Nothing Special   »   [go: up one dir, main page]

WO2022130099A1 - 二次電池、電子機器、蓄電システムおよび車両 - Google Patents

二次電池、電子機器、蓄電システムおよび車両 Download PDF

Info

Publication number
WO2022130099A1
WO2022130099A1 PCT/IB2021/061269 IB2021061269W WO2022130099A1 WO 2022130099 A1 WO2022130099 A1 WO 2022130099A1 IB 2021061269 W IB2021061269 W IB 2021061269W WO 2022130099 A1 WO2022130099 A1 WO 2022130099A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
secondary battery
negative electrode
electrode active
Prior art date
Application number
PCT/IB2021/061269
Other languages
English (en)
French (fr)
Inventor
栗城和貴
中尾泰介
落合輝明
高橋辰義
山崎舜平
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to KR1020237021791A priority Critical patent/KR20230121610A/ko
Priority to US18/257,335 priority patent/US20240047655A1/en
Priority to CN202180083013.8A priority patent/CN116568638A/zh
Priority to JP2022569312A priority patent/JPWO2022130099A1/ja
Publication of WO2022130099A1 publication Critical patent/WO2022130099A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/08Structural combinations, e.g. assembly or connection, of hybrid or EDL capacitors with other electric components, at least one hybrid or EDL capacitor being the main component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material possessed by an electrode and a method for producing the same.
  • the present invention relates to a secondary battery and a method for manufacturing the secondary battery.
  • it relates to a mobile body including a vehicle having a secondary battery, a mobile information terminal, an electronic device, and the like.
  • the uniform state of the present invention relates to a product, a method, or a manufacturing method.
  • the invention relates to a process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device, an electronic device, or a method for manufacturing the same.
  • the electronic device refers to all the devices having a power storage device, and the electro-optical device having the power storage device, the information terminal device having the power storage device, and the like are all electronic devices.
  • a power storage device refers to an element and a device having a power storage function in general.
  • a power storage device also referred to as a secondary battery
  • a lithium ion secondary battery such as a lithium ion secondary battery, a lithium ion capacitor, an electric double layer capacitor, and the like.
  • lithium-ion secondary batteries with high output and high energy density are portable information terminals such as mobile phones, smartphones, or notebook computers, portable music players, digital cameras, medical devices, hybrid vehicles (HVs), and electricity.
  • HVs hybrid vehicles
  • EVs electric vehicles
  • PSVs plug-in hybrid vehicles
  • Secondary batteries used for moving objects such as electric vehicles and hybrid vehicles need to be increased in capacity in order to increase the mileage.
  • the power consumption of mobile terminals and the like is increasing due to the increasing number of functions.
  • the secondary battery used for a mobile terminal or the like is required to be smaller and lighter. Therefore, there is a demand for higher capacity in the secondary battery used for the mobile terminal.
  • alloy-based materials such as silicon-based materials have high capacities and are promising as active materials for secondary batteries.
  • alloy-based materials having a high charge / discharge capacity have problems such as micronization and shedding of active materials due to volume changes due to charge / discharge, and sufficient cycle characteristics have not been obtained.
  • Patent Document 1 describes a composite material in which a coating layer made of carbon is formed on the surface of a porous particle nucleus formed by bonding silicon-containing particles and carbon-containing particles.
  • Patent Document 2 describes composite particles containing silicon (Si), lithium fluoride (LiF), and a carbon material.
  • the electrodes of the secondary battery are made of, for example, materials such as an active material, a conductive material, and a binder.
  • the capacity of the secondary battery can be increased by increasing the proportion of the material that contributes to the charge / discharge capacity, for example, the active material. Since the electrode has a conductive material, the conductivity of the electrode can be enhanced and excellent output characteristics can be obtained.
  • the active material when the active material repeatedly expands and contracts during charging and discharging of the secondary battery, the active material may collapse or the conductive path may be blocked at the electrode. In such a case, since the electrode has a conductive material and a binder, it is possible to suppress the collapse of the active material and the blocking of the conductive path.
  • the ratio of the active material is reduced, so that the capacity of the secondary battery may be reduced.
  • One aspect of the present invention is to provide an electrode having excellent characteristics. Alternatively, one aspect of the present invention is to provide an active material having excellent properties. Alternatively, one aspect of the present invention is to provide a novel electrode.
  • one aspect of the present invention is to provide a mechanically durable negative electrode.
  • one aspect of the present invention is to provide a mechanically durable positive electrode.
  • one aspect of the present invention is to provide a negative electrode having a high capacity.
  • one aspect of the present invention is to provide a positive electrode having a high capacity.
  • one aspect of the present invention is to provide a negative electrode with less deterioration.
  • one aspect of the present invention is to provide a positive electrode with less deterioration.
  • one aspect of the present invention is to provide a secondary battery with less deterioration.
  • one aspect of the present invention is to provide a highly safe secondary battery.
  • Another object of the present invention is to provide a secondary battery having a high energy density, which is one aspect of the present invention.
  • one aspect of the present invention is to provide a novel secondary battery.
  • One aspect of the present invention comprises a positive electrode and a negative electrode, wherein the negative electrode has a first active material, a second active material, and a graphene compound, and has a surface of the first active material. At least a part has a region covered with a second active material, and at least a part of the surface of the second active material and the surface of the first active material has a region covered with a graphene compound.
  • the first active material has graphite
  • the second active material has silicon
  • the capacity of the positive electrode is 50% or more and less than 100% with respect to the capacity of the negative electrode. ..
  • one aspect of the present invention has a positive electrode and a negative electrode, and the negative electrode has a first active material, a second active material, and a graphene compound, and the negative electrode has the first active material. At least a part of the surface has a region covered with a second active material, and at least a part of the surface of the second active material and the surface of the first active material is a region covered with a graphene compound.
  • the first active material has graphite
  • the second active material has silicon
  • the second active material has a Si—Si bond in a fully charged state. be.
  • one aspect of the present invention includes a positive electrode, a negative electrode, and an electrolyte
  • the negative electrode has a first active material, a second active material, and a graphene compound, and the first aspect thereof. At least a part of the surface of the active material has a region covered with the second active material, and the surface of the second active material and at least a part of the surface of the first active material are covered with the graphene compound.
  • the first active material has graphite
  • the second active material has silicon
  • the capacity of the positive electrode is 50% or more and less than 100% with respect to the capacity of the negative electrode.
  • the electrolyte is a secondary battery with an ionic liquid.
  • one aspect of the present invention includes a positive electrode, a negative electrode, and an electrolyte
  • the negative electrode has a first active material, a second active material, and a graphene compound, and the first aspect thereof. At least a part of the surface of the active material has a region covered with the second active material, and the surface of the second active material and at least a part of the surface of the first active material are covered with the graphene compound.
  • the first active material has graphite
  • the second active material has silicon
  • the second active material has a Si—Si bond.
  • the electrolyte is a secondary battery with an ionic liquid.
  • the ionic liquid has LiFSI of 2 mol / L or more and EMI-FSI.
  • the positive electrode has lithium cobalt oxide having magnesium, fluorine, aluminum, and nickel, and lithium cobalt oxide is selected from magnesium, fluorine, and aluminum. It is desirable to have one or more regions in the surface layer where the concentration is maximum.
  • the first active material has graphite having a particle size of 5 ⁇ m or more, and the second active material has silicon having a particle size of 250 nm or less. ..
  • One aspect of the present invention is a vehicle having the secondary battery according to any one of the above.
  • One aspect of the present invention is the power storage system having the secondary battery according to any one of the above.
  • One aspect of the present invention is an electronic device having the secondary battery according to any one of the above.
  • an active material having excellent properties. Further, it is possible to provide an electrode having excellent characteristics. Further, according to one aspect of the present invention, a novel electrode can be provided.
  • a mechanically durable negative electrode Further, according to one aspect of the present invention, it is possible to provide a mechanically durable positive electrode. Further, according to one aspect of the present invention, it is possible to provide a negative electrode having a high capacity. Further, according to one aspect of the present invention, it is possible to provide a positive electrode having a high capacity. Further, according to one aspect of the present invention, it is possible to provide a negative electrode with less deterioration. Further, according to one aspect of the present invention, it is possible to provide a positive electrode with less deterioration.
  • a secondary battery with less deterioration. Further, according to one aspect of the present invention, it is possible to provide a highly safe secondary battery. Further, according to one aspect of the present invention, it is possible to provide a secondary battery having a high energy density. Further, according to one aspect of the present invention, a novel secondary battery can be provided.
  • FIG. 1A and 1B are views showing an example of a cross section of an electrode.
  • FIG. 1C is a diagram illustrating a capacity ratio between a positive electrode and a negative electrode.
  • 2A to 2C are diagrams for explaining the capacity ratio between the positive electrode and the negative electrode and the voltage of the secondary battery.
  • FIG. 3A is a diagram showing an example of particles contained in the negative electrode.
  • 3B and 3C are diagrams showing changes in the shape of particles during charging and discharging.
  • 4A and 4B are diagrams relating to the calculation of the negative electrode according to one aspect of the present invention.
  • FIG. 5 is a diagram relating to the calculation of the negative electrode according to one aspect of the present invention.
  • 6A to 6C are diagrams relating to the calculation of the negative electrode according to one aspect of the present invention.
  • FIG. 7 is a diagram showing an example of a method for manufacturing an electrode.
  • 8A and 8B are examples of models of graphene compounds.
  • FIG. 9 is a diagram showing a cross-sectional structure of a positive electrode according to an aspect of the present invention.
  • 10A1 to 10C2 are views showing a cross-sectional structure of a positive electrode active material complex according to an aspect of the present invention.
  • 11A is a top view of the positive electrode active material of one aspect of the present invention
  • FIGS. 11B and 11C are sectional views of the positive electrode active material of one aspect of the present invention.
  • FIG. 12 is a diagram illustrating the crystal structure of the positive electrode active material according to one aspect of the present invention.
  • FIG. 13 is an XRD pattern calculated from the crystal structure.
  • FIG. 14 is a diagram illustrating the crystal structure of the positive electrode active material of the comparative example.
  • FIG. 15 is an XRD pattern calculated from the crystal structure.
  • FIG. 16 is an example of a TEM image in which the crystal orientations are substantially the same.
  • FIG. 17A is an example of an STEM image in which the crystal orientations are substantially the same.
  • FIG. 17B is an FFT in the region of rock salt crystal RS, and
  • FIG. 17C is an FFT in the region of layered rock salt crystal LRS.
  • 18A is an exploded perspective view of the coin-type secondary battery
  • FIG. 18B is a perspective view of the coin-type secondary battery
  • FIG. 18C is a cross-sectional perspective view thereof.
  • FIG. 19A shows an example of a cylindrical secondary battery.
  • FIG. 19A shows an example of a cylindrical secondary battery.
  • FIG. 19B shows an example of a cylindrical secondary battery.
  • FIG. 19C shows an example of a plurality of cylindrical secondary batteries.
  • FIG. 19D shows an example of a power storage system having a plurality of cylindrical secondary batteries.
  • 20A and 20B are diagrams for explaining an example of a secondary battery, and FIG. 20C is a diagram showing the inside of the secondary battery.
  • 21A to 21C are diagrams illustrating an example of a secondary battery.
  • 22A and 22B are views showing the appearance of the secondary battery.
  • 23A to 23C are diagrams illustrating a method for manufacturing a secondary battery.
  • 24A to 24C are views showing a configuration example of the battery pack.
  • 25A and 25B are diagrams illustrating an example of a secondary battery.
  • 26A to 26C are diagrams illustrating an example of a secondary battery.
  • 27A and 27B are diagrams illustrating an example of a secondary battery.
  • 28A is a perspective view of a battery pack showing one aspect of the present invention
  • FIG. 28B is a block diagram of the battery pack
  • FIG. 28C is a block diagram of a vehicle having a motor.
  • 29A to 29D are diagrams illustrating an example of a transportation vehicle.
  • 30A and 30B are diagrams illustrating a power storage device according to an aspect of the present invention.
  • 31A is a diagram showing an electric bicycle
  • FIG. 31B is a diagram showing a secondary battery of the electric bicycle
  • FIG. 31C is a diagram illustrating an electric motorcycle.
  • 32A to 32D are diagrams illustrating an example of an electronic device.
  • FIG. 33A shows an example of a wearable device
  • FIG. 33B shows a perspective view of the wristwatch-type device
  • FIG. 33C is a diagram illustrating a side surface of the wristwatch-type device
  • FIG. 33D is a diagram illustrating an example of a wireless earphone.
  • 34A and 34B are SEM images of the electrodes.
  • 35A and 35B are graphs showing cycle characteristics.
  • 36A and 36B are graphs showing cycle characteristics.
  • 37A and 37B are graphs showing discharge characteristics.
  • the ordinal numbers attached as the first, second, etc. are used for convenience, and do not indicate the process order or the stacking order. Therefore, for example, the "first” can be appropriately replaced with the “second” or “third” for explanation.
  • the ordinal numbers described in the present specification and the like may not match the ordinal numbers used to specify one aspect of the present invention.
  • the particle is not limited to a spherical shape (the cross-sectional shape is a circle), and the cross-sectional shape of each particle is an ellipse, a rectangle, a trapezoid, a triangle, a quadrangle with rounded corners, and an asymmetric shape. And so on, and the individual particles may be irregular.
  • FIG. 1A is a schematic cross-sectional view showing the inside of a secondary battery according to an aspect of the present invention.
  • the negative electrode 570a, the positive electrode 570b, and the electrolyte 576 shown in FIG. 1A can be applied to a coin-type secondary battery, a cylindrical secondary battery, a laminated secondary battery, and the like shown in the embodiments described later.
  • the negative electrode 570a includes at least a negative electrode current collector 571a and a negative electrode active material layer 572a formed in contact with the negative electrode current collector 571a.
  • the positive electrode 570b includes at least a positive electrode current collector 571b and a positive electrode active material layer 572b formed in contact with the positive electrode current collector 571b.
  • FIG. 1B is an enlarged view of a region surrounded by a broken line C in FIG. 1A.
  • FIG. 1C is a diagram illustrating the capacity ratio of the negative electrode 570a and the positive electrode 570b in the region surrounded by the broken line A and the broken line B in FIG. 1A.
  • the secondary battery may have a separator between the negative electrode 570a and the positive electrode 570b.
  • the negative electrode characteristic curve 560a and the positive electrode characteristic curve 560b shown in FIGS. 1C, 2A, 2B, and 2C have negative electrode 570a and positive electrode 570b having the same area facing each other in the region surrounded by the broken line A and the broken line B in FIG. 1A. It is a characteristic curve which shows the relationship between the capacity and potential of the negative electrode active material layer 572a and the positive electrode active material layer 572b which has.
  • the capacity C1 is the total capacity that the negative electrode 570a can charge and discharge.
  • the total capacity that can be charged and discharged by the negative electrode 570a is, for example, a half cell having a negative electrode 570a and a lithium metal, and constant current discharge (0.2C, lower limit voltage 0.01V) followed by constant voltage discharge (lower limit current). It refers to the charge capacity when the density is 0.02C) and then constant current charging (0.2C, upper limit voltage 1V) is performed.
  • the capacity C2 is the capacity of the positive electrode in the fully charged state of the secondary battery.
  • the fully charged state of the secondary battery means a charged state in which, for example, the rated capacity defined by JIS C8711 (2013) can be obtained.
  • the capacity ratio of the negative electrode 570a and the positive electrode 570b in the secondary battery indicates the capacity of the positive electrode 570b when the capacity of the negative electrode 570a is 100% in the negative electrode 570a and the positive electrode 570b having the same area. For example, as shown in FIG. 2A, when the capacity of the negative electrode 570a and the capacity of the positive electrode 570b are equal, the capacity ratio of the negative electrode 570a and the positive electrode 570b is 100%.
  • the capacity ratio of the negative electrode 570a and the positive electrode 570b is lower than 100% will be described with reference to FIG. 1C.
  • the capacity ratio is lower than 100%, it means that the total chargeable / discharging capacity of the negative electrode 570a is larger than the chargeable / discharging capacity of the positive electrode 570b.
  • the capacitance C1 of the negative electrode 570a shown in FIG. 1C has a larger value than the capacitance C2 of the positive electrode 570b.
  • the charge / discharge capacity is high when the capacity ratio is preferably 50% or more and less than 100%, more preferably 70% or more and less than 90%. There is a feature that a secondary battery with good charge / discharge cycle characteristics can be obtained.
  • the voltage of the secondary battery can be considered as the difference between the positive electrode potential and the negative electrode potential.
  • the voltage of the secondary battery when the capacity ratio of the negative electrode 570a and the positive electrode 570b is 100% is shown as ⁇ Va in FIG. 2A.
  • the case where the capacity ratio is lower than 100% is shown as ⁇ Vb in FIG. 2B.
  • the negative electrode 570a is used in a region where the utilization potential range is high, so that the voltage of the secondary battery drops.
  • FIG. 2C shows an example in which the secondary battery voltage does not decrease even when the capacity ratio of the negative electrode 570a and the positive electrode 570b is lower than 100%.
  • ⁇ Va and ⁇ Vc shown in FIG. 2C have the same voltage value.
  • the utilization potential range of the positive electrode 570b is the same as the utilization potential range of the positive electrode 570b in FIG. 2A, and the secondary battery voltage ⁇ Vb in this case is smaller than ⁇ Va as described above.
  • the utilization potential range of the positive electrode 570b is extended to a high potential, the secondary battery voltage ⁇ Vc becomes a high value as in ⁇ Va.
  • the positive electrode active material 100 shown in one aspect of the present invention is suitable as the active material of the positive electrode 570b because it can have a stable crystal structure in a high potential charged state. Details of the positive electrode active material 100 will be described later.
  • FIG. 1B is an enlarged view of a region surrounded by a broken line C in FIG. 1A.
  • the negative electrode active material layer 572a has a first active material 581, a second active material 582, a graphene compound 583 as a material having a sheet-like shape, and an electrolyte 576.
  • FIG. 3A shows how the graphene compound 583 comes into contact with the first active material 581 so as to cover, wrap, or cling to the second active material 582 located on the surface of the first active material 581. It is a schematic diagram which shows.
  • the graphene compound 583 contained in the negative electrode 570a preferably functions as a conductive material, for example. In one aspect of the present invention, since the conductive material can cling to the active material by hydrogen bonding, a highly conductive electrode can be realized.
  • first active material 581 and the second active material 582 can be used as the first active material 581 and the second active material 582.
  • a particle having an oxygen-containing functional group or fluorine on the surface layer portion which is a particle of one embodiment of the present invention as the first active substance 581 and the second active material 582, or a functional group or a fluorine atom containing oxygen on the surface thereof.
  • the affinity between the first active material 581 and the second active material 582 and the graphene compound 583 is improved, and as shown in FIGS. 1B and 3A, the graphene compound 583 is used.
  • the second active material 582 located on the surface of the first active material 581 can be in contact with the first active material 581 so as to cover, wrap, or cling to the first active material 581. Since the graphene compound 583 can cling to the first active material 581 and the second active material 582, a highly conductive electrode can be realized.
  • the state of touching in a clinging manner can be rephrased as touching in close contact rather than touching at points. It can also be paraphrased as contacting along the surface of the particles. It can also be rephrased as being in surface contact with a plurality of particles.
  • the materials that can be used as the first active material 581 and the second active material 582 will be described later.
  • FIG. 3B has a first active material 581, a second active material 582, and a graphene compound 583 as a material having a sheet-like shape, and the graphene compound 583 is provided on the surface of the first active material 581. It shows how the second active material 582, which is located, is in contact with the first active material 581 so as to cover, wrap, or cling to the second active material 582.
  • the second active material 582 is located between the first active material 581 and the graphene compound 583, and the graphene compound 583 is the first active material 581 and the second active material 582. It can also be said that it is in contact with.
  • the case where the volume of the second active material 582 shown in FIG. 3B is increased by charging or discharging is shown in FIG. 3C. Since the graphene compound 583 is in contact with the first active material 581 so as to cover, wrap, or cling to the second active material 582 located on the surface of the first active material 581, it can be charged or charged. Even when the volume of the second active material 582 is increased by the electric discharge, the electrical contact between the second active material 582 and the first active material 581 can be maintained. In addition, the collapse of the electrodes can be suppressed.
  • the contact area between the graphene compound 583 and the active material becomes large and moves through the graphene compound 583.
  • the conductivity of the electrons is improved.
  • the graphene compound 583 can be in contact with the active material so as to cling to it, thereby effectively preventing the active material from falling off. Even more remarkable effects can be obtained when they are in close contact with each other.
  • the graphene compound 583 has pores sized to pass Li ions, and the number of pores is large enough not to interfere with the electron conductivity of the graphene compound 583.
  • the negative electrode active material layer 572a can have a carbon-based material such as carbon black, graphite, carbon fiber, fullerene, etc., in addition to the graphene compound 583.
  • a carbon-based material such as carbon black, graphite, carbon fiber, fullerene, etc.
  • acetylene black (AB) or the like can be used as the carbon black.
  • graphite for example, natural graphite, artificial graphite such as mesocarbon microbeads, or the like can be used.
  • These carbon-based materials have high conductivity and can function as a conductive material in the active material layer. In addition, these carbon-based materials may function as an active material.
  • carbon fiber such as mesophase pitch type carbon fiber and isotropic pitch type carbon fiber can be used.
  • carbon fiber carbon nanofiber, carbon nanotube, or the like can be used.
  • the carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • the active material layer may have a metal powder such as copper, nickel, aluminum, silver, or gold, a metal fiber, a conductive ceramic material, or the like as a conductive material.
  • the content of the conductive material with respect to the total solid content of the active material layer is preferably 0.5 wt% or more and 10 wt% or less, and more preferably 0.5 wt% or more and 5 wt% or less.
  • graphene compounds Unlike granular conductive materials such as carbon black that make point contact with active materials, graphene compounds enable surface contact with low contact resistance, so the amount of granular active materials and graphene compounds is smaller than that of ordinary conductive materials. It is possible to improve the electrical conductivity with. Therefore, the ratio of the active material in the active material layer can be increased. As a result, the discharge capacity of the secondary battery can be increased.
  • the graphene compound according to one aspect of the present invention has excellent lithium permeability, the charge / discharge rate of the secondary battery can be increased.
  • Particle-like carbon-containing compounds such as carbon black and graphite, and fibrous carbon-containing compounds such as carbon nanotubes easily enter minute spaces.
  • the minute space refers to, for example, a region between a plurality of active materials.
  • a carbon-containing compound that easily enters a minute space and a sheet-shaped carbon-containing compound such as graphene that can impart conductivity over multiple particles, the density of the electrodes is increased and an excellent conductive path is obtained. Can be formed.
  • the secondary battery has the electrolyte 576 of one aspect of the present invention, the operational stability of the secondary battery can be enhanced. That is, the secondary battery of one aspect of the present invention can have both high energy density and stability, and is effective as an in-vehicle secondary battery.
  • the energy required to move it increases, and the cruising range also decreases.
  • the cruising range can be extended even if the weight of the secondary battery mounted on the vehicle is the same, that is, even if the total weight of the vehicle is the same.
  • the secondary battery of one aspect of the present invention can be miniaturized due to its high energy density, and can be quickly charged because of its high conductivity. Therefore, the configuration of the secondary battery according to one aspect of the present invention is also effective in a portable information terminal.
  • the negative electrode active material layer 572a preferably has a binder (not shown).
  • the binder binds or fixes the electrolyte 576 and the active material, for example. Further, the binder can bind or fix the electrolyte 576 and the carbon-based material, the active material and the carbon-based material, a plurality of active materials, a plurality of carbon-based materials, and the like.
  • binders polystyrene, methyl polyacrylate, methyl polymethacrylate (polymethylmethacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride, polytetra It is preferable to use materials such as fluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylenepropylene diene polymer, polyvinyl acetate, and nitrocellulose.
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonitrile
  • Polyimide has excellent stable properties thermally, mechanically and chemically.
  • a dehydration reaction and a cyclization (imidization) reaction are carried out. These reactions can be carried out, for example, by heat treatment.
  • graphene having a functional group containing oxygen is used as the graphene compound and polyimide is used as the binder in the electrode of one aspect of the present invention
  • the graphene compound can be reduced by the heat treatment, and the process can be simplified. It will be possible.
  • heat treatment can be performed at a heating temperature of, for example, 200 ° C. or higher. By performing the heat treatment at a heating temperature of 200 ° C. or higher, the reduction reaction of the graphene compound can be sufficiently performed, and the conductivity of the electrode can be further enhanced.
  • Fluoropolymer which is a polymer material having fluorine, specifically polyvinylidene fluoride (PVDF) or the like can be used.
  • PVDF is a resin having a melting point in the range of 134 ° C. or higher and 169 ° C. or lower, and is a material having excellent thermal stability.
  • a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, or ethylene-propylene-diene copolymer as the binder.
  • SBR styrene-butadiene rubber
  • fluorine rubber can be used as the binder.
  • a water-soluble polymer for example, a polysaccharide or the like can be used.
  • a polysaccharide such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose, or regenerated cellulose, or starch or the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • the binder may be used in combination of a plurality of the above.
  • the graphene compound 583 has flexibility and can cling to the first active material 581 and the second active material 582 like natto.
  • the first active substance 581 and the second active substance 582 can be compared to soybean, and the graphene compound 583 can be compared to a sticky component, for example, polyglutamic acid.
  • a plurality of graphene compounds 583 form a three-dimensional network structure, a structure in which polygons are arranged, for example, a honeycomb structure in which hexagons are arranged in a matrix, and the mesh has an electrolyte 576, a plurality of active materials, and a plurality of carbons.
  • the graphene compound 583 can form a three-dimensional conductive path and suppress the dropout of the electrolyte 576 from the current collector.
  • polygons having different numbers of sides may be mixed and arranged.
  • the graphene compound 583 may function as a conductive material and also as a binder in the negative electrode active material layer 572a. Since the graphene compound 583 has holes of 9-membered rings or more and does not inhibit the movement of Li ions even if it covers the active material, it is particularly preferable as a conductive material used for the negative electrode active material layer 572a.
  • the first active material 581 and the second active material 582 can have various shapes such as a rounded shape, a shape having corners, and the like. Further, in the cross section of the electrode, the first active material 581 and the second active material 582 can have various cross-sectional shapes such as a circle, an ellipse, a figure having a curve, a polygon, and the like. For example, FIGS. 1B and 3A show an example in which the cross section of the first active material 581 and the second active material 582 has a rounded shape, and the first active material 581 and the second active material 581 are shown. The cross section of 582 may have corners. Further, a part may be rounded and a part may have corners.
  • the following is an example of a negative electrode active material.
  • Silicon can be used as the negative electrode active material.
  • the negative electrode 570a it is preferable to use particles having silicon as the second active material 582.
  • a metal or compound having one or more elements selected from tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium and indium can be used.
  • Examples of alloy-based compounds using such elements include Mg 2 Si, Mg 2 Ge, Mg 2 Sn, SnS 2 , V2 Sn 3 , FeSn 2 , CoSn 2 , Ni 3 Sn 2 , and Cu 6 Sn 5 .
  • a material having a low resistance may be used by adding phosphorus, arsenic, boron, aluminum, gallium or the like as impurity elements to silicon.
  • a silicon material predoped with lithium may be used.
  • As a predoping method there are methods such as mixing and annealing lithium fluoride, lithium carbonate and the like with silicon, mechanical alloying of lithium metal and silicon, and the like.
  • lithium is doped into the silicon of the first electrode by a charge / discharge reaction in combination with the second electrode such as lithium metal, and then the doped first electrode is used.
  • a secondary battery may be manufactured by combining electrodes (for example, a positive electrode with respect to a pre-doped negative electrode) to be opposite electrodes.
  • nanosilicon particles can be used as the second active material 582.
  • the average diameter of the nanosilicon particles is, for example, preferably 5 nm or more and less than 1 ⁇ m, more preferably 10 nm or more and 300 nm or less, and further preferably 10 nm or more and 100 nm or less.
  • the nanosilicon particles may have a spherical morphology, a flat spherical morphology, or a rectangular parallelepiped morphology with rounded corners.
  • the size (particle size) of the nanosilicon particles is, for example, preferably 5 nm or more and less than 1 ⁇ m, more preferably 10 nm or more and 300 nm or less, and further preferably 10 nm or more and 100 nm or less as D50 for laser diffraction type particle size distribution measurement.
  • D50 is the particle size, that is, the median when the integrated amount occupies 50% in the integrated particle amount curve of the particle size distribution measurement result.
  • the measurement of the particle size is not limited to the laser diffraction type particle size distribution measurement, and the major axis of the particle cross section may be measured by analysis such as SEM or TEM.
  • the nanosilicon particles have amorphous silicon. Further, it is preferable that the nanosilicon particles have polycrystalline silicon. The nanosilicon particles preferably have amorphous silicon and polycrystalline silicon. Further, the nanosilicon particles may have a crystalline region and an amorphous region.
  • the material having silicon for example, a material represented by SiO x (x is preferably smaller than 2, more preferably 0.5 or more and 1.6 or less) can be used.
  • a form having a plurality of crystal grains in one particle can be used.
  • a form having one or a plurality of silicon crystal grains in one particle can be used.
  • the one particle may have silicon oxide around the crystal grain of silicon.
  • the silicon oxide may be amorphous. It may be a particle in which a graphene compound 583 is clinging to a secondary particle of silicon.
  • the compound having silicon can have, for example, Li 2 SiO 3 and Li 4 SiO 4 .
  • Li 2 SiO 3 and Li 4 SiO 4 may be crystalline or amorphous, respectively.
  • Analysis of a compound having silicon can be performed using NMR, XRD, Raman spectroscopy, SEM, TEM, EDX, or the like.
  • the first active material 581 of the negative electrode 570a preferably has graphite.
  • the first active material 581 is a material having a small volume change due to charge / discharge.
  • the maximum volume in charging or discharging is preferably 2 or less, preferably 1.5 or less. Is more preferable, and 1.1 or less is further preferable.
  • the particle size of the first active material 581 is larger than the particle size of the second active material 582.
  • the D50 of the first active material 581 is preferably 1.5 times or more and less than 1000 times the D50 of the second active material 582, and more preferably 2 times or more and 500 times or less. It is more preferably 10 times or more and 100 times or less.
  • D50 is the particle size, that is, the median when the integrated amount occupies 50% in the integrated particle amount curve of the particle size distribution measurement result.
  • the measurement of the particle size is not limited to the laser diffraction type particle size distribution measurement, and the diameter of the particle cross section may be measured by analysis such as SEM or TEM.
  • the first active material 581 for example, carbon-based materials such as graphite, graphitizable carbon, non-graphitizable carbon, carbon nanotubes, carbon black, and graphene compound 583, which have a small volume change due to charge and discharge, are used. Can be done.
  • the first active material 581 for example, an oxide having one or more elements selected from titanium, niobium, tungsten and molybdenum can be used.
  • the first active material 581 a plurality of metals, materials, compounds, etc. shown above can be used in combination.
  • Examples of the first active material 581 include SnO, SnO 2 , titanium dioxide (TIO 2 ), lithium titanium oxide (Li 4 Ti 5 O 12 ), lithium-graphite interlayer compound (Li x C 6 ), and niobium pentoxide (Li x C 6). Oxides such as Nb 2 O 5 ), titanium oxide (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • a material that causes a conversion reaction can also be used as the first active material 581.
  • a transition metal oxide that does not alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO), may be used as the first active material 581.
  • oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 and sulfides such as CoS 0.89 , NiS and CuS, Zn 3 N 2 , Cu nitrides such as Cu 3 N, Ge 3 N 4 and the like, phosphodies such as NiP 2 , FeP 2 and CoP 3 , and fluorides such as FeF 3 and BiF 3 . Since the potential of the fluoride is high, it may be used as a positive electrode material.
  • FIG. 4A shows a model of the crystal structure used in the calculation for graphite (Li 0.25 C 6 ), and FIG. 4B shows a model of the crystal structure used in the calculation for silicon (Li 1.25 Si). ..
  • the first principle electronic state calculation package VASP was used for the calculation.
  • the conditions shown in Table 1 were used for the specific calculation conditions.
  • MD molecular dynamics
  • the graphite of the first active material 581 is preferentially used for charging and discharging over the silicon of the second active material 582.
  • the effect of capacity limitation may mainly affect the silicon of the second active material 582.
  • FIG. 6A shows a silicon crystal containing no lithium
  • FIGS. 6B and 6C are diagrams showing the structure of silicon in a charged state (alloyed with Li).
  • the Si—Si bond does not exist in the structure because the Li ratio is increased.
  • the crystal structure of silicon collapses due to repeated charging and discharging, and it becomes amorphous and fragmented.
  • the Si—Si bond shown in FIG. 6B remains. If so, it is highly likely that the structure will be maintained to some extent even after repeated charging and discharging.
  • the negative electrode 570a of one aspect of the present invention is preferably used as a secondary battery with a capacity smaller than the theoretical capacity of the first active material 581 and the second active material 582.
  • the capacity ratio of the theoretical capacity of the first active material 581 and the second active material 582 is preferably 50% or more and less than 100%, more preferably 70% or more and less than 90%.
  • a secondary battery having a high charge / discharge capacity and good charge / discharge cycle characteristics can be obtained, which is preferable.
  • FIG. 7 is a flow chart showing an example of a method for manufacturing the negative electrode 570a according to one aspect of the present invention.
  • step S61 particles having silicon are prepared as the second active material 582.
  • the particles having silicon for example, the particles described as the second active material 582 can be used.
  • step S62 prepare a solvent.
  • the solvent for example, one or a mixture of water, methanol, ethanol, acetone, tetrahydrofuran (THF), dimethylformamide (DMF), N-methylpyrrolidone (NMP) and dimethyl sulfoxide (DMSO) may be used. Can be done.
  • step S63 the particles having silicon prepared in step S61 and the solvent prepared in step S62 are mixed, the mixture is recovered in step S64, and the mixture E-1 is obtained in step S65.
  • a kneader or the like can be used for mixing.
  • the kneading machine for example, a rotation / revolution mixer or the like can be used.
  • step S72 particles having graphite are prepared as the first active material 581.
  • the particles having graphite for example, the particles described as the first active material 581 can be used.
  • step S73 the mixture E-1 and the particles having graphite prepared in step S72 are mixed, the mixture is recovered in step S74, and the mixture E-2 is obtained in step S75.
  • a kneader or the like can be used for mixing.
  • the kneading machine for example, a rotation / revolution mixer or the like can be used.
  • step S80 the graphene compound 583 is prepared.
  • step S81 the mixture E-2 and the graphene compound 583 prepared in step S80 are mixed, and the mixture is recovered in step S82.
  • the recovered mixture is preferably in a high viscosity state. Due to the high viscosity of the mixture, solid kneading (kneading at high viscosity) can be performed in the next step S83.
  • step S83 kneading is performed in step S83.
  • the kneading can be performed using, for example, a spatula.
  • particles having silicon and graphene compound 583 can be well mixed to form a mixture having excellent dispersibility of graphene compound 583.
  • step S84 a solvent is added to the kneaded mixture and the mixture is mixed.
  • a solvent for example, a kneader or the like can be used for mixing.
  • the mixed mixture is recovered in step S85.
  • n is, for example, a natural number of 2 or more and 10 or less.
  • n is, for example, a natural number of 2 or more and 10 or less.
  • step S86 After repeating steps S83 to S85 n times, the mixture E-3 is obtained (step S86).
  • step S87 prepare a binder.
  • the materials described above can be used, and it is particularly preferable to use polyimide.
  • a precursor of a material used as a binder may be prepared.
  • a polyimide precursor is prepared.
  • step S88 the mixture E-3 and the binder prepared in step S87 are mixed.
  • step S89 the viscosity is adjusted. Specifically, for example, a solvent of the same type as the solvent prepared in step S62 is prepared and added to the mixture obtained in step S88. By adjusting the viscosity, for example, the thickness, density, etc. of the electrode obtained in step S97 may be adjusted.
  • step S92 a solvent is added to the mixture whose viscosity has been adjusted in step S89, the mixture is mixed in step S90, and the mixture is recovered in step S91 to obtain a mixture E-4 (step S92).
  • the mixture E-4 obtained in step S92 is called, for example, a slurry.
  • step S94 the mixture E-4 is applied onto the current collector prepared in step S93.
  • a slot die method, a gravure method, a blade method, a method combining them, or the like can be used.
  • a continuous coating machine or the like may be used for coating.
  • step S95 the first heating is performed.
  • the first heating causes the solvent to volatilize.
  • the first heating may be performed in a temperature range of 40 ° C. or higher and 200 ° C. or lower, preferably 50 ° C. or higher and 150 ° C. or lower.
  • the first heating may be referred to as drying.
  • the first heating is, for example, heat treatment with a hot plate under the condition of 30 ° C. or higher and 70 ° C. or lower for 10 minutes or longer, and then, for example, the condition of room temperature or higher and 100 ° C. or lower, 1 hour or longer and 10 hours or shorter.
  • the heat treatment may be performed in a reduced pressure environment.
  • the heat treatment may be performed using a drying oven or the like.
  • heat treatment may be performed at a temperature of 30 ° C. or higher and 120 ° C. or lower for 30 seconds or longer and 2 hours or shorter.
  • the temperature may be raised step by step.
  • the heat treatment may be further performed at a temperature of 65 ° C. or higher for 1 minute or longer.
  • step S96 the second heating is performed.
  • the second heating may cause a dehydration reaction of the polyimide.
  • the first heating may cause a dehydration reaction of the polyimide.
  • the cyclization reaction of the polyimide may occur in the first heating.
  • the reduction reaction of the graphene compound 583 occurs in the second heating.
  • the second heating may be referred to as an imidization heat treatment, a reduction heat treatment, or a heat reduction treatment.
  • step S96 Since it is possible to increase the electrode density without deteriorating the battery characteristics by performing the press process before the second heating, it is preferable to perform the press process before step S96.
  • the second heating may be performed in a temperature range of 150 ° C. or higher and 500 ° C. or lower, preferably 200 ° C. or higher and 450 ° C. or lower.
  • the second heating may be performed, for example, under the conditions of 200 ° C. or higher and 450 ° C. or lower for 1 hour or longer and 10 hours or lower in a reduced pressure environment of 10 Pa or lower, or in an inert atmosphere such as nitrogen or argon.
  • step S97 a negative electrode 570a having an active material layer provided on the current collector is obtained.
  • the thickness of the active material layer thus formed may be, for example, preferably 5 ⁇ m or more and 300 ⁇ m or less, and more preferably 10 ⁇ m or more and 150 ⁇ m or less.
  • the amount of the active material supported by the active material layer may be, for example, preferably 2 mg / cm 2 or more and 50 mg / cm 2 or less.
  • the active material layer may be formed on both sides of the current collector, or may be formed on only one side. Alternatively, it may partially have a region where the active material layer is formed on both sides.
  • pressing may be performed by a compression method such as a roll press method or a flat plate press method. Heat may be applied when pressing.
  • the positive electrode 570b includes at least a positive electrode current collector 571b and a positive electrode active material layer 572b formed in contact with the positive electrode current collector 571b. The details of the positive electrode 570b will be described in the following embodiments.
  • the conductive material is also called a conductivity imparting agent or a conductivity auxiliary agent, and a carbon material is used.
  • a conductive agent By adhering a conductive agent between a plurality of active materials, the plurality of active materials are electrically connected to each other, and the conductivity is enhanced.
  • adheresion does not only mean that the active material and the conductive agent are physically in close contact with each other, but also when a covalent bond occurs, when the active material is bonded by van der Waals force, the surface of the active material.
  • the concept includes the case where a part of the above is covered with a conductive agent, the case where the conductive agent gets stuck in the surface unevenness of the active material, and the case where the conductive agent is electrically connected even if they are not in contact with each other.
  • Examples of the conductive material include carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fibers such as carbon nanofibers, and carbon nanotubes, and graphene compound 583. Two or more types can be used.
  • a binder (resin) is mixed in order to fix the positive electrode current collector 571b such as a metal foil and the active material. Binders are also called binders.
  • the binder is a polymer material, and if a large amount of the binder is contained, the ratio of the active material in the positive electrode active material layer 572b decreases, and the discharge capacity of the secondary battery becomes small. Therefore, the amount of binder is mixed to the minimum.
  • Graphene is a carbon material that is expected to be applied in various fields such as field effect transistors and solar cells using graphene because it has amazing properties electrically, mechanically or chemically.
  • carbon fiber can be used as the conductive material.
  • carbon fibers such as mesophase pitch carbon fibers and isotropic pitch carbon fibers can be used.
  • carbon nanofiber or carbon nanotube can be used as the carbon fiber.
  • the carbon nanotubes can be produced, for example, by a vapor phase growth method.
  • the graphene compound 583 refers to graphene, multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene oxide, multi-graphene oxide, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide, etc. Includes graphene quantum dots and the like.
  • the graphene compound 583 has carbon, has a flat plate shape, a sheet shape, or the like, and has a two-dimensional structure formed by a carbon 6-membered ring. The two-dimensional structure formed by the carbon 6-membered ring may be called a carbon sheet.
  • Graphene compound 583 may have a functional group containing oxygen. Further, the graphene compound 583 preferably has a bent shape. Further, the graphene compound 583 may be rolled into carbon nanofibers.
  • graphene oxide means, for example, one having carbon and oxygen, having a sheet-like shape, and having a functional group, particularly an epoxy group, a carboxy group or a hydroxy group.
  • the reduced graphene oxide in the present specification and the like means, for example, a graphene oxide having carbon and oxygen, having a sheet-like shape, and having a two-dimensional structure formed by a carbon 6-membered ring. It may be called a carbon sheet. Although one reduced graphene oxide functions, a plurality of reduced graphene oxides may be laminated.
  • the reduced graphene oxide preferably has a portion having a carbon concentration of more than 80 atomic% and an oxygen concentration of 2 atomic% or more and 15 atomic% or less. By setting such carbon concentration and oxygen concentration, it is possible to function as a highly conductive conductive material even in a small amount. Further, the reduced graphene oxide preferably has an intensity ratio G / D of G band to D band of 1 or more in the Raman spectrum. The reduced graphene oxide having such an intensity ratio can function as a highly conductive conductive material even in a small amount.
  • graphene compound a material in which the end portion of graphene is terminated with fluorine may be used.
  • the sheet-shaped graphene compound 583 is dispersed substantially uniformly in the internal region of the active material layer. Since the plurality of graphene compounds are formed so as to partially cover the plurality of granular active substances or to adhere to the surface of the plurality of granular active substances, they are in surface contact with each other.
  • graphene compound net By binding a plurality of graphene compounds 583 to each other, a mesh-like graphene compound sheet (hereinafter referred to as graphene compound net or graphene net) can be formed.
  • the graphene net When the active material is covered with graphene net, the graphene net can also function as a binder for binding the active materials to each other. Therefore, since the amount of the binder can be reduced or not used, the ratio of the active material to the electrode volume and the electrode weight can be improved. That is, the charge / discharge capacity of the secondary battery can be increased.
  • graphene oxide as the graphene compound 583, mix it with an active material to form a layer to be an active material layer, and then reduce the graphene oxide. That is, it is preferable that the active material layer after completion has reduced graphene oxide.
  • the graphene compound 583 can be dispersed substantially uniformly in the internal region of the active material layer. ..
  • a dispersion liquid in which graphene oxide is substantially uniformly dispersed in a solvent is applied onto a current collector, the solvent is volatilized and removed, and then the active material layer is formed by reducing graphene oxide.
  • the graphene compound 583 possessed by the above partially overlaps. In this way, the reduced graphene oxides are dispersed to such an extent that they come into surface contact with each other, so that a three-dimensional conductive path can be formed.
  • the graphene oxide may be reduced by, for example, heat treatment or by using a reducing agent.
  • a conductive film is formed on the surface of the active material, and further, by electrically connecting the active materials with the graphene compound, a conductive path is formed. You can also.
  • the graphene compound 583 preferably has a hole in a part of the carbon sheet.
  • the carrier ions are inserted and removed on the surface of the active material covered with the graphene compound 583 by providing a hole through which carrier ions such as lithium ions can pass in a part of the carbon sheet. It becomes easier to separate and the rate characteristics of the secondary battery can be improved.
  • the holes provided in a part of the carbon sheet may be referred to as vacancies, defects or voids.
  • the graphene compound 583 of one aspect of the present invention preferably has pores provided by a plurality of carbon atoms and one or more fluorine atoms. Further, it is preferable that the plurality of carbon atoms are bonded in a ring shape, and it is preferable that one or more of the plurality of carbon atoms bonded in a ring shape are terminated by the fluorine atom. Fluorine has a high electronegativity and tends to be negatively charged. The approach of positively charged lithium ions causes an interaction, which stabilizes the energy and reduces the barrier energy through which the lithium ions pass through the pores.
  • the pores of the graphene compound 583 have fluorine, lithium ions can easily pass through even small pores, and the graphene compound 583 having excellent conductivity can be realized. Further, one or more of the plurality of carbon atoms bonded in a ring may be terminated by hydrogen.
  • FIGS. 8A and 8B show an example of the configuration of graphene compound 583 having pores.
  • the graphene compound 583 having pores shown in FIGS. 8A and 8B is also referred to as graphene having pores or reduced graphene having pores.
  • the configuration shown in FIG. 8A has a 22-membered ring, and 8 carbons out of the carbons constituting the 22-membered ring are each terminated by hydrogen. Further, it can be said that the graphene compound 583 has a structure in which the two 6-membered rings linked to each other are removed and the carbon bonded to the removed 6-membered ring is terminated with hydrogen.
  • the configuration shown in FIG. 8B has a 22-membered ring, of which 6 of the 8 carbons constituting the 22-membered ring are terminated by hydrogen and 2 carbons are terminated by fluorine. .. It can also be said that the graphene compound 583 has a structure in which the two 6-membered rings linked to each other are removed and the carbon bonded to the removed 6-membered ring is terminated with hydrogen or fluorine.
  • Silicon terminated with a hydroxy group is a hydroxy group because a hydrogen bond is formed between the hydrogen contained in the hydroxy group on the silicon surface and the hydrogen atom contained in the graphene compound 583 or the fluorine atom contained in the graphene compound 583. It is considered that the terminated silicon has a large interaction with the graphene compound 583 having pores.
  • the graphene compound 583 has fluorine in addition to hydrogen, in addition to the hydrogen bond between the oxygen atom of the hydroxy group and the hydrogen atom of the graphene compound 583, between the hydrogen atom of the hydroxy group and the fluorine atom of the graphene compound 583. Hydrogen bonds are also formed, and it is considered that the interaction between the particles having silicon and the graphene compound 583 becomes stronger and more stable.
  • the graphene compound 583 has pores, for example, it may be possible to observe a spectrum based on the characteristics caused by the pores by mapping measurement of Raman spectroscopy. In addition, there is a possibility that the bonds and functional groups constituting the pores can be observed by ToF-SIMS. In addition, there is a possibility that the vicinity of the hole, the periphery of the hole, etc. can be analyzed by TEM observation.
  • the binder refers to a polymer compound mixed only for binding an active material, a conductive material, etc. onto a current collector.
  • rubber materials such as polyvinylidene fluoride (PVDF), styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, butadiene rubber, ethylene-propylene-diene copolymer, fluororubber, polystyrene, polyvinyl chloride, polytetra. It refers to materials such as fluoroethylene, polyethylene, polypropylene, polyisobutylene, and ethylene-propylene diene polymer.
  • the lithium ion conductive polymer is a polymer compound, it is possible to bind the active material and the conductive material onto the current collector by mixing them well and using them in the active material layer. Therefore, the electrode can be manufactured without using a binder.
  • the binder is a material that does not contribute to the charge / discharge reaction. Therefore, the smaller the amount of binder, the more materials that contribute to charging and discharging, such as active materials and electrolytes. Therefore, it is possible to obtain a secondary battery having improved discharge capacity, cycle characteristics, and the like.
  • the electrolyte 576 is sufficiently dried in order to form an electrolyte layer having no or very little organic solvent.
  • the electrolyte layer is sufficiently dried when the weight change of the electrolyte layer when it is dried under reduced pressure at 90 ° C. for 1 hour is within 5%.
  • nuclear magnetic resonance can be used to identify materials such as lithium ion conductive polymers, lithium salts, binders and additives contained in secondary batteries.
  • Analysis results such as (Py-GC / MS) and liquid chromatography mass spectrometry (LC / MS) may be used as a judgment material. It is preferable to suspend the active material layer in a solvent to separate the active material from other materials before subjecting them to analysis such as NMR.
  • the negative electrode 570a may be further impregnated with a solid electrolyte material to improve flame retardancy. It is preferable to use an oxide-based solid electrolyte as the solid electrolyte material.
  • Oxide-based solid electrolytes include LiPON, Li 2 O, Li 2 CO 3 , Li 2 MoO 4 , Li 3 PO 4 , Li 3 VO 4 , Li 4 SiO 4 , and LLT (La 2 / 3-x Li 3x TiO). 3 ), lithium composite oxides such as LLZ (Li 7 La 3 Zr 2 O 12 ) and lithium oxide materials can be mentioned.
  • LLZ is a garnet-type oxide containing Li, La, and Zr, and may be a compound containing Al, Ga, or Ta.
  • a polymer-based solid electrolyte such as PEO (polyethylene oxide) formed by a coating method or the like may be used. Since such a polymer-based solid electrolyte can also function as a binder, when the polymer-based solid electrolyte is used, the number of components of the electrode can be reduced and the manufacturing cost can be reduced.
  • PEO polyethylene oxide
  • the positive electrode current collector 571b and the negative electrode current collector 571a metals such as stainless steel, gold, platinum, zinc, iron, copper, aluminum and titanium, and alloys thereof and the like, which are highly conductive and are alloyed with carrier ions such as lithium. A material that does not change can be used. Further, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used. Further, it may be formed of a metal element that reacts with silicon to form silicide.
  • Metallic elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • a sheet-like shape, a net-like shape, a punching metal-like shape, an expanded metal-like shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 10 ⁇ m or more and 30 ⁇ m or less.
  • the negative electrode current collector 571a preferably uses a material that does not alloy with carrier ions such as lithium.
  • a titanium compound may be provided by laminating on the metal element shown above.
  • titanium compounds for example, titanium nitride, titanium oxide, titanium oxide nitride in which a part of nitrogen is replaced with oxygen (TiO x N y , 0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1), and a part of oxygen is nitrogen.
  • titanium oxide substituted with, or two or more can be mixed or laminated and used.
  • titanium nitride is particularly preferable because it has high conductivity and a high function of suppressing oxidation.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • the active material layer contains a compound having oxygen
  • the oxidation reaction between the metal element and oxygen can be suppressed.
  • a separator is placed between the positive electrode 570b and the negative electrode 570a.
  • the separator include fibers having cellulose such as paper, non-woven fabrics, glass fibers, ceramics, nylon (polyamide), vinylon (polyvinyl alcohol-based fibers), polyesters, acrylics, polyolefins, synthetic fibers using polyurethane and the like. It is possible to use the one formed by. It is preferable that the separator is processed into a bag shape and arranged so as to wrap either the positive electrode 570b or the negative electrode 570a.
  • the separator is a porous material having a hole having a diameter of about 20 nm, preferably a hole having a diameter of 6.5 nm or more, and more preferably a hole having a diameter of at least 2 nm. In the case of the semi-solid secondary battery described above, the separator may be omitted.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film. Further, the surface of the polypropylene film in contact with the positive electrode 570b may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode 570a may be coated with a fluoromaterial.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the capacity per volume of the secondary battery can be increased.
  • a liquid electrolyte 576 is used for the secondary battery, for example, as the electrolyte 576, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), methyl formate, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -Any combination and ratio of one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sulton,
  • DMC dimethyl
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • organic cations include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • a monovalent amide anion a monovalent methide anion, a fluorosulfonic acid anion, a perfluoroalkyl sulfonic acid anion, a tetrafluoroborate anion, a perfluoroalkyl borate anion, a hexafluorophosphate anion, or a perfluoro Examples thereof include alkyl phosphate anions.
  • liquid electrolyte 576 having an ionic liquid.
  • the secondary battery of one aspect of the present invention comprises, for example, alkali metal ions such as lithium ion, sodium ion, and potassium ion, and alkaline earth metal ion such as calcium ion, strontium ion, barium ion, beryllium ion, and magnesium ion. It has any one or more of the above as carrier ions.
  • alkali metal ions such as lithium ion, sodium ion, and potassium ion
  • alkaline earth metal ion such as calcium ion, strontium ion, barium ion, beryllium ion, and magnesium ion. It has any one or more of the above as carrier ions.
  • the electrolyte contains a lithium salt.
  • Lithium salts include, for example, LiPF 6 , LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , Li CF 3 SO 3 , LiCF 3 SO 3 .
  • LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ) ), LiN (C 2 F 5 SO 2 ) 2 , etc. can be used.
  • the electrolyte contains fluorine.
  • the electrolyte containing fluorine for example, an electrolyte having one or more kinds of fluorinated cyclic carbonates and lithium ions can be used.
  • the fluorinated cyclic carbonate can improve the nonflammability and enhance the safety of the lithium ion secondary battery.
  • fluorinated cyclic carbonate fluorinated ethylene carbonate
  • fluorinated ethylene carbonate for example, monofluoroethylene carbonate (fluoroethylene carbonate, FEC, F1EC), difluoroethylene carbonate (DFEC, F2EC), trifluoroethylene carbonate (F3EC), tetrafluoroethylene carbonate (F4EC) ) Etc.
  • FEC fluorinated ethylene carbonate
  • FEC fluoroethylene carbonate
  • F1EC fluoroethylene carbonate
  • DFEC difluoroethylene carbonate
  • F3EC trifluoroethylene carbonate
  • F4EC tetrafluoroethylene carbonate
  • Etc fluorinated ethylene carbonate
  • DFEC has isomers such as cis-4,5 and trans-4,5. It is important to solvate lithium ions using one or more fluorinated cyclic carbonates as the electrolyte and transport them in the electrolyte contained in the electrode during charging and discharging in order
  • fluorinated cyclic carbonate is contributed to the transport of lithium ions during charging and discharging rather than as a small amount of additive, it is possible to operate at a low temperature. Lithium ions move in a mass of several or more and several tens in a secondary battery.
  • the desolvation energy required for the solvated lithium ions to enter the active material particles in the electrolyte contained in the electrode is reduced. If the energy of this desolvation can be reduced, lithium ions can be easily inserted into or desorbed from the active material particles even in a low temperature range. Lithium ions may move in a solvated state, but a hopping phenomenon may occur in which the coordinating solvent molecules are replaced. When the lithium ion is easily desolvated, it is easy to move due to the hopping phenomenon, and the lithium ion may be easily moved.
  • a plurality of solvated lithium ions may form clusters in the electrolyte and move in the negative electrode 570a, between the positive electrode 570b and the negative electrode 570a, in the positive electrode 570b, and the like.
  • electrolyte is a general term including solid, liquid, semi-solid materials and the like.
  • Deterioration is likely to occur at the interface existing in the secondary battery, for example, the interface between the active material and the electrolyte.
  • the secondary battery of one aspect of the present invention by having an electrolyte having fluorine, it is possible to prevent deterioration that may occur at the interface between the active material and the electrolyte, typically alteration of the electrolyte or increase in viscosity of the electrolyte. can.
  • the electrolyte having fluorine may be configured to cling to or retain a binder, a graphene compound, or the like.
  • DFEC with two fluorine bonds and F4EC with four fluorine bonds have lower viscosities and smoothness than FEC with one fluorine bond, and the coordination bond with lithium is weak. Therefore, it is possible to reduce the adhesion of highly viscous decomposition products to the active material particles. If highly viscous decomposition products adhere to or cling to the active material particles, it becomes difficult for lithium ions to move at the interface of the active material particles.
  • the fluorinated electrolyte alleviates the formation of decomposition products on the surface of the active material (positive electrode active material or negative electrode active material) by solvating. Further, by using an electrolyte having fluorine, it is possible to prevent the generation and growth of dendrites by preventing the adhesion of decomposition products.
  • electrolyte having fluorine is used as a main component, and the electrolyte having fluorine is 5% by volume or more, 10% by volume or more, preferably 30% by volume or more and 100% by volume or less.
  • the main component of the electrolyte means that it is 5% by volume or more of the total electrolyte of the secondary battery. Further, 5% by volume or more of the total electrolyte of the secondary battery referred to here refers to the ratio of the total electrolyte measured at the time of manufacturing the secondary battery. In addition, when disassembling after manufacturing a secondary battery, it is difficult to quantify the proportion of each of the multiple types of electrolytes, but one type of organic compound accounts for 5% by volume or more of the total amount of electrolytes. It can be determined whether or not it exists.
  • an electrolyte having fluorine By using an electrolyte having fluorine, it is possible to realize a secondary battery that can operate in a wide temperature range, specifically, -40 ° C or higher and 150 ° C or lower, preferably -40 ° C or higher and 85 ° C or lower.
  • an additive such as vinylene carbonate, propane sultone (PS), tert-butylbenzene (TBB), lithium bis (oxalate) borate (LiBOB), or a dinitrile compound such as succinonitrile or adiponitrile is added to the electrolyte, it may be added. good.
  • concentration of the additive may be, for example, 0.1% by volume or more and less than 5% by volume with respect to the entire electrolyte.
  • the electrolyte may have one or more aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • aprotic organic solvents such as ⁇ -butyrolactone, acetonitrile, dimethoxyethane, and tetrahydrofuran.
  • having a polymer material in which the electrolyte is gelled enhances safety against liquid leakage and the like.
  • Typical examples of the polymer material to be gelled include silicone gel, acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, and fluoropolymer gel.
  • the polymer material for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile and the like, and a copolymer containing them can be used.
  • a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile and the like, and a copolymer containing them
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • the above configuration shows an example of a secondary battery using a liquid electrolyte, but is not particularly limited.
  • semi-solid-state batteries and all-solid-state batteries can also be manufactured.
  • the layer arranged between the positive electrode 570b and the negative electrode 570a is referred to as an electrolyte layer.
  • the electrolyte layer of the semi-solid state battery can be said to be a layer formed by film formation, and can be distinguished from the liquid electrolyte layer.
  • the semi-solid battery means a battery having a semi-solid material in at least one of an electrolyte layer, a positive electrode 570b, and a negative electrode 570a.
  • the term semi-solid here does not mean that the ratio of solid materials is 50%.
  • Semi-solid means that it has solid properties such as small volume change, but also has some properties close to liquid such as flexibility. As long as these properties are satisfied, it may be a single material or a plurality of materials. For example, a liquid material may be infiltrated into a porous solid material.
  • the polymer electrolyte secondary battery refers to a secondary battery having a polymer in the electrolyte layer between the positive electrode 570b and the negative electrode 570a.
  • Polymer electrolyte secondary batteries include dry (or intrinsic) polymer electrolyte batteries, and polymer gel electrolyte batteries.
  • Electrolyte 576 has a lithium ion conductive polymer and a lithium salt.
  • the lithium ion conductive polymer is a polymer having cation conductivity such as lithium. More specifically, it is a polymer compound having a polar group to which a cation can be coordinated.
  • the polar group it is preferable to have an ether group, an ester group, a nitrile group, a carbonyl group, a siloxane and the like.
  • lithium ion conductive polymer for example, polyethylene oxide (PEO), a derivative having polyethylene oxide as a main chain, polypropylene oxide, polyacrylic acid ester, polymethacrylic acid ester, polysiloxane, polyphosphazene and the like can be used.
  • PEO polyethylene oxide
  • polypropylene oxide polyacrylic acid ester, polymethacrylic acid ester, polysiloxane, polyphosphazene and the like
  • PEO polyethylene oxide
  • polyacrylic acid ester polymethacrylic acid ester
  • polysiloxane polyphosphazene and the like
  • the lithium ion conductive polymer may be branched or crosslinked. It may also be a copolymer.
  • the molecular weight is preferably, for example, 10,000 or more, and more preferably 100,000 or more.
  • lithium ions move while changing the polar groups that interact with each other due to the partial motion (also called segment motion) of the polymer chain.
  • partial motion also called segment motion
  • lithium ions move while changing the interacting oxygen due to the segmental motion of the ether chain.
  • the temperature is close to or higher than the melting point or softening point of the lithium ion conductive polymer, the crystalline region is dissolved and the amorphous region is increased, and the movement of the ether chain becomes active, so that the ionic conductivity is increased. It gets higher. Therefore, when PEO is used as the lithium ion conductive polymer, it is preferable to charge and discharge at 60 ° C. or higher.
  • the radii of monovalent lithium ions are 0.0590 nm for 4-coordination, 0.076 nm for 6-coordination, and 8 It is 0.092 nm at the time of coordination.
  • the radius of the divalent oxygen ion is 0.135 nm for bi-coordination, 0.136 nm for 3-coordination, 0.138 nm for 4-coordination, 0.140 nm for 6-coordination, and 8-coordination. When it is 0.142 nm.
  • the distance between the polar groups of the adjacent lithium ion conductive polymer chains is preferably greater than or equal to the distance at which the lithium ions and the anions of the polar groups can stably exist while maintaining the ionic radius as described above. Moreover, it is preferable that the distance is such that the interaction between the lithium ion and the polar group sufficiently occurs. However, since segment motion occurs as described above, it is not always necessary to maintain a constant distance. It suffices as long as it is an appropriate distance for lithium ions to pass through.
  • lithium salt for example, a compound having at least one of phosphorus, fluorine, nitrogen, sulfur, oxygen, chlorine, arsenic, boron, aluminum, bromine and iodine can be used together with lithium.
  • LiPF 6 LiN (FSO 2 ) 2 (lithium bis (fluorosulfonyl) imide, LiFSI), LiClO 4 , LiAsF 6 , LiBF 4 , LiAlCl 4 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl.
  • Li 2 B 12 Cl 12 LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 ( Lithium bis (trifluoromethanesulfonyl) imide, LiTFSA), LiN (C 4 F 9 SO 2 ) (CF 3 SO 2 ), LiN (C 2 F 5 SO 2 ) 2 , lithium bis (oxalate) borate (LiBOB), etc.
  • One type of lithium salt, or two or more of these, can be used in any combination and ratio.
  • LiFSI because the low temperature characteristics are good. Further, LiFSI and LiTFSA are less likely to react with water than LiPF 6 and the like. Therefore, it becomes easy to control the dew point when forming the electrode and the electrolyte layer using LiFSI. For example, it can be handled not only in an inert atmosphere such as argon in which moisture is removed as much as possible, and in a dry room in which the dew point is controlled, but also in a normal atmospheric atmosphere. Therefore, productivity is improved, which is preferable. Further, it is particularly preferable to use a highly dissociative and plasticizing Li salt such as LiFSI and LiTFSA because it can be used in a wide temperature range when lithium conduction utilizing the segment motion of the ether chain is used.
  • a metal material such as aluminum and a resin material can be used. Further, a film-like exterior body can also be used.
  • a metal thin film having excellent flexibility such as aluminum, stainless steel, copper, and nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, and polyamide, and an exterior is further formed on the metal thin film.
  • a film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin can be used as the outer surface of the body. Further, it is preferable to use a fluororesin film as the film.
  • the fluororesin film has high stability against acids, alkalis, organic solvents, etc., suppresses side reactions, corrosion, etc. associated with the reaction of the secondary battery, and can realize an excellent secondary battery.
  • a fluororesin film PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane: a copolymer of tetrafluoroethylene and perfluoroalkyl vinyl ether), FEP (perfluoroethylene propene copolymer: a combination of tetrafluoroethylene and hexafluoropropylene).
  • Polymer polymer
  • ETFE ethylene tetrafluoroethylene copolymer: a copolymer of tetrafluoroethylene and ethylene
  • This embodiment can be used in combination with other embodiments as appropriate.
  • the positive electrode 570b has a positive electrode current collector 571b and a positive electrode active material layer 572b.
  • the positive electrode active material layer 572b has a positive electrode active material complex 100z.
  • As the positive electrode active material complex 100z for example, as shown in FIGS. 10A1 and 10A2, there is a first active material 100x and a second active material 100y capable of occluding and releasing carrier ions.
  • FIG. 9 shows an example in which graphene compound 102 and carbon black 103 are used as the conductive material. However, when the positive electrode active material composite 100z has sufficient electronic conductivity, it is conductive in the positive electrode active material layer 572b.
  • the type of the conductive material is not limited to the example shown in FIG. 9, and only carbon fibers such as a graphene compound, carbon black, or carbon nanotubes may be used, and carbon fibers such as carbon nanotubes and carbon black may be used. , May be used together.
  • the positive electrode active material layer 572b has a binder.
  • a polymer material such as polyvinylidene fluoride and a molecular crystal electrolyte such as Li (FSI) (SN) 2 can be used.
  • the positive electrode active material complex 100z is arranged in a state where electrons can be exchanged with the positive electrode current collector 571b. That is, the positive electrode active material complex 100z has a structure in which it is electrically in contact with the positive electrode current collector 571b.
  • An undercoat layer may be provided on the positive electrode current collector 571b. In this case, the positive electrode active material complex 100z is configured to be in electrical contact with the positive electrode current collector 571b via the undercoat layer. Further, the positive electrode active material complex 100z may be configured to be in electrical contact with the positive electrode current collector 571b via a conductive material.
  • the density of the positive electrode active material layer 572b is preferably 3.0 g / cm 3 or more, more preferably 3.5 g / cm 3 or more, and further preferably 3.8 g / cm 3 or more.
  • a press treatment may be performed in order to increase the density of the positive electrode active material layer 572b. However, when the press treatment is performed, it is desirable to appropriately set the conditions of the press treatment so as not to impair the structures of the first active material 100x and the positive electrode active material complex 100z, which will be described later.
  • [Positive electrode active material complex] 10A1 to 10C2 are schematic cross-sectional views illustrating the positive electrode active material complex 100z.
  • FIG. 10A1 and 10A2 illustrate a positive electrode active material complex 100z having a first active material 100x that functions as a positive electrode active material and a second active material 100y that covers at least a portion of the first active material 100x. It is a figure.
  • FIG. 10A1 shows a configuration in which one first active material 100x is covered with a second active material 100y, the present invention is not limited to this, and a plurality of first active materials are not limited to this.
  • the structure may be such that 100x is covered with the second active material 100y.
  • FIG. 10A2 shows a case where the first active material 100xa and the first active material 100xb are in contact with each other at least in part, but the first active material 100xa and the first active material 100xb are not in direct contact with each other. It may be the case.
  • the first active material 100x is an electrolyte.
  • the region in direct contact with 576 is reduced and the transition metal element and / or oxygen can be suppressed from being desorbed from the first active material 100x in a high voltage charging state, it is possible to suppress a capacity decrease due to repeated charging and discharging.
  • the secondary battery using the positive electrode active material composite 100z according to one aspect of the present invention is covered with the second active material 100y, which is electrochemically stable even in a high temperature and high voltage charge state, at a high temperature. It is possible to obtain effects such as improvement of stability and improvement of fire resistance.
  • FIGS. 10B1 and 10B2 are diagrams illustrating a positive electrode active material composite 100z having a first active material 100x that functions as a positive electrode active material and a glass 101 that covers at least a part of the first active material 100x.
  • FIG. 10B1 shows a configuration in which one first active material 100x is covered with glass 101, the present invention is not limited to this, and a plurality of first active materials 100x are covered with glass 101. It may be configured to be covered with.
  • the glass 101 may cover at least a part of the first active material 100xa and the first active material 100xb.
  • FIG. 10B2 shows a case where the first active material 100xa and the first active material 100xb are in contact with each other at least in part, but the first active material 100xa and the first active material 100xb are not in direct contact with each other. It may be the case.
  • the glass 101 covers at least a part of the particle surface of the particulate first active material 100x that functions as a positive electrode active material, preferably substantially the entire surface, the first active material 100x is in direct contact with the electrolyte 576.
  • the region is reduced and the transition metal element and / or oxygen can be suppressed from being desorbed from the first active material 100x in the high voltage charging state, it is possible to suppress the capacity decrease due to repeated charging and discharging. Further, by being covered with glass 101 which is electrochemically stable even in a high temperature and high voltage charge state, the secondary battery using the positive electrode active material composite 100z according to one aspect of the present invention is stable at high temperature. It is possible to obtain effects such as improvement and improvement in fire resistance.
  • FIG. 10C1 and 10C2 show a first active material 100x functioning as a positive electrode active material and a second active material 100x in contact with the first active material 100x via a glass 101 covering at least a part of the first active material 100x. It is a figure explaining the positive electrode active material complex 100z which has an active material 100y.
  • FIG. 10C1 shows a configuration in which one first active material 100x is covered with glass 101, the present invention is not limited to this, and a plurality of first active materials 100x are covered with glass 101. It may be configured to be covered with.
  • the glass 101 may cover at least a part of the first active material 100xa and the first active material 100xb.
  • FIG. 10C2 shows the case where the first active material 100xa and the first active material 100xb are in contact with each other at least in part, but the first active material 100xa and the first active material 100xb are not in direct contact with each other. It may be the case.
  • At least a part of the particle surface of the particulate first active material 100x that functions as a positive electrode active material, preferably substantially the entire surface, is in contact with the first active material 100x via the glass 101 in a state of being covered with the glass 101.
  • the region where the first active material 100x is in direct contact with the electrolyte 576 is reduced, and the transition metal element from the first active material 100x is in a high voltage charging state. And / or since it is possible to suppress the desorption of oxygen, it is possible to suppress the capacity decrease due to repeated charging and discharging. Further, by being covered with the glass 101 which is electrochemically stable even in a high temperature and high voltage state and the second active material 100y which is stable even in a high charging voltage state, the positive electrode active material composite of one aspect of the present invention is covered.
  • a secondary battery using 100z can obtain effects such as improvement in stability at high temperature and improvement in fire resistance.
  • lithium cobalt oxide having magnesium and fluorine lithium cobalt oxide having magnesium, fluorine, aluminum, and nickel, and nickel:
  • the durability and stability of the above-mentioned positive electrode active material composite 100z in high voltage charging can be further improved.
  • the heat resistance and / or the fire resistance of the secondary battery using the above-mentioned positive electrode active material complex 100z can be further improved.
  • Lithium cobalt oxide which has magnesium, fluorine, aluminum, and nickel, has a large amount of magnesium, fluorine, or aluminum on the surface layer of the positive electrode active material, and has the characteristic that nickel is widely distributed throughout the particles, and at high voltage. It is a particularly preferable material as the first active material 100x because of its remarkably excellent charge / discharge repeatability.
  • the count number of characteristic X-rays derived from magnesium, fluorine, or aluminum is determined in the surface layer. It has a place where it becomes the maximum value.
  • the surface layer portion refers to a region from the surface of the positive electrode active material to about 10 nm.
  • the crack portion of the positive electrode active material also has a surface layer portion, and the crack portion generated before the step of adding magnesium, fluorine, or aluminum in the production of the positive electrode active material is a surface layer having a large amount of magnesium, fluorine, or aluminum. Has a part.
  • the positive electrode active material complex 100z as shown in FIGS. 10A1 and 10A2 is obtained by a complexing treatment using at least the first active material 100x and the second active material 100y.
  • the compounding treatment includes, for example, a compounding process using mechanical energy such as a mechanochemical method, a mechanofusion method, and a ball mill method, and a compounding process by a liquid phase reaction such as a co-precipitation method, a hydrothermal method, and a sol-gel method.
  • the compounding process by the vapor phase reaction such as the barrel sputtering method, the ALD (Atomic Layer Deposition) method, the vapor deposition method, and the CVD (Chemical Vapor Deposition) method. can. Further, in the compounding treatment, it is preferable to perform the heat treatment once or a plurality of times. In the present specification, the compounding treatment may be referred to as a surface coating treatment or a coating treatment.
  • the positive electrode active material complex 100z as shown in FIGS. 10B1 and 10B2 is obtained by a complexing treatment using at least the first active material 100x and the glass 101.
  • the compounding treatment includes, for example, a compounding process using mechanical energy such as a mechanochemical method, a mechanofusion method, and a ball mill method, and a compounding process by a liquid phase reaction such as a co-precipitation method, a hydrothermal method, and a sol-gel method. It is possible to use any one or more of the compounding process by the vapor phase reaction such as the barrel sputtering method, the ALD method, the vapor deposition method, and the CVD method. Further, in the compounding treatment, it is preferable to perform the heat treatment once or a plurality of times.
  • the positive electrode active material complex 100z as shown in FIGS. 10C1 and 10C2 is obtained by a complexing treatment using at least the first active material 100x, the second active material 100y, and the glass 101.
  • the compounding treatment includes, for example, a compounding process using mechanical energy such as a mechanochemical method, a mechanofusion method, and a ball mill method, and a compounding process by a liquid phase reaction such as a co-precipitation method, a hydrothermal method, and a sol-gel method. It is possible to use any one or more of the compounding process by the vapor phase reaction such as the barrel sputtering method, the ALD method, the vapor deposition method, and the CVD method. Further, in the compounding treatment, it is preferable to perform the heat treatment once or a plurality of times.
  • the deterioration of the first active material 100x caused by the electrolyte is suppressed by the absence of contact between the first active material 100x and the electrolyte 576.
  • the deterioration may be caused by a defect generated in the first active material 100x, and for example, there is a defect called a pit.
  • the pit refers to a region where the main components of the first active material 100x, such as cobalt and oxygen, have been removed by several layers in the charge / discharge cycle test. For example, cobalt may elute into the electrolyte.
  • the pit may progress in the charge / discharge cycle test, and the pit progresses toward the inside of the active material.
  • the opening shape of the pit is not a circle but a depth and has a groove-like shape.
  • the configuration in which the electrolyte 576 and the first active material 100x do not come into contact with each other can suppress the generation and progression of the above-mentioned defects, particularly pits.
  • the positive electrode active material composite 100z has a second active material 100y in contact with the first active material 100x via the glass 101, it can be said that the positive electrode active material composite 100z has a double structure in the surface layer portion.
  • the positive electrode active material complex 100z according to one aspect of the present invention is not limited to the case where the glass 101 and the second active material 100y are provided as a double structure.
  • the glass active material mixed layer having the glass 101 and the second active material 100y covers at least a part of the surface of the first active material 100x. It may be a structure.
  • the graphene compound 102 may be contained in the surface layer portion of the positive electrode active material composite 100z or the glass active material mixed layer.
  • carbon fibers such as carbon black or carbon nanotubes may be used.
  • a material having an amorphous portion can be used as the glass 101.
  • Materials having an amorphous portion include, for example, SiO 2 , SiO, Al 2 O 3 , TiO 2 , Li 4 SiO 4 , Li 3 PO 4 , Li 2 S, SiS 2 , B 2 S 3 , GeS 4 , AgI. , Ag 2 O, Li 2 O, P 2 O 5 , B 2 O 3 , and a material having one or more selected from V 2 O 5 , etc., Li 7 P 3 S 11 or Li 1 + x + y Al x Ti 2-x .
  • Si y P 3-y O 12 (0 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 3,) and the like can be used.
  • the material having an amorphous portion can be used in a state of being completely amorphous, or can be used in a state of partially crystallized crystallized glass (also referred to as glass ceramics). It is desirable that the glass 101 has lithium ion conductivity. It can be said that the lithium ion conductivity has lithium ion diffusivity and lithium ion penetration. Further, the glass 101 preferably has a melting point of 800 ° C. or lower, more preferably 500 ° C. or lower. Further, it is preferable that the glass 101 has electron conductivity. Further, the glass 101 preferably has a softening point of 800 ° C. or lower, and for example, Li 2OB 2 O 3 -SiO 2 glass can be used.
  • the glass 101 has electron conductivity, but when the electron conductivity of the glass 101 is low, a carbon fiber conductive material such as a graphene compound, carbon black, or carbon nanotube is used together with the glass 101. By mixing with the glass 101, electron conductivity can be imparted to the glass 101.
  • a structure may have a structure in which at least a part of the surface of the positive electrode active material complex 100z is covered with a graphene compound.
  • a structure in which 80% or more of the particle surface of the positive electrode active material complex 100z and / or the aggregate having the positive electrode active material complex 100z is covered with a graphene compound is preferable. The graphene compound will be described later.
  • the positive electrode active material complex 100z has a structure covered with a molecular crystal electrolyte.
  • the molecular crystal electrolyte can function as a binder for the positive electrode active material layer 572b.
  • the molecular crystal electrolyte is preferably a material having high ionic conductivity, and the positive electrode active material composite 100z covered with the molecular crystal electrolyte can exchange carrier ions with the electrolyte 576.
  • the first active material 100x a composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn) having a layered rock salt type crystal structure can be used. Further, as the first active material 100x, a composite oxide represented by LiM1O 2 to which the additive element X is added can be used.
  • the additive elements X contained in the first active material 100x include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, ittrium, vanadium, iron, chromium, niobium, lantern, hafnium, zinc, and the like.
  • the first active material 100x is lithium cobaltate having magnesium and fluorine, magnesium, fluorine, aluminum, lithium cobaltate having magnesium, magnesium, lithium cobaltate having fluorine and titanium, and nickel-cobalt having magnesium and fluorine. It has lithium acetate, magnesium-cobalt-lithium aluminate with magnesium, nickel-cobalt-lithium aluminate, nickel-cobalt-lithium aluminium with magnesium and fluorine, nickel-cobalt-lithium manganate with magnesium and fluorine, etc. be able to.
  • the first active material 100x secondary particles of a composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn) are coated with a metal oxide.
  • a metal oxide an oxide of one or more metals selected from Al, Ti, Nb, Zr, La, and Li can be used.
  • a metal oxide-coated composite oxide in which the secondary particles of the composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn) is coated with aluminum oxide is the first. It can be used as the active material 100x of 1.
  • the metal oxide-coated composite oxide obtained can be used.
  • the coating layer is preferably thin, for example, 1 nm or more and 200 nm or less, more preferably 1 nm or more and 100 nm or less.
  • the positive electrode active material 100 described in the embodiment described later can be used.
  • LiM2PO 4 having an oxide and an olivine type crystal structure (M2 is one or more selected from Fe, Ni, Co, and Mn) can be used.
  • oxides include aluminum oxide, zirconium oxide, hafnium oxide, niobium oxide and the like.
  • LiM2PO 4 LiFePO 4 , LiNiPO 4 , LiCoPO 4 , LiMnPO 4 , LiFe a Ni b PO 4 , LiFe a Co b PO 4 , LiFe a Mn b PO 4 , LiNi a Co b PO 4 , LiNi a Co b Mn b PO 4 (a + b is 1 or less, 0 ⁇ a ⁇ 1, 0 ⁇ b ⁇ 1), LiFe c Ni d Co e PO 4 , LiFe c Ni d Mn e PO 4 , LiNi c Co d Mn e PO 4 ( c + d + e is 1 or less, 0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1, 0 ⁇ e ⁇ 1), LiFe f Ni g Coh Mn i PO 4 (f + g + h + i is 1 or less, 0 ⁇ f ⁇ 1,
  • the conductive material may be, for example, one or two of carbon black such as acetylene black and furnace black, graphite such as artificial graphite and natural graphite, carbon fibers such as carbon nanofibers, and carbon nanotubes, and a graphene compound. More than seeds can be used.
  • carbon black such as acetylene black and furnace black
  • graphite such as artificial graphite and natural graphite
  • carbon fibers such as carbon nanofibers, and carbon nanotubes
  • a graphene compound More than seeds can be used.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • the crystal plane and the direction are indicated by the Miller index.
  • the notation of the crystal plane and direction is to add a superscript bar to the number, but in the present specification etc., due to the limitation of the application notation, instead of adding a bar above the number,-(minus) before the number. It may be expressed with a code).
  • the individual orientation indicating the direction in the crystal is []
  • the aggregate orientation indicating all equivalent directions is ⁇ >
  • the individual plane indicating the crystal plane is ()
  • the aggregate plane having equivalent symmetry is ⁇ .
  • i is ⁇ (h + k).
  • the layered rock salt type crystal structure of the composite oxide containing lithium and the transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and the like.
  • the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged. It should be noted that a part of the crystal structure may be deficient in cations or anions.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiFePO 4 is 170 mAh / g
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 275 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the amount of lithium that can be inserted and removed in the positive electrode active material is indicated by x in the composition formula, for example, x in Li x CoO 2 or x in Li x MO 2 .
  • Li x CoO 2 in the present specification can be appropriately read as Li x MO 2 .
  • x in Li x CoO 2 is small means, for example, 0.1 ⁇ x ⁇ 0.24.
  • discharge completed means a state in which the voltage is 2.5 V (counterpolar lithium) or less at a current of 100 mA / g, for example.
  • the discharge voltage drops sharply by the time the discharge voltage reaches 2.5 V, so it is assumed that the discharge is completed under the above conditions.
  • the charging depth when all the lithium that can be inserted and removed is inserted into the positive electrode active material is 0, and the charging when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the depth is sometimes called 1.
  • FIG. 11A is a schematic top view of the positive electrode active material 100, which is one aspect of the present invention.
  • a schematic cross-sectional view taken along the line AB in FIG. 11A is shown in FIG. 11B.
  • the positive electrode active material 100 has lithium, a transition metal, oxygen, and an additive element X. It can be said that the positive electrode active material 100 is a composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn) to which the additive element X is added.
  • M1 is one or more selected from Fe, Ni, Co, and Mn
  • the transition metal of the positive electrode active material 100 it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium For example, at least one of manganese, cobalt and nickel can be used. That is, as the transition metal of the positive electrode active material 100, only cobalt may be used, only nickel may be used, two kinds of cobalt and manganese, two kinds of cobalt and nickel may be used, and cobalt may be used. , Manganese, and nickel may be used.
  • the positive electrode active material 100 is lithium cobalt oxide, lithium nickel oxide, lithium cobalt oxide in which a part of cobalt is substituted with manganese, lithium cobalt oxide in which a part of cobalt is substituted with nickel, and nickel-manganese-lithium cobalt oxide. It can have a composite oxide containing lithium and a transition metal, such as. Having nickel in addition to cobalt as a transition metal is preferable because the crystal structure may become more stable in a state of charge at a high voltage.
  • the additive elements X contained in the positive electrode active material 100 include nickel, cobalt, magnesium, calcium, chlorine, fluorine, aluminum, manganese, titanium, zirconium, ittrium, vanadium, iron, chromium, niobium, lanthanum, hafnium, zinc, and silicon. It is preferable to use one or more selected from sulfur, phosphorus, boron, and arsenic. These elements may further stabilize the crystal structure of the positive electrode active material 100. That is, the positive electrode active material 100 is lithium cobalt oxide having magnesium and fluorine, lithium cobalt oxide having magnesium, fluorine and titanium, nickel-lithium cobalt oxide having magnesium and fluorine, cobalt-lithium aluminum oxide having magnesium and fluorine, and nickel.
  • the additive element X may be referred to by replacing it with a mixture, a part of a raw material, or the like.
  • the positive electrode active material 100 has a surface layer portion 100a and an internal 100b. It is preferable that the surface layer portion 100a has a higher concentration of the additive element X than the internal 100b. Further, as shown by the gradation in FIG. 11B, it is preferable that the additive element X has a concentration gradient that increases from the inside toward the surface.
  • the surface layer portion 100a refers to a region from the surface of the positive electrode active material 100 to about 10 nm.
  • the surface generated by cracks and / or cracks may also be referred to as a surface, and as shown in FIG. 11C, the region from the surface to about 10 nm is referred to as a surface layer portion 100c.
  • the region deeper than the surface layer portion 100a and the surface layer portion 100c of the positive electrode active material 100 is defined as the internal 100b.
  • the positive electrode active material 100 forms the positive electrode active material complex 100z, it is desirable that the surface generated by the crack is also covered with the glass 101.
  • the surface layer portion 100a having a high concentration of the additive element X is used so that the layered structure composed of the octahedron of cobalt and oxygen is not broken even if lithium is removed from the positive electrode active material 100 by charging. That is, the outer peripheral portion of the particle is reinforced.
  • the concentration gradient of the additive element X is uniformly present in the entire surface layer portion 100a of the positive electrode active material 100. This is because even if a part of the surface layer portion 100a is reinforced, if there is a portion without reinforcement, stress may be concentrated on the portion without reinforcement, which is not preferable. When stress is concentrated on a part of the particles, defects such as cracks may occur from the stress, which may lead to cracking of the positive electrode active material and a decrease in charge / discharge capacity.
  • Magnesium is divalent and is more stable in lithium sites than in transition metal sites in layered rock salt type crystal structures, so it is easier to enter lithium sites.
  • the presence of magnesium at an appropriate concentration in the lithium site of the surface layer portion 100a makes it possible to easily maintain the layered rock salt type crystal structure.
  • magnesium since magnesium has a strong binding force with oxygen, it is possible to suppress the withdrawal of oxygen around magnesium.
  • Magnesium is preferable because it does not adversely affect the insertion and removal of lithium during charging and discharging if the concentration is appropriate. However, if it is excessive, the insertion and removal of lithium may be adversely affected.
  • Aluminum is trivalent and can be present at transition metal sites in layered rock salt type crystal structures. Aluminum can suppress the elution of surrounding cobalt. In addition, since aluminum has a strong binding force with oxygen, it is possible to suppress the withdrawal of oxygen around aluminum. Therefore, if aluminum is used as the additive element X, the positive electrode active material 100 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • Fluorine is a monovalent anion, and when a part of oxygen is replaced with fluorine in the surface layer portion 100a, the lithium withdrawal energy becomes small. This is because the change in the valence of the cobalt ion due to the desorption of lithium is trivalent to tetravalent when it does not have fluorine, and divalent to trivalent when it has fluorine, and the redox potential is different. Therefore, when a part of oxygen is replaced with fluorine in the surface layer portion 100a of the positive electrode active material 100, it can be said that the separation and insertion of lithium ions in the vicinity of fluorine are likely to occur smoothly. Therefore, when used in a secondary battery, charge / discharge characteristics, rate characteristics, and the like are improved, which is preferable.
  • Titanium oxide is known to have superhydrophilicity. Therefore, by using the positive electrode active material 100 having a titanium oxide on the surface layer portion 100a, there is a possibility that the wettability with respect to a highly polar solvent may be improved. When a secondary battery is used, the interface between the positive electrode active material 100 and the highly polar electrolytic solution becomes good, and there is a possibility that an increase in resistance can be suppressed.
  • the electrolytic solution corresponds to a liquid electrolyte.
  • the positive electrode active material of one aspect of the present invention has a stable crystal structure even at a high voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in capacity due to repeated charging and discharging.
  • a short circuit of the secondary battery not only causes a malfunction in the charging operation and / or the discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the short-circuit current is suppressed even at a high charging voltage.
  • a short-circuit current is suppressed even at a high charging voltage. Therefore, it is possible to obtain a secondary battery that has both high capacity and safety.
  • the secondary battery using the positive electrode active material 100 of one aspect of the present invention preferably simultaneously satisfies high capacity, excellent charge / discharge cycle characteristics, and safety.
  • the concentration gradient of the added element X can be evaluated using, for example, energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray Spectroscopy).
  • EDX Energy Dispersive X-ray Spectroscopy
  • measuring while scanning the inside of the region and evaluating the inside of the region in two dimensions may be called EDX plane analysis.
  • EDX plane analysis extracting data in a linear region from the surface analysis of EDX and evaluating the distribution of atomic concentrations in the positive electrode active material particles may be called linear analysis.
  • the concentration of the additive element X in the surface layer portion 100a, the inner 100b, the vicinity of the crystal grain boundary, etc. of the positive electrode active material 100 can be quantitatively analyzed.
  • the distribution of the concentration of the additive element X can be analyzed by EDX ray analysis.
  • the peak magnesium concentration (position where the concentration becomes the maximum value) of the surface layer portion 100a exists up to a depth of 3 nm from the surface of the positive electrode active material 100 toward the center. It is more preferable that it exists up to a depth of 1 nm, and it is even more preferable that it exists up to a depth of 0.5 nm.
  • the distribution of fluorine contained in the positive electrode active material 100 overlaps with the distribution of magnesium. Therefore, when EDX ray analysis is performed, it is preferable that the peak of the fluorine concentration of the surface layer portion 100a (the position where the concentration becomes the maximum value) exists up to a depth of 3 nm from the surface of the positive electrode active material 100 toward the center. It is more preferably present up to 1 nm, and even more preferably up to a depth of 0.5 nm.
  • the additive elements X do not have to have the same concentration distribution.
  • the distribution is slightly different from that of magnesium and fluorine.
  • the peak of magnesium concentration position where the concentration becomes the maximum value
  • the peak of the aluminum concentration preferably exists at a depth of 0.5 nm or more and 20 nm or less toward the center from the surface of the positive electrode active material 100, and more preferably 1 nm or more and 5 nm or less.
  • the ratio (X / M1) of the additive element X and the transition metal M1 in the vicinity of the grain boundary is preferably 0.020 or more and 0.50 or less. Further, it is preferably 0.025 or more and 0.30 or less. Further, it is preferably 0.030 or more and 0.20 or less.
  • the ratio of the number of atoms of magnesium to cobalt (Mg / Co) is preferably 0.020 or more and 0.50 or less. Further, it is preferably 0.025 or more and 0.30 or less. Further, it is preferably 0.030 or more and 0.20 or less.
  • the additive element X contained in the positive electrode active material 100 is excessive, the insertion and removal of lithium may be adversely affected. In addition, when it is used as a secondary battery, it may cause an increase in resistance and a decrease in capacity. On the other hand, if it is insufficient, it will not be distributed over the entire surface layer portion 100a, and the effect of retaining the crystal structure may be insufficient. In this way, the additive element X is adjusted so as to have an appropriate concentration in the positive electrode active material 100.
  • the positive electrode active material 100 may have a region in which the excess additive element X is unevenly distributed. Due to the presence of such a region, the excess additive element X is removed from the other regions, and an appropriate concentration of the additive element X can be obtained in the inside of the positive electrode active material 100 and most of the surface layer portion.
  • an appropriate concentration of the additive element X in the inside of the positive electrode active material 100 and most of the surface layer portion it is possible to suppress an increase in resistance and a decrease in capacity when the secondary battery is used. Being able to suppress an increase in the resistance of a secondary battery is an extremely preferable characteristic especially in charging / discharging at a high rate.
  • the positive electrode active material 100 having a region in which the excess additive element X is unevenly distributed it is permissible to mix the additive element X in excess to some extent in the manufacturing process. Therefore, the margin in production is wide, which is preferable.
  • uneven distribution means that the concentration of a certain element differs between a certain region A and a certain region B. It may be said that segregation, precipitation, non-uniformity, bias, high concentration or low concentration, and the like.
  • a material having a layered rock salt type crystal structure such as lithium cobalt oxide (LiCoO 2 ) has a high discharge capacity and is excellent as a positive electrode active material for a secondary battery.
  • Examples of the material having a layered rock salt type crystal structure include a composite oxide represented by LiM1O 2 (M1 is one or more selected from Fe, Ni, Co, and Mn).
  • FIGS. 12 to 17 show a case where cobalt is used as the transition metal contained in the positive electrode active material.
  • the positive electrode active material shown in FIG. 14 is lithium cobalt oxide (LiCoO 2 , LCO) to which halogen and magnesium are not added.
  • the crystal structure of lithium cobalt oxide shown in FIG. 14 changes depending on the charging depth. In other words, in the case of notation LixCoO 2 , the crystal structure changes according to the lithium occupancy rate x of the lithium site.
  • the CoO 2 layer is a structure in which an octahedral structure in which oxygen is coordinated to cobalt is continuous in the plane direction in a state of sharing a ridge.
  • the space group P-3m1 has a crystal structure, and one CoO layer is present in the unit cell. Therefore, this crystal structure may be referred to as an O1 type crystal structure.
  • the coordinates of cobalt and oxygen in the unit cell are set to Co (0, 0, 0.42150 ⁇ 0.00016), O 1 (0, 0, 0.267671 ⁇ 0.00045). , O 2 (0, 0, 0.11535 ⁇ 0.00045).
  • O 1 and O 2 are oxygen atoms, respectively.
  • the H1-3 type crystal structure is represented by a unit cell using one cobalt and two oxygens.
  • the O3'type crystal structure of one aspect of the present invention is preferably represented by a unit cell using one cobalt and one oxygen.
  • the O3'type crystal structure has an O3 structure compared to the H1-3 type structure. Indicates that the change from is small. It is more preferable to use which unit cell to express the crystal structure of the positive electrode active material, for example, in the Rietveld analysis of the XRD pattern, the GOF (goodness of fit) value is selected to be smaller. do it.
  • cobalt acid Lithium repeats a change in crystal structure (that is, a non-equilibrium phase change) between the H1-3 type crystal structure and the R-3m (O3) structure in a discharged state.
  • the difference in volume is also large.
  • the difference in volume between the H1-3 type crystal structure and the discharged state O3 type crystal structure is 3.0% or more.
  • the continuous structure of two CoO layers such as P-3m1 (O1) of the H1-3 type crystal structure is likely to be unstable.
  • the crystal structure of lithium cobalt oxide collapses when high voltage charging and discharging are repeated.
  • the collapse of the crystal structure causes deterioration of the cycle characteristics. It is considered that this is because the crystal structure collapses, the number of sites where lithium can stably exist decreases, and it becomes difficult to insert and remove lithium.
  • the positive electrode active material 100 of one aspect of the present invention can reduce the deviation of the CoO 2 layer in repeated charging and discharging of a high voltage. Furthermore, the change in volume can be reduced. Therefore, the positive electrode active material of one aspect of the present invention can realize excellent cycle characteristics. Further, the positive electrode active material according to one aspect of the present invention can have a stable crystal structure in a state of charge with a high voltage. Therefore, the positive electrode active material of one aspect of the present invention may not easily cause a short circuit when the high voltage charge state is maintained. In such a case, safety is further improved, which is preferable.
  • the difference in volume is small when compared with the change in crystal structure and the same number of transition metal atoms in the state of being sufficiently discharged and the state of being charged at a high voltage.
  • FIG. 12 shows the crystal structure of the positive electrode active material 100 before and after charging and discharging.
  • the positive electrode active material 100 is a composite oxide having lithium, cobalt as a transition metal, and oxygen.
  • a halogen such as fluorine or chlorine as the additive element X.
  • the positive electrode active material 100 of one aspect of the present invention has a crystal having a structure different from that of the H1-3 type crystal structure when the charge depth is sufficiently charged.
  • This structure belongs to the space group R-3m, and ions such as cobalt and magnesium occupy the oxygen 6 coordination position.
  • the symmetry of the CoO2 layer of this structure is the same as that of the O3 type. Therefore, this structure is referred to as an O3'type crystal structure in the present specification and the like. In the figure of the O3'type crystal structure shown in FIG.
  • the display of lithium is omitted in order to explain the symmetry of the cobalt atom and the symmetry of the oxygen atom, but in reality, the CoO 2 layer is used. In between, there is, for example, 20 atomic% or less of lithium with respect to cobalt.
  • light elements such as lithium may occupy the oxygen 4-coordination position.
  • the O3'type crystal structure has a random lithium between layers but is similar to the CdCl 2 type crystal structure.
  • This crystal structure similar to CdCl type 2 is similar to the crystal structure when lithium nickel oxide is charged to a charging depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobalt oxide or cobalt. It is known that layered rock salt type positive electrode active materials usually do not have this crystal structure.
  • the change in the crystal structure when charging at a high voltage and a large amount of lithium is desorbed is suppressed as compared with the conventional positive electrode active material. For example, as shown by the dotted line in FIG. 12, there is almost no deviation of the CoO2 layer in these crystal structures.
  • the positive electrode active material 100 has high structural stability even when the charging voltage is high.
  • a charging voltage having an H1-3 type crystal structure for example, a charging voltage capable of maintaining an R-3m (O3) crystal structure even at a voltage of about 4.6 V based on the potential of lithium metal.
  • There is a region in which the charging voltage is further increased for example, a region in which an O3'type crystal structure can be obtained even at a voltage of about 4.65 V to 4.7 V with respect to the potential of the lithium metal.
  • H1-3 type crystals may be observed only.
  • the charging voltage is such that the crystal structure of R-3m (O3) can be maintained even when the voltage of the secondary battery is 4.3 V or more and 4.5 V or less.
  • the charging voltage is further increased, for example, a region in which an O3'type crystal structure can be obtained even at 4.35 V or more and 4.55 V or less based on the potential of the lithium metal.
  • the crystal structure does not easily collapse even if charging and discharging are repeated at a high voltage.
  • the coordinates of cobalt and oxygen in the unit cell are within the range of Co (0,0,0.5), O (0,0,x), 0.20 ⁇ x ⁇ 0.25. Can be indicated by.
  • the additive element X for example, magnesium, which is randomly and dilutely present between the two CoO layers, that is, at the lithium site, has an effect of suppressing the displacement of the two CoO layers. Therefore, if magnesium is present between the CoO 2 layers, it tends to have an O3'type crystal structure. Therefore, it is preferable that magnesium is distributed in at least a part of the surface layer portion of the positive electrode active material 100 of one aspect of the present invention, and further distributed in the entire surface layer portion of the positive electrode active material 100. Further, in order to distribute magnesium over the entire surface layer portion of the positive electrode active material 100, it is preferable to perform heat treatment in the step of producing the positive electrode active material 100 according to one aspect of the present invention.
  • a halogen compound such as a fluorine compound
  • lithium cobalt oxide before the heat treatment for distributing magnesium over the entire surface layer portion of the positive electrode active material 100.
  • a halogen compound causes a melting point depression of lithium cobalt oxide. By lowering the melting point, it becomes easy to distribute magnesium over the entire surface layer portion of the positive electrode active material 100 at a temperature at which cationic mixing is unlikely to occur. Further, if a fluorine compound is present, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the magnesium concentration is higher than the desired value, the effect on stabilizing the crystal structure may be reduced. It is thought that magnesium enters cobalt sites in addition to lithium sites.
  • the atomic number of magnesium contained in the positive electrode active material of one aspect of the present invention is preferably 0.001 times or more and 0.1 times or less, and more than 0.01 times and less than 0.04 times the atomic number of a transition metal such as cobalt. Is more preferable, and about 0.02 times is further preferable.
  • the magnesium concentration shown here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material using ICP-MS or the like, or may be a value obtained by blending raw materials in the process of producing the positive electrode active material 100. It may be based.
  • One or more metals selected from, for example, nickel, aluminum, manganese, titanium, vanadium and chromium may be added to lithium cobalt oxide as a metal other than cobalt (hereinafter referred to as additive element X), particularly one or more of nickel and aluminum. Is preferably added.
  • additive element X a metal other than cobalt
  • Manganese, titanium, vanadium and chromium may be stable because they are stable and tetravalent, and may contribute significantly to structural stability.
  • the additive element X By adding the additive element X, the crystal structure may become more stable in a state of charge at a high voltage.
  • the additive element X is added at a concentration that does not significantly change the crystallinity of lithium cobalt oxide.
  • the amount is preferably such that the above-mentioned Jahn-Teller effect and the like are not exhibited.
  • Transition metals such as nickel and manganese and aluminum are preferably present at cobalt sites, but some may be present at lithium sites. Magnesium is preferably present in lithium sites. Oxygen may be partially replaced with fluorine.
  • the capacity of the positive electrode active material may decrease as the magnesium concentration of the positive electrode active material of one aspect of the present invention increases. As a factor, for example, it is considered that the amount of lithium contributing to charge / discharge may decrease due to the entry of magnesium into the lithium site.
  • the positive electrode active material of one aspect of the present invention has nickel as the additive element X in addition to magnesium, the charge / discharge cycle characteristics may be enhanced.
  • the positive electrode active material of one aspect of the present invention has aluminum as the additive element X in addition to magnesium, the charge / discharge cycle characteristics may be enhanced.
  • the positive electrode active material of one aspect of the present invention having magnesium, nickel and aluminum as the additive element X the charge / discharge cycle characteristics may be enhanced.
  • the concentration of the element of the positive electrode active material of one aspect of the present invention having magnesium, nickel and aluminum as the additive element X will be examined.
  • the number of atoms of nickel contained in the positive electrode active material of one aspect of the present invention is preferably 10% or less, more preferably 7.5% or less, still more preferably 0.05% or more and 4% or less, and 0. .1% or more and 2% or less is particularly preferable.
  • the nickel concentration shown here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material using ICP-MS or the like, or based on the value of the blending of raw materials in the process of producing the positive electrode active material. You may.
  • the constituent elements of the positive electrode active material may elute into the electrolytic solution and the crystal structure may be destroyed. However, by having nickel in the above ratio, elution of constituent elements from the positive electrode active material 100 may be suppressed.
  • the number of atoms of aluminum contained in the positive electrode active material of one aspect of the present invention is preferably 0.05% or more and 4% or less, and more preferably 0.1% or more and 2% or less of the atomic number of cobalt.
  • the concentration of aluminum shown here may be, for example, a value obtained by performing elemental analysis of the entire positive electrode active material using ICP-MS or the like, or based on the value of the blending of raw materials in the process of producing the positive electrode active material. You may.
  • the positive electrode active material having the additive element X of one aspect of the present invention it is preferable to use phosphorus as the additive element X in the positive electrode active material having the additive element X of one aspect of the present invention. Further, it is more preferable that the positive electrode active material of one aspect of the present invention has a compound containing phosphorus and oxygen.
  • the positive electrode active material of one aspect of the present invention has a compound containing phosphorus as the additive element X, it may be difficult for a short circuit to occur when a high temperature and high voltage charge state is maintained for a long time.
  • hydrogen fluoride generated by decomposition of the electrolytic solution may react with phosphorus to reduce the hydrogen fluoride concentration in the electrolytic solution.
  • hydrogen fluoride When the electrolytic solution has LiPF 6 as a lithium salt, hydrogen fluoride may be generated by hydrolysis. Further, hydrogen fluoride may be generated by the reaction between PVDF used as a component of the positive electrode and an alkali. By reducing the hydrogen fluoride concentration in the electrolytic solution, it may be possible to suppress corrosion of the current collector and / or peeling of the coating film. In addition, it may be possible to suppress a decrease in adhesiveness due to gelation and / or insolubilization of PVDF.
  • the stability in a high voltage state of charge is extremely high.
  • the number of atoms of phosphorus is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and further preferably 3% or more and 8% or less.
  • the number of atoms of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less of the number of atoms of cobalt.
  • concentrations of phosphorus and magnesium shown here may be values obtained by performing elemental analysis of the entire positive electrode active material 100 using, for example, ICP-MS, or the blending of raw materials in the process of producing the positive positive active material 100. It may be based on the value of.
  • the progress of the crack may be suppressed by the presence of phosphorus, more specifically, for example, a compound containing phosphorus and oxygen inside the crack.
  • the symmetry of the oxygen atom is slightly different between the O3 type crystal structure and the O3'type crystal structure. Specifically, in the O3 type crystal structure, the oxygen atoms are aligned along the dotted line, whereas in the O3'type crystal structure, the oxygen atoms are not strictly aligned. This is because in the O3'type crystal structure, tetravalent cobalt increases with the decrease of lithium, the Jahn-Teller strain increases, and the octahedral structure of CoO 6 is distorted. In addition, the repulsion between oxygen in the two layers of CoO became stronger as the amount of lithium decreased.
  • Magnesium is preferably distributed over the entire surface layer portion of the positive electrode active material 100 according to one aspect of the present invention, and in addition, the magnesium concentration of the surface layer portion 100a is preferably higher than the overall average.
  • the magnesium concentration of the surface layer portion 100a measured by XPS or the like is higher than the overall average magnesium concentration measured by ICP-MS or the like.
  • the concentration of the metal in the vicinity of the particle surface is determined. It is preferably higher than the overall average.
  • the concentration of an element other than cobalt in the surface layer portion 100a measured by XPS or the like is higher than the concentration of the element in the overall average measured by ICP-MS or the like.
  • the surface layer portion of the positive electrode active material 100 is, so to speak, a crystal defect, and lithium is removed from the surface during charging, so that the lithium concentration tends to be lower than that inside. Therefore, it tends to be unstable and the crystal structure tends to collapse. If the magnesium concentration of the surface layer portion 100a is high, the change in the crystal structure can be suppressed more effectively. Further, when the magnesium concentration of the surface layer portion 100a is high, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the concentration of halogen such as fluorine in the surface layer portion 100a of the positive electrode active material 100 of one aspect of the present invention is higher than the overall average.
  • the presence of the halogen in the surface layer portion 100a, which is a region in contact with the electrolytic solution, can effectively improve the corrosion resistance to hydrofluoric acid.
  • the surface layer portion 100a of the positive electrode active material 100 preferably has a higher concentration of additive elements such as magnesium and fluorine than the internal 100b, and has a composition different from that of the internal. Further, it is preferable that the composition has a stable crystal structure at room temperature. Therefore, the surface layer portion 100a may have a crystal structure different from that of the internal 100b. For example, at least a part of the surface layer portion 100a of the positive electrode active material 100 according to one aspect of the present invention may have a rock salt type crystal structure. When the surface layer portion 100a and the internal 100b have different crystal structures, it is preferable that the crystal orientations of the surface layer portion 100a and the internal 100b are substantially the same.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic close-packed structure (face-centered cubic lattice structure). It is presumed that the O3'type crystal also has a cubic close-packed structure for anions.
  • the anions do not have to be strictly cubic lattices.
  • the actual crystal always has a defect, so the analysis result does not necessarily have to be as theoretical.
  • FFT Fast Fourier Transform
  • TEM image a spot may appear at a position slightly different from the theoretical position. For example, if the orientation with the theoretical position is 5 degrees or less, or 2.5 degrees or less, it can be said that a cubic close-packed structure is adopted.
  • the anions in the (111) plane of the cubic crystal structure have a triangular arrangement.
  • the layered rock salt type is a space group R-3m and has a rhombohedral structure, but is generally represented by a composite hexagonal lattice to facilitate understanding of the structure, and the (0001) plane of the layered rock salt type has a hexagonal lattice.
  • the cubic (111) triangular lattice has an atomic arrangement similar to that of a layered rock salt type (0001) plane hexagonal lattice. It can be said that the orientation of the cubic close-packed structure is aligned when both lattices are consistent.
  • the space group of layered rock salt type crystals and O3'type crystals is R-3m
  • the orientations of the crystals are substantially the same when the orientations of the cubic close-packed structures composed of anions are aligned. be.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high-angle scattering annular dark-field scanning transmission electron microscope
  • ABF-STEM Abbreviations: ABF-STEM
  • FIG. 16 shows an example of a TEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are substantially the same.
  • the TEM image STEM image, HAADF-STEM image, ABF-STEM image and the like, an image reflecting the crystal structure can be obtained.
  • a contrast derived from a crystal plane can be obtained.
  • the contrast derived from the (0003) plane is obtained as a repetition of bright and dark lines. Therefore, when the repetition of bright lines and dark lines is observed in the TEM image and the angle between the bright lines (for example, L RS and L LRS shown in FIG. 16) is 5 degrees or less, or 2.5 degrees or less, the crystal plane is approximate. It can be determined that they are in agreement, that is, the orientations of the crystals are roughly in agreement. Similarly, when the angle between the dark lines is 5 degrees or less, or 2.5 degrees or less, it can be determined that the crystal orientations are substantially the same.
  • lithium cobalt oxide having a layered rock salt type crystal structure is observed perpendicular to the c-axis
  • the arrangement of cobalt atoms is observed as a bright line or an arrangement of points with high brightness, and lithium atoms and oxygen atoms are observed.
  • the arrangement of is observed as a dark line or a low brightness area.
  • fluorine (atomic number 9) and magnesium (atomic number 12) are added as the additive element of lithium cobalt oxide.
  • FIG. 17A shows an example of an STEM image in which the orientations of the layered rock salt crystal LRS and the rock salt crystal RS are substantially the same.
  • the FFT of the rock salt type crystal RS region is shown in FIG. 17B
  • the FFT of the layered rock salt type crystal LRS region is shown in FIG. 17C.
  • the literature values are shown on the left side of FIGS. 17B and 17C, and the measured values are shown on the right side.
  • the spot with O is the 0th order diffraction.
  • the spots marked with A in FIG. 17B are derived from the 11-1 reflection of cubic crystals.
  • the spots marked with A in FIG. 17C are derived from the layered rock salt type 0003 reflection.
  • the straight line passing through the AO of FIG. 17B and the straight line passing through the AO of FIG. 17C are substantially parallel. That is, from FIGS. 17B and 17C, it can be seen that the orientation of the 11-1 reflection of the cubic crystal and the orientation of the 0003 reflection of the layered rock salt type are substantially the same. Approximately coincident and approximately parallel here means that the angle is 5 degrees or less, or 2.5 degrees or less.
  • the layered rock salt type ⁇ 0003> orientation or an equivalent plane orientation and the rock salt type ⁇ 11- 1> The orientation or the equivalent plane orientation may roughly match.
  • these reciprocal lattice points are spot-shaped, that is, they are not continuous with other reciprocal lattice points.
  • the fact that the reciprocal lattice points are spot-like and not continuous with other reciprocal lattice points means that the crystallinity is high.
  • the layered rock salt type 0003 reflection may occur depending on the incident direction of the electron beam. Spots that are not derived from the layered rock salt type 0003 reflection may be observed on the reverse lattice space that is different from the orientation.
  • the spot marked B in FIG. 17C is derived from the layered rock salt type 10-14 reflection. This is an angle of 52 ° or more and 56 ° or less (that is, ⁇ AOB is 52 ° or more and 56 ° or less) from the direction of the reciprocal lattice point (A in FIG. 17C) derived from the layered rock salt type 0003 reflection. May be observed at a location of 0.19 nm or more and 0.21 nm or less. Note that this index is an example and does not necessarily have to match it. For example, reciprocal lattice points equivalent to 0003 and 1014 may be used.
  • spots not derived from cubic 11-1 may be observed on the reciprocal lattice space different from the orientation in which cubic 11-1 was observed.
  • the spots labeled B in FIG. 17B are derived from the 200 reflections of the cubic crystal. This is a diffraction spot at an angle of 54 ° or more and 56 ° or less (that is, ⁇ AOB is 54 ° or more and 56 ° or less) from the direction of the reflection derived from 11-1 of the cubic crystal (A in FIG. 17B). May be observed. Note that this index is an example and does not necessarily have to match it.
  • reciprocal lattice points equivalent to 11-1 and 200 may be used.
  • the (0003) plane and the equivalent plane, and the (10-14) plane and the equivalent plane tend to appear as crystal planes.
  • an observation sample is prepared with a FIB or the like so that the (0003) plane can be easily observed, for example, in a TEM or the like so that the electron beam is incident on [1-210]. It is possible to process flakes.
  • it is preferable to thin the layered rock salt type (0003) plane so that it can be easily observed.
  • the surface layer portion 100a has only MgO or a structure in which MgO and CoO (II) are solid-dissolved, it becomes difficult to insert and remove lithium. Therefore, the surface layer portion 100a needs to have at least cobalt, also lithium in the discharged state, and have a path for inserting and removing lithium. Further, it is preferable that the concentration of cobalt is higher than that of magnesium.
  • the additive element X is preferably located on the surface layer portion 100a of the particles of the positive electrode active material 100 according to one aspect of the present invention.
  • the positive electrode active material 100 according to one aspect of the present invention may be covered with a film having an additive element X.
  • the additive element X contained in the positive electrode active material 100 of one aspect of the present invention may be randomly and dilutely present inside, but it is more preferable that a part of the additive element X is segregated at the grain boundaries.
  • the concentration of the additive element X in the crystal grain boundary of the positive electrode active material 100 of one aspect of the present invention and its vicinity is also higher than in other regions inside.
  • the grain boundaries can be considered as surface defects. Therefore, as with the particle surface, it tends to be unstable and the crystal structure tends to change. Therefore, if the concentration of the additive element X in or near the crystal grain boundary is high, the change in the crystal structure can be suppressed more effectively.
  • the concentration of the additive element X in or near the crystal grain boundaries is high, even if cracks occur along the crystal grain boundaries of the particles of the positive electrode active material 100 according to one aspect of the present invention, the surface generated by the cracks may be cracked.
  • the concentration of the additive element X increases in the vicinity. Therefore, the corrosion resistance to hydrofluoric acid can be enhanced even in the positive electrode active material after cracks have occurred.
  • the vicinity of the crystal grain boundary means a region from the grain boundary to about 10 nm.
  • the average particle size (D50: also referred to as median diameter) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less.
  • a certain positive electrode active material is the positive electrode active material 100 of one aspect of the present invention showing an O3'type crystal structure when charged at a high voltage is determined by XRD and electron diffraction of the positive electrode charged at a high voltage.
  • Neutron beam diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR), etc. can be used for analysis.
  • XRD can analyze the symmetry of transition metals such as cobalt contained in the positive electrode active material with high resolution, compare the height of crystallinity and the orientation of crystals, and analyze the periodic strain and crystallite size of the lattice. It is preferable in that sufficient accuracy can be obtained even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • the positive electrode active material 100 has a feature that the crystal structure does not change much between the state of being charged with a high voltage and the state of being discharged.
  • a material in which a crystal structure having a large change from the discharged state occupies 50 wt% or more in a state of being charged at a high voltage is not preferable because it cannot withstand the charging / discharging of a high voltage.
  • the desired crystal structure may not be obtained simply by adding the added element. For example, even if lithium cobalt oxide having magnesium and fluorine is common, the O3'type crystal structure becomes 60 wt% or more when charged at a high voltage, and the H1-3 type crystal structure becomes 50 wt% or more.
  • the O3'type crystal structure becomes approximately 100 wt%, and when the predetermined voltage is further increased, an H1-3 type crystal structure may occur. Therefore, in order to determine whether or not the positive electrode active material 100 is one aspect of the present invention, it is necessary to analyze the crystal structure including XRD.
  • the positive electrode active material charged or discharged at a high voltage may change its crystal structure when exposed to the atmosphere.
  • the O3'type crystal structure may change to the H1-3 type crystal structure. Therefore, it is preferable to handle all the samples in an inert atmosphere such as an argon atmosphere.
  • High-voltage charging for determining whether a composite oxide is the positive electrode active material 100 of one aspect of the present invention is, for example, to prepare a coin cell (CR2032 type, diameter 20 mm, height 3.2 mm) with counterpolar lithium. Can be charged.
  • a slurry in which a positive electrode active material, a conductive material and a binder are mixed is applied to a positive electrode current collector of aluminum foil.
  • Lithium metal can be used for the opposite pole.
  • a material other than lithium metal is used for the counter electrode, the potential of the secondary battery and the potential of the positive electrode are different. Unless otherwise specified, the voltage and potential in the present specification and the like are the potential of the positive electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • Polypropylene with a thickness of 25 ⁇ m can be used for the separator.
  • the positive electrode can and the negative electrode can, those made of stainless steel (SUS) can be used.
  • SUS stainless steel
  • the coin cell manufactured under the above conditions is charged with a constant current at 4.6 V and 0.5 C, and then charged with a constant voltage until the current value becomes 0.01 C.
  • 1C is 137 mA / g.
  • the temperature is 25 ° C.
  • ⁇ XRD> The ideal powder XRD pattern by CuK ⁇ 1 line calculated from the model of the O3'type crystal structure and the H1-3 type crystal structure is shown in FIGS. 13 and 15.
  • the patterns of LiCoO 2 (O3) and CoO 2 (O1) are created by using Reflex Powder Diffraction, which is one of the modules of Material Studio (BIOVIA), from the crystal structure information obtained from ICSD (Inorganic Crystal Structure Diffraction). did.
  • the crystal structure is estimated from the XRD pattern of the positive electrode active material of one aspect of the present invention, and TOPAS ver. 3 (Crystal structure analysis software manufactured by Bruker) was used for fitting, and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 100 has an O3'type crystal structure when charged at a high voltage, all of the positive electrode active materials 100 do not have to have an O3'type crystal structure. It may contain other crystal structures or may be partially amorphous. However, when the Rietveld analysis is performed on the XRD pattern, the O3'type crystal structure is preferably 50 wt% or more, more preferably 60 wt% or more, and further preferably 66 wt% or more. When the O3'type crystal structure is 50 wt% or more, more preferably 60 wt% or more, still more preferably 66 wt% or more, the positive electrode active material having sufficiently excellent cycle characteristics can be obtained.
  • the O3'type crystal structure is preferably 35 wt% or more, more preferably 40 wt% or more, and 43 wt% or more when Rietveld analysis is performed. Is more preferable.
  • the crystallite size of the O3'-type crystal structure possessed by the particles of the positive electrode active material is reduced to only about 1/10 of that of LiCoO 2 (O3) in the discharged state. Therefore, even under the same XRD measurement conditions as the positive electrode before charging / discharging, a clear peak of the O3'type crystal structure can be confirmed in the high voltage charging state.
  • the crystallite size becomes small and the peak becomes broad and small. The crystallite size can be obtained from the half width of the XRD peak.
  • the influence of the Jahn-Teller effect is small.
  • the positive electrode active material of one aspect of the present invention preferably has a layered rock salt type crystal structure and mainly contains cobalt as a transition metal. Further, in the positive electrode active material of one aspect of the present invention, the additive element X described above may be contained in addition to cobalt as long as the influence of the Jahn-Teller effect is small.
  • the layered rock salt type contained in the particles of the positive electrode active material in the non-charged state or the discharged state which can be estimated from the XRD pattern.
  • the lattice constant of the a-axis is larger than 2.814 ⁇ 10-10 m and smaller than 2.817 ⁇ 10-10 m
  • the lattice constant of the c-axis is larger than 14.05 ⁇ 10-10 m14 . It was found that it was preferably smaller than .07 ⁇ 10-10 m.
  • the state in which charging / discharging is not performed may be, for example, a state of powder before the positive electrode of the secondary battery is manufactured.
  • the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant Is preferably greater than 0.20000 and less than 0.20049.
  • 2 ⁇ is 18.50 ° or more and 19.30 ° or less.
  • a peak may be observed, and a second peak may be observed when 2 ⁇ is 38.00 ° or more and 38.80 ° or less.
  • the peak appearing in the powder XRD pattern reflects the crystal structure of the inside 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
  • the crystal structure of the surface layer portion 100a or the like can be analyzed by electron diffraction or the like of the cross section of the positive electrode active material 100.
  • XPS> Since X-ray photoelectron spectroscopy (XPS) can analyze a region from the surface to a depth of about 2 to 8 nm (usually about 5 nm), the concentration of each element is quantitatively measured in about half of the surface layer portion 100a. Can be analyzed. In addition, narrow scan analysis can be used to analyze the bonding state of elements. The quantification accuracy of XPS is often about ⁇ 1 atomic%, and the lower limit of detection is about 1 atomic% depending on the element.
  • monochromatic aluminum can be used as the X-ray source.
  • the take-out angle may be, for example, 45 °.
  • the peak showing the binding energy between fluorine and other elements is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. .. This is a value different from both the binding energy of lithium fluoride, 685 eV, and the binding energy of magnesium fluoride, 686 eV. That is, when the positive electrode active material 100 of one aspect of the present invention has fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak showing the binding energy between magnesium and other elements is preferably 1302 eV or more and less than 1304 eV, and more preferably about 1303 eV. This is a value different from 1305 eV, which is the binding energy of magnesium fluoride, and is close to the binding energy of magnesium oxide. That is, when the positive electrode active material 100 of one aspect of the present invention has magnesium, it is preferably a bond other than magnesium fluoride.
  • Additive elements X such as magnesium and aluminum, which are preferably abundant in the surface layer portion 100a, have concentrations measured by XPS or the like, such as ICP-MS (inductively coupled plasma mass spectrometry) or GD-MS (glow discharge mass spectrometry). ) Etc., preferably higher than the concentration measured.
  • the concentration of the surface layer portion 100a is higher than the concentration of the internal 100b. Processing can be performed by, for example, FIB.
  • the number of magnesium atoms is preferably 0.4 times or more and 1.5 times or less the number of cobalt atoms.
  • the ratio Mg / Co of the number of atoms of magnesium as analyzed by ICP-MS is preferably 0.001 or more and 0.06 or less.
  • nickel contained in the transition metal is not unevenly distributed on the surface layer portion 100a but is distributed throughout the positive electrode active material 100. However, this does not apply when there is a region where the excess additive element X described above is unevenly distributed.
  • the positive electrode active material 100 preferably has a smooth surface and few irregularities.
  • the fact that the surface is smooth and has few irregularities is one factor indicating that the distribution of the additive element X in the surface layer portion 100a is good.
  • the positive electrode active material 100 when the lithium cobalt oxide or the nickel-cobalt-lithium manganate before the additive element X is added is initially heated, it is charged and discharged at a high voltage. It is particularly preferable as the positive electrode active material 100 because the repeatability is remarkably excellent.
  • the stability on the surface of the positive electrode active material 100 may be improved and the generation of pits may be suppressed.
  • the smooth surface and less unevenness can be judged from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, a specific surface area of the positive electrode active material 100, and the like.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 100 as shown below.
  • the positive electrode active material 100 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like.
  • a protective film, a protective agent, or the like is photographed.
  • interface extraction is performed with image processing software. Further, the interface line between the protective film or the like and the positive electrode active material 100 is selected with a magic hand tool or the like, and the data is extracted by spreadsheet software or the like.
  • this surface roughness is the surface roughness of the positive electrode active material at least at 400 nm around the outer periphery of the particles.
  • the root mean square (RMS) surface roughness which is an index of roughness, is 10 nm or less, less than 3 nm, preferably less than 1 nm, and more preferably less than 0.5 nm squared. It is preferably the root mean square (RMS) surface roughness.
  • the image processing software that performs noise processing, interface extraction, etc. is not particularly limited, but for example, "ImageJ" can be used.
  • the spreadsheet software and the like are not particularly limited, but for example, Microsoft Office Excel can be used.
  • the smoothness of the surface of the positive electrode active material 100 can be quantified from the ratio of the actual specific surface area AR measured by the gas adsorption method by the constant volume method to the ideal specific surface area Ai. can.
  • the ideal specific surface area Ai is calculated assuming that all particles have the same diameter as D50, the same weight, and the shape is an ideal sphere.
  • the median diameter D50 can be measured by a particle size distribution meter or the like using a laser diffraction / scattering method.
  • the specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method based on a constant volume method.
  • the ratio AR / A i of the ideal specific surface area Ai obtained from the median diameter D50 and the actual specific surface area AR is 1 or more and 2 or less. ..
  • FIG. 18A is an exploded perspective view of a coin-type (single-layer flat type) secondary battery
  • FIG. 18B is an external view
  • FIG. 18C is a cross-sectional view thereof.
  • Coin-type secondary batteries are mainly used in small electronic devices.
  • the coin type battery includes a button type battery.
  • FIG. 18A is a schematic diagram so that the overlap (vertical relationship and positional relationship) of the members can be understood for easy understanding. Therefore, FIGS. 18A and 18B do not have a completely matching correspondence diagram.
  • the positive electrode 304, the separator 310, the negative electrode 307, the spacer 322, and the washer 312 are overlapped. These are sealed with a negative electrode can 302 and a positive electrode can 301.
  • the gasket for sealing is not shown.
  • the spacer 322 and the washer 312 are used to protect the inside or fix the position inside the can when crimping the positive electrode can 301 and the negative electrode can 302. Stainless steel or insulating material is used for the spacer 322 and the washer 312.
  • the positive electrode 304 is a laminated structure in which the positive electrode active material layer 306 is formed on the positive electrode current collector 305.
  • the separator 310 and the ring-shaped insulator 313 are arranged so as to cover the side surface and the upper surface of the positive electrode 304, respectively.
  • the separator 310 has a wider plane area than the positive electrode 304.
  • FIG. 18B is a perspective view of the completed coin-shaped secondary battery.
  • the positive electrode can 301 that also serves as the positive electrode terminal and the negative electrode can 302 that also serves as the negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the negative electrode 307 is not limited to the laminated structure, and a lithium metal foil or an alloy foil of lithium and aluminum may be used.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may each have an active material layer formed on only one side.
  • the positive electrode can 301 and the negative electrode can 302 a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolyte, or an alloy thereof, and an alloy between these and another metal (for example, stainless steel, etc.) may be used. can. Further, in order to prevent corrosion due to an electrolyte or the like, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the negative electrode 307, the positive electrode 304, and the separator 310 are immersed in an electrolytic solution, and as shown in FIG. 18C, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down, and the positive electrode can A coin-shaped secondary battery 300 is manufactured by crimping the 301 and the negative electrode can 302 via the gasket 303.
  • the separator 310 may not be required.
  • FIG. 19B is a diagram schematically showing a cross section of a cylindrical secondary battery.
  • the cylindrical secondary battery 616 has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (exterior can) 602 on the side surface and the bottom surface.
  • the positive electrode cap 601 and the battery can (exterior can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element in which a strip-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 sandwiched between them is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around a central axis.
  • One end of the battery can 602 is closed and the other end is open.
  • a metal such as nickel, aluminum, or titanium, which is corrosion resistant to an electrolytic solution, or an alloy thereof, and an alloy between these and another metal (for example, stainless steel, etc.) may be used. can.
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Further, a non-aqueous electrolytic solution (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte solution the same one as that of a coin-type secondary battery can be used.
  • the secondary battery 616 in which the height of the cylinder is larger than the diameter of the cylinder is shown, but the present invention is not limited to this.
  • a secondary battery in which the diameter of the cylinder is larger than the height of the cylinder may be used. With such a configuration, for example, the size of the secondary battery can be reduced.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606.
  • a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607.
  • the positive electrode terminal 603 is resistance welded to the safety valve mechanism 613, and the negative electrode terminal 607 is resistance welded to the bottom of the battery can 602.
  • the safety valve mechanism 613 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611. The safety valve mechanism 613 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the amount of current is limited by the increase in resistance to prevent abnormal heat generation.
  • Barium titanate (BaTIO 3 ) -based semiconductor ceramics or the like can be used as the PTC element.
  • FIG. 19C shows an example of the power storage system 615.
  • the power storage system 615 has a plurality of secondary batteries 616.
  • the positive electrode of each secondary battery is in contact with the conductor 624 separated by the insulator 625 and is electrically connected.
  • the conductor 624 is electrically connected to the control circuit 620 via the wiring 623.
  • the negative electrode of each secondary battery is electrically connected to the control circuit 620 via the wiring 626.
  • As the control circuit 620 a protection circuit or the like for preventing overcharging or overdischarging can be applied.
  • FIG. 19D shows an example of the power storage system 615.
  • the power storage system 615 has a plurality of secondary batteries 616, and the plurality of secondary batteries 616 are sandwiched between the conductive plate 628 and the conductive plate 614.
  • the plurality of secondary batteries 616 are electrically connected to the conductive plate 628 and the conductive plate 614 by wiring 627.
  • the plurality of secondary batteries 616 may be connected in parallel or may be connected in series.
  • a plurality of secondary batteries 616 may be connected in parallel and then connected in series.
  • a temperature control device may be provided between the plurality of secondary batteries 616.
  • the secondary battery 616 When the secondary battery 616 is overheated, it can be cooled by the temperature control device, and when the secondary battery 616 is too cold, it can be heated by the temperature control device. Therefore, the performance of the power storage system 615 is less likely to be affected by the outside air temperature.
  • the power storage system 615 is electrically connected to the control circuit 620 via the wiring 621 and the wiring 622.
  • the wiring 621 is electrically connected to the positive electrode of the plurality of secondary batteries 616 via the conductive plate 628
  • the wiring 622 is electrically connected to the negative electrode of the plurality of secondary batteries 616 via the conductive plate 614.
  • the secondary battery 913 shown in FIG. 20A has a winding body 950 provided with terminals 951 and terminals 952 inside the housing 930.
  • the winding body 950 is immersed in the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for convenience, but in reality, the winding body 950 is covered with the housing 930, and the terminals 951 and 952 extend outside the housing 930. It exists.
  • a metal material for example, aluminum or the like
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 20A may be formed of a plurality of materials.
  • the housing 930a and the housing 930b are bonded to each other, and the winding body 950 is provided in the region surrounded by the housing 930a and the housing 930b.
  • an insulating material such as an organic resin can be used.
  • a material such as an organic resin on the surface on which the antenna is formed it is possible to suppress the shielding of the electric field by the secondary battery 913. If the electric field shielding by the housing 930a is small, an antenna may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the winding body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the winding body 950 is a winding body obtained by winding a laminated sheet in which a negative electrode 931 and a positive electrode 932 are laminated so as to sandwich a separator 933. A plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be further laminated.
  • a secondary battery 913 having a winding body 950a as shown in FIGS. 21A to 21C may be used.
  • the winding body 950a shown in FIG. 21A has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the negative electrode 931 has a negative electrode active material layer 931a.
  • the positive electrode 932 has a positive electrode active material layer 932a.
  • the separator 933 has a wider width than the negative electrode active material layer 931a and the positive electrode active material layer 932a, and is wound so as to overlap the negative electrode active material layer 931a and the positive electrode active material layer 932a. Further, it is preferable that the width of the negative electrode active material layer 931a is wider than that of the positive electrode active material layer 932a in terms of safety. Further, the wound body 950a having such a shape is preferable in terms of safety and productivity.
  • the negative electrode is electrically connected to the terminal 951.
  • the terminal 951 is electrically connected to the terminal 911a.
  • the positive electrode is electrically connected to the terminal 952.
  • the terminal 952 is electrically connected to the terminal 911b.
  • the winding body 950a and the electrolytic solution are covered with the housing 930 to form the secondary battery 913.
  • the housing 930 is provided with a safety valve, an overcurrent protection element, or the like.
  • the safety valve is a valve that opens the inside of the housing 930 at a predetermined internal pressure in order to prevent the battery from exploding.
  • the secondary battery 913 may have a plurality of winding bodies 950a. By using a plurality of winding bodies 950a, it is possible to obtain a secondary battery 913 having a larger charge / discharge capacity.
  • Other elements of the secondary battery 913 shown in FIGS. 21A and 21B can take into account the description of the secondary battery 913 shown in FIGS. 20A to 20C.
  • FIGS. 22A and 22B an example of an external view of a laminated secondary battery is shown in FIGS. 22A and 22B.
  • 22A and 22B have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • FIG. 23A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501. Further, the positive electrode 503 has a region (hereinafter referred to as a tab region) in which the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504. Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab region of the positive electrode and the negative electrode are not limited to the example shown in FIG. 23A.
  • FIG. 23B shows the negative electrode 506, the separator 507, and the positive electrode 503 laminated.
  • an example in which 5 sets of negative electrodes and 4 sets of positive electrodes are used is shown. It can also be called a laminate consisting of a negative electrode, a separator, and a positive electrode.
  • the tab regions of the positive electrode 503 are joined to each other, and the positive electrode lead electrode 510 is joined to the tab region of the positive electrode on the outermost surface.
  • ultrasonic welding may be used.
  • the tab regions of the negative electrode 506 are bonded to each other, and the negative electrode lead electrode 511 is bonded to the tab region of the negative electrode on the outermost surface.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • the exterior body 509 is bent at the portion shown by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding may be used for joining. At this time, a region (hereinafter referred to as an introduction port) that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution can be put in later.
  • an introduction port a region that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution can be put in later.
  • the electrolytic solution is introduced into the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution is preferably introduced under a reduced pressure atmosphere or an inert atmosphere.
  • the inlet is joined. In this way, the laminated type secondary battery 500 can be manufactured.
  • Example of battery pack An example of a secondary battery pack according to an aspect of the present invention capable of wireless charging using an antenna will be described with reference to FIGS. 24A to 24C.
  • FIG. 24A is a diagram showing the appearance of the secondary battery pack 531 and is a thin rectangular parallelepiped shape (also referred to as a thick flat plate shape).
  • FIG. 24B is a diagram illustrating the configuration of the secondary battery pack 531.
  • the secondary battery pack 531 has a circuit board 540 and a secondary battery 513.
  • a label 529 is affixed to the secondary battery 513.
  • the circuit board 540 is fixed by the seal 515.
  • the secondary battery pack 531 has an antenna 517.
  • the inside of the secondary battery 513 may have a structure having a wound body or a structure having a laminated body.
  • the secondary battery pack 531 has a control circuit 590 on the circuit board 540, for example, as shown in FIG. 24B. Further, the circuit board 540 is electrically connected to the terminal 514. Further, the circuit board 540 is electrically connected to the antenna 517, one 551 of the positive electrode lead and the negative electrode lead of the secondary battery 513, and the other 552 of the positive electrode lead and the negative electrode lead.
  • circuit system 590a provided on the circuit board 540 and a circuit system 590b electrically connected to the circuit board 540 via the terminal 514.
  • the antenna 517 is not limited to a coil shape, and may be, for example, a linear shape or a plate shape. Further, antennas such as a planar antenna, an open surface antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, and a dielectric antenna may be used. Alternatively, the antenna 517 may be a flat conductor. This flat plate-shaped conductor can function as one of the conductors for electric field coupling. That is, the antenna 517 may function as one of the two conductors of the capacitor. This makes it possible to exchange electric power not only with an electromagnetic field and a magnetic field but also with an electric field.
  • the secondary battery pack 531 has a layer 519 between the antenna 517 and the secondary battery 513.
  • the layer 519 has a function of being able to shield the electromagnetic field generated by the secondary battery 513, for example.
  • a magnetic material can be used as the layer 519.
  • the secondary battery 400 of one aspect of the present invention has a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414.
  • the positive electrode active material layer 414 has a positive electrode active material 411 and a solid electrolyte 421.
  • the positive electrode active material 411 the positive electrode active material complex 100z obtained in the above-described embodiment is used. Further, the positive electrode active material layer 414 may have a conductive material and a binder.
  • the solid electrolyte layer 420 has a solid electrolyte 421.
  • the solid electrolyte layer 420 is located between the positive electrode 410 and the negative electrode 430, and is a region having neither the positive electrode active material 411 nor the negative electrode active material 431.
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434.
  • the negative electrode active material layer 434 has a negative electrode active material 431 and a solid electrolyte 421. Further, the negative electrode active material layer 434 may have a conductive material and a binder.
  • metallic lithium is used as the negative electrode active material 431, it is not necessary to make particles, so that the negative electrode 430 having no solid electrolyte 421 can be used as shown in FIG. 25B. It is preferable to use metallic lithium for the negative electrode 430 because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide-based solid electrolytes include thiolysicon-based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4 , etc.) and sulfide glass (70Li 2 S / 30P 2 S 5 , 30Li 2 ).
  • Sulfide crystallized glass (Li 7 ) P 3 S 11 , Li 3.25 P 0.95 S 4 etc.) are included.
  • the sulfide-based solid electrolyte has advantages such as having a material having high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that the conductive path can be easily maintained even after charging and discharging.
  • a material having a perovskite-type crystal structure La 2 / 3-x Li 3x TIO 3 , etc.
  • a material having a NASICON-type crystal structure Li 1-Y Al Y Ti 2-Y (PO 4 )) ) 3 etc.
  • Material with garnet type crystal structure Li 7 La 3 Zr 2 O 12 etc.
  • Material with LISION type crystal structure Li 14 ZnGe 4 O 16 etc.
  • LLZO Li 7 La 3 Zr 2 O etc.
  • Oxide glass Li 3 PO 4 -Li 4 SiO 4 , 50Li 4 SiO 4 ⁇ 50Li 3 BO 3 , etc.
  • Oxide crystallized glass Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) ) 3 , Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 etc.
  • Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • the halide-based solid electrolyte includes LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI and the like. Further, a composite material in which the pores of porous aluminum oxide or porous silica are filled with these halide-based solid electrolytes can also be used as the solid electrolyte.
  • Li 1-x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1) (hereinafter referred to as LATP) having a NASICON type crystal structure is a secondary of one aspect of the present invention, that is, aluminum and titanium. Since the positive electrode active material used in the battery 400 contains an element that may be contained, a synergistic effect can be expected for improving the cycle characteristics, which is preferable. In addition, productivity can be expected to improve by reducing the number of processes.
  • the NASICON type crystal structure is defined as MO 68 in a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.). It refers to a structure in which a facet and an XO4 tetrahedron share a vertex and are arranged three-dimensionally.
  • the exterior body of the secondary battery 400 of one aspect of the present invention various materials and shapes can be used, but it is preferable that the exterior body has a function of pressurizing the positive electrode, the solid electrolyte layer and the negative electrode.
  • FIG. 26 is an example of a cell for evaluating the material of an all-solid-state battery.
  • FIG. 26A is a schematic cross-sectional view of the evaluation cell, which has a lower member 761, an upper member 762, and a fixing screw or a wing nut 764 for fixing them, and is used for an electrode by rotating a pressing screw 763.
  • the plate 753 is pressed to fix the evaluation material.
  • An insulator 766 is provided between the lower member 761 made of a stainless steel material and the upper member 762. Further, an O-ring 765 for sealing is provided between the upper member 762 and the holding screw 763.
  • FIG. 26B is an enlarged perspective view of the periphery of the evaluation material.
  • FIG. 26C As an evaluation material, an example of laminating a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view is shown in FIG. 26C.
  • the same reference numerals are used for the same parts in FIGS. 26A to 26C.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to the positive electrode terminals. It can be said that the electrode plate 753 and the upper member 762 electrically connected to the negative electrode 750c correspond to the negative electrode terminals.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753.
  • a package having excellent airtightness for the exterior body of the secondary battery according to one aspect of the present invention For example, a ceramic package or a resin package can be used. Further, when sealing the exterior body, it is preferable to shut off the outside air and perform it in a closed atmosphere, for example, in a glove box.
  • FIG. 27A shows a perspective view of a secondary battery of one aspect of the present invention having an exterior body and shape different from those of FIG. 26.
  • the secondary battery of FIG. 27A has external electrodes 771 and 772, and is sealed with an exterior body having a plurality of package members.
  • FIG. 27B shows an example of a cross section cut by a broken line in FIG. 27A.
  • the laminate having a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c includes a package member 770a having an electrode layer 773a provided on a flat plate, a frame-shaped package member 770b, and a package member 770c having an electrode layer 773b provided on a flat plate. It has a sealed structure surrounded by. Insulating materials such as resin materials and ceramics can be used for the package members 770a, 770b and 770c.
  • the external electrode 771 is electrically connected to the positive electrode 750a via the electrode layer 773a and functions as a positive electrode terminal. Further, the external electrode 772 is electrically connected to the negative electrode 750c via the electrode layer 773b and functions as a negative electrode terminal.
  • FIG. 28C shows an example of application to an electric vehicle (EV).
  • EV electric vehicle
  • the electric vehicle is equipped with a first battery 1301a and 1301b as a main drive secondary battery and a second battery 1311 that supplies electric power to the inverter 1312 that starts the motor 1304.
  • the second battery 1311 is also called a cranking battery (also called a starter battery).
  • the second battery 1311 only needs to have a high output, and a large capacity is not required so much, and the capacity of the second battery 1311 is smaller than that of the first batteries 1301a and 1301b.
  • the internal structure of the first battery 1301a may be the winding type shown in FIG. 20A or FIG. 21C, or the laminated type shown in FIG. 22A or FIG. 22B. Further, as the first battery 1301a, the all-solid-state battery of the fifth embodiment may be used. By using the all-solid-state battery of the fifth embodiment for the first battery 1301a, the capacity can be increased, the safety can be improved, and the size and weight can be reduced.
  • first batteries 1301a and 1301b are connected in parallel, but three or more batteries may be connected in parallel. Further, if the first battery 1301a can store sufficient electric power, the first battery 1301b may not be present.
  • the plurality of secondary batteries may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series. Multiple secondary batteries are also called assembled batteries.
  • a service plug or a circuit breaker capable of cutting off a high voltage without using a tool is provided, and the first battery 1301a has. It will be provided.
  • the electric power of the first batteries 1301a and 1301b is mainly used to rotate the motor 1304, but the 42V system in-vehicle parts (electric power steering (power steering) 1307, heater 1308,) via the DCDC circuit 1306. Power is supplied to the defogger 1309, etc.). Even if the rear wheel has a rear motor 1317, the first battery 1301a is used to rotate the rear motor 1317.
  • the second battery 1311 supplies electric power to 14V in-vehicle parts (audio 1313, power window 1314, lamps 1315, etc.) via the DCDC circuit 1310.
  • first battery 1301a will be described with reference to FIG. 28A.
  • FIG. 28A shows an example in which nine square secondary batteries 1300 are used as one battery pack 1415. Further, nine square secondary batteries 1300 are connected in series, one electrode is fixed by a fixing portion 1413 made of an insulator, and the other electrode is fixed by a fixing portion 1414 made of an insulator.
  • a fixing portion 1413 made of an insulator In the present embodiment, an example of fixing with the fixing portions 1413 and 1414 is shown, but the configuration may be such that the battery is stored in a battery storage box (also referred to as a housing). Since it is assumed that the vehicle is subjected to vibration or shaking from the outside (road surface or the like), it is preferable to fix a plurality of secondary batteries with fixing portions 1413, 1414, a battery accommodating box, or the like. Further, one of the electrodes is electrically connected to the control circuit unit 1320 by the wiring 1421. The other electrode is electrically connected to the control circuit unit 1320 by wiring 1422.
  • control circuit unit 1320 may use a memory circuit including a transistor using an oxide semiconductor.
  • a charge control circuit or a battery control system having a memory circuit including a transistor using an oxide semiconductor may be referred to as a BTOS (Battery operating system or Battery oxide semiconductor).
  • In-M-Zn oxide (element M is aluminum, gallium, yttrium, copper, vanadium, beryllium, boron, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodym, etc.
  • Metal oxides such as hafnium, tantalum, tungsten, or one or more selected from magnesium
  • the In-M-Zn oxide that can be applied as an oxide is preferably CAAC-OS (C-Axis Aligned Crystal Oxide Semiconductor) or CAC-OS (Cloud-Aligned Compound Semiconductor).
  • CAAC-OS is an oxide semiconductor having a plurality of crystal regions, the plurality of crystal regions having the c-axis oriented in a specific direction.
  • the specific direction is the thickness direction of the CAAC-OS film, the normal direction of the surface to be formed of the CAAC-OS film, or the normal direction of the surface of the CAAC-OS film.
  • the crystal region is a region having periodicity in the atomic arrangement. When the atomic arrangement is regarded as a lattice arrangement, the crystal region is also a region in which the lattice arrangement is aligned.
  • the CAAC-OS has a region in which a plurality of crystal regions are connected in the ab plane direction, and the region may have distortion.
  • the strain refers to a region in which a plurality of crystal regions are connected in which the orientation of the lattice arrangement changes between a region in which the lattice arrangement is aligned and a region in which another grid arrangement is aligned. That is, CAAC-OS is an oxide semiconductor that is c-axis oriented and not clearly oriented in the ab plane direction.
  • CAC-OS is, for example, a composition of a material in which elements constituting a metal oxide are unevenly distributed in a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the metal oxide one or more metal elements are unevenly distributed, and the region having the metal element has a size of 0.5 nm or more and 10 nm or less, preferably 1 nm or more and 3 nm or less, or a size close thereto.
  • the mixed state is also called a mosaic shape or a patch shape.
  • the CAC-OS has a structure in which the material is separated into a first region and a second region to form a mosaic, and the first region is distributed in the film (hereinafter, also referred to as a cloud shape). It is said.). That is, the CAC-OS is a composite metal oxide having a structure in which the first region and the second region are mixed.
  • the atomic number ratios of In, Ga, and Zn to the metal elements constituting CAC-OS in the In-Ga-Zn oxide are expressed as [In], [Ga], and [Zn], respectively.
  • the first region is a region where [In] is larger than [In] in the composition of the CAC-OS film.
  • the second region is a region in which [Ga] is larger than [Ga] in the composition of the CAC-OS film.
  • the first region is a region in which [In] is larger than [In] in the second region and [Ga] is smaller than [Ga] in the second region.
  • the second region is a region in which [Ga] is larger than [Ga] in the first region and [In] is smaller than [In] in the first region.
  • the first region is a region in which indium oxide, indium zinc oxide, or the like is the main component.
  • the second region is a region containing gallium oxide, gallium zinc oxide, or the like as a main component. That is, the first region can be rephrased as a region containing In as a main component. Further, the second region can be rephrased as a region containing Ga as a main component.
  • a region containing In as a main component (No. 1) by EDX mapping acquired by using energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray spectroscopy). It can be confirmed that the region (1 region) and the region containing Ga as a main component (second region) have a structure in which they are unevenly distributed and mixed.
  • EDX Energy Dispersive X-ray spectroscopy
  • the conductivity caused by the first region and the insulating property caused by the second region act in a complementary manner to switch the switching function (On / Off function).
  • the CAC-OS has a conductive function in a part of the material and an insulating function in a part of the material, and has a function as a semiconductor in the whole material. By separating the conductive function and the insulating function, both functions can be maximized. Therefore, by using CAC-OS for the transistor, high on -current (Ion), high field effect mobility ( ⁇ ), and good switching operation can be realized.
  • Oxide semiconductors have various structures, and each has different characteristics.
  • the oxide semiconductor according to one aspect of the present invention includes an amorphous oxide semiconductor, a polycrystalline oxide semiconductor, a-like OS (amorphous-like Oxide Semiconductor), CAC-OS, nc-OS (nanocrystalline Oxide Semiconductor), and CAAC. -You may have two or more of the OS.
  • the control circuit unit 1320 may be formed by using a unipolar transistor.
  • Transistors that use oxide semiconductors for the semiconductor layer have an operating ambient temperature wider than that of single crystal Si transistors and are -40 ° C or higher and 150 ° C or lower, and their characteristics change compared to single crystal Si transistors even if the secondary battery overheats. small.
  • the off-current of a transistor using an oxide semiconductor is below the lower limit of measurement even at 150 ° C., but the off-current characteristics of a single crystal Si transistor are highly temperature-dependent.
  • the off-current of the single crystal Si transistor increases, and the current on / off ratio does not become sufficiently large.
  • the control circuit unit 1320 can improve the safety. Further, by combining the positive electrode active material complex 100z obtained in the above-described embodiment with a secondary battery using the positive electrode, a synergistic effect on safety can be obtained.
  • the control circuit unit 1320 using a memory circuit including a transistor using an oxide semiconductor can also function as an automatic control device for a secondary battery against the cause of instability such as a micro short circuit.
  • Functions to eliminate the cause of instability of the secondary battery include prevention of overcharge, prevention of overcurrent, overheat control during charging, cell balance in the assembled battery, prevention of overdischarge, fuel gauge, and temperature. Examples include automatic control of charge voltage and current amount, charge current amount control according to the degree of deterioration, detection of abnormal behavior of micro short circuit, abnormality prediction related to micro short circuit, and the like, and the control circuit unit 1320 has at least one of these functions.
  • the automatic control device for the secondary battery can be miniaturized.
  • the micro short circuit refers to a minute short circuit inside the secondary battery, and does not mean that the positive electrode and the negative electrode of the secondary battery are short-circuited and cannot be charged or discharged. It refers to the phenomenon that a short-circuit current flows slightly in the part. Since a large voltage change occurs in a relatively short time and even in a small place, the abnormal voltage value may affect the subsequent estimation.
  • microshorts due to multiple charging and discharging, the uneven distribution of the positive electrode active material causes local current concentration in a part of the positive electrode and a part of the negative electrode, resulting in a separator. It is said that a micro-short circuit occurs due to the occurrence of a part where it does not function or the generation of a side reaction product due to a side reaction.
  • control circuit unit 1320 detects the terminal voltage of the secondary battery and manages the charge / discharge state of the secondary battery. For example, in order to prevent overcharging, both the output transistor of the charging circuit and the cutoff switch can be turned off almost at the same time.
  • FIG. 28B An example of the block diagram of the battery pack 1415 shown in FIG. 28A is shown in FIG. 28B.
  • the control circuit unit 1320 includes at least a switch for preventing overcharging, a switch unit 1324 including a switch for preventing overdischarging, a control circuit 1322 for controlling the switch unit 1324, and a voltage measuring unit for the first battery 1301a.
  • the control circuit unit 1320 sets the upper limit voltage and the lower limit voltage of the secondary battery to be used, and limits the input current from the outside and the output current to the outside.
  • the range of the lower limit voltage or more and the upper limit voltage or less of the secondary battery is within the voltage range recommended for use, and if it is out of the range, the switch unit 1324 operates and functions as a protection circuit.
  • control circuit unit 1320 can also be called a protection circuit because it controls the switch unit 1324 to prevent over-discharging and over-charging. For example, when the control circuit 1322 detects a voltage that is likely to cause overcharging, the switch of the switch unit 1324 is turned off to cut off the current. Further, a PTC element may be provided in the charge / discharge path to provide a function of cutting off the current in response to an increase in temperature. Further, the control circuit unit 1320 has an external terminal 1325 (+ IN) and an external terminal 1326 ( ⁇ IN).
  • the switch unit 1324 can be configured by combining an n-channel type transistor and a p-channel type transistor.
  • the switch unit 1324 is not limited to a switch having a Si transistor using single crystal silicon, and is, for example, Ge (germanium), SiGe (silicon germanium), GaAs (gallium arsenide), GaAlAs (gallium aluminum arsenide), InP (phosphorization).
  • the switch portion 1324 may be formed by a power transistor having (indium), SiC (silicon carbide), ZnSe (zinc selenium), GaN (gallium arsenide), GaO x (gallium oxide; x is a real number larger than 0) and the like. ..
  • the storage element using the OS transistor can be freely arranged by stacking it on a circuit using a Si transistor or the like, integration can be easily performed.
  • the OS transistor can be manufactured by using the same manufacturing apparatus as the Si transistor, it can be manufactured at low cost. That is, a control circuit unit 1320 using an OS transistor can be stacked on the switch unit 1324 and integrated into one chip. Since the occupied volume of the control circuit unit 1320 can be reduced, the size can be reduced.
  • the first batteries 1301a and 1301b mainly supply electric power to 42V system (high voltage system) in-vehicle devices, and the second battery 1311 supplies electric power to 14V system (low voltage system) in-vehicle devices.
  • the second battery 1311 may use a lead storage battery, an all-solid-state battery, or an electric double layer capacitor.
  • the all-solid-state battery of the fifth embodiment may be used.
  • the regenerative energy due to the rotation of the tire 1316 is sent to the motor 1304 via the gear 1305, and is charged from the motor controller 1303 and the battery controller 1302 to the second battery 1311 via the control circuit unit 1321.
  • the first battery 1301a is charged from the battery controller 1302 via the control circuit unit 1320.
  • the first battery 1301b is charged from the battery controller 1302 via the control circuit unit 1320. In order to efficiently charge the regenerative energy, it is desirable that the first batteries 1301a and 1301b can be quickly charged.
  • the battery controller 1302 can set the charging voltage, charging current, and the like of the first batteries 1301a and 1301b.
  • the battery controller 1302 can set charging conditions according to the charging characteristics of the secondary battery to be used and quickly charge the battery.
  • the charger outlet or the charger connection cable is electrically connected to the battery controller 1302.
  • the electric power supplied from the external charger charges the first batteries 1301a and 1301b via the battery controller 1302.
  • a control circuit may be provided and the function of the battery controller 1302 may not be used, but the first batteries 1301a and 1301b are charged via the control circuit unit 1320 in order to prevent overcharging. Is preferable.
  • the outlet of the charger or the connection cable of the charger is provided with a control circuit.
  • the control circuit unit 1320 may be referred to as an ECU (Electronic Control Unit).
  • the ECU is connected to a CAN (Control Area Area Network) provided in the electric vehicle.
  • CAN is one of the serial communication standards used as an in-vehicle LAN.
  • the ECU also includes a microcomputer. Further, the ECU uses a CPU or a GPU.
  • External chargers installed in charging stands and the like include 100V outlets, 200V outlets, three-phase 200V and 50kW. It is also possible to charge by receiving power supply from an external charging facility by a non-contact power supply method or the like.
  • the secondary battery of the present embodiment described above uses the positive electrode active material complex 100z obtained in the above-described embodiment. Furthermore, using graphene as the conductive material, even if the electrode layer is thickened to increase the loading amount, the capacity decrease is suppressed and maintaining high capacity realizes a secondary battery with significantly improved electrical characteristics as a synergistic effect. can. It is particularly effective for a secondary battery used in a vehicle, and provides a vehicle having a long cruising range, specifically, a vehicle having a charge mileage of 500 km or more, without increasing the ratio of the weight of the secondary battery to the total weight of the vehicle. be able to.
  • the operating voltage of the secondary battery can be increased by using the positive electrode active material composite 100z described in the above-described embodiment, and as the charging voltage increases, the operating voltage of the secondary battery can be increased. , The usable capacity can be increased. Further, by using the positive electrode active material complex 100z described in the above-described embodiment for the positive electrode, it is possible to provide a secondary battery for a vehicle having excellent cycle characteristics.
  • the secondary battery shown in any one of FIGS. 19D, 21C, and 28A is mounted on the vehicle, the next generation such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV) is installed.
  • HV hybrid vehicle
  • EV electric vehicle
  • PWD plug-in hybrid vehicle
  • a clean energy vehicle can be realized.
  • Secondary batteries can also be mounted on transport vehicles such as planetary explorers and spacecraft.
  • the secondary battery of one aspect of the present invention can be a high-capacity secondary battery. Therefore, the secondary battery of one aspect of the present invention is suitable for miniaturization and weight reduction, and can be suitably used for a transportation vehicle.
  • FIGS. 29A to 29D a transportation vehicle is illustrated as an example of a moving body using one aspect of the present invention.
  • the automobile 2001 shown in FIG. 29A is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for traveling.
  • an example of the secondary battery shown in the fourth embodiment is installed at one place or a plurality of places.
  • the automobile 2001 shown in FIG. 29A has a battery pack 2200, and the battery pack has a secondary battery module to which a plurality of secondary batteries are connected. Further, it is preferable to have a charge control device that is electrically connected to the secondary battery module.
  • the automobile 2001 can charge the secondary battery of the automobile 2001 by receiving electric power from an external charging facility by a plug-in method, a non-contact power supply method, or the like.
  • the charging method, the standard of the connector, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or a combo.
  • the secondary battery may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the power storage device mounted on the automobile 2001 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • a power receiving device on the vehicle and supply power from a ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, charging can be performed not only while the vehicle is stopped but also while the vehicle is running.
  • the non-contact power feeding method may be used to transmit and receive electric power between two vehicles.
  • a solar cell may be provided on the exterior portion of the vehicle to charge the secondary battery when the vehicle is stopped and when the vehicle is running.
  • An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 29B shows a large transport vehicle 2002 having a motor controlled by electricity as an example of a transport vehicle.
  • the secondary battery module of the transport vehicle 2002 has, for example, a secondary battery having a nominal voltage of 3.0 V or more and 5.0 V or less as a four-cell unit, and has a maximum voltage of 170 V in which 48 cells are connected in series. Since it has the same functions as those in FIG. 29A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2201 is different, the description thereof will be omitted.
  • FIG. 29C shows, as an example, a large transport vehicle 2003 having a motor controlled by electricity.
  • the secondary battery module of the transport vehicle 2003 has, for example, a maximum voltage of 600 V in which 100 or more secondary batteries having a nominal voltage of 3.0 V or more and 5.0 V or less are connected in series.
  • a cylindrical secondary battery 616 having a high capacity, a high charge / discharge capacity, and excellent cycle characteristics can be obtained.
  • the secondary battery using the positive electrode active material composite 100z described in the above-described embodiment as the positive electrode a secondary battery having good rate characteristics and charge / discharge cycle characteristics can be manufactured and transported. It can contribute to high performance and long life of the vehicle 2003. Further, since it has the same functions as those in FIG. 29A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2202 is different, the description thereof will be omitted.
  • FIG. 29D shows, as an example, an aircraft 2004 having an engine that burns fuel. Since the aircraft 2004 shown in FIG. 29D has wheels for takeoff and landing, it can be said to be a kind of transport vehicle. A plurality of secondary batteries are connected to form a secondary battery module, and the secondary battery module and charge control are performed. It has a battery pack 2203 including the device.
  • the secondary battery module of the aircraft 2004 has a maximum voltage of 32V in which eight 4V secondary batteries are connected in series, for example. Since it has the same functions as those in FIG. 29A except that the number of secondary batteries constituting the secondary battery module of the battery pack 2203 is different, the description thereof will be omitted.
  • the house shown in FIG. 30A has a power storage device 2612 having a secondary battery, which is one aspect of the present invention, and a solar panel 2610.
  • the power storage device 2612 is electrically connected to the solar panel 2610 via wiring 2611 and the like. Further, the power storage device 2612 and the ground-mounted charging device 2604 may be electrically connected.
  • the electric power obtained by the solar panel 2610 can be charged to the power storage device 2612. Further, the electric power stored in the power storage device 2612 can be charged to the secondary battery of the vehicle 2603 via the charging device 2604.
  • the power storage device 2612 is preferably installed in the underfloor space. By installing it in the underfloor space, the space above the floor can be effectively used. Alternatively, the power storage device 2612 may be installed on the floor.
  • the electric power stored in the power storage device 2612 can also supply electric power to other electronic devices in the house. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the electronic device can be used by using the power storage device 2612 according to one aspect of the present invention as an uninterruptible power supply.
  • FIG. 30B shows an example of a power storage device according to one aspect of the present invention.
  • the power storage device 791 according to one aspect of the present invention is installed in the underfloor space portion 796 of the building 799. Further, the power storage device 791 may be provided with the control circuit described in the sixth embodiment.
  • the negative electrode 570a obtained in the above-described embodiment as the negative electrode
  • a cylindrical secondary battery 616 having a high capacity, a high charge / discharge capacity, and excellent cycle characteristics can be obtained.
  • a secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode for the power storage device 791 a long-life power storage device 791 can be obtained.
  • a control device 790 is installed in the power storage device 791, and the control device 790 is connected to a distribution board 703, a power storage controller 705 (also referred to as a control device), a display 706, and a router 709 by wiring. It is electrically connected.
  • Electric power is sent from the commercial power supply 701 to the distribution board 703 via the drop line mounting portion 710. Further, electric power is transmitted to the distribution board 703 from the power storage device 791 and the commercial power supply 701, and the distribution board 703 transfers the transmitted electric power to a general load via an outlet (not shown). It supplies 707 and the power storage system load 708.
  • the general load 707 is, for example, an electric device such as a television and a personal computer
  • the storage system load 708 is, for example, an electric device such as a microwave oven, a refrigerator, and an air conditioner.
  • the power storage controller 705 has a measurement unit 711, a prediction unit 712, and a planning unit 713.
  • the measuring unit 711 has a function of measuring the amount of electric power consumed by the general load 707 and the power storage system load 708 during one day (for example, from 0:00 to 24:00). Further, the measuring unit 711 may have a function of measuring the electric power of the power storage device 791 and the electric power supplied from the commercial power source 701.
  • the prediction unit 712 is based on the amount of electric power consumed by the general load 707 and the power storage system load 708 during the next day, and the demand consumed by the general load 707 and the power storage system load 708 during the next day. It has a function to predict the amount of electric power.
  • the planning unit 713 has a function of making a charge / discharge plan of the power storage device 791 based on the power demand amount predicted by the prediction unit 712.
  • the amount of electric power consumed by the general load 707 and the power storage system load 708 measured by the measuring unit 711 can be confirmed by the display 706. It can also be confirmed in an electric device such as a television and a personal computer via a router 709. Further, it can be confirmed by a portable electronic terminal such as a smartphone and a tablet via the router 709. Further, the amount of power demand for each time zone (or every hour) predicted by the prediction unit 712 can be confirmed by the display 706, the electric device, and the portable electronic terminal.
  • FIG. 31A is an example of an electric bicycle using the power storage device of one aspect of the present invention.
  • One aspect of the power storage device of the present invention can be applied to the electric bicycle 8700 shown in FIG. 31A.
  • the power storage device of one aspect of the present invention includes, for example, a plurality of storage batteries and a protection circuit.
  • the electric bicycle 8700 is equipped with a power storage device 8702.
  • the power storage device 8702 can supply electricity to the motor that assists the driver. Further, the power storage device 8702 is portable, and FIG. 31B shows a state in which the power storage device 8702 is removed from the bicycle. Further, the power storage device 8702 incorporates a plurality of storage batteries 8701 included in the power storage device according to one aspect of the present invention, and the remaining battery level and the like can be displayed on the display unit 8703. Further, the power storage device 8702 has a control circuit 8704 capable of charge control or abnormality detection of the secondary battery shown as an example in the sixth embodiment. The control circuit 8704 is electrically connected to the positive electrode and the negative electrode of the storage battery 8701.
  • control circuit 8704 may be provided with the small solid secondary batteries shown in FIGS. 27A and 27B.
  • the small solid-state secondary battery shown in FIGS. 27A and 27B in the control circuit 8704 electric power can be supplied to hold the data of the memory circuit of the control circuit 8704 for a long time.
  • the positive electrode active material complex 100z obtained in the above-described embodiment with a secondary battery using the positive electrode, a synergistic effect on safety can be obtained.
  • the secondary battery and the control circuit 8704 using the positive electrode active material composite 100z obtained in the above-described embodiment as the positive electrode can greatly contribute to the eradication of accidents such as fires caused by the secondary battery.
  • FIG. 31C is an example of a two-wheeled vehicle using the power storage device of one aspect of the present invention.
  • the scooter 8600 shown in FIG. 31C includes a power storage device 8602, a side mirror 8601, and a turn signal 8603.
  • the power storage device 8602 can supply electricity to the turn signal 8603.
  • the power storage device 8602 containing a plurality of secondary batteries using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode can have a high capacity and can contribute to miniaturization.
  • the scooter 8600 shown in FIG. 31C can store the power storage device 8602 in the storage under the seat 8604.
  • the power storage device 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • Electronic devices that mount secondary batteries include, for example, television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • television devices also referred to as televisions or television receivers
  • monitors for computers digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, mobile phones, etc.).
  • mobile phone device a portable game machine
  • mobile information terminal a sound reproduction device
  • a large game machine such as a pachinko machine
  • Examples of mobile information terminals include notebook personal computers, tablet terminals, electronic book terminals, and mobile phones.
  • FIG. 32A shows an example of a mobile phone.
  • the mobile phone 2100 includes an operation button 2103, an external connection port 2104, a speaker 2105, a microphone 2106, and the like, in addition to the display unit 2102 incorporated in the housing 2101.
  • the mobile phone 2100 has a secondary battery 2107.
  • the capacity can be increased and the space can be saved due to the miniaturization of the housing. It can be realized.
  • the mobile phone 2100 can execute various applications such as mobile phones, e-mails, text viewing and creation, music playback, Internet communication, and computer games.
  • the operation button 2103 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 2103 can be freely set by the operating system incorporated in the mobile phone 2100.
  • the mobile phone 2100 can execute short-range wireless communication with communication standards. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile phone 2100 is provided with an external connection port 2104, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the external connection port 2104. The charging operation may be performed by wireless power supply without going through the external connection port 2104.
  • the mobile phone 2100 has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 32B is an unmanned aerial vehicle 2300 with a plurality of rotors 2302.
  • the unmanned aerial vehicle 2300 is sometimes called a drone.
  • the unmanned aerial vehicle 2300 has a secondary battery 2301, a camera 2303, and an antenna (not shown), which is one aspect of the present invention.
  • the unmanned aerial vehicle 2300 can be remotely controlled via an antenna.
  • the secondary battery using the positive electrode active material composite 100z obtained in the above-described embodiment as the positive electrode has a high energy density and high safety, so that it can be used safely for a long period of time and is unmanned. It is suitable as a secondary battery to be mounted on an aircraft 2300.
  • FIG. 32C shows an example of a robot.
  • the robot 6400 shown in FIG. 32C includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, a calculation device, and the like.
  • the microphone 6402 has a function of detecting the user's voice, environmental sound, and the like. Further, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with the user by using the microphone 6402 and the speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display the information desired by the user on the display unit 6405.
  • the display unit 6405 may be equipped with a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing it at a fixed position of the robot 6400, it is possible to charge and transfer data.
  • the upper camera 6403 and the lower camera 6406 have a function of photographing the surroundings of the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the traveling direction when the robot 6400 moves forward by using the moving mechanism 6408. The robot 6400 can recognize the surrounding environment and move safely by using the upper camera 6403, the lower camera 6406 and the obstacle sensor 6407.
  • the robot 6400 includes a secondary battery 6409 according to one aspect of the present invention and a semiconductor device or an electronic component in its internal region.
  • the secondary battery using the positive electrode active material composite 100z obtained in the above-described embodiment as the positive electrode has a high energy density and high safety, so that it can be used safely for a long period of time and is a robot. It is suitable as a secondary battery 6409 mounted on the 6400.
  • FIG. 32D shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the upper surface of the housing 6301, a plurality of cameras 6303 arranged on the side surface, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, suction ports, and the like.
  • the cleaning robot 6300 is self-propelled, can detect dust 6310, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of an obstacle such as a wall, furniture, or a step. Further, when an object that is likely to be entangled with the brush 6304 such as wiring is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to an aspect of the present invention and a semiconductor device or an electronic component in the internal region thereof.
  • the secondary battery using the positive electrode active material composite 100z obtained in the above-described embodiment as the positive electrode has a high energy density and high safety, so that it can be used safely for a long period of time and can be cleaned. It is suitable as a secondary battery 6306 mounted on the robot 6300.
  • FIG. 33A shows an example of a wearable device.
  • Wearable devices use a secondary battery as a power source.
  • a wearable device that can perform wireless charging as well as wired charging with the connector part to be connected exposed is available. It is desired.
  • the secondary battery according to one aspect of the present invention can be mounted on the spectacle-type device 4000 as shown in FIG. 33A.
  • the spectacle-type device 4000 has a frame 4000a and a display unit 4000b.
  • By mounting the secondary battery on the temple portion of the curved frame 4000a it is possible to obtain a spectacle-type device 4000 that is lightweight, has a good weight balance, and has a long continuous use time.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • a secondary battery which is one aspect of the present invention, can be mounted on the headset type device 4001.
  • the headset-type device 4001 has at least a microphone unit 4001a, a flexible pipe 4001b, and an earphone unit 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b or in the earphone portion 4001c.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • the secondary battery which is one aspect of the present invention can be mounted on the device 4002 which can be directly attached to the body.
  • the secondary battery 4002b can be provided in the thin housing 4002a of the device 4002.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • the secondary battery which is one aspect of the present invention can be mounted on the device 4003 which can be attached to clothes.
  • the secondary battery 4003b can be provided in the thin housing 4003a of the device 4003.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • the secondary battery which is one aspect of the present invention can be mounted on the belt type device 4006.
  • the belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted in the internal region of the belt portion 4006a.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • a secondary battery which is one aspect of the present invention, can be mounted on the wristwatch type device 4005.
  • the wristwatch-type device 4005 has a display unit 4005a and a belt unit 4005b, and a secondary battery can be provided on the display unit 4005a or the belt unit 4005b.
  • the secondary battery using the positive electrode active material complex 100z obtained in the above-described embodiment as the positive electrode has a high energy density, and can realize a configuration that can cope with space saving accompanying the miniaturization of the housing.
  • the display unit 4005a can display not only the time but also various information such as incoming mail and telephone calls.
  • the wristwatch type device 4005 is a wearable device that is directly wrapped around the wrist, it may be equipped with a sensor for measuring the pulse, blood pressure, etc. of the user. It is possible to manage the health by accumulating data on the amount of exercise and health of the user.
  • FIG. 33B shows a perspective view of the wristwatch-type device 4005 removed from the arm.
  • FIG. 33C shows a state in which the secondary battery 913 is built in the internal region.
  • the secondary battery 913 is the secondary battery shown in the fourth embodiment.
  • the secondary battery 913 is provided at a position overlapping with the display unit 4005a, can have a high density and a high capacity, is compact, and is lightweight.
  • the wristwatch type device 4005 is required to be compact and lightweight, high energy density can be obtained by using the positive electrode active material composite 100z obtained in the above-described embodiment for the positive electrode of the secondary battery 913. Moreover, it can be a small secondary battery 913.
  • FIG. 33D shows an example of a wireless earphone.
  • a wireless earphone having a pair of main bodies 4100a and a main body 4100b is shown, but it does not necessarily have to be a pair.
  • the main bodies 4100a and 4100b have a driver unit 4101, an antenna 4102, and a secondary battery 4103. It may have a display unit 4104. Further, it is preferable to have a board on which a circuit such as a wireless IC is mounted, a charging terminal, or the like. It may also have a microphone.
  • Case 4110 has a secondary battery 4111. Further, it is preferable to have a board on which circuits such as a wireless IC and a charge control IC are mounted, and a charging terminal. Further, it may have a display unit, a button, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced by the main bodies 4100a and 4100b. Further, if the main bodies 4100a and 4100b have a microphone, the sound acquired by the microphone can be sent to another electronic device, and the sound data processed by the electronic device can be sent to the main bodies 4100a and 4100b again for reproduction. This makes it possible to use it as a translator, for example.
  • the secondary battery 4103 of the main body 4100a can be charged from the secondary battery 4111 of the case 4110.
  • the coin-type secondary battery, the cylindrical secondary battery, and the like of the above-described embodiment can be used as the secondary battery 4111 and the secondary battery 4103.
  • the secondary battery obtained in the above-described embodiment has a high energy density, and by using the secondary battery 4103 and the secondary battery 4111, it is possible to realize a configuration that can cope with the space saving accompanying the miniaturization of the wireless earphone. Can be done.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • a negative electrode according to one aspect of the present invention was prepared, and the prepared negative electrode was evaluated.
  • a negative electrode was manufactured according to the flow shown in FIG. 7.
  • the particles having silicon nanosilicon particles manufactured by ALDRICH were used.
  • the particles having graphite artificial graphite particles MCMB-G10 manufactured by Linyi Gelon New Battery Materials were used.
  • Graphene oxide was used as the graphene compound.
  • a polyimide precursor manufactured by Toray Industries, Inc. was used as the polyimide.
  • Electrode GS1 was manufactured as a negative electrode.
  • the weight ratio of the materials prepared in steps S61, S72, S80, and S87 of FIG. 7 is 82.8: 9.2: 5 by weight ratio of artificial graphite particles: nanosilicon particles: graphene oxide: polyimide precursor. : 3 was set.
  • the ratio of artificial graphite particles to nanosilicon particles is a weight ratio of 9: 1.
  • the nanosilicon particles and the solvent were prepared and mixed (steps S61, S62, S63 in FIG. 7).
  • NMP was used as the solvent.
  • the mixture was mixed at 2000 rpm for 3 minutes using a rotation / revolution mixer (Awatori Rentaro, manufactured by THINKY) and recovered to obtain a mixture E-1 (steps S64 and S65 in FIG. 7).
  • step S88 in FIG. 7 the mixture E-3 and the polyimide precursor were mixed (step S88 in FIG. 7).
  • Mixing was performed at 2000 rpm for 3 minutes using a rotation / revolution mixer.
  • NMP is prepared, added to the mixture to adjust the viscosity (step S89 in FIG. 7), further mixed (2000 rpm 3 minutes twice with a rotation / revolution mixer), recovered, and the mixture E is used as a slurry.
  • step S90, S91, S92 in FIG. 7 was obtained (steps S90, S91, S92 in FIG. 7).
  • a current collector was prepared and the mixture E-4 was applied (steps S93 and S94 in FIG. 7).
  • a copper foil having a thickness of 18 ⁇ m was prepared as a current collector, and the mixture E-3 was coated on the copper foil using a doctor blade having a gap thickness of 100 ⁇ m.
  • the copper foil coated with the mixture E-4 was first heated at 50 ° C. for 1 hour (step S95 in FIG. 7). Then, the second heating was performed at 400 ° C. for 5 hours under reduced pressure (step S96 in FIG. 7) to obtain an electrode. By heating, graphene oxide is reduced and the amount of oxygen is reduced.
  • 34A and 34B are observation images of the surface of the electrode GS1.
  • the nanosilicon particles show a relatively bright contrast.
  • FIG. 34B is an enlarged image of the surface of the electrode GS1.
  • a region in which a plurality of nanosilicon particles having a particle size of about 5 ⁇ m or more and 15 ⁇ m or less are present on the surface of graphite particles having a particle size of about 50 nm or more and 250 nm or less, and these plurality of nanosilicon particles are covered with graphene (reduced graphene oxide). was observed.
  • the electrode GS1 has a region in which the mixed layer of the nanosilicon particles and graphene covers the graphite particles.
  • CR2032 type coin cells also called coin-type secondary batteries
  • GS1 GS-C1, GS-C2, GS-C3
  • GS-C4 GS-C5 GS-C5
  • Lithium metal was used as the counter electrode.
  • lithium hexafluorophosphate LiPF 6
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • the mixture was used at a concentration of L.
  • a polypropylene separator with a thickness of 25 ⁇ m was used as the separator.
  • the positive electrode can and the negative electrode can those made of stainless steel (SUS) were used.
  • the discharge conditions (lithium storage) were constant current discharge (0.1 C, lower limit voltage 0.01 V) followed by constant voltage discharge (lower limit current density 0.01 C).
  • the charging conditions (lithium discharge) were constant current charging (0.1C, upper limit voltage 1V).
  • the discharge condition (lithium storage) condition is constant current discharge (0.2C, lower limit voltage 0.01V) followed by constant voltage discharge (lower limit current density 0.02C), and the charging condition (lithium).
  • discharge was constant current charging (0.2C, upper limit voltage 1V). Discharging and charging were performed at 25 ° C.
  • the discharge condition (lithium storage) is set to constant current discharge (0.2C, lower limit voltage 0.01V) and then constant voltage discharge (lower limit current density 0.02C) for charging.
  • the conditions (lithium discharge) are constant current charging (0.2C, upper limit voltage 1V), and based on the second charge capacity, there is no capacity limit, capacity limit 90%, capacity limit 80%, capacity limit 70%, and capacity. The limit was 60%, and the conditions were different. Discharging and charging were performed at 25 ° C.
  • Table 2 shows the maximum charge capacity of the coin cells GS-C1 to GS-C5 and the 30-cycle maintenance rate. The results of the charge / discharge cycle test are shown in FIGS. 35A and 35B.
  • the alloying ratio (Li / Si) of silicon and lithium in GS-C1 to GS-C5 was calculated using the formula 1.
  • the calculation results are shown in Table 3.
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin cell (also referred to as a coin-type secondary battery) was manufactured using the manufactured electrode GS1 (GS-C6).
  • Lithium metal was used as the counter electrode.
  • EMI-FSI having LiFSI at a concentration of 2.15 mol / L was used.
  • a polypropylene separator having a thickness of 25 ⁇ m and a glass fiber separator having a thickness of 260 ⁇ m were laminated and used.
  • the positive electrode can and the negative electrode can those made of stainless steel (SUS) were used.
  • the discharge condition (lithium storage) condition is constant current discharge (0.1C, lower limit voltage 0.01V) and then constant voltage discharge (lower limit current density 0.01C).
  • the charging conditions (lithium discharge) were constant current charging (0.1C, upper limit voltage 1V).
  • the discharge condition (lithium storage) is a constant current discharge (0.2C, lower limit voltage 0.01V) followed by a constant voltage discharge (lower limit current density 0.02C), and the charging condition (lithium). (Discharge) was constant current charging (0.2C, upper limit voltage 1V).
  • the discharge condition (lithium storage) is set to constant current discharge (0.2C, lower limit voltage 0.01V) and then constant voltage discharge (lower limit current density 0.02C) for charging.
  • the condition (lithium discharge) was constant current charging (0.2C, upper limit voltage 1V), and the capacity was limited to 80% based on the second charging capacity. Discharging and charging were performed at 25 ° C.
  • FIGS. 36A and 36B The results of the charge / discharge cycle test of GS-C6 are shown in FIGS. 36A and 36B together with the results of GS-C2 and GS-C3.
  • the maximum charge capacity was 468 mAh / g, and the 30-cycle maintenance rate was 99.99%, which were very excellent characteristics.
  • FIGS. 37A and 37B show the curves of the third discharge (first discharge under the capacity limiting condition) of GS-C3 and GS-C6.
  • 37B is an enlarged view of a part of FIG. 37A.
  • GS-C6 has excellent charge / discharge cycle characteristics.
  • FIG. 36B shows a remarkable result that the charge / discharge cycle deterioration is 99.99%.
  • the potential is 0.05 V or more even at the end of discharge (at the end of Li storage), and it is possible that Li precipitation and reduction decomposition of the electrolytic solution are suppressed.
  • 560a Negative electrode characteristic curve
  • 560b Positive electrode characteristic curve
  • 570a Negative electrode
  • 570b Positive electrode
  • 571a Negative electrode current collector
  • 571b Positive electrode current collector
  • 572a Negative electrode active material layer
  • 572b Positive electrode active material layer
  • 576 Electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

高容量であり、劣化が少ない二次電池を提供する。または、新規な蓄電装置を提供する。 正極と、負極と、を有し、負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、第1の活物質の表面の少なくとも一部は、第2の活物質に覆われた領域を有し、第2の活物質の表面、及び第1の活物質の表面の少なくとも一部は、グラフェン化合物に覆われた領域を有し、第1の活物質は、黒鉛を有し、第2の活物質は、シリコンを有し、負極の容量に対し、正極の容量が50%以上100%未満である、二次電池である。

Description

二次電池、電子機器、蓄電システムおよび車両
 電極及びその作製方法に関する。または、電極が有する活物質及びその作製方法に関する。または、二次電池及びその作製方法に関する。または、二次電池を有する車両等を含む移動体、ならびに携帯情報端末、電子機器等に関する。
 本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器、またはそれらの製造方法に関する。
 なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
 なお、本明細書中において、蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。例えば、リチウムイオン二次電池などの蓄電装置(二次電池ともいう)、リチウムイオンキャパシタ、及び電気二重層キャパシタなどを含む。
 近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン二次電池は、携帯電話、スマートフォン、もしくはノート型コンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、又は、ハイブリッド車(HV)、電気自動車(EV)、もしくはプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車など、半導体産業の発展と併せて急速にその需要が拡大し、繰り返し充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
特開2002−216751号公報 特表2019−522886号公報
 電気自動車およびハイブリッド自動車等の移動体に用いる二次電池は、走行距離を長くするため、容量を高める必要がある。
 また、携帯端末等では、多機能化に伴い消費電力が増大している。また、携帯端末等に用いる二次電池は、小型化および、軽量化が求められている。よって、携帯端末に用いる二次電池においても高容量化の要求がある。
 二次電池は、その安定性に加えて、二次電池が高容量であることが重要である。ケイ素系材料などの合金系材料は容量が高く、二次電池の活物質として有望である。しかしながら、充放電容量の高い合金系材料は、充放電に伴う体積変化により、活物質の微粉化および脱落といった問題が生じ、充分なサイクル特性が得られていない。
 前述のような合金系材料の問題点を改善するため、合金系材料と、黒鉛または炭素質材料との複合化が検討されている。特許文献1では、ケイ素含有粒子と炭素含有粒子とが結合してなる多孔性粒子核表面に、炭素からなる被覆層を形成した複合材料が記載されている。特許文献2では、ケイ素(Si)、フッ化リチウム(LiF)及び炭素材を含む複合粒子が記載されている。しかしながら、上記文献のいずれにおいても、充放電における合金系材料の膨張に伴う、活物質の微粉化および脱落といった問題を、充分に解決するには至っていない。
 二次電池の電極は例えば、活物質、導電材、結着剤などの材料で構成される。充放電の容量に寄与する材料、例えば活物質の占める割合を高めるほど、二次電池の容量を高めることができる。電極が導電材を有することにより、電極の導電性を高め、優れた出力特性を得ることができる。また、二次電池の充放電において、活物質が膨張収縮を繰り返すことにより、電極において、活物質の崩落、導電パスの遮断、等が生じる場合がある。このような場合に、電極が導電材およびバインダを有することにより、活物質の崩落および導電パスの遮断を抑制することができる。一方、導電材およびバインダを用いることにより、活物質の占める割合が低下するため、二次電池の容量が低下する場合がある。
 本発明の一態様は、優れた特性を有する電極を提供することを課題とする。または、本発明の一態様は、優れた特性を有する活物質を提供することを課題とする。または、本発明の一態様は、新規な電極を提供することを課題とする。
 または、本発明の一態様は、機械的に丈夫な負極を提供することを課題とする。または、本発明の一態様は、機械的に丈夫な正極を提供することを課題とする。または、本発明の一態様は、容量の高い負極を提供することを課題とする。または、本発明の一態様は、容量の高い正極を提供することを課題とする。または、本発明の一態様は、劣化が少ない負極を提供することを課題とする。または、本発明の一態様は、劣化が少ない正極を提供することを課題とする。
 または、本発明の一態様は、劣化が少ない二次電池を提供することを課題とする。または、本発明の一態様は、安全性の高い二次電池を提供することを課題とする。または、本発明の一態様な、エネルギー密度の高い二次電池を提供することを課題とする。または、本発明の一態様は、新規な二次電池を提供することを課題とする。
 なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
 本発明の一態様は、正極と、負極と、を有し、負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、第1の活物質の表面の少なくとも一部は、第2の活物質に覆われた領域を有し、第2の活物質の表面、及び第1の活物質の表面の少なくとも一部は、グラフェン化合物に覆われた領域を有し、第1の活物質は、黒鉛を有し、第2の活物質は、シリコンを有し、負極の容量に対し、正極の容量が50%以上100%未満である、二次電池である。
 また、本発明の一態様は、正極と、負極と、を有し、負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、第1の活物質の表面の少なくとも一部は、第2の活物質に覆われた領域を有し、第2の活物質の表面、及び第1の活物質の表面の少なくとも一部は、グラフェン化合物に覆われた領域を有し、第1の活物質は、黒鉛を有し、第2の活物質は、シリコンを有し、満充電状態において、第2の活物質がSi−Si結合を有する、二次電池である。
 また、本発明の一態様は、正極と、負極と、電解質と、を有し、負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、第1の活物質の表面の少なくとも一部は、第2の活物質に覆われた領域を有し、第2の活物質の表面、及び第1の活物質の表面の少なくとも一部は、グラフェン化合物に覆われた領域を有し、第1の活物質は、黒鉛を有し、第2の活物質は、シリコンを有し、負極の容量に対し、正極の容量が50%以上100%未満であり、電解質はイオン液体を有する、二次電池である。
 また、本発明の一態様は、正極と、負極と、電解質と、を有し、負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、第1の活物質の表面の少なくとも一部は、第2の活物質に覆われた領域を有し、第2の活物質の表面、及び第1の活物質の表面の少なくとも一部は、グラフェン化合物に覆われた領域を有し、第1の活物質は、黒鉛を有し、第2の活物質は、シリコンを有し、満充電状態において、第2の活物質がSi−Si結合を有し、電解質はイオン液体を有する、二次電池である。
 上記のいずれか一に記載の二次電池において、イオン液体が、2mol/L以上のLiFSIと、EMI−FSIと、を有することが望ましい。
 上記のいずれか一に記載の二次電池において、正極は、マグネシウム、フッ素、アルミニウム、及びニッケルを有するコバルト酸リチウムを有し、コバルト酸リチウムは、マグネシウム、フッ素、及びアルミニウムの中から選ばれるいずれか一または複数の濃度が最大となる領域を表層部に有することが望ましい。
 上記のいずれか一に記載の二次電池において、第1の活物質は、5μm以上の粒子径の黒鉛を有し、第2の活物質は、250nm以下の粒子径のシリコンを有することが望ましい。
 本発明の一態様は、上記のいずれか一に記載の二次電池を有する車両である。
 本発明の一態様は、上記のいずれか一に記載の二次電池を有する蓄電システムである。
 本発明の一態様は、上記のいずれか一に記載の二次電池を有する電子機器である。
 本発明の一態様により、優れた特性を有する活物質を提供することができる。また、優れた特性を有する電極を提供することができる。また、本発明の一態様により、新規な電極を提供することができる。
 また、本発明の一態様により、機械的に丈夫な負極を提供することができる。また、本発明の一態様により、機械的に丈夫な正極を提供することができる。また、本発明の一態様により、容量の高い負極を提供することができる。また、本発明の一態様により、容量の高い正極を提供することができる。また、本発明の一態様により、劣化が少ない負極を提供することができる。また本発明の一態様により劣化が少ない正極を提供することができる。
 また、本発明の一態様により、劣化が少ない二次電池を提供することができる。また、本発明の一態様により、安全性の高い二次電池を提供することができる。また、本発明の一態様により、エネルギー密度の高い二次電池を提供することができる。また、本発明の一態様により、新規な二次電池を提供することができる。
 なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A及び図1Bは、電極の断面の一例を示す図である。図1Cは正極と負極との容量比を説明する図である。
図2A乃至図2Cは、正極と負極との容量比、及び二次電池の電圧を説明する図である。
図3Aは負極が有する粒子の一例を示す図である。図3B及び図3Cは、充放電での粒子の形状変化を示す図である。
図4A及び図4Bは、本発明の一態様の負極の計算に関する図である。
図5は、本発明の一態様の負極の計算に関する図である。
図6A乃至図6Cは、本発明の一態様の負極の計算に関する図である。
図7は電極の作製方法の一例を示す図である。
図8A及び図8Bは、グラフェン化合物のモデルの一例である。
図9は、本発明の一態様の正極の断面構造を示す図である。
図10A1乃至図10C2は、本発明の一態様の正極活物質複合体の断面構造を示す図である。
図11Aは本発明の一態様の正極活物質の上面図、図11B及び図11Cは本発明の一態様の正極活物質の断面図である。
図12は本発明の一態様の正極活物質の結晶構造を説明する図である。
図13は結晶構造から計算されるXRDパターンである。
図14は比較例の正極活物質の結晶構造を説明する図である。
図15は結晶構造から計算されるXRDパターンである。
図16は結晶の配向が概略一致しているTEM像の例である。
図17Aは結晶の配向が概略一致しているSTEM像の例である。図17Bは岩塩型結晶RSの領域のFFT、図17Cは層状岩塩型結晶LRSの領域のFFTである。
図18Aはコイン型二次電池の分解斜視図であり、図18Bはコイン型二次電池の斜視図であり、図18Cはその断面斜視図である。
図19Aは、円筒型の二次電池の例を示す。図19Bは、円筒型の二次電池の例を示す。図19Cは、複数の円筒型の二次電池の例を示す。図19Dは、複数の円筒型の二次電池を有する蓄電システムの例を示す。
図20A及び図20Bは二次電池の例を説明する図であり、図20Cは二次電池の内部の様子を示す図である。
図21A乃至図21Cは二次電池の例を説明する図である。
図22A及び図22Bは二次電池の外観を示す図である。
図23A乃至図23Cは二次電池の作製方法を説明する図である。
図24A乃至図24Cは、電池パックの構成例を示す図である。
図25A及び図25Bは二次電池の例を説明する図である。
図26A乃至図26Cは二次電池の例を説明する図である。
図27A及び図27Bは二次電池の例を説明する図である。
図28Aは本発明の一態様を示す電池パックの斜視図であり、図28Bは電池パックのブロック図であり、図28Cはモータを有する車両のブロック図である。
図29A乃至図29Dは、輸送用車両の一例を説明する図である。
図30A及び図30Bは、本発明の一態様に係る蓄電装置を説明する図である。
図31Aは電動自転車を示す図であり、図31Bは電動自転車の二次電池を示す図であり、図31Cは電動バイクを説明する図である。
図32A乃至図32Dは、電子機器の一例を説明する図である。
図33Aはウェアラブルデバイスの例を示しており、図33Bは腕時計型デバイスの斜視図を示しており、図33Cは、腕時計型デバイスの側面を説明する図である。図33Dは、ワイヤレスイヤホンの例を説明する図である。
図34A及び図34Bは、電極のSEM像である。
図35A及び図35Bは、サイクル特性を示すグラフである。
図36A及び図36Bは、サイクル特性を示すグラフである。
図37A及び図37Bは、放電特性を示すグラフである。
 以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
 また、図面において、大きさ、層の厚さ、または領域は、明瞭化のために誇張されている場合がある。よって、必ずしもそのスケールに限定されない。
 また、本明細書等において、第1、第2等として付される序数詞は便宜上用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
 また本明細書等において粒子とは球形(断面形状が円)のみを指すことに限定されず、個々の粒子の断面形状が楕円形、長方形、台形、三角形、角が丸まった四角形、非対称の形状などでもよく、さらに個々の粒子は不定形であってもよい。
(実施の形態1)
 本実施の形態では、本発明の一態様の二次電池の例について説明する。
[二次電池の構成例]
 以下に、正極、負極および電解質を有する二次電池について説明する。
 図1Aは、本発明の一態様の二次電池の内部を示す断面模式図である。図1Aに示す負極570a、正極570b、及び電解質576を、後述の実施の形態に示すコイン型二次電池、円筒型二次電池、及びラミネート型二次電池等に適用することができる。負極570aは、負極集電体571a及び負極集電体571aに接して形成された負極活物質層572aを少なくとも含む。正極570bは、正極集電体571b及び正極集電体571bに接して形成された正極活物質層572bを少なくとも含む。図1Bは、図1Aにおいて、破線Cで囲む領域の拡大図である。図1Cは、図1Aにおいて、破線A及び破線Bで囲む領域における、負極570a及び正極570bの容量比を説明する図である。二次電池は負極570aと、正極570bと、の間にセパレータを有してもよい。
[負極と正極の容量比]
 図1C、図2A、図2B、及び図2Cに示す負極特性カーブ560a及び正極特性カーブ560bは、図1Aにおける破線A及び破線Bで囲む領域において対向する、互いに同じ面積の負極570a及び正極570bが有する、負極活物質層572a及び正極活物質層572bの、容量と電位の関係を示す特性カーブである。
 図1Cの負極特性カーブ560aにおいて、容量C1は、負極570aが充放電可能な総容量である。負極570aが充放電可能な総容量とは、例えば、負極570aと、リチウム金属と、を有するハーフセルを作製し、定電流放電(0.2C、下限電圧0.01V)後に定電圧放電(下限電流密度0.02C)し、次に定電流充電(0.2C、上限電圧1V)をおこなった際の、充電容量のことをいう。また、図1Cの正極特性カーブ560bにおいて、容量C2は二次電池の満充電状態での正極の容量である。本明細書において二次電池の満充電状態とは、例えばJIS C8711(2013)で定められた定格容量、が得られる充電状態のことをいう。
 二次電池における負極570aと正極570bの容量比は、互いに同じ面積の負極570a及び正極570bにおいて、負極570aの容量を100%としたときの正極570bの容量を%で示したものである。例えば、図2Aに示すように、負極570aの容量と正極570bの容量と、が等しい場合、負極570aと正極570bの容量比は100%である。
 次に、負極570aと正極570bの容量比が100%よりも低い場合について、図1Cを用いて説明する。容量比が100%よりも低い場合とは、負極570aの充放電可能な総容量が、正極570bが充放電可能な容量よりも、多いことを示している。この場合、図1Cで示した負極570aの容量C1は、正極570bの容量C2よりも大きな値となる。
 このように、容量比が100%よりも低い場合は、負極570aの容量C1に余剰な容量が発生してしまうが、負極570aでの意図しないリチウムイオン析出を抑制し易いという利点がある。また、後述する本発明の一態様の負極570aを有する二次電池においては、好ましくは50%以上100%未満、より好ましくは70%以上90%未満の容量比の場合に、充放電容量が高く、充放電サイクル特性が良好な二次電池が得られる特徴がある。
 次に二次電池の電圧について説明する。二次電池の電圧は、正極電位と負極電位の差として考えることができる。例えば、負極570aと正極570bの容量比が100%の場合の二次電池の電圧を、図2AのΔVaとして示す。また、容量比が100%よりも低い場合を図2BのΔVbとして示す。図2Bに示すように、容量比が100%よりも低い場合、負極570aの利用電位範囲が高い領域で使用することになるため、二次電池の電圧は低下する。
 次に、図2Cに、負極570aと正極570bの容量比が100%よりも低い場合においても、二次電池電圧が低下しない場合の例を示す。ここで、図2Cに示すΔVaと、ΔVcと、は同じ電圧値となることを示している。図2Bでは、正極570bの利用電位範囲は、図2Aにおける正極570bの利用電位範囲と同じであり、この場合の二次電池電圧ΔVbは、前述のとおりΔVaよりも小さくなる。ここで図2Cに示すように、正極570bの利用電位範囲を高電位まで広げる場合、二次電池電圧ΔVcは、ΔVaと同様に高い値となる。
 図2Cに示したように、負極570aと正極570bの容量比が100%よりも低い場合においても、電圧が低下しない二次電池を得ることが可能である。この場合、正極570bは相対的に高い電位に晒されることになるため、正極570bは高電位での充放電の耐性が高い必要がある。本発明の一態様で示す正極活物質100は、高電位の充電状態において安定な結晶構造を取り得るため、正極570bが有する活物質として好適である。正極活物質100の詳細については後述する。
[負極]
 図1Bは、図1Aにおいて破線Cで囲む領域の拡大図である。図1Bに示すように、負極活物質層572aは第1の活物質581と、第2の活物質582と、シート状の形状を有する材料としてグラフェン化合物583と、電解質576と、を有する。図3Aは、グラフェン化合物583が、第1の活物質581の表面に位置する第2の活物質582を、覆うように、包むように、または、まとわりつくように第1の活物質581と接する様子を示す模式図である。負極570aが有する、グラフェン化合物583は例えば、導電材として機能することが好ましい。本発明の一態様において、水素結合により導電材が活物質にまとわりつくことができるため、導電性の高い電極を実現することができる。
 第1の活物質581及び第2の活物質582として、様々な材料を用いることができる。第1の活物質581及び第2の活物質582として本発明の一態様の粒子である表層部に、酸素を含む官能基またはフッ素を有する粒子、または表面に酸素を含む官能基またはフッ素原子によって終端される領域を有する粒子を用いる場合、第1の活物質581及び第2の活物質582とグラフェン化合物583との親和性が向上し、図1B及び図3Aに示すように、グラフェン化合物583が、第1の活物質581の表面に位置する第2の活物質582を、覆うように、包むように、または、まとわりつくように第1の活物質581と接することができる。グラフェン化合物583が第1の活物質581と、第2の活物質582にまとわりつくことができるため、導電性の高い電極を実現することができる。まとわりつくように接するという状態は、点で接するのではなく密着して接するとも言い換えることができる。また、粒子表面に沿って接すると言い換えることもできる。また、複数の粒子に面接触している、とも言い換えることができる。第1の活物質581と、第2の活物質582として用いることができる材料については、後述する。
 第2の活物質582として、充放電における体積変化が大きい活物質を用いる場合について、図3B及び図3Cを用いて説明する。図3Bに、第1の活物質581と第2の活物質582と、シート状の形状を有する材料としてグラフェン化合物583と、を有し、グラフェン化合物583が、第1の活物質581の表面に位置する第2の活物質582を、覆うように、包むように、または、まとわりつくように第1の活物質581と接する様子を示す。第2の活物質582は、第1の活物質581と、グラフェン化合物583と、の間に位置しており、グラフェン化合物583は、第1の活物質581と、第2の活物質582と、に接している、ということもできる。図3Bに示した第2の活物質582の体積が、充電または放電によって大きくなった場合を、図3Cに示す。グラフェン化合物583が、第1の活物質581の表面に位置する第2の活物質582を、覆うように、包むように、または、まとわりつくように第1の活物質581と接しているため、充電または放電によって第2の活物質582の体積が大きくなった場合であっても、第2の活物質582と第1の活物質581との電気的な接触を維持することができる。また、電極の崩落を抑制することができる。
 グラフェン化合物583が、第1の活物質581及び第2の活物質582等の活物質にまとわりつくように接する場合、グラフェン化合物583と活物質との接触面積が大きくなり、グラフェン化合物583を介して移動する電子の伝導性が向上する。また、充放電によって活物質の体積が大きく変化する場合、グラフェン化合物583が活物質にまとわりつくように接することで、活物質が脱落することを効果的に防ぐことが可能であり、これらの効果は、密にまとわりつくように接する場合、さらに顕著な効果を得ることができる。ここでグラフェン化合物583はLiイオンを通過する大きさの孔を有し、孔の数はグラフェン化合物583の電子伝導性を妨げない程度に多く有することが望ましい。
 負極活物質層572aは、グラフェン化合物583に加えて、カーボンブラック、黒鉛、炭素繊維、フラーレン、等の炭素系材料を有することができる。カーボンブラックとして例えばアセチレンブラック(AB)等を用いることができる。黒鉛として例えば天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛、等を用いることができる。これらの炭素系材料は導電性が高く、活物質層において、導電材として機能することができる。なお、これらの炭素系材料は、活物質として機能してもよい。
 炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。
 また活物質層は導電材として銅、ニッケル、アルミニウム、銀、金などの金属粉末、または金属繊維、導電性セラミックス材料等を有してもよい。
 活物質層の固形分の総量に対する導電材の含有量は、0.5wt%以上10wt%以下が好ましく、0.5wt%以上5wt%以下がより好ましい。
 活物質と点接触するカーボンブラック等の粒状の導電材と異なり、グラフェン化合物は接触抵抗の低い面接触を可能とするものであるから、通常の導電材よりも少量で粒状の活物質とグラフェン化合物との電気伝導性を向上させることができる。よって、活物質の活物質層における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
 また、本発明の一態様のグラフェン化合物はリチウムの透過性に優れるため、二次電池の充放電レートを高めることができる。
 カーボンブラック、黒鉛、等の粒子状の炭素含有化合物および、カーボンナノチューブ等の繊維状の炭素含有化合物は微小な空間に入りやすい。微小な空間とは例えば、複数の活物質の間の領域等を指す。微小な空間に入りやすい炭素含有化合物と、複数の粒子にわたって導電性を付与できるグラフェンなどのシート状の炭素含有化合物と、を組み合わせて使用することにより、電極の密度を高め、優れた導電パスを形成することができる。また、二次電池が本発明の一態様の電解質576を有することにより、二次電池の動作の安定性を高めることができる。すなわち、本発明の一態様の二次電池は、エネルギー密度の高さと、安定性とを兼ね備えることができ、車載用の二次電池として有効である。二次電池の数を増やして車両の重量が増加すると、移動させるのに必要なエネルギーが増加するため、航続距離も短くなる。高密度の二次電池を用いることで、車両に搭載する二次電池の重量が同じであっても、つまり、車両の総重量が同じであっても、航続距離を長くすることができる。
 また、車両の二次電池が高容量になると充電する電力が多く必要とされるため、短時間で充電を終了させることが望ましい。また、車両のブレーキをかけた時に一時的に発電させて、それを充電する、いわゆる回生充電において高レート充電条件での充電が行われるため、良好なレート特性が車両用二次電池に求められている。
 本発明の一態様の電解質576を用いることにより、広い動作温度範囲を有する車載用の二次電池を得ることができる。
 また、本発明の一態様の二次電池はエネルギー密度が高いために小型化が可能であり、導電性が高いために急速充電も可能である。よって本発明の一態様の二次電池の構成は携帯情報端末においても有効である。
 負極活物質層572aは、バインダ(図示せず)を有することが好ましい。バインダは例えば、電解質576と活物質とを束縛または固定する。またバインダは、電解質576と炭素系材料、活物質と炭素系材料、複数の活物質同士、複数の炭素系材料、等を束縛または固定することができる。
 バインダとして、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
 ポリイミドは熱的、機械的、化学的に非常に優れた安定な性質を有する。また、バインダとしてポリイミドを用いる場合には、脱水反応および環化(イミド化)反応を行う。これらの反応は例えば、加熱処理により行うことができる。本発明の一態様の電極において、グラフェン化合物として酸素を含む官能基を有するグラフェン、バインダとしてポリイミドを用いる場合には、該加熱処理により、グラフェン化合物の還元も行うことができ、工程の簡略化が可能となる。また耐熱性に優れることから、例えば200℃以上の加熱温度にて加熱処理を行うことができる。200℃以上の加熱温度にて加熱処理を行うことにより、グラフェン化合物の還元反応を充分に行うことができ、電極の導電性を、より高めることができる。
 フッ素を有する高分子材料であるフッ素ポリマー、具体的にはポリフッ化ビニリデン(PVDF)などを用いることができる。PVDFは融点を134℃以上169℃以下の範囲に有する樹脂であり、熱安定性に優れた材料である。
 またバインダとして、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
 また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体または、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
 バインダは上記のうち複数を組み合わせて使用してもよい。
 また、グラフェン化合物583は可撓性を有し、第1の活物質581および第2の活物質582に、納豆のようにまとわりつくことができる。また例えば第1の活物質581および第2の活物質582を大豆に、グラフェン化合物583を粘り成分、例えばポリグルタミン酸に、それぞれたとえることができる。グラフェン化合物583を負極活物質層572aが有する電解質576、複数の活物質、複数の炭素系材料、等の材料の間にわたって配置させることにより、負極活物質層572a内に良好な導電パスを形成するだけでなく、グラフェン化合物583を用いてこれらの材料を束縛または固定することができる。また例えば、複数のグラフェン化合物583により三次元の網目構造、多角形が配列した構造、例えば六角形がマトリックス状に配列したハニカム構造を構成し、網目に電解質576、複数の活物質、複数の炭素系材料、等の材料を配置させることにより、グラフェン化合物583が三次元の導電パスを形成するとともに、集電体からの電解質576の脱落を抑制することができる。また、上記多角形が配列した構造において、異なる辺の数を有する多角形が入り混じって配列してもよい。よって、グラフェン化合物583は、負極活物質層572aにおいて、導電材として機能するとともに、バインダとして機能する場合がある。グラフェン化合物583は9員環以上の穴を有しており、活物質を覆っていてもLiイオンの移動は阻害しないため、負極活物質層572aに用いる導電材として、特に好ましい。
[負極活物質]
 第1の活物質581および第2の活物質582は丸みを帯びた形状、角を有する形状、等、様々な形状を有することができる。また、電極の断面において、第1の活物質581および第2の活物質582は円、楕円、曲線を有する図形、多角形、等、様々な断面形状を有することができる。例えば図1B及び図3Aに一例として、第1の活物質581および第2の活物質582の断面が丸みを帯びた形状を有する例を示すが、第1の活物質581および第2の活物質582の断面は角を有してもよい。また、一部が丸みを帯び、一部が角を有してもよい。
 以下に、負極活物質の一例について説明する。
 負極活物質として、シリコンを用いることができる。負極570aは、第2の活物質582として、シリコンを有する粒子を用いることが好ましい。
 また、第2の活物質582が有する負極活物質として、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウムから選ばれる一以上の元素を有する金属、または化合物を用いることができる。このような元素を用いた合金系化合物としては、例えば、MgSi、MgGe、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等が挙げられる。
 また、シリコンに不純物元素としてリン、ヒ素、ホウ素、アルミニウム、ガリウム等を添加し、低抵抗化した材料を用いてもよい。また、リチウムをプリドープしたシリコン材料を用いても良い。プリドープの方法としてはフッ化リチウム、炭酸リチウム等とシリコンを混合してアニールする、リチウム金属とシリコンとのメカニカルアロイング、等の方法がある。また、シリコンを活物質とした第1電極を形成した後にリチウム金属等の第2電極と組み合わせて充放電反応により、第1電極が有するシリコンにリチウムをドープし、その後、ドープされた第1電極を用いて対極となる電極(例えば、プリドープされた負極に対して、正極)を組み合わせて二次電池を作製してもよい。
 第2の活物質582として例えば、ナノシリコン粒子を用いることができる。ナノシリコン粒子の平均径は例えば、好ましくは5nm以上1μm未満、より好ましくは10nm以上300nm以下、さらに好ましくは10nm以上100nm以下である。
 ナノシリコン粒子として、球状の形態を有してもよく、扁平した球状の形態を有してもよく、また角が丸い直方体状の形態を有してもよい。ナノシリコン粒子の大きさ(粒子径)は、例えば、レーザー回折式粒度分布測定のD50として、好ましくは5nm以上1μm未満、より好ましくは10nm以上300nm以下、さらに好ましくは10nm以上100nm以下である。ここでD50とは粒度分布測定結果の積算粒子量曲線において、その積算量が50%を占めるときの粒子径、すなわちメディアンである。粒子の大きさの測定は、レーザー回折式粒度分布測定に限定されず、SEMまたはTEMなどの分析によって、粒子断面の長径を測定してもよい。
 ナノシリコン粒子はアモルファスシリコンを有すると好ましい。またナノシリコン粒子は多結晶シリコンを有すると好ましい。ナノシリコン粒子はアモルファスシリコン及び多結晶シリコンを有すると好ましい。また、ナノシリコン粒子が、結晶性を有する領域と、非晶質の領域と、を有してもよい。
 シリコンを有する材料として例えば、SiO(xは好ましくは2より小さく、より好ましくは0.5以上1.6以下)で表される材料を用いることができる。
 シリコンを有する材料として例えば、一つの粒子内に複数の結晶粒を有する形態を用いることができる。例えば、一つの粒子内に、シリコンの結晶粒を一または複数有する形態を用いることができる。また、該一つの粒子は、シリコンの結晶粒の周囲に酸化シリコンを有してもよい。また、該酸化シリコンは非晶質であってもよい。シリコンの2次粒子にグラフェン化合物583をまとわりつかせた粒子であってもよい。
 また、シリコンを有する化合物は例えば、LiSiOおよびLiSiOを有することができる。LiSiOおよびLiSiOはそれぞれ結晶性を有してもよく、非晶質であってもよい。
 シリコンを有する化合物の分析は、NMR、XRD、ラマン分光、SEM、TEM、EDX等を用いて行うことができる。
 負極570aが有する第1の活物質581は、黒鉛を有することが好ましい。
 第1の活物質581は、充放電に伴う体積変化が小さい材料であることが、さらに好ましい。
 充電または放電に伴う第1の活物質581の体積変化として、充電または放電における最小の体積を1とした場合に、充電または放電における最大の体積が2以下であることが好ましく、1.5以下であることがより好ましく、1.1以下であることがさらに好ましい。
 第1の活物質581の粒子径は、第2の活物質582の粒子径よりも大きいことが望ましい。
 例えば、レーザー回折式粒度分布測定において、第1の活物質581のD50は、第2の活物質582のD50の1.5倍以上1000倍未満が好ましく、2倍以上500倍以下がより好ましく、10倍以上100倍以下がさらに好ましい。ここでD50とは粒度分布測定結果の積算粒子量曲線において、その積算量が50%を占めるときの粒子径、すなわちメディアンである。なお、粒子の大きさの測定は、レーザー回折式粒度分布測定に限定されず、SEMまたはTEMなどの分析によって、粒子断面の直径を測定してもよい。
 また第1の活物質581として例えば、充放電に伴う体積変化の小さい、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、カーボンナノチューブ、カーボンブラックおよびグラフェン化合物583などの炭素系材料を用いることができる。
 また、第1の活物質581として例えば、チタン、ニオブ、タングステンおよびモリブデンから選ばれる一以上の元素を有する酸化物を用いることができる。
 第1の活物質581として上記に示す金属、材料、化合物、等を複数組み合わせて用いることができる。
 第1の活物質581として例えば、SnO、SnO、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
 また、コンバージョン反応が生じる材料を第1の活物質581として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムと合金化反応を行わない遷移金属酸化物を第1の活物質581に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物が挙げられる。なお、上記フッ化物の電位は高いため、正極材料として用いてもよい。
[負極の計算1]
 本発明の一態様の負極570aとして、第1の活物質581として黒鉛を用い、第2の活物質582としてシリコンを用いる場合に関して、第1の活物質581及び第2の活物質582におけるリチウムの拡散係数について第一原理計算をおこなった。
 図4Aは黒鉛(Li0.25)について計算に用いた結晶構造のモデルを示しており、図4Bはシリコン(Li1.25Si)について計算に用いた結晶構造のモデルを示している。
 計算には第一原理電子状態計算パッケージVASPを用いた。具体的な計算条件については表1に示す条件を用いた。
Figure JPOXMLDOC01-appb-T000001
 図4A及び図4Bに示した結晶構造モデルに関し、各温度において、体積緩和計算の後に、体積一定条件でのMD(分子動力学)計算をおこなった。MD計算を複数ステップでおこない、各ステップでのリチウムの変位量と、経過時間と、の関係から、拡散係数を導出した。
 図4A、図4B、及び表1に示した計算の結果を、図5に示す。計算の結果として、シリコン中よりも、黒鉛中の方が、リチウムの拡散係数が高いことが示された。
 また、黒鉛及びシリコンの酸化還元電位の関係について、黒鉛が0.05V(vs. Li)で、Siが0.4V(vs. Li)であることが知られている。酸化還元電位は、充電(リチウムの取り込み)が始まる電圧と相関があり、充電時におけるリチウム挿入の優先度を考えた場合、酸化還元電位の高いSiに優先的にリチウムが取り込まれていくと考えられる。
 これら、図5に示した拡散係数の計算結果と、酸化還元電位の関係と、を合わせて推測すると、充電初期は酸化還元電位の差によりシリコンに優先的にリチウムが取り込まれるが、充電が進行するに従い、リチウムの取り込み速度の差によって次第に拡散係数の大きい(取り込み速度の高い)黒鉛へのリチウムの取り込みが優先されていく可能性がある。よって、本発明の一態様の負極570aにおいて容量制限をおこなった場合に、第1の活物質581の黒鉛は、黒鉛の理論容量近くまでリチウムを取り込み、第2の活物質582のシリコンは、その余剰のリチウムを取り込むことが推察される。つまり、本発明の一態様の負極570aにおいて、容量制限をおこなった場合には、第2の活物質582のシリコンよりも、第1の活物質581の黒鉛が優先的に充放電に使用され、容量制限の効果は、主に第2の活物質582のシリコンに影響を及ぼしている可能性がある。
[負極の計算2]
 図6Aはリチウムを含まないシリコン結晶を示し、図6B及び図6Cは、シリコンが充電された状態(Liと合金化した状態)における、構造を示す図である。
 図6Bは、Li/Si=1.714における構造を示しており、構造中にSi−Si結合が残っていることが分かる。一方、図6Cに示した、理論容量での限界値であるLi/Si=4.4における結晶構造では、Li比率が高まったために、構造中にSi−Si結合が存在しないことが分かる。シリコンは充放電を繰り返すことで結晶構造が崩れ、アモルファス化及び薄片化していくことが知られているが、例えば二次電池の満充電状態において、図6Bで示したSi−Si結合が残っている場合には、充放電を繰り返してもある程度は構造が維持される可能性が高いと考えられる。好ましくは、図6Bに示したLi/Si=1.714以下のリチウム比率(モル比率)で使用される場合において、良好な充放電サイクル特性を示す可能性がある。
[負極の容量制限]
 本発明の一態様の負極570aは、第1の活物質581及び第2の活物質582の理論容量よりも、少ない容量で二次電池として用いることが好ましい。負極570aの容量制限として例えば、第1の活物質581及び第2の活物質582の理論容量の、好ましくは50%以上100%未満の容量、より好ましくは70%以上90%未満の容量比の場合に、充放電容量が高く、充放電サイクル特性が良好な二次電池が得られるため、好ましい。
[負極の作製方法]
 図7は、本発明の一態様の負極570aの作製方法の一例を示すフロー図である。
 まず、ステップS61において、第2の活物質582として、シリコンを有する粒子を準備する。シリコンを有する粒子としては例えば、上記の第2の活物質582として述べた粒子を用いることができる。
 ステップS62において、溶媒を準備する。溶媒として例えば、水、メタノール、エタノール、アセトン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、N−メチルピロリドン(NMP)及びジメチルスルホキシド(DMSO)のいずれか一種又は二種以上の混合液を用いることができる。
 次に、ステップS63において、ステップS61で準備したシリコンを有する粒子と、ステップS62で準備した溶媒と、を混合し、ステップS64において混合物を回収し、ステップS65において混合物E−1を得る。混合には混練機等を用いることができる。混練機として例えば、自転公転ミキサーなどを用いることができる。
 次に、ステップS72において、第1の活物質581として、黒鉛を有する粒子を準備する。黒鉛を有する粒子としては例えば、上記の第1の活物質581として述べた粒子を用いることができる。
 次に、ステップS73において、混合物E−1と、ステップS72で準備した黒鉛を有する粒子とを混合し、ステップS74において混合物を回収し、ステップS75において混合物E−2を得る。混合には混練機等を用いることができる。混練機として例えば、自転公転ミキサーなどを用いることができる。
 次に、ステップS80において、グラフェン化合物583を準備する。
 次に、ステップS81において、混合物E−2と、ステップS80にて準備したグラフェン化合物583とを混合し、ステップS82において混合物を回収する。回収された混合物は粘度が高い状態であることが好ましい。混合物の粘度が高いことにより、次のステップS83において、固練り(高粘度における混練)を行うことができる。
 次に、ステップS83において固練りを行う。固練りは例えば、スパチュラなどを用いて行うことができる。固練りをおこなうことにより、シリコンを有する粒子と、グラフェン化合物583と、が良く混じり合った、グラフェン化合物583の分散性が優れる混合物を形成することができる。
 次に、ステップS84において、固練りした混合物に溶媒を加え、混合を行う。混合には例えば、混錬機等を用いることができる。混合を行った混合物をステップS85にて回収する。
 ステップS85にて回収された混合物に対して、ステップS83乃至ステップS85の工程をn回繰り返し行うことが好ましい。nは例えば2以上10以下の自然数である。また、ステップS83の工程において、混合物が乾いた状態である場合には、溶媒を追加することが好ましい。一方、溶媒を追加しすぎると、粘度が低下し、固練りによる効果が低下する。
 ステップS83乃至ステップS85をn回繰り返した後、混合物E−3を得る(ステップS86)。
 次に、ステップS87において、バインダを準備する。バインダとして、上記に記載の材料を用いることができ、特にポリイミドを用いることが好ましい。なお、ステップS87においては、バインダとして用いる材料の前駆体を準備する場合がある。例えば、ポリイミドの前駆体を準備する。
 次に、ステップS88において、混合物E−3と、ステップS87で準備したバインダと、を混合する。次に、ステップS89において、粘度の調整を行う。具体的には例えば、ステップS62において準備した溶媒と同じ種類の溶媒を準備し、ステップS88において得られた混合物に添加する。粘度の調整を行うことにより例えば、ステップS97において得られる電極の厚さ、密度、等を調整することができる場合がある。
 次に、ステップS89において粘度の調整を行った混合物に溶媒を加え、ステップS90において混合し、ステップS91において回収し、混合物E−4を得る(ステップS92)。ステップS92において得られる混合物E−4は例えば、スラリーと呼ばれる。
 次にステップS93において集電体を準備する。
 次にステップS94において、ステップS93にて準備した集電体上に、混合物E−4を塗工する。塗工には、スロットダイ方式、グラビア、ブレード法、およびそれらを組み合わせた方式等を用いることができる。また、塗布には連続塗工機などを用いてもよい。
 次に、ステップS95において、第1の加熱を行う。第1の加熱により、溶媒が揮発する。第1の加熱は、40℃以上200℃以下、好ましくは50℃以上150℃以下の温度範囲で行うとよい。なお、第1の加熱のことを、乾燥と呼ぶことがある。
 第1の加熱は例えば、30℃以上70℃以下、10分以上の条件で大気雰囲気下でホットプレートで加熱処理を行い、その後、例えば、室温以上100℃以下、1時間以上10時間以下の条件で減圧環境下にて加熱処理を行えばよい。
 あるいは、乾燥炉等を用いて加熱処理を行ってもよい。乾燥炉を用いる場合は、例えば30℃以上120℃以下の温度で、30秒以上2時間以下の加熱処理を行えばよい。
 または、温度は段階的に上げてもよい。例えば、60℃以下で10分以下の加熱処理を行った後、65℃以上の温度で更に1分以上の加熱処理を行ってもよい。
 次に、ステップS96において、第2の加熱を行う。バインダとしてポリイミドを用いる場合には、第2の加熱により、ポリイミドの環化付加反応が生じることが好ましい。また、第2の加熱により、ポリイミドの脱水反応が生じる場合がある。あるいは、第1の加熱によりポリイミドの脱水反応が生じる場合がある。また、第1の加熱において、ポリイミドの環化反応が生じてもよい。また、第2の加熱において、グラフェン化合物583の還元反応が生じることが好ましい。なお、第2の加熱のことを、イミド化熱処理、還元熱処理、または熱還元処理と呼ぶことがある。
 なお、第2の加熱の前にプレス処理を行うことで、電池特性を低下させずに電極密度を高める事が可能となるため、ステップS96の前にプレス処理を行うことが好ましい。
 第2の加熱は、150℃以上500℃以下、好ましくは200℃以上450℃以下の温度範囲で行うとよい。
 第2の加熱は例えば、200℃以上450℃以下、1時間以上10時間以下の条件で10Pa以下の減圧環境下、または窒素もしくはアルゴンなどの不活性雰囲気下にて行えばよい。
 ステップS97において、集電体上に活物質層が設けられた負極570aを得る。
 このようにして形成された活物質層の厚さは、例えば好ましくは5μm以上300μm以下、より好ましくは10μm以上150μm以下であればよい。また、活物質層の活物質担持量は、例えば好ましくは2mg/cm以上50mg/cm以下であればよい。
 活物質層は集電体の両面に形成されていてもよいし、片面のみに形成されていてもよい。または、両面に活物質層が形成されている領域を部分的に有しても構わない。
 活物質層から溶媒を揮発させた後、ロールプレス法または平板プレス法等の圧縮方法によりプレスを行ってもよい。プレスを行う際に、熱を加えてもよい。
[正極]
 正極570bは、正極集電体571b及び正極集電体571bに接して形成された正極活物質層572bを少なくとも含む。正極570bの詳細については、以降の実施の形態で説明する。
[導電材]
 導電材は、導電付与剤、導電助剤とも呼ばれ、炭素材料が用いられる。複数の活物質の間に導電剤を付着させることで複数の活物質同士が電気的に接続され、導電性が高まる。なお、「付着」とは、活物質と導電剤が物理的に密着していることのみを指しているのではなく、共有結合が生じる場合、ファンデルワールス力により結合する場合、活物質の表面の一部を導電剤が覆う場合、活物質の表面凹凸に導電剤がはまりこむ場合、互いに接していなくとも電気的に接続される場合などを含む概念とする。
 導電材としては、例えば、アセチレンブラック、およびファーネスブラックなどのカーボンブラック、人造黒鉛、および天然黒鉛などの黒鉛、カーボンナノファイバー、およびカーボンナノチューブなどの炭素繊維、ならびにグラフェン化合物583、のいずれか一種又は二種以上を用いることができる。
 二次電池の正極570bとして、金属箔などの正極集電体571bと、活物質と、を固着させるために、バインダ(樹脂)を混合している。バインダは結着剤とも呼ばれる。バインダは高分子材料であり、バインダを多く含ませると正極活物質層572bにおける活物質の割合が低下して、二次電池の放電容量が小さくなる。そこでバインダの量は最小限に混合させている。
 グラフェンは電気的、機械的または化学的に驚異的な特性を有することから、グラフェンを利用した電界効果トランジスタおよび太陽電池等様々な分野の応用が期待される炭素材料である。
 また、導電材として炭素繊維を用いることができる。例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーまたはカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。
[グラフェン化合物]
 本明細書等においてグラフェン化合物583とは、グラフェン、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。グラフェン化合物583とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物583は酸素を含む官能基を有してもよい。またグラフェン化合物583は屈曲した形状を有することが好ましい。またグラフェン化合物583は丸まってカーボンナノファイバーのようになっていてもよい。
 本明細書等において酸化グラフェンとは例えば、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。
 本明細書等において還元された酸化グラフェンとは例えば、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。炭素シートといってもよい。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度および酸素濃度とすることで、少量でも導電性の高い導電材として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電材として機能することができる。
 酸化グラフェンを還元することにより、還元された酸化グラフェンに孔を設けることができる場合がある。
 また、グラフェン化合物として、グラフェンの端部をフッ素で終端させた材料を用いてもよい。
 活物質層の縦断面においては、活物質層の内部領域において概略均一にシート状のグラフェン化合物583が分散する。複数のグラフェン化合物は、複数の粒状の活物質を一部覆うように、あるいは複数の粒状の活物質の表面上に貼り付くように形成されているため、互いに面接触している。
 ここで、複数のグラフェン化合物583同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、又は使用しないことができるため、電極体積および電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の充放電容量を増加させることができる。
 ここで、グラフェン化合物583として酸化グラフェンを用い、活物質と混合して活物質層となる層を形成後、該酸化グラフェンを還元することが好ましい。つまり完成後の活物質層は還元された酸化グラフェンを有することが好ましい。グラフェン化合物583を有する活物質層を形成する際に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェン化合物583を活物質層の内部領域において概略均一に分散させることができる。
 溶媒中に酸化グラフェンが概略均一に分散した分散液を、集電体上に塗布し、該溶媒を揮発除去し、その後、酸化グラフェンを還元することで作製された活物質層において、活物質層が有するグラフェン化合物583は部分的に重なり合う。このように、還元された酸化グラフェンが、互いに面接触する程度に分散していることで、三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
 また、予め、活物質の表面をグラフェン化合物で覆うことで、導電性の被膜を活物質表面に形成し、さらに活物質間をグラフェン化合物で電気的に接続することで、導電パスを形成することもできる。
 本発明の一態様のグラフェン化合物583は、炭素シートの一部に孔を有することが好ましい。本発明の一態様のグラフェン化合物583において、炭素シートの一部にリチウムイオンなどのキャリアイオンが通過できる孔が設けられることにより、グラフェン化合物583に覆われた活物質表面において、キャリアイオンの挿入脱離がしやすくなり、二次電池のレート特性を高めることができる。炭素シートの一部に設けられる孔は、空孔、欠陥あるいは空隙と呼ばれる場合がある。
 本発明の一態様のグラフェン化合物583は、複数の炭素原子と、一以上のフッ素原子と、により設けられる孔を有することが好ましい。また、該複数の炭素原子は環状に結合することが好ましく、環状に結合する該複数の炭素原子の一以上は、該フッ素原子により終端されることが好ましい。フッ素は電気陰性度が高く、負の電荷を帯びやすい。正の電荷を帯びたリチウムイオンが近づくことにより相互作用が生じ、エネルギーが安定し、リチウムイオンが孔を通過する障壁エネルギーを低くすることができる。よって、グラフェン化合物583が有する孔がフッ素を有することより、小さな孔においてもリチウムイオンが通過しやすく、かつ優れた導電性を有するグラフェン化合物583を実現することができる。また、環状に結合する該複数の炭素原子の一以上は、水素によって終端されていてもよい。
 図8Aおよび図8Bに、孔を有するグラフェン化合物583の構成の一例を示す。図8Aおよび図8Bに示す孔を有するグラフェン化合物583は、孔を有するグラフェン、または孔を有する還元されたグラフェン、ともいう。
 図8Aに示す構成は、22員環を有し、22員環を構成する炭素のうち8個の炭素がそれぞれ、水素により終端される。また、グラフェン化合物583において、連結した2つの6員環を取り除き、取り除かれた6員環と結合していた炭素を水素で終端した構造を有するとも言える。
 図8Bに示す構成は、22員環を有し、22員環を構成する炭素のうち8個の炭素のうち、6個の炭素が水素により終端され、2個の炭素がフッ素により終端される。また、グラフェン化合物583において、連結した2つの6員環を取り除き、取り除かれた6員環と結合していた炭素を水素またはフッ素で終端した構造を有するとも言える。
 ヒドロキシ基で終端されたシリコンは、シリコン表面のヒドロキシ基が有する水素と、グラフェン化合物583が有する水素原子またはグラフェン化合物583が有するフッ素原子との間に水素結合が形成されることから、ヒドロキシ基で終端されたシリコンは、孔を有するグラフェン化合物583との相互作用が大きいと考えられる。
 グラフェン化合物583が水素に加えてフッ素を有することにより、ヒドロキシ基の酸素原子とグラフェン化合物583の水素原子との間の水素結合に加えて、ヒドロキシ基の水素原子とグラフェン化合物583のフッ素原子の間の水素結合も形成され、シリコンを有する粒子とグラフェン化合物583との間の相互作用が、より強く安定になることが考えられる。
 グラフェン化合物583が孔を有する場合には例えば、ラマン分光のマッピング測定により、孔に起因する特徴に基づくスペクトルを観測できる可能性がある。また、孔を構成する結合、官能基などをToF−SIMSで観察できる可能性がある。また、TEM観察により、孔の近傍、孔の周辺、等を分析できる可能性がある。
[バインダ]
 本明細書等においてバインダとは、活物質、導電材等を集電体上に結着するためのみに混合される高分子化合物をいう。たとえばポリフッ化ビニリデン(PVDF)、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料、フッ素ゴム、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、エチレンプロピレンジエンポリマー等の材料をいう。
 リチウムイオン導電性ポリマーは高分子化合物であるため、よく混合して活物質層に用いることで活物質および導電材を集電体上に結着することが可能となる。そのためバインダを使用しなくても電極を作製できる。バインダは充放電反応に寄与しない材料である。そのためバインダが少ないほど活物質、電解質等の充放電に寄与する材料を増やすことができる。そのため放電容量、またはサイクル特性等が向上した二次電池とすることができる。
 電解質576を、有機溶媒がない、または非常に少ない電解質層とするために、十分に乾燥させてあることが好ましい。なお本明細書等では、90℃で1時間減圧乾燥させたときの電解質層の重量変化が5%以内である場合に、十分に乾燥されているという。
 なお二次電池に含まれるリチウムイオン導電性ポリマー、リチウム塩、バインダおよび添加剤等の材料の同定には、たとえば核磁気共鳴(NMR)を用いることができる。またラマン分光法、フーリエ変換赤外分光法(FT−IR)、飛行時間型二次イオン質量分析法(TOF−SIMS)、ガスクロマトグラフィ質量分析法(GC/MS)、熱分解ガスクロマトグラフィ質量分析法(Py−GC/MS)、液体クロマトグラフィ質量分析法(LC/MS)等の分析結果を判断の材料にしてもよい。なお活物質層を溶媒に懸濁し、活物質とその他の材料を分離してからNMR等の分析に供することが好ましい。
 また、上記各構成において、さらに負極570aに固体電解質材料を含ませて、難燃性を向上させてもよい。固体電解質材料として酸化物系固体電解質を用いることが好ましい。
 酸化物系固体電解質としては、LiPON、LiO、LiCO、LiMoO、LiPO、LiVO、LiSiO、LLT(La2/3−xLi3xTiO)、LLZ(LiLaZr12)等のリチウム複合酸化物および酸化リチウム材料が挙げられる。
 LLZは、LiとLaとZrを含有するガーネット型酸化物であり、Al、Ga、またはTaを含む化合物としてもよい。
 また、塗布法等により形成するPEO(ポリエチレンオキシド)等の高分子系固体電解質を用いてもよい。このような高分子系固体電解質はバインダとしても機能させることができるため、高分子系固体電解質を用いる場合には電極の構成要素を減らせ、製造コストを低減することもできる。
[集電体]
 正極集電体571bおよび負極集電体571aとして、ステンレス、金、白金、亜鉛、鉄、銅、アルミニウム、チタン等の金属、及びこれらの合金など、導電性の高く、リチウム等のキャリアイオンと合金化しない材料を用いることができる。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが10μm以上30μm以下のものを用いるとよい。
 なお負極集電体571aは、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
 集電体として上記に示す金属元素の上に積層して、チタン化合物を設けてもよい。チタン化合物として例えば、窒化チタン、酸化チタン、窒素の一部が酸素に置換された酸化窒化チタン(TiO、0<x<2、0<y<1)、及び酸素の一部が窒素に置換された酸化チタンから選ばれる一を、あるいは二以上を混合または積層して、用いることができる。中でも窒化チタンは導電性が高くかつ酸化を抑制する機能が高いため、特に好ましい。チタン化合物を集電体の表面に設けることにより例えば、集電体上に形成される活物質層が有する材料と金属との反応が抑制される。活物質層が酸素を有する化合物を含む場合には、金属元素と酸素との酸化反応を抑制することができる。例えば集電体としてアルミニウムを用い、活物質層が後述する酸化グラフェンを用いて形成される場合には、酸化グラフェンが有する酸素とアルミニウムとの酸化反応が懸念される。このような場合において、アルミニウムの上にチタン化合物を設けることにより、集電体と酸化グラフェンとの酸化反応を抑制することができる。
[セパレータ]
 正極570bと負極570aの間にセパレータを配置する。セパレータとしては、例えば、紙をはじめとするセルロースを有する繊維、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータは袋状に加工し、正極570bまたは負極570aのいずれか一方を包むように配置することが好ましい。
 セパレータは直径20nm程度の大きさの孔、好ましくは直径6.5nm以上の大きさの孔、さらに好ましくは少なくとも直径2nmの孔を有する多孔質材料である。上述した半固体二次電池の場合は、セパレータを省略することもできる。
 セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
 セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
 例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極570bと接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極570aと接する面にフッ素系材料をコートしてもよい。
 多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの容量を大きくすることができる。
[電解質]
 二次電池に液状の電解質576を用いる場合、例えば、電解質576としてエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等のうちの1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
 また、電解質576の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部領域短絡または過充電等によって内部領域温度が上昇しても、二次電池の破裂または発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオン、ならびにイミダゾリウムカチオン、およびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、アニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
 特に、本発明の一態様の二次電池において、負極570aが有する第2の活物質582としてシリコンを用いる場合、イオン液体を有する液状の電解質576を用いることが好ましい。
 本発明の一態様の二次電池は例えば、リチウムイオン、ナトリウムイオン、およびカリウムイオンなどのアルカリ金属イオン、ならびにカルシウムイオン、ストロンチウムイオン、バリウムイオン、ベリリウムイオン、及びマグネシウムイオンなどのアルカリ土類金属イオンの何れか一または二以上をキャリアイオンとして有する。
 キャリアイオンとしてリチウムイオンを用いる場合には例えば、電解質はリチウム塩を含む。リチウム塩として例えば、LiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等を用いることができる。
 また、電解質はフッ素を含むことが好ましい。フッ素を含む電解質として例えば、フッ素化環状カーボネートの一種または二種以上と、リチウムイオンと、を有する電解質を用いることができる。フッ素化環状カーボネートは不燃性を向上させ、リチウムイオン二次電池の安全性を高めることができる。
 フッ素化環状カーボネートとして、フッ化エチレンカーボネート、例えば、モノフルオロエチレンカーボネート(炭酸フルオロエチレン、FEC、F1EC)、ジフルオロエチレンカーボネート(DFEC、F2EC)、トリフルオロエチレンカーボネート(F3EC)、テトラフルオロエチレンカーボネート(F4EC)などを用いることができる。なお、DFECには、シス−4,5、トランス−4,5などの異性体がある。電解質として、フッ素化環状カーボネートを一種または二種以上を用いてリチウムイオンを溶媒和させて、充放電時に電極が含む電解質内において輸送させることが低温で動作させる上で重要である。フッ素化環状カーボネートを少量の添加剤としてではなく、充放電時のリチウムイオンの輸送に寄与させると低温での動作が可能となる。二次電池内においてリチウムイオンは数個以上数十個程度の塊で移動する。
 フッ素化環状カーボネートを電解質に用いることで、電極が含む電解質内において溶媒和しているリチウムイオンが活物質粒子へ入る際に必要となる脱溶媒和のエネルギーを小さくする。この脱溶媒和のエネルギーを小さくできれば、低温範囲においてもリチウムイオンが活物質粒子へ挿入或いは脱離しやすくなる。なお、リチウムイオンは溶媒和した状態のまま移動することもあるが、配位する溶媒分子が入れ替わるホッピング現象が生じる場合もある。リチウムイオンが脱溶媒和しやすくなると、ホッピング現象による移動がしやすくなり、リチウムイオンの移動がしやすくなる場合がある。二次電池の充放電における電解質の分解生成物が、活物質の表面にまとわりつくことにより、二次電池の劣化が起こる懸念がある。しかしながら電解質がフッ素を有する場合には電解質がさらさらであり、電解質の分解生成物は活物質の表面に付着しづらくなる。このため、二次電池の劣化を抑制することができる。
 溶媒和したリチウムイオンは、電解質において、複数がクラスタを形成し、負極570a内、正極570bと負極570aの間、正極570b内、等を移動する場合がある。
 本明細書において、電解質は、固体、液体、または半固体の材料などを含む総称である。
 二次電池内に存在する界面、例えば活物質と電解質との界面で劣化が生じやすい。本発明の一態様の二次電池においては、フッ素を有する電解質を有することで、活物質と電解質との界面で生じうる劣化、代表的には電解質の変質または電解質の高粘度化を防ぐことができる。また、フッ素を有する電解質に対して、バインダまたはグラフェン化合物などをまとわりつかせる、または保持させる構成としてもよい。当該構成とすることで、電解質の粘度を低下させた状態、別言すると電解質のさらさらな状態を維持することが可能となり、二次電池の信頼性を向上させることができる。フッ素が2つ結合しているDFECおよび4つ結合しているF4ECは、フッ素が1つ結合しているFECに比べて、粘度が低く、さらさらであり、リチウムとの配位結合が弱くなる。従って、活物質粒子に粘度の高い分解物が付着することを低減することができる。活物質粒子に粘度の高い分解物が付着する、或いはまとわりつくと活物質粒子の界面でリチウムイオンが移動しにくくなる。フッ素を有する電解質は、溶媒和することで活物質(正極活物質または負極活物質)表面につく分解物の生成を緩和する。また、フッ素を有する電解質を用いることにより、分解物が付着することを防ぐことでデンドライトの発生および成長を防止することができる。
 また、フッ素を有する電解質を主成分として用いることも特徴の一つであり、フッ素を有する電解質は、5体積%以上、10体積%以上、好ましくは30体積%以上100体積%以下とする。
 本明細書において、電解質の主成分とは、二次電池の電解質全体の5体積%以上であることを指している。また、ここでいう二次電池の電解質全体の5体積%以上とは二次電池の製造時に計量された電解質全体の占める割合を指している。また、二次電池を作製後に分解する場合には、複数種類の電解質がそれぞれどれくらいの割合であったかを定量することは困難であるが、ある一種類の有機化合物が電解質全体の5体積%以上であるかは判定することができる。
 フッ素を有する電解質を用いることで幅広い温度範囲、具体的には、−40℃以上150℃以下、好ましくは−40℃以上85℃以下で動作可能な二次電池を実現することができる。
 また、電解質にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加剤の濃度は、例えば電解質全体に対して0.1体積%以上5体積%未満とすればよい。
 また、電解質は上記の他にγーブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン等の非プロトン性有機溶媒の一つまたは複数を有してもよい。
 また、電解質がゲル化される高分子材料を有することで、漏液性等に対する安全性が高まる。ゲル化される高分子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等がある。
 高分子材料としては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマー、PVDF、およびポリアクリロニトリル等、ならびにそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成される高分子は、多孔質形状を有してもよい。
 また、上記構成は、液状の電解質を用いる二次電池の例を示したが特に限定されない。例えば、半固体電池および全固体電池を作製することもできる。
 本明細書等において液状の電解質を用いる二次電池の場合も、半固体電池の場合も正極570bと負極570aの間に配置される層を電解質層と呼ぶこととする。半固体電池の電解質層は成膜で形成される層と言え、液状の電解質層と区別することができる。
 また、本明細書等において半固体電池とは、電解質層、正極570b、負極570aの少なくとも一に、半固体材料を有する電池をいう。ここでいう半固体とは、固体材料の比が50%であることは意味しない。半固体とは、体積変化が小さいといった固体の性質を有しつつも、柔軟性を有する等の液体に近い性質も一部持ち合わせることを意味する。これらの性質を満たせば、単一の材料でも、複数の材料であってもよい。たとえば液体の材料を、多孔質の固体材料に浸潤させた物であってもよい。
 また本明細書等において、ポリマー電解質二次電池とは、正極570bと負極570aの間の電解質層にポリマーを有する二次電池をいう。ポリマー電解質二次電池は、ドライ(または真性)ポリマー電解質電池、およびポリマーゲル電解質電池を含む。
 電解質576は、リチウムイオン導電性ポリマーとリチウム塩を有する。
 本明細書等においてリチウムイオン導電性ポリマーとは、リチウム等のカチオンの導電性を有するポリマーである。より具体的にはカチオンが配位できる極性基を有する高分子化合物である。極性基としては、エーテル基、エステル基、ニトリル基、カルボニル基、シロキサン等を有していることが好ましい。
 リチウムイオン導電性ポリマーとしてはたとえば、ポリエチレンオキシド(PEO)、主鎖としてポリエチレンオキシドを有する誘導体、ポリプロピレンオキシド、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリシロキサン、ポリフォスファゼン等を用いることができる。
 リチウムイオン導電性ポリマーは、分岐していてもよく、架橋していてもよい。また共重合体であってもよい。分子量はたとえば1万以上であることが好ましく、10万以上であることがより好ましい。
 リチウムイオン導電性ポリマーはポリマー鎖の部分運動(セグメント運動ともいう)により相互作用する極性基を変えながらリチウムイオンが移動していく。たとえばPEOならば、エーテル鎖のセグメント運動により相互作用する酸素を変えながらリチウムイオンが移動する。温度がリチウムイオン導電性ポリマーの融点または軟化点に近いか、それより高いときは結晶領域が溶解して非晶質領域が増大し、またエーテル鎖の運動が活発になるため、イオン伝導度が高くなる。そのためリチウムイオン導電性ポリマーとしてPEOを使用する場合は60℃以上で充放電を行うことが好ましい。
 シャノンのイオン半径(Shannon et al., Acta A 32(1976)751.)によれば、1価のリチウムイオンの半径は4配位のとき0.0590nm、6配位のとき0.076nm、8配位のとき0.092nmである。また2価の酸素イオンの半径は、2配位のとき0.135nm、3配位のとき0.136nm、4配位のとき0.138nm、6配位のとき0.140nm、8配位のとき0.142nmである。隣り合うリチウムイオン導電性ポリマー鎖が有する極性基間の距離は、上記のようなイオン半径を保った状態でリチウムイオンおよび極性基が有する陰イオンが安定に存在できる距離以上であることが好ましい。かつリチウムイオンと極性基間の相互作用が十分に生じる距離であることが好ましい。ただし上述したようにセグメント運動が生じるため、常に一定の距離を保っている必要はない。リチウムイオンが通過するときに適切な距離であればよい。
 またリチウム塩としては、例えばリチウムと共に、リン、フッ素、窒素、硫黄、酸素、塩素、ヒ素、ホウ素、アルミニウム、臭素、ヨウ素のうち少なくとも一以上と、を有する化合物を用いることができる。たとえばLiPF、LiN(FSO(リチウムビス(フルオロスルホニル)イミド、LiFSI)、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO(リチウムビス(トリフルオロメタンスルホニル)イミド、LiTFSA)、LiN(CSO)(CFSO)、LiN(CSO、リチウムビス(オキサレート)ボレート(LiBOB)等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
 特にLiFSIを用いると、低温特性が良好となり好ましい。またLiFSI及びLiTFSAは、LiPF等と比較して水と反応しにくい。そのためLiFSIを用いた電極および電解質層を作製する際の露点の制御が容易となる。たとえば水分を極力排除したアルゴンなどの不活性雰囲気、および露点を制御したドライルームだけでなく、通常の大気雰囲気でも取り扱う事ができる。そのため生産性が向上し好ましい。また、LiFSIおよびLiTFSAのような高解離性で可塑化効果のあるLi塩を用いた方が、エーテル鎖のセグメント運動を利用したリチウム伝導を用いる際は、広い温度範囲で使用できるため特に好ましい。
 有機溶媒がない、または非常に少ないことで、引火又は発火しにくい二次電池とすることができ、安全性が向上し好ましい。
[外装体]
 二次電池が有する外装体としては、例えばアルミニウムなどの金属材料および樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。また、フィルムとしてフッ素樹脂フィルムを用いることが好ましい。フッ素樹脂フィルムは酸、アルカリ、有機溶剤、等に対する安定性が高く、二次電池の反応などに伴う副反応、腐食、等を抑制し、優れた二次電池を実現することができる。フッ素樹脂フィルムとしてPTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン:テトラフルオロエチレンとパーフルオロアルキルビニルエーテルの共重合体)、FEP(パーフルオロエチレンプロペンコポリマー:テトラフルオロエチレンとヘキサフルオロプロピレンの共重合体)、ETFE(エチレンテトラフルオロエチレンコポリマー:テトラフルオロエチレンとエチレンの共重合体)等が挙げられる。
 本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態2)
 本実施の形態では、本発明の一態様の正極、正極活物質複合体について説明する。
 本発明の一態様の正極570bの例を図9に示す。正極570bは、正極集電体571bと正極活物質層572bとを有する。正極活物質層572bは正極活物質複合体100zを有する。正極活物質複合体100zとして例えば、図10A1及び図10A2に示すようにキャリアイオンを吸蔵及び放出することが可能な、第1の活物質100x及び第2の活物質100yを有する。図9では、導電材として、グラフェン化合物102及びカーボンブラック103を用いた例を示しているが、正極活物質複合体100zが十分な電子伝導性を有する場合は、正極活物質層572b中に導電材を用いなくてもよい。また導電材の種類について図9で示した例に限定されず、グラフェン化合物、カーボンブラック、又はカーボンナノチューブ等の炭素繊維のみを用いてもよく、また、カーボンナノチューブ等の炭素繊維と、カーボンブラックと、を併せて用いてもよい。なお、図9に図示していないが、正極活物質層572bはバインダを有することが好ましい。バインダとして、ポリフッ化ビニリデン等の高分子材料、及びLi(FSI)(SN)等の分子結晶電解質を用いることができる。
 また正極活物質複合体100zは正極集電体571bと電子の授受を可能な状態で配置される。すなわち正極活物質複合体100zは正極集電体571bと電気的に接した構成を有する。正極集電体571bにはアンダーコート層が設けられていてもよい。この場合、正極活物質複合体100zはアンダーコート層を介して正極集電体571bと電気的に接した構成とする。また正極活物質複合体100zは、導電材を介して正極集電体571bと電気的に接した構成としてもよい。
 なお、正極活物質層572bの密度は、好ましくは3.0g/cm以上、より好ましくは3.5g/cm以上、更に好ましくは3.8g/cm以上、であることが好ましいため、正極活物質層572bの密度を高めるために、プレス処理をおこなってもよい。ただし、プレス処理をおこなう場合、後述の第1の活物質100x及び正極活物質複合体100zの構造を損なわないように、プレス処理の条件を適切に設定することが望ましい。
[正極活物質複合体]
 図10A1乃至図10C2は、正極活物質複合体100zについて説明する断面模式図である。
 図10A1及び図10A2は、正極活物質として機能する第1の活物質100xと、第1の活物質100xの少なくとも一部を覆う第2の活物質100yを有する正極活物質複合体100zを説明する図である。なお、図10A1では、1個の第1の活物質100xが第2の活物質100yに覆われる構成を示したが、本発明はこれに限られるものではなく、複数個の第1の活物質100xが第2の活物質100yに覆われる構成にしてもよい。
 例えば、図10A2に示すように、第1の活物質100xaおよび第1の活物質100xbの少なくとも一部を、第2の活物質100yが覆う構成にしてもよい。図10A2では、第1の活物質100xaと第1の活物質100xbは、少なくとも一部が接する場合を示しているが、第1の活物質100xaと第1の活物質100xbと、が直接接しない場合であってもよい。正極活物質として機能する粒子状の第1の活物質100xの粒子表面の少なくとも一部を、望ましくは概略全体を、第2の活物質100yが覆う状態においては、第1の活物質100xが電解質576と直接接する領域が減少し、高電圧充電状態で、第1の活物質100xから遷移金属元素及び/又は酸素が脱離することを抑制できるため、充放電の繰り返しによる容量低下を抑制できる。また、高温及び高電圧充電状態においても電気化学的に安定な第2の活物質100yで覆われることで、本発明の一態様の正極活物質複合体100zを用いた二次電池は、高温での安定性が向上する、耐火性が向上する、などの効果を得ることが可能となる。
 図10B1及び図10B2は、正極活物質として機能する第1の活物質100xと、第1の活物質100xの少なくとも一部を覆うガラス101を有する正極活物質複合体100zを説明する図である。なお、図10B1では、1個の第1の活物質100xがガラス101に覆われる構成を示したが、本発明はこれに限られるものではなく、複数個の第1の活物質100xがガラス101に覆われる構成にしてもよい。
 例えば、図10B2に示すように、第1の活物質100xaおよび第1の活物質100xbの少なくとも一部を、ガラス101が覆う構成にしてもよい。図10B2では、第1の活物質100xaと第1の活物質100xbは、少なくとも一部が接する場合を示しているが、第1の活物質100xaと第1の活物質100xbと、が直接接しない場合であってもよい。正極活物質として機能する粒子状の第1の活物質100xの粒子表面の少なくとも一部を、望ましくは概略全体を、ガラス101が覆う状態においては、第1の活物質100xが電解質576と直接接する領域が減少し、高電圧充電状態で、第1の活物質100xから遷移金属元素及び/又は酸素が脱離することを抑制できるため、充放電の繰り返しによる容量低下を抑制できる。また、高温及び高電圧充電状態においても電気化学的に安定なガラス101で覆われることで、本発明の一態様の正極活物質複合体100zを用いた二次電池は、高温での安定性が向上する、耐火性が向上する、などの効果を得ることが可能となる。
 図10C1、及び図10C2は、正極活物質として機能する第1の活物質100xと、第1の活物質100xの少なくとも一部を覆うガラス101を介して第1の活物質100xと接する第2の活物質100yと、を有する正極活物質複合体100zを説明する図である。なお、図10C1では、1個の第1の活物質100xがガラス101に覆われる構成を示したが、本発明はこれに限られるものではなく、複数個の第1の活物質100xがガラス101に覆われる構成にしてもよい。
 例えば、図10C2に示すように、第1の活物質100xaおよび第1の活物質100xbの少なくとも一部を、ガラス101が覆う構成にしてもよい。図10C2では、第1の活物質100xaと第1の活物質100xbは、少なくとも一部が接する場合を示しているが、第1の活物質100xaと第1の活物質100xbと、が直接接しない場合であってもよい。正極活物質として機能する粒子状の第1の活物質100xの粒子表面の少なくとも一部を、望ましくは概略全体を、ガラス101が覆う状態において、ガラス101を介して第1の活物質100xと接する第2の活物質100yを有する正極活物質複合体100zにおいては、第1の活物質100xが電解質576と直接接する領域が減少し、高電圧充電状態で、第1の活物質100xから遷移金属元素及び/又は酸素が脱離することを抑制できるため、充放電の繰り返しによる容量低下を抑制できる。また、高温及び高電圧状態においても電気化学的に安定なガラス101及び、高充電電圧状態においても安定な第2の活物質100yで覆われることで、本発明の一態様の正極活物質複合体100zを用いた二次電池は、高温での安定性が向上する、耐火性が向上する、などの効果を得ることが可能となる。
 図10A1乃至図10C2に示した正極活物質複合体100zにおいて、第1の活物質100xとして、マグネシウム及びフッ素を有するコバルト酸リチウム、マグネシウム、フッ素、アルミニウム、及びニッケルを有するコバルト酸リチウム、ならびにニッケル:コバルト:マンガン=8:1:1、およびニッケル:コバルト:マンガン=9:0.5:0.5等のモル比率のニッケル−コバルト−マンガン酸リチウムなどの、高電圧充電状態での安定性に優れた材料を用いることで、上記した正極活物質複合体100zの、高電圧充電での耐久性、及び安定性をさらに向上することができる。また、上記した正極活物質複合体100zを用いた二次電池の耐熱性、及び/又は耐火性をさらに向上することができる。
 なお、マグネシウム、フッ素、アルミニウム、及びニッケルを有するコバルト酸リチウムは、正極活物質の表層部にマグネシウム、フッ素、又はアルミニウムを多く有し、粒子全体にニッケルが広く分布する特徴があり、高電圧での充放電の繰り返し特性が顕著に優れるため、第1の活物質100xとして特に好ましい材料である。正極活物質の表層部にマグネシウム、フッ素、又はアルミニウムを多く有している場合、例えばSTEM−EDXの線分析において、マグネシウム、フッ素、又はアルミニウムに由来する特性X線のカウント数は、表層部において最大値となる箇所を有する。ここで、表層部とは、正極活物質の表面から10nm程度までの領域をいう。なお、正極活物質が有するクラック部も表層部を有し、正極活物質の作製における、マグネシウム、フッ素、又はアルミニウムの添加工程以前に生じたクラック部は、マグネシウム、フッ素、又はアルミニウムを多く有する表層部を有する。
 図10A1及び図10A2に示すような正極活物質複合体100zは、第1の活物質100xと、第2の活物質100yと、を少なくとも用いる複合化処理によって、得られる。複合化処理としては、例えば、メカノケミカル法、メカノフュージョン法、及びボールミル法などの機械的エネルギーによる複合化処理、共沈法、水熱法、及びゾル−ゲル法などの液相反応による複合化処理、ならびに、バレルスパッタ法、ALD(Atomic Layer Deposition)法、蒸着法、及びCVD(Chemical Vapor Deposition)法などの気相反応による複合化処理、のいずれか一以上の複合化処理を用いることができる。また、複合化処理において、1回又は複数回の加熱処理を行うことが好ましい。なお、本明細書において複合化処理とは、表面コーティング処理、又はコーティング処理、と呼ぶことがある。
 また、図10B1及び図10B2に示すような正極活物質複合体100zは、第1の活物質100xと、ガラス101と、を少なくとも用いる複合化処理によって、得られる。複合化処理としては、例えば、メカノケミカル法、メカノフュージョン法、及びボールミル法などの機械的エネルギーによる複合化処理、共沈法、水熱法、及びゾル−ゲル法などの液相反応による複合化処理、ならびに、バレルスパッタ法、ALD法、蒸着法、及びCVD法などの気相反応による複合化処理、のいずれか一以上の複合化処理を用いることができる。また、複合化処理において、1回又は複数回の加熱処理を行うことが好ましい。
 また、図10C1及び図10C2に示すような正極活物質複合体100zは、少なくとも第1の活物質100x、第2の活物質100y、及びガラス101を用いた複合化処理によって得られる。複合化処理としては、例えば、メカノケミカル法、メカノフュージョン法、及びボールミル法などの機械的エネルギーによる複合化処理、共沈法、水熱法、及びゾル−ゲル法などの液相反応による複合化処理、ならびに、バレルスパッタ法、ALD法、蒸着法、及びCVD法などの気相反応による複合化処理、のいずれか一以上の複合化処理を用いることができる。また、複合化処理において、1回又は複数回の加熱処理を行うことが好ましい。
 本発明の一態様の正極活物質複合体100zは上記のとおり、第1の活物質100xと電解質576とが接しないことにより、電解質に起因した第1の活物質100xの劣化が抑制される。当該劣化は、第1の活物質100xに生じる欠陥に起因する場合があり、例えば、欠陥としてピットと呼ばれるものがある。ピットは、充放電サイクル試験において、第1の活物質100xの主成分、例えばコバルト及び酸素が何層分か抜けた領域を指す。例えばコバルトは電解質へ溶出することがあると考えられる。ピットは、充放電サイクル試験で進行することがあり、活物質内部方向へピットが進行する。なお、ピットの開口形状は、円ではなく奥行きがあり溝の様な形状を有する。電解質576と、第1の活物質100xと、が接しない構成により、上記欠陥、特にピットの発生及び進行を抑制することができる。
 正極活物質複合体100zが、ガラス101を介して第1の活物質100xと接する第2の活物質100yを有する場合、正極活物質複合体100zは表層部において、二重構造を有するといえる。ただし、本発明の一態様の正極活物質複合体100zは、ガラス101及び第2の活物質100yを、二重構造として有する場合に限定されない。本発明の一態様の正極活物質複合体100zの他の例として、ガラス101及び第2の活物質100yを有するガラス活物質混合層が、第1の活物質100xの表面の少なくとも一部を覆う構造であってもよい。
 また、本発明の一態様の正極活物質複合体100zとして、正極活物質複合体100zの表層部又はガラス活物質混合層に、グラフェン化合物102を有してもよい。ここで、グラフェン化合物102の代わりに、カーボンブラック又はカーボンナノチューブ等の炭素繊維を用いてもよい。
 ガラス101として、非晶質部を有する材料を用いることができる。非晶質部を有する材料として、例えば、SiO、SiO、Al、TiO、LiSiO、LiPO、LiS、SiS、B、GeS、AgI、AgO、LiO、P、B、及びV等から選ばれる1以上を有する材料、Li11、又はLi1+x+yAlTi2−xSi3−y12(0<x<2、0<y<3、)等、を用いることができる。非晶質部を有する材料は、全体が非晶質の状態で用いること、又は一部が結晶化された結晶化ガラス(ガラスセラミックスともいう)の状態で用いること、ができる。ガラス101はリチウムイオン伝導性を有することが望ましい。リチウムイオン伝導性とは、リチウムイオン拡散性及びリチウムイオン貫通性を有する、ともいえる。また、ガラス101は、融点が800℃以下であることが好ましく、500℃以下であることがより好ましい。また、ガラス101が電子伝導性を有することが好ましい。また、ガラス101は、軟化点が800℃以下であることが好ましく、例えばLiO−B−SiO系ガラスを用いることができる。
 ガラス101が電子伝導性を有することが望ましいが、ガラス101の電子伝導性が低い場合には、ガラス101と併せて、グラフェン化合物、カーボンブラック、又はカーボンナノチューブ等の炭素繊維導電材を、ガラス101に混合することで、ガラス101に電子伝導性を付与することができる。
 なお、正極活物質複合体100zの表面の少なくとも一部を、グラフェン化合物で覆う構造を有してもよい。好適には、正極活物質複合体100zの粒子表面、及び/又は正極活物質複合体100zを有する凝集体の、80%以上をグラフェン化合物で覆う構造が好ましい。グラフェン化合物については後述する。
 また、正極活物質複合体100zは、分子結晶電解質で覆われた構成を有すると好ましい。分子結晶電解質は正極活物質層572bのバインダとしての機能を奏することができる。分子結晶電解質は、イオン伝導度が高い材料であるとよく、分子結晶電解質で覆われた正極活物質複合体100zは電解質576とキャリアイオンの授受が可能である。
[正極活物質]
 第1の活物質100xとして、層状岩塩型の結晶構造を有する、LiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物を用いることができる。また、第1の活物質100xとして、LiM1Oで表される複合酸化物に添加元素Xが添加されたものを用いることができる。第1の活物質100xが有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素から選ばれる一以上を用いることが好ましい。これらの元素が、第1の活物質100xが有する結晶構造をより安定化させる場合がある。つまり第1の活物質100xは、マグネシウム及びフッ素を有するコバルト酸リチウム、マグネシウム、フッ素、アルミニウム、ニッケルを有するコバルト酸リチウム、マグネシウム、フッ素及びチタンを有するコバルト酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト酸リチウム、マグネシウム及びフッ素を有するコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト−マンガン酸リチウム等を有することができる。なお、ニッケル−コバルト−マンガン酸リチウムの遷移金属比率として、高ニッケル比率が好ましく、例えば、ニッケル:コバルト:マンガン=8:1:1、ニッケル:コバルト:マンガン=9:0.5:0.5のモル比率の材料が好ましい。また、上記のニッケル−コバルト−マンガン酸リチウムとして、カルシウムを有するニッケル−コバルト−マンガン酸リチウムを有することが好ましい。
 また、第1の活物質100xとして、LiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物の二次粒子を、金属酸化物で被覆したものを用いてもよい。金属酸化物としては、Al、Ti、Nb、Zr、La、及びLiから選ばれる一以上の金属の酸化物を用いることができる。例えば、LiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物の二次粒子が、酸化アルミニウムで被覆された、金属酸化物被覆複合酸化物を第1の活物質100xとして用いることができる。例えば、ニッケル:コバルト:マンガン=8:1:1、ニッケル:コバルト:マンガン=9:0.5:0.5のモル比率のニッケル−コバルト−マンガン酸リチウムの二次粒子が、酸化アルミニウムで被覆された、金属酸化物被覆複合酸化物を用いることができる。ここで、被覆層は薄いことが好ましく、例えば1nm以上200nm以下、より好ましくは1nm以上100nm以下である。また、上記のニッケル−コバルト−マンガン酸リチウムとして、カルシウムを有するニッケル−コバルト−マンガン酸リチウムを有することが好ましい。
 第1の活物質100xとしては、後述の実施の形態に記載の正極活物質100を用いることができる。
 第2の活物質100yとして、酸化物、及びオリビン型の結晶構造を有するLiM2PO(M2は、Fe、Ni、Co、Mnから選ばれる一以上)の、一以上を用いることができる。酸化物の例として、酸化アルミニウム、酸化ジルコニウム、酸化ハフニウム及び、酸化ニオブ等がある。また、LiM2POの例として、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等がある。また、第2の活物質100yの粒子表面に、炭素被覆層を有していてもよい。
 導電材としては、例えば、アセチレンブラック、およびファーネスブラックなどのカーボンブラック、人造黒鉛、および天然黒鉛などの黒鉛、カーボンナノファイバー、およびカーボンナノチューブなどの炭素繊維、ならびにグラフェン化合物、のいずれか一種又は二種以上を用いることができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態3)
 本実施の形態では、図11乃至図17を用いて本発明の一態様の正極活物質について説明する。
 また、本明細書等において結晶面および方向はミラー指数で示す。結晶面および方向の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。また、結晶内の方向を示す個別方位は[ ]で、等価な方向すべてを示す集合方位は< >で、結晶面を示す個別面は( )で、等価な対称性を有する集合面は{ }でそれぞれ表現する。またR−3mをはじめとする三方晶および六方晶のミラー指数には、(hkl)だけでなく(hkil)を用いることがある。ここでiは−(h+k)である。
 また、本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお陽イオンまたは陰イオンの欠損等の欠陥があってもよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
 また、本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお結晶構造の一部に、陽イオンまたは陰イオンの欠損があってもよい。
 また、本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。例えば、LiFePOの理論容量は170mAh/g、LiCoOの理論容量は274mAh/g、LiNiOの理論容量は275mAh/g、LiMnの理論容量は148mAh/gである。
 また正極活物質中に挿入脱離可能なリチウムがどの程度残っているかを、組成式中のx、たとえばLiCoO中のx、またはLiMO中のxで示す。本明細書中のLiCoOは適宜LiMOに読み替えることができる。xは占有率ということができ、二次電池中の正極活物質の場合、x=(理論容量−充電容量)/理論容量としてもよい。たとえばLiCoOを正極活物質に用いた二次電池を219.2mAh/g充電した場合、Li0.2CoOまたはx=0.2ということができる。LiCoO中のxが小さいとは、たとえば0.1<x≦0.24をいう。
 コバルト酸リチウムが化学量論比をおよそ満たす場合、LiCoOでありリチウムサイトのLiの占有率はx=1である。また放電が終了した二次電池も、LiCoOであり、x=1といってよい。ここでいう放電が終了したとは、たとえば100mA/gの電流で、電圧が2.5V(対極リチウム)以下となった状態をいう。リチウムイオン二次電池では、リチウムサイトのリチウムの占有率がx=1となり、それ以上リチウムが入らなくなると、電圧が急激に低下する。このとき、放電が終了したといえる。一般的にLiCoOを用いたリチウムイオン二次電池では、放電電圧が2.5Vになるまでに放電電圧が急激に降下するため、上記の条件で放電が終了したとする。
 また、本明細書等において、正極活物質に挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということがある。
[正極活物質]
 図11乃至図15を用いて本発明の一態様の正極活物質について説明する。
 図11Aは本発明の一態様である正極活物質100の上面模式図である。図11A中のA−Bにおける断面模式図を図11Bに示す。
<含有元素と分布>
 正極活物質100は、リチウムと、遷移金属と、酸素と、添加元素Xと、を有する。正極活物質100はLiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物に添加元素Xが添加されたものといってもよい。
 正極活物質100が有する遷移金属としては、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。例えばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり正極活物質100が有する遷移金属としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質100は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属を含む複合酸化物を有することができる。遷移金属としてコバルトに加えてニッケルを有すると、高電圧での充電状態において結晶構造がより安定になる場合があり好ましい。
 正極活物質100が有する添加元素Xとしては、ニッケル、コバルト、マグネシウム、カルシウム、塩素、フッ素、アルミニウム、マンガン、チタン、ジルコニウム、イットリウム、バナジウム、鉄、クロム、ニオブ、ランタン、ハフニウム、亜鉛、ケイ素、硫黄、リン、ホウ素、及びヒ素から選ばれる一以上を用いることが好ましい。これらの元素が、正極活物質100の結晶構造をより安定化させる場合がある。つまり正極活物質100は、マグネシウム及びフッ素を有するコバルト酸リチウム、マグネシウム、フッ素及びチタンを有するコバルト酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト酸リチウム、マグネシウム及びフッ素を有するコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−コバルト−アルミニウム酸リチウム、マグネシウム及びフッ素を有するニッケル−マンガン−コバルト酸リチウム等を有することができる。なお、本明細書等において、添加元素Xを混合物、原料の一部などと置き換えて呼称してもよい。
 図11Bに示すように、正極活物質100は、表層部100aと、内部100bを有する。表層部100aは内部100bよりも添加元素Xの濃度が高いことが好ましい。また図11Bにグラデーションで示すように、添加元素Xは内部から表面に向かって高くなる濃度勾配を有することが好ましい。本明細書等において、表層部100aとは正極活物質100の表面から10nm程度までの領域をいう。ひび、及び/またはクラックにより生じた面も表面といってよく、図11Cに示すように当該表面から10nm程度までの領域を表層部100cと呼ぶ。また正極活物質100の表層部100a及び表層部100cより深い領域を、内部100bとする。正極活物質100が正極活物質複合体100zを形成する場合、クラックにより生じた面も、ガラス101に覆われていることが望ましい。
 本発明の一態様の正極活物質100では、充電により正極活物質100からリチウムが抜けても、コバルトと酸素の八面体からなる層状構造が壊れないよう、添加元素Xの濃度の高い表層部100a、すなわち粒子の外周部が補強されている。
 また添加元素Xの濃度勾配は、正極活物質100の表層部100a全体に均質に存在することが好ましい。表層部100aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがあり好ましくないためである。粒子の一部に応力が集中すると、そこからクラック等の欠陥が生じ、正極活物質の割れ及び充放電容量の低下につながる恐れがある。
 マグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。またマグネシウムは酸素との結合力が強いため、マグネシウムの周囲の酸素の離脱を抑制することができる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入及び離脱に悪影響を及ぼさず好ましい。しかしながら、過剰であるとリチウムの挿入及び離脱に悪影響が出る恐れがある。
 アルミニウムは3価であり、層状岩塩型の結晶構造における遷移金属サイトに存在しうる。アルミニウムは周囲のコバルトの溶出を抑制することができる。またアルミニウムは酸素との結合力が強いため、アルミニウムの周囲の酸素の離脱を抑制することができる。そのため添加元素Xとしてアルミニウムを有すると充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
 フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム離脱エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化が、フッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価と、酸化還元電位が異なることによる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの離脱及び挿入がスムースに起きやすいと言える。そのため二次電池に用いたときに充放電特性、レート特性等が向上し好ましい。
 チタン酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、抵抗の上昇を抑制できる可能性がある。なお、本明細書等において、電解液は、液体状の電解質に対応する。
 二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う容量の低下を抑制することができる。
 また、二次電池のショートは二次電池の充電動作、及び/または放電動作における不具合を引き起こすのみでなく、発熱及び発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い容量と安全性と、を両立した二次電池とすることができる。
 本発明の一態様の正極活物質100を用いた二次電池は好ましくは、高い容量、優れた充放電サイクル特性、及び安全性を同時に満たす。
 添加元素Xの濃度勾配は、例えば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)を用いて評価できる。EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ場合がある。また、EDXの面分析から、線状の領域のデータを抽出し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ場合がある。
 EDX面分析(例えば元素マッピング)により、正極活物質100の表層部100a、内部100b及び結晶粒界近傍等における、添加元素Xの濃度を定量的に分析することができる。また、EDX線分析により、添加元素Xの濃度の分布を分析することができる。
 正極活物質100についてEDX線分析をしたとき、表層部100aのマグネシウム濃度のピーク(濃度が最大値となる位置)は、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
 また正極活物質100が有するフッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部100aのフッ素濃度のピーク(濃度が最大値となる位置)は、正極活物質100の表面から中心に向かった深さ3nmまでに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
 なお、全ての添加元素Xが同様の濃度分布でなくてもよい。例えば正極活物質100が添加元素Xとしてアルミニウムを有する場合はマグネシウム及びフッ素と若干異なる分布となっていることが好ましい。例えばEDX線分析をしたとき、表層部100aのアルミニウム濃度のピーク(濃度が最大値となる位置)よりも、マグネシウム濃度のピーク(濃度が最大値となる位置)が表面に近いことが好ましい。例えばアルミニウム濃度のピークは正極活物質100の表面から中心に向かった深さ0.5nm以上20nm以下に存在することが好ましく、深さ1nm以上5nm以下に存在することがより好ましい。
 また正極活物質100について線分析または面分析をしたとき、粒界近傍における添加元素Xと遷移金属M1の比(X/M1)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。例えば添加元素Xがマグネシウム、遷移金属M1がコバルトであるときは、マグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。
 なお上述したように正極活物質100が有する添加元素Xは、過剰であるとリチウムの挿入及び離脱に悪影響が出る恐れがある。また二次電池としたときに抵抗の上昇、容量の低下等を招く恐れもある。一方、不足であると表層部100a全体に分布せず、結晶構造を保持する効果が不十分になる恐れがある。このように添加元素Xは正極活物質100において適切な濃度となるように調整する。
 そのため、例えば正極活物質100は、過剰な添加元素Xが偏在する領域を有していてもよい。このような領域の存在により、過剰な添加元素Xがそれ以外の領域から除かれ、正極活物質100の内部及び表層部の大部分において適切な添加元素Xの濃度とすることができる。正極活物質100の内部及び表層部の大部分において適切な添加元素Xの濃度とすることで、二次電池としたときの抵抗の上昇、容量の低下等を抑制することができる。二次電池の抵抗の上昇を抑制できることは、特に高レートでの充放電において極めて好ましい特性である。
 また過剰な添加元素Xが偏在している領域を有する正極活物質100では、作製工程においてある程度過剰に添加元素Xを混合することが許容される。そのため生産におけるマージンが広くなり好ましい。
 なお本明細書等において、偏在とはある元素の濃度が、ある領域Aと、ある領域Bとで異なることをいう。偏析、析出、不均一、偏り、濃度が高いまたは濃度が低い、などといってもよい。
<結晶構造>
 コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料として例えば、LiM1O(M1は、Fe、Ni、Co、Mnから選ばれる一以上)で表される複合酸化物が挙げられる。
 遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
 ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧における充放電の耐性がより優れる場合があり好ましい。
 図12乃至図17を用いて、正極活物質の構造について説明する。図12乃至図17では、正極活物質が有する遷移金属としてコバルトを用いる場合について述べる。
<従来の正極活物質>
 図14に示す正極活物質は、ハロゲン及びマグネシウムが添加されないコバルト酸リチウム(LiCoO、LCO)である。図14に示すコバルト酸リチウムは、充電深度によって結晶構造が変化する。換言すると、LixCoOと表記する場合において、リチウムサイトのリチウムの占有率xに応じて結晶構造が変化する。
 図14に示すように、x=1の状態(放電状態)であるコバルト酸リチウムは、空間群R−3mの結晶構造を有する領域を有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造を、O3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面方向に連続した構造をいうこととする。
 またx=0のときは、空間群P−3m1の結晶構造を有し、ユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型結晶構造と呼ぶ場合がある。
 またx=0.12程度のときのコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、P−3m1(O1)のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際のリチウムの挿入離脱にはムラが生じうるため、実験的にはx=0.25程度からH1−3型結晶構造が観測される。なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図14をはじめ本明細書では、他の構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
 H1−3型結晶構造は一例として、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O(0、0、0.27671±0.00045)、O(0、0、0.11535±0.00045)と表すことができる。O及びOはそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルト及び2つの酸素を用いたユニットセルにより表される。一方、後述するように、本発明の一態様のO3’型結晶構造は好ましくは、1つのコバルト及び1つの酸素を用いたユニットセルにより表される。これは、O3’型結晶構造の場合とH1−3型構造の場合では、コバルトと酸素との対称性が異なり、O3’型結晶構造の方が、H1−3型構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択は例えば、XRDパターンのリートベルト解析において、GOF(goodness of fit)の値がより小さくなるように選択すればよい。
 充電電圧がリチウム金属の酸化還元電位を基準に4.6V以上になるような高電圧の充電、あるいはx=0.24以下になるような深い深度の充電と、放電とを繰り返すと、コバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
 しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図14に点線及び両矢印で示すように、H1−3型結晶構造では、CoO層がR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
 さらに体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のO3型結晶構造の体積の差は3.0%以上である。
 加えて、H1−3型結晶構造が有する、P−3m1(O1)のようなCoO層が連続した構造は不安定である可能性が高い。
 そのため、高電圧の充放電を繰り返すとコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためだと考えられる。
<本発明の一態様の正極活物質>
<内部>
 本発明の一態様の正極活物質100は、高電圧の充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。さらに、体積の変化を小さくすることができる。よって、本発明の一態様の正極活物質は、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質は、高電圧の充電状態において安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質は、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。そのような場合には安全性がより向上するため、好ましい。
 本発明の一態様の正極活物質では、十分に放電された状態と、高電圧で充電された状態における、結晶構造の変化及び同数の遷移金属原子あたりで比較した場合の体積の差が小さい。
 正極活物質100の充放電前後の結晶構造を、図12に示す。正極活物質100はリチウムと、遷移金属としてコバルトと、酸素と、を有する複合酸化物である。上記に加えて添加元素Xとしてマグネシウムを有することが好ましい。また添加元素Xとしてフッ素、塩素等のハロゲンを有することが好ましい。
 図12のx=1(放電状態)の結晶構造は、図14と同じR−3m(O3)である。一方、本発明の一態様の正極活物質100は、十分に充電された充電深度の場合、H1−3型結晶構造とは異なる構造の結晶を有する。本構造は、空間群R−3mに帰属され、コバルト、マグネシウム等のイオンが酸素6配位位置を占める。また、本構造のCoO層の対称性はO3型と同じである。よって、本構造を本明細書等ではO3’型の結晶構造と呼ぶ。なお、図12に示されているO3’型結晶構造の図では、コバルト原子の対称性と酸素原子の対称性について説明するために、リチウムの表示を省略しているが、実際はCoO層の間にコバルトに対して例えば20原子%以下のリチウムが存在する。
 なおO3’型結晶構造では、リチウムなどの軽元素は酸素4配位位置を占める場合がありうる。
 またO3’型結晶構造は、層間にランダムにリチウムを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
 本発明の一態様の正極活物質100では、高電圧で充電し多くのリチウムが離脱したときの、結晶構造の変化が、従来の正極活物質よりも抑制されている。例えば、図12中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
 より詳細に説明すれば、本発明の一態様の正極活物質100は、充電電圧が高い場合にも構造の安定性が高い。例えば、従来の正極活物質においてはH1−3型結晶構造となる充電電圧、例えばリチウム金属の電位を基準として4.6V程度の電圧においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.65V乃至4.7V程度の電圧においてもO3’型結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。なお、二次電池において例えば負極活物質として黒鉛を用いる場合には、例えば二次電池の電圧が4.3V以上4.5V以下においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.35V以上4.55V以下においてもO3’型結晶構造を取り得る領域が存在する。
 そのため、本発明の一態様の正極活物質100においては、高電圧で充放電を繰り返しても結晶構造が崩れにくい。
 また正極活物質100では、x=1のO3型結晶構造と、x=0.2のO3’型結晶構造のユニットセルあたりの体積の差は2.5%以下、より詳細には2.2%以下である。
 なおO3’型結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
 CoO層間、つまりリチウムサイトにランダムかつ希薄に存在する添加元素X、例えばマグネシウムは、CoO層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、O3’型結晶構造になりやすい。そのためマグネシウムは本発明の一態様の正極活物質100の少なくとも一部の表層部に分布しており、さらに正極活物質100の表層部の全体に分布していることが好ましい。またマグネシウムを正極活物質100の表層部の全体に分布させるために、本発明の一態様の正極活物質100の作製工程において、加熱処理を行うことが好ましい。
 しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じて添加元素X、例えばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、高電圧充電状態において、R−3mの構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
 そこで、マグネシウムを正極活物質100の表層部の全体に分布させるための加熱処理よりも前に、コバルト酸リチウムにフッ素化合物等のハロゲン化合物を加えておくことが好ましい。ハロゲン化合物を加えることでコバルト酸リチウムの融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを正極活物質100の表層部の全体に分布させることが容易となる。さらにフッ素化合物が存在すれば、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
 なお、マグネシウム濃度を所望の値以上に高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質が有するマグネシウムの原子数は、コバルト等の遷移金属の原子数の0.001倍以上0.1倍以下が好ましく、0.01倍より大きく0.04倍未満がより好ましく、0.02倍程度がさらに好ましい。ここで示すマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
 コバルト酸リチウムにコバルト以外の金属(以下、添加元素X)として、例えばニッケル、アルミニウム、マンガン、チタン、バナジウム及びクロムから選ばれる一以上の金属を添加してもよく、特にニッケル及びアルミニウムの一以上を添加することが好ましい。マンガン、チタン、バナジウム及びクロムは安定に4価であることで安定な場合があり、構造安定性への寄与が高い場合がある。添加元素Xを添加することにより、高電圧での充電状態において結晶構造がより安定になる場合がある。ここで、本発明の一態様の正極活物質において、添加元素Xは、コバルト酸リチウムの結晶性を大きく変えることのない濃度で添加されることが好ましい。例えば、前述のヤーン・テラー効果等を発現しない程度の量であることが好ましい。
 ニッケル、マンガンをはじめとする遷移金属及びアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
 本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の容量が減少することがある。その要因として例えば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少する可能性が考えられる。本発明の一態様の正極活物質が添加元素Xとして、マグネシウムに加えて、ニッケルを有することにより、充放電サイクル特性を高めることができる場合がある。また本発明の一態様の正極活物質が添加元素Xとして、マグネシウムに加えて、アルミニウムを有することにより、充放電サイクル特性を高めることができる場合がある。また、添加元素Xとして、マグネシウム、ニッケル及びアルミニウムを有する本発明の一態様の正極活物質とすることにより、充放電サイクル特性を高めることができる場合がある。
 以下に、添加元素Xとして、マグネシウム、ニッケル及びアルミニウムを有する本発明の一態様の正極活物質の元素の濃度を検討する。
 本発明の一態様の正極活物質が有するニッケルの原子数は、コバルトの原子数の10%以下が好ましく、7.5%以下がより好ましく、0.05%以上4%以下がさらに好ましく、0.1%以上2%以下が特に好ましい。ここで示すニッケルの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 高電圧で充電した状態を長時間保持すると、正極活物質の構成元素が電解液に溶出し、結晶構造が崩れる恐れが生じる。しかし上記の割合でニッケルを有することで、正極活物質100からの構成元素の溶出を抑制できる場合がある。
 本発明の一態様の正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下がより好ましい。ここで示すアルミニウムの濃度は例えば、ICP−MS等を用いて正極活物質の全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
 また、本発明の一態様の添加元素Xを有する正極活物質は、添加元素Xとしてリンを用いることが好ましい。また、本発明の一態様の正極活物質は、リンと酸素を含む化合物を有することがより好ましい。
 本発明の一態様の正極活物質が添加元素Xとしてリンを含む化合物を有することにより、高温かつ高電圧の充電状態を長時間保持した場合において、ショートが生じづらい場合がある。
 本発明の一態様の正極活物質が添加元素Xとしてリンを有する場合には、電解液の分解により発生したフッ化水素とリンが反応し、電解液中のフッ化水素濃度が低下する可能性がある。
 電解液がリチウム塩としてLiPFを有する場合、加水分解により、フッ化水素が発生する場合がある。また、正極の構成要素として用いられるPVDFとアルカリとの反応によりフッ化水素が発生する場合もある。電解液中のフッ化水素濃度が低下することにより、集電体の腐食、及び/または被膜はがれを抑制できる場合がある。また、PVDFのゲル化、及び/または不溶化による接着性の低下を抑制できる場合がある。
 本発明の一態様の正極活物質100が添加元素Xとしてリン及びマグネシウムを有する場合、高電圧の充電状態における安定性が極めて高い。添加元素Xとしてリン及びマグネシウムを有する場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましく、加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。ここで示すリン及びマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質100の全体の元素分析を行った値であってもよいし、正極活物質100の作製の過程における原料の配合の値に基づいてもよい。
 正極活物質100がクラックを有する場合、その内部にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制される場合がある。
 なお図12において、O3型結晶構造とO3’型結晶構造では酸素原子の対称性がわずかに異なる。具体的にはO3型結晶構造では酸素原子が点線に沿って整列しているのに対して、O3’型結晶構造の酸素原子は厳密には整列しない。これはO3’型結晶構造ではリチウムの減少に伴い4価のコバルトが増加し、ヤーン・テラーひずみが大きくなりCoOの8面体構造がゆがんだことによる。またリチウムの減少に伴いCoO層の酸素同士の反発が強くなったことも影響する。
<表層部100a>
 マグネシウムは本発明の一態様の正極活物質100の表層部の全体に分布していることが好ましく、これに加えて表層部100aのマグネシウム濃度が、全体の平均よりも高いことが好ましい。例えば、XPS等で測定される表層部100aのマグネシウム濃度が、ICP−MS等で測定される全体の平均のマグネシウム濃度よりも高いことが好ましい。
 また、本発明の一態様の正極活物質100がコバルト以外の元素、例えばニッケル、アルミニウム、マンガン、鉄及びクロムから選ばれる一以上の金属を有する場合において、該金属の粒子表面近傍における濃度が、全体の平均よりも高いことが好ましい。例えば、XPS等で測定される表層部100aのコバルト以外の元素の濃度が、ICP−MS等で測定される全体の平均における該元素の濃度よりも高いことが好ましい。
 正極活物質100の表層部は、いうなれば全て結晶欠陥である上に、充電時には表面からリチウムが抜けていくので内部よりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい。表層部100aのマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部100aのマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
 またフッ素等のハロゲンも、本発明の一態様の正極活物質100の表層部100aにおける濃度が、全体の平均よりも高いことが好ましい。電解液に接する領域である表層部100aにハロゲンが存在することで、フッ酸に対する耐食性を効果的に向上させることができる。
 このように本発明の一態様の正極活物質100の表層部100aは内部100bよりも、添加元素、例えばマグネシウム及びフッ素の濃度が高い、内部と異なる組成であることが好ましい。またその組成として常温で安定な結晶構造をとることが好ましい。そのため、表層部100aは内部100bと異なる結晶構造を有していてもよい。例えば、本発明の一態様の正極活物質100の表層部100aの少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部100aと内部100bが異なる結晶構造を有する場合、表層部100aと内部100bの結晶の配向が概略一致していることが好ましい。
 層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。O3’型結晶も、陰イオンは立方最密充填構造をとると推定される。なお、本明細書等では、陰イオンを有するA層、B層、及びC層が、ABCABCのように互いにずれて積み重なる構造であれば、立方最密充填構造と呼ぶこととする。そのため陰イオンは厳密に立方格子でなくてもよい。同時に現実の結晶は必ず欠陥を有するため、分析結果が必ずしも理論通りでなくてもよい。たとえば電子回折またはTEM像等のFFT(高速フーリエ変換)において、理論上の位置と若干異なる位置にスポットが現れてもよい。たとえば理論上の位置との方位が5度以下、または2.5度以下であれば立方最密充填構造をとるといってよい。
 層状岩塩型結晶と岩塩型結晶が接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。
 または、以下のように説明することもできる。立方晶の結晶構造の(111)面における陰イオンは三角形形状の配列を有する。層状岩塩型は空間群R−3mであって、菱面体構造であるが、構造の理解を容易にするため一般に複合六方格子で表現され、層状岩塩型の(0001)面は六角格子を有する。立方晶(111)の三角格子は、層状岩塩型の(0001)面の六角格子と同様の原子配列を有する。両者の格子が整合性を持つことを、立方最密充填構造の向きが揃うということができる。
 ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3m(最も単純な対称性を有する岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
 二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像、電子回折、TEM像等のFFT等から判断することができる。X線回折(XRD)、中性子線回折等も判断の材料にすることができる。
 図16に、層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているTEM像の例を示す。TEM像、STEM像、HAADF−STEM像、ABF−STEM像等では、結晶構造を反映した像が得られる。
 たとえばTEMの高分解能像等では、結晶面に由来するコントラストが得られる。電子線の回折および干渉によって、たとえば層状岩塩型の複合六方格子のc軸と垂直に電子線が入射した場合、(0003)面に由来するコントラストが明線と暗線の繰り返しとして得られる。そのためTEM像において明線と暗線の繰り返しが観察され、明線同士(たとえば図16に示すLRSとLLRS)の角度が5度以下、または2.5度以下である場合、結晶面が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
 またHAADF−STEM像では、原子番号に応じたコントラストが得られ、原子番号が大きい元素ほど明るく観察される。たとえば空間群R−3mに属する層状岩塩型のコバルト酸リチウムの場合、コバルト(原子番号27)が最も原子番号が大きいため、コバルト原子の位置で電子線が強く散乱され、コバルト原子の配列が明線もしくは強い輝度の点の配列として観察される。そのため層状岩塩型の結晶構造を有するコバルト酸リチウムをc軸と垂直に観察した場合、c軸と垂直にコバルト原子の配列が明線もしくは強い輝度の点の配列として観察され、リチウム原子、酸素原子の配列は暗線もしくは輝度の低い領域として観察される。コバルト酸リチウムの添加元素としてフッ素(原子番号9)およびマグネシウム(原子番号12)を有する場合も同様である。
 そのためHAADF−STEM像において、結晶構造の異なる二つの領域で明線と暗線の繰り返しが観察され、明線同士の角度が5度以下、または2.5度以下である場合、原子の配列が概略一致している、すなわち結晶の配向が概略一致していると判断することができる。同様に、暗線同士の角度が5度以下、または2.5度以下である場合も、結晶の配向が概略一致していると判断することができる。
 なおABF−STEMでは原子番号が小さい元素ほど明るく観察されるが、原子番号に応じたコントラストが得られる点ではHAADF−STEMと同様であるため、HAADF−STEM像と同様に結晶の配向を判断することができる。
 図17Aに層状岩塩型結晶LRSと岩塩型結晶RSの配向が概略一致しているSTEM像の例を示す。岩塩型結晶RSの領域のFFTを図17Bに、層状岩塩型結晶LRSの領域のFFTを図17Cに示す。図17Bおよび図17Cの左に文献値を、右に実測値を示す。Oを付したスポットは0次回折である。
 図17BでAを付したスポットは立方晶の11−1反射に由来するものである。図17CでAを付したスポットは層状岩塩型の0003反射に由来するものである。ここで、図17BのAOを通る直線と、図17CのAOを通る直線と、が概略平行であることがわかる。すなわち、図17Bおよび図17Cから、立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致していることがわかる。ここでいう概略一致および概略平行とは、角度が5度以下、または2.5度以下であることをいう。
 このようにFFTおよび電子回折では、層状岩塩型結晶と岩塩型結晶の配向が概略一致していると、層状岩塩型の〈0003〉方位またはこれと等価な面方位と、岩塩型の〈11−1〉方位またはこれと等価な面方位と、が概略一致する場合がある。このとき、これらの逆格子点はスポット状であること、つまり他の逆格子点と連続していないことが好ましい。逆格子点がスポット状で、他の逆格子点と連続していなことは、結晶性が高いことを意味する。
 また、上述のように立方晶の11−1反射の方位と、層状岩塩型の0003反射の方位と、が概略一致している場合、電子線の入射方位によっては、層状岩塩型の0003反射の方位とは異なる逆格子空間上に、層状岩塩型の0003反射由来ではないスポットが観測されることがある。例えば図17CでBを付したスポットは、層状岩塩型の10−14反射に由来するものである。これは、層状岩塩型の0003反射由来の逆格子点(図17CのA)の方位から、52°以上56°以下の角度であり(すなわち∠AOBが52°以上56°以下であり)、dが0.19nm以上0.21nm以下の箇所に観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、0003と1014と等価な逆格子点でも良い。
 同様に立方晶の11−1が観測された方位とは別の逆格子空間上に、立方晶の11−1由来ではないスポットが観測されることがある。例えば、図17BでBを付したスポットは、立方晶の200反射に由来するものである。これは、立方晶の11−1由来の反射(図17BのA)の方位から、54°以上56°以下の角度である(すなわち∠AOBが54°以上56°以下である)箇所に回折スポットが観測されることがある。なおこの指数は一例であり、必ずしもこれに一致している必要は無い。例えば、11−1と200と等価な逆格子点でも良い。
 なお、コバルト酸リチウムをはじめとする層状岩塩型の正極活物質は、(0003)面およびこれと等価な面、並びに(10−14)面およびこれと等価な面が結晶面として現れやすいことが知られている。そのため正極活物質の形状をSEM等でよく観察することで、(0003)面が観察しやすいように、たとえばTEM等において電子線が[1−210]入射となるように観察サンプルをFIB等で薄片加工することが可能である。結晶の配向の一致について判断したいときは、層状岩塩型の(0003)面が観察しやすいよう薄片化することが好ましい。
 ただし表層部100aがMgOのみ、またはMgOとCoO(II)が固溶した構造のみでは、リチウムの挿入脱離が難しくなってしまう。そのため表層部100aは少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。また、マグネシウムよりもコバルトの濃度が高いことが好ましい。
 また、添加元素Xは本発明の一態様の正極活物質100の粒子の表層部100aに位置することが好ましい。例えば本発明の一態様の正極活物質100は、添加元素Xを有する被膜に覆われていてもよい。
<粒界>
 本発明の一態様の正極活物質100が有する添加元素Xは、内部にランダムかつ希薄に存在していてもよいが、一部は粒界に偏析していることがより好ましい。
 換言すれば、本発明の一態様の正極活物質100の結晶粒界及びその近傍の添加元素Xの濃度も、内部の他の領域よりも高いことが好ましい。
 結晶粒界は面欠陥として考えることができる。そのため、粒子表面と同様に、不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界及びその近傍の添加元素Xの濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
 また、結晶粒界及びその近傍の添加元素Xの濃度が高い場合、本発明の一態様の正極活物質100の粒子の結晶粒界に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍で添加元素Xの濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
 なお本明細書等において、結晶粒界の近傍とは、粒界から10nm程度までの領域をいうこととする。
<粒子径>
 本発明の一態様の正極活物質100の粒子径が大きすぎるとリチウムの拡散が難しくなる、又は集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、平均粒子径(D50:メディアン径ともいう。)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。
<分析方法>
 ある正極活物質が、高電圧で充電されたときO3’型結晶構造を示す本発明の一態様の正極活物質100であるか否かは、高電圧で充電された正極を、XRD、電子回折、中性子線回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さ及び結晶の配向性を比較できる、格子の周期性歪み及び結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
 本発明の一態様の正極活物質100は、これまで述べたように高電圧で充電した状態と放電状態とで結晶構造の変化が少ないという特徴を有する。高電圧で充電した状態で、放電状態との変化が大きな結晶構造が50wt%以上を占める材料は、高電圧の充放電に耐えられないため好ましくない。そして添加元素を添加するだけでは目的の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウム及びフッ素を有するコバルト酸リチウム、という点で共通していても、高電圧で充電した状態でO3’型結晶構造が60wt%以上になる場合と、H1−3型結晶構造が50wt%以上を占める場合と、がある。また、所定の電圧では、O3’型結晶構造がほぼ100wt%になり、さらに当該所定の電圧をあげるとH1−3型結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100であるか否かを判断するには、XRDをはじめとする結晶構造についての解析が必要である。
 ただし、高電圧で充電した状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型結晶構造からH1−3型結晶構造に変化する場合がある。そのため、サンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
<充電方法>
 ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するための高電圧充電は、例えば対極リチウムでコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。
 より具体的には、正極には、正極活物質、導電材及びバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
 対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧及び電位は、特に言及しない場合、正極の電位である。
 電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
 セパレータには厚さ25μmのポリプロピレンを用いることができる。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
 上記条件で作製したコインセルを、4.6V、0.5Cで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電する。なおここでは1Cは137mA/gとする。温度は25℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、高電圧で充電された正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
<XRD>
 O3’型結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図13及び図15に示す。また比較のためx=1のLiCoO(O3)と、x=0のCoO(O1)の結晶構造から計算される理想的なXRDパターンも示す。なお、LiCoO(O3)及びCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。O3’型結晶構造の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
 図13に示すように、O3’型結晶構造では、2θ=19.30±0.20°(19.10°以上19.50°以下)、及び2θ=45.55±0.10°(45.45°以上45.65°以下)に回折ピークが出現する。より詳しく述べれば、2θ=19.30±0.10°(19.20°以上19.40°以下)、及び2θ=45.55±0.05°(45.50°以上45.60°以下)に鋭い回折ピークが出現する。しかし図15に示すようにH1−3型結晶構造及びCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため、高電圧で充電された状態で2θ=19.30±0.20°、及び2θ=45.55±0.10°のピークが出現することは、本発明の一態様の正極活物質100の特徴であるといえる。
 これは、x=1の結晶構造と、高電圧充電状態の結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、両者の主な回折ピークのうち2つ以上、より好ましくは3つ以上において、ピークが出現する位置の差が、2θ=0.7°以下、より好ましくは2θ=0.5°以下であるということができる。
 なお、本発明の一態様の正極活物質100は高電圧で充電したときO3’型結晶構造を有するが、正極活物質100のすべてがO3’型結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型結晶構造が50wt%以上であることが好ましく、60wt%以上であることがより好ましく、66wt%以上であることがさらに好ましい。O3’型結晶構造が50wt%以上、より好ましくは60wt%以上、さらに好ましくは66wt%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
 また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型結晶構造が35wt%以上であることが好ましく、40wt%以上であることがより好ましく、43wt%以上であることがさらに好ましい。
 また、正極活物質の粒子が有するO3’型結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/10程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、高電圧充電状態においてに明瞭なO3’型結晶構造のピークが確認できる。一方単純なLiCoOでは、一部がO3’型結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
 本発明の一態様の正極活物質においては、前述の通り、ヤーン・テラー効果の影響が小さいことが好ましい。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有し、遷移金属としてコバルトを主として有することが好ましい。また、本発明の一態様の正極活物質において、ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に、先に述べた添加元素Xを有してもよい。
 格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とは例えば、二次電池の正極を作製する前の粉体の状態であってもよい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。
 あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。
 なお粉体XRDパターンに出現するピークは、正極活物質100の体積の大半を占める、正極活物質100の内部100bの結晶構造を反映したものである。表層部100a等の結晶構造は、正極活物質100の断面の電子回折等で分析することができる。
<XPS>
 X線光電子分光(XPS)では、表面から2乃至8nm程度(通常5nm程度)の深さまでの領域の分析が可能であるため、表層部100aの約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
 XPS分析を行う場合には例えば、X線源として単色化アルミニウムを用いることができる。また、取出角は例えば45°とすればよい。
 また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、及びフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウム及びフッ化マグネシウム以外の結合であることが好ましい。
 さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
 表層部100aに多く存在することが好ましい添加元素X、例えばマグネシウム及びアルミニウムは、XPS等で測定される濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される濃度よりも高いことが好ましい。
 マグネシウム及びアルミニウムは、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部100aの濃度が、内部100bの濃度に比べて高いことが好ましい。加工は例えばFIBにより行うことができる。
 XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析によるマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
 一方、遷移金属に含まれるニッケルは表層部100aに偏在せず、正極活物質100全体に分布していることが好ましい。ただし前述した過剰な添加元素Xが偏在する領域が存在する場合はこの限りではない。
<表面粗さと比表面積>
 本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部100aにおける添加元素Xの分布が良好であることを示す一つの要素である。なお、正極活物質100の作製工程において、添加元素Xを添加する前のコバルト酸リチウムまたは、ニッケル−コバルト−マンガン酸リチウムに対し、初期加熱を行った場合には、高電圧での充放電の繰り返し特性が顕著に優れるため、正極活物質100として特に好ましい。
 また、正極活物質100の表面がなめらかで凹凸が少ないことで、正極活物質100の表面での安定性が向上し、ピットの発生を抑制できる可能性がある。
 表面がなめらかで凹凸が少ないことは、例えば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。
 例えば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
 まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。例えばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらにmagic handツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根(RMS)表面粗さを求める。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。
 本実施の形態の正極活物質100の粒子表面においては、ラフネスの指標である二乗平均平方根(RMS)表面粗さは10nm以下、3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根(RMS)表面粗さであることが好ましい。
 なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、例えば「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、例えばMicrosoft Office Excelを用いることができる。
 また例えば、定容法によるガス吸着法にて測定した実際の比表面積Aと、理想的な比表面積Aとの比からも、正極活物質100の表面のなめらかさを数値化することができる。
 理想的な比表面積Aは、すべての粒子の直径がD50と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。
 メディアン径D50は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、例えば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。
 本発明の一態様の正極活物質100は、メディアン径D50から求めた理想的な比表面積Aと、実際の比表面積Aの比A/Aが1以上2以下であることが好ましい。
 本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態4)
 本実施の形態では、先の実施の形態で説明した作製方法によって作製された正極または負極を有する二次電池の複数種類の形状の例について説明する。
[コイン型二次電池]
 コイン型の二次電池の一例について説明する。図18Aはコイン型(単層偏平型)の二次電池の分解斜視図であり、図18Bは、外観図であり、図18Cは、その断面図である。コイン型の二次電池は主に小型の電子機器に用いられる。本明細書等において、コイン型電池は、ボタン型電池を含む。
 図18Aでは、わかりやすくするために部材の重なり(上下関係、及び位置関係)がわかるように模式図としている。従って図18Aと図18Bは完全に一致する対応図とはしていない。
 図18Aでは、正極304、セパレータ310、負極307、スペーサ322、ワッシャー312を重ねている。これらを負極缶302と正極缶301で封止している。なお、図18Aにおいて、封止のためのガスケットは図示していない。スペーサ322、ワッシャー312は、正極缶301と負極缶302を圧着する際に、内部を保護または缶内の位置を固定するために用いられている。スペーサ322、ワッシャー312はステンレスまたは絶縁材料を用いる。
 正極集電体305上に正極活物質層306が形成された積層構造を正極304としている。
 正極と負極の短絡を防ぐため、セパレータ310と、リング状絶縁体313を正極304の側面及び上面を覆うようにそれぞれ配置する。セパレータ310は、正極304よりも広い平面面積を有している。
 図18Bは、完成したコイン型の二次電池の斜視図である。
 コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。また、負極307は、積層構造に限定されず、リチウム金属箔またはリチウムとアルミニウムの合金箔を用いてもよい。
 なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
 正極缶301、負極缶302には、電解質に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解質などによる腐食を防ぐため、ニッケルおよびアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
 これら負極307、正極304およびセパレータ310を電解液に浸し、図18Cに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
 上記の構成を有することで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れたコイン型の二次電池300とすることができる。なお、負極307、正極304の間に固体電解質層を有する二次電池とする場合にはセパレータ310を不要とすることもできる。
[円筒型二次電池]
 円筒型の二次電池の例について図19A及び図19Bを参照して説明する。図19Bは、円筒型の二次電池の断面を模式的に示した図である。円筒型の二次電池616は、図19A及び図19Bに示すように、上面に正極キャップ(電池蓋)601を有し、側面及び底面に電池缶(外装缶)602を有している。これら正極キャップ601と電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
 中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子は中心軸を中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金、およびこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルおよびアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
 円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。なお図19A乃至図19Dでは円筒の直径よりも円筒の高さの方が大きい二次電池616を図示したが、これに限らない。円筒の直径が、円筒の高さよりも大きい二次電池としてもよい。このような構成により、たとえば二次電池の小型化を図ることができる。
 前述の実施の形態で得られる負極570aを負極606に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極604に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。
 正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構613に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構613は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構613は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
 図19Cは蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有する。それぞれの二次電池の正極は、絶縁体625で分離された導電体624に接触し、電気的に接続されている。導電体624は配線623を介して、制御回路620に電気的に接続されている。また、それぞれの二次電池の負極は、配線626を介して制御回路620に電気的に接続されている。制御回路620として、過充電または過放電を防止する保護回路等を適用することができる。
 図19Dは、蓄電システム615の一例を示す。蓄電システム615は複数の二次電池616を有し、複数の二次電池616は、導電板628及び導電板614の間に挟まれている。複数の二次電池616は、配線627により導電板628及び導電板614と電気的に接続される。複数の二次電池616は、並列接続されていてもよいし、直列接続されていてもよい。複数の二次電池616を有する蓄電システム615を構成することで、大きな電力を取り出すことができる。
 複数の二次電池616が、並列に接続された後、さらに直列に接続されてもよい。
 複数の二次電池616の間に温度制御装置を有していてもよい。二次電池616が過熱されたときは、温度制御装置により冷却し、二次電池616が冷えすぎているときは温度制御装置により加熱することができる。そのため蓄電システム615の性能が外気温に影響されにくくなる。
 また、図19Dにおいて、蓄電システム615は制御回路620に配線621及び配線622を介して電気的に接続されている。配線621は導電板628を介して複数の二次電池616の正極に、配線622は導電板614を介して複数の二次電池616の負極に、それぞれ電気的に接続される。
[二次電池の他の構造例]
 二次電池の構造例について図20及び図21を用いて説明する。
 図20Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液中に浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図20Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
 なお、図20Bに示すように、図20Aに示す筐体930を複数の材料によって形成してもよい。例えば、図20Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
 筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
 さらに、捲回体950の構造について図20Cに示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層された積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
 また、図21A乃至図21Cに示すような捲回体950aを有する二次電池913としてもよい。図21Aに示す捲回体950aは、負極931と、正極932と、セパレータ933と、を有する。負極931は負極活物質層931aを有する。正極932は正極活物質層932aを有する。
 前述の実施の形態で得られる負極570aを負極606に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極932に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池913とすることができる。
 セパレータ933は、負極活物質層931aおよび正極活物質層932aよりも広い幅を有し、負極活物質層931aおよび正極活物質層932aと重畳するように捲回されている。また正極活物質層932aよりも負極活物質層931aの幅が広いことが安全性の点で好ましい。またこのような形状の捲回体950aは安全性および生産性がよく好ましい。
 図21Bに示すように、負極は端子951と電気的に接続される。端子951は端子911aと電気的に接続される。また正極は端子952と電気的に接続される。端子952は端子911bと電気的に接続される。
 図21Cに示すように、筐体930により捲回体950aおよび電解液が覆われ、二次電池913となる。筐体930には安全弁、過電流保護素子等を設けることが好ましい。安全弁は、電池破裂を防止するため、筐体930の内部が所定の内圧で開放する弁である。
 図21Bに示すように二次電池913は複数の捲回体950aを有していてもよい。複数の捲回体950aを用いることで、より充放電容量の大きい二次電池913とすることができる。図21Aおよび図21Bに示す二次電池913の他の要素は、図20A乃至図20Cに示す二次電池913の記載を参酌することができる。
<ラミネート型二次電池>
 次に、ラミネート型の二次電池の例について、外観図の一例を図22A及び図22Bに示す。図22A及び図22Bは、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
 図23Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積および形状は、図23Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
 ここで、図22Aに外観図を示すラミネート型二次電池の作製方法の一例について、図23B及び図23Cを用いて説明する。
 まず、負極506、セパレータ507及び正極503を積層する。図23Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。負極とセパレータと正極からなる積層体とも呼べる。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
 次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
 次に、図23Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
 次に、外装体509に設けられた導入口から、電解液を外装体509の内側へ導入する。電解液の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
 前述の実施の形態で得られる負極570aを負極606に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極503に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた二次電池500とすることができる。
[電池パックの例]
 アンテナを用いて無線充電が可能な本発明の一態様の二次電池パックの例について、図24A乃至図24Cを用いて説明する。
 図24Aは、二次電池パック531の外観を示す図であり、厚さの薄い直方体形状(厚さのある平板形状とも呼べる)である。図24Bは二次電池パック531の構成を説明する図である。二次電池パック531は、回路基板540と、二次電池513と、を有する。二次電池513には、ラベル529が貼られている。回路基板540は、シール515により固定されている。また、二次電池パック531は、アンテナ517を有する。
 二次電池513の内部は、捲回体を有する構造にしてもよいし、積層体を有する構造にしてもよい。
 二次電池パック531において例えば、図24Bに示すように、回路基板540上に、制御回路590を有する。また、回路基板540は、端子514と電気的に接続されている。また回路基板540は、アンテナ517、二次電池513の正極リード及び負極リードの一方551、正極リード及び負極リードの他方552と電気的に接続される。
 あるいは、図24Cに示すように、回路基板540上に設けられる回路システム590aと、端子514を介して回路基板540に電気的に接続される回路システム590bと、を有してもよい。
 なお、アンテナ517はコイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ517は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ517を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
 二次電池パック531は、アンテナ517と、二次電池513との間に層519を有する。層519は、例えば二次電池513による電磁界を遮蔽することができる機能を有する。層519としては、例えば磁性体を用いることができる。
 本実施の形態の内容は他の実施の形態の内容と自由に組み合わせることができる。
(実施の形態5)
 本実施の形態では、前述の実施の形態で得られる正極活物質複合体100zを用いて全固体電池を作製する例を示す。
 図25Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
 正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、前述の実施の形態で得られる正極活物質複合体100zを用いている。また正極活物質層414は、導電材およびバインダを有していてもよい。
 固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
 負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電材およびバインダを有していてもよい。なお、負極活物質431として金属リチウムを用いる場合は粒子にする必要がないため、図25Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
 固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
 硫化物系固体電解質には、チオリシコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
 酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−YAlTi2−Y(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
 ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムまたはポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
 また、異なる固体電解質を混合して用いてもよい。
 中でも、NASICON型結晶構造を有するLi1−xAlTi2−x(PO(0<x<1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物において、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を指す。
〔外装体と二次電池の形状〕
 本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
 例えば図26は、全固体電池の材料を評価するセルの一例である。
 図26Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじまたは蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
 評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図26Bである。
 評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図26Cに示す。なお、図26A乃至図26Cにおいて同じ箇所には同じ符号を用いる。
 正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
 また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージまたは樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
 図27Aに、図26と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図27Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
 図27A中の一点破線で切断した断面の一例を図27Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料およびセラミックを用いることができる。
 外部電極771は、電極層773aを介して正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して負極750cと電気的に接続され、負極端子として機能する。
 前述の実施の形態で得られる正極活物質複合体100zを用いることで、高エネルギー密度かつ良好な出力特性をもつ全固体二次電池を実現することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態6)
 本実施の形態は、円筒型の二次電池である図19Dとは異なる例である。図28Cを用いて電気自動車(EV)に適用する例を示す。
 電気自動車には、メインの駆動用の二次電池として第1のバッテリ1301a、1301bと、モータ1304を始動させるインバータ1312に電力を供給する第2のバッテリ1311が設置されている。第2のバッテリ1311はクランキングバッテリー(スターターバッテリーとも呼ばれる)とも呼ばれる。第2のバッテリ1311は高出力できればよく、大容量はそれほど必要とされず、第2のバッテリ1311の容量は第1のバッテリ1301a、1301bと比較して小さい。
 第1のバッテリ1301aの内部構造は、図20Aまたは図21Cに示した捲回型であってもよいし、図22Aまたは図22Bに示した積層型であってもよい。また、第1のバッテリ1301aは、実施の形態5の全固体電池を用いてもよい。第1のバッテリ1301aに実施の形態5の全固体電池を用いることで高容量とすることができ、安全性が向上し、小型化、軽量化することができる。
 本実施の形態では、第1のバッテリ1301a、1301bを2つ並列に接続させている例を示しているが3つ以上並列に接続させてもよい。また、第1のバッテリ1301aで十分な電力を貯蔵できるのであれば、第1のバッテリ1301bはなくてもよい。複数の二次電池を有する電池パックを構成することで、大きな電力を取り出すことができる。複数の二次電池は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後、さらに直列に接続されていてもよい。複数の二次電池を組電池とも呼ぶ。
 また、車載用の二次電池において、複数の二次電池からの電力を遮断するため、工具を使わずに高電圧を遮断できるサービスプラグまたはサーキットブレーカを有しており、第1のバッテリ1301aに設けられる。
 また、第1のバッテリ1301a、1301bの電力は、主にモータ1304を回転させることに使用されるが、DCDC回路1306を介して42V系の車載部品(電動パワステ(パワーステアリング)1307、ヒーター1308、デフォッガ1309など)に電力を供給する。後輪にリアモータ1317を有している場合にも、第1のバッテリ1301aがリアモータ1317を回転させることに使用される。
 また、第2のバッテリ1311は、DCDC回路1310を介して14V系の車載部品(オーディオ1313、パワーウィンドウ1314、ランプ類1315など)に電力を供給する。
 また、第1のバッテリ1301aについて、図28Aを用いて説明する。
 図28Aでは9個の角型二次電池1300を一つの電池パック1415としている例を示している。また、9個の角型二次電池1300を直列接続し、一方の電極を絶縁体からなる固定部1413で固定し、もう一方の電極を絶縁体からなる固定部1414で固定している。本実施の形態では固定部1413、1414で固定する例を示しているが電池収容ボックス(筐体とも呼ぶ)に収納させる構成としてもよい。車両は外部(路面など)から振動または揺れが加えられることを想定されているため、固定部1413、1414および電池収容ボックスなどで複数の二次電池を固定することが好ましい。また、一方の電極は配線1421によって制御回路部1320に電気的に接続されている。またもう一方の電極は配線1422によって制御回路部1320に電気的に接続されている。
 また、制御回路部1320は、酸化物半導体を用いたトランジスタを含むメモリ回路を用いてもよい。酸化物半導体を用いたトランジスタを含むメモリ回路を有する充電制御回路、又は電池制御システムを、BTOS(Battery operating system、又はBattery oxide semiconductor)と呼称する場合がある。
 酸化物半導体として機能する金属酸化物を用いることが好ましい。例えば、酸化物として、In−M−Zn酸化物(元素Mは、アルミニウム、ガリウム、イットリウム、銅、バナジウム、ベリリウム、ホウ素、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、又はマグネシウムから選ばれた一種、又は複数種)等の金属酸化物を用いるとよい。特に、酸化物として適用できるIn−M−Zn酸化物は、CAAC−OS(C−Axis Aligned Crystal Oxide Semiconductor)、CAC−OS(Cloud−Aligned Composite Oxide Semiconductor)であることが好ましい。また、酸化物として、In−Ga酸化物、In−Zn酸化物を用いてもよい。CAAC−OSは、複数の結晶領域を有し、当該複数の結晶領域はc軸が特定の方向に配向している酸化物半導体である。なお、特定の方向とは、CAAC−OS膜の厚さ方向、CAAC−OS膜の被形成面の法線方向、またはCAAC−OS膜の表面の法線方向である。また、結晶領域とは、原子配列に周期性を有する領域である。なお、原子配列を格子配列とみなすと、結晶領域とは、格子配列の揃った領域でもある。さらに、CAAC−OSは、a−b面方向において複数の結晶領域が連結する領域を有し、当該領域は歪みを有する場合がある。なお、歪みとは、複数の結晶領域が連結する領域において、格子配列の揃った領域と、別の格子配列の揃った領域と、の間で格子配列の向きが変化している箇所を指す。つまり、CAAC−OSは、c軸配向し、a−b面方向には明らかな配向をしていない酸化物半導体である。また、CAC−OSとは、例えば、金属酸化物を構成する元素が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで偏在した材料の一構成である。なお、以下では、金属酸化物において、一つまたは複数の金属元素が偏在し、該金属元素を有する領域が、0.5nm以上10nm以下、好ましくは、1nm以上3nm以下、またはその近傍のサイズで混合した状態をモザイク状、またはパッチ状ともいう。
 さらに、CAC−OSとは、第1の領域と、第2の領域と、に材料が分離することでモザイク状となり、当該第1の領域が、膜中に分布した構成(以下、クラウド状ともいう。)である。つまり、CAC−OSは、当該第1の領域と、当該第2の領域とが、混合している構成を有する複合金属酸化物である。
 ここで、In−Ga−Zn酸化物におけるCAC−OSを構成する金属元素に対するIn、Ga、およびZnの原子数比のそれぞれを、[In]、[Ga]、および[Zn]と表記する。例えば、In−Ga−Zn酸化物におけるCAC−OSにおいて、第1の領域は、[In]が、CAC−OS膜の組成における[In]よりも大きい領域である。また、第2の領域は、[Ga]が、CAC−OS膜の組成における[Ga]よりも大きい領域である。または、例えば、第1の領域は、[In]が、第2の領域における[In]よりも大きく、且つ、[Ga]が、第2の領域における[Ga]よりも小さい領域である。また、第2の領域は、[Ga]が、第1の領域における[Ga]よりも大きく、且つ、[In]が、第1の領域における[In]よりも小さい領域である。
 具体的には、上記第1の領域は、インジウム酸化物、インジウム亜鉛酸化物などが主成分である領域である。また、上記第2の領域は、ガリウム酸化物、ガリウム亜鉛酸化物などが主成分である領域である。つまり、上記第1の領域を、Inを主成分とする領域と言い換えることができる。また、上記第2の領域を、Gaを主成分とする領域と言い換えることができる。
 なお、上記第1の領域と、上記第2の領域とは、明確な境界が観察できない場合がある。
 例えば、In−Ga−Zn酸化物におけるCAC−OSでは、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray spectroscopy)を用いて取得したEDXマッピングにより、Inを主成分とする領域(第1の領域)と、Gaを主成分とする領域(第2の領域)とが、偏在し、混合している構造を有することが確認できる。
 CAC−OSをトランジスタに用いる場合、第1の領域に起因する導電性と、第2の領域に起因する絶縁性とが、相補的に作用することにより、スイッチングさせる機能(On/Offさせる機能)をCAC−OSに付与することができる。つまり、CAC−OSとは、材料の一部では導電性の機能と、材料の一部では絶縁性の機能とを有し、材料の全体では半導体としての機能を有する。導電性の機能と絶縁性の機能とを分離させることで、双方の機能を最大限に高めることができる。よって、CAC−OSをトランジスタに用いることで、高いオン電流(Ion)、高い電界効果移動度(μ)、および良好なスイッチング動作を実現することができる。
 酸化物半導体は、多様な構造をとり、それぞれが異なる特性を有する。本発明の一態様の酸化物半導体は、非晶質酸化物半導体、多結晶酸化物半導体、a−like OS(amorphous−like Oxide Semiconductor)、CAC−OS、nc−OS(nanocrystalline Oxide Semiconductor)、CAAC−OSのうち、二種以上を有していてもよい。
 また、高温環境下で使用可能であるため、制御回路部1320は酸化物半導体を用いるトランジスタを用いることが好ましい。プロセスを簡略なものとするため、制御回路部1320は単極性のトランジスタを用いて形成してもよい。半導体層に酸化物半導体を用いるトランジスタは、動作周囲温度が単結晶Siトランジスタよりも広く−40℃以上150℃以下であり、二次電池が過熱しても特性変化が単結晶Siトランジスタに比べて小さい。酸化物半導体を用いるトランジスタのオフ電流は、150℃であっても測定下限以下であるが、単結晶Siトランジスタのオフ電流特性は、温度依存性が大きい。例えば、150℃では、単結晶Siトランジスタはオフ電流が上昇し、電流オン/オフ比が十分に大きくならない。制御回路部1320は、安全性を向上することができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。
 酸化物半導体を用いたトランジスタを含むメモリ回路を用いた制御回路部1320は、マイクロショート等の不安定性の原因に対し、二次電池の自動制御装置として機能させることもできる。二次電池の不安定性の原因を解消する機能としては、過充電の防止、過電流の防止、充電時過熱制御、組電池でのセルバランス、過放電の防止、残量計、温度に応じた充電電圧及び電流量自動制御、劣化度に応じた充電電流量制御、マイクロショート異常挙動検知、マイクロショートに関する異常予測などが挙げられ、そのうちの少なくとも一つの機能を制御回路部1320が有する。また、二次電池の自動制御装置の超小型化が可能である。
 また、マイクロショートとは、二次電池の内部の微小な短絡のことを指しており、二次電池の正極と負極が短絡して充放電不可能の状態になるというほどではなく、微小な短絡部でわずかに短絡電流が流れてしまう現象を指している。比較的短時間、且つ、わずかな箇所であっても大きな電圧変化が生じるため、その異常な電圧値がその後の推定に影響を与える恐れがある。
 マイクロショートの原因の一つは、充放電が複数回行われることによって、正極活物質の不均一な分布により、正極の一部と負極の一部で局所的な電流の集中が生じ、セパレータの一部が機能しなくなる箇所が発生、または副反応による副反応物の発生によりミクロな短絡が生じていると言われている。
 また、マイクロショートの検知だけでなく、制御回路部1320は、二次電池の端子電圧を検知し、二次電池の充放電状態を管理するとも言える。例えば、過充電を防ぐために充電回路の出力トランジスタと遮断用スイッチの両方をほぼ同時にオフ状態とすることができる。
 また、図28Aに示す電池パック1415のブロック図の一例を図28Bに示す。
 制御回路部1320は、少なくとも過充電を防止するスイッチと、過放電を防止するスイッチを含むスイッチ部1324と、スイッチ部1324を制御する制御回路1322と、第1のバッテリ1301aの電圧測定部と、を有する。制御回路部1320は、使用する二次電池の上限電圧と下限電圧が設定されており、外部からの入力電流、および外部への出力電流を制限している。二次電池の下限電圧以上上限電圧以下の範囲内は、使用が推奨されている電圧範囲内であり、その範囲外となるとスイッチ部1324が作動し、保護回路として機能する。また、制御回路部1320は、スイッチ部1324を制御して過放電および過充電を防止するため、保護回路とも呼べる。例えば、過充電となりそうな電圧を制御回路1322で検知した場合にスイッチ部1324のスイッチをオフ状態とすることで電流を遮断する。さらに充放電経路中にPTC素子を設けて温度の上昇に応じて電流を遮断する機能を設けてもよい。また、制御回路部1320は、外部端子1325(+IN)と、外部端子1326(−IN)とを有している。
 スイッチ部1324は、nチャネル型のトランジスタおよびpチャネル型のトランジスタを組み合わせて構成することができる。スイッチ部1324は、単結晶シリコンを用いるSiトランジスタを有するスイッチに限定されず、例えば、Ge(ゲルマニウム)、SiGe(シリコンゲルマニウム)、GaAs(ガリウムヒ素)、GaAlAs(ガリウムアルミニウムヒ素)、InP(リン化インジウム)、SiC(シリコンカーバイド)、ZnSe(セレン化亜鉛)、GaN(窒化ガリウム)、GaO(酸化ガリウム;xは0より大きい実数)などを有するパワートランジスタでスイッチ部1324を形成してもよい。また、OSトランジスタを用いた記憶素子は、Siトランジスタを用いた回路上などに積層することで自由に配置可能であるため、集積化を容易に行うことができる。またOSトランジスタは、Siトランジスタと同様の製造装置を用いて作製することが可能であるため、低コストで作製可能である。即ち、スイッチ部1324上にOSトランジスタを用いた制御回路部1320を積層し、集積化することで1チップとすることもできる。制御回路部1320の占有体積を小さくすることができるため、小型化が可能となる。
 第1のバッテリ1301a、1301bは、主に42V系(高電圧系)の車載機器に電力を供給し、第2のバッテリ1311は14V系(低電圧系)の車載機器に電力を供給する。
 本実施の形態では、第1のバッテリ1301aと第2のバッテリ1311の両方にリチウムイオン二次電池を用いる一例を示す。第2のバッテリ1311は鉛蓄電池、全固体電池、または電気二重層キャパシタを用いてもよい。例えば、実施の形態5の全固体電池を用いてもよい。第2のバッテリ1311に実施の形態5の全固体電池を用いることで高容量とすることができ、小型化、軽量化することができる。
 また、タイヤ1316の回転による回生エネルギーは、ギア1305を介してモータ1304に送られ、モータコントローラ1303およびバッテリーコントローラ1302から制御回路部1321を介して第2のバッテリ1311に充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301aに充電される。またはバッテリーコントローラ1302から制御回路部1320を介して第1のバッテリ1301bに充電される。回生エネルギーを効率よく充電するためには、第1のバッテリ1301a、1301bが急速充電可能であることが望ましい。
 バッテリーコントローラ1302は第1のバッテリ1301a、1301bの充電電圧及び充電電流などを設定することができる。バッテリーコントローラ1302は、用いる二次電池の充電特性に合わせて充電条件を設定し、急速充電することができる。
 また、図示していないが、外部の充電器と接続させる場合、充電器のコンセントまたは充電器の接続ケーブルは、バッテリーコントローラ1302に電気的に接続される。外部の充電器から供給された電力はバッテリーコントローラ1302を介して第1のバッテリ1301a、1301bに充電する。また、充電器によっては、制御回路が設けられており、バッテリーコントローラ1302の機能を用いない場合もあるが、過充電を防ぐため制御回路部1320を介して第1のバッテリ1301a、1301bを充電することが好ましい。また、充電器のコンセントまたは充電器の接続ケーブルに制御回路を備えている場合もある。制御回路部1320は、ECU(Electronic Control Unit)と呼ばれることもある。ECUは、電動車両に設けられたCAN(Controller Area Network)に接続される。CANは、車内LANとして用いられるシリアル通信規格の一つである。また、ECUは、マイクロコンピュータを含む。また、ECUは、CPUまたはGPUを用いる。
 充電スタンドなどに設置されている外部の充電器は、100Vコンセント、200Vコンセント、3相200V且つ50kWなどがある。また、非接触給電方式等により外部の充電設備から電力供給を受けて、充電することもできる。
 急速充電を行う場合、短時間での充電を行うためには、高電圧での充電に耐えうる二次電池が望まれている。
 また、上述した本実施の形態の二次電池は、前述の実施の形態で得られる正極活物質複合体100zを用いている。さらに、導電材としてグラフェンを用い、電極層を厚くして担持量を高くしても容量低下を抑え、高容量を維持することが相乗効果として大幅に電気特性が向上された二次電池を実現できる。特に車両に用いる二次電池に有効であり、車両全重量に対する二次電池の重量の割合を増加させることなく、航続距離が長い、具体的には一充電走行距離が500km以上の車両を提供することができる。
 特に上述した本実施の形態の二次電池は、前述の実施の形態で説明した正極活物質複合体100zを用いることで二次電池の動作電圧を高くすることができ、充電電圧の増加に伴い、使用できる容量を増加させることができる。また、前述の実施の形態で説明した正極活物質複合体100zを正極に用いることでサイクル特性に優れた車両用の二次電池を提供することができる。
 次に、本発明の一態様である二次電池を車両、代表的には輸送用車両に実装する例について説明する。
 また、図19D、図21C、図28Aのいずれか一に示した二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。また、農業機械、電動アシスト自転車を含む原動機付自転車、自動二輪車、電動車椅子、電動カート、小型又は大型船舶、潜水艦、固定翼機および回転翼機等の航空機、ロケット、人工衛星、宇宙探査機、惑星探査機、宇宙船などの輸送用車両に二次電池を搭載することもできる。本発明の一態様の二次電池は高容量の二次電池とすることができる。そのため本発明の一態様の二次電池は、小型化、軽量化に適しており、輸送用車両に好適に用いることができる。
 図29A乃至図29Dにおいて、本発明の一態様を用いた移動体の一例として、輸送用車両を例示する。図29Aに示す自動車2001は、走行のための動力源として電気モータを用いる電気自動車である。または、走行のための動力源として電気モータとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。二次電池を車両に搭載する場合、実施の形態4で示した二次電池の一例を一箇所または複数個所に設置する。図29Aに示す自動車2001は、電池パック2200を有し、電池パックは、複数の二次電池を接続させた二次電池モジュールを有する。さらに二次電池モジュールに電気的に接続する充電制御装置を有すると好ましい。
 また、自動車2001は、自動車2001が有する二次電池にプラグイン方式および非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。充電に際しては、充電方法およびコネクタの規格等はCHAdeMO(登録商標)またはコンボ等の所定の方式で適宜行えばよい。二次電池は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車2001に搭載された蓄電装置を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
 また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路または外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、2台の車両どうしで電力の送受電を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時および走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式または磁界共鳴方式を用いることができる。
 図29Bは、輸送用車両の一例として電気により制御するモータを有した大型の輸送車2002を示している。輸送車2002の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を4個セルユニットとし、48セルを直列に接続した170Vの最大電圧とする。電池パック2201の二次電池モジュールを構成する二次電池の数などが違う以外は、図29Aと同様な機能を備えているので説明は省略する。
 図29Cは、一例として電気により制御するモータを有した大型の輸送車両2003を示している。輸送車両2003の二次電池モジュールは、例えば公称電圧3.0V以上5.0V以下の二次電池を百個以上直列に接続した600Vの最大電圧とする。前述の実施の形態で得られる負極570aを負極に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。また、前述の実施の形態で説明した正極活物質複合体100zを正極に用いた二次電池を用いることで、レート特性および充放電サイクル特性の良好な二次電池を製造することができ、輸送車両2003の高性能化および長寿命化に寄与することができる。また、電池パック2202の二次電池モジュールを構成する二次電池の数などが違う以外は、図29Aと同様な機能を備えているので説明は省略する。
 図29Dは、一例として燃料を燃焼するエンジンを有した航空機2004を示している。図29Dに示す航空機2004は、離着陸用の車輪を有しているため、輸送車両の一種とも言え、複数の二次電池を接続させて二次電池モジュールを構成し、二次電池モジュールと充電制御装置とを含む電池パック2203を有している。
 航空機2004の二次電池モジュールは、例えば4Vの二次電池を8個直列に接続した32Vの最大電圧とする。電池パック2203の二次電池モジュールを構成する二次電池の数などが違う以外は、図29Aと同様な機能を備えているので説明は省略する。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態7)
 本実施の形態では、本発明の一態様である二次電池を建築物に実装する例について図30Aおよび図30Bを用いて説明する。
 図30Aに示す住宅は、本発明の一態様である二次電池を有する蓄電装置2612と、ソーラーパネル2610を有する。蓄電装置2612は、ソーラーパネル2610と配線2611等を介して電気的に接続されている。また蓄電装置2612と地上設置型の充電装置2604が電気的に接続されていてもよい。ソーラーパネル2610で得た電力は、蓄電装置2612に充電することができる。また蓄電装置2612に蓄えられた電力は、充電装置2604を介して車両2603が有する二次電池に充電することができる。蓄電装置2612は、床下空間部に設置されることが好ましい。床下空間部に設置することにより、床上の空間を有効的に利用することができる。あるいは、蓄電装置2612は床上に設置されてもよい。
 蓄電装置2612に蓄えられた電力は、住宅内の他の電子機器にも電力を供給することができる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置2612を無停電電源として用いることで、電子機器の利用が可能となる。
 図30Bに、本発明の一態様に係る蓄電装置の一例を示す。図30Bに示すように、建物799の床下空間部796には、本発明の一態様に係る蓄電装置791が設置されている。また、蓄電装置791に実施の形態6に説明した制御回路を設けてもよい。また、前述の実施の形態で得られる負極570aを負極に用いることで、高容量、且つ、充放電容量が高く、且つ、サイクル特性に優れた円筒型の二次電池616とすることができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池を蓄電装置791に用いることで長寿命な蓄電装置791とすることができる。
 蓄電装置791には、制御装置790が設置されており、制御装置790は、配線によって、分電盤703と、蓄電コントローラ705(制御装置ともいう)と、表示器706と、ルータ709と、に電気的に接続されている。
 商業用電源701から、引込線取付部710を介して、電力が分電盤703に送られる。また、分電盤703には、蓄電装置791と、商業用電源701と、から電力が送られ、分電盤703は、送られた電力を、コンセント(図示せず)を介して、一般負荷707及び蓄電系負荷708に供給する。
 一般負荷707は、例えば、テレビおよびパーソナルコンピュータなどの電気機器であり、蓄電系負荷708は、例えば、電子レンジ、冷蔵庫、空調機などの電気機器である。
 蓄電コントローラ705は、計測部711と、予測部712と、計画部713と、を有する。計測部711は、一日(例えば、0時から24時)の間に、一般負荷707、蓄電系負荷708で消費された電力量を計測する機能を有する。また、計測部711は、蓄電装置791の電力量と、商業用電源701から供給された電力量と、を計測する機能を有していてもよい。また、予測部712は、一日の間に一般負荷707及び蓄電系負荷708で消費された電力量に基づいて、次の一日の間に一般負荷707及び蓄電系負荷708で消費される需要電力量を予測する機能を有する。また、計画部713は、予測部712が予測した需要電力量に基づいて、蓄電装置791の充放電の計画を立てる機能を有する。
 計測部711によって計測された一般負荷707及び蓄電系負荷708で消費された電力量は、表示器706によって確認することができる。また、ルータ709を介して、テレビおよびパーソナルコンピュータなどの電気機器において、確認することもできる。さらに、ルータ709を介して、スマートフォンおよびタブレットなどの携帯電子端末によっても確認することができる。また、表示器706、電気機器、携帯電子端末によって、予測部712が予測した時間帯ごと(または一時間ごと)の需要電力量なども確認することができる。
 本実施の形態の内容は、他の実施の形態の内容と適宜組み合わせることができる。
(実施の形態8)
 本実施の形態では、二輪車、自転車に本発明の一態様である蓄電装置を搭載する例を示す。
 図31Aは、本発明の一態様の蓄電装置を用いた電動自転車の一例である。図31Aに示す電動自転車8700に、本発明の一態様の蓄電装置を適用することができる。本発明の一態様の蓄電装置は例えば、複数の蓄電池と、保護回路と、を有する。
 電動自転車8700は、蓄電装置8702を備える。蓄電装置8702は、運転者をアシストするモータに電気を供給することができる。また、蓄電装置8702は、持ち運びができ、図31Bに自転車から取り外した状態を示している。また、蓄電装置8702は、本発明の一態様の蓄電装置が有する蓄電池8701が複数内蔵されており、そのバッテリ残量などを表示部8703で表示できるようにしている。また蓄電装置8702は、実施の形態6に一例を示した二次電池の充電制御または異常検知が可能な制御回路8704を有する。制御回路8704は、蓄電池8701の正極及び負極と電気的に接続されている。また、制御回路8704に図27A及び図27Bで示した小型の固体二次電池を設けてもよい。図27A及び図27Bで示した小型の固体二次電池を制御回路8704に設けることで制御回路8704の有するメモリ回路のデータを長時間保持するために電力を供給することもできる。また、前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池と組み合わせることで安全性についての相乗効果が得られる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池及び制御回路8704は、二次電池による火災等の事故撲滅に大きく寄与することができる。
 また、図31Cは、本発明の一態様の蓄電装置を用いた二輪車の一例である。図31Cに示すスクータ8600は、蓄電装置8602、サイドミラー8601、方向指示灯8603を備える。蓄電装置8602は、方向指示灯8603に電気を供給することができる。また、前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池が複数収納された蓄電装置8602は高容量とすることができ、小型化に寄与することができる。
 また、図31Cに示すスクータ8600は、座席下収納8604に、蓄電装置8602を収納することができる。蓄電装置8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。
 本実施の形態の内容は、他の実施の形態内容と適宜組み合わせることができる。
(実施の形態9)
 本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。二次電池を実装する電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。携帯情報端末としてはノート型パーソナルコンピュータ、タブレット型端末、電子書籍端末、携帯電話機などがある。
 図32Aは、携帯電話機の一例を示している。携帯電話機2100は、筐体2101に組み込まれた表示部2102の他、操作ボタン2103、外部接続ポート2104、スピーカ2105、マイク2106などを備えている。なお、携帯電話機2100は、二次電池2107を有している。前述の実施の形態で説明した正極活物質複合体100zを正極に用いた二次電池2107を備えることで高容量とすることができ、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 携帯電話機2100は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
 操作ボタン2103は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯電話機2100に組み込まれたオペレーティングシステムにより、操作ボタン2103の機能を自由に設定することもできる。
 また、携帯電話機2100は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
 また、携帯電話機2100は外部接続ポート2104を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また外部接続ポート2104を介して充電を行うこともできる。なお、充電動作は外部接続ポート2104を介さずに無線給電により行ってもよい。
 携帯電話機2100はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサ、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
 図32Bは複数のローター2302を有する無人航空機2300である。無人航空機2300はドローンと呼ばれることもある。無人航空機2300は、本発明の一態様である二次電池2301と、カメラ2303と、アンテナ(図示しない)を有する。無人航空機2300はアンテナを介して遠隔操作することができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、無人航空機2300に搭載する二次電池として好適である。
 図32Cは、ロボットの一例を示している。図32Cに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
 マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
 表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
 上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
 ロボット6400は、その内部領域に本発明の一態様に係る二次電池6409と、半導体装置または電子部品を備える。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、ロボット6400に搭載する二次電池6409として好適である。
 図32Dは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
 例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部領域に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、安全性が高いため、長期間に渡って長時間の安全な使用ができ、掃除ロボット6300に搭載する二次電池6306として好適である。
 図33Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
 例えば、図33Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内またはイヤフォン部4001c内に二次電池を設けることができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部領域に、二次電池を搭載することができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。前述の実施の形態で得られる正極活物質複合体100zを正極に用いた二次電池は高エネルギー密度であり、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
 表示部4005aには、時刻だけでなく、メールおよび電話の着信等、様々な情報を表示することができる。
 また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
 図33Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
 また、側面図を図33Cに示す。図33Cには、内部領域に二次電池913を内蔵している様子を示している。二次電池913は実施の形態4に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、高密度、且つ、高容量とすることができ、小型、且つ、軽量である。
 腕時計型デバイス4005においては、小型、且つ、軽量であることが求められるため、前述の実施の形態で得られる正極活物質複合体100zを二次電池913の正極に用いることで、高エネルギー密度、且つ、小型の二次電池913とすることができる。
 図33Dはワイヤレスイヤホンの例を示している。ここでは一対の本体4100aおよび本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
 本体4100aおよび4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
 ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
 本体4100aおよび4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100aおよび4100bで再生することができる。また本体4100aおよび4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データ再び本体4100aおよび4100bに送って再生することができる。これにより、たとえば翻訳機として用いることもできる。
 またケース4110が有する二次電池4111から、本体4100aが有する二次電池4103に充電を行うことができる。二次電池4111および二次電池4103としては先の実施の形態のコイン型二次電池、円筒形二次電池等を用いることができる。前述の実施の形態で得られる二次電池は高エネルギー密度であり、二次電池4103および二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
 本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
 本実施例では、本発明の一態様の負極を作製し、作製した負極の評価を行った。
<負極の作製>
 図7に示すフローに沿って負極を作製した。シリコンを有する粒子として、ALDRICH製のナノシリコン粒子を用いた。黒鉛を有する粒子として、Linyi Gelon New Battery Materials製の人造黒鉛粒子MCMB−G10を用いた。グラフェン化合物として酸化グラフェンを用いた。ポリイミドとして東レ株式会社製のポリイミド前駆体を用いた。
 負極として、電極GS1を作製した。図7のステップS61、S72、S80、およびS87で準備した材料の重量の比率は、人造黒鉛粒子:ナノシリコン粒子:酸化グラフェン:ポリイミド前駆体を重量比で、82.8:9.2:5:3とした。なお、人造黒鉛粒子とナノシリコン粒子の割合としては、9:1の重量比である。
 ナノシリコン粒子と、溶媒とを、準備し、混合した(図7のステップS61、S62、S63)。溶媒としてNMPを用いた。混合は自転公転ミキサー(あわとり練太郎、THINKY社製)を用いて2000rpm、3分混合し、回収し、混合物E−1を得た(図7のステップS64、S65)。
 次に、人造黒鉛粒子を準備し、混合物E−1と混合した(図7のステップS72、S73)。混合は自転公転ミキサーを用いて2000rpm、3分混合し、回収し、混合物E−2を得た(図7のステップS74、S75)。
 次に、混合物E−2と、グラフェン化合物とを、溶媒を追加しながら繰り返し混合した。グラフェン化合物として、酸化グラフェンを準備し、混合は自転公転ミキサーを用いて2000rpm、3分混合し、回収した(図7のステップS80、S81、S82)。次に、回収した混合物の固練りを行い、適宜、NMPを追加し、自転公転ミキサーを用いて2000rpm、3分混合し、回収した(図7のステップS83、S84、ステップS85)。ステップS83乃至ステップS85は、5回繰り返して行い、混合物E−3を得た(図7のステップS86)。
 次に、混合物E−3と、ポリイミドの前駆体と、を混合した(図7のステップS88)。混合は自転公転ミキサーを用いて2000rpm、3分混合した。その後、NMPを準備し、混合物に追加して粘度の調整を行い(図7のステップS89)、さらに混合を行い(自転公転ミキサーにて2000rpm3分を2回)、回収し、スラリーとして、混合物E−4を得た(図7のステップS90、S91、S92)。
 次に、集電体を準備し、混合物E−4の塗工を行った(図7のステップS93、S94)。集電体として、厚さが18μmの銅箔を準備し、混合物E−3をギャップ厚が100μmのドクターブレードを用いて、混合物E−4を銅箔に塗工した。
 次に、混合物E−4が塗工された銅箔を、50℃1時間にて第1の加熱を行った(図7のステップS95)。その後、減圧下、400℃5時間にて第2の加熱を行い(図7のステップS96)、電極を得た。加熱により、酸化グラフェンが還元されて、酸素量が減少する。
<SEM>
 作製した電極の表面のSEM観察を行った。SEMは日立ハイテクノロジーズ製のS4800を用いた。加速電圧は5kVとした。
 図34A及び図34Bは、電極GS1の表面の観察像である。SEM像において、ナノシリコン粒子は、相対的に明るいコントラストを示している。
 図34Bは、電極GS1の表面の拡大像である。およそ5μm以上15μm以下の粒子径の黒鉛粒子の表面に、およそ50nm以上250nm以下のナノシリコン粒子が複数存在し、これら複数のナノシリコン粒子がグラフェン(還元された酸化グラフェン)に覆われている領域が観察された。換言すると、電極GS1は、ナノシリコン粒子とグラフェンと、の混合層が、黒鉛粒子を覆う領域を有する、ともいえる。
<コインセルの作製>
 次に、作製した電極GS1を用いてCR2032タイプ(直径20mm高さ3.2mm)のコインセル(コイン型二次電池とも呼ぶ)を、5個作製した(GS−C1、GS−C2、GS−C3、GS−C4、GS−C5)。
 対極としてリチウム金属を用いた。電解液として、六フッ化リン酸リチウム(LiPF)が、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)で混合されたものに対して、1mol/Lの濃度で混合されたものを用いた。
 セパレータには厚さ25μmのポリプロピレン製セパレータを用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<充放電特性>
 作製した5個のコインセルを用いて充放電特性の評価を行った。なお、対極としてリチウム金属を用いているため、作製したコインセルでは電極GS1は正極として作用し、放電において電極にリチウムが吸蔵され、充電において電極からリチウムが放出される。
 作製した5個のコインセルについて、1回目の充放電として、放電条件(リチウム吸蔵)条件は定電流放電(0.1C、下限電圧0.01V)後に定電圧放電(下限電流密度0.01C)とし、充電条件(リチウム放出)は定電流充電(0.1C、上限電圧1V)とした。次に、2回目の充放電として、放電条件(リチウム吸蔵)条件は定電流放電(0.2C、下限電圧0.01V)後に定電圧放電(下限電流密度0.02C)とし、充電条件(リチウム放出)は定電流充電(0.2C、上限電圧1V)とした。放電および充電は25℃にて行った。次に、3回目以降の充放電サイクル試験は、放電条件(リチウム吸蔵)条件は定電流放電(0.2C、下限電圧0.01V)後に定電圧放電(下限電流密度0.02C)とし、充電条件(リチウム放出)は定電流充電(0.2C、上限電圧1V)とし、2回目の充電容量を基に、容量制限なし、容量制限90%、容量制限80%、容量制限70%、及び容量制限60%として、それぞれ異なる条件でおこなった。放電および充電は25℃にて行った。
 コインセルGS−C1乃至GS−C5の最大充電容量、及び30サイクル維持率を表2に示す。また、充放電サイクル試験の結果を図35A及び図35Bに示す。
Figure JPOXMLDOC01-appb-T000002
 図35A及び図35Bに示した通り、容量制限をおこなったコインセル(GS−C2乃至GS−C5)では、充放電サイクル試験における、充電容量劣化が抑制されている効果が確認できた。なお、GS−C2乃至GS−C5にて、容量制限を60%、70、80%、90%と、異なる条件で試験したが、図35Bに示す充電容量維持率の観点では、GS−C2乃至GS−C5において、顕著な差は見られなかった。
 次に、本実験の結果について、実施の形態1において、負極の計算1及び負極の計算2で示した内容と合わせて、考察する。
 実施の形態1の負極の計算1で示した内容を基に、GS−C1乃至GS−C5における、シリコンとリチウムと、の合金化比率(Li/Si)について、数式1を用いて計算した。計算の結果を表3に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-T000004
 表3に示したとおり、充放電サイクル特性が優れなかったGS−C1では、Li/Siが2.22と算出された。一方、充放電サイクル特性が優れたGS−C2では、Li/Siが1.75であり、図6Bで示した構造(Li/Si=1.714における結晶構造)と近い比率であることが分かった。図6Bで示した構造は、Si−Siの結合を有していることから、GS−C2乃至GS−C5は、Si−Siの結合を失わない範囲内において、充放電が行われた可能性が考えられ、良好な充放電サイクル効率が得られた要因として考えることができる。
 本実施例では、実施例1で示した電極GS1と、イオン液体と、を用いて作製したコインセルの評価を行った。
<コインセルの作製>
 次に、作製した電極GS1を用いてCR2032タイプ(直径20mm高さ3.2mm)のコインセル(コイン型二次電池とも呼ぶ)を、作製した(GS−C6)。
 対極としてリチウム金属を用いた。電解液として、2.15mol/Lの濃度でLiFSIを有するEMI−FSIを用いた。
 セパレータには厚さ25μmのポリプロピレン製セパレータと、厚さ260μmのガラス繊維製セパレータと、を積層して用いた。
 正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
<充放電特性>
 作製したコインセルGS−C6を用いて充放電特性の評価を行った。なお、対極としてリチウム金属を用いているため、作製したコインセルでは電極GS1は正極として作用し、放電において電極にリチウムが吸蔵され、充電において電極からリチウムが放出される。
 作製したコインセルGS−C6について、1回目の充放電として、放電条件(リチウム吸蔵)条件は定電流放電(0.1C、下限電圧0.01V)後に定電圧放電(下限電流密度0.01C)とし、充電条件(リチウム放出)は定電流充電(0.1C、上限電圧1V)とした。次に、2回目の充放電として、放電条件(リチウム吸蔵)条件は定電流放電(0.2C、下限電圧0.01V)後に定電圧放電(下限電流密度0.02C)とし、充電条件(リチウム放出)は定電流充電(0.2C、上限電圧1V)とした。次に、3回目以降の充放電サイクル試験は、放電条件(リチウム吸蔵)条件は定電流放電(0.2C、下限電圧0.01V)後に定電圧放電(下限電流密度0.02C)とし、充電条件(リチウム放出)は定電流充電(0.2C、上限電圧1V)とし、2回目の充電容量を基に容量制限80%の条件でおこなった。放電および充電は25℃にて行った。
 GS−C6の充放電サイクル試験の結果を、GS−C2及びGS−C3の結果と共に、図36A及び図36Bに示す。最大充電容量は468mAh/g、30サイクル維持率は99.99%であり、非常に優れた特性であった。なお、GS−C6について、式1を用いた計算の結果は、Li/Si=1.40である。また、図37A及び図37Bに、GS−C3及びGS−C6の、3回目放電(容量制限条件での初回放電)のカーブを示す。図37Bは図37Aの一部の拡大図である。
 図36A及び図36Bに示したとおり、GS−C6は優れた充放電サイクル特性を有する。実施の形態1では、Li/Si比と、充放電サイクル特性の関係を示したが、GS−C6のLi/Si=1.40は、GS−C2のLi/Si値と、GS−C3のLi/Si値と、の間の値であるにもかかわらず、図36Bにおいて、充放電サイクル劣化が99.99%という顕著な結果を示している。また、図37Bに示したように、GS−C6では、放電終了時(Li吸蔵終了時)においても電位が0.05V以上であり、Li析出及び電解液の還元分解が抑制されている可能性が考えられる。このように、本発明の一態様の負極と、イオン液体と、有する二次電池を、容量制限の条件の下で使用したことによって、容易に想定できない、顕著な特性改善の効果を得ることができた。
560a:負極特性カーブ、560b:正極特性カーブ、570a:負極、570b:正極、571a:負極集電体、571b:正極集電体、572a:負極活物質層、572b:正極活物質層、576:電解質、581:第1の活物質、582:第2の活物質、583:グラフェン化合物

Claims (10)

  1.  正極と、負極と、を有し、
     前記負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、
     前記第1の活物質の表面の少なくとも一部は、前記第2の活物質に覆われた領域を有し、
     前記第2の活物質の表面、及び前記第1の活物質の表面の少なくとも一部は、前記グラフェン化合物に覆われた領域を有し、
     前記第1の活物質は、黒鉛を有し、
     前記第2の活物質は、シリコンを有し、
     前記負極の容量に対し、前記正極の容量が50%以上100%未満である、二次電池。
  2.  正極と、負極と、を有し、
     前記負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、
     前記第1の活物質の表面の少なくとも一部は、前記第2の活物質に覆われた領域を有し、
     前記第2の活物質の表面、及び前記第1の活物質の表面の少なくとも一部は、前記グラフェン化合物に覆われた領域を有し、
     前記第1の活物質は、黒鉛を有し、
     前記第2の活物質は、シリコンを有し、
     満充電状態において、前記第2の活物質がSi−Si結合を有する、二次電池。
  3.  正極と、負極と、電解質と、を有し、
     前記負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、
     前記第1の活物質の表面の少なくとも一部は、前記第2の活物質に覆われた領域を有し、
     前記第2の活物質の表面、及び前記第1の活物質の表面の少なくとも一部は、前記グラフェン化合物に覆われた領域を有し、
     前記第1の活物質は、黒鉛を有し、
     前記第2の活物質は、シリコンを有し、
     前記負極の容量に対し、前記正極の容量が50%以上100%未満であり、
     前記電解質はイオン液体を有する、二次電池。
  4.  正極と、負極と、電解質と、を有し、
     前記負極は、第1の活物質と、第2の活物質と、グラフェン化合物と、を有し、
     前記第1の活物質の表面の少なくとも一部は、前記第2の活物質に覆われた領域を有し、
     前記第2の活物質の表面、及び前記第1の活物質の表面の少なくとも一部は、前記グラフェン化合物に覆われた領域を有し、
     前記第1の活物質は、黒鉛を有し、
     前記第2の活物質は、シリコンを有し、
     満充電状態において、前記第2の活物質がSi−Si結合を有し、
     前記電解質はイオン液体を有する、二次電池。
  5.  請求項3又は請求項4において、
     前記イオン液体が、2mol/L以上のLiFSIと、EMI−FSIと、を有する、二次電池。
  6.  請求項1乃至請求項5のいずれか一において、
     前記正極は、正極活物質を有し、
     前記正極活物質は、マグネシウム、フッ素、アルミニウム、及びニッケルを有するコバルト酸リチウムを有し、
     前記コバルト酸リチウムは、前記マグネシウム、前記フッ素、及び前記アルミニウムの中から選ばれるいずれか一または複数の濃度が最大となる領域を表層部に有する、二次電池。
  7.  請求項1乃至請求項6のいずれか一において、
     前記第1の活物質は、5μm以上の粒子径の黒鉛を有し、
     前記第2の活物質は、250nm以下の粒子径のシリコンを有する、二次電池。
  8.  請求項7に記載の二次電池を有する車両。
  9.  請求項7に記載の二次電池を有する蓄電システム。
  10.  請求項7に記載の二次電池を有する電子機器。
PCT/IB2021/061269 2020-12-16 2021-12-03 二次電池、電子機器、蓄電システムおよび車両 WO2022130099A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237021791A KR20230121610A (ko) 2020-12-16 2021-12-03 이차 전지, 전자 기기, 축전 시스템, 및 차량
US18/257,335 US20240047655A1 (en) 2020-12-16 2021-12-03 Secondary battery, electronic device, power storage system, and vehicle
CN202180083013.8A CN116568638A (zh) 2020-12-16 2021-12-03 二次电池、电子设备、蓄电系统及车辆
JP2022569312A JPWO2022130099A1 (ja) 2020-12-16 2021-12-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020208653 2020-12-16
JP2020-208653 2020-12-16

Publications (1)

Publication Number Publication Date
WO2022130099A1 true WO2022130099A1 (ja) 2022-06-23

Family

ID=82057383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/061269 WO2022130099A1 (ja) 2020-12-16 2021-12-03 二次電池、電子機器、蓄電システムおよび車両

Country Status (5)

Country Link
US (1) US20240047655A1 (ja)
JP (1) JPWO2022130099A1 (ja)
KR (1) KR20230121610A (ja)
CN (1) CN116568638A (ja)
WO (1) WO2022130099A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199761A (ja) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd リチウムイオン電池
JP2018113187A (ja) * 2017-01-12 2018-07-19 日立化成株式会社 リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
US20190214640A1 (en) * 2018-01-09 2019-07-11 South Dakota Board Of Regents Layered high capacity electrodes
JP2019179758A (ja) * 2017-06-26 2019-10-17 株式会社半導体エネルギー研究所 正極活物質の作製方法
JP2020057523A (ja) * 2018-10-02 2020-04-09 エリーパワー株式会社 リチウムイオン電池の製造方法及びリチウムイオン電池

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466576B2 (ja) 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
PL3471177T3 (pl) 2016-12-23 2021-10-04 Lg Chem, Ltd. Materiał czynny elektrody ujemnej i zawierająca go elektroda ujemna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009199761A (ja) * 2008-02-19 2009-09-03 Nissan Motor Co Ltd リチウムイオン電池
JP2018113187A (ja) * 2017-01-12 2018-07-19 日立化成株式会社 リチウムイオン二次電池用負極材料及びこれを用いたリチウムイオン二次電池
JP2019179758A (ja) * 2017-06-26 2019-10-17 株式会社半導体エネルギー研究所 正極活物質の作製方法
US20190214640A1 (en) * 2018-01-09 2019-07-11 South Dakota Board Of Regents Layered high capacity electrodes
JP2020057523A (ja) * 2018-10-02 2020-04-09 エリーパワー株式会社 リチウムイオン電池の製造方法及びリチウムイオン電池

Also Published As

Publication number Publication date
JPWO2022130099A1 (ja) 2022-06-23
CN116568638A (zh) 2023-08-08
KR20230121610A (ko) 2023-08-18
US20240047655A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
KR20230097054A (ko) 양극 활물질의 제작 방법, 양극, 이차 전지, 전자 기기, 축전 시스템, 및 차량
JP2022045353A (ja) 二次電池の作製方法、および二次電池
JP2022120836A (ja) 正極活物質の作製方法、二次電池および車両
WO2021260487A1 (ja) 二次電池、二次電池の作製方法、電子機器、及び車両
WO2022248968A1 (ja) 電池、電子機器、蓄電システムおよび移動体
WO2022029575A1 (ja) 電極、負極活物質、負極、二次電池、移動体および電子機器、負極活物質の作製方法、ならびに負極の作製方法
WO2022034414A1 (ja) 二次電池、電子機器、車両、及び正極活物質の作製方法
WO2021181197A1 (ja) 二次電池およびその作製方法、及び車両
WO2021240298A1 (ja) 二次電池および車両
WO2022130099A1 (ja) 二次電池、電子機器、蓄電システムおよび車両
KR20230021001A (ko) 양극 활물질, 양극 활물질층, 이차 전지, 전자 기기, 및 차량
JP2022045263A (ja) 正極活物質、二次電池、二次電池の作製方法、電子機器、及び車両
WO2022123389A1 (ja) 正極、正極の作製方法、二次電池、電子機器、蓄電システムおよび車両
WO2022172118A1 (ja) 電極の作製方法
WO2022013666A1 (ja) 電極、二次電池、移動体、電子機器、およびリチウムイオン二次電池用電極の作製方法
WO2022195402A1 (ja) 蓄電装置管理システム及び電子機器
WO2022009019A1 (ja) 電極、二次電池、移動体および電子機器
WO2021191733A1 (ja) 二次電池、電子機器、車両及び二次電池の作製方法
WO2022038449A1 (ja) 二次電池、電子機器および車両
WO2022038454A1 (ja) 正極活物質の作製方法
WO2022167885A1 (ja) 正極活物質の製造方法、二次電池および車両
WO2023031729A1 (ja) 正極および正極の作製方法
WO2022189889A1 (ja) 複合酸化物の作製方法、正極、リチウムイオン二次電池、電子機器、蓄電システム、及び移動体
JP2022107169A (ja) 正極活物質の作製方法
CN116685557A (zh) 正极、正极的制造方法、二次电池、电子设备、蓄电系统以及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569312

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180083013.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18257335

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237021791

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905916

Country of ref document: EP

Kind code of ref document: A1