐溶剤性試験とした。 Next, the substrate on which the compound film was formed was set in a spin coater, 150 μl of the test solvent was dropped onto the substrate, and after dropping, the substrate was allowed to stand for 60 seconds to conduct a solvent resistance test.
 その後、基板を1500rpmで30秒間、ついで4000rpmで30秒間回転させて滴下した溶媒をスピンアウトさせた。この基板をホットプレート上で100℃10分間乾燥させた。耐溶剤性試験前後での膜厚変化をそれぞれの膜厚差から見積もった。
 各化合物の成膜後の膜厚及び用いた試験溶媒は、下記のとおりである。
After that, the substrate was spun at 1500 rpm for 30 seconds and then at 4000 rpm for 30 seconds to spin out the dropped solvent. This substrate was dried on a hot plate at 100° C. for 10 minutes. The film thickness change before and after the solvent resistance test was estimated from each film thickness difference.
The film thickness after film formation of each compound and the test solvent used are as follows.
(化合物(H-1))
 本発明の化合物(H-1)を用いて54nmの膜を形成し、試験溶媒を1-ブタノールとして耐溶剤性試験を実施した。
(Compound (H-1))
A film of 54 nm was formed using the compound (H-1) of the present invention, and a solvent resistance test was conducted using 1-butanol as the test solvent.
(化合物(H-2))
 本発明の化合物(H-2)を用いて54nmの膜を形成し、試験溶媒を1-ブタノールとして耐溶剤性試験を実施した。
(Compound (H-2))
A film of 54 nm was formed using the compound (H-2) of the present invention, and a solvent resistance test was conducted using 1-butanol as the test solvent.
(比較化合物(C-1))
 比較化合物(C-1)を用いて54nmの膜を形成し、試験溶媒を1-ブタノールとして耐溶剤性試験を実施した。
(Comparative compound (C-1))
A film of 54 nm was formed using the comparative compound (C-1), and a solvent resistance test was conducted using 1-butanol as the test solvent.
 成膜後の化合物の耐溶剤性は以下基準に基づき評価した。
 ○:膜厚減少は認められなかった。
 ×:5nm以上の膜厚減少が認められた。
 耐溶剤性試験の結果を表3に示す。
The solvent resistance of the compound after film formation was evaluated based on the following criteria.
◯: No decrease in film thickness was observed.
x: A film thickness reduction of 5 nm or more was observed.
Table 3 shows the results of the solvent resistance test.
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
[実施例1]
 有機電界発光素子を以下の方法で作製した。
 ガラス基板上にインジウム・スズ酸化物(ITO)透明導電膜を50nmの厚さに堆積したもの(ジオマテック社製、スパッタ成膜品)を通常のフォトリソグラフィー技術と塩酸エッチングを用いて2mm幅のストライプにパターニングして陽極を形成した。このようにITOをパターン形成した基板を、界面活性剤水溶液による超音波洗浄、超純水による水洗、超純水による超音波洗浄、超純水による水洗の順で洗浄後、圧縮空気で乾燥させ、最後に紫外線オゾン洗浄を行った。
 正孔注入層形成用組成物として、下記式(P-1)の繰り返し構造を有する正孔輸送性高分子化合物3.0重量%と、電子受容性化合物(HI-1)0.6重量%とを、安息香酸エチルに溶解させた組成物を調製した。
[Example 1]
An organic electroluminescence device was produced by the following method.
An indium tin oxide (ITO) transparent conductive film deposited on a glass substrate to a thickness of 50 nm (manufactured by Geomatec, a sputter-deposited product) was subjected to a 2 mm-wide stripe using ordinary photolithography and etching with hydrochloric acid. was patterned to form an anode. The substrate on which the ITO pattern is formed in this manner is washed with ultrasonic waves using an aqueous solution of surfactant, washed with ultrapure water, ultrasonically washed with ultrapure water, and washed with ultrapure water in this order, and then dried with compressed air. , and finally performed ultraviolet ozone cleaning.
As a composition for forming a hole injection layer, 3.0% by weight of a hole-transporting polymer compound having a repeating structure of the following formula (P-1) and 0.6% by weight of an electron-accepting compound (HI-1) was dissolved in ethyl benzoate to prepare a composition.
Figure JPOXMLDOC01-appb-C000098
Figure JPOXMLDOC01-appb-C000098
 この溶液を、大気中で上記基板上にスピンコートし、大気中ホットプレートで240℃、30分乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔注入層とした。
 次に、下記の構造式(HT-1)を有する電荷輸送性高分子化合物を1,3,5-トリメチルベンゼンに溶解させ、2.0重量%の溶液を調製した。
 この溶液を、上記正孔注入層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで230℃、30分間乾燥させ、膜厚40nmの均一な薄膜を形成し、正孔輸送層とした。
This solution was spin-coated on the substrate in the atmosphere and dried on a hot plate in the atmosphere at 240° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm, which was used as a hole injection layer.
Next, a charge-transporting polymer compound having the following structural formula (HT-1) was dissolved in 1,3,5-trimethylbenzene to prepare a 2.0% by weight solution.
This solution was spin-coated on the substrate on which the hole injection layer was coated in a nitrogen glove box, and dried on a hot plate in the nitrogen glove box at 230° C. for 30 minutes to form a uniform thin film with a thickness of 40 nm. was formed to form a hole transport layer.
Figure JPOXMLDOC01-appb-C000099
Figure JPOXMLDOC01-appb-C000099
 引き続き、発光層の材料として、本発明の化合物(H-1)を2.3重量%、下記の構造を有する化合物(HH-1)を2.3重量%、(D-1)を1.4重量%の濃度でシクロヘキシルベンゼンに溶解させ、発光層形成用組成物を調製した。 Subsequently, 2.3% by weight of the compound (H-1) of the present invention, 2.3% by weight of the compound (HH-1) having the following structure, and 1.3% by weight of (D-1) were used as materials for the light-emitting layer. It was dissolved in cyclohexylbenzene at a concentration of 4% by weight to prepare a composition for forming a light-emitting layer.
Figure JPOXMLDOC01-appb-C000100
Figure JPOXMLDOC01-appb-C000100
 この溶液を、上記正孔輸送層を塗布成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで120℃、20分間乾燥させ、膜厚40nmの均一な薄膜を形成し、発光層とした。
 発光層までを成膜した基板を真空蒸着装置に設置し、装置内を2×10-4Pa以下になるまで排気した。
 次に、下記の構造式(ET-1)および8-ヒドロキシキノリノラトリチウムを2:3の膜厚比で、発光層上に真空蒸着法にて共蒸着し、膜厚30nmの電子輸送層を形成した。
This solution was spin-coated in a nitrogen glove box onto the substrate on which the hole transport layer had been applied and dried on a hot plate in the nitrogen glove box at 120° C. for 20 minutes to form a uniform thin film with a thickness of 40 nm. was formed to form a light-emitting layer.
The substrate on which up to the light-emitting layer was formed was placed in a vacuum deposition apparatus, and the inside of the apparatus was evacuated to 2×10 −4 Pa or less.
Next, the following structural formula (ET-1) and 8-hydroxyquinolinolatritium were co-deposited on the light-emitting layer at a film thickness ratio of 2:3 by a vacuum vapor deposition method to form an electron-transporting layer having a film thickness of 30 nm. formed.
Figure JPOXMLDOC01-appb-C000101
Figure JPOXMLDOC01-appb-C000101
 続いて、陰極蒸着用のマスクとして2mm幅のストライプ状シャドーマスクを、陽極のITOストライプとは直交するように基板に密着させて、アルミニウムをモリブデンボートにより加熱して、膜厚80nmのアルミニウム層を形成して陰極を形成した。以上の様にして、2mm×2mmのサイズの発光面積部分を有する有機電界発光素子が得られた。 Subsequently, a striped shadow mask with a width of 2 mm was adhered to the substrate so as to be orthogonal to the ITO stripes of the anode as a mask for cathode evaporation, and aluminum was heated with a molybdenum boat to form an aluminum layer with a thickness of 80 nm. formed to form the cathode. As described above, an organic electroluminescence device having a light-emitting area of 2 mm×2 mm was obtained.
[実施例2]
 発光層の材料として、化合物(H-1)の替わりに本発明の化合物(H-2)を用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Example 2]
An organic electroluminescence device was produced in the same manner as in Example 1, except that the compound (H-2) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
[実施例3]
 発光層の材料として、化合物(H-1)の替わりに本発明の化合物(H-3)を用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Example 3]
An organic electroluminescence device was produced in the same manner as in Example 1, except that the compound (H-3) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
[比較例1]
 発光層の材料として、化合物(H-1)の替わりに比較化合物(C-2)を用いた他は、実施例1と同様にして有機電界発光素子を作製した。
[Comparative Example 1]
An organic electroluminescence device was produced in the same manner as in Example 1, except that the comparative compound (C-2) was used instead of the compound (H-1) as the material of the light-emitting layer.
[素子の評価]
 実施例1~3、及び比較例1で得られた有機電界発光素子を1,000cd/mで発光させた際の電流効率(cd/A)、外部量子効率(%)を測定した。また、15mA/cmの電流密度で素子に通電し続けた際に、輝度が初期輝度の95%まで減少する時間(LT95)を測定した。これらの測定結果を表4に示す。表4中、実施例1~3の値は比較例1の値を1とした相対値を示す。表4の結果から、本発明の化合物を用いた有機電界発光素子では、性能が向上することが判った。
[Evaluation of element]
Current efficiency (cd/A) and external quantum efficiency (%) were measured when the organic electroluminescence devices obtained in Examples 1 to 3 and Comparative Example 1 were caused to emit light at 1,000 cd/m 2 . Also, the time (LT95) for the luminance to decrease to 95% of the initial luminance was measured when the device was continuously energized at a current density of 15 mA/cm 2 . These measurement results are shown in Table 4. In Table 4, the values of Examples 1 to 3 are relative values with the value of Comparative Example 1 set to 1. From the results in Table 4, it was found that the performance of the organic electroluminescence device using the compound of the present invention was improved.
Figure JPOXMLDOC01-appb-T000102
Figure JPOXMLDOC01-appb-T000102
[実施例4]
 発光層を以下のように形成した他は、実施例1と同様にして有機電界発光素子を作製した。
 発光層の材料として、化合物(H-1)を2.7重量%、下記の化合物(HH-2)を2.7重量%、化合物(D-1)を1.6重量%の濃度でシクロヘキシルベンゼンに溶解させ、発光層形成用組成物を調製した。
[Example 4]
An organic electroluminescence device was produced in the same manner as in Example 1, except that the light-emitting layer was formed as follows.
As materials for the light-emitting layer, the compound (H-1) was 2.7% by weight, the following compound (HH-2) was 2.7% by weight, and the compound (D-1) was cyclohexyl at a concentration of 1.6% by weight. It was made to melt|dissolve in benzene and the composition for light emitting layer formation was prepared.
Figure JPOXMLDOC01-appb-C000103
Figure JPOXMLDOC01-appb-C000103
 発光層形成用組成物を、上記正孔輸送層を成膜した基板上に窒素グローブボックス中でスピンコートし、窒素グローブボックス中のホットプレートで120℃、20分間乾燥させ、膜厚70nmの均一な薄膜を形成し、発光層とした。 The composition for forming a light emitting layer was spin-coated on the substrate on which the hole transport layer was formed in a nitrogen glove box, dried on a hot plate in the nitrogen glove box at 120 ° C. for 20 minutes, and a uniform film thickness of 70 nm. A thin film was formed to form a light-emitting layer.
[実施例5]
 発光層の材料として、化合物(H-1)の替わりに本発明の化合物(H-2)を用いた他は、実施例4と同様にして有機電界発光素子を作製した。
[Example 5]
An organic electroluminescence device was produced in the same manner as in Example 4, except that the compound (H-2) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
[実施例6]
 発光層の材料として、化合物(H-1)の替わりに本発明の化合物(H-3)を用いた他は、実施例4と同様にして有機電界発光素子を作製した。
[Example 6]
An organic electroluminescence device was produced in the same manner as in Example 4, except that the compound (H-3) of the present invention was used instead of the compound (H-1) as the material for the light-emitting layer.
[比較例2]
 発光層の材料として、化合物(H-1)の替わりに比較化合物(C-2)を用いた他は、実施例4と同様にして有機電界発光素子を作製した。
[Comparative Example 2]
An organic electroluminescence device was produced in the same manner as in Example 4, except that the comparative compound (C-2) was used instead of the compound (H-1) as the material of the light-emitting layer.
[素子の評価]
 実施例4~6、および比較例2で得られた有機電界発光素子を1,000cd/mで発光させた際の電流効率(cd/A)、外部量子効率(%)を測定した。また、15mA/cmの電流密度で素子に通電し続けた際に、輝度が初期輝度の97%まで減少する時間(LT97)を測定した。これらの測定結果を表5に示す。表5中、実施例4~6の値は比較例2の値を1とした相対値を示す。表5の結果から、本発明の化合物を用いた有機電界発光素子では、性能が向上することが判った。
[Evaluation of element]
Current efficiency (cd/A) and external quantum efficiency (%) were measured when the organic electroluminescence devices obtained in Examples 4 to 6 and Comparative Example 2 were caused to emit light at 1,000 cd/m 2 . Also, the time (LT97) for the luminance to decrease to 97% of the initial luminance was measured when the device was continuously energized at a current density of 15 mA/cm 2 . Table 5 shows these measurement results. In Table 5, the values of Examples 4 to 6 are relative values with the value of Comparative Example 2 set to 1. From the results in Table 5, it was found that the performance of the organic electroluminescence device using the compound of the present invention was improved.
Figure JPOXMLDOC01-appb-T000104
Figure JPOXMLDOC01-appb-T000104
 以上、図面を参照しながら各種の実施の形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。また、発明の趣旨を逸脱しない範囲において、上記実施の形態における各構成要素を任意に組み合わせてもよい。 Various embodiments have been described above with reference to the drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious that a person skilled in the art can conceive of various modifications or modifications within the scope described in the claims, and these also belong to the technical scope of the present invention. Understood. Moreover, each component in the above embodiments may be combined arbitrarily without departing from the gist of the invention.
 なお、本出願は、2021年6月4日出願の日本特許出願(特願2021-094594)に基づくものであり、その内容は本出願の中に参照として援用される。 This application is based on a Japanese patent application (Japanese Patent Application No. 2021-094594) filed on June 4, 2021, the contents of which are incorporated herein by reference.
 本発明は、優れた耐熱性、優れた溶解性、優れた電子輸送性、優れた薄膜のアルコール溶媒への耐久性を有する芳香族化合物を提供することができる。また、本発明は、当該化合物を有する有機電界発光素子、当該有機電界発光素子を有する表示装置及び照明装置、当該化合物及び溶剤を含有する組成物、薄膜形成方法及び有機電界発光素子の製造方法を提供することができる。 The present invention can provide an aromatic compound having excellent heat resistance, excellent solubility, excellent electron transport properties, and excellent resistance to alcohol solvents in thin films. The present invention also provides an organic electroluminescent device containing the compound, a display device and a lighting device comprising the organic electroluminescent device, a composition containing the compound and a solvent, a method for forming a thin film, and a method for manufacturing an organic electroluminescent device. can provide.
 1 基板
 2 陽極
 3 正孔注入層
 4 正孔輸送層     
 5 発光層
 6 電子輸送層
 7 陰極
 8 有機電界発光素子
REFERENCE SIGNS LIST 1 substrate 2 anode 3 hole injection layer 4 hole transport layer
5 Emissive Layer 6 Electron Transport Layer 7 Cathode 8 Organic Electroluminescent Device

Claims (21)

  1.  下記式(1)で表される芳香族化合物。
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、G及びGは、各々独立に、下記式(3)を表し、Gは、下記式(4)を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式(3)中、アスタリスク(*)は、式(1)との結合を表し、
     Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
     Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
     aは1~5の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (式(4)中、アスタリスク(*)は、式(1)との結合を表し、
     Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
     aは1~5の整数を表す。)
    An aromatic compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In formula (1), G 1 and G 2 each independently represent formula (3) below, and G 3 represents formula (4) below.)
    Figure JPOXMLDOC01-appb-C000002

    (In formula (3), an asterisk (*) represents a bond with formula (1),
    L 2 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
    Ar 2 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
    a2 represents an integer of 1 to 5; )
    Figure JPOXMLDOC01-appb-C000003

    (In formula (4), an asterisk (*) represents a bond with formula (1),
    L 3 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
    a3 represents an integer of 1 to 5; )
  2.  Gが、下記式(2)で表される請求項1に記載の芳香族化合物。
    Figure JPOXMLDOC01-appb-C000004

    (式(2)中、アスタリスク(*)は、式(1)との結合を表し、
     Lは、置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい2価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい2価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
     Arは、置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基、置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基、又は置換基を有していてもよい1価の炭素数60以下の芳香族炭化水素基及び置換基を有していてもよい1価の炭素数60以下のヘテロ芳香族基から選択される複数の基が連結した基であり、
     aは0~5の整数を表す。)
    The aromatic compound according to claim 1 , wherein G1 is represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000004

    (In formula (2), an asterisk (*) represents a bond with formula (1),
    L 1 is an optionally substituted divalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted divalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted divalent C 60 or less aromatic hydrocarbon groups and optionally substituted divalent C 60 or less heteroaromatic groups is a group to which the group is linked,
    Ar 1 is an optionally substituted monovalent aromatic hydrocarbon group having 60 or less carbon atoms, an optionally substituted monovalent heteroaromatic group having 60 or less carbon atoms, or A plurality of groups selected from optionally substituted monovalent aromatic hydrocarbon groups having 60 or less carbon atoms and optionally substituted monovalent heteroaromatic groups having 60 or less carbon atoms is a group to which the group is linked,
    a 1 represents an integer of 0 to 5; )
  3.  L~Lが、各々独立に、フェニル基またはフェニル基が複数連結した基である、請求項2に記載の芳香族化合物。 3. The aromatic compound according to claim 2, wherein each of L 1 to L 3 is independently a phenyl group or a group in which a plurality of phenyl groups are linked.
  4.  L~Lが、各々独立に、1,3-フェニレン基又は1,4-フェニレン基である、請求項2又は3に記載の芳香族化合物。 4. The aromatic compound according to claim 2, wherein L 1 to L 3 are each independently a 1,3-phenylene group or a 1,4-phenylene group.
  5.  分子量が1200以上である請求項1~4のいずれか1項に記載の芳香族化合物。 The aromatic compound according to any one of claims 1 to 4, which has a molecular weight of 1200 or more.
  6.  基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子であって、
     前記有機層が、有機電界発光素子用材料を含む層を有し、
     前記有機電界発光素子用材料が請求項1~5のいずれか1項に記載の芳香族化合物である、有機電界発光素子。
    An organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode,
    The organic layer has a layer containing a material for an organic electroluminescent device,
    An organic electroluminescence device, wherein the material for organic electroluminescence device is the aromatic compound according to any one of claims 1 to 5.
  7.  前記有機電界発光素子用材料を含む層が発光層である、請求項6に記載の有機電界発光素子。 The organic electroluminescent device according to claim 6, wherein the layer containing the organic electroluminescent device material is a light-emitting layer.
  8.  請求項6又は7に記載の有機電界発光素子を有する、表示装置。 A display device comprising the organic electroluminescence device according to claim 6 or 7.
  9.  請求項6又は7に記載の有機電界発光素子を有する、照明装置。 A lighting device comprising the organic electroluminescent element according to claim 6 or 7.
  10.  請求項1~5のいずれか1項に記載の芳香族化合物及び溶剤を含有する、有機電界発光素子用組成物。 A composition for an organic electroluminescence device, containing the aromatic compound according to any one of claims 1 to 5 and a solvent.
  11.  さらに、燐光発光材料及び電荷輸送材料を含有する、請求項10に記載の有機電界発光素子用組成物。 The composition for an organic electroluminescence device according to claim 10, further comprising a phosphorescent material and a charge transport material.
  12.  前記電荷輸送材料が、下記式(240)で表される化合物、又は、下記式(260)で表される化合物である、請求項11に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000005

    (式(240)中、
     Ar611、Ar612は各々独立に、置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基を表し、
     R611、R612は各々独立に、重水素原子、ハロゲン原子、又は置換基を有していてもよい炭素数6~50の1価の芳香族炭化水素基であり、
     Gは、単結合、又は、置換基を有していてもよい炭素数6~50の2価の芳香族炭化水素基を表し、
     n611、n612は各々独立に0~4の整数である。)
    Figure JPOXMLDOC01-appb-C000006

    (式(260)中、Ar21~Ar35は各々独立に、水素原子、置換基を有してもよいフェニル基又は置換基を有してもよいフェニル基が2~10個、非分岐又は分岐して連結した1価の基を表す。)
    12. The composition for an organic electroluminescence device according to claim 11, wherein the charge transport material is a compound represented by the following formula (240) or a compound represented by the following formula (260).
    Figure JPOXMLDOC01-appb-C000005

    (In formula (240),
    Ar 611 and Ar 612 each independently represent an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
    R 611 and R 612 are each independently a deuterium atom, a halogen atom, or an optionally substituted monovalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
    G represents a single bond or an optionally substituted divalent aromatic hydrocarbon group having 6 to 50 carbon atoms,
    n 611 and n 612 are each independently an integer of 0-4. )
    Figure JPOXMLDOC01-appb-C000006

    (In the formula (260), each of Ar 21 to Ar 35 is independently a hydrogen atom, an optionally substituted phenyl group or an optionally substituted phenyl group, 2 to 10, unbranched or It represents a branched and linked monovalent group.)
  13.  前記式(240)におけるAr611及びAr612が各々独立に、置換基を有してもよいベンゼン環が複数鎖状又は分岐して結合した1価の基である、請求項12に記載の有機電界発光素子用組成物。 13. The organic compound according to claim 12, wherein each of Ar 611 and Ar 612 in the formula (240) is independently a monovalent group in which a plurality of optionally substituted benzene rings are bonded in a chain or branched manner. A composition for an electroluminescence device.
  14.  前記式(240)におけるR611及びR612が各々独立に置換基を有していてもよい炭素数6~30の1価の芳香族炭化水素基である、請求項12又は13に記載の有機電界発光素子用組成物。 The organic according to claim 12 or 13, wherein R 611 and R 612 in the formula (240) are each independently an optionally substituted monovalent aromatic hydrocarbon group having 6 to 30 carbon atoms. A composition for an electroluminescence device.
  15.  前記式(240)におけるn611及びn612が各々独立に0又は1である、請求項12~14のいずれか1項に記載の有機電界発光素子用組成物。 15. The composition for an organic electroluminescence device according to claim 12, wherein n 611 and n 612 in formula (240) are each independently 0 or 1.
  16.  前記式(260)において、Ar21、Ar25、Ar26、Ar30、Ar31及びAr35は水素原子であり、
     Ar22~Ar24、Ar27~Ar29、及びAr32~Ar34は、水素原子、フェニル基、及び、下記式(261-1)~(261-9)から選択される構造のいずれかであり、これらの構造は前記置換基を有してよい、請求項12に記載の有機電界発光素子用組成物。
    Figure JPOXMLDOC01-appb-C000007
    In the formula (260), Ar 21 , Ar 25 , Ar 26 , Ar 30 , Ar 31 and Ar 35 are hydrogen atoms,
    Ar 22 to Ar 24 , Ar 27 to Ar 29 , and Ar 32 to Ar 34 are hydrogen atoms, phenyl groups, or structures selected from the following formulas (261-1) to (261-9). 13. The composition for an organic electroluminescence device according to claim 12, wherein these structures may have the substituents.
    Figure JPOXMLDOC01-appb-C000007
  17.  請求項10~16のいずれか1項に記載の有機電界発光素子用組成物を湿式成膜法にて成膜する工程を有する、薄膜形成方法。 A method for forming a thin film, comprising a step of forming a film from the composition for organic electroluminescent elements according to any one of claims 10 to 16 by a wet film-forming method.
  18.  基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子の製造方法であって、
     前記有機層を、請求項10~16のいずれか1項に記載の有機電界発光素子用組成物を用いて湿式成膜法にて形成する工程を含む、有機電界発光素子の製造方法。
    A method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, the method comprising:
    A method for producing an organic electroluminescence device, comprising the step of forming the organic layer by a wet film-forming method using the composition for an organic electroluminescence device according to any one of claims 10 to 16.
  19.  前記有機層が発光層である、請求項18に記載の有機電界発光素子の製造方法。 The method for producing an organic electroluminescence device according to claim 18, wherein the organic layer is a light-emitting layer.
  20.  基板上に、陽極及び陰極を有し、前記陽極と前記陰極の間に有機層を有する有機電界発光素子の製造方法であって、
     前記有機層が、発光層と電子輸送層を含み
     前記発光層を、請求項10~16のいずれか1項に記載の有機電界発光素子用組成物を用いて湿式成膜法で形成する工程と、
     前記電子輸送層を、電子輸送材料及び溶剤を含む電子輸送層用組成物を用いて湿式成膜法で形成する工程と、をこの順で含む有機電界発光素子の製造方法。
    A method for producing an organic electroluminescence device having an anode and a cathode on a substrate and an organic layer between the anode and the cathode, the method comprising:
    The organic layer comprises a light-emitting layer and an electron-transporting layer, and a step of forming the light-emitting layer by a wet film-forming method using the composition for an organic electroluminescent device according to any one of claims 10 to 16. ,
    forming the electron transport layer by a wet film-forming method using an electron transport layer composition containing an electron transport material and a solvent, in this order.
  21.  前記電子輸送層用組成物に含まれる溶剤が、アルコール系溶媒である請求項20に記載の有機電界発光素子の製造方法。 The method for producing an organic electroluminescence device according to claim 20, wherein the solvent contained in the electron transport layer composition is an alcohol solvent.
PCT/JP2022/022397 2021-06-04 2022-06-01 Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element WO2022255428A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280039377.0A CN117480156A (en) 2021-06-04 2022-06-01 Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element
KR1020237041516A KR20240016969A (en) 2021-06-04 2022-06-01 Aromatic compounds, organic electroluminescent devices, compositions, and methods for producing organic electroluminescent devices
JP2023525903A JPWO2022255428A1 (en) 2021-06-04 2022-06-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-094594 2021-06-04
JP2021094594 2021-06-04

Publications (1)

Publication Number Publication Date
WO2022255428A1 true WO2022255428A1 (en) 2022-12-08

Family

ID=84324143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/022397 WO2022255428A1 (en) 2021-06-04 2022-06-01 Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element

Country Status (5)

Country Link
JP (1) JPWO2022255428A1 (en)
KR (1) KR20240016969A (en)
CN (1) CN117480156A (en)
TW (1) TW202313930A (en)
WO (1) WO2022255428A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021689A1 (en) * 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
WO2012137958A1 (en) * 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
KR20160132724A (en) * 2015-05-11 2016-11-21 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
JP2017524699A (en) * 2014-07-21 2017-08-31 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Materials for electronic devices
KR20180022546A (en) * 2016-08-24 2018-03-06 주식회사 엘지화학 Novel organic light emitting material and organic light emitting device comprising the same
JP2018507174A (en) * 2014-12-24 2018-03-15 ドゥーサン コーポレイション Organic compound and organic electroluminescent device including the same
CN109651276A (en) * 2018-12-31 2019-04-19 瑞声科技(南京)有限公司 It is a kind of based on triazine-anthracene structure heterocyclic compound and its application
CN109956897A (en) * 2019-04-24 2019-07-02 上海钥熠电子科技有限公司 The compound of 9,9 '-dianthranide derivatives of one kind, OLED display panel and electronic equipment comprising it
JP2020107868A (en) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Organic electroluminescent element and manufacturing method thereof
CN111943934A (en) * 2020-08-04 2020-11-17 吉林奥来德光电材料股份有限公司 Electron transport type luminescent compound, preparation method thereof and organic luminescent device
WO2021057550A1 (en) * 2019-09-25 2021-04-01 陕西莱特光电材料股份有限公司 Organic compound and electronic device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011021689A1 (en) * 2009-08-21 2011-02-24 東ソー株式会社 Cyclic azine derivatives, processes for producing these, and organic electroluminescent element containing these as component
WO2012137958A1 (en) * 2011-04-07 2012-10-11 三菱化学株式会社 Organic compound, charge transport material, composition containing said compound, organic electroluminescent element, display device, and lighting device
JP2017524699A (en) * 2014-07-21 2017-08-31 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Materials for electronic devices
JP2018507174A (en) * 2014-12-24 2018-03-15 ドゥーサン コーポレイション Organic compound and organic electroluminescent device including the same
KR20160132724A (en) * 2015-05-11 2016-11-21 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR20180022546A (en) * 2016-08-24 2018-03-06 주식회사 엘지화학 Novel organic light emitting material and organic light emitting device comprising the same
JP2020107868A (en) * 2018-12-28 2020-07-09 三星電子株式会社Samsung Electronics Co.,Ltd. Organic electroluminescent element and manufacturing method thereof
CN109651276A (en) * 2018-12-31 2019-04-19 瑞声科技(南京)有限公司 It is a kind of based on triazine-anthracene structure heterocyclic compound and its application
CN109956897A (en) * 2019-04-24 2019-07-02 上海钥熠电子科技有限公司 The compound of 9,9 '-dianthranide derivatives of one kind, OLED display panel and electronic equipment comprising it
WO2021057550A1 (en) * 2019-09-25 2021-04-01 陕西莱特光电材料股份有限公司 Organic compound and electronic device
CN111943934A (en) * 2020-08-04 2020-11-17 吉林奥来德光电材料股份有限公司 Electron transport type luminescent compound, preparation method thereof and organic luminescent device

Also Published As

Publication number Publication date
JPWO2022255428A1 (en) 2022-12-08
CN117480156A (en) 2024-01-30
KR20240016969A (en) 2024-02-06
TW202313930A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
JP5810417B2 (en) Iridium complex compound, composition containing the compound, organic electroluminescent element, display device and lighting device
JP5434088B2 (en) Crosslinkable organic compound, composition for organic electroluminescence device, organic electroluminescence device and organic EL display
KR102229736B1 (en) Monoamine compound, charge-transporting material, composition for charge-transporting film, organic electroluminescent element, organic el display device and organic el lighting
JP5742092B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP7306345B2 (en) aromatic compounds
JP7513069B2 (en) Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, organic EL lighting, and method for producing organic electroluminescent element
JP5617202B2 (en) Organic compound, charge transport material, composition for organic electroluminescence device, organic electroluminescence device, organic EL display and organic EL lighting
JP7574805B2 (en) Polymer, composition for organic electroluminescent element, composition for forming hole transport layer or hole injection layer, organic electroluminescent element, organic EL display device, and organic EL lighting
WO2021166900A1 (en) Organic electroluminescent element, organic el display device, and organic el lighting
JP7367574B2 (en) aromatic compounds
WO2022255428A1 (en) Aromatic compound, organic electroluminescent element, composition, and method for producing organic electroluminescent element
WO2022255402A1 (en) Aromatic compound and organic electroluminescent element
WO2022255403A1 (en) Compound and organic electroluminescence element
WO2022255427A1 (en) Aromatic compound, organic electroluminescence element, composition, and method for producing organic electroluminescence element
JP7463755B2 (en) Aromatic diamine derivatives
JP2023086108A (en) Compounds and organic electroluminescent elements
JP5644147B2 (en) Organic compound, organic electroluminescent element material, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, and organic EL lighting
JP2012119471A (en) Composition for organic electroluminescent element, organic electroluminescent element, organic el display device, and organic el illumination
JP2024121520A (en) Compound and organic electroluminescent device
CN117441418A (en) Aromatic compound and organic electroluminescent element
JP2022136017A (en) Aromatic compound
CN117480165A (en) Compound and organic electroluminescent element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22816173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023525903

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280039377.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22816173

Country of ref document: EP

Kind code of ref document: A1