Nothing Special   »   [go: up one dir, main page]

WO2022113272A1 - Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method - Google Patents

Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method Download PDF

Info

Publication number
WO2022113272A1
WO2022113272A1 PCT/JP2020/044232 JP2020044232W WO2022113272A1 WO 2022113272 A1 WO2022113272 A1 WO 2022113272A1 JP 2020044232 W JP2020044232 W JP 2020044232W WO 2022113272 A1 WO2022113272 A1 WO 2022113272A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
electromagnetic wave
tracking
image
wireless communication
Prior art date
Application number
PCT/JP2020/044232
Other languages
French (fr)
Japanese (ja)
Inventor
智樹 宮川
裕貴 石倉
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2020/044232 priority Critical patent/WO2022113272A1/en
Publication of WO2022113272A1 publication Critical patent/WO2022113272A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G3/00Traffic control systems for marine craft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Definitions

  • the present invention relates to an electromagnetic wave wireless communication system, an electromagnetic wave wireless communication method, a tracking system, and a tracking method.
  • Patent Document 1 describes an optical wireless communication system.
  • One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves.
  • An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device. It has an image pickup apparatus for imaging, and the target includes a first target and a second target having a shape different from that of the first target.
  • One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves.
  • An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device.
  • the target includes a plurality of first targets and a second target, and the plurality of the first targets are arranged on the circumference of the same virtual circle.
  • the electromagnetic wave radio communication device is arranged so as to overlap the center of the virtual circle, and the geometric center of the second target overlaps with the electromagnetic wave radio communication device.
  • One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves.
  • An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device.
  • the target includes a plurality of first targets and a second target, and the plurality of the first targets are arranged on the circumference of the same virtual circle. The geometric center of the second target overlaps with the center of the virtual circle.
  • One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the tracking devices is attached to a movable portion and the movable portion to transmit and receive electromagnetic waves.
  • An electromagnetic wave wireless communication device that performs at least one of the above, a target provided in the movable portion and tracked by the other tracking device, and an image of the target attached to the movable portion and in the other tracking device. It has an image pickup device and a control unit that controls the movable portion, and the electromagnetic wave wireless communication device and the image pickup device are arranged so as to be offset by an offset amount in a first direction orthogonal to the optical axis direction of the image pickup device.
  • the movable portion is a second rotation axis extending in a direction intersecting the optical axis direction, intersecting the optical axis direction, and extending in a direction orthogonal to the extending direction of the first rotation axis. It is rotatable around the axis of rotation, and the control unit acquires an image of the target and the electromagnetic wave radio communication device in the other tracking device by the image pickup device, and is based on the target displayed in the image. Then, the representative point of the electromagnetic wave radio communication device in the image is acquired, and the movable portion is moved so that the first axis extending in the first direction in the image overlaps with the representative point in the image.
  • the movable axis is rotated around the first rotation axis and extends in the second direction in the image so as to be in contact with a circle centered on the representative point and having the offset amount as a radius in the image.
  • the portion is rotated around the second rotation axis.
  • One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the tracking devices is attached to a movable portion and the movable portion to transmit and receive electromagnetic waves.
  • An electromagnetic wave wireless communication device that performs at least one of the above, a target provided in the movable portion and tracked by the other tracking device, and an image of the target attached to the movable portion and in the other tracking device. It has an image pickup device and a control unit, and the control unit controls the movable unit based on an image of the target in the other tracking device imaged by the image pickup device, and the control unit controls the other tracking device. To track.
  • One aspect of the electromagnetic wave wireless communication method of the present invention is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices, wherein a first target and a second target associated with one electromagnetic wave wireless communication device are set. An image of the first target and an image of the second target in the image taken by an image pickup device associated with another electromagnetic wave wireless communication device are specified, and the identified image of the first target and the above are described. Based on either one of the images of the second target, the other electromagnetic wave radio communication device is directed toward the one electromagnetic wave radio communication device.
  • One aspect of the electromagnetic wave wireless communication method of the present invention is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices, and a target associated with one electromagnetic wave wireless communication device is used as another electromagnetic wave wireless communication device.
  • the position of the one electromagnetic wave radio communication device in the captured image taken by taking an image with the associated image pickup device and the image of the captured target is specified, and the specified one electromagnetic wave wireless communication device is specified.
  • the other electromagnetic wave radio communication device is directed toward the one electromagnetic wave radio communication device based on the position of the other electromagnetic wave radio communication device and the positional relationship between the other electromagnetic wave radio communication device and the image pickup device.
  • One aspect of the tracking system of the present invention is a tracking system including a target device having a target and a tracking device capable of tracking the target device, and the tracking device is attached to a movable portion and the movable portion.
  • the target device includes an electromagnetic wave device that transmits and receives at least one of the electromagnetic waves, and an image pickup device that is attached to the movable portion and images the target in the target device.
  • the target device includes the electromagnetic wave.
  • a representative point to be targeted is set, and the target includes a first target and a second target having a shape different from that of the first target.
  • One aspect of the tracking system of the present invention is a tracking system including a target device having a target set with a representative point as a tracking target and a tracking device capable of tracking the target device, wherein the tracking device is , A movable part, an electromagnetic wave device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, an image pickup device attached to the movable part and imaging the target in the target device, and a control unit.
  • the electromagnetic wave device and the image pickup device are arranged on the movable portion non-coaxially with respect to the optical axis direction of the image pickup device, and the electromagnetic wave device and the image pickup device viewed from the optical axis direction.
  • the first arrangement relationship of the target is known
  • the second arrangement relationship between the target and the representative point is known
  • the control unit has the image of the target captured by the image pickup apparatus and the first arrangement. Based on the relationship and the second arrangement relationship, the movable part is controlled to track the target device.
  • One aspect of the tracking method of the present invention is a tracking method for tracking a target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves by the electromagnetic wave device, and the first target associated with the target.
  • the second target is imaged by an image pickup device associated with the electromagnetic wave device, and the image is based on either the image of the first target or the image of the second target in the captured image.
  • the position of the target in the inside is specified, and the electromagnetic wave device is directed toward the target.
  • One aspect of the tracking method of the present invention is a tracking method for tracking a target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves by the electromagnetic wave device, wherein the target associated with the target is described.
  • the position of the target in the image is specified from the image of the target in the image taken by the image pickup device associated with the electromagnetic wave device, and the specified position of the target and the electromagnetic wave device are used.
  • the electromagnetic wave device is directed toward the target based on the positional relationship with the image pickup device.
  • FIG. 1 is a schematic configuration diagram schematically showing an electromagnetic wave wireless communication system of the first embodiment.
  • FIG. 2 is a perspective view showing the main body of the tracking device according to the first embodiment.
  • FIG. 3 is a view of a part of the tracking device main body of the first embodiment as viewed from the front side.
  • FIG. 4 is a flowchart showing an example of a procedure when the control unit of the first embodiment tracks another tracking device.
  • FIG. 5 is a diagram showing an example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device.
  • FIG. 6 is a diagram showing another example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device.
  • FIG. 1 is a schematic configuration diagram schematically showing an electromagnetic wave wireless communication system of the first embodiment.
  • FIG. 2 is a perspective view showing the main body of the tracking device according to the first embodiment.
  • FIG. 3 is a view of a part of the tracking
  • FIG. 7 is a diagram showing still another example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device.
  • FIG. 8 is a graph showing an error of a representative point with respect to the distance between the tracking devices of the first embodiment.
  • FIG. 9 is a flowchart showing an example of a procedure when the control unit of the second embodiment tracks another tracking device.
  • FIG. 10 is a diagram showing a target member of the third embodiment.
  • FIG. 11 is a schematic configuration diagram schematically showing a tracking system of one embodiment.
  • the electromagnetic wave wireless communication system the electromagnetic wave wireless communication method, the tracking system, and the tracking method according to the embodiment of the present invention will be described with reference to the drawings.
  • the scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.
  • the scale and the number of each structure may be different from the scale and the number of the actual structure in order to make each configuration easy to understand.
  • FIG. 1 is a schematic configuration diagram schematically showing the electromagnetic wave wireless communication system 100 of the present embodiment.
  • the electromagnetic wave wireless communication system 100 includes a plurality of tracking devices 10 capable of tracking each other's positions.
  • the electromagnetic wave wireless communication system 100 is a system that enables wireless communication between tracking devices 10 using electromagnetic wave EW.
  • the electromagnetic wave EW is, for example, an electromagnetic wave having a frequency band equal to or higher than the terahertz band.
  • the electromagnetic wave EW may be an electromagnetic wave whose frequency band is lower than the terahertz band, may be light, or may be a radio wave.
  • FIG. 1 shows, for example, a state in which the moving bodies MA and MB are located on a horizontal road surface, and the tracking device 10A and the tracking device 10B face each other in the horizontal direction.
  • the moving body on which the tracking device 10 is mounted is not particularly limited.
  • the moving body on which the tracking device 10 is mounted may be a moving body that can move on water such as a ship, a moving body that can move underwater such as a submarine, an airplane, a multicopter, or the like. It may be a flyable mobile body.
  • the moving body on which the plurality of tracking devices 10 are mounted may include different types of moving bodies. A part of the tracking devices 10 among the plurality of tracking devices 10 may be mounted on a non-moving target.
  • the tracking device 10A and the tracking device 10B have the same configuration as each other except that the moving bodies MA and MB to be mounted are different. Therefore, in the following description of the tracking device 10, only the tracking device 10A may be described as a representative.
  • a three-dimensional Cartesian coordinate system including an X-axis, a Y-axis, and a Z-axis is defined for the tracking device 10A, and the relative positional relationship of each part of the tracking device 10A will be described.
  • the direction parallel to the X-axis is called “front-back direction X”
  • the direction parallel to the Y-axis is called “left-right direction Y”
  • the direction parallel to the Z-axis is called "vertical direction Z”.
  • the front-back direction X, the left-right direction Y, and the up-down direction Z are directions orthogonal to each other.
  • the vertical direction Z is a direction parallel to the vertical direction
  • the front-rear direction X and the horizontal direction Y are horizontal directions orthogonal to the vertical direction.
  • the positive side (+ X side) of the front-back direction X to which the X-axis arrow points is referred to as the "front side", and the negative side of the front-back direction X opposite to the side to which the X-axis arrow points.
  • Side (-X side) is called “rear side”.
  • the positive side (+ Z side) of the vertical direction Z facing the Z-axis arrow is called the "upper side”
  • the negative side (-Z side) of the vertical direction Z opposite to the side facing the Z-axis arrow is called the "upper side”. Called “lower”.
  • the vertical direction Z, the horizontal direction Y, and the front-back direction X are merely names for explaining the relative positional relationship of each part, and the actual arrangement relationship and the like are arrangements other than the arrangement relationship and the like indicated by these names. It may be a relationship or the like.
  • the tracking device 10A has a tracking device main body 20 and a control unit 30.
  • the tracking device main body 20 and the control unit 30 are arranged on the moving body MA.
  • the tracking device main body 20 and the control unit 30 are electrically connected via a cable or the like.
  • FIG. 2 is a perspective view showing the tracking device main body 20.
  • FIG. 3 is a view of a part of the tracking device main body 20 as viewed from the front side (+ X side).
  • the tracking device main body 20 includes a pedestal portion 21, a holding portion 22, a movable portion 40, an image pickup device 50, an electromagnetic wave wireless communication device 60, a target member 70, and a first drive unit 81. And a second drive unit 82.
  • the optical axis AXo of the image pickup device 50 is arranged in parallel with the front-rear direction X, that is, the optical axis direction DL in which the optical axis AXo extends. A case where is in the front-rear direction X will be described.
  • the pedestal portion 21 is fixed on the moving body MA.
  • the holding portion 22 is mounted on the pedestal portion 21.
  • the holding portion 22 is rotatably attached to the pedestal portion 21 around the first rotation axis AXy extending in the vertical direction Z.
  • the first rotation axis AXy is a virtual axis extending in a direction intersecting the optical axis direction DL (optical axis AXo).
  • the first rotation axis AXy extends in a direction orthogonal to the optical axis direction DL.
  • the holding portion 22 has a base portion 22a and a pair of side wall portions 22b and 22c.
  • the base portion 22a is rotatably connected to the pedestal portion 21.
  • the pair of side wall portions 22b, 22c extend upward from the base portion 22a.
  • the pair of side wall portions 22b and 22c are arranged at intervals in the left-right direction Y.
  • the movable portion 40 is attached to the pedestal portion 21 via the holding portion 22.
  • the movable portion 40 is located between the pair of side wall portions 22b and 22c.
  • the movable portion 40 is rotatably attached to the pair of side wall portions 22b and 22c around the second rotation axis AXp.
  • the second rotation axis AXp is a virtual axis that intersects the optical axis direction DL (optical axis AXo) and extends in a direction orthogonal to the vertical direction Z in which the first rotation axis AXy extends. As described above, the first rotation axis AXy, the second rotation axis AXp, and the optical axis AXo intersect at one point.
  • the second rotation axis AXp extends in a direction orthogonal to the optical axis direction DL. In the state shown in FIG. 2, the second rotation axis AXp extends in the left-right direction Y.
  • the movable portion 40 projects upward from the pair of side wall portions 22b and 22c.
  • the movable portion 40 can move relative to the pedestal portion 21.
  • the movable portion 40 can rotate with respect to the pedestal portion 21 around the first rotation axis AXP and around the second rotation axis AXP.
  • the movable portion 40 rotates around the first rotation axis AXy with respect to the pedestal portion 21 by rotating the holding portion 22 around the first rotation axis AXy with respect to the pedestal portion 21.
  • the movable portion 40 rotates around the second rotation shaft AXp with respect to the holding portion 22, and thus rotates around the second rotation shaft AXp with respect to the pedestal portion 21.
  • An image pickup device 50, an electromagnetic wave wireless communication device 60, and a target member 70 are attached to the movable portion 40. Therefore, the image pickup device 50, the electromagnetic wave wireless communication device 60, and the target member 70 can rotate together with the movable portion 40 around the first rotation axis AXP and around the second rotation axis AXP.
  • the image pickup device 50, the electromagnetic wave radio communication device 60, and the target member 70 the first direction D1 orthogonal to the optical axis direction DL, the optical axis direction DL, and the first direction D1 A second direction D2, which is orthogonal to both, is defined.
  • the first direction D1 is a direction parallel to the vertical direction Z
  • the second direction D2 is a direction parallel to the horizontal direction Y. That is, in the description of each part of the movable part 40 described above and the description of each part of the image pickup device 50, the electromagnetic wave radio communication device 60, and the target member 70 described later, the vertical direction Z corresponds to the first direction D1 and is left and right.
  • the direction Y corresponds to the second direction D2
  • the front-back direction X corresponds to the optical axis direction DL.
  • the front side (+ X side) is the side on which the lens 52 of the image pickup apparatus 50 faces, and is the side on which light is incident on the image pickup apparatus 50 in the optical axis direction DL.
  • the image pickup device 50 is attached to the front side (+ X side) of the movable portion 40.
  • the image pickup device 50 takes an image of the target 70a, which will be described later, of the target member 70 in the other tracking device 10.
  • the image pickup device 50 of the tracking device 10A takes an image of the target 70a described later of the target member 70 of the tracking device 10B.
  • the image pickup device 50 includes a housing 51, a lens (or a lens group) 52, and an image pickup element 53.
  • the housing 51 has an opening on the front side (+ X side) and has a cylindrical shape extending in the front-rear direction X.
  • the housing 51 projects forward from the movable portion 40.
  • the central axis of the housing 51 coincides with the optical axis AXo of the image pickup apparatus 50.
  • the lens 52 is fitted in the opening on the front side (+ X side) of the housing 51.
  • the lens 52 is a circular lens.
  • the optical axis AXo of the image pickup apparatus 50 passes through the center of the lens 52.
  • the image sensor 53 is arranged inside the housing 51.
  • the image pickup device 53 is, for example, a CCD image sensor, a CMOS image sensor, or the like. Light incident on the housing 51 is incident on the image pickup device 53 via the lens 52.
  • the image pickup element 53 converts the incident optical signal into an analog electric signal, and converts the converted analog electric signal into a digital image signal for output.
  • the image sensor 53 has a rectangular shape that is long in the left-right direction Y when viewed from the front-rear direction X.
  • the electromagnetic wave wireless communication device 60 is attached to the front side (+ X side) of the movable portion 40.
  • the electromagnetic wave wireless communication device 60 is a device that transmits and receives at least one of the electromagnetic wave EW.
  • the electromagnetic wave wireless communication device 60 can both receive the electromagnetic wave EW and transmit the electromagnetic wave EW.
  • the electromagnetic wave wireless communication device 60 includes a transmission unit 61 for transmitting the electromagnetic wave EW and a receiving unit 62 for receiving the electromagnetic wave EW.
  • the transmitting unit 61 and the receiving unit 62 are arranged side by side in the left-right direction Y.
  • the transmitting unit 61 and the receiving unit 62 each have a square shape when viewed from the front side (+ X side). By arranging the transmitting unit 61 and the receiving unit 62 side by side, a rectangular transmitting / receiving unit 60a long in the left-right direction Y when viewed from the front side is configured.
  • the electromagnetic wave wireless communication device 60 is located above the image pickup device 50.
  • the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged so as to be offset by an offset amount OS in the vertical direction Z (first direction D1) orthogonal to the optical axis direction DL of the image pickup device 50. That is, the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged non-coaxially with respect to the optical axis direction DL of the image pickup device 50.
  • the offset amount OS is the distance in the vertical direction Z (first direction D1) between the center 60p of the electromagnetic wave wireless communication device 60 and the optical axis AXo when viewed from the optical axis direction DL (front-back direction X) of the image pickup apparatus 50.
  • the center 60p of the electromagnetic wave wireless communication device 60 is the center of the transmission / reception unit 60a in the vertical direction Z and the center in the horizontal direction Y (second direction D2).
  • the center 60p of the electromagnetic wave wireless communication device 60 is located between the transmitting unit 61 and the receiving unit 62 in the left-right direction Y.
  • the position of the left-right direction Y in the center 60p of the electromagnetic wave wireless communication device 60 is the same as the position of the left-right direction Y in the optical axis AXo of the image pickup apparatus 50.
  • the transmission / reception unit 60a is arranged so as to face the transmission / reception unit 60a in the other electromagnetic wave wireless communication device 60 in the front-rear direction X (optical axis direction DL). And electromagnetic wave wireless communication becomes possible.
  • the transmitting unit 61 and the receiving unit 62 are in a positional relationship so as to face each other, but in the present embodiment, the electromagnetic wave radio wave is obtained even if the transmitting unit 61 and the receiving unit 62 do not necessarily face each other.
  • the communication devices 60 can communicate with each other by electromagnetic waves and wirelessly.
  • the electromagnetic wave wireless communication devices 60 may be, for example, portions of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62. If is opposed to the front-rear direction X (optical axis direction DL), electromagnetic wave wireless communication is possible with each other regardless of the relative posture of each transmission / reception unit 60a.
  • the relative posture of each transmission / reception unit 60a includes a relative posture around the optical axis AXo.
  • the portion of the electromagnetic wave radio communication device 60 located between the transmission unit 61 and the reception unit 62 includes a central portion including the center 60p of the electromagnetic wave radio communication device 60.
  • the electromagnetic wave wireless communication devices 60 can more preferably perform electromagnetic wave wireless communication, for example, when the central portions including the center 60p of the electromagnetic wave wireless communication device 60 face each other.
  • the transmitting unit 61 and the receiving unit 62 are separately provided, and the central portion between them is included in the central portion 60p.
  • the transmitting unit 61 and the receiving unit 62 are integrated. , It is also possible to configure it as one transmitter / receiver. In that case, the center of the optical axis of the transmission / reception unit is the center 60p.
  • the target member 70 is attached to the movable portion 40.
  • the target member 70 is fixed to the front side (+ X side) of the upper portion of the movable portion 40.
  • the target member 70 is a plate-shaped member whose plate surface faces the front-rear direction X (optical axis direction DL).
  • the target member 70 has a shape in which both end portions of a circular vertical direction Z (first direction D1) are radially inwardly recessed in an arc shape when viewed from the front-rear direction X.
  • the target member 70 has a through hole 73 that penetrates the target member 70 in the front-rear direction X (optical axis direction DL).
  • the through hole 73 is a rectangular hole that is long in the left-right direction Y.
  • the through hole 73 overlaps with the transmission / reception unit 60a of the electromagnetic wave wireless communication device 60 when viewed from the front-rear direction X.
  • an electromagnetic wave wireless communication device 60 is fitted in the through hole 73.
  • the transmission / reception unit 60a of the electromagnetic wave wireless communication device 60 is exposed to the front side (+ X side) through the through hole 73.
  • the target member 70 surrounds the transmission / reception unit 60a.
  • the target member 70 has a target 70a tracked by another tracking device 10.
  • the target 70a is provided on the movable portion 40 by fixing the target member 70 to the movable portion 40.
  • the target 70a of the tracking device 10A is a target tracked by the tracking device 10B
  • the target 70a of the tracking device 10B is a target tracked by the tracking device 10A.
  • the target 70a includes a first target 71 and a second target 72.
  • the first target 71 is a mark provided on the front side (+ X side) surface of the target member 70.
  • the first target 71 is an annular mark. That is, the outer shape of the first target 71 is circular.
  • the color of the first target 71 is, for example, black.
  • a plurality of first targets 71 are provided. In this embodiment, four first targets 71 are provided. In the present embodiment, the four first targets 71 have the same shape and the same size as each other.
  • the two first targets 71 are arranged side by side in the vertical direction Z on one side (+ Y side) of the electromagnetic wave wireless communication device 60 in the left-right direction Y.
  • the remaining two first targets 71 are arranged side by side in the vertical direction Z on the other side ( ⁇ Y side) of the electromagnetic wave wireless communication device 60 in the horizontal direction Y.
  • the four first targets 71 are arranged so as to surround the transmission / reception unit 60a when viewed in the front-rear direction X.
  • Each geometric center 71p of the four first targets 71 is arranged at each corner of the virtual rectangular frame IS surrounding the transmission / reception unit 60a when viewed from the front side (+ X side).
  • the virtual rectangular frame IS has a rectangular frame shape that is long in the left-right direction Y.
  • the geometric center 71p is the center of the annular first target 71.
  • the "geometric center” is the center of gravity of a geometric figure.
  • the plurality of first targets 71 are arranged on the circumference of the same virtual circle C when viewed from the front side (+ X side).
  • the center Cp of the virtual circle C coincides with the center 60p of the electromagnetic wave wireless communication device 60. That is, in the present embodiment, the electromagnetic wave wireless communication device 60 is arranged so as to overlap the center Cp of the virtual circle C when viewed from the front side. Further, as described above, the center 60p of the electromagnetic wave wireless communication device 60 is located between the transmitting unit 61 and the receiving unit 62 in the left-right direction Y. That is, in the present embodiment, the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 overlaps with the center Cp of the virtual circle C when viewed from the front side.
  • Each of the geometric centers 71p of the plurality of first targets 71 is arranged on the circumference of the virtual circle C when viewed from the front side (+ X side).
  • the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C.
  • the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is equal to the radius Rc of the virtual circle C.
  • the second target 72 is the entire surface of the target member 70 on the front side (+ X side) other than the first target 71.
  • the color of the second target 72 is different from the color of the first target 71.
  • the color of the second target 72 is, for example, yellow.
  • the second target 72 has a larger area than the first target 71.
  • the shape of the second target 72 is different from that of the first target 71.
  • the outer shape of the second target 72 is the same as the outer shape of the target member 70.
  • the outer edge of the second target 72 surrounds a plurality of first targets 71. That is, in the present embodiment, the entire first target 71 is located inside the outer edge of the second target 72.
  • the second target 72 has a longer traceable distance by the tracking device 10 than the first target 71.
  • the distance that the first target 71 can be tracked by the tracking device 10 is, for example, in the range of 30 m or less.
  • the distance that the second target 72 can be tracked by the tracking device 10 is, for example, in the range of 100 m or less.
  • the distance that each target 70a can be tracked by the tracking device 10 is, for example, the distance between the tracking devices 10.
  • the second target 72 has a symmetrical shape with respect to one straight line L1 including the diameter of the virtual circle C.
  • the straight line L1 is a virtual line extending in the vertical direction Z (first direction D1) through the center Cp of the virtual circle C when viewed from the front side (+ X side). That is, the second target 72 has a shape that is line-symmetrical in the left-right direction Y (second direction D2) with respect to the straight line L1 when viewed from the front side.
  • the second target 72 has a shape symmetrical with respect to another straight line L2 orthogonal to the straight line L1.
  • the straight line L2 is a virtual line extending in the left-right direction Y (second direction D2) through the center Cp of the virtual circle C when viewed from the front side (+ X side). That is, the second target 72 has a shape that is line-symmetrical in the vertical direction Z (first direction D1) with respect to the straight line L2 when viewed from the front side (+ X side).
  • the second target 72 has a first recess 72a and a second recess 72b that are recessed in the vertical direction Z (first direction D1).
  • the first recess 72a is provided at the lower end of the second target 72.
  • the first recess 72a is recessed upward.
  • the second recess 72b is provided at the upper end of the second target 72.
  • the second recess 72b is recessed downward.
  • the first recess 72a and the second recess 72b are arranged so as to sandwich the electromagnetic wave wireless communication device 60 in the vertical direction Z.
  • the inner edge of the first recess 72a and the inner edge of the second recess 72b have an arc shape that is concave in opposite directions to each other.
  • the outer edge of the second target 72 has a shape in which both ends of the inner edge of the first recess 72a and both ends of the inner edge of the second recess 72b are connected by a pair of arcs 72c and 72d concentric with the virtual circle C, respectively. be.
  • the image pickup apparatus 50 is located inside the first recess 72a when viewed from the front side (+ X side).
  • the geometric center 72p of the second target 72 overlaps with the electromagnetic wave wireless communication device 60 when viewed from the front side (+ X side). More specifically, the geometric center 72p of the second target 72 overlaps with the center 60p of the electromagnetic wave radio communication device 60 when viewed from the front side. As described above, the center 60p of the electromagnetic wave wireless communication device 60 overlaps with the center Cp of the virtual circle C when viewed from the front side. Therefore, the geometric center 72p of the second target 72 overlaps with the center Cp of the virtual circle C when viewed from the front side.
  • the first drive unit 81 shown in FIG. 2 rotates the holding unit 22 around the first rotation axis AXy, thereby rotating the movable unit 40 around the first rotation axis AXy.
  • the second drive unit 82 rotates the movable unit 40 around the second rotation axis AXp.
  • the first drive unit 81 and the second drive unit 82 are, for example, servomotors.
  • the first drive unit 81 is provided in the pedestal unit 21.
  • the second drive unit 82 is provided in the holding unit 22.
  • the first drive unit 81 and the second drive unit 82 are controlled by the control unit 30.
  • the control unit 30 controls the movable unit 40, the image pickup device 50, and the electromagnetic wave wireless communication device 60.
  • the control unit 30 controls the movable unit 40 to track the other tracking device 10 based on the image of the target 70a in the other tracking device 10 imaged by the image pickup device 50. More specifically, the control unit 30 controls the movable unit 40 based on the captured image (image) of the target 70a and the electromagnetic wave wireless communication device 60 in the other tracking device 10 captured by the image pickup device 50 to control the electromagnetic wave.
  • the other tracking device 10 is tracked so that the wireless communication devices 60 face each other.
  • the electromagnetic wave wireless communication method for communicating using the electromagnetic wave wireless communication system 100 of the present embodiment described above is a communication method for communicating between the electromagnetic wave wireless communication devices 60 provided in each tracking device 10.
  • the electromagnetic wave wireless communication method using the electromagnetic wave wireless communication system 100 is performed by controlling each part of the tracking device 10 by the control unit 30.
  • the electromagnetic wave wireless communication method of the present embodiment includes tracking another tracking device 10 by the tracking device 10.
  • the plurality of tracking devices 10 track each other's other tracking devices 10 and make the electromagnetic wave wireless communication devices 60 of the tracking devices 10 face each other to perform electromagnetic wave wireless communication with each other.
  • FIG. 4 is a flowchart showing an example of a procedure when the control unit 30 tracks another tracking device 10.
  • FIG. 5 is a diagram showing an example of a captured image (image) PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B.
  • FIG. 6 is a diagram showing another example of the captured image PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B.
  • FIG. 7 is a diagram showing still another example of the captured image PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B.
  • the "photographed image” is not limited to a still image, but also includes a moving image (or a part thereof). Further, in the present specification, the "image” is not limited to a still image, but also includes a moving image (or a part thereof).
  • the image pickup apparatus 50 can take an image of a region in the frame F shown in FIGS. 5 to 7 and acquire a photographed image PI.
  • the frame F has a rectangular frame shape having a short side along the first direction D1 and a long side along the second direction D2. Therefore, the captured image PI imaged by the image pickup apparatus 50 has a rectangular shape having a short side along the first direction D1 and a long side along the second direction D2.
  • the frame center Fc of the frame F coincides with the optical axis AXo of the image pickup apparatus 50.
  • the electromagnetic wave radio communication device 60 in the tracking device 10A is arranged on the positive side (+ D1 side) of the first direction D1 with respect to the frame center Fc.
  • the photographed image PI imaged by the image pickup apparatus 50 shows the first axis Fy extending in the first direction D1 and the second axis Fx extending in the second direction D2.
  • the first axis Fy passes through the center of the second direction D2 in the captured image PI.
  • the second axis Fx passes through the center of the first direction D1 in the captured image PI.
  • the first axis Fy and the second axis Fx pass through the frame center Fc and intersect at the frame center Fc.
  • the position of the second direction D2 of the first axis Fy is the same as the position of the second direction D2 at the center 60p of the electromagnetic wave radio communication device 60 of the tracking device 10A.
  • the tracking method of the present embodiment includes steps S1a to S1e.
  • step S1a the control unit 30 acquires a photographed image PI in which the target 70a and the electromagnetic wave wireless communication device 60 in the other tracking device 10B are reflected by the image pickup device 50.
  • the control unit 30 continues to acquire the captured image PI at a predetermined frame rate while tracking the other tracking device 10B.
  • the captured image PI acquired by the image pickup apparatus 50 shown in FIGS. 5 to 7 includes an image of the first target 71 and an image of the second target 72 in the other tracking apparatus 10B.
  • the photographed image PI shown in FIG. 5 is, for example, the photographed image PI acquired in step S1a.
  • the tracking device 10B is on the positive side (+ D1 side) of the first direction D1 from the frame center Fc and on the positive side of the second direction D2 from the frame center Fc (+ D1 side). It is reflected in the area located on the + D2 side).
  • the image of the first target 71 and the image of the second target 72 are discriminated by the control unit 30 by machine learning the captured image PI that has undergone image processing. In the example of FIG. 5, a part of the first target 71 and a part of the second target 72 are out of frame.
  • control unit 30 can also perform auxiliary recognition and identification of the target image by using a pattern matching method in combination.
  • step S1b the control unit 30 selects the target 70a to be used for tracking based on the acquired image PI.
  • the control unit 30 selects which of the first target 71 and the second target 72, the target 70a, is used for tracking.
  • the control unit 30 selects the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72 reflected in the captured image PI.
  • the "image quality” refers to the sharpness of the image of the object reflected in the photographed image PI (including the degree of collapse of the shape of the image and the clarity of the outline, so-called image quality), and the photographed image PI.
  • the quality of the image is determined by the range of the image reflected in the image.
  • the higher the image quality of the image of the target 70a the higher the accuracy of tracking the target 70a when the image of the target 70a is used for tracking.
  • the image quality is higher as the image is easier to accurately acquire the representative point RP described later.
  • the image quality of the image is relatively low, and even if the image is relatively unclear, the whole image is obtained. If the representative point RP can be obtained relatively accurately, the image quality of the image is relatively high.
  • the control unit 30 selects the first target 71 as the target 70a used for tracking.
  • the control unit 30 selects the second target 72 as the target 70a used for tracking.
  • the captured image is relatively clear, and the entire image is shown, then the images of the plurality of first targets 71 are displayed.
  • the second target 72 has a larger area than the first target 71, even if the distance between the tracking devices 10A and 10B is relatively large, the image is less likely to be blurred as compared with the first target 71, which is representative. It is easy to acquire the point RP with high accuracy.
  • the image quality of the first target 71 tends to be higher than the image quality of the second target 72.
  • the image quality of the second target 72 tends to be higher than the image quality of the first target 71.
  • step S1c the control unit 30 acquires the representative point RP of the electromagnetic wave wireless communication device 60 in the captured image PI based on the selected target 70a reflected in the captured image PI.
  • the control unit 30 performs image processing on the captured image PI and acquires the geometric center 71p of the image of each first target 71.
  • the control unit 30 acquires a virtual circle CI in which each geometric center 71p is arranged on the circumference in the captured image PI from the position of each geometric center 71p in the captured image PI.
  • the virtual circle CI in the captured image PI is a virtual circle obtained by scaling the virtual circle C defined for the actual first target 71 described above according to the scale of the captured image PI.
  • the control unit 30 acquires the central CpI of the acquired virtual circle CI as the representative point RP.
  • the center Cp of the virtual circle C in which the geometric centers 71p of the plurality of first targets 71 are arranged overlaps with the center 60p of the electromagnetic wave wireless communication device 60 when viewed from the optical axis direction DL. .. Therefore, the representative point RP acquired based on the virtual circle CI coincides with the center 60p of the electromagnetic wave wireless communication device 60 in the captured image PI.
  • the control unit 30 acquires the geometric center 72p of the second target 72 reflected in the captured image PI as the representative point RP.
  • the control unit 30 performs image processing on the image of the second target 72 in the captured image PI, and acquires the geometric center 72p of the image of the second target 72 as the representative point RP.
  • the geometric center 72p of the second target 72 overlaps with the center 60p of the electromagnetic wave radio communication device 60 when viewed from the optical axis direction DL. Therefore, the representative point RP acquired based on the image of the second target 72 coincides with the center 60p of the electromagnetic wave radio communication device 60 in the captured image PI.
  • the position of the representative point RP acquired based on the first target 71 and the position of the representative point RP acquired based on the second target 72 are the same as each other.
  • step S1d the control unit 30 acquires the offset amount OSI between the electromagnetic wave wireless communication device 60 and the image pickup device 50 in the captured image PI.
  • the offset amount OSI in the captured image PI is an offset amount obtained by reducing the offset amount OS between the actual electromagnetic wave wireless communication device 60 and the image pickup device 50 according to the scale of the captured image PI.
  • the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the target 70a reflected in the captured image PI.
  • the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is equal to the radius Rc of the virtual circle C passing through the geometric centers 71p of the plurality of first targets 71. Therefore, the offset amount OSI in the captured image PI is equal to the radius RcI of the virtual circle CI obtained based on the plurality of first targets 71 in the captured image PI. Therefore, the control unit 30 can acquire the offset amount OSI in the captured image PI by acquiring the virtual circle CI based on the plurality of first targets 71 reflected in the captured image PI.
  • the control unit 30 sets the radius RcI of the virtual circle CI obtained when acquiring the representative point RP in step S1c in the captured image PI. It can be obtained as the offset amount OSI in.
  • the virtual circle CI is a circle centered on the representative point RP and having the offset amount OSI in the captured image PI as the radius.
  • the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the second target 72 reflected in the captured image PI. Specifically, the control unit 30 calculates the scale of the captured image PI from the ratio between the actual dimensions of the second target 72 and the dimensions of the image of the second target 72 reflected in the captured image PI. The control unit 30 acquires the offset amount OSI in the captured image PI by reducing the offset amount OS between the actual electromagnetic wave wireless communication device 60 and the image pickup device 50 according to the scale of the calculated captured image PI.
  • the actual dimensions of the second target 72 and the actual offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 are known.
  • a certain information is known in a certain object
  • a certain information can be used in the control in a certain object without measuring and calculating.
  • a state in which certain information can be used without measuring and calculating means, for example, a state in which certain information is stored in advance in a certain object, and a certain information is referred to by wireless or wired from an external database. Including the state that can be done.
  • each known information is stored in advance in a storage unit (not shown) provided in the control unit 30.
  • step S1e the control unit 30 drives the movable unit 40 based on the acquired representative point RP and offset amount OSI.
  • the control unit 30 is a movable unit 40 so that the first axis Fy extending in the first direction D1 in the captured image PI overlaps with the representative point RP in the captured image PI. Is rotated around the first rotation axis AXY.
  • the control unit 30 sets the movable unit 40 of the tracking device 10A in the second direction D2 so that a part of the first axis Fy overlaps with the representative point RP when viewed from the optical axis direction DL. Move to the positive side (+ D2 side) of.
  • the position of the representative point RP in the second direction D2 and the position of the first axis Fy in the second direction D2 coincide with each other. Therefore, the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10A and the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10B can be aligned with the same position in the second direction D2.
  • the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10B that is, the representative point RP is on the positive side of the first direction D1 with respect to the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10A. It is located away from the + D1 side).
  • the second axis Fx extending in the second direction D2 in the captured image PI has the representative point RP as the center and the offset amount OSI in the captured image PI as the radius.
  • the movable portion 40 is rotated around the second rotation axis AXp so as to be in contact with the virtual circle CI.
  • the control unit 30 overlaps the second axis Fx with the end point of the virtual circle CI on the negative side ( ⁇ D1 side) of the first direction D1 when viewed from the optical axis direction DL. , The movable portion 40 of the tracking device 10A is moved to the positive side (+ D1 side) of the first direction D1.
  • the tracking device 10A and the tracking device 10B have the same structure, and in each of the tracking devices 10A and 10B, the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is set. They are the same as each other. Therefore, in the captured image PI, the offset amount OSI in the tracking device 10A and the offset amount OSI in the tracking device 10B are the same as each other.
  • the electromagnetic wave wireless communication device 60 in the tracking device 10A can be aligned with the position of the same first direction D1.
  • the electromagnetic wave in the tracking device 10A The center 60p of the wireless communication device 60 can be aligned with the representative point RP, that is, the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10B.
  • the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10A and the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10B can be aligned in the first direction D1 and the second direction D2, respectively.
  • the centers 60p of the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B can be arranged so as to face each other in the optical axis direction DL. Therefore, electromagnetic wave wireless communication can be performed between the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B.
  • FIG. 7 shows a state in which the electromagnetic wave wireless communication device 60 of the tracking device 10A and the electromagnetic wave wireless communication device 60 of the tracking device 10B are arranged so as to be offset around an axis extending in the optical axis direction DL.
  • the electromagnetic wave wireless communication device 60 of the present embodiment can perform electromagnetic wave wireless communication as long as the central portion including the center 60p faces the central portion of another electromagnetic wave wireless communication device 60. Therefore, even in the state shown in FIG. 7, the tracking device 10A and the tracking device 10B can communicate with each other by the electromagnetic wave wireless communication device 60.
  • the tracking device 10B can also track the target 70a of the tracking device 10A in the same manner as the tracking device 10A described above.
  • both the tracking device 10A and the tracking device 10B simultaneously track each other's targets 70a of the other tracking device 10, so that the electromagnetic wave radio communication device 60 of the tracking device 10A and the electromagnetic wave radio of the tracking device 10B are used. The state of facing the communication device 60 is maintained.
  • the first target 71 and the second target 72 associated with one electromagnetic wave wireless communication device 60 are associated with the other electromagnetic wave wireless communication device 60.
  • the image of the first target 71 and the image of the second target 72 in the captured image (image) PI imaged by 50 are specified, and the identified image of the first target 71 and the image of the second target 72 are Based on either one, this is an electromagnetic wave wireless communication method in which the other electromagnetic wave wireless communication device 60 is directed in the direction of one electromagnetic wave wireless communication device 60.
  • the electromagnetic wave wireless communication method of the present embodiment described above is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices 60, and includes a target 70a associated with one electromagnetic wave wireless communication device 60, and the like.
  • the position (representative point RP) of one electromagnetic wave wireless communication device 60 in the captured image PI captured by the image pickup device 50 associated with the electromagnetic wave wireless communication device 60 and the image of the captured target 70a is specified.
  • the other electromagnetic wave wireless communication device 60 is subjected to one electromagnetic wave wireless communication.
  • This is an electromagnetic wave wireless communication method directed in the direction of the machine 60.
  • one electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10B, and the other electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10A.
  • the target 70a provided in the tracking device 10 includes a first target 71 and a second target 72 having a shape different from that of the first target 71. Therefore, the ease of tracking tends to differ between the first target 71 and the second target 72 depending on how they are reflected in the captured image PI captured by the image pickup device 50.
  • the target 70a of the other tracking device 10 is tracked by a certain tracking device 10
  • the target 70a of the first target 71 and the second target 72 is used for tracking properly. Tracking accuracy can be improved. Therefore, the tracking performance of the other tracking device 10 by the tracking device 10 can be improved. Therefore, it is easy to suitably maintain the plurality of tracking devices 10 in a state in which electromagnetic wave wireless communication is possible with each other. Thereby, the communication performance of the electromagnetic wave wireless communication system 100 can be improved.
  • the second target 72 has a longer traceable distance by the tracking device 10 than the first target 71. Therefore, for example, even when the tracking devices 10 are arranged relatively far apart from each other, the target 70a can be suitably tracked by using the second target 72 for tracking. As a result, the tracking performance of the other tracking device 10 by the tracking device 10 can be further improved, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
  • the area of the second target 72 is larger than that of the first target 71. Therefore, even when the tracking devices 10 are arranged relatively far apart from each other, the second target 72 is more likely to move to the captured image PI more clearly than the first target 71. As a result, the distance that can be tracked by the tracking device 10 in the second target 72 can be easily increased as compared with the first target 71.
  • a plurality of first targets 71 are provided, and the plurality of first targets 71 are arranged on the circumference of the same virtual circle C.
  • the electromagnetic wave wireless communication device 60 is arranged so as to overlap the center Cp of the virtual circle C. Therefore, when the other tracking device 10 is viewed from the tracking device 10, the center Cp of the virtual circle C overlaps with the electromagnetic wave wireless communication device 60.
  • the position of the electromagnetic wave wireless communication device 60 in the captured image PI is obtained by acquiring the center CpI of the virtual circle CI from the images of the plurality of first targets 71 reflected in the captured image PI by image processing. Can be obtained. Therefore, it is easy to acquire the position of the electromagnetic wave wireless communication device 60 based on the captured image PI.
  • each of the geometric centers 71p of the plurality of first targets 71 is arranged on the circumference of the virtual circle C. Therefore, the virtual circle CI can be easily acquired by acquiring the geometric center 71p of each first target 71 by image processing from the images of the plurality of first targets 71 reflected in the captured image PI. As a result, the center CpI of the virtual circle CI can be easily acquired in the captured image PI, and the position of the electromagnetic wave wireless communication device 60 in the captured image PI can be acquired more easily.
  • the geometric center 72p of the second target 72 overlaps with the electromagnetic wave wireless communication device 60. Therefore, by acquiring the geometric center 72p from the image of the second target 72 displayed on the captured image PI by image processing, the position of the electromagnetic wave wireless communication device 60 in the captured image PI can be acquired. Therefore, it is easy to acquire the position of the electromagnetic wave wireless communication device 60 based on the captured image PI.
  • the geometric center 72p of the second target 72 overlaps with the center Cp of the virtual circle C. Therefore, by acquiring the geometric center 72p from the image of the second target 72 reflected in the captured image PI by image processing, the center CpI of the virtual circle CI in the captured image PI can be acquired. As a result, the position of the electromagnetic wave wireless communication device 60 that can be acquired based on the first target 71 and the position of the electromagnetic wave wireless communication device 60 that can be acquired based on the second target 72 can be made the same. Therefore, regardless of whether the first target 71 or the second target 72 is used as the target 70a used for tracking, the same position of the electromagnetic wave radio communication device 60 can be acquired, and the tracking of the target 70a is also performed. It can be performed.
  • the transmitting unit 61 and the receiving unit 62 are arranged side by side, and the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 is a virtual circle C. It overlaps with the center Cp of. Therefore, by acquiring the center CpI of the virtual circle CI corresponding to the virtual circle C from the captured image PI by image processing, between the transmitting unit 61 and the receiving unit 62 of the electromagnetic wave wireless communication device 60 in the captured image PI. You can get the position of the part located in.
  • the electromagnetic wave wireless communication devices 60 have different relative postures from each other if the portions located between the transmission unit 61 and the reception unit 62 face each other.
  • electromagnetic wave wireless communication is possible with each other. Therefore, a portion located between the transmission unit 61 and the reception unit 62 in the captured image PI is acquired, and the acquired portion is located between the transmission unit 61 and the reception unit 62 in the other tracking device 10.
  • electromagnetic wave wireless communication can be performed between the electromagnetic wave wireless communication devices 60 regardless of the relative posture of the electromagnetic wave wireless communication devices 60. Therefore, the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
  • the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged so as to be offset by an offset amount OS in the first direction D1 orthogonal to the optical axis direction DL of the image pickup device 50.
  • the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged non-coaxially with respect to the optical axis direction DL. Therefore, as compared with the case where the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged coaxially with respect to the optical axis direction DL, it is easy to preferably arrange the electromagnetic wave wireless communication device 60 and the image pickup device 50 without interfering with each other. As a result, it is possible to prevent the function of the electromagnetic wave wireless communication device 60 and the function of the image pickup apparatus 50 from being restricted.
  • the second target 72 has a shape symmetrical to the second direction D2 orthogonal to both the optical axis direction DL and the first direction D1. Therefore, the geometric center 72p of the second target 72 can be positioned at the center of the second target 72 in the second direction D2.
  • the second target 72 is arranged coaxially with the electromagnetic wave wireless communication device 60, and the geometric center 72p of the second target 72 is acquired in the captured image PI, whereby the electromagnetic wave wireless communication device 60 is obtained.
  • the center position of the second direction D2 can be acquired.
  • the position of the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 in the second direction D2 can be easily acquired. Therefore, by tracking the target 70a of the other tracking device 10 by the tracking device 10, the portions of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 can be easily opposed to each other, and the electromagnetic wave radio can be easily opposed to each other. The communication performance of the communication system 100 can be further improved.
  • the second target 72 has a shape symmetrical to the first direction D1 orthogonal to the optical axis direction DL. That is, the second target 72 has a shape symmetrical to both the first direction D1 and the second direction D2. Therefore, the geometric center 72p of the second target 72 can be positioned at the center of the second target 72 in both the first direction D1 and the second direction D2.
  • the second target 72 is arranged coaxially with the electromagnetic wave wireless communication device 60, and the geometric center 72p of the second target 72 is acquired in the captured image PI, whereby the electromagnetic wave wireless communication device 60 is obtained.
  • the center position of the first direction D1 and the second direction D2, that is, the center 60p can be acquired. Therefore, by tracking the target 70a of the other tracking device 10 by the tracking device 10, the central portions of the electromagnetic wave wireless communication device 60 can be easily opposed to each other, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved. ..
  • the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C. Therefore, by making the center Cp of the virtual circle C overlap with the center 60p of the electromagnetic wave wireless communication device 60, the radius Rc of the virtual circle C becomes the same as the offset amount OS between the image pickup device 50 and the electromagnetic wave wireless communication device 60. can.
  • the offset amount OSI between the image pickup device 50 and the electromagnetic wave wireless communication device 60 in the captured image PI can be easily obtained. Can be obtained. Therefore, it is possible to easily track the target 70a using the plurality of first targets 71.
  • the second target 72 has a first recess 72a recessed in the first direction D1, and the image pickup apparatus 50 is located inside the first recess 72a. Therefore, while arranging a plurality of first targets 71 inside the outer edge of the second target 72, the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C through which the geometric center 71p of each first target 71 passes. can do. Further, it is possible to prevent the image pickup apparatus 50 from interfering with the target member 70 provided with the second target 72. Therefore, it is possible to easily perform work such as exchanging the lens 52 of the image pickup apparatus 50.
  • the electromagnetic wave wireless communication device 60 and the image pickup device 50 are placed in the first direction D1. Can be placed close to. Therefore, when the first direction D1 is in the vertical direction, the electromagnetic wave wireless communication device has a relatively large mass even when the electromagnetic wave wireless communication device 60 is located on the upper side in the vertical direction of the image pickup device 50. It is easy to set the position of 60 to the lower side in the vertical direction. Thereby, when the movable portion 40 is rotated around the second rotation axis AXp, the moment generated in the movable portion 40 by the electromagnetic wave wireless communication device 60 can be reduced. Therefore, the movable portion 40 to which the electromagnetic wave wireless communication device 60 and the image pickup device 50 are attached can be easily rotated around the second rotation axis AXp.
  • the second target 72 has a second recess 72b recessed in the first direction D1, and the first recess 72a and the second recess 72b are the first electromagnetic wave wireless communication device 60. It is arranged so as to be sandwiched in the direction D1. Therefore, it is easy to make the second target 72 have a shape symmetrical to the first direction D1.
  • the inner edge of the first recess 72a and the inner edge of the second recess 72b have an arc shape that is concave in opposite directions to each other, and the outer edge of the second target 72 is the first recess 72a. Both ends of the inner edge and both ends of the inner edge of the second recess 72b are connected by a pair of arcs 72c and 72d concentric with the virtual circle C, respectively. Therefore, the second target 72 tends to have a shape symmetrical to both the first direction D1 and the second direction D2.
  • the movable portion 40 can rotate around the first rotation axis AXy extending in the direction intersecting the optical axis direction DL. Therefore, by rotating the movable portion 40 around the first rotation axis AXy, it is possible to easily track another tracking device 10 by the tracking device 10.
  • the movable portion 40 can rotate around the second rotation axis AXp that intersects the optical axis direction DL and extends in the direction orthogonal to the direction in which the first rotation axis AXy extends. Therefore, by rotating the movable portion 40 around the first rotation axis AXP and around the second rotation axis AXP, the tracking device 10 can more easily track the other tracking device 10. Further, since the movable degree of freedom of the movable portion 40 can be set to 2 degrees of freedom in each tracking device 10, the relative degree of freedom of movement of the pair of tracking devices 10 that track each other can be set to 4 degrees of freedom. As a result, the tracking devices 10 can be suitably opposed to each other.
  • the electromagnetic wave wireless communication device 60 even if the electromagnetic wave wireless communication device 60 is deviated from each other in the rotation direction around the axis extending in the optical axis direction DL, communication is possible as long as the central portions face each other, so that a pair of tracking is performed. Even if the relative degree of freedom of movement of the device 10 is 4 degrees of freedom, the electromagnetic wave wireless communication devices 60 can be sufficiently opposed to each other.
  • control unit 30 is a movable unit 40 based on a captured image PI (image) of the target 70a and the electromagnetic wave wireless communication device 60 in another tracking device 10 imaged by the image pickup device 50.
  • a captured image PI image
  • the electromagnetic wave wireless communication device 60 of the other tracking device 10 can be easily tracked based on the target 70a.
  • the control unit 30 selects the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72. Therefore, among the images of each target 70a reflected in the captured image PI, the image of the target 70a whose position and the like can be suitably obtained by image processing can be used to track the other tracking device 10. As a result, the tracking performance of the other tracking device 10 by the tracking device 10 can be further improved, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
  • the control unit 30 acquires the representative point RP of the electromagnetic wave wireless communication device 60 in the captured image PI based on the target 70a reflected in the captured image PI (image), and is in the captured image PI.
  • the movable portion 40 is rotated around the first rotation axis AXy so that the first axis Fy extending in the first direction D1 overlaps with the representative point RP in the captured image PI, and in the second direction D2 in the captured image PI.
  • the movable portion 40 is placed on the second rotation axis AXp so that the extending second axis Fx is in contact with a circle centered on the representative point RP and the offset amount OSI in the captured image PI as a radius, that is, in the present embodiment, the virtual circle CI. Rotate around. Therefore, as described in steps S1a to S1e, the electromagnetic wave wireless communication device 60 of the tracking device 10 can be made to face the electromagnetic wave wireless communication device 60 of another tracking device 10. According to this method, other tracking can be easily performed by acquiring the representative point RP, the offset amount OSI, and the virtual circle CI in the captured image PI by image processing based on the image of the target 70a in the captured image PI. The device 10 can be tracked.
  • the amount of image processing performed on the captured image PI can be reduced, and the load on the control unit 30 can be reduced. Further, since the positioning of the representative point RP and the virtual circle CI with respect to each axis can be performed by looking at the captured image PI, it is possible to easily perform the positioning without the need for a separate measuring device or the like. As a result, the load on the control unit 30 can be further reduced.
  • the control unit 30 acquires the central CpI of the virtual circle CI as the representative point RP. Therefore, if the virtual circle CI is acquired by image processing based on the images of the plurality of first targets 71 in the captured image PI, the representative point RP can be easily acquired. If the radius Rc of the virtual circle C is the same as the offset amount OS, it corresponds to the virtual circle C in the captured image PI as a circle centered on the representative point RP and having the offset amount OSI in the captured image PI as the radius. A virtual circle CI can be used. Therefore, if only the virtual circle CI can be acquired by image processing in the captured image PI, the other tracking device 10 can be easily tracked. As a result, the amount of image processing performed on the captured image PI can be further reduced, and the load on the control unit 30 can be further reduced.
  • control unit 30 acquires the geometric center 72p of the second target 72 reflected in the captured image PI as the representative point RP. Therefore, when the second target 72 is selected as the target 70a used for tracking, the representative point RP of the electromagnetic wave wireless communication device 60 can be easily acquired.
  • control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the target 70a reflected in the captured image PI. Therefore, the offset amount OSI can be easily obtained.
  • the offset amount OSI in the captured image PI is the radius RcI of the virtual circle CI obtained based on the plurality of first targets 71 in the captured image PI. Therefore, by acquiring the virtual circle CI based on the plurality of first targets 71, the offset amount OSI can be easily acquired.
  • the entire first target 71 is located inside the outer edge of the second target 72. Therefore, it is possible to prevent the target member 70 provided with each target 70a from becoming large. As a result, it is possible to prevent the tracking device 10 from becoming large.
  • the outer shape of the first target 71 is circular. Therefore, it is possible to easily acquire the geometric center 71p of the first target 71 by image processing from the image of the first target 71 in the captured image PI.
  • the first target 71 is an annular shape. Therefore, the shape of the first target 71 can be made into a shape that is less likely to exist other than the first target 71 as compared with the circular shape. As a result, the discriminating power of the first target 71 can be improved in the captured image PI, and it is possible to suppress erroneous detection of an object other than the first target 71. On the other hand, it is possible to prevent the shape of the first target 71 from becoming complicated by making it annular. Therefore, even when the distance between the tracking devices 10 is relatively large, the control unit 30 can easily recognize the characteristics of the shape of the first target 71 in the captured image PI. As described above, by making the first target 71 an annular shape, it is possible to more preferably track another tracking device 10 using the first target 71.
  • the first axis Fy passes through the center of the second direction D2 in the captured image (image) PI
  • the second axis Fx is the center of the first direction D1 in the captured image (image) PI. Pass through. Therefore, the point where the first axis Fy and the second axis Fx intersect can be the center of the first direction D1 and the second direction D2 in the captured image PI, and the point coincides with the optical axis AXo of the image pickup apparatus 50. Can be.
  • the representative point RP and the virtual circle CI are relatively moved with respect to the first axis Fy and the second axis Fx in the captured image PI, thereby offsetting in the first direction D1 with respect to the optical axis AXo of the image pickup apparatus 50. It is easy to move the electromagnetic wave wireless communication device 60 arranged in the above direction to a position facing the other electromagnetic wave wireless communication device 60.
  • control unit 30 is configured to select the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72. Not limited. The control unit 30 may select the target 70a used for tracking in any way.
  • the control unit 30 may select the target 70a used for tracking according to the distance between the two tracking devices 10.
  • the target 70a can be suitably selected according to the distance between the tracking devices 10. Specifically, when the distance between the tracking devices 10 is equal to or less than a predetermined distance, the control unit 30 selects the first target 71 as the target 70a used for tracking, and the distance between the tracking devices 10 is larger than the predetermined distance. In some cases, the second target 72 may be selected as the target 70a used for tracking.
  • the distance between the tracking devices 10 may be measured based on the image of another tracking device 10 reflected in the captured image PI, or may be measured by another measuring device such as an optical range measuring device.
  • the distance between the tracking devices 10 is relatively small, the distance between the electromagnetic wave wireless communication devices 60 is also small, and the relative position range between the electromagnetic wave wireless communication devices 60 where communication between the electromagnetic wave wireless communication devices 60 is allowed becomes narrow. Cheap. Therefore, it is necessary to align the electromagnetic wave wireless communication devices 60 with each other more accurately and to face each other as compared with the case where the distance between the tracking devices 10 is relatively large.
  • the annular first target 71 has more discriminating power than the second target 72. Since it is high and a plurality of them are provided, the representative point RP can be detected accurately by image processing.
  • the representative point RP can be accurately acquired by selecting the first target 71 as the target 70a used for tracking, and the electromagnetic wave wireless communication devices 60 can be used with each other. Can be opposed to each other with high positional accuracy. As a result, even when the distance between the electromagnetic wave wireless communication devices 60 is small and the relative position range between the electromagnetic wave wireless communication devices 60 to which communication between the electromagnetic wave wireless communication devices 60 is permitted becomes narrow, the electromagnetic wave wireless communication devices 60 to each other are narrowed. Therefore, electromagnetic wave wireless communication can be preferably performed.
  • the image of the other tracking device 10 reflected in the captured image PI captured by the image pickup device 50 becomes relatively large. Therefore, the first target 71, which has a smaller area than the second target 72, can be easily transferred to the captured image PI with sufficient clarity. Therefore, even if the first target 71 is selected as the target 70a used for tracking, the representative point RP can be suitably acquired based on the first target 71.
  • the images of the other tracking devices 10 reflected in the captured image PI captured by the image pickup device 50 are relatively small.
  • the smaller the image of the target 70a reflected in the captured image PI the more difficult it is to identify the image of the target 70a, and the lower the accuracy of acquiring the representative point RP based on the image of the target 70a. Therefore, when the distance between the tracking devices 10 is relatively large, it is preferable to select the target 70a that appears larger in the captured image PI.
  • the second target 72 having a larger area than the first target 71 is selected as the target 70a used for tracking, so that the captured image PI can be used.
  • the representative point RP can be obtained from the second target 72, which appears relatively large in. Therefore, even when the distance between the tracking devices 10 is larger than the predetermined distance, the representative point RP can be suitably acquired, and the electromagnetic wave wireless communication devices 60 can be suitably opposed to each other.
  • the distance between the tracking devices 10 When the distance between the tracking devices 10 is relatively large, the distance between the electromagnetic wave wireless communication devices 60 is also large, and the relative position range between the electromagnetic wave wireless communication devices 60 where communication between the electromagnetic wave wireless communication devices 60 is permitted is set. It tends to be wide. Therefore, by using the second target 72, even if the acquisition accuracy of the representative point RP is lower than the acquisition accuracy when the first target 71 is used when the distance between the tracking devices 10 is relatively small, the electromagnetic wave radio wave is used.
  • the electromagnetic wave wireless communication devices 60 can face each other within the range in which the electromagnetic wave wireless communication is preferably performed between the communication devices 60.
  • the first target 71 which has a smaller area than the second target 72, tends to have a lower acquisition accuracy of the representative point RP than the second target 72.
  • FIG. 8 is a graph showing the error Ed of the representative point RP with respect to the distance Lt between the tracking devices 10.
  • the horizontal axis shows the distance Ld between the tracking devices 10
  • the vertical axis shows the error Ed of the representative point RP.
  • the graph shown by the alternate long and short dash line is the upper limit value EdT of the target error Ed.
  • the graph shown by the broken line is the error Ed1 when the representative point RP is acquired by using only the first target 71 regardless of the distance Lt.
  • FIG. 8 is a graph showing the error Ed of the representative point RP with respect to the distance Lt between the tracking devices 10.
  • the horizontal axis shows the distance Ld between the tracking devices 10
  • the vertical axis shows the error Ed of the representative point RP.
  • the graph shown by the alternate long and short dash line is the upper limit value EdT of the target error Ed.
  • the graph shown by the broken line is the error Ed1 when the representative point RP is acquired by using only the first target 71 regardless of the
  • the graph shown by the alternate long and short dash line is the error Ed2 when the representative point RP is acquired using only the second target 72 regardless of the distance Lt.
  • the graph shown by the solid line is the error EdH when the target 70a is switched and the representative point RP is acquired according to the distance Lt as described above.
  • the representative point RP can be suitably acquired, and the electromagnetic wave wireless communication devices 60 can be suitably opposed to each other.
  • the upper limit value EdT increases linearly, for example, as the distance Lt increases. This is because, as described above, the larger the distance Lt, the wider the relative position range between the electromagnetic wave radio communication devices 60 to which communication between the electromagnetic wave radio communication devices 60 is allowed, and the error Ed is allowed.
  • the error Ed1 in the case of acquiring the representative point RP using only the first target 71 regardless of the distance Lt is, for example, an upper limit EdT preferably set up to a range where the distance Lt is equal to or less than the value Ltb.
  • the distance Lt exceeds the value Ltb, it rapidly increases and exceeds the upper limit value EdT of the target error Ed. This is because, for example, when the distance Lt becomes large to some extent, the relatively small first target 71 does not appear to the extent that it can be discerned in the captured image PI.
  • the error Ed2 in the case of acquiring the representative point RP using only the second target 72 regardless of the distance Lt is larger than the upper limit value EdT of the target error Ed in the range where the distance Lt is smaller than the value Lta, for example.
  • the error Ed2 is equal to or less than the upper limit value EdT in the range where the distance Lt is the value Lta or more. This is because, in the range where the distance Lt is relatively small, the acquisition accuracy of the representative point RP is higher when the first target 71 is used than when the second target 72 is used, while the area of the second target 72 is larger than that of the first target 71. This is because the error Ed is unlikely to increase even if the distance Lt is larger than that of the first target 71.
  • the value Lta is, for example, smaller than the value Ltb.
  • a value between the value Lta and the value Ltb can be set.
  • the error Ed can be set at any distance Lt as in the error EdH of the present embodiment shown by the solid line in FIG.
  • the value can be suitably smaller than the upper limit value EdT. Therefore, the representative point RP can be accurately acquired in the captured image PI regardless of the distance Lt between the tracking devices 10, and the other tracking devices 10 can be suitably tracked. Therefore, suitable electromagnetic wave wireless communication between the electromagnetic wave wireless communication devices 60 can be realized regardless of the distance Lt between the tracking devices 10.
  • the control unit 30 uses the center CpI of the virtual circle CI as the representative point RP when the distance between the tracking devices 10 is equal to or less than a predetermined distance.
  • the geometric center 72p of the second target 72 reflected in the captured image PI may be acquired as the representative point RP.
  • the representative point RP can be suitably acquired based on the selected target 70a.
  • control unit 30 selects either the first target 71 or the second target 72 as the target 70a used for tracking according to the distance between the electromagnetic wave wireless communication devices 60 of the two tracking devices 10.
  • You may. That is, an electromagnetic wave wireless communication method may be adopted in which either one of the first target 71 and the second target 72 is selected as the target 70a used for tracking according to the distance between the electromagnetic wave wireless communication devices 60.
  • the control unit 30 can track the other tracking devices 10 in the same manner as in the case of selecting the target 70a according to the distance between the two tracking devices 10 described above.
  • control unit 30 identifies the position of the other tracking device 10 in the captured image PI (image) using the image of the second target 72 prior to the tracking based on the image of the first target 71. May be good. Since the second target 72 has a larger area than the first target 71, it is easier to identify in the captured image PI than the first target 71 regardless of the distance between the tracking devices 10. Therefore, by using the second target 72 when capturing the other tracking device 10 in the captured image PI, the other tracking device 10 can be easily captured as compared with the case where the first target 71 is used. If the distance of the tracking device 10 is relatively small, the other tracking device 10 may be tracked by using the first target 71 after capturing the other tracking device 10 in the captured image PI.
  • the other tracking device 10 can be tracked with high accuracy.
  • the large second target 72 is used to track the rough position of the other tracking device 10, and then the first target 71, which makes it easy to accurately obtain the representative point RP, is used to track the other tracking device 10.
  • This method is more effective when the lens 52 of the image pickup apparatus 50 has a magnification changing function (telephoto function). That is, first, the imaging magnification of the imaging device 50 is set to a low magnification, the second target 72 is used to search for another tracking device 10, and then the image of the second target 72 comes to the approximate center of the frame F.
  • a tracking method can be adopted in which the movable portion 40 is moved, and then the imaging magnification of the imaging device 50 is set to a high magnification and the tracking is switched to the tracking of another tracking device 10 using the first target 71.
  • control unit 30 may select the target 70a to be used for tracking based on machine learning.
  • the target 70a used for tracking can be more preferably selected.
  • the control unit 30 sets the first target 71 and the second target 72 under various conditions such as, for example, the distance between the tracking devices 10, the relative posture between the tracking devices 10, and the external environment in which the tracking devices 10 are arranged.
  • Machine learning is performed as to which is the most suitable for tracking, and the target 70a is selected based on the learning result.
  • the control unit 30 acquires the center CpI of the virtual circle CI as the representative point RP based on the machine learning, or is reflected in the captured image PI (image). 2 It may be selected whether to acquire the geometric center 72p of the target 72 as the representative point RP.
  • the representative point RP can be suitably acquired based on the selected target 70a.
  • the plurality of tracking devices 10 may include tracking devices 10 having different structures from each other.
  • the electromagnetic wave wireless communication device 60 and the image pickup device 50 may be arranged coaxially with respect to the optical axis direction DL. In this case, the offset amount OS is 0 (zero).
  • the electromagnetic wave wireless communication device 60 may perform only one of transmission and reception of the electromagnetic wave EW.
  • the electromagnetic wave wireless communication method of the present embodiment includes a tracking method including steps S2a to S2e shown in FIG.
  • FIG. 9 is a flowchart showing an example of a procedure when the control unit 30 of the second embodiment tracks another tracking device 10.
  • the control unit 30 tracks another tracking device 10 according to steps S2a to S2e shown in FIG.
  • step S2a is the same as step S1a of the first embodiment.
  • Step S2b is the same as step S1b of the first embodiment.
  • Step S2c is the same as step S1c of the first embodiment.
  • the control unit 30 determines the tracking target position TP based on the acquired captured image PI.
  • the tracking target position TP is a target position for moving the representative point RP acquired in step S2c in the captured image PI.
  • the tracking target position TP is a position in the captured image PI corresponding to the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A for tracking. Therefore, when the representative point RP matches the tracking target position TP shown in FIG. 5, the portion corresponding to the representative point RP in the electromagnetic wave wireless communication device 60 of the other tracking device 10B, that is, the center 60p is the tracking device 10A for tracking. It is in a state of facing the center 60p of the electromagnetic wave wireless communication device 60 and the DL in the optical axis direction.
  • the control unit 30 determines the tracking target position TP on the captured image PI of the image pickup apparatus 50 based on the image of the target 70a and the predetermined arrangement relationship.
  • the predetermined arrangement relationship is the arrangement relationship of the electromagnetic wave radio communication device 60, the image pickup apparatus 50, and the target 70a with respect to the predetermined representative point RP when viewed from the optical axis direction DL, and is known. ..
  • the control unit 30 determines the tracking target position TP based on either the image of the first target 71 or the image of the second target 72.
  • the arrangement relationship regarding the representative point RP of the first target 71 and the arrangement relationship regarding the representative point RP of the second target 72 are known.
  • the control unit 30 determines whether the tracking target position TP is determined based on the image of the first target 71 or the image of the second target 72, based on the image quality of the image of the first target 71 and the image of the second target 72. Determined based on the image quality of.
  • the control unit 30 determines the tracking target position TP based on, for example, the image of the target 70a having the higher image quality. According to this method, the tracking target position TP can be suitably determined.
  • the target 70a used for tracking is selected based on the image quality in step S2b, for example, the same target 70a as the target 70a selected in step S2b is selected as the target 70a used for determining the tracking target position TP.
  • the target 70a used to determine the tracking target position TP may be different from the target 70a selected in step S2b.
  • the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the selected target 70a, and the offset amount is from the frame center Fc to the positive side (+ D1 side) of the first direction D1.
  • the position on the first axis Fy separated by the same distance DS as OSI is determined as the tracking target position TP. Since the offset amount OS is the same in the tracking device 10A and the tracking device 10B, the first direction D1 is the same distance DS as the offset amount OSI from the frame center Fc that coincides with the optical axis AXo of the tracking device 10A in the captured image PI.
  • the position away from the positive side (+ D1 side) is the position corresponding to the position of the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A. Therefore, by determining the tracking target position TP as described above, the position corresponding to the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A can be determined as the tracking target position TP.
  • control unit 30 sets the offset amount OSI in the captured image PI in the first embodiment. Can be obtained in the same way as.
  • step S2e the control unit 30 controls the movable unit 40 so that the representative point RP of the other tracking device 10B overlaps with the tracking target position TP on the captured image PI of the image pickup device 50.
  • the control unit 30 controls the movable unit 40 around at least one rotation axis of the first rotation axis AXPy and the second rotation axis AXP, and superimposes the representative point RP on the tracking target position TP in the captured image PI.
  • the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B can face each other.
  • the control method of the movable portion 40 when the representative point RP and the tracking target position TP are overlapped with each other is not particularly limited, and may be the same as the control method of the movable portion 40 in step S1e of the first embodiment, for example.
  • the electromagnetic wave wireless communication method of the present embodiment described above is the first specified in the captured image PI based on the positional relationship between the electromagnetic wave wireless communication device 60 and the first target 71 or the second target 72.
  • the position of one electromagnetic wave wireless communication device 60 in the captured image PI captured from the image of the target 71 or the image of the second target 72 is specified, and based on the positional relationship between the other electromagnetic wave wireless communication device 60 and the image pickup device 50.
  • the tracking target position TP in the captured image PI is determined, and the position (representative point RP) of one electromagnetic wave wireless communication device 60 in the captured image PI overlaps with the tracking target position TP. It corresponds to an electromagnetic wave wireless communication method that moves 60.
  • the tracking target position TP in the captured image PI is determined based on the positional relationship between the other electromagnetic wave wireless communication device 60 and the image pickup device 50, and the captured image is captured.
  • one electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10B, and the other electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10A.
  • the electromagnetic wave wireless communication devices 60 are suitable for each other by moving the movable portion 40 so that the representative point RP overlaps the tracking target position TP. Can be opposed to.
  • the arrangement relationship of the electromagnetic wave radio communication device 60, the image pickup device 50, and the target 70a with respect to the predetermined representative point RP when viewed from the optical axis direction DL is known. Therefore, by determining the tracking target position TP on the captured image PI based on the image of the target 70a in the captured image PI and their arrangement relationship, it is possible to determine the tracking target position TP in a suitable and easy manner. can.
  • control unit 30 determines the tracking target position TP based on either the image of the first target 71 or the image of the second target 72. Therefore, the determination of the tracking target position TP can be more preferably performed by appropriately determining which target 70a the tracking target position TP is to be determined based on.
  • the control unit 30 determines whether the tracking target position TP is determined based on the image of the first target 71 or the image of the second target 72, depending on the distance between the two tracking devices 10. It may be decided based on. In this case, for example, when the distance between the tracking devices 10 is equal to or less than a predetermined distance, the control unit 30 determines the tracking target position TP based on the image of the first target 71, and the distance between the tracking devices 10 is a predetermined distance. If it is larger than, the tracking target position TP may be determined based on the image of the second target 72. According to this method, the tracking target position TP can be suitably determined.
  • control unit 30 may determine by machine learning whether to determine the tracking target position TP based on the image of the first target 71 or the image of the second target 72.
  • the target 70a capable of more preferably determining the tracking target position TP can be suitably selected according to the captured image PI by machine learning. Therefore, by overlapping the tracking target position TP and the representative point RP, the electromagnetic wave wireless communication devices 60 can be more preferably opposed to each other.
  • control unit 30 may select the target 70a used for determining the tracking target position TP in step S2d regardless of the captured image PI.
  • control unit 30 selects, for example, the target 70a selected as the target 70a used for tracking in step S2b as the target 70a used for determining the tracking target position TP.
  • FIG. 10 is a diagram showing a target member 270 of the present embodiment.
  • the target 270a provided on the target member 270 includes a light emitting unit 274 capable of emitting light and a second target 72.
  • the light emitting unit 274 is, for example, a light emitting diode (LED) or the like.
  • the light emitting unit 274 is attached to the surface on the front side (+ X side) of the target member 270.
  • a plurality of light emitting units 274 are provided.
  • four light emitting units 274 are provided.
  • four light emitting units 274 are provided instead of the four first targets 71 of the above-described embodiment.
  • the four light emitting units 274 are arranged at the same positions as the positions of the four first targets 71 of the above-described embodiment.
  • the center 274p seen from the optical axis direction DL of the light emitting unit 274 is arranged on the circumference of the virtual circle C similar to the above-described embodiment.
  • the target 270a includes a light emitting unit 274 capable of emitting light. Therefore, the representative point RP of the electromagnetic wave wireless communication device 60 can be suitably acquired based on the light emitting unit 274 that emits light in the photographed image PI captured by the image pickup apparatus 50. Further, for example, the posture of the target 270a can be easily detected by changing the light emitting pattern of each light emitting unit 274.
  • the light emitting unit 274 may be provided with the target member 270 together with the first target 71.
  • the light emitting unit 274 may be arranged inside, for example, the annular first target 71.
  • the light emitting unit 274 is, for example, in a state where the tracking of the tracking devices 10 is completed and the electromagnetic wave wireless communication devices 60 face each other, that is, in a state where the electromagnetic wave wireless communication devices 60 can perform electromagnetic wave wireless communication. It may emit light. As a result, it is possible to transmit to the outside that the electromagnetic wave wireless communication between the electromagnetic wave wireless communication devices 60 has become possible.
  • FIG. 11 is a schematic configuration diagram schematically showing the tracking system 300 of the present embodiment.
  • the tracking system 300 includes a target device 310B having a target 370a and a tracking device 310A capable of tracking the target device 310B.
  • the target device 310B includes an electromagnetic wave wireless communication device 360B that transmits and receives an electromagnetic wave EW.
  • a representative point TRP which is a target of the electromagnetic wave EW, is set in the electromagnetic wave wireless communication device 360B.
  • the target device 310B is set with the representative point TRP that is the target of the electromagnetic wave EW.
  • the target device 310B does not have the movable unit 40 and the image pickup device 50, unlike the tracking device 10B of the electromagnetic wave wireless communication system 100 described above. That is, the target device 310B does not have a tracking function.
  • the target 370a provided in the target device 310B is the same as the target 70a of the electromagnetic wave wireless communication system 100 described above. That is, the target 370a includes the first target 71 and the second target 72.
  • the target device 310B has a control unit 330B that controls the electromagnetic wave radio communication device 360B.
  • the tracking device 310A includes a movable portion 40, an electromagnetic wave device 360A attached to the movable portion 40 to transmit and receive electromagnetic wave EW, and an image pickup device 50 attached to the movable portion 40 to image the target 70a in the target device 310B. , And a control unit 330A.
  • the electromagnetic wave device 360A is provided in place of the electromagnetic wave wireless communication device 60 of the electromagnetic wave wireless communication system 100 described above.
  • the electromagnetic wave device 360A is, for example, an electromagnetic wave radio communication device similar to the above-mentioned electromagnetic wave radio communication device 60.
  • the electromagnetic wave device 360A and the image pickup device 50 are arranged on the movable portion 40 non-coaxially with respect to the optical axis direction DL of the image pickup device 50.
  • the electromagnetic wave device 360A and the image pickup device 50 are arranged so as to be offset from each other in the first direction D1 orthogonal to the optical axis direction DL of the image pickup device 50.
  • the tracking device 310A does not have a target 70a, unlike the tracking device 10A of the electromagnetic wave wireless communication system 100 described above.
  • the configuration of the electromagnetic wave device 360A the same configuration as that of the electromagnetic wave wireless communication device 60 described in each of the above-described embodiments can be adopted.
  • the control unit 330A controls the movable unit 40 based on the captured image (image) of the target 370a imaged by the image pickup device 50 to track the target device 310B.
  • the control unit 330A tracks the target device 310B by using any of the tracking methods described in the case where the tracking device 10A performs the tracking device 10B in the first embodiment and the second embodiment described above.
  • the tracking device 310A corresponds to the tracking device 10A when the tracking method is described in the first embodiment and the second embodiment
  • the target device 310B is the first embodiment and the first embodiment. 2
  • the first arrangement relationship between the electromagnetic wave device 360A and the image pickup device 50 as seen from the optical axis direction DL is known
  • the second arrangement relationship between the representative point TRP of the target device 310B and the target 370a is known.
  • the control unit 330A may control the movable unit 40 to track the target device 310B based on the image of the target 370a imaged by the image pickup device 50, the first arrangement relationship, and the second arrangement relationship. good.
  • the control unit 330A represents the target device 310B in the captured image (image) based on the image of the target 370a imaged by the image pickup device 50 and the second arrangement relationship between the target 370a and the representative point TRP.
  • the point TRP is specified, and the offset amount OSI between the electromagnetic wave device 360A and the image pickup device 50 is acquired based on the first arrangement relationship between the electromagnetic wave device 360A and the image pickup device 50 as seen from the optical axis direction DL, and the captured image (image). ),
  • the movable portion 40 is rotated around the first rotation axis AXy so that the first axis Fy extending in the first direction D1 overlaps the representative point TRP in the photographed image (image), and is in the photographed image (image).
  • the movable portion 40 may be rotated around the second rotation axis AXp so that the second axis Fx extending in the second direction D2 is in contact with a circle centered on the representative point TRP and having an offset amount OSI as a radius.
  • the control unit 330A determines the tracking target position TP as in the second embodiment described above, the tracking target position on the captured image (image) is based on the first arrangement relationship and the second arrangement relationship. Determine the TP.
  • the second placement relationship known in the present embodiment includes the placement relationship between the first target 71 and the second target 72 with respect to the representative point TRP.
  • the electromagnetic wave device 360A may be an optical ranging device that measures a distance by transmitting a light beam and receiving reflected light.
  • the light source of the optical ranging device may be, for example, an optical frequency comb.
  • the target device 310B may include a reflecting device that reflects the light beam transmitted from the electromagnetic wave device 360A instead of the electromagnetic wave wireless communication device 360B.
  • the reflector is, for example, a retroreflector.
  • the light beam reflected by the reflecting device is received as reflected light by the electromagnetic wave device 360A as the optical ranging device.
  • the distance from the tracking device 310A to the target device 310B can be measured by the electromagnetic wave device 360A.
  • the representative point TRP is set to the reflecting device. Therefore, by tracking the target device 310B by the tracking device 310A, the reflecting device and the electromagnetic wave device 360A as the optical ranging device can be arranged so as to face each other. Thereby, the distance between the tracking device 310A and the target device 310B can be suitably measured by using the electromagnetic wave device 360A and the reflecting device.
  • the electromagnetic wave device 360A may be an electromagnetic wave wireless communication device that transmits and receives electromagnetic wave EW
  • the target device 310B may include an electromagnetic wave wireless communication device that transmits and receives electromagnetic wave EW.
  • the electromagnetic wave device 360A may be a laser tracker.
  • the representative point TRP as a tracking target may be set to the target 370a.
  • the target 370a may have a light emitting unit capable of emitting light as in the third embodiment.
  • the tracking method using the tracking system 300 of the present embodiment is a tracking method for tracking a target (target device 310B) of the electromagnetic wave device 360A that transmits and receives at least one of the electromagnetic wave EW with the electromagnetic wave device 360A.
  • the target 370a associated with the target is imaged by the imaging device 50 associated with the electromagnetic wave device 360A, and the position of the target in the captured image (image) from the image of the target 370a in the captured image (image).
  • This is a tracking method for directing the electromagnetic wave device 360A toward the target based on the position of the specified target and the positional relationship between the electromagnetic wave device 360A and the image pickup device 50.
  • the target of the electromagnetic wave device 360A is the target device 310B.
  • the tracking method using the tracking system 300 of the present embodiment includes the first target 71 and the first target 71 associated with the target (target device 310B).
  • the two targets 72 are imaged by the image pickup device 50 associated with the electromagnetic wave device 360A, and are based on either the image of the first target 71 or the image of the second target 72 in the captured image (image). This is a method of identifying the position of the target in the captured image (image) and directing the electromagnetic wave device 360A toward the target.
  • the target 370a used for tracking may be selected from the first target 71 and the second target 72 according to the distance between the target (target device 310B) and the electromagnetic wave device 360A. good. Further, in the tracking method using the tracking system 300, the position of the target (target device 310B) may be specified by using the image of the second target 72 prior to the tracking based on the image of the first target 71. In the tracking method using the tracking system 300, the tracking target position TP in the captured image (image) is determined based on the positional relationship between the electromagnetic wave device 360A and the imaging device 50, and the target (target) in the captured image (image) is determined. The electromagnetic wave device 360A may be moved so that the image of the device 310B) overlaps the tracking target position TP.
  • the target is not particularly limited.
  • the target may or may not have either a first target or a second target.
  • the target may include other targets different from the first target and the second target.
  • the shape of the first target and the shape of the second target are not particularly limited.
  • the shape of the first target may be triangular.
  • the shape of the second target may be symmetrical in only one of the first direction and the second direction, and may be asymmetrical in either of the other directions.
  • the geometric center 72p of the second target 72 does not necessarily have to overlap with the center 60p of the electromagnetic wave wireless communication device 60 (center Cp of the virtual circle C).
  • the positional relationship between the shape of the second target 72 and the center 60p of the electromagnetic wave wireless communication device 60 may be a known relationship and stored.
  • the shape of the first target and the shape of the second target may be the same, and the size of the first target and the size of the second target may be different from each other.
  • the second target is larger than the first target.
  • the number of the first targets is not particularly limited, and may be 1 or more, 3 or less, or 5 or more.
  • the first target and the second target may be separately provided on different members.
  • the first target member provided with the first target and the second target member provided with the second target may be attached to the movable portion, respectively.
  • the movable portion is not particularly limited as long as it is a movable portion.
  • the movable portion may be rotatable around only one axis, or may be rotatable around three or more axes.
  • the movable portion may be movable by a moving method other than rotation.
  • the movable portion may be, for example, linearly movable in a predetermined direction.
  • the tracking device may have a gyro stabilizer.
  • the gyro stabilizer holds the posture of the tracking device so that the image pickup device is horizontal.
  • Electromagnetic wave wireless communication device 61 ... Transmission unit 62 ... Receiver unit 70a, 270a, 370a ... Target 71 ... 1st target 71p, 72p ... Geometric center 72 ... 2nd target 72a ... 1st recess 72b ... 2nd recess 72c, 72d ... Arc 100 ... Electromagnetic wave wireless communication system 274 ... Light emitting unit 300 ... Tracking system 310B ... Target device 360A ... Electromagnetic wave device AXo ... Optical axis AXp ...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Communication System (AREA)

Abstract

An electromagnetic wave wireless communication system according to an aspect of the present invention comprises a plurality of tracking devices that can track each other's positions, each of the plurality of tracking devices having: a movable unit; an electromagnetic wave communicator attached to the movable unit and performing at least one among electromagnetic wave transmission and reception; a target attached to the movable unit and tracked by other tracking devices; and an imaging device attached to the movable unit and imaging targets of other tracking devices. The targets each include a first target and a second target having a different shape from the first target.

Description

電磁波無線通信システム、電磁波無線通信方法、トラッキングシステム、およびトラッキング方法Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method
 本発明は、電磁波無線通信システム、電磁波無線通信方法、トラッキングシステム、およびトラッキング方法に関する。 The present invention relates to an electromagnetic wave wireless communication system, an electromagnetic wave wireless communication method, a tracking system, and a tracking method.
電磁波を用いた電磁波無線通信システムが知られている。例えば、特許文献1には、光無線通信システムが記載されている。 An electromagnetic wave wireless communication system using an electromagnetic wave is known. For example, Patent Document 1 describes an optical wireless communication system.
日本国特開2020-37389号公報Japanese Patent Application Laid-Open No. 2020-37389
 本発明の電磁波無線通信システムの一つの態様は、互いの位置を追跡可能な複数のトラッキング装置を備え、前記複数のトラッキング装置のそれぞれは、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、を有し、前記ターゲットは、第1ターゲットと、前記第1ターゲットとは形状が異なる第2ターゲットと、を含む。 One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves. An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device. It has an image pickup apparatus for imaging, and the target includes a first target and a second target having a shape different from that of the first target.
 本発明の電磁波無線通信システムの一つの態様は、互いの位置を追跡可能な複数のトラッキング装置を備え、前記複数のトラッキング装置のそれぞれは、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、を有し、前記ターゲットは、複数の第1ターゲットと、第2ターゲットと、を含み、複数の前記第1ターゲットは、同一の仮想円の円周上に配置され、前記電磁波無線通信機は、前記仮想円の中心と重なるように配置されており、前記第2ターゲットの幾何中心は、前記電磁波無線通信機と重なっている。 One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves. An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device. The target includes a plurality of first targets and a second target, and the plurality of the first targets are arranged on the circumference of the same virtual circle. The electromagnetic wave radio communication device is arranged so as to overlap the center of the virtual circle, and the geometric center of the second target overlaps with the electromagnetic wave radio communication device.
 本発明の電磁波無線通信システムの一つの態様は、互いの位置を追跡可能な複数のトラッキング装置を備え、前記複数のトラッキング装置のそれぞれは、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、を有し、前記ターゲットは、複数の第1ターゲットと、第2ターゲットと、を含み、複数の前記第1ターゲットは、同一の仮想円の円周上に配置され、前記第2ターゲットの幾何中心は、前記仮想円の中心と重なっている。 One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the plurality of tracking devices is attached to a movable portion and the movable portion to transmit electromagnetic waves. An electromagnetic wave radio communication device that performs at least one of reception and reception, a target provided in the movable portion and tracked by the other tracking device, and a target attached to the movable portion and tracked by the other tracking device. The target includes a plurality of first targets and a second target, and the plurality of the first targets are arranged on the circumference of the same virtual circle. The geometric center of the second target overlaps with the center of the virtual circle.
 本発明の電磁波無線通信システムの一つの態様は、互いの位置を追跡可能な複数のトラッキング装置を備え、前記トラッキング装置のそれぞれは、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、前記可動部を制御する制御部と、を有し、前記電磁波無線通信機と前記撮像装置とは、前記撮像装置の光軸方向と直交する第1方向にオフセット量だけずれて配置され、前記可動部は、前記光軸方向と交差する方向に延びる第1回転軸回りと、前記光軸方向と交差し、かつ、前記第1回転軸が延びる方向と直交する方向に延びる第2回転軸回りと、に回転可能であり、前記制御部は、前記撮像装置によって、他の前記トラッキング装置における前記ターゲットおよび前記電磁波無線通信機が映る画像を取得し、前記画像に映る前記ターゲットに基づいて、前記画像中における前記電磁波無線通信機の代表点を取得し、前記画像中において前記第1方向に延びる第1軸が、前記画像中における前記代表点と重なるように、前記可動部を前記第1回転軸回りに回転させ、前記画像中において前記第2方向に延びる第2軸が、前記代表点を中心とし、前記画像中における前記オフセット量を半径とする円と接するように、前記可動部を前記第2回転軸回りに回転させる。 One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the tracking devices is attached to a movable portion and the movable portion to transmit and receive electromagnetic waves. An electromagnetic wave wireless communication device that performs at least one of the above, a target provided in the movable portion and tracked by the other tracking device, and an image of the target attached to the movable portion and in the other tracking device. It has an image pickup device and a control unit that controls the movable portion, and the electromagnetic wave wireless communication device and the image pickup device are arranged so as to be offset by an offset amount in a first direction orthogonal to the optical axis direction of the image pickup device. The movable portion is a second rotation axis extending in a direction intersecting the optical axis direction, intersecting the optical axis direction, and extending in a direction orthogonal to the extending direction of the first rotation axis. It is rotatable around the axis of rotation, and the control unit acquires an image of the target and the electromagnetic wave radio communication device in the other tracking device by the image pickup device, and is based on the target displayed in the image. Then, the representative point of the electromagnetic wave radio communication device in the image is acquired, and the movable portion is moved so that the first axis extending in the first direction in the image overlaps with the representative point in the image. The movable axis is rotated around the first rotation axis and extends in the second direction in the image so as to be in contact with a circle centered on the representative point and having the offset amount as a radius in the image. The portion is rotated around the second rotation axis.
 本発明の電磁波無線通信システムの一つの態様は、互いの位置を追跡可能な複数のトラッキング装置を備え、前記トラッキング装置のそれぞれは、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、制御部と、を有し、前記制御部は、前記撮像装置によって撮像された他の前記トラッキング装置における前記ターゲットの像に基づいて、前記可動部を制御して他の前記トラッキング装置を追跡する。 One aspect of the electromagnetic wave wireless communication system of the present invention includes a plurality of tracking devices capable of tracking each other's positions, and each of the tracking devices is attached to a movable portion and the movable portion to transmit and receive electromagnetic waves. An electromagnetic wave wireless communication device that performs at least one of the above, a target provided in the movable portion and tracked by the other tracking device, and an image of the target attached to the movable portion and in the other tracking device. It has an image pickup device and a control unit, and the control unit controls the movable unit based on an image of the target in the other tracking device imaged by the image pickup device, and the control unit controls the other tracking device. To track.
 本発明の電磁波無線通信方法の一つの態様は、電磁波無線通信機間で通信を行う電磁波無線通信方法であって、一の電磁波無線通信機に関連付けられた第1ターゲットと第2ターゲットとを、他の電磁波無線通信機に関連付けられた撮像装置で撮像し、前記撮像した画像中の前記第1ターゲットの像および前記第2ターゲットの像を特定し、特定された前記第1ターゲットの像と前記第2ターゲットの像とのいずれか一方に基づいて、前記他の電磁波無線通信機を前記一の電磁波無線通信機の方向に向ける。 One aspect of the electromagnetic wave wireless communication method of the present invention is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices, wherein a first target and a second target associated with one electromagnetic wave wireless communication device are set. An image of the first target and an image of the second target in the image taken by an image pickup device associated with another electromagnetic wave wireless communication device are specified, and the identified image of the first target and the above are described. Based on either one of the images of the second target, the other electromagnetic wave radio communication device is directed toward the one electromagnetic wave radio communication device.
 本発明の電磁波無線通信方法の一つの態様は、電磁波無線通信機間で通信を行う電磁波無線通信方法であって、一の電磁波無線通信機に関連付けられたターゲットを、他の電磁波無線通信機に関連付けられた撮像装置で撮像し、前記撮像された前記ターゲットの像から、前記撮像された撮影像中における一の前記電磁波無線通信機の位置を特定し、特定された前記一の電磁波無線通信機の位置と、前記他の電磁波無線通信機と前記撮像装置との位置関係と、に基づいて、前記他の電磁波無線通信機を前記一の電磁波無線通信機の方向に向ける。 One aspect of the electromagnetic wave wireless communication method of the present invention is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices, and a target associated with one electromagnetic wave wireless communication device is used as another electromagnetic wave wireless communication device. The position of the one electromagnetic wave radio communication device in the captured image taken by taking an image with the associated image pickup device and the image of the captured target is specified, and the specified one electromagnetic wave wireless communication device is specified. The other electromagnetic wave radio communication device is directed toward the one electromagnetic wave radio communication device based on the position of the other electromagnetic wave radio communication device and the positional relationship between the other electromagnetic wave radio communication device and the image pickup device.
 本発明のトラッキングシステムの一つの態様は、ターゲットを有するターゲット装置と、前記ターゲット装置を追跡可能なトラッキング装置とを備えるトラッキングシステムであって、前記トラッキング装置は、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波装置と、前記可動部に取り付けられ、前記ターゲット装置における前記ターゲットを撮像する撮像装置と、を有し、前記ターゲット装置には、前記電磁波の標的となる代表点が設定され、前記ターゲットは、第1ターゲットと、前記第1ターゲットとは形状が異なる第2ターゲットと、を含む。 One aspect of the tracking system of the present invention is a tracking system including a target device having a target and a tracking device capable of tracking the target device, and the tracking device is attached to a movable portion and the movable portion. The target device includes an electromagnetic wave device that transmits and receives at least one of the electromagnetic waves, and an image pickup device that is attached to the movable portion and images the target in the target device. The target device includes the electromagnetic wave. A representative point to be targeted is set, and the target includes a first target and a second target having a shape different from that of the first target.
 本発明のトラッキングシステムの一つの態様は、追跡目標となる代表点が設定されたターゲットを有するターゲット装置と、前記ターゲット装置を追跡可能なトラッキング装置とを備えるトラッキングシステムであって、前記トラッキング装置は、可動部と、前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波装置と、前記可動部に取り付けられ、前記ターゲット装置における前記ターゲットを撮像する撮像装置と、制御部と、を有し、前記電磁波装置と前記撮像装置とは、前記撮像装置の光軸方向に関して非同軸に前記可動部上に配置され、前記光軸方向から見た前記電磁波装置と前記撮像装置との第1配置関係が既知であり、前記ターゲットと前記代表点との第2配置関係が既知であって、前記制御部は、前記撮像装置によって撮像された前記ターゲットの像と、前記第1配置関係と、前記第2配置関係とに基づいて、前記可動部を制御して前記ターゲット装置を追跡する。 One aspect of the tracking system of the present invention is a tracking system including a target device having a target set with a representative point as a tracking target and a tracking device capable of tracking the target device, wherein the tracking device is , A movable part, an electromagnetic wave device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, an image pickup device attached to the movable part and imaging the target in the target device, and a control unit. The electromagnetic wave device and the image pickup device are arranged on the movable portion non-coaxially with respect to the optical axis direction of the image pickup device, and the electromagnetic wave device and the image pickup device viewed from the optical axis direction. The first arrangement relationship of the target is known, the second arrangement relationship between the target and the representative point is known, and the control unit has the image of the target captured by the image pickup apparatus and the first arrangement. Based on the relationship and the second arrangement relationship, the movable part is controlled to track the target device.
 本発明のトラッキング方法の一つの態様は、電磁波の送信と受信との少なくとも一方を行う電磁波装置の標的を、前記電磁波装置で追跡するトラッキング方法であって、前記標的に関連付けられた第1ターゲットと第2ターゲットとを、前記電磁波装置に関連付けられた撮像装置で撮像し、前記撮像された画像中の前記第1ターゲットの像と前記第2ターゲットの像とのいずれか一方に基づいて、前記画像中における前記標的の位置を特定し、前記電磁波装置を前記標的の方向に向ける。 One aspect of the tracking method of the present invention is a tracking method for tracking a target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves by the electromagnetic wave device, and the first target associated with the target. The second target is imaged by an image pickup device associated with the electromagnetic wave device, and the image is based on either the image of the first target or the image of the second target in the captured image. The position of the target in the inside is specified, and the electromagnetic wave device is directed toward the target.
 本発明のトラッキング方法の一つの態様は、電磁波の送信と受信との少なくとも一方を行う電磁波装置の標的を、前記電磁波装置で追跡するトラッキング方法であって、前記標的に関連付けられたターゲットを、前記電磁波装置に関連付けられた撮像装置で撮像し、前記撮像された画像中の前記ターゲットの像から、前記画像中における前記標的の位置を特定し、特定された前記標的の位置と、前記電磁波装置と前記撮像装置との位置関係と、に基づいて、前記電磁波装置を前記標的の方向に向ける。 One aspect of the tracking method of the present invention is a tracking method for tracking a target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves by the electromagnetic wave device, wherein the target associated with the target is described. The position of the target in the image is specified from the image of the target in the image taken by the image pickup device associated with the electromagnetic wave device, and the specified position of the target and the electromagnetic wave device are used. The electromagnetic wave device is directed toward the target based on the positional relationship with the image pickup device.
図1は、第1実施形態の電磁波無線通信システムを模式的に示す概略構成図である。FIG. 1 is a schematic configuration diagram schematically showing an electromagnetic wave wireless communication system of the first embodiment. 図2は、第1実施形態のトラッキング装置本体を示す斜視図である。FIG. 2 is a perspective view showing the main body of the tracking device according to the first embodiment. 図3は、第1実施形態のトラッキング装置本体の一部を前側から見た図である。FIG. 3 is a view of a part of the tracking device main body of the first embodiment as viewed from the front side. 図4は、第1実施形態の制御部が他のトラッキング装置を追跡する際の手順の一例を示すフローチャートである。FIG. 4 is a flowchart showing an example of a procedure when the control unit of the first embodiment tracks another tracking device. 図5は、第1実施形態のトラッキング装置が他のトラッキング装置を追跡する際に、トラッキング装置の撮像装置によって撮像される撮影像の一例を示す図である。FIG. 5 is a diagram showing an example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device. 図6は、第1実施形態のトラッキング装置が他のトラッキング装置を追跡する際に、トラッキング装置の撮像装置によって撮像される撮影像の他の一例を示す図である。FIG. 6 is a diagram showing another example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device. 図7は、第1実施形態のトラッキング装置が他のトラッキング装置を追跡する際に、トラッキング装置の撮像装置によって撮像される撮影像のさらに他の一例を示す図である。FIG. 7 is a diagram showing still another example of a captured image captured by the image pickup device of the tracking device when the tracking device of the first embodiment tracks another tracking device. 図8は、第1実施形態のトラッキング装置同士の距離に対する代表点の誤差について示すグラフである。FIG. 8 is a graph showing an error of a representative point with respect to the distance between the tracking devices of the first embodiment. 図9は、第2実施形態の制御部が他のトラッキング装置を追跡する際の手順の一例を示すフローチャートである。FIG. 9 is a flowchart showing an example of a procedure when the control unit of the second embodiment tracks another tracking device. 図10は、第3実施形態のターゲット部材を示す図である。FIG. 10 is a diagram showing a target member of the third embodiment. 図11は、一実施形態のトラッキングシステムを模式的に示す概略構成図である。FIG. 11 is a schematic configuration diagram schematically showing a tracking system of one embodiment.
 以下、図面を参照しながら、本発明の実施形態に係る電磁波無線通信システム、電磁波無線通信方法、トラッキングシステム、およびトラッキング方法について説明する。
 なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数等を、実際の構造における縮尺および数等と異ならせる場合がある。
Hereinafter, the electromagnetic wave wireless communication system, the electromagnetic wave wireless communication method, the tracking system, and the tracking method according to the embodiment of the present invention will be described with reference to the drawings.
The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention. Further, in the following drawings, the scale and the number of each structure may be different from the scale and the number of the actual structure in order to make each configuration easy to understand.
<電磁波無線通信システム>
[第1実施形態]
 図1は、本実施形態の電磁波無線通信システム100を模式的に示す概略構成図である。
 図1に示すように、電磁波無線通信システム100は、互いの位置を追跡可能な複数のトラッキング装置10を備える。電磁波無線通信システム100は、電磁波EWを用いてトラッキング装置10同士の間で無線通信を可能とするシステムである。電磁波EWは、例えば、周波数帯がテラヘルツ帯以上の帯域となる電磁波である。なお、電磁波EWは、周波数帯がテラヘルツ帯よりも低い帯域となる電磁波であってもよく、光であってもよいし、電波であってもよい。
<Electromagnetic wave wireless communication system>
[First Embodiment]
FIG. 1 is a schematic configuration diagram schematically showing the electromagnetic wave wireless communication system 100 of the present embodiment.
As shown in FIG. 1, the electromagnetic wave wireless communication system 100 includes a plurality of tracking devices 10 capable of tracking each other's positions. The electromagnetic wave wireless communication system 100 is a system that enables wireless communication between tracking devices 10 using electromagnetic wave EW. The electromagnetic wave EW is, for example, an electromagnetic wave having a frequency band equal to or higher than the terahertz band. The electromagnetic wave EW may be an electromagnetic wave whose frequency band is lower than the terahertz band, may be light, or may be a radio wave.
 本実施形態においてトラッキング装置10は、トラッキング装置10Aとトラッキング装置10Bとの2つ設けられている。トラッキング装置10Aは、移動体MAに搭載されている。トラッキング装置10Bは、移動体MBに搭載されている。移動体MAおよび移動体MBは、車両である。図1では、例えば、移動体MA,MBが水平な路面上に位置し、トラッキング装置10Aとトラッキング装置10Bとが水平方向に対向している状態を示している。 In the present embodiment, two tracking devices 10 are provided, a tracking device 10A and a tracking device 10B. The tracking device 10A is mounted on the moving body MA. The tracking device 10B is mounted on the moving body MB. The moving body MA and the moving body MB are vehicles. FIG. 1 shows, for example, a state in which the moving bodies MA and MB are located on a horizontal road surface, and the tracking device 10A and the tracking device 10B face each other in the horizontal direction.
 なお、トラッキング装置10が搭載される移動体は、特に限定されない。トラッキング装置10が搭載される移動体は、船などの水上を移動可能な移動体であってもよいし、潜水艦などの水中を移動可能な移動体であってもよいし、飛行機およびマルチコプターなどの飛行可能な移動体であってもよい。複数のトラッキング装置10がそれぞれ搭載される移動体は、互いに異なる種類の移動体を含んでもよい。複数のトラッキング装置10のうち一部のトラッキング装置10は、移動しない対象に搭載されてもよい。 The moving body on which the tracking device 10 is mounted is not particularly limited. The moving body on which the tracking device 10 is mounted may be a moving body that can move on water such as a ship, a moving body that can move underwater such as a submarine, an airplane, a multicopter, or the like. It may be a flyable mobile body. The moving body on which the plurality of tracking devices 10 are mounted may include different types of moving bodies. A part of the tracking devices 10 among the plurality of tracking devices 10 may be mounted on a non-moving target.
 本実施形態においてトラッキング装置10Aとトラッキング装置10Bとは、搭載される移動体MA,MBが異なる点を除いて、互いに同様の構成を有する。そのため、以下のトラッキング装置10の説明においては、代表してトラッキング装置10Aについてのみ説明する場合がある。 In the present embodiment, the tracking device 10A and the tracking device 10B have the same configuration as each other except that the moving bodies MA and MB to be mounted are different. Therefore, in the following description of the tracking device 10, only the tracking device 10A may be described as a representative.
 また、以下の説明においては、トラッキング装置10Aに対して、X軸、Y軸、およびZ軸からなる三次元直交座標系を規定して、トラッキング装置10Aの各部の相対位置関係を説明する。X軸と平行な方向を「前後方向X」と呼び、Y軸と平行な方向を「左右方向Y」と呼び、Z軸と平行な方向を「上下方向Z」と呼ぶ。前後方向Xと左右方向Yと上下方向Zとは、互いに直交する方向である。例えば、図1のように移動体MAが水平な路面上に位置する状態において、上下方向Zは、鉛直方向と平行な方向であり、前後方向Xおよび左右方向Yは、鉛直方向と直交する水平方向である。 Further, in the following description, a three-dimensional Cartesian coordinate system including an X-axis, a Y-axis, and a Z-axis is defined for the tracking device 10A, and the relative positional relationship of each part of the tracking device 10A will be described. The direction parallel to the X-axis is called "front-back direction X", the direction parallel to the Y-axis is called "left-right direction Y", and the direction parallel to the Z-axis is called "vertical direction Z". The front-back direction X, the left-right direction Y, and the up-down direction Z are directions orthogonal to each other. For example, in a state where the moving body MA is located on a horizontal road surface as shown in FIG. 1, the vertical direction Z is a direction parallel to the vertical direction, and the front-rear direction X and the horizontal direction Y are horizontal directions orthogonal to the vertical direction. The direction.
 また、以下の説明においては、前後方向XのうちX軸の矢印が向く正の側(+X側)を「前側」と呼び、前後方向XのうちX軸の矢印が向く側と逆側の負の側(-X側)を「後側」と呼ぶ。上下方向ZのうちZ軸の矢印が向く正の側(+Z側)を「上側」と呼び、上下方向ZのうちZ軸の矢印が向く側と逆側の負の側(-Z側)を「下側」と呼ぶ。 Further, in the following description, the positive side (+ X side) of the front-back direction X to which the X-axis arrow points is referred to as the "front side", and the negative side of the front-back direction X opposite to the side to which the X-axis arrow points. Side (-X side) is called "rear side". The positive side (+ Z side) of the vertical direction Z facing the Z-axis arrow is called the "upper side", and the negative side (-Z side) of the vertical direction Z opposite to the side facing the Z-axis arrow is called the "upper side". Called "lower".
 なお、上下方向Z、左右方向Y、および前後方向Xは、単に各部の相対位置関係を説明するための名称であり、実際の配置関係等は、これらの名称で示される配置関係等以外の配置関係等であってもよい。 The vertical direction Z, the horizontal direction Y, and the front-back direction X are merely names for explaining the relative positional relationship of each part, and the actual arrangement relationship and the like are arrangements other than the arrangement relationship and the like indicated by these names. It may be a relationship or the like.
 トラッキング装置10Aは、トラッキング装置本体20と、制御部30と、を有する。トラッキング装置本体20および制御部30は、移動体MA上に配置されている。トラッキング装置本体20と制御部30とは、ケーブルなどを介して電気的に接続されている。 The tracking device 10A has a tracking device main body 20 and a control unit 30. The tracking device main body 20 and the control unit 30 are arranged on the moving body MA. The tracking device main body 20 and the control unit 30 are electrically connected via a cable or the like.
 図2は、トラッキング装置本体20を示す斜視図である。図3は、トラッキング装置本体20の一部を前側(+X側)から見た図である。
 図2に示すように、トラッキング装置本体20は、台座部21と、保持部22と、可動部40と、撮像装置50と、電磁波無線通信機60と、ターゲット部材70と、第1駆動部81と、第2駆動部82と、を有する。
FIG. 2 is a perspective view showing the tracking device main body 20. FIG. 3 is a view of a part of the tracking device main body 20 as viewed from the front side (+ X side).
As shown in FIG. 2, the tracking device main body 20 includes a pedestal portion 21, a holding portion 22, a movable portion 40, an image pickup device 50, an electromagnetic wave wireless communication device 60, a target member 70, and a first drive unit 81. And a second drive unit 82.
 なお、以下のトラッキング装置本体20の各部の説明においては、特に断りのない限り、撮像装置50の光軸AXoが前後方向Xと平行に配置された状態、つまり光軸AXoが延びる光軸方向DLが前後方向Xとなっている状態にある場合について説明を行う。 In the following description of each part of the tracking device main body 20, unless otherwise specified, the optical axis AXo of the image pickup device 50 is arranged in parallel with the front-rear direction X, that is, the optical axis direction DL in which the optical axis AXo extends. A case where is in the front-rear direction X will be described.
 図1に示すように、台座部21は、移動体MA上に固定されている。保持部22は、台座部21上に取り付けられている。保持部22は、台座部21に対して、上下方向Zに延びる第1回転軸AXy回りに回転可能に取り付けられている。第1回転軸AXyは、光軸方向DL(光軸AXo)と交差する方向に延びる仮想軸である。図2に示す状態において、第1回転軸AXyは、光軸方向DLと直交する方向に延びている。 As shown in FIG. 1, the pedestal portion 21 is fixed on the moving body MA. The holding portion 22 is mounted on the pedestal portion 21. The holding portion 22 is rotatably attached to the pedestal portion 21 around the first rotation axis AXy extending in the vertical direction Z. The first rotation axis AXy is a virtual axis extending in a direction intersecting the optical axis direction DL (optical axis AXo). In the state shown in FIG. 2, the first rotation axis AXy extends in a direction orthogonal to the optical axis direction DL.
 図2に示すように、保持部22は、基部22aと、一対の側壁部22b,22cと、を有する。基部22aは、台座部21に回転可能に連結されている。一対の側壁部22b,22cは、基部22aから上側に延びている。一対の側壁部22b,22cは、左右方向Yに間隔を空けて配置されている。 As shown in FIG. 2, the holding portion 22 has a base portion 22a and a pair of side wall portions 22b and 22c. The base portion 22a is rotatably connected to the pedestal portion 21. The pair of side wall portions 22b, 22c extend upward from the base portion 22a. The pair of side wall portions 22b and 22c are arranged at intervals in the left-right direction Y.
 可動部40は、保持部22を介して台座部21に取り付けられている。可動部40は、一対の側壁部22b,22c同士の間に位置する。可動部40は、一対の側壁部22b,22cに対して、第2回転軸AXp回りに回転可能に取り付けられている。第2回転軸AXpは、光軸方向DL(光軸AXo)と交差し、かつ、第1回転軸AXyが延びる上下方向Zと直交する方向に延びる仮想軸である。以上の通り、第1回転軸AXyと第2回転軸AXpと光軸AXoとは、一点で交差する。本実施形態において第2回転軸AXpは、光軸方向DLと直交する方向に延びている。図2に示す状態において、第2回転軸AXpは、左右方向Yに延びている。可動部40は、一対の側壁部22b,22cよりも上側に突出している。 The movable portion 40 is attached to the pedestal portion 21 via the holding portion 22. The movable portion 40 is located between the pair of side wall portions 22b and 22c. The movable portion 40 is rotatably attached to the pair of side wall portions 22b and 22c around the second rotation axis AXp. The second rotation axis AXp is a virtual axis that intersects the optical axis direction DL (optical axis AXo) and extends in a direction orthogonal to the vertical direction Z in which the first rotation axis AXy extends. As described above, the first rotation axis AXy, the second rotation axis AXp, and the optical axis AXo intersect at one point. In the present embodiment, the second rotation axis AXp extends in a direction orthogonal to the optical axis direction DL. In the state shown in FIG. 2, the second rotation axis AXp extends in the left-right direction Y. The movable portion 40 projects upward from the pair of side wall portions 22b and 22c.
 可動部40は、台座部21に対して相対移動可能である。本実施形態において可動部40は、台座部21に対して、第1回転軸AXy回りと、第2回転軸AXp回りと、に回転可能である。可動部40は、保持部22が台座部21に対して第1回転軸AXy回りに回転することで、台座部21に対して保持部22と共に第1回転軸AXy回りに回転する。可動部40は、保持部22に対して第2回転軸AXp回りに回転することで、台座部21に対して第2回転軸AXp回りに回転する。 The movable portion 40 can move relative to the pedestal portion 21. In the present embodiment, the movable portion 40 can rotate with respect to the pedestal portion 21 around the first rotation axis AXP and around the second rotation axis AXP. The movable portion 40 rotates around the first rotation axis AXy with respect to the pedestal portion 21 by rotating the holding portion 22 around the first rotation axis AXy with respect to the pedestal portion 21. The movable portion 40 rotates around the second rotation shaft AXp with respect to the holding portion 22, and thus rotates around the second rotation shaft AXp with respect to the pedestal portion 21.
 可動部40には、撮像装置50、電磁波無線通信機60、およびターゲット部材70が取り付けられている。そのため、撮像装置50、電磁波無線通信機60、およびターゲット部材70は、可動部40と共に、第1回転軸AXy回りと、第2回転軸AXp回りと、に回転可能となっている。本実施形態において可動部40、撮像装置50、電磁波無線通信機60、およびターゲット部材70に対しては、光軸方向DLと直交する第1方向D1と、光軸方向DLおよび第1方向D1の両方と直交する第2方向D2と、が規定されている。 An image pickup device 50, an electromagnetic wave wireless communication device 60, and a target member 70 are attached to the movable portion 40. Therefore, the image pickup device 50, the electromagnetic wave wireless communication device 60, and the target member 70 can rotate together with the movable portion 40 around the first rotation axis AXP and around the second rotation axis AXP. In the present embodiment, for the movable portion 40, the image pickup device 50, the electromagnetic wave radio communication device 60, and the target member 70, the first direction D1 orthogonal to the optical axis direction DL, the optical axis direction DL, and the first direction D1 A second direction D2, which is orthogonal to both, is defined.
 図2に示す状態において、第1方向D1は、上下方向Zと平行な方向であり、第2方向D2は、左右方向Yと平行な方向である。つまり、上述した可動部40の各部の説明と、後述する撮像装置50、電磁波無線通信機60、およびターゲット部材70の各部の説明と、において、上下方向Zは第1方向D1に相当し、左右方向Yは第2方向D2に相当し、前後方向Xは光軸方向DLに相当する。また、前側(+X側)は、撮像装置50のレンズ52が向く側であり、光軸方向DLにおいて撮像装置50に光が入射する側である。 In the state shown in FIG. 2, the first direction D1 is a direction parallel to the vertical direction Z, and the second direction D2 is a direction parallel to the horizontal direction Y. That is, in the description of each part of the movable part 40 described above and the description of each part of the image pickup device 50, the electromagnetic wave radio communication device 60, and the target member 70 described later, the vertical direction Z corresponds to the first direction D1 and is left and right. The direction Y corresponds to the second direction D2, and the front-back direction X corresponds to the optical axis direction DL. Further, the front side (+ X side) is the side on which the lens 52 of the image pickup apparatus 50 faces, and is the side on which light is incident on the image pickup apparatus 50 in the optical axis direction DL.
 撮像装置50は、可動部40の前側(+X側)に取り付けられている。撮像装置50は、他のトラッキング装置10におけるターゲット部材70の後述するターゲット70aを撮像する。本実施形態においてトラッキング装置10Aの撮像装置50は、トラッキング装置10Bのターゲット部材70の後述するターゲット70aを撮像する。撮像装置50は、筐体51と、レンズ(またはレンズ群)52と、撮像素子53と、を有する。 The image pickup device 50 is attached to the front side (+ X side) of the movable portion 40. The image pickup device 50 takes an image of the target 70a, which will be described later, of the target member 70 in the other tracking device 10. In the present embodiment, the image pickup device 50 of the tracking device 10A takes an image of the target 70a described later of the target member 70 of the tracking device 10B. The image pickup device 50 includes a housing 51, a lens (or a lens group) 52, and an image pickup element 53.
 筐体51は、前側(+X側)に開口部を有し、前後方向Xに延びる円筒状である。筐体51は、可動部40から前側に突出している。筐体51の中心軸は、撮像装置50の光軸AXoと一致している。レンズ52は、筐体51の前側(+X側)の開口部に嵌め込まれている。レンズ52は、円形状のレンズである。撮像装置50の光軸AXoは、レンズ52の中心を通る。 The housing 51 has an opening on the front side (+ X side) and has a cylindrical shape extending in the front-rear direction X. The housing 51 projects forward from the movable portion 40. The central axis of the housing 51 coincides with the optical axis AXo of the image pickup apparatus 50. The lens 52 is fitted in the opening on the front side (+ X side) of the housing 51. The lens 52 is a circular lens. The optical axis AXo of the image pickup apparatus 50 passes through the center of the lens 52.
 撮像素子53は、筐体51の内部に配置されている。撮像素子53は、例えば、CCDイメージセンサ、CMOSイメージセンサなどである。撮像素子53には、レンズ52を介して筐体51内に入射された光が入射する。撮像素子53は、入射された光信号をアナログの電気信号に変換し、かつ、変換したアナログの電気信号をデジタルの画像信号に変換して出力する。撮像素子53は、前後方向Xから見て、左右方向Yに長い長方形状である。 The image sensor 53 is arranged inside the housing 51. The image pickup device 53 is, for example, a CCD image sensor, a CMOS image sensor, or the like. Light incident on the housing 51 is incident on the image pickup device 53 via the lens 52. The image pickup element 53 converts the incident optical signal into an analog electric signal, and converts the converted analog electric signal into a digital image signal for output. The image sensor 53 has a rectangular shape that is long in the left-right direction Y when viewed from the front-rear direction X.
 電磁波無線通信機60は、可動部40の前側(+X側)に取り付けられている。電磁波無線通信機60は、電磁波EWの送信と受信の少なくともいずれか一方を行う機器である。本実施形態において電磁波無線通信機60は、電磁波EWの受信と電磁波EWの送信との両方を行うことができる。電磁波無線通信機60は、電磁波EWを送信する送信部61と、電磁波EWを受信する受信部62と、を有する。図3に示すように、送信部61と受信部62とは、左右方向Yに並んで配置されている。送信部61および受信部62は、前側(+X側)から見て、それぞれ正方形状である。送信部61と受信部62とが並んで配置されることで、前側から見て左右方向Yに長い長方形状の送受信部60aが構成されている。 The electromagnetic wave wireless communication device 60 is attached to the front side (+ X side) of the movable portion 40. The electromagnetic wave wireless communication device 60 is a device that transmits and receives at least one of the electromagnetic wave EW. In the present embodiment, the electromagnetic wave wireless communication device 60 can both receive the electromagnetic wave EW and transmit the electromagnetic wave EW. The electromagnetic wave wireless communication device 60 includes a transmission unit 61 for transmitting the electromagnetic wave EW and a receiving unit 62 for receiving the electromagnetic wave EW. As shown in FIG. 3, the transmitting unit 61 and the receiving unit 62 are arranged side by side in the left-right direction Y. The transmitting unit 61 and the receiving unit 62 each have a square shape when viewed from the front side (+ X side). By arranging the transmitting unit 61 and the receiving unit 62 side by side, a rectangular transmitting / receiving unit 60a long in the left-right direction Y when viewed from the front side is configured.
 本実施形態において電磁波無線通信機60は、撮像装置50の上側に位置する。電磁波無線通信機60と撮像装置50とは、撮像装置50の光軸方向DLと直交する上下方向Z(第1方向D1)にオフセット量OSだけずれて配置されている。つまり、電磁波無線通信機60と撮像装置50とは、撮像装置50の光軸方向DLに関して非同軸に配置されている。 In the present embodiment, the electromagnetic wave wireless communication device 60 is located above the image pickup device 50. The electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged so as to be offset by an offset amount OS in the vertical direction Z (first direction D1) orthogonal to the optical axis direction DL of the image pickup device 50. That is, the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged non-coaxially with respect to the optical axis direction DL of the image pickup device 50.
 オフセット量OSは、撮像装置50の光軸方向DL(前後方向X)から見た場合における電磁波無線通信機60の中心60pと光軸AXoとの間の上下方向Z(第1方向D1)の距離である。電磁波無線通信機60の中心60pは、送受信部60aの上下方向Zの中心かつ左右方向Y(第2方向D2)の中心である。電磁波無線通信機60の中心60pは、送信部61と受信部62との左右方向Yの間に位置する。本実施形態において電磁波無線通信機60の中心60pにおける左右方向Yの位置は、撮像装置50の光軸AXoにおける左右方向Yの位置と同じである。 The offset amount OS is the distance in the vertical direction Z (first direction D1) between the center 60p of the electromagnetic wave wireless communication device 60 and the optical axis AXo when viewed from the optical axis direction DL (front-back direction X) of the image pickup apparatus 50. Is. The center 60p of the electromagnetic wave wireless communication device 60 is the center of the transmission / reception unit 60a in the vertical direction Z and the center in the horizontal direction Y (second direction D2). The center 60p of the electromagnetic wave wireless communication device 60 is located between the transmitting unit 61 and the receiving unit 62 in the left-right direction Y. In the present embodiment, the position of the left-right direction Y in the center 60p of the electromagnetic wave wireless communication device 60 is the same as the position of the left-right direction Y in the optical axis AXo of the image pickup apparatus 50.
 電磁波無線通信機60は、送受信部60aが、他の電磁波無線通信機60における送受信部60aと前後方向X(光軸方向DL)に対向して配置されることで、他の電磁波無線通信機60と電磁波無線通信可能となる。好ましくは、送信部61と受信部62とがそれぞれ対向するような位置関係となることであるが、本実施形態では、送信部61と受信部62とが必ずしも対向していなくても、電磁波無線通信機60同士は電磁波無線通信可能である。送信部61および受信部62は送受信可能な一定の範囲を有するので、電磁波無線通信機60同士は、例えば、電磁波無線通信機60のうち送信部61と受信部62との間に位置する部分同士が前後方向X(光軸方向DL)に対向しているならば、各送受信部60aの相対姿勢によらず、互いに電磁波無線通信可能である。各送受信部60aの相対姿勢とは、光軸AXo回りの相対姿勢を含む。 In the electromagnetic wave wireless communication device 60, the transmission / reception unit 60a is arranged so as to face the transmission / reception unit 60a in the other electromagnetic wave wireless communication device 60 in the front-rear direction X (optical axis direction DL). And electromagnetic wave wireless communication becomes possible. Preferably, the transmitting unit 61 and the receiving unit 62 are in a positional relationship so as to face each other, but in the present embodiment, the electromagnetic wave radio wave is obtained even if the transmitting unit 61 and the receiving unit 62 do not necessarily face each other. The communication devices 60 can communicate with each other by electromagnetic waves and wirelessly. Since the transmitting unit 61 and the receiving unit 62 have a certain range in which transmission / reception is possible, the electromagnetic wave wireless communication devices 60 may be, for example, portions of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62. If is opposed to the front-rear direction X (optical axis direction DL), electromagnetic wave wireless communication is possible with each other regardless of the relative posture of each transmission / reception unit 60a. The relative posture of each transmission / reception unit 60a includes a relative posture around the optical axis AXo.
 本実施形態において、電磁波無線通信機60のうち送信部61と受信部62との間に位置する部分は、電磁波無線通信機60の中心60pを含む中央部分を含む。電磁波無線通信機60同士は、例えば、電磁波無線通信機60の中心60pを含む中央部分同士が対向することで、より好適に電磁波無線通信可能となる。なお、本実施形態の電磁波無線通信機60では送信部61と受信部62とを個別に設け、その間の中央部分に中心60pを含む構成としたが、送信部61と受信部62とを統合し、ひとつの送受信部として構成することも可能である。その場合、送受信部の光軸中心が中心60pとなる。 In the present embodiment, the portion of the electromagnetic wave radio communication device 60 located between the transmission unit 61 and the reception unit 62 includes a central portion including the center 60p of the electromagnetic wave radio communication device 60. The electromagnetic wave wireless communication devices 60 can more preferably perform electromagnetic wave wireless communication, for example, when the central portions including the center 60p of the electromagnetic wave wireless communication device 60 face each other. In the electromagnetic wave wireless communication device 60 of the present embodiment, the transmitting unit 61 and the receiving unit 62 are separately provided, and the central portion between them is included in the central portion 60p. However, the transmitting unit 61 and the receiving unit 62 are integrated. , It is also possible to configure it as one transmitter / receiver. In that case, the center of the optical axis of the transmission / reception unit is the center 60p.
 図2に示すように、ターゲット部材70は、可動部40に取り付けられている。本実施形態においてターゲット部材70は、可動部40の上側部分における前側(+X側)に固定されている。本実施形態においてターゲット部材70は、板面が前後方向X(光軸方向DL)を向く板状の部材である。ターゲット部材70は、前後方向Xから見て、円形の上下方向Z(第1方向D1)の両端部分を径方向内側に円弧状に窪ませた形状である。 As shown in FIG. 2, the target member 70 is attached to the movable portion 40. In the present embodiment, the target member 70 is fixed to the front side (+ X side) of the upper portion of the movable portion 40. In the present embodiment, the target member 70 is a plate-shaped member whose plate surface faces the front-rear direction X (optical axis direction DL). The target member 70 has a shape in which both end portions of a circular vertical direction Z (first direction D1) are radially inwardly recessed in an arc shape when viewed from the front-rear direction X.
 ターゲット部材70は、ターゲット部材70を前後方向X(光軸方向DL)に貫通する貫通孔73を有する。貫通孔73は、左右方向Yに長い長方形状の孔である。貫通孔73は、前後方向Xから見て、電磁波無線通信機60の送受信部60aと重なっている。貫通孔73内には、例えば、電磁波無線通信機60が嵌め合わされている。電磁波無線通信機60の送受信部60aは、貫通孔73を介して、前側(+X側)に露出している。ターゲット部材70は、送受信部60aを囲んでいる。 The target member 70 has a through hole 73 that penetrates the target member 70 in the front-rear direction X (optical axis direction DL). The through hole 73 is a rectangular hole that is long in the left-right direction Y. The through hole 73 overlaps with the transmission / reception unit 60a of the electromagnetic wave wireless communication device 60 when viewed from the front-rear direction X. For example, an electromagnetic wave wireless communication device 60 is fitted in the through hole 73. The transmission / reception unit 60a of the electromagnetic wave wireless communication device 60 is exposed to the front side (+ X side) through the through hole 73. The target member 70 surrounds the transmission / reception unit 60a.
 ターゲット部材70は、他のトラッキング装置10によって追跡されるターゲット70aを有する。ターゲット70aは、ターゲット部材70が可動部40に固定されることで、可動部40に設けられている。本実施形態においてトラッキング装置10Aのターゲット70aは、トラッキング装置10Bによって追跡されるターゲットであり、トラッキング装置10Bのターゲット70aは、トラッキング装置10Aによって追跡されるターゲットである。本実施形態においてターゲット70aは、第1ターゲット71と、第2ターゲット72と、を含む。 The target member 70 has a target 70a tracked by another tracking device 10. The target 70a is provided on the movable portion 40 by fixing the target member 70 to the movable portion 40. In the present embodiment, the target 70a of the tracking device 10A is a target tracked by the tracking device 10B, and the target 70a of the tracking device 10B is a target tracked by the tracking device 10A. In the present embodiment, the target 70a includes a first target 71 and a second target 72.
 本実施形態において第1ターゲット71は、ターゲット部材70の前側(+X側)の面に設けられたマークである。第1ターゲット71は、円環状のマークである。つまり、第1ターゲット71の外形は、円形状である。第1ターゲット71の色は、例えば、黒である。第1ターゲット71は、複数設けられている。本実施形態において第1ターゲット71は、4つ設けられている。本実施形態において4つの第1ターゲット71は、互いに同じ形状であり、かつ、互いに同じ大きさである。 In the present embodiment, the first target 71 is a mark provided on the front side (+ X side) surface of the target member 70. The first target 71 is an annular mark. That is, the outer shape of the first target 71 is circular. The color of the first target 71 is, for example, black. A plurality of first targets 71 are provided. In this embodiment, four first targets 71 are provided. In the present embodiment, the four first targets 71 have the same shape and the same size as each other.
 図3に示すように、2つの第1ターゲット71は、電磁波無線通信機60よりも左右方向Yの一方側(+Y側)において、上下方向Zに並んで配置されている。残りの2つの第1ターゲット71は、電磁波無線通信機60よりも左右方向Yの他方側(-Y側)において上下方向Zに並んで配置されている。4つの第1ターゲット71は、前後方向Xに見て、送受信部60aの周囲を囲んで配置されている。4つの第1ターゲット71の各幾何中心71pは、前側(+X側)から見て送受信部60aを囲む仮想矩形枠ISの各角部に配置されている。仮想矩形枠ISは、左右方向Yに長い長方形枠状である。本実施形態において幾何中心71pは、円環状の第1ターゲット71の中心である。なお、本明細書において「幾何中心」とは、幾何学的な図形の重心である。 As shown in FIG. 3, the two first targets 71 are arranged side by side in the vertical direction Z on one side (+ Y side) of the electromagnetic wave wireless communication device 60 in the left-right direction Y. The remaining two first targets 71 are arranged side by side in the vertical direction Z on the other side (−Y side) of the electromagnetic wave wireless communication device 60 in the horizontal direction Y. The four first targets 71 are arranged so as to surround the transmission / reception unit 60a when viewed in the front-rear direction X. Each geometric center 71p of the four first targets 71 is arranged at each corner of the virtual rectangular frame IS surrounding the transmission / reception unit 60a when viewed from the front side (+ X side). The virtual rectangular frame IS has a rectangular frame shape that is long in the left-right direction Y. In the present embodiment, the geometric center 71p is the center of the annular first target 71. In the present specification, the "geometric center" is the center of gravity of a geometric figure.
 複数の第1ターゲット71は、前側(+X側)から見て、同一の仮想円Cの円周上に配置されている。前側から見て、仮想円Cの中心Cpは、電磁波無線通信機60の中心60pと一致している。つまり、本実施形態において電磁波無線通信機60は、前側から見て、仮想円Cの中心Cpと重なるように配置されている。また、上述したように電磁波無線通信機60の中心60pは、送信部61と受信部62との左右方向Yの間に位置する。つまり、本実施形態において電磁波無線通信機60のうち送信部61と受信部62との間に位置する部分は、前側から見て、仮想円Cの中心Cpと重なっている。 The plurality of first targets 71 are arranged on the circumference of the same virtual circle C when viewed from the front side (+ X side). When viewed from the front side, the center Cp of the virtual circle C coincides with the center 60p of the electromagnetic wave wireless communication device 60. That is, in the present embodiment, the electromagnetic wave wireless communication device 60 is arranged so as to overlap the center Cp of the virtual circle C when viewed from the front side. Further, as described above, the center 60p of the electromagnetic wave wireless communication device 60 is located between the transmitting unit 61 and the receiving unit 62 in the left-right direction Y. That is, in the present embodiment, the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 overlaps with the center Cp of the virtual circle C when viewed from the front side.
 複数の第1ターゲット71の幾何中心71pのそれぞれは、前側(+X側)から見て、仮想円Cの円周上に配置されている。前側から見て、仮想円Cの円周上には、撮像装置50の光軸AXoが配置されている。本実施形態において電磁波無線通信機60と撮像装置50とのオフセット量OSは、仮想円Cの半径Rcと等しい。 Each of the geometric centers 71p of the plurality of first targets 71 is arranged on the circumference of the virtual circle C when viewed from the front side (+ X side). When viewed from the front side, the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C. In the present embodiment, the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is equal to the radius Rc of the virtual circle C.
 第2ターゲット72は、ターゲット部材70の前側(+X側)の面のうち、第1ターゲット71以外の全体である。第2ターゲット72の色は、第1ターゲット71の色と異なる。第2ターゲット72の色は、例えば、黄色である。第2ターゲット72は、第1ターゲット71よりも面積が広い。第2ターゲット72は、第1ターゲット71とは形状が異なる。第2ターゲット72の外形は、ターゲット部材70の外形と同じである。 The second target 72 is the entire surface of the target member 70 on the front side (+ X side) other than the first target 71. The color of the second target 72 is different from the color of the first target 71. The color of the second target 72 is, for example, yellow. The second target 72 has a larger area than the first target 71. The shape of the second target 72 is different from that of the first target 71. The outer shape of the second target 72 is the same as the outer shape of the target member 70.
 前側(+X側)から見て、第2ターゲット72の外縁は、複数の第1ターゲット71を囲んでいる。つまり、本実施形態において第1ターゲット71の全体は、第2ターゲット72の外縁の内側に位置する。第2ターゲット72は、トラッキング装置10による追跡可能な距離が第1ターゲット71よりも長い。第1ターゲット71をトラッキング装置10によって追跡可能な距離は、例えば、30m以下の範囲である。第2ターゲット72をトラッキング装置10によって追跡可能な距離は、例えば、100m以下の範囲である。各ターゲット70aをトラッキング装置10によって追跡可能な距離とは、例えば、トラッキング装置10同士の距離である。 When viewed from the front side (+ X side), the outer edge of the second target 72 surrounds a plurality of first targets 71. That is, in the present embodiment, the entire first target 71 is located inside the outer edge of the second target 72. The second target 72 has a longer traceable distance by the tracking device 10 than the first target 71. The distance that the first target 71 can be tracked by the tracking device 10 is, for example, in the range of 30 m or less. The distance that the second target 72 can be tracked by the tracking device 10 is, for example, in the range of 100 m or less. The distance that each target 70a can be tracked by the tracking device 10 is, for example, the distance between the tracking devices 10.
 第2ターゲット72は、仮想円Cの直径を含む一の直線L1に関して対称な形状である。直線L1は、前側(+X側)から見て、仮想円Cの中心Cpを通り上下方向Z(第1方向D1)に延びる仮想線である。つまり、第2ターゲット72は、前側から見て、直線L1に対して左右方向Y(第2方向D2)に線対称な形状である。 The second target 72 has a symmetrical shape with respect to one straight line L1 including the diameter of the virtual circle C. The straight line L1 is a virtual line extending in the vertical direction Z (first direction D1) through the center Cp of the virtual circle C when viewed from the front side (+ X side). That is, the second target 72 has a shape that is line-symmetrical in the left-right direction Y (second direction D2) with respect to the straight line L1 when viewed from the front side.
 第2ターゲット72は、直線L1と直交する他の直線L2に関して対称な形状である。直線L2は、前側(+X側)から見て、仮想円Cの中心Cpを通り左右方向Y(第2方向D2)に延びる仮想線である。つまり、第2ターゲット72は、前側(+X側)から見て、直線L2に対して上下方向Z(第1方向D1)に線対称な形状である。 The second target 72 has a shape symmetrical with respect to another straight line L2 orthogonal to the straight line L1. The straight line L2 is a virtual line extending in the left-right direction Y (second direction D2) through the center Cp of the virtual circle C when viewed from the front side (+ X side). That is, the second target 72 has a shape that is line-symmetrical in the vertical direction Z (first direction D1) with respect to the straight line L2 when viewed from the front side (+ X side).
 第2ターゲット72は、上下方向Z(第1方向D1)に窪む第1凹部72aおよび第2凹部72bを有する。第1凹部72aは、第2ターゲット72の下端部に設けられている。第1凹部72aは、上側に窪んでいる。第2凹部72bは、第2ターゲット72の上端部に設けられている。第2凹部72bは、下側に窪んでいる。第1凹部72aと第2凹部72bとは、電磁波無線通信機60を上下方向Zに挟んで配置されている。本実施形態において第1凹部72aの内縁と第2凹部72bの内縁とは、互いに逆向きに凹となる円弧形状である。第2ターゲット72の外縁は、第1凹部72aの内縁の両端と第2凹部72bの内縁の両端とが、仮想円Cと同心の一対の円弧72c,72dによってそれぞれ繋げられて構成された形状である。前側(+X側)から見て、第1凹部72aの内側には、撮像装置50が位置する。 The second target 72 has a first recess 72a and a second recess 72b that are recessed in the vertical direction Z (first direction D1). The first recess 72a is provided at the lower end of the second target 72. The first recess 72a is recessed upward. The second recess 72b is provided at the upper end of the second target 72. The second recess 72b is recessed downward. The first recess 72a and the second recess 72b are arranged so as to sandwich the electromagnetic wave wireless communication device 60 in the vertical direction Z. In the present embodiment, the inner edge of the first recess 72a and the inner edge of the second recess 72b have an arc shape that is concave in opposite directions to each other. The outer edge of the second target 72 has a shape in which both ends of the inner edge of the first recess 72a and both ends of the inner edge of the second recess 72b are connected by a pair of arcs 72c and 72d concentric with the virtual circle C, respectively. be. The image pickup apparatus 50 is located inside the first recess 72a when viewed from the front side (+ X side).
 第2ターゲット72の幾何中心72pは、前側(+X側)から見て、電磁波無線通信機60と重なっている。より詳細には、第2ターゲット72の幾何中心72pは、前側から見て、電磁波無線通信機60の中心60pと重なっている。上述したように、電磁波無線通信機60の中心60pは、前側から見て、仮想円Cの中心Cpと重なっている。そのため、第2ターゲット72の幾何中心72pは、前側から見て、仮想円Cの中心Cpと重なっている。 The geometric center 72p of the second target 72 overlaps with the electromagnetic wave wireless communication device 60 when viewed from the front side (+ X side). More specifically, the geometric center 72p of the second target 72 overlaps with the center 60p of the electromagnetic wave radio communication device 60 when viewed from the front side. As described above, the center 60p of the electromagnetic wave wireless communication device 60 overlaps with the center Cp of the virtual circle C when viewed from the front side. Therefore, the geometric center 72p of the second target 72 overlaps with the center Cp of the virtual circle C when viewed from the front side.
 図2に示す第1駆動部81は、保持部22を第1回転軸AXy回りに回転させることで、可動部40を第1回転軸AXy回りに回転させる。第2駆動部82は、可動部40を第2回転軸AXp回りに回転させる。第1駆動部81および第2駆動部82は、例えば、サーボモータである。第1駆動部81は、台座部21内に設けられている。第2駆動部82は、保持部22内に設けられている。第1駆動部81と第2駆動部82とは、制御部30によって制御される。 The first drive unit 81 shown in FIG. 2 rotates the holding unit 22 around the first rotation axis AXy, thereby rotating the movable unit 40 around the first rotation axis AXy. The second drive unit 82 rotates the movable unit 40 around the second rotation axis AXp. The first drive unit 81 and the second drive unit 82 are, for example, servomotors. The first drive unit 81 is provided in the pedestal unit 21. The second drive unit 82 is provided in the holding unit 22. The first drive unit 81 and the second drive unit 82 are controlled by the control unit 30.
 制御部30は、可動部40、撮像装置50、および電磁波無線通信機60を制御する。制御部30は、撮像装置50によって撮像された他のトラッキング装置10におけるターゲット70aの像に基づいて、可動部40を制御して他のトラッキング装置10を追跡する。より詳細には、制御部30は、撮像装置50によって撮像された他のトラッキング装置10におけるターゲット70aおよび電磁波無線通信機60が映る撮影像(画像)に基づいて、可動部40を制御して電磁波無線通信機60同士を対向させるように他のトラッキング装置10を追跡する。 The control unit 30 controls the movable unit 40, the image pickup device 50, and the electromagnetic wave wireless communication device 60. The control unit 30 controls the movable unit 40 to track the other tracking device 10 based on the image of the target 70a in the other tracking device 10 imaged by the image pickup device 50. More specifically, the control unit 30 controls the movable unit 40 based on the captured image (image) of the target 70a and the electromagnetic wave wireless communication device 60 in the other tracking device 10 captured by the image pickup device 50 to control the electromagnetic wave. The other tracking device 10 is tracked so that the wireless communication devices 60 face each other.
 上述した本実施形態の電磁波無線通信システム100を用いて通信を行う電磁波無線通信方法は、各トラッキング装置10に備えられた電磁波無線通信機60間で通信を行う通信方法である。電磁波無線通信システム100を用いた電磁波無線通信方法は、制御部30によって、トラッキング装置10の各部が制御されて行われる。本実施形態の電磁波無線通信方法は、トラッキング装置10によって他のトラッキング装置10を追跡することを含む。複数のトラッキング装置10同士は、互いに他のトラッキング装置10を追跡して、各トラッキング装置10の電磁波無線通信機60同士を対向させることによって、互いに電磁波無線通信を行う。 The electromagnetic wave wireless communication method for communicating using the electromagnetic wave wireless communication system 100 of the present embodiment described above is a communication method for communicating between the electromagnetic wave wireless communication devices 60 provided in each tracking device 10. The electromagnetic wave wireless communication method using the electromagnetic wave wireless communication system 100 is performed by controlling each part of the tracking device 10 by the control unit 30. The electromagnetic wave wireless communication method of the present embodiment includes tracking another tracking device 10 by the tracking device 10. The plurality of tracking devices 10 track each other's other tracking devices 10 and make the electromagnetic wave wireless communication devices 60 of the tracking devices 10 face each other to perform electromagnetic wave wireless communication with each other.
 以下、他のトラッキング装置10を追跡するトラッキング方法について説明する。以下の説明では、トラッキング装置10Aによってトラッキング装置10Bを追跡する場合の例について説明する。 Hereinafter, a tracking method for tracking another tracking device 10 will be described. In the following description, an example of tracking the tracking device 10B by the tracking device 10A will be described.
 図4は、制御部30が他のトラッキング装置10を追跡する際の手順の一例を示すフローチャートである。図5は、トラッキング装置10Aがトラッキング装置10Bを追跡する際に、トラッキング装置10Aの撮像装置50によって撮像される撮影像(画像)PIの一例を示す図である。図6は、トラッキング装置10Aがトラッキング装置10Bを追跡する際に、トラッキング装置10Aの撮像装置50によって撮像される撮影像PIの他の一例を示す図である。図7は、トラッキング装置10Aがトラッキング装置10Bを追跡する際に、トラッキング装置10Aの撮像装置50によって撮像される撮影像PIのさらに他の一例を示す図である。なお、本明細書において「撮影像」は、静止画に限られず、動画(またはその一部)も含む。また、本明細書において「画像」は、静止画像に限られず、動画像(またはその一部)も含む。 FIG. 4 is a flowchart showing an example of a procedure when the control unit 30 tracks another tracking device 10. FIG. 5 is a diagram showing an example of a captured image (image) PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B. FIG. 6 is a diagram showing another example of the captured image PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B. FIG. 7 is a diagram showing still another example of the captured image PI imaged by the image pickup device 50 of the tracking device 10A when the tracking device 10A tracks the tracking device 10B. In the present specification, the "photographed image" is not limited to a still image, but also includes a moving image (or a part thereof). Further, in the present specification, the "image" is not limited to a still image, but also includes a moving image (or a part thereof).
 図5から図7では、トラッキング装置10A,10Bが水平方向に対して傾いて配置されている場合の例を示している。図5から図7において水平方向は、各図における左右方向である。トラッキング装置10Aの水平方向に対する傾きとトラッキング装置10Bの水平方向に対する傾きとは、例えば、互いに異なっている。撮像装置50は、図5から図7に示すフレームF内の領域を撮像して、撮影像PIを取得可能である。フレームFは、第1方向D1に沿った短辺と第2方向D2に沿った長辺とを有する長方形枠状である。そのため、撮像装置50によって撮像される撮影像PIは、第1方向D1に沿った短辺と第2方向D2に沿った長辺とを有する長方形状である。フレームFのフレーム中心Fcは、撮像装置50の光軸AXoと一致している。トラッキング装置10Aにおける電磁波無線通信機60は、フレーム中心Fcに対して第1方向D1の正の側(+D1側)に配置されている。 5 to 7 show an example in which the tracking devices 10A and 10B are arranged at an angle with respect to the horizontal direction. In FIGS. 5 to 7, the horizontal direction is the left-right direction in each figure. The horizontal tilt of the tracking device 10A and the horizontal tilt of the tracking device 10B are, for example, different from each other. The image pickup apparatus 50 can take an image of a region in the frame F shown in FIGS. 5 to 7 and acquire a photographed image PI. The frame F has a rectangular frame shape having a short side along the first direction D1 and a long side along the second direction D2. Therefore, the captured image PI imaged by the image pickup apparatus 50 has a rectangular shape having a short side along the first direction D1 and a long side along the second direction D2. The frame center Fc of the frame F coincides with the optical axis AXo of the image pickup apparatus 50. The electromagnetic wave radio communication device 60 in the tracking device 10A is arranged on the positive side (+ D1 side) of the first direction D1 with respect to the frame center Fc.
 図5から図7に示すように、撮像装置50によって撮像される撮影像PIには、第1方向D1に延びる第1軸Fyおよび第2方向D2に延びる第2軸Fxが示されている。第1軸Fyは、撮影像PIにおける第2方向D2の中心を通っている。第2軸Fxは、撮影像PIにおける第1方向D1の中心を通っている。第1軸Fyおよび第2軸Fxは、フレーム中心Fcを通り、フレーム中心Fcにおいて交差している。第1軸Fyの第2方向D2の位置は、トラッキング装置10Aの電磁波無線通信機60の中心60pにおける第2方向D2の位置と同じである。 As shown in FIGS. 5 to 7, the photographed image PI imaged by the image pickup apparatus 50 shows the first axis Fy extending in the first direction D1 and the second axis Fx extending in the second direction D2. The first axis Fy passes through the center of the second direction D2 in the captured image PI. The second axis Fx passes through the center of the first direction D1 in the captured image PI. The first axis Fy and the second axis Fx pass through the frame center Fc and intersect at the frame center Fc. The position of the second direction D2 of the first axis Fy is the same as the position of the second direction D2 at the center 60p of the electromagnetic wave radio communication device 60 of the tracking device 10A.
 図4に示すように、本実施形態のトラッキング方法は、ステップS1aからステップS1eを含む。
 ステップS1aにおいて制御部30は、撮像装置50によって、他のトラッキング装置10Bにおけるターゲット70aおよび電磁波無線通信機60が映る撮影像PIを取得する。制御部30は、他のトラッキング装置10Bを追跡している間、所定のフレームレートで撮影像PIを取得し続ける。図5から図7に示す撮像装置50によって取得される撮影像PIは、他のトラッキング装置10Bにおける第1ターゲット71の像と第2ターゲット72の像とを含んでいる。
As shown in FIG. 4, the tracking method of the present embodiment includes steps S1a to S1e.
In step S1a, the control unit 30 acquires a photographed image PI in which the target 70a and the electromagnetic wave wireless communication device 60 in the other tracking device 10B are reflected by the image pickup device 50. The control unit 30 continues to acquire the captured image PI at a predetermined frame rate while tracking the other tracking device 10B. The captured image PI acquired by the image pickup apparatus 50 shown in FIGS. 5 to 7 includes an image of the first target 71 and an image of the second target 72 in the other tracking apparatus 10B.
 図5に示す撮影像PIは、例えば、ステップS1aにおいて取得された撮影像PIである。図5の撮影像PIにおいて、トラッキング装置10Bは、例えば、フレーム中心Fcよりも第1方向D1の正の側(+D1側)で、かつ、フレーム中心Fcよりも第2方向D2の正の側(+D2側)に位置する領域に映っている。第1ターゲット71の像と第2ターゲット72の像との識別は、画像処理を行った撮影像PIを機械学習することにより制御部30にて行う。図5の例では、第1ターゲット71の一部および第2ターゲット72の一部がフレームアウトしている。このような場合であっても、一定程度の欠損であれば、機械学習により第1ターゲット71の像および第2ターゲット72の像をそれぞれ認識、識別することが可能である。制御部30は、補助的にパターンマッチングの手法を併用してターゲット像の認識、識別を行うこともできる。 The photographed image PI shown in FIG. 5 is, for example, the photographed image PI acquired in step S1a. In the captured image PI of FIG. 5, for example, the tracking device 10B is on the positive side (+ D1 side) of the first direction D1 from the frame center Fc and on the positive side of the second direction D2 from the frame center Fc (+ D1 side). It is reflected in the area located on the + D2 side). The image of the first target 71 and the image of the second target 72 are discriminated by the control unit 30 by machine learning the captured image PI that has undergone image processing. In the example of FIG. 5, a part of the first target 71 and a part of the second target 72 are out of frame. Even in such a case, if there is a certain degree of defect, it is possible to recognize and identify the image of the first target 71 and the image of the second target 72 by machine learning, respectively. The control unit 30 can also perform auxiliary recognition and identification of the target image by using a pattern matching method in combination.
 ステップS1bにおいて制御部30は、取得された撮影像PIに基づいて、追跡に用いるターゲット70aを選択する。本実施形態のステップS1bにおいて制御部30は、第1ターゲット71と第2ターゲット72とのいずれのターゲット70aを追跡に用いるかを選択する。本実施形態において制御部30は、撮影像PIに映る第1ターゲット71の像の像質と第2ターゲット72の像の像質とに応じて、追跡に用いるターゲット70aを選択する。 In step S1b, the control unit 30 selects the target 70a to be used for tracking based on the acquired image PI. In step S1b of the present embodiment, the control unit 30 selects which of the first target 71 and the second target 72, the target 70a, is used for tracking. In the present embodiment, the control unit 30 selects the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72 reflected in the captured image PI.
 なお、本明細書において「像質」とは、撮影像PI中に映る対象物の像の鮮明度(像の形状の崩れ度合いや輪郭の明確さ、いわゆる画質を含む)、および撮影像PI中に映る像の範囲などから決まる像の質である。ターゲット70aの像の像質が高いほど、当該ターゲット70aの像を追跡に用いた場合にターゲット70aを追跡する精度を高くできる。例えば、本実施形態では、後述する代表点RPを精度よく取得しやすい像である程、像質が高い。例えば、像が比較的鮮明であっても一部が映っておらず代表点RPを精度よく取得しにくくければ、当該像の像質は比較的低く、像が比較的不鮮明であっても全体が映っていて代表点RPを比較的精度よく取得できるならば、当該像の像質は比較的高い。 In the present specification, the "image quality" refers to the sharpness of the image of the object reflected in the photographed image PI (including the degree of collapse of the shape of the image and the clarity of the outline, so-called image quality), and the photographed image PI. The quality of the image is determined by the range of the image reflected in the image. The higher the image quality of the image of the target 70a, the higher the accuracy of tracking the target 70a when the image of the target 70a is used for tracking. For example, in the present embodiment, the image quality is higher as the image is easier to accurately acquire the representative point RP described later. For example, if the image is relatively clear but part of it is not reflected and it is difficult to obtain the representative point RP accurately, the image quality of the image is relatively low, and even if the image is relatively unclear, the whole image is obtained. If the representative point RP can be obtained relatively accurately, the image quality of the image is relatively high.
 制御部30は、第1ターゲット71の像の像質が第2ターゲット72の像の像質よりも高い場合、第1ターゲット71を追跡に用いるターゲット70aとして選択する。一方、制御部30は、第2ターゲット72の像の像質が第1ターゲット71の像の像質よりも高い場合、第2ターゲット72を追跡に用いるターゲット70aとして選択する。 When the image quality of the image of the first target 71 is higher than the image quality of the image of the second target 72, the control unit 30 selects the first target 71 as the target 70a used for tracking. On the other hand, when the image quality of the image of the second target 72 is higher than the image quality of the image of the first target 71, the control unit 30 selects the second target 72 as the target 70a used for tracking.
 本実施形態においては、トラッキング装置10A,10B同士の距離が比較的小さく、撮像された像が比較的鮮明で、かつ、全体が映っている像であれば、複数の第1ターゲット71の像の方が、第2ターゲット72の像よりも後述する代表点RPを精度よく取得できる。一方、第2ターゲット72は、第1ターゲット71よりも面積が広いため、トラッキング装置10A,10B同士の距離が比較的大きくなっても、第1ターゲット71に比べて像が不鮮明になりにくく、代表点RPを精度よく取得しやすい。つまり、本実施形態では、トラッキング装置10Aとトラッキング装置10Bとの距離が比較的小さい場合には、第1ターゲット71の像質が第2ターゲット72の像質よりも高くなりやすい。一方、トラッキング装置10Aとトラッキング装置10Bとの距離が比較的大きい場合には、第2ターゲット72の像質が第1ターゲット71の像質よりも高くなりやすい。 In the present embodiment, if the distance between the tracking devices 10A and 10B is relatively small, the captured image is relatively clear, and the entire image is shown, then the images of the plurality of first targets 71 are displayed. This allows the representative point RP, which will be described later, to be acquired more accurately than the image of the second target 72. On the other hand, since the second target 72 has a larger area than the first target 71, even if the distance between the tracking devices 10A and 10B is relatively large, the image is less likely to be blurred as compared with the first target 71, which is representative. It is easy to acquire the point RP with high accuracy. That is, in the present embodiment, when the distance between the tracking device 10A and the tracking device 10B is relatively small, the image quality of the first target 71 tends to be higher than the image quality of the second target 72. On the other hand, when the distance between the tracking device 10A and the tracking device 10B is relatively large, the image quality of the second target 72 tends to be higher than the image quality of the first target 71.
 ステップS1cにおいて制御部30は、撮影像PIに映る選択したターゲット70aに基づいて、撮影像PI中における電磁波無線通信機60の代表点RPを取得する。
 追跡に用いるターゲット70aとして第1ターゲット71を選択した場合、制御部30は、撮影像PIに対して画像処理を行い、各第1ターゲット71の像の幾何中心71pを取得する。制御部30は、撮影像PI中における各幾何中心71pの位置から、撮影像PI中において各幾何中心71pが円周上に配置される仮想円CIを取得する。撮影像PI中における仮想円CIは、上述した実際の第1ターゲット71に対して規定される仮想円Cを、撮影像PIの縮尺に応じて縮尺した仮想円である。制御部30は、取得した仮想円CIの中心CpIを代表点RPとして取得する。
In step S1c, the control unit 30 acquires the representative point RP of the electromagnetic wave wireless communication device 60 in the captured image PI based on the selected target 70a reflected in the captured image PI.
When the first target 71 is selected as the target 70a used for tracking, the control unit 30 performs image processing on the captured image PI and acquires the geometric center 71p of the image of each first target 71. The control unit 30 acquires a virtual circle CI in which each geometric center 71p is arranged on the circumference in the captured image PI from the position of each geometric center 71p in the captured image PI. The virtual circle CI in the captured image PI is a virtual circle obtained by scaling the virtual circle C defined for the actual first target 71 described above according to the scale of the captured image PI. The control unit 30 acquires the central CpI of the acquired virtual circle CI as the representative point RP.
 ここで、上述したように、複数の第1ターゲット71の幾何中心71pが配置される仮想円Cの中心Cpは、光軸方向DLから見て、電磁波無線通信機60の中心60pと重なっている。そのため、仮想円CIに基づいて取得された代表点RPは、撮影像PI中における電磁波無線通信機60の中心60pと一致する。 Here, as described above, the center Cp of the virtual circle C in which the geometric centers 71p of the plurality of first targets 71 are arranged overlaps with the center 60p of the electromagnetic wave wireless communication device 60 when viewed from the optical axis direction DL. .. Therefore, the representative point RP acquired based on the virtual circle CI coincides with the center 60p of the electromagnetic wave wireless communication device 60 in the captured image PI.
 一方、追跡に用いるターゲット70aとして第2ターゲット72を選択した場合、制御部30は、撮影像PIに映る第2ターゲット72の幾何中心72pを代表点RPとして取得する。制御部30は、撮影像PI中の第2ターゲット72の像に対して画像処理を行い、第2ターゲット72の像の幾何中心72pを代表点RPとして取得する。ここで、上述したように、第2ターゲット72の幾何中心72pは、光軸方向DLから見て、電磁波無線通信機60の中心60pと重なっている。そのため、第2ターゲット72の像に基づいて取得された代表点RPは、撮影像PI中における電磁波無線通信機60の中心60pと一致する。このように、本実施形態では、第1ターゲット71に基づいて取得した代表点RPの位置と第2ターゲット72に基づいて取得した代表点RPの位置とは、互いに同じである。 On the other hand, when the second target 72 is selected as the target 70a used for tracking, the control unit 30 acquires the geometric center 72p of the second target 72 reflected in the captured image PI as the representative point RP. The control unit 30 performs image processing on the image of the second target 72 in the captured image PI, and acquires the geometric center 72p of the image of the second target 72 as the representative point RP. Here, as described above, the geometric center 72p of the second target 72 overlaps with the center 60p of the electromagnetic wave radio communication device 60 when viewed from the optical axis direction DL. Therefore, the representative point RP acquired based on the image of the second target 72 coincides with the center 60p of the electromagnetic wave radio communication device 60 in the captured image PI. As described above, in the present embodiment, the position of the representative point RP acquired based on the first target 71 and the position of the representative point RP acquired based on the second target 72 are the same as each other.
 ステップS1dにおいて制御部30は、撮影像PI中における電磁波無線通信機60と撮像装置50とのオフセット量OSIを取得する。撮影像PI中におけるオフセット量OSIは、実際の電磁波無線通信機60と撮像装置50とのオフセット量OSを、撮影像PIの縮尺に応じて縮尺したオフセット量である。制御部30は、撮影像PIに映るターゲット70aの像に基づいて、撮影像PI中におけるオフセット量OSIを取得する。 In step S1d, the control unit 30 acquires the offset amount OSI between the electromagnetic wave wireless communication device 60 and the image pickup device 50 in the captured image PI. The offset amount OSI in the captured image PI is an offset amount obtained by reducing the offset amount OS between the actual electromagnetic wave wireless communication device 60 and the image pickup device 50 according to the scale of the captured image PI. The control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the target 70a reflected in the captured image PI.
 ここで、本実施形態では、電磁波無線通信機60と撮像装置50とのオフセット量OSは、複数の第1ターゲット71の幾何中心71pを通る仮想円Cの半径Rcと等しい。そのため、撮影像PI中におけるオフセット量OSIは、撮影像PI中において複数の第1ターゲット71に基づいて得られる仮想円CIの半径RcIと等しい。そのため、制御部30は、撮影像PIに映る複数の第1ターゲット71に基づいて仮想円CIを取得することで、撮影像PI中におけるオフセット量OSIを取得することができる。したがって、追跡に用いるターゲット70aとして第1ターゲット71を選択した場合には、制御部30は、ステップS1cにおいて代表点RPを取得する際に得られた仮想円CIの半径RcIを、撮影像PI中におけるオフセット量OSIとして取得することができる。このように、本実施形態において仮想円CIは、代表点RPを中心とし、撮影像PI中におけるオフセット量OSIを半径とする円である。 Here, in the present embodiment, the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is equal to the radius Rc of the virtual circle C passing through the geometric centers 71p of the plurality of first targets 71. Therefore, the offset amount OSI in the captured image PI is equal to the radius RcI of the virtual circle CI obtained based on the plurality of first targets 71 in the captured image PI. Therefore, the control unit 30 can acquire the offset amount OSI in the captured image PI by acquiring the virtual circle CI based on the plurality of first targets 71 reflected in the captured image PI. Therefore, when the first target 71 is selected as the target 70a used for tracking, the control unit 30 sets the radius RcI of the virtual circle CI obtained when acquiring the representative point RP in step S1c in the captured image PI. It can be obtained as the offset amount OSI in. As described above, in the present embodiment, the virtual circle CI is a circle centered on the representative point RP and having the offset amount OSI in the captured image PI as the radius.
 一方、追跡に用いるターゲット70aとして第2ターゲット72を選択した場合、制御部30は、撮影像PIに映る第2ターゲット72の像に基づいて、撮影像PI中におけるオフセット量OSIを取得する。具体的に制御部30は、実際の第2ターゲット72の寸法と撮影像PIに映る第2ターゲット72の像の寸法との比から、撮影像PIの縮尺を算出する。制御部30は、実際の電磁波無線通信機60と撮像装置50とのオフセット量OSを、算出した撮影像PIの縮尺に応じて縮尺することで、撮影像PI中におけるオフセット量OSIを取得する。ここで、本実施形態において、実際の第2ターゲット72の寸法、および実際の電磁波無線通信機60と撮像装置50とのオフセット量OSは、既知である。 On the other hand, when the second target 72 is selected as the target 70a used for tracking, the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the second target 72 reflected in the captured image PI. Specifically, the control unit 30 calculates the scale of the captured image PI from the ratio between the actual dimensions of the second target 72 and the dimensions of the image of the second target 72 reflected in the captured image PI. The control unit 30 acquires the offset amount OSI in the captured image PI by reducing the offset amount OS between the actual electromagnetic wave wireless communication device 60 and the image pickup device 50 according to the scale of the calculated captured image PI. Here, in the present embodiment, the actual dimensions of the second target 72 and the actual offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 are known.
 なお、本明細書において「或る対象において、或る情報が既知である」とは、或る対象における制御において、或る情報を計測および算出などすることなく利用できる状態にあることを意味する。「或る情報を計測および算出などすることなく利用できる状態」とは、例えば、或る対象に或る情報が予め記憶されている状態、および外部のデータベースから無線または有線により或る情報を参照できる状態などを含む。本実施形態において、既知である各情報は、制御部30に設けられた図示しない記憶部に予め記憶されている。 In addition, in this specification, "a certain information is known in a certain object" means that a certain information can be used in the control in a certain object without measuring and calculating. .. "A state in which certain information can be used without measuring and calculating" means, for example, a state in which certain information is stored in advance in a certain object, and a certain information is referred to by wireless or wired from an external database. Including the state that can be done. In the present embodiment, each known information is stored in advance in a storage unit (not shown) provided in the control unit 30.
 ステップS1eにおいて制御部30は、取得した代表点RPおよびオフセット量OSIに基づいて、可動部40を駆動する。
 具体的に、まず制御部30は、図6に示すように、撮影像PI中において第1方向D1に延びる第1軸Fyが、撮影像PI中における代表点RPと重なるように、可動部40を第1回転軸AXy回りに回転させる。図5および図6の例では、制御部30は、光軸方向DLから見て第1軸Fyの一部が代表点RPと重なるように、トラッキング装置10Aの可動部40を、第2方向D2の正の側(+D2側)に移動させる。これにより、代表点RPの第2方向D2の位置と第1軸Fyの第2方向D2の位置とが一致する。したがって、トラッキング装置10Aにおける電磁波無線通信機60の中心60pと、トラッキング装置10Bにおける電磁波無線通信機60の中心60pとを、同じ第2方向D2の位置に合わせることができる。
In step S1e, the control unit 30 drives the movable unit 40 based on the acquired representative point RP and offset amount OSI.
Specifically, first, as shown in FIG. 6, the control unit 30 is a movable unit 40 so that the first axis Fy extending in the first direction D1 in the captured image PI overlaps with the representative point RP in the captured image PI. Is rotated around the first rotation axis AXY. In the examples of FIGS. 5 and 6, the control unit 30 sets the movable unit 40 of the tracking device 10A in the second direction D2 so that a part of the first axis Fy overlaps with the representative point RP when viewed from the optical axis direction DL. Move to the positive side (+ D2 side) of. As a result, the position of the representative point RP in the second direction D2 and the position of the first axis Fy in the second direction D2 coincide with each other. Therefore, the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10A and the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10B can be aligned with the same position in the second direction D2.
 なお、図6の例において、トラッキング装置10Bにおける電磁波無線通信機60の中心60p、すなわち代表点RPは、トラッキング装置10Aにおける電磁波無線通信機60の中心60pよりも第1方向D1の正の側(+D1側)に離れて位置する。 In the example of FIG. 6, the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10B, that is, the representative point RP is on the positive side of the first direction D1 with respect to the center 60p of the electromagnetic wave radio communication device 60 in the tracking device 10A. It is located away from the + D1 side).
 次に制御部30は、図7に示すように、撮影像PI中において第2方向D2に延びる第2軸Fxが、代表点RPを中心とし、撮影像PI中におけるオフセット量OSIを半径とする仮想円CIと接するように、可動部40を第2回転軸AXp回りに回転させる。図6および図7の例では、制御部30は、光軸方向DLから見て第2軸Fxが仮想円CIのうち第1方向D1の負の側(-D1側)の端点と重なるように、トラッキング装置10Aの可動部40を、第1方向D1の正の側(+D1側)に移動させる。 Next, as shown in FIG. 7, in the control unit 30, the second axis Fx extending in the second direction D2 in the captured image PI has the representative point RP as the center and the offset amount OSI in the captured image PI as the radius. The movable portion 40 is rotated around the second rotation axis AXp so as to be in contact with the virtual circle CI. In the examples of FIGS. 6 and 7, the control unit 30 overlaps the second axis Fx with the end point of the virtual circle CI on the negative side (−D1 side) of the first direction D1 when viewed from the optical axis direction DL. , The movable portion 40 of the tracking device 10A is moved to the positive side (+ D1 side) of the first direction D1.
 ここで、本実施形態においてトラッキング装置10Aとトラッキング装置10Bとは、同様の構造を有しており、各トラッキング装置10A,10Bにおいて、電磁波無線通信機60と撮像装置50とのオフセット量OSは、互いに同じである。そのため、撮影像PI中において、トラッキング装置10Aにおけるオフセット量OSIとトラッキング装置10Bにおけるオフセット量OSIとも、互いに同じになる。これにより、撮影像PIにおける第1方向D1の中心を通る第2軸Fxから第1方向D1にオフセット量OSIだけ離れた位置に代表点RPを合わせることで、トラッキング装置10Aにおける電磁波無線通信機60の中心60pと、トラッキング装置10Bにおける電磁波無線通信機60の中心60pとを、同じ第1方向D1の位置に合わせることができる。そのため、代表点RPが第1軸Fy上に位置する状態で第2軸Fxがオフセット量OSIを半径RcIとする仮想円CIに接するように可動部40を移動させることで、トラッキング装置10Aにおける電磁波無線通信機60の中心60pを、代表点RP、すなわちトラッキング装置10Bにおける電磁波無線通信機60の中心60pに合わせることができる。 Here, in the present embodiment, the tracking device 10A and the tracking device 10B have the same structure, and in each of the tracking devices 10A and 10B, the offset amount OS between the electromagnetic wave wireless communication device 60 and the image pickup device 50 is set. They are the same as each other. Therefore, in the captured image PI, the offset amount OSI in the tracking device 10A and the offset amount OSI in the tracking device 10B are the same as each other. As a result, by aligning the representative point RP at a position separated by the offset amount OSI from the second axis Fx passing through the center of the first direction D1 in the captured image PI by the offset amount OSI, the electromagnetic wave wireless communication device 60 in the tracking device 10A The center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10B can be aligned with the position of the same first direction D1. Therefore, by moving the movable portion 40 so that the second axis Fx is in contact with the virtual circle CI having the offset amount OSI as the radius RcI while the representative point RP is located on the first axis Fy, the electromagnetic wave in the tracking device 10A The center 60p of the wireless communication device 60 can be aligned with the representative point RP, that is, the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10B.
 以上により、トラッキング装置10Aにおける電磁波無線通信機60の中心60pと、トラッキング装置10Bにおける電磁波無線通信機60の中心60pとを、第1方向D1および第2方向D2において位置合わせすることができ、各トラッキング装置10A,10Bの電磁波無線通信機60の中心60p同士を、光軸方向DLに対向して配置することができる。したがって、トラッキング装置10A,10Bの電磁波無線通信機60同士で電磁波無線通信を行うことができる。 As described above, the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10A and the center 60p of the electromagnetic wave wireless communication device 60 in the tracking device 10B can be aligned in the first direction D1 and the second direction D2, respectively. The centers 60p of the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B can be arranged so as to face each other in the optical axis direction DL. Therefore, electromagnetic wave wireless communication can be performed between the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B.
 図7の例では、トラッキング装置10Aの電磁波無線通信機60とトラッキング装置10Bの電磁波無線通信機60とが光軸方向DLに延びる軸回りにずれて配置された状態を示している。上述したように、本実施形態の電磁波無線通信機60は、中心60pを含む中央部が他の電磁波無線通信機60の中央部と対向していれば電磁波無線通信を行うことができる。そのため、図7に示す状態であっても、トラッキング装置10Aとトラッキング装置10Bとは、電磁波無線通信機60によって互いに通信可能である。 The example of FIG. 7 shows a state in which the electromagnetic wave wireless communication device 60 of the tracking device 10A and the electromagnetic wave wireless communication device 60 of the tracking device 10B are arranged so as to be offset around an axis extending in the optical axis direction DL. As described above, the electromagnetic wave wireless communication device 60 of the present embodiment can perform electromagnetic wave wireless communication as long as the central portion including the center 60p faces the central portion of another electromagnetic wave wireless communication device 60. Therefore, even in the state shown in FIG. 7, the tracking device 10A and the tracking device 10B can communicate with each other by the electromagnetic wave wireless communication device 60.
 なお、トラッキング装置10Bも、上述したトラッキング装置10Aと同様にして、トラッキング装置10Aのターゲット70aを追跡することができる。本実施形態では、トラッキング装置10Aとトラッキング装置10Bとの両方が、互いに他のトラッキング装置10のターゲット70aを同時に追跡し合うことで、トラッキング装置10Aの電磁波無線通信機60とトラッキング装置10Bの電磁波無線通信機60とが対向した状態が維持される。 The tracking device 10B can also track the target 70a of the tracking device 10A in the same manner as the tracking device 10A described above. In the present embodiment, both the tracking device 10A and the tracking device 10B simultaneously track each other's targets 70a of the other tracking device 10, so that the electromagnetic wave radio communication device 60 of the tracking device 10A and the electromagnetic wave radio of the tracking device 10B are used. The state of facing the communication device 60 is maintained.
 以上に説明した本実施形態の電磁波無線通信方法は、一の電磁波無線通信機60に関連付けられた第1ターゲット71と第2ターゲット72とを、他の電磁波無線通信機60に関連付けられた撮像装置50で撮像し、撮像した撮影像(画像)PI中の第1ターゲット71の像および第2ターゲット72の像を特定し、特定された第1ターゲット71の像と第2ターゲット72の像とのいずれか一方に基づいて、他の電磁波無線通信機60を一の電磁波無線通信機60の方向に向ける電磁波無線通信方法である。 In the electromagnetic wave wireless communication method of the present embodiment described above, the first target 71 and the second target 72 associated with one electromagnetic wave wireless communication device 60 are associated with the other electromagnetic wave wireless communication device 60. The image of the first target 71 and the image of the second target 72 in the captured image (image) PI imaged by 50 are specified, and the identified image of the first target 71 and the image of the second target 72 are Based on either one, this is an electromagnetic wave wireless communication method in which the other electromagnetic wave wireless communication device 60 is directed in the direction of one electromagnetic wave wireless communication device 60.
 また、以上に説明した本実施形態の電磁波無線通信方法は、電磁波無線通信機60間で通信を行う電磁波無線通信方法であって、一の電磁波無線通信機60に関連付けられたターゲット70aを、他の電磁波無線通信機60に関連付けられた撮像装置50で撮像し、撮像されたターゲット70aの像から、撮像された撮影像PI中における一の電磁波無線通信機60の位置(代表点RP)を特定し、特定された一の電磁波無線通信機60の位置と、他の電磁波無線通信機60と撮像装置50との位置関係と、に基づいて、他の電磁波無線通信機60を一の電磁波無線通信機60の方向に向ける電磁波無線通信方法である。 Further, the electromagnetic wave wireless communication method of the present embodiment described above is an electromagnetic wave wireless communication method for communicating between electromagnetic wave wireless communication devices 60, and includes a target 70a associated with one electromagnetic wave wireless communication device 60, and the like. The position (representative point RP) of one electromagnetic wave wireless communication device 60 in the captured image PI captured by the image pickup device 50 associated with the electromagnetic wave wireless communication device 60 and the image of the captured target 70a is specified. Then, based on the position of the specified one electromagnetic wave wireless communication device 60 and the positional relationship between the other electromagnetic wave wireless communication device 60 and the image pickup device 50, the other electromagnetic wave wireless communication device 60 is subjected to one electromagnetic wave wireless communication. This is an electromagnetic wave wireless communication method directed in the direction of the machine 60.
 本実施形態において、一の電磁波無線通信機60は、トラッキング装置10Bの電磁波無線通信機60であり、他の電磁波無線通信機60は、トラッキング装置10Aの電磁波無線通信機60である。 In the present embodiment, one electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10B, and the other electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10A.
 本実施形態によれば、トラッキング装置10に設けられたターゲット70aは、第1ターゲット71と、第1ターゲット71とは形状が異なる第2ターゲット72と、を含む。そのため、第1ターゲット71と第2ターゲット72とでは、撮像装置50によって撮像された撮影像PI中の映り方などによって、追跡のしやすさが異なりやすい。これにより、或るトラッキング装置10によって他のトラッキング装置10のターゲット70aを追跡する際に、第1ターゲット71と第2ターゲット72とのいずれのターゲット70aを追跡に用いるかを使い分けることによって、ターゲット70aの追跡精度を向上できる。したがって、トラッキング装置10による他のトラッキング装置10の追跡性能を向上できる。そのため、複数のトラッキング装置10を互いに電磁波無線通信可能な状態に好適に維持しやすい。これにより、電磁波無線通信システム100の通信性能を向上させることができる。 According to the present embodiment, the target 70a provided in the tracking device 10 includes a first target 71 and a second target 72 having a shape different from that of the first target 71. Therefore, the ease of tracking tends to differ between the first target 71 and the second target 72 depending on how they are reflected in the captured image PI captured by the image pickup device 50. Thereby, when the target 70a of the other tracking device 10 is tracked by a certain tracking device 10, the target 70a of the first target 71 and the second target 72 is used for tracking properly. Tracking accuracy can be improved. Therefore, the tracking performance of the other tracking device 10 by the tracking device 10 can be improved. Therefore, it is easy to suitably maintain the plurality of tracking devices 10 in a state in which electromagnetic wave wireless communication is possible with each other. Thereby, the communication performance of the electromagnetic wave wireless communication system 100 can be improved.
 また、本実施形態によれば、第2ターゲット72は、トラッキング装置10による追跡可能な距離が第1ターゲット71よりも長い。そのため、例えば、トラッキング装置10同士が比較的遠く離れて配置されている場合であっても、第2ターゲット72を追跡に用いることで、ターゲット70aを好適に追跡することができる。これにより、トラッキング装置10による他のトラッキング装置10の追跡性能をより向上でき、電磁波無線通信システム100の通信性能をより向上させることができる。 Further, according to the present embodiment, the second target 72 has a longer traceable distance by the tracking device 10 than the first target 71. Therefore, for example, even when the tracking devices 10 are arranged relatively far apart from each other, the target 70a can be suitably tracked by using the second target 72 for tracking. As a result, the tracking performance of the other tracking device 10 by the tracking device 10 can be further improved, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
 また、本実施形態によれば、第2ターゲット72は、第1ターゲット71よりも面積が広い。そのため、第2ターゲット72は、トラッキング装置10同士が比較的遠く離れて配置されている場合であっても、第1ターゲット71に比べて、撮影像PIに鮮明に移りやすい。これにより、第2ターゲット72におけるトラッキング装置10による追跡可能な距離を、第1ターゲット71に比べて大きくしやすい。 Further, according to the present embodiment, the area of the second target 72 is larger than that of the first target 71. Therefore, even when the tracking devices 10 are arranged relatively far apart from each other, the second target 72 is more likely to move to the captured image PI more clearly than the first target 71. As a result, the distance that can be tracked by the tracking device 10 in the second target 72 can be easily increased as compared with the first target 71.
 また、本実施形態によれば、第1ターゲット71は、複数設けられ、複数の第1ターゲット71は、同一の仮想円Cの円周上に配置されている。電磁波無線通信機60は、仮想円Cの中心Cpと重なるように配置されている。そのため、トラッキング装置10から他のトラッキング装置10を見た際に、仮想円Cの中心Cpが電磁波無線通信機60と重なる。これにより、上述したように、撮影像PIに映る複数の第1ターゲット71の像から画像処理によって仮想円CIの中心CpIを取得することで、撮影像PI中における電磁波無線通信機60の位置を取得することができる。したがって、撮影像PIに基づいて電磁波無線通信機60の位置を取得することが容易である。 Further, according to the present embodiment, a plurality of first targets 71 are provided, and the plurality of first targets 71 are arranged on the circumference of the same virtual circle C. The electromagnetic wave wireless communication device 60 is arranged so as to overlap the center Cp of the virtual circle C. Therefore, when the other tracking device 10 is viewed from the tracking device 10, the center Cp of the virtual circle C overlaps with the electromagnetic wave wireless communication device 60. As a result, as described above, the position of the electromagnetic wave wireless communication device 60 in the captured image PI is obtained by acquiring the center CpI of the virtual circle CI from the images of the plurality of first targets 71 reflected in the captured image PI by image processing. Can be obtained. Therefore, it is easy to acquire the position of the electromagnetic wave wireless communication device 60 based on the captured image PI.
 また、本実施形態によれば、複数の第1ターゲット71の幾何中心71pのそれぞれは、仮想円Cの円周上に配置されている。そのため、撮影像PIに映る複数の第1ターゲット71の像から画像処理によって各第1ターゲット71の幾何中心71pを取得することで、仮想円CIを容易に取得することができる。これにより、撮影像PI中において仮想円CIの中心CpIを容易に取得することができ、撮影像PI中における電磁波無線通信機60の位置をより容易に取得することができる。 Further, according to the present embodiment, each of the geometric centers 71p of the plurality of first targets 71 is arranged on the circumference of the virtual circle C. Therefore, the virtual circle CI can be easily acquired by acquiring the geometric center 71p of each first target 71 by image processing from the images of the plurality of first targets 71 reflected in the captured image PI. As a result, the center CpI of the virtual circle CI can be easily acquired in the captured image PI, and the position of the electromagnetic wave wireless communication device 60 in the captured image PI can be acquired more easily.
 また、本実施形態によれば、第2ターゲット72の幾何中心72pは、電磁波無線通信機60と重なっている。そのため、撮影像PIに映る第2ターゲット72の像から画像処理によって幾何中心72pを取得することで、撮影像PI中における電磁波無線通信機60の位置を取得することができる。したがって、撮影像PIに基づいて電磁波無線通信機60の位置を取得することが容易である。 Further, according to the present embodiment, the geometric center 72p of the second target 72 overlaps with the electromagnetic wave wireless communication device 60. Therefore, by acquiring the geometric center 72p from the image of the second target 72 displayed on the captured image PI by image processing, the position of the electromagnetic wave wireless communication device 60 in the captured image PI can be acquired. Therefore, it is easy to acquire the position of the electromagnetic wave wireless communication device 60 based on the captured image PI.
 また、本実施形態によれば、第2ターゲット72の幾何中心72pは、仮想円Cの中心Cpと重なっている。そのため、撮影像PIに映る第2ターゲット72の像から画像処理によって幾何中心72pを取得することで、撮影像PI中における仮想円CIの中心CpIを取得することができる。これにより、第1ターゲット71に基づいて取得できる電磁波無線通信機60の位置と第2ターゲット72に基づいて取得できる電磁波無線通信機60の位置とを同じにできる。したがって、第1ターゲット71と第2ターゲット72とのいずれを追跡に用いるターゲット70aとして用いた場合であっても、電磁波無線通信機60の同じ位置を取得することができ、同様にターゲット70aの追跡を行うことができる。 Further, according to the present embodiment, the geometric center 72p of the second target 72 overlaps with the center Cp of the virtual circle C. Therefore, by acquiring the geometric center 72p from the image of the second target 72 reflected in the captured image PI by image processing, the center CpI of the virtual circle CI in the captured image PI can be acquired. As a result, the position of the electromagnetic wave wireless communication device 60 that can be acquired based on the first target 71 and the position of the electromagnetic wave wireless communication device 60 that can be acquired based on the second target 72 can be made the same. Therefore, regardless of whether the first target 71 or the second target 72 is used as the target 70a used for tracking, the same position of the electromagnetic wave radio communication device 60 can be acquired, and the tracking of the target 70a is also performed. It can be performed.
 また、本実施形態によれば、送信部61と受信部62とは、並んで配置され、電磁波無線通信機60のうち送信部61と受信部62との間に位置する部分は、仮想円Cの中心Cpと重なっている。そのため、撮影像PIから画像処理によって仮想円Cに対応する仮想円CIの中心CpIを取得することで、撮影像PI中における電磁波無線通信機60のうち、送信部61と受信部62との間に位置する部分の位置を取得することができる。ここで、上述したように、電磁波無線通信機60同士は、送信部61と受信部62との間に位置する部分同士が対向していれば、電磁波無線通信機60同士の相対姿勢が異なっていても、互いに電磁波無線通信が可能である。そのため、撮影像PI中において送信部61と受信部62との間に位置する部分を取得し、取得した当該部分を他のトラッキング装置10における送信部61と受信部62との間に位置する部分に対向するように可動部40を動かすことで、電磁波無線通信機60同士の相対姿勢によらず、電磁波無線通信機60同士の間で電磁波無線通信を行うことができる。したがって、電磁波無線通信システム100の通信性能をより向上させることができる。 Further, according to the present embodiment, the transmitting unit 61 and the receiving unit 62 are arranged side by side, and the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 is a virtual circle C. It overlaps with the center Cp of. Therefore, by acquiring the center CpI of the virtual circle CI corresponding to the virtual circle C from the captured image PI by image processing, between the transmitting unit 61 and the receiving unit 62 of the electromagnetic wave wireless communication device 60 in the captured image PI. You can get the position of the part located in. Here, as described above, the electromagnetic wave wireless communication devices 60 have different relative postures from each other if the portions located between the transmission unit 61 and the reception unit 62 face each other. However, electromagnetic wave wireless communication is possible with each other. Therefore, a portion located between the transmission unit 61 and the reception unit 62 in the captured image PI is acquired, and the acquired portion is located between the transmission unit 61 and the reception unit 62 in the other tracking device 10. By moving the movable portion 40 so as to face the electromagnetic wave wireless communication device 60, electromagnetic wave wireless communication can be performed between the electromagnetic wave wireless communication devices 60 regardless of the relative posture of the electromagnetic wave wireless communication devices 60. Therefore, the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
 また、本実施形態によれば、電磁波無線通信機60と撮像装置50とは、撮像装置50の光軸方向DLと直交する第1方向D1にオフセット量OSだけずれて配置されている。言い換えれば、電磁波無線通信機60と撮像装置50とは、光軸方向DLに関して非同軸に配置されている。そのため、電磁波無線通信機60と撮像装置50とが光軸方向DLに関して同軸に配置される場合に比べて、電磁波無線通信機60と撮像装置50とを互いに干渉させずに好適に配置しやすい。これにより、電磁波無線通信機60の機能と撮像装置50の機能とが制限されることを抑制できる。 Further, according to the present embodiment, the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged so as to be offset by an offset amount OS in the first direction D1 orthogonal to the optical axis direction DL of the image pickup device 50. In other words, the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged non-coaxially with respect to the optical axis direction DL. Therefore, as compared with the case where the electromagnetic wave wireless communication device 60 and the image pickup device 50 are arranged coaxially with respect to the optical axis direction DL, it is easy to preferably arrange the electromagnetic wave wireless communication device 60 and the image pickup device 50 without interfering with each other. As a result, it is possible to prevent the function of the electromagnetic wave wireless communication device 60 and the function of the image pickup apparatus 50 from being restricted.
 また、本実施形態によれば、第2ターゲット72は、光軸方向DLおよび第1方向D1の両方と直交する第2方向D2に対称な形状である。そのため、第2ターゲット72の幾何中心72pを、第2方向D2において第2ターゲット72の中心となる位置にすることができる。これにより、例えば本実施形態のように第2ターゲット72を電磁波無線通信機60と同軸に配置し、撮影像PI中において第2ターゲット72の幾何中心72pを取得することで、電磁波無線通信機60の第2方向D2の中心位置を取得することができる。したがって、撮影像PI中において、電磁波無線通信機60のうち送信部61と受信部62との第2方向D2の間に位置する部分の位置を容易に取得することができる。そのため、トラッキング装置10によって他のトラッキング装置10のターゲット70aを追跡することによって、電磁波無線通信機60のうち送信部61と受信部62との間に位置する部分同士を対向させやすくでき、電磁波無線通信システム100の通信性能をより向上させることができる。 Further, according to the present embodiment, the second target 72 has a shape symmetrical to the second direction D2 orthogonal to both the optical axis direction DL and the first direction D1. Therefore, the geometric center 72p of the second target 72 can be positioned at the center of the second target 72 in the second direction D2. As a result, for example, as in the present embodiment, the second target 72 is arranged coaxially with the electromagnetic wave wireless communication device 60, and the geometric center 72p of the second target 72 is acquired in the captured image PI, whereby the electromagnetic wave wireless communication device 60 is obtained. The center position of the second direction D2 can be acquired. Therefore, in the captured image PI, the position of the portion of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 in the second direction D2 can be easily acquired. Therefore, by tracking the target 70a of the other tracking device 10 by the tracking device 10, the portions of the electromagnetic wave wireless communication device 60 located between the transmitting unit 61 and the receiving unit 62 can be easily opposed to each other, and the electromagnetic wave radio can be easily opposed to each other. The communication performance of the communication system 100 can be further improved.
 また、本実施形態によれば、第2ターゲット72は、光軸方向DLと直交する第1方向D1に対称な形状である。つまり、第2ターゲット72は、第1方向D1および第2方向D2の両方に対称な形状である。そのため、第2ターゲット72の幾何中心72pを、第1方向D1および第2方向D2の両方において第2ターゲット72の中心となる位置にすることができる。これにより、例えば本実施形態のように第2ターゲット72を電磁波無線通信機60と同軸に配置し、撮影像PI中において第2ターゲット72の幾何中心72pを取得することで、電磁波無線通信機60の第1方向D1および第2方向D2の中心位置、つまり中心60pを取得することができる。そのため、トラッキング装置10によって他のトラッキング装置10のターゲット70aを追跡することによって、電磁波無線通信機60の中央部同士を対向させやすくでき、電磁波無線通信システム100の通信性能をより向上させることができる。 Further, according to the present embodiment, the second target 72 has a shape symmetrical to the first direction D1 orthogonal to the optical axis direction DL. That is, the second target 72 has a shape symmetrical to both the first direction D1 and the second direction D2. Therefore, the geometric center 72p of the second target 72 can be positioned at the center of the second target 72 in both the first direction D1 and the second direction D2. As a result, for example, as in the present embodiment, the second target 72 is arranged coaxially with the electromagnetic wave wireless communication device 60, and the geometric center 72p of the second target 72 is acquired in the captured image PI, whereby the electromagnetic wave wireless communication device 60 is obtained. The center position of the first direction D1 and the second direction D2, that is, the center 60p can be acquired. Therefore, by tracking the target 70a of the other tracking device 10 by the tracking device 10, the central portions of the electromagnetic wave wireless communication device 60 can be easily opposed to each other, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved. ..
 また、本実施形態によれば、撮像装置50の光軸AXoは、仮想円Cの円周上に配置されている。そのため、仮想円Cの中心Cpを電磁波無線通信機60の中心60pと重なるようにすることで、仮想円Cの半径Rcを、撮像装置50と電磁波無線通信機60とのオフセット量OSと同じにできる。これにより、撮影像PI中において複数の第1ターゲット71の像に基づいて仮想円CIを取得することで、撮影像PI中における撮像装置50と電磁波無線通信機60とのオフセット量OSIを容易に取得することができる。したがって、複数の第1ターゲット71を用いたターゲット70aの追跡を容易にできる。 Further, according to the present embodiment, the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C. Therefore, by making the center Cp of the virtual circle C overlap with the center 60p of the electromagnetic wave wireless communication device 60, the radius Rc of the virtual circle C becomes the same as the offset amount OS between the image pickup device 50 and the electromagnetic wave wireless communication device 60. can. As a result, by acquiring the virtual circle CI based on the images of the plurality of first targets 71 in the captured image PI, the offset amount OSI between the image pickup device 50 and the electromagnetic wave wireless communication device 60 in the captured image PI can be easily obtained. Can be obtained. Therefore, it is possible to easily track the target 70a using the plurality of first targets 71.
 また、本実施形態によれば、第2ターゲット72は、第1方向D1に窪む第1凹部72aを有し、撮像装置50は、第1凹部72aの内側に位置する。そのため、第2ターゲット72の外縁の内側に複数の第1ターゲット71を配置しつつ、各第1ターゲット71の幾何中心71pが通る仮想円Cの円周上に撮像装置50の光軸AXoを配置することができる。また、第2ターゲット72が設けられたターゲット部材70に撮像装置50が干渉することを抑制できる。そのため、撮像装置50のレンズ52を交換するなどの作業を行いやすくできる。また、第2ターゲット72が第1方向D1に大型化することを抑制できるため、第2ターゲット72が設けられたターゲット部材70が第1方向D1に大型化することを抑制できる。これにより、第2回転軸AXp回りに可動部40を回転させた際に、第2ターゲット72がトラッキング装置本体20の他の部分に干渉することを抑制できる。 Further, according to the present embodiment, the second target 72 has a first recess 72a recessed in the first direction D1, and the image pickup apparatus 50 is located inside the first recess 72a. Therefore, while arranging a plurality of first targets 71 inside the outer edge of the second target 72, the optical axis AXo of the image pickup apparatus 50 is arranged on the circumference of the virtual circle C through which the geometric center 71p of each first target 71 passes. can do. Further, it is possible to prevent the image pickup apparatus 50 from interfering with the target member 70 provided with the second target 72. Therefore, it is possible to easily perform work such as exchanging the lens 52 of the image pickup apparatus 50. Further, since it is possible to prevent the second target 72 from increasing in size in the first direction D1, it is possible to prevent the target member 70 provided with the second target 72 from increasing in size in the first direction D1. This makes it possible to prevent the second target 72 from interfering with other parts of the tracking device main body 20 when the movable portion 40 is rotated around the second rotation axis AXp.
 また、第1凹部72a内に撮像装置50が位置することで、ターゲット部材70が電磁波無線通信機60と同軸に配置された場合に、電磁波無線通信機60と撮像装置50とを第1方向D1に近づけて配置できる。そのため、第1方向D1が鉛直方向に沿った方向となる場合において、電磁波無線通信機60が撮像装置50の鉛直方向上側に位置する場合であっても、比較的質量が大きくなる電磁波無線通信機60の位置を、比較的鉛直方向下側にしやすい。これにより、可動部40を第2回転軸AXp回りに回転させる際に、電磁波無線通信機60によって可動部40に生じるモーメントを小さくできる。したがって、電磁波無線通信機60および撮像装置50が取り付けられた可動部40を第2回転軸AXp回りに回転させやすくできる。 Further, when the target member 70 is arranged coaxially with the electromagnetic wave wireless communication device 60 by locating the image pickup device 50 in the first recess 72a, the electromagnetic wave wireless communication device 60 and the image pickup device 50 are placed in the first direction D1. Can be placed close to. Therefore, when the first direction D1 is in the vertical direction, the electromagnetic wave wireless communication device has a relatively large mass even when the electromagnetic wave wireless communication device 60 is located on the upper side in the vertical direction of the image pickup device 50. It is easy to set the position of 60 to the lower side in the vertical direction. Thereby, when the movable portion 40 is rotated around the second rotation axis AXp, the moment generated in the movable portion 40 by the electromagnetic wave wireless communication device 60 can be reduced. Therefore, the movable portion 40 to which the electromagnetic wave wireless communication device 60 and the image pickup device 50 are attached can be easily rotated around the second rotation axis AXp.
 また、本実施形態によれば、第2ターゲット72は、第1方向D1に窪む第2凹部72bを有し、第1凹部72aと第2凹部72bとは、電磁波無線通信機60を第1方向D1に挟んで配置されている。そのため、第2ターゲット72を第1方向D1に対称な形状にしやすい。 Further, according to the present embodiment, the second target 72 has a second recess 72b recessed in the first direction D1, and the first recess 72a and the second recess 72b are the first electromagnetic wave wireless communication device 60. It is arranged so as to be sandwiched in the direction D1. Therefore, it is easy to make the second target 72 have a shape symmetrical to the first direction D1.
 また、本実施形態によれば、第1凹部72aの内縁と第2凹部72bの内縁とは、互いに逆向きに凹となる円弧形状であり、第2ターゲット72の外縁は、第1凹部72aの内縁の両端と第2凹部72bの内縁の両端とが、仮想円Cと同心の一対の円弧72c,72dによってそれぞれ繋げられて構成された形状である。そのため、第2ターゲット72を第1方向D1および第2方向D2の両方に対称な形状としやすい。 Further, according to the present embodiment, the inner edge of the first recess 72a and the inner edge of the second recess 72b have an arc shape that is concave in opposite directions to each other, and the outer edge of the second target 72 is the first recess 72a. Both ends of the inner edge and both ends of the inner edge of the second recess 72b are connected by a pair of arcs 72c and 72d concentric with the virtual circle C, respectively. Therefore, the second target 72 tends to have a shape symmetrical to both the first direction D1 and the second direction D2.
 また、本実施形態によれば、可動部40は、光軸方向DLと交差する方向に延びる第1回転軸AXy回りに回転可能である。そのため、可動部40を第1回転軸AXy回りに回転させることで、トラッキング装置10によって他のトラッキング装置10を追跡しやすくできる。 Further, according to the present embodiment, the movable portion 40 can rotate around the first rotation axis AXy extending in the direction intersecting the optical axis direction DL. Therefore, by rotating the movable portion 40 around the first rotation axis AXy, it is possible to easily track another tracking device 10 by the tracking device 10.
 また、本実施形態によれば、可動部40は、光軸方向DLと交差し、かつ、第1回転軸AXyが延びる方向と直交する方向に延びる第2回転軸AXp回りに回転可能である。そのため、可動部40を第1回転軸AXy回りおよび第2回転軸AXp回りに回転させることで、トラッキング装置10によって他のトラッキング装置10をより追跡しやすくできる。また、各トラッキング装置10において可動部40の移動自由度を2自由度にできるため、互いに追跡し合う一対のトラッキング装置10の相対的な移動自由度を4自由度にできる。これにより、トラッキング装置10同士を好適に対向させることができる。また、上述したように、電磁波無線通信機60は、光軸方向DLに延びる軸回りの回転方向に互いにずれていても、中央部同士が対向していれば通信可能であるため、一対のトラッキング装置10の相対的な移動自由度が4自由度であっても、十分に電磁波無線通信機60同士を好適に対向させることができる。 Further, according to the present embodiment, the movable portion 40 can rotate around the second rotation axis AXp that intersects the optical axis direction DL and extends in the direction orthogonal to the direction in which the first rotation axis AXy extends. Therefore, by rotating the movable portion 40 around the first rotation axis AXP and around the second rotation axis AXP, the tracking device 10 can more easily track the other tracking device 10. Further, since the movable degree of freedom of the movable portion 40 can be set to 2 degrees of freedom in each tracking device 10, the relative degree of freedom of movement of the pair of tracking devices 10 that track each other can be set to 4 degrees of freedom. As a result, the tracking devices 10 can be suitably opposed to each other. Further, as described above, even if the electromagnetic wave wireless communication device 60 is deviated from each other in the rotation direction around the axis extending in the optical axis direction DL, communication is possible as long as the central portions face each other, so that a pair of tracking is performed. Even if the relative degree of freedom of movement of the device 10 is 4 degrees of freedom, the electromagnetic wave wireless communication devices 60 can be sufficiently opposed to each other.
 また、本実施形態によれば、制御部30は、撮像装置50によって撮像された他のトラッキング装置10におけるターゲット70aおよび電磁波無線通信機60が映る撮影像PI(画像)に基づいて、可動部40を制御して他のトラッキング装置10を追跡する。そのため、撮影像PIに対して画像処理を行うことで、ターゲット70aに基づいて、他のトラッキング装置10の電磁波無線通信機60を容易に追跡できる。 Further, according to the present embodiment, the control unit 30 is a movable unit 40 based on a captured image PI (image) of the target 70a and the electromagnetic wave wireless communication device 60 in another tracking device 10 imaged by the image pickup device 50. To track another tracking device 10. Therefore, by performing image processing on the captured image PI, the electromagnetic wave wireless communication device 60 of the other tracking device 10 can be easily tracked based on the target 70a.
 また、本実施形態によれば、制御部30は、第1ターゲット71の像の像質と第2ターゲット72の像の像質とに応じて、追跡に用いるターゲット70aを選択する。そのため、撮影像PIに映った各ターゲット70aの像のうち、画像処理によって位置などを好適に取得しやすい方のターゲット70aの像を用いて、他のトラッキング装置10の追跡が可能である。これにより、トラッキング装置10による他のトラッキング装置10の追跡性能をより向上でき、電磁波無線通信システム100の通信性能をより向上させることができる。 Further, according to the present embodiment, the control unit 30 selects the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72. Therefore, among the images of each target 70a reflected in the captured image PI, the image of the target 70a whose position and the like can be suitably obtained by image processing can be used to track the other tracking device 10. As a result, the tracking performance of the other tracking device 10 by the tracking device 10 can be further improved, and the communication performance of the electromagnetic wave wireless communication system 100 can be further improved.
 また、本実施形態によれば、制御部30は、撮影像PI(画像)に映るターゲット70aに基づいて、撮影像PI中における電磁波無線通信機60の代表点RPを取得し、撮影像PI中において第1方向D1に延びる第1軸Fyが、撮影像PI中における代表点RPと重なるように、可動部40を第1回転軸AXy回りに回転させ、撮影像PI中において第2方向D2に延びる第2軸Fxが、代表点RPを中心とし、撮影像PI中におけるオフセット量OSIを半径とする円、すなわち本実施形態では仮想円CIと接するように、可動部40を第2回転軸AXp回りに回転させる。そのため、ステップS1aからステップS1eで述べたようにして、トラッキング装置10の電磁波無線通信機60を、他のトラッキング装置10の電磁波無線通信機60と対向させることができる。この方法によれば、撮影像PI中のターゲット70aの像に基づいて、画像処理によって撮影像PI中における代表点RP、オフセット量OSI、および仮想円CIを取得することで、容易に他のトラッキング装置10を追跡することができる。そのため、撮影像PIに対して行う画像処理量を低減することができ、制御部30の負荷を低減できる。また、代表点RPおよび仮想円CIの各軸に対する位置合わせは、撮影像PIを見て行うことができるため、別途計測機器などを設ける必要もなく、容易に行うことができる。これにより、制御部30の負荷をより低減できる。 Further, according to the present embodiment, the control unit 30 acquires the representative point RP of the electromagnetic wave wireless communication device 60 in the captured image PI based on the target 70a reflected in the captured image PI (image), and is in the captured image PI. The movable portion 40 is rotated around the first rotation axis AXy so that the first axis Fy extending in the first direction D1 overlaps with the representative point RP in the captured image PI, and in the second direction D2 in the captured image PI. The movable portion 40 is placed on the second rotation axis AXp so that the extending second axis Fx is in contact with a circle centered on the representative point RP and the offset amount OSI in the captured image PI as a radius, that is, in the present embodiment, the virtual circle CI. Rotate around. Therefore, as described in steps S1a to S1e, the electromagnetic wave wireless communication device 60 of the tracking device 10 can be made to face the electromagnetic wave wireless communication device 60 of another tracking device 10. According to this method, other tracking can be easily performed by acquiring the representative point RP, the offset amount OSI, and the virtual circle CI in the captured image PI by image processing based on the image of the target 70a in the captured image PI. The device 10 can be tracked. Therefore, the amount of image processing performed on the captured image PI can be reduced, and the load on the control unit 30 can be reduced. Further, since the positioning of the representative point RP and the virtual circle CI with respect to each axis can be performed by looking at the captured image PI, it is possible to easily perform the positioning without the need for a separate measuring device or the like. As a result, the load on the control unit 30 can be further reduced.
 また、本実施形態によれば、制御部30は、仮想円CIの中心CpIを代表点RPとして取得する。そのため、撮影像PI中において複数の第1ターゲット71の像に基づいて画像処理によって仮想円CIを取得すれば、容易に代表点RPを取得できる。また、仮想円Cの半径Rcがオフセット量OSと同じであれば、代表点RPを中心とし、撮影像PI中におけるオフセット量OSIを半径とする円として、撮影像PIにおいて仮想円Cに対応する仮想円CIを用いることができる。そのため、撮影像PI中において仮想円CIのみを画像処理で取得できれば、容易に他のトラッキング装置10の追跡を行うことができる。これにより、撮影像PIに対して行う画像処理量をより低減することができ、制御部30の負荷をより低減できる。 Further, according to the present embodiment, the control unit 30 acquires the central CpI of the virtual circle CI as the representative point RP. Therefore, if the virtual circle CI is acquired by image processing based on the images of the plurality of first targets 71 in the captured image PI, the representative point RP can be easily acquired. If the radius Rc of the virtual circle C is the same as the offset amount OS, it corresponds to the virtual circle C in the captured image PI as a circle centered on the representative point RP and having the offset amount OSI in the captured image PI as the radius. A virtual circle CI can be used. Therefore, if only the virtual circle CI can be acquired by image processing in the captured image PI, the other tracking device 10 can be easily tracked. As a result, the amount of image processing performed on the captured image PI can be further reduced, and the load on the control unit 30 can be further reduced.
 また、本実施形態によれば、制御部30は、撮影像PIに映る第2ターゲット72の幾何中心72pを代表点RPとして取得する。そのため、第2ターゲット72を追跡に用いるターゲット70aとして選択した場合に、電磁波無線通信機60の代表点RPを容易に取得できる。 Further, according to the present embodiment, the control unit 30 acquires the geometric center 72p of the second target 72 reflected in the captured image PI as the representative point RP. Therefore, when the second target 72 is selected as the target 70a used for tracking, the representative point RP of the electromagnetic wave wireless communication device 60 can be easily acquired.
 また、本実施形態によれば、制御部30は、撮影像PIに映るターゲット70aの像に基づいて、撮影像PI中におけるオフセット量OSIを取得する。そのため、オフセット量OSIを容易に取得できる。 Further, according to the present embodiment, the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the target 70a reflected in the captured image PI. Therefore, the offset amount OSI can be easily obtained.
 また、本実施形態によれば、撮影像PI中におけるオフセット量OSIは、撮影像PI中において複数の第1ターゲット71に基づいて得られる仮想円CIの半径RcIである。そのため、複数の第1ターゲット71に基づいて仮想円CIを取得することで、容易にオフセット量OSIを取得することができる。 Further, according to the present embodiment, the offset amount OSI in the captured image PI is the radius RcI of the virtual circle CI obtained based on the plurality of first targets 71 in the captured image PI. Therefore, by acquiring the virtual circle CI based on the plurality of first targets 71, the offset amount OSI can be easily acquired.
 また、本実施形態によれば、第1ターゲット71の全体は、第2ターゲット72の外縁の内側に位置する。そのため、各ターゲット70aが設けられるターゲット部材70が大型化することを抑制できる。これにより、トラッキング装置10が大型化することを抑制できる。 Further, according to the present embodiment, the entire first target 71 is located inside the outer edge of the second target 72. Therefore, it is possible to prevent the target member 70 provided with each target 70a from becoming large. As a result, it is possible to prevent the tracking device 10 from becoming large.
 また、本実施形態によれば、第1ターゲット71の外形は、円形状である。そのため、撮影像PI中の第1ターゲット71の像から、画像処理によって第1ターゲット71の幾何中心71pを取得しやすくできる。 Further, according to the present embodiment, the outer shape of the first target 71 is circular. Therefore, it is possible to easily acquire the geometric center 71p of the first target 71 by image processing from the image of the first target 71 in the captured image PI.
 また、本実施形態によれば、第1ターゲット71は、円環状である。そのため、第1ターゲット71の形状を、円形状に比べて、第1ターゲット71以外に存在しにくい形状にできる。これにより、撮影像PI中において第1ターゲット71の識別力を向上させることができ、第1ターゲット71以外の対象を誤検出することを抑制できる。また、一方で、円環状とすることで第1ターゲット71の形状が複雑化することも抑制できる。そのため、トラッキング装置10同士の間の距離が比較的大きい場合であっても、第1ターゲット71の形状の特徴を、撮影像PI中において制御部30が認識しやすくできる。以上により、第1ターゲット71を円環状とすることで、第1ターゲット71を用いた他のトラッキング装置10の追跡をより好適に行うことができる。 Further, according to the present embodiment, the first target 71 is an annular shape. Therefore, the shape of the first target 71 can be made into a shape that is less likely to exist other than the first target 71 as compared with the circular shape. As a result, the discriminating power of the first target 71 can be improved in the captured image PI, and it is possible to suppress erroneous detection of an object other than the first target 71. On the other hand, it is possible to prevent the shape of the first target 71 from becoming complicated by making it annular. Therefore, even when the distance between the tracking devices 10 is relatively large, the control unit 30 can easily recognize the characteristics of the shape of the first target 71 in the captured image PI. As described above, by making the first target 71 an annular shape, it is possible to more preferably track another tracking device 10 using the first target 71.
 また、本実施形態によれば、第1軸Fyは、撮影像(画像)PIにおける第2方向D2の中心を通り、第2軸Fxは、撮影像(画像)PIにおける第1方向D1の中心を通る。そのため、第1軸Fyと第2軸Fxとが交差する点を、撮影像PIにおける第1方向D1および第2方向D2の中心とすることができ、撮像装置50の光軸AXoと一致する点にすることができる。これにより、撮影像PI中において第1軸Fyおよび第2軸Fxに対して代表点RPおよび仮想円CIを相対移動させることで、撮像装置50の光軸AXoに対して第1方向D1にオフセットして配置された電磁波無線通信機60を、他の電磁波無線通信機60と対向する位置に移動させやすい。 Further, according to the present embodiment, the first axis Fy passes through the center of the second direction D2 in the captured image (image) PI, and the second axis Fx is the center of the first direction D1 in the captured image (image) PI. Pass through. Therefore, the point where the first axis Fy and the second axis Fx intersect can be the center of the first direction D1 and the second direction D2 in the captured image PI, and the point coincides with the optical axis AXo of the image pickup apparatus 50. Can be. As a result, the representative point RP and the virtual circle CI are relatively moved with respect to the first axis Fy and the second axis Fx in the captured image PI, thereby offsetting in the first direction D1 with respect to the optical axis AXo of the image pickup apparatus 50. It is easy to move the electromagnetic wave wireless communication device 60 arranged in the above direction to a position facing the other electromagnetic wave wireless communication device 60.
 なお、上述した説明において制御部30は、第1ターゲット71の像の像質と第2ターゲット72の像の像質とに応じて、追跡に用いるターゲット70aを選択する構成としたが、これに限られない。制御部30は、追跡に用いるターゲット70aをどのように選択してもよい。 In the above description, the control unit 30 is configured to select the target 70a to be used for tracking according to the image quality of the image of the first target 71 and the image quality of the image of the second target 72. Not limited. The control unit 30 may select the target 70a used for tracking in any way.
 制御部30は、2機のトラッキング装置10間の距離に応じて、追跡に用いるターゲット70aを選択してもよい。この構成によれば、トラッキング装置10間の距離に応じて、ターゲット70aを好適に選択できる。具体的には、制御部30は、トラッキング装置10同士の距離が所定距離以下の場合に、第1ターゲット71を追跡に用いるターゲット70aとして選択し、トラッキング装置10同士の距離が所定距離よりも大きい場合に、第2ターゲット72を追跡に用いるターゲット70aとして選択してもよい。トラッキング装置10同士の距離は、撮影像PIに映る他のトラッキング装置10の像に基づいて計測されてもよいし、光測距装置などの他の計測機器によって計測されてもよい。 The control unit 30 may select the target 70a used for tracking according to the distance between the two tracking devices 10. According to this configuration, the target 70a can be suitably selected according to the distance between the tracking devices 10. Specifically, when the distance between the tracking devices 10 is equal to or less than a predetermined distance, the control unit 30 selects the first target 71 as the target 70a used for tracking, and the distance between the tracking devices 10 is larger than the predetermined distance. In some cases, the second target 72 may be selected as the target 70a used for tracking. The distance between the tracking devices 10 may be measured based on the image of another tracking device 10 reflected in the captured image PI, or may be measured by another measuring device such as an optical range measuring device.
 トラッキング装置10同士の距離が比較的小さい場合には、電磁波無線通信機60同士の距離も小さく、電磁波無線通信機60同士の通信が許容される電磁波無線通信機60同士の相対位置範囲が狭くなりやすい。そのため、トラッキング装置10同士の距離が比較的大きい場合に比べて、電磁波無線通信機60同士をより精度よく位置を合わせて対向させる必要がある。ここで、撮影像PIに第1ターゲット71と第2ターゲット72とがいずれも鮮明に映っている場合においては、第2ターゲット72よりも、円環状の第1ターゲット71の方が、識別力が高く、かつ複数設けられているので、画像処理によって精度よく代表点RPを検出できる。そのため、トラッキング装置10同士の距離が所定距離以下の場合に、第1ターゲット71を追跡に用いるターゲット70aとして選択することで、代表点RPを精度よく取得することができ、電磁波無線通信機60同士を位置精度よく対向させることができる。これにより、電磁波無線通信機60同士の距離が小さく電磁波無線通信機60同士の通信が許容される電磁波無線通信機60同士の相対位置範囲が狭くなる場合であっても、電磁波無線通信機60同士で電磁波無線通信を好適に行うことができる。 When the distance between the tracking devices 10 is relatively small, the distance between the electromagnetic wave wireless communication devices 60 is also small, and the relative position range between the electromagnetic wave wireless communication devices 60 where communication between the electromagnetic wave wireless communication devices 60 is allowed becomes narrow. Cheap. Therefore, it is necessary to align the electromagnetic wave wireless communication devices 60 with each other more accurately and to face each other as compared with the case where the distance between the tracking devices 10 is relatively large. Here, when both the first target 71 and the second target 72 are clearly reflected in the captured image PI, the annular first target 71 has more discriminating power than the second target 72. Since it is high and a plurality of them are provided, the representative point RP can be detected accurately by image processing. Therefore, when the distance between the tracking devices 10 is less than or equal to a predetermined distance, the representative point RP can be accurately acquired by selecting the first target 71 as the target 70a used for tracking, and the electromagnetic wave wireless communication devices 60 can be used with each other. Can be opposed to each other with high positional accuracy. As a result, even when the distance between the electromagnetic wave wireless communication devices 60 is small and the relative position range between the electromagnetic wave wireless communication devices 60 to which communication between the electromagnetic wave wireless communication devices 60 is permitted becomes narrow, the electromagnetic wave wireless communication devices 60 to each other are narrowed. Therefore, electromagnetic wave wireless communication can be preferably performed.
 なお、トラッキング装置10同士の距離が比較的小さい場合には、撮像装置50によって撮像される撮影像PIに映る他のトラッキング装置10の像は、比較的大きくなる。そのため、第2ターゲット72よりも面積が狭い第1ターゲット71も撮影像PI中に十分に鮮明に移りやすい。そのため、第1ターゲット71を追跡に用いるターゲット70aとして選択しても、第1ターゲット71に基づいて好適に代表点RPを取得できる。 If the distance between the tracking devices 10 is relatively small, the image of the other tracking device 10 reflected in the captured image PI captured by the image pickup device 50 becomes relatively large. Therefore, the first target 71, which has a smaller area than the second target 72, can be easily transferred to the captured image PI with sufficient clarity. Therefore, even if the first target 71 is selected as the target 70a used for tracking, the representative point RP can be suitably acquired based on the first target 71.
 一方、トラッキング装置10同士の距離が比較的大きい場合には、撮像装置50によって撮像される撮影像PIに映る他のトラッキング装置10の像は、比較的小さくなる。撮影像PIに映るターゲット70aの像が小さいほど、当該ターゲット70aの像を識別しにくく、ターゲット70aの像に基づいた代表点RPの取得精度も低下する。そのため、トラッキング装置10同士の距離が比較的大きい場合には、撮影像PI中において、より大きく映るターゲット70aを選択することが好ましい。本実施形態においては、トラッキング装置10同士の距離が所定距離よりも大きい場合に、第1ターゲット71よりも面積が広い第2ターゲット72を追跡に用いるターゲット70aとして選択することで、撮影像PI中において比較的大きく映る第2ターゲット72から代表点RPを取得できる。したがって、トラッキング装置10同士の距離が所定距離よりも大きい場合であっても、代表点RPを好適に取得することができ、電磁波無線通信機60同士を好適に対向させることができる。 On the other hand, when the distance between the tracking devices 10 is relatively large, the images of the other tracking devices 10 reflected in the captured image PI captured by the image pickup device 50 are relatively small. The smaller the image of the target 70a reflected in the captured image PI, the more difficult it is to identify the image of the target 70a, and the lower the accuracy of acquiring the representative point RP based on the image of the target 70a. Therefore, when the distance between the tracking devices 10 is relatively large, it is preferable to select the target 70a that appears larger in the captured image PI. In the present embodiment, when the distance between the tracking devices 10 is larger than a predetermined distance, the second target 72 having a larger area than the first target 71 is selected as the target 70a used for tracking, so that the captured image PI can be used. The representative point RP can be obtained from the second target 72, which appears relatively large in. Therefore, even when the distance between the tracking devices 10 is larger than the predetermined distance, the representative point RP can be suitably acquired, and the electromagnetic wave wireless communication devices 60 can be suitably opposed to each other.
 なお、トラッキング装置10同士の距離が比較的大きい場合には、電磁波無線通信機60同士の距離も大きく、電磁波無線通信機60同士の通信が許容される電磁波無線通信機60同士の相対位置範囲が広くなりやすい。そのため、第2ターゲット72を用いることで、代表点RPの取得精度がトラッキング装置10同士の距離が比較的小さい場合において第1ターゲット71を用いた際の取得精度より低くなったとしても、電磁波無線通信機60同士で電磁波無線通信を好適に行う範囲内で、電磁波無線通信機60同士を対向させることができる。なお、トラッキング装置10同士の距離が比較的大きい場合においては、第2ターゲット72よりも面積が狭い第1ターゲット71は、代表点RPの取得精度が第2ターゲット72よりも低くなりやすい。 When the distance between the tracking devices 10 is relatively large, the distance between the electromagnetic wave wireless communication devices 60 is also large, and the relative position range between the electromagnetic wave wireless communication devices 60 where communication between the electromagnetic wave wireless communication devices 60 is permitted is set. It tends to be wide. Therefore, by using the second target 72, even if the acquisition accuracy of the representative point RP is lower than the acquisition accuracy when the first target 71 is used when the distance between the tracking devices 10 is relatively small, the electromagnetic wave radio wave is used. The electromagnetic wave wireless communication devices 60 can face each other within the range in which the electromagnetic wave wireless communication is preferably performed between the communication devices 60. When the distance between the tracking devices 10 is relatively large, the first target 71, which has a smaller area than the second target 72, tends to have a lower acquisition accuracy of the representative point RP than the second target 72.
 以上のように、トラッキング装置10同士の距離に応じて追跡に用いるターゲット70aを切り替えることで、トラッキング装置10同士の距離によらず、撮影像PI中において代表点RPを好適に取得することができる。図8は、トラッキング装置10同士の距離Ltに対する代表点RPの誤差Edについて示すグラフである。図8において、横軸は、トラッキング装置10同士の距離Ldを示し、縦軸は、代表点RPの誤差Edを示している。図8において、一点鎖線で示すグラフは、目標とする誤差Edの上限値EdTである。図8において、破線で示すグラフは、距離Ltによらず第1ターゲット71のみを用いて代表点RPを取得する場合の誤差Ed1である。図8において、二点鎖線で示すグラフは、距離Ltによらず第2ターゲット72のみを用いて代表点RPを取得する場合の誤差Ed2である。図8において、実線で示すグラフは、距離Ltに応じて上述したようにターゲット70aを切り替えて代表点RPを取得する場合の誤差EdHである。 As described above, by switching the target 70a used for tracking according to the distance between the tracking devices 10, the representative point RP can be suitably acquired in the captured image PI regardless of the distance between the tracking devices 10. .. FIG. 8 is a graph showing the error Ed of the representative point RP with respect to the distance Lt between the tracking devices 10. In FIG. 8, the horizontal axis shows the distance Ld between the tracking devices 10, and the vertical axis shows the error Ed of the representative point RP. In FIG. 8, the graph shown by the alternate long and short dash line is the upper limit value EdT of the target error Ed. In FIG. 8, the graph shown by the broken line is the error Ed1 when the representative point RP is acquired by using only the first target 71 regardless of the distance Lt. In FIG. 8, the graph shown by the alternate long and short dash line is the error Ed2 when the representative point RP is acquired using only the second target 72 regardless of the distance Lt. In FIG. 8, the graph shown by the solid line is the error EdH when the target 70a is switched and the representative point RP is acquired according to the distance Lt as described above.
 目標とする誤差の上限値EdTよりも誤差Edが小さければ、代表点RPを好適に取得でき、電磁波無線通信機60同士を好適に対向させることができる。上限値EdTは、例えば、距離Ltが大きくなるに従って、線形に大きくなっている。これは、上述したように、距離Ltが大きくなるほど、電磁波無線通信機60同士の通信が許容される電磁波無線通信機60同士の相対位置範囲が広くなり、誤差Edが許容されるためである。 If the error Ed is smaller than the target upper limit value EdT of the error, the representative point RP can be suitably acquired, and the electromagnetic wave wireless communication devices 60 can be suitably opposed to each other. The upper limit value EdT increases linearly, for example, as the distance Lt increases. This is because, as described above, the larger the distance Lt, the wider the relative position range between the electromagnetic wave radio communication devices 60 to which communication between the electromagnetic wave radio communication devices 60 is allowed, and the error Ed is allowed.
 図8に示すように、距離Ltによらず第1ターゲット71のみを用いて代表点RPを取得する場合の誤差Ed1は、例えば、距離Ltが値Ltb以下の範囲までは好適に上限値EdTを下回る一方で、距離Ltが値Ltbを超えると急激に大きくなり、目標とする誤差Edの上限値EdTを上回る。これは、例えば、距離Ltが或る程度大きくなることで、比較的小さい第1ターゲット71が、撮影像PIにおいて識別できる程度に映らなくなることが原因である。 As shown in FIG. 8, the error Ed1 in the case of acquiring the representative point RP using only the first target 71 regardless of the distance Lt is, for example, an upper limit EdT preferably set up to a range where the distance Lt is equal to or less than the value Ltb. On the other hand, when the distance Lt exceeds the value Ltb, it rapidly increases and exceeds the upper limit value EdT of the target error Ed. This is because, for example, when the distance Lt becomes large to some extent, the relatively small first target 71 does not appear to the extent that it can be discerned in the captured image PI.
 距離Ltによらず第2ターゲット72のみを用いて代表点RPを取得する場合の誤差Ed2は、例えば、距離Ltが値Ltaよりも小さい範囲においては目標とする誤差Edの上限値EdTよりも大きくなる。一方、誤差Ed2は、距離Ltが値Lta以上の範囲において、上限値EdT以下となる。これは、距離Ltが比較的小さい範囲では第2ターゲット72よりも第1ターゲット71を用いた方が代表点RPの取得精度が高く、一方で第2ターゲット72は第1ターゲット71よりも面積が大きく、第1ターゲット71に比べて距離Ltが大きくなっても誤差Edが大きくなりにくいことが原因である。値Ltaは、例えば、値Ltbよりも小さい。 The error Ed2 in the case of acquiring the representative point RP using only the second target 72 regardless of the distance Lt is larger than the upper limit value EdT of the target error Ed in the range where the distance Lt is smaller than the value Lta, for example. Become. On the other hand, the error Ed2 is equal to or less than the upper limit value EdT in the range where the distance Lt is the value Lta or more. This is because, in the range where the distance Lt is relatively small, the acquisition accuracy of the representative point RP is higher when the first target 71 is used than when the second target 72 is used, while the area of the second target 72 is larger than that of the first target 71. This is because the error Ed is unlikely to increase even if the distance Lt is larger than that of the first target 71. The value Lta is, for example, smaller than the value Ltb.
 第1ターゲット71を追跡に用いた場合の誤差Ed1と第2ターゲット72を追跡に用いた場合の誤差Ed2とが上述したように変化するため、例えば、値Ltaと値Ltbとの間の値を所定距離として、追跡に用いるターゲット70aを第1ターゲット71と第2ターゲット72とで切り替えることで、図8に実線で示す本実施形態の誤差EdHのように、いずれの距離Ltにおいても誤差Edの値を、上限値EdTよりも好適に小さくできる。したがって、トラッキング装置10同士の距離Ltによらず、撮影像PI中において代表点RPを精度よく取得でき、他のトラッキング装置10を好適に追跡することが可能となる。したがって、トラッキング装置10同士の距離Ltによらず、電磁波無線通信機60同士による好適な電磁波無線通信を実現できる。 Since the error Ed1 when the first target 71 is used for tracking and the error Ed2 when the second target 72 is used for tracking change as described above, for example, a value between the value Lta and the value Ltb can be set. By switching the target 70a used for tracking between the first target 71 and the second target 72 as a predetermined distance, the error Ed can be set at any distance Lt as in the error EdH of the present embodiment shown by the solid line in FIG. The value can be suitably smaller than the upper limit value EdT. Therefore, the representative point RP can be accurately acquired in the captured image PI regardless of the distance Lt between the tracking devices 10, and the other tracking devices 10 can be suitably tracked. Therefore, suitable electromagnetic wave wireless communication between the electromagnetic wave wireless communication devices 60 can be realized regardless of the distance Lt between the tracking devices 10.
 なお、トラッキング装置10同士の距離に応じて、追跡に用いるターゲット70aを切り替える場合、制御部30は、トラッキング装置10同士の距離が所定距離以下の場合に、仮想円CIの中心CpIを代表点RPとして取得し、トラッキング装置10同士の距離が所定距離よりも大きい場合に、撮影像PIに映る第2ターゲット72の幾何中心72pを代表点RPとして取得してもよい。これにより、ターゲット70aをトラッキング装置10同士の距離に応じて切り替える場合に、選択したターゲット70aに基づいて好適に代表点RPを取得できる。 When switching the target 70a used for tracking according to the distance between the tracking devices 10, the control unit 30 uses the center CpI of the virtual circle CI as the representative point RP when the distance between the tracking devices 10 is equal to or less than a predetermined distance. When the distance between the tracking devices 10 is larger than the predetermined distance, the geometric center 72p of the second target 72 reflected in the captured image PI may be acquired as the representative point RP. As a result, when the target 70a is switched according to the distance between the tracking devices 10, the representative point RP can be suitably acquired based on the selected target 70a.
 また、制御部30は、2機のトラッキング装置10の各電磁波無線通信機60間の距離に応じて、第1ターゲット71と第2ターゲット72とのいずれか一方を追跡に用いるターゲット70aとして選択してもよい。つまり、電磁波無線通信機60間の距離に応じて、第1ターゲット71と第2ターゲット72とのいずれか一方を追跡に用いるターゲット70aとして選択する電磁波無線通信方法を採用してもよい。この場合、制御部30は、上述した2機のトラッキング装置10間の距離に応じてターゲット70aを選択する場合と同様にして、他のトラッキング装置10の追跡を行うことができる。 Further, the control unit 30 selects either the first target 71 or the second target 72 as the target 70a used for tracking according to the distance between the electromagnetic wave wireless communication devices 60 of the two tracking devices 10. You may. That is, an electromagnetic wave wireless communication method may be adopted in which either one of the first target 71 and the second target 72 is selected as the target 70a used for tracking according to the distance between the electromagnetic wave wireless communication devices 60. In this case, the control unit 30 can track the other tracking devices 10 in the same manner as in the case of selecting the target 70a according to the distance between the two tracking devices 10 described above.
 また、制御部30は、第1ターゲット71の像に基づいた追跡に先立って、第2ターゲット72の像を用いて他のトラッキング装置10の撮影像PI(画像)中での位置を特定してもよい。第2ターゲット72は、第1ターゲット71よりも面積が広いため、トラッキング装置10同士の距離によらず、第1ターゲット71よりも撮影像PI中において識別されやすい。そのため、他のトラッキング装置10を撮影像PI中に捕捉する際に第2ターゲット72を用いることで、第1ターゲット71を用いる場合に比べて、他のトラッキング装置10を容易に捕捉できる。そして、トラッキング装置10の距離が比較的小さい場合であれば、他のトラッキング装置10を撮影像PI中に捕捉した後に、第1ターゲット71を用いて他のトラッキング装置10の追跡を行うことで、上述したように精度よく他のトラッキング装置10を追跡できる。このように、まず大きな第2ターゲット72を用いて他のトラッキング装置10の大まかな位置を追跡してから、精度よく代表点RPを取得しやすい第1ターゲット71を用いて他のトラッキング装置10の追跡を行うことで、迅速かつ精度よく他のトラッキング装置10の追跡を行うことができる。この方法は、撮像装置50のレンズ52が倍率変更機能(望遠機能)を有する場合に、より有効である。つまり、まず撮像装置50の撮像倍率を低倍率に設定し、第2ターゲット72を用いて他のトラッキング装置10を探索した後、第2ターゲット72の像をフレームFの概略中心部に来るように可動部40を移動させ、その後、撮像装置50の撮像倍率を高倍率に設定して第1ターゲット71を用いた他のトラッキング装置10の追跡に切り替えるという追跡方法を採用することができる。 Further, the control unit 30 identifies the position of the other tracking device 10 in the captured image PI (image) using the image of the second target 72 prior to the tracking based on the image of the first target 71. May be good. Since the second target 72 has a larger area than the first target 71, it is easier to identify in the captured image PI than the first target 71 regardless of the distance between the tracking devices 10. Therefore, by using the second target 72 when capturing the other tracking device 10 in the captured image PI, the other tracking device 10 can be easily captured as compared with the case where the first target 71 is used. If the distance of the tracking device 10 is relatively small, the other tracking device 10 may be tracked by using the first target 71 after capturing the other tracking device 10 in the captured image PI. As described above, the other tracking device 10 can be tracked with high accuracy. In this way, first, the large second target 72 is used to track the rough position of the other tracking device 10, and then the first target 71, which makes it easy to accurately obtain the representative point RP, is used to track the other tracking device 10. By performing tracking, it is possible to quickly and accurately track another tracking device 10. This method is more effective when the lens 52 of the image pickup apparatus 50 has a magnification changing function (telephoto function). That is, first, the imaging magnification of the imaging device 50 is set to a low magnification, the second target 72 is used to search for another tracking device 10, and then the image of the second target 72 comes to the approximate center of the frame F. A tracking method can be adopted in which the movable portion 40 is moved, and then the imaging magnification of the imaging device 50 is set to a high magnification and the tracking is switched to the tracking of another tracking device 10 using the first target 71.
 また、制御部30は、機械学習に基づいて、追跡に用いるターゲット70aを選択してもよい。この構成によれば、追跡に用いるターゲット70aをより好適に選択することができる。制御部30は、例えば、トラッキング装置10同士の距離、トラッキング装置10同士の相対姿勢、トラッキング装置10が配置される外部環境など、種々の条件下において、第1ターゲット71と第2ターゲット72とのいずれを追跡に用いるのが最適であるかを機械学習し、その学習結果に基づいて、ターゲット70aを選択する。機械学習に基づいて追跡に用いるターゲット70aを選択する場合、制御部30は、機械学習に基づいて、仮想円CIの中心CpIを代表点RPとして取得するか、撮影像PI(画像)に映る第2ターゲット72の幾何中心72pを代表点RPとして取得するか、を選択してもよい。これにより、ターゲット70aを機械学習に基づいて切り替える場合に、選択したターゲット70aに基づいて好適に代表点RPを取得できる。 Further, the control unit 30 may select the target 70a to be used for tracking based on machine learning. According to this configuration, the target 70a used for tracking can be more preferably selected. The control unit 30 sets the first target 71 and the second target 72 under various conditions such as, for example, the distance between the tracking devices 10, the relative posture between the tracking devices 10, and the external environment in which the tracking devices 10 are arranged. Machine learning is performed as to which is the most suitable for tracking, and the target 70a is selected based on the learning result. When selecting the target 70a to be used for tracking based on machine learning, the control unit 30 acquires the center CpI of the virtual circle CI as the representative point RP based on the machine learning, or is reflected in the captured image PI (image). 2 It may be selected whether to acquire the geometric center 72p of the target 72 as the representative point RP. As a result, when the target 70a is switched based on machine learning, the representative point RP can be suitably acquired based on the selected target 70a.
 また、複数のトラッキング装置10は、互いに異なる構造のトラッキング装置10を含んでもよい。電磁波無線通信機60と撮像装置50とは、光軸方向DLに関して同軸に配置されてもよい。この場合、オフセット量OSは0(ゼロ)となる。電磁波無線通信機60は、電磁波EWの送信と受信のいずれか一方のみを行ってもよい。 Further, the plurality of tracking devices 10 may include tracking devices 10 having different structures from each other. The electromagnetic wave wireless communication device 60 and the image pickup device 50 may be arranged coaxially with respect to the optical axis direction DL. In this case, the offset amount OS is 0 (zero). The electromagnetic wave wireless communication device 60 may perform only one of transmission and reception of the electromagnetic wave EW.
[第2実施形態]
 本実施形態の電磁波無線通信方法は、図9に示すステップS2aからステップS2eを含むトラッキング方法を含む。図9は、第2実施形態の制御部30が他のトラッキング装置10を追跡する際の手順の一例を示すフローチャートである。本実施形態において制御部30は、図9に示すステップS2aからステップS2eに従って、他のトラッキング装置10を追跡する。
[Second Embodiment]
The electromagnetic wave wireless communication method of the present embodiment includes a tracking method including steps S2a to S2e shown in FIG. FIG. 9 is a flowchart showing an example of a procedure when the control unit 30 of the second embodiment tracks another tracking device 10. In the present embodiment, the control unit 30 tracks another tracking device 10 according to steps S2a to S2e shown in FIG.
 なお、ステップS2aは、第1実施形態のステップS1aと同様である。ステップS2bは、第1実施形態のステップS1bと同様である。ステップS2cは、第1実施形態のステップS1cと同様である。 Note that step S2a is the same as step S1a of the first embodiment. Step S2b is the same as step S1b of the first embodiment. Step S2c is the same as step S1c of the first embodiment.
 ステップS2dにおいて制御部30は、取得された撮影像PIに基づいて、追跡目標位置TPを決定する。追跡目標位置TPは、ステップS2cにおいて取得された代表点RPを撮影像PI中において移動させる目標となる位置である。追跡目標位置TPは、例えば、図5に示すように、撮影像PI中の位置のうち、追跡を行うトラッキング装置10Aの電磁波無線通信機60の中心60pが対応する位置である。そのため、図5に示す追跡目標位置TPに代表点RPが一致した場合、他のトラッキング装置10Bの電磁波無線通信機60における代表点RPに対応する部分、つまり中心60pが、追跡を行うトラッキング装置10Aの電磁波無線通信機60の中心60pと光軸方向DLに対向した状態となる。 In step S2d, the control unit 30 determines the tracking target position TP based on the acquired captured image PI. The tracking target position TP is a target position for moving the representative point RP acquired in step S2c in the captured image PI. As shown in FIG. 5, for example, the tracking target position TP is a position in the captured image PI corresponding to the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A for tracking. Therefore, when the representative point RP matches the tracking target position TP shown in FIG. 5, the portion corresponding to the representative point RP in the electromagnetic wave wireless communication device 60 of the other tracking device 10B, that is, the center 60p is the tracking device 10A for tracking. It is in a state of facing the center 60p of the electromagnetic wave wireless communication device 60 and the DL in the optical axis direction.
 本実施形態において制御部30は、ターゲット70aの像と所定の配置関係とに基づいて、撮像装置50の撮影像PI上における追跡目標位置TPを決定する。本実施形態において所定の配置関係は、光軸方向DLから見た場合における、所定の代表点RPに関する、電磁波無線通信機60、撮像装置50、およびターゲット70aそれぞれの配置関係であり、既知である。 In the present embodiment, the control unit 30 determines the tracking target position TP on the captured image PI of the image pickup apparatus 50 based on the image of the target 70a and the predetermined arrangement relationship. In the present embodiment, the predetermined arrangement relationship is the arrangement relationship of the electromagnetic wave radio communication device 60, the image pickup apparatus 50, and the target 70a with respect to the predetermined representative point RP when viewed from the optical axis direction DL, and is known. ..
 本実施形態において制御部30は、第1ターゲット71の像と第2ターゲット72の像とのいずれかに基づいて追跡目標位置TPを決定する。第1ターゲット71の代表点RPに関する配置関係と第2ターゲット72の代表点RPに関する配置関係とは、既知である。制御部30は、第1ターゲット71の像と第2ターゲット72の像とのいずれに基づいて追跡目標位置TPを決定するかを、第1ターゲット71の像の像質と第2ターゲット72の像の像質とに基づいて決定する。この場合、制御部30は、例えば、像質が高い方のターゲット70aの像に基づいて、追跡目標位置TPを決定する。この方法によれば、追跡目標位置TPを好適に決定できる。 In the present embodiment, the control unit 30 determines the tracking target position TP based on either the image of the first target 71 or the image of the second target 72. The arrangement relationship regarding the representative point RP of the first target 71 and the arrangement relationship regarding the representative point RP of the second target 72 are known. The control unit 30 determines whether the tracking target position TP is determined based on the image of the first target 71 or the image of the second target 72, based on the image quality of the image of the first target 71 and the image of the second target 72. Determined based on the image quality of. In this case, the control unit 30 determines the tracking target position TP based on, for example, the image of the target 70a having the higher image quality. According to this method, the tracking target position TP can be suitably determined.
 ステップS2bにおいて、追跡に用いるターゲット70aを像質に基づいて選択していた場合、例えば、ステップS2bにおいて選択されたターゲット70aと同じターゲット70aが、追跡目標位置TPの決定に用いるターゲット70aとして選択される。なお、追跡目標位置TPの決定に用いるターゲット70aは、ステップS2bにおいて選択されたターゲット70aと異なってもよい。 When the target 70a used for tracking is selected based on the image quality in step S2b, for example, the same target 70a as the target 70a selected in step S2b is selected as the target 70a used for determining the tracking target position TP. To. The target 70a used to determine the tracking target position TP may be different from the target 70a selected in step S2b.
 本実施形態において制御部30は、選択したターゲット70aの像に基づいて、撮影像PI中におけるオフセット量OSIを取得し、フレーム中心Fcから第1方向D1の正の側(+D1側)にオフセット量OSIと同じ距離DSだけ離れた第1軸Fy上の位置を、追跡目標位置TPに決定する。トラッキング装置10Aとトラッキング装置10Bとでは、オフセット量OSが同じであるため、撮影像PI中においてトラッキング装置10Aの光軸AXoと一致するフレーム中心Fcからオフセット量OSIと同じ距離DSだけ第1方向D1の正の側(+D1側)に離れた位置は、トラッキング装置10Aの電磁波無線通信機60の中心60pの位置に対応する位置である。そのため、上述したようにして追跡目標位置TPを決定することで、トラッキング装置10Aの電磁波無線通信機60の中心60pに対応する位置を追跡目標位置TPとして決定することができる。 In the present embodiment, the control unit 30 acquires the offset amount OSI in the captured image PI based on the image of the selected target 70a, and the offset amount is from the frame center Fc to the positive side (+ D1 side) of the first direction D1. The position on the first axis Fy separated by the same distance DS as OSI is determined as the tracking target position TP. Since the offset amount OS is the same in the tracking device 10A and the tracking device 10B, the first direction D1 is the same distance DS as the offset amount OSI from the frame center Fc that coincides with the optical axis AXo of the tracking device 10A in the captured image PI. The position away from the positive side (+ D1 side) is the position corresponding to the position of the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A. Therefore, by determining the tracking target position TP as described above, the position corresponding to the center 60p of the electromagnetic wave wireless communication device 60 of the tracking device 10A can be determined as the tracking target position TP.
 なお、第1ターゲット71の像を用いる場合と第2ターゲット72の像を用いる場合とのいずれの場合であっても、制御部30は、撮影像PI中におけるオフセット量OSIを、第1実施形態と同様にして取得することができる。 Regardless of whether the image of the first target 71 is used or the image of the second target 72 is used, the control unit 30 sets the offset amount OSI in the captured image PI in the first embodiment. Can be obtained in the same way as.
 ステップS2eにおいて制御部30は、撮像装置50の撮影像PI上において、他のトラッキング装置10Bの代表点RPが追跡目標位置TPと重なるように可動部40を制御する。制御部30は、第1回転軸AXyおよび第2回転軸AXpの少なくとも一方の回転軸回りに可動部40を制御して、撮影像PI中において代表点RPを追跡目標位置TPに重ねる。これにより、トラッキング装置10A,10Bの電磁波無線通信機60同士を対向させることができる。代表点RPと追跡目標位置TPとを重ねる際の可動部40の制御方法は、特に限定されず、例えば、第1実施形態のステップS1eにおける可動部40の制御方法と同様であってもよい。 In step S2e, the control unit 30 controls the movable unit 40 so that the representative point RP of the other tracking device 10B overlaps with the tracking target position TP on the captured image PI of the image pickup device 50. The control unit 30 controls the movable unit 40 around at least one rotation axis of the first rotation axis AXPy and the second rotation axis AXP, and superimposes the representative point RP on the tracking target position TP in the captured image PI. As a result, the electromagnetic wave wireless communication devices 60 of the tracking devices 10A and 10B can face each other. The control method of the movable portion 40 when the representative point RP and the tracking target position TP are overlapped with each other is not particularly limited, and may be the same as the control method of the movable portion 40 in step S1e of the first embodiment, for example.
 以上に述べた本実施形態の電磁波無線通信方法は、一の電磁波無線通信機60と、第1ターゲット71または第2ターゲット72との位置関係に基づいて、撮影像PI中において特定された第1ターゲット71の像または第2ターゲット72の像から撮像された撮影像PI中における一の電磁波無線通信機60の位置を特定し、他の電磁波無線通信機60と撮像装置50との位置関係に基づいて、撮影像PI中における追跡目標位置TPを決定し、撮影像PI中の一の電磁波無線通信機60の位置(代表点RP)が、追跡目標位置TPと重なるように他の電磁波無線通信機60を移動する電磁波無線通信方法に相当する。 The electromagnetic wave wireless communication method of the present embodiment described above is the first specified in the captured image PI based on the positional relationship between the electromagnetic wave wireless communication device 60 and the first target 71 or the second target 72. The position of one electromagnetic wave wireless communication device 60 in the captured image PI captured from the image of the target 71 or the image of the second target 72 is specified, and based on the positional relationship between the other electromagnetic wave wireless communication device 60 and the image pickup device 50. Then, the tracking target position TP in the captured image PI is determined, and the position (representative point RP) of one electromagnetic wave wireless communication device 60 in the captured image PI overlaps with the tracking target position TP. It corresponds to an electromagnetic wave wireless communication method that moves 60.
 また、以上に述べた本実施形態の電磁波無線通信方法は、他の電磁波無線通信機60と撮像装置50との位置関係に基づいて、撮影像PI中における追跡目標位置TPを決定し、撮影像PI中の一の電磁波無線通信機60の位置(代表点RP)が、追跡目標位置TPと重なるように他の電磁波無線通信機60を移動する電磁波無線通信方法に相当する。 Further, in the electromagnetic wave wireless communication method of the present embodiment described above, the tracking target position TP in the captured image PI is determined based on the positional relationship between the other electromagnetic wave wireless communication device 60 and the image pickup device 50, and the captured image is captured. This corresponds to an electromagnetic wave wireless communication method in which the position of one electromagnetic wave wireless communication device 60 (representative point RP) in the PI moves the other electromagnetic wave wireless communication device 60 so as to overlap with the tracking target position TP.
 本実施形態において、一の電磁波無線通信機60は、トラッキング装置10Bの電磁波無線通信機60であり、他の電磁波無線通信機60は、トラッキング装置10Aの電磁波無線通信機60である。 In the present embodiment, one electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10B, and the other electromagnetic wave wireless communication device 60 is the electromagnetic wave wireless communication device 60 of the tracking device 10A.
 本実施形態によれば、撮影像PI中に追跡目標位置TPを決定するため、追跡目標位置TPに代表点RPが重なるように可動部40を移動させることで、電磁波無線通信機60同士を好適に対向させることができる。 According to the present embodiment, in order to determine the tracking target position TP in the captured image PI, the electromagnetic wave wireless communication devices 60 are suitable for each other by moving the movable portion 40 so that the representative point RP overlaps the tracking target position TP. Can be opposed to.
 また、本実施形態によれば、光軸方向DLから見た場合における、所定の代表点RPに関する、電磁波無線通信機60、撮像装置50、およびターゲット70aそれぞれの配置関係は、既知である。そのため、撮影像PI中におけるターゲット70aの像と、これらの配置関係とに基づいて、撮影像PI上における追跡目標位置TPを決定することで、追跡目標位置TPを好適かつ容易に決定することができる。 Further, according to the present embodiment, the arrangement relationship of the electromagnetic wave radio communication device 60, the image pickup device 50, and the target 70a with respect to the predetermined representative point RP when viewed from the optical axis direction DL is known. Therefore, by determining the tracking target position TP on the captured image PI based on the image of the target 70a in the captured image PI and their arrangement relationship, it is possible to determine the tracking target position TP in a suitable and easy manner. can.
 また、本実施形態によれば、制御部30は、第1ターゲット71の像と第2ターゲット72の像とのいずれかに基づいて追跡目標位置TPを決定する。そのため、いずれのターゲット70aに基づいて追跡目標位置TPを決定するかを適切に決めることで、追跡目標位置TPの決定をより好適に行うことができる。 Further, according to the present embodiment, the control unit 30 determines the tracking target position TP based on either the image of the first target 71 or the image of the second target 72. Therefore, the determination of the tracking target position TP can be more preferably performed by appropriately determining which target 70a the tracking target position TP is to be determined based on.
 なお、本実施形態において制御部30は、第1ターゲット71の像と第2ターゲット72の像とのいずれに基づいて追跡目標位置TPを決定するかを、2機のトラッキング装置10間の距離に基づいて決定してもよい。この場合、制御部30は、例えば、トラッキング装置10同士の距離が所定距離以下の場合に、第1ターゲット71の像に基づいて追跡目標位置TPを決定し、トラッキング装置10同士の距離が所定距離よりも大きい場合に、第2ターゲット72の像に基づいて追跡目標位置TPを決定してもよい。この方法によれば、追跡目標位置TPを好適に決定できる。 In the present embodiment, the control unit 30 determines whether the tracking target position TP is determined based on the image of the first target 71 or the image of the second target 72, depending on the distance between the two tracking devices 10. It may be decided based on. In this case, for example, when the distance between the tracking devices 10 is equal to or less than a predetermined distance, the control unit 30 determines the tracking target position TP based on the image of the first target 71, and the distance between the tracking devices 10 is a predetermined distance. If it is larger than, the tracking target position TP may be determined based on the image of the second target 72. According to this method, the tracking target position TP can be suitably determined.
 また、本実施形態において制御部30は、第1ターゲット71の像と第2ターゲット72の像とのいずれに基づいて追跡目標位置TPを決定するかを、機械学習によって決定してもよい。この方法によれば、機械学習によって、撮影像PIに応じて、追跡目標位置TPをより好適に決定できるターゲット70aを好適に選択することができる。したがって、追跡目標位置TPと代表点RPとを重ねることで、電磁波無線通信機60同士をより好適に対向させることができる。 Further, in the present embodiment, the control unit 30 may determine by machine learning whether to determine the tracking target position TP based on the image of the first target 71 or the image of the second target 72. According to this method, the target 70a capable of more preferably determining the tracking target position TP can be suitably selected according to the captured image PI by machine learning. Therefore, by overlapping the tracking target position TP and the representative point RP, the electromagnetic wave wireless communication devices 60 can be more preferably opposed to each other.
 また、本実施形態において制御部30は、ステップS2dにおいて、撮影像PIによらず、追跡目標位置TPを決定するために用いるターゲット70aを選択してもよい。この場合、制御部30は、例えば、ステップS2bにおいて追跡に用いるターゲット70aとして選択したターゲット70aを、追跡目標位置TPの決定に用いるターゲット70aとして選択する。 Further, in the present embodiment, the control unit 30 may select the target 70a used for determining the tracking target position TP in step S2d regardless of the captured image PI. In this case, the control unit 30 selects, for example, the target 70a selected as the target 70a used for tracking in step S2b as the target 70a used for determining the tracking target position TP.
[第3実施形態]
 図10は、本実施形態のターゲット部材270を示す図である。ターゲット部材270に設けられたターゲット270aは、ターゲット270aは、発光可能な発光部274と、第2ターゲット72と、を含む。発光部274は、例えば、発光ダイオード(LED)などである。発光部274は、ターゲット部材270の前側(+X側)に面に取り付けられている。
[Third Embodiment]
FIG. 10 is a diagram showing a target member 270 of the present embodiment. The target 270a provided on the target member 270 includes a light emitting unit 274 capable of emitting light and a second target 72. The light emitting unit 274 is, for example, a light emitting diode (LED) or the like. The light emitting unit 274 is attached to the surface on the front side (+ X side) of the target member 270.
 本実施形態において発光部274は、複数設けられている。発光部274は、例えば、4つ設けられている。本実施形態では、上述した実施形態の4つの第1ターゲット71の代わりに、4つの発光部274が設けられている。4つの発光部274は、上述した実施形態の4つの第1ターゲット71の位置と、それぞれ同様の位置に配置されている。発光部274の光軸方向DLから見た中心274pは、上述した実施形態と同様の仮想円Cの円周上に配置されている。 In this embodiment, a plurality of light emitting units 274 are provided. For example, four light emitting units 274 are provided. In this embodiment, four light emitting units 274 are provided instead of the four first targets 71 of the above-described embodiment. The four light emitting units 274 are arranged at the same positions as the positions of the four first targets 71 of the above-described embodiment. The center 274p seen from the optical axis direction DL of the light emitting unit 274 is arranged on the circumference of the virtual circle C similar to the above-described embodiment.
 本実施形態によれば、ターゲット270aが、発光可能な発光部274を含む。そのため、撮像装置50によって撮像された撮影像PI中において、発光する発光部274に基づいて、電磁波無線通信機60の代表点RPを好適に取得できる。また、例えば、各発光部274の発光パターンを変更することで、ターゲット270aの姿勢を容易に検出することもできる。 According to the present embodiment, the target 270a includes a light emitting unit 274 capable of emitting light. Therefore, the representative point RP of the electromagnetic wave wireless communication device 60 can be suitably acquired based on the light emitting unit 274 that emits light in the photographed image PI captured by the image pickup apparatus 50. Further, for example, the posture of the target 270a can be easily detected by changing the light emitting pattern of each light emitting unit 274.
 なお、発光部274は、ターゲット部材270に対して、第1ターゲット71と共に設けられてもよい。この場合、発光部274は、例えば、円環状の第1ターゲット71の内側に配置されてもよい。発光部274は、例えば、トラッキング装置10同士の追跡が完了して電磁波無線通信機60同士が対向した状態となった際、つまり電磁波無線通信機60同士による電磁波無線通信が可能となった状態において発光してもよい。これにより、電磁波無線通信機60同士による電磁波無線通信が可能となったことを、外部に伝達することができる。 The light emitting unit 274 may be provided with the target member 270 together with the first target 71. In this case, the light emitting unit 274 may be arranged inside, for example, the annular first target 71. The light emitting unit 274 is, for example, in a state where the tracking of the tracking devices 10 is completed and the electromagnetic wave wireless communication devices 60 face each other, that is, in a state where the electromagnetic wave wireless communication devices 60 can perform electromagnetic wave wireless communication. It may emit light. As a result, it is possible to transmit to the outside that the electromagnetic wave wireless communication between the electromagnetic wave wireless communication devices 60 has become possible.
<トラッキングシステム>
 以下の説明において、上述した説明と同様の構成については、適宜同一の符号を付すなどにより説明を省略する場合がある。
 図11は、本実施形態のトラッキングシステム300を模式的に示す概略構成図である。図11に示すように、トラッキングシステム300は、ターゲット370aを有するターゲット装置310Bと、ターゲット装置310Bを追跡可能なトラッキング装置310Aとを備える。
<Tracking system>
In the following description, the same configurations as those described above may be omitted by appropriately assigning the same reference numerals or the like.
FIG. 11 is a schematic configuration diagram schematically showing the tracking system 300 of the present embodiment. As shown in FIG. 11, the tracking system 300 includes a target device 310B having a target 370a and a tracking device 310A capable of tracking the target device 310B.
 本実施形態においてターゲット装置310Bは、電磁波EWの送信と受信を行う電磁波無線通信機360Bを含む。電磁波無線通信機360Bには、電磁波EWの標的となる代表点TRPが設定されている。これにより、ターゲット装置310Bには、電磁波EWの標的となる代表点TRPが設定されている。ターゲット装置310Bは、上述した電磁波無線通信システム100のトラッキング装置10Bと異なり、可動部40および撮像装置50を有しない。つまり、ターゲット装置310Bは、追跡機能を有しない。ターゲット装置310Bに設けられたターゲット370aは、上述した電磁波無線通信システム100のターゲット70aと同様である。つまり、ターゲット370aは、第1ターゲット71と、第2ターゲット72と、を含む。ターゲット装置310Bは、電磁波無線通信機360Bを制御する制御部330Bを有する。 In the present embodiment, the target device 310B includes an electromagnetic wave wireless communication device 360B that transmits and receives an electromagnetic wave EW. A representative point TRP, which is a target of the electromagnetic wave EW, is set in the electromagnetic wave wireless communication device 360B. As a result, the target device 310B is set with the representative point TRP that is the target of the electromagnetic wave EW. The target device 310B does not have the movable unit 40 and the image pickup device 50, unlike the tracking device 10B of the electromagnetic wave wireless communication system 100 described above. That is, the target device 310B does not have a tracking function. The target 370a provided in the target device 310B is the same as the target 70a of the electromagnetic wave wireless communication system 100 described above. That is, the target 370a includes the first target 71 and the second target 72. The target device 310B has a control unit 330B that controls the electromagnetic wave radio communication device 360B.
 トラッキング装置310Aは、可動部40と、可動部40に取り付けられ、電磁波EWの送信と受信を行う電磁波装置360Aと、可動部40に取り付けられ、ターゲット装置310Bにおけるターゲット70aを撮像する撮像装置50と、制御部330Aと、を有する。電磁波装置360Aは、上述した電磁波無線通信システム100の電磁波無線通信機60の代わりに設けられている。電磁波装置360Aは、例えば、上述した電磁波無線通信機60と同様の電磁波無線通信機である。電磁波装置360Aと撮像装置50とは、撮像装置50の光軸方向DLに関して非同軸に可動部40上に配置されている。つまり、電磁波装置360Aと撮像装置50とは、撮像装置50の光軸方向DLと直交する第1方向D1にずれて配置されている。トラッキング装置310Aは、上述した電磁波無線通信システム100のトラッキング装置10Aと異なり、ターゲット70aを有しない。なお、電磁波装置360Aの構成としては、上述した各実施形態において説明した電磁波無線通信機60と同様の構成を採用できる。 The tracking device 310A includes a movable portion 40, an electromagnetic wave device 360A attached to the movable portion 40 to transmit and receive electromagnetic wave EW, and an image pickup device 50 attached to the movable portion 40 to image the target 70a in the target device 310B. , And a control unit 330A. The electromagnetic wave device 360A is provided in place of the electromagnetic wave wireless communication device 60 of the electromagnetic wave wireless communication system 100 described above. The electromagnetic wave device 360A is, for example, an electromagnetic wave radio communication device similar to the above-mentioned electromagnetic wave radio communication device 60. The electromagnetic wave device 360A and the image pickup device 50 are arranged on the movable portion 40 non-coaxially with respect to the optical axis direction DL of the image pickup device 50. That is, the electromagnetic wave device 360A and the image pickup device 50 are arranged so as to be offset from each other in the first direction D1 orthogonal to the optical axis direction DL of the image pickup device 50. The tracking device 310A does not have a target 70a, unlike the tracking device 10A of the electromagnetic wave wireless communication system 100 described above. As the configuration of the electromagnetic wave device 360A, the same configuration as that of the electromagnetic wave wireless communication device 60 described in each of the above-described embodiments can be adopted.
 制御部330Aは、撮像装置50によって撮像されたターゲット370aの撮影像(画像)に基づいて、可動部40を制御してターゲット装置310Bを追跡する。制御部330Aは、上述した第1実施形態および第2実施形態においてトラッキング装置10Aがトラッキング装置10Bに対して行う場合について説明したトラッキング方法のいずれかの方法を用いて、ターゲット装置310Bを追跡する。 The control unit 330A controls the movable unit 40 based on the captured image (image) of the target 370a imaged by the image pickup device 50 to track the target device 310B. The control unit 330A tracks the target device 310B by using any of the tracking methods described in the case where the tracking device 10A performs the tracking device 10B in the first embodiment and the second embodiment described above.
 本実施形態において行われるトラッキング方法において、トラッキング装置310Aは、第1実施形態および第2実施形態においてトラッキング方法を説明した際のトラッキング装置10Aに対応し、ターゲット装置310Bは、第1実施形態および第2実施形態においてトラッキング方法を説明した際のトラッキング装置10Bに対応する。 In the tracking method performed in the present embodiment, the tracking device 310A corresponds to the tracking device 10A when the tracking method is described in the first embodiment and the second embodiment, and the target device 310B is the first embodiment and the first embodiment. 2 Corresponds to the tracking device 10B when the tracking method is described in the embodiment.
 本実施形態においては、光軸方向DLから見た電磁波装置360Aと撮像装置50との第1配置関係が既知であり、ターゲット装置310Bの代表点TRPとターゲット370aとの第2配置関係が既知である。制御部330Aは、撮像装置50によって撮像されたターゲット370aの像と、当該第1配置関係と、当該第2配置関係とに基づいて、可動部40を制御してターゲット装置310Bを追跡してもよい。この場合、制御部330Aは、撮像装置50によって撮像されたターゲット370aの像と、ターゲット370aと代表点TRPとの第2配置関係とに基づいて、撮影像(画像)中におけるターゲット装置310Bの代表点TRPを特定し、光軸方向DLから見た電磁波装置360Aと撮像装置50との第1配置関係に基づいて、電磁波装置360Aと撮像装置50とのオフセット量OSIを取得し、撮影像(画像)中において第1方向D1に延びる第1軸Fyが、撮影像(画像)中における代表点TRPと重なるように、可動部40を第1回転軸AXy回りに回転させ、撮影像(画像)中において第2方向D2に延びる第2軸Fxが、代表点TRPを中心としオフセット量OSIを半径とする円と接するように、可動部40を第2回転軸AXp回りに回転させてもよい。 In the present embodiment, the first arrangement relationship between the electromagnetic wave device 360A and the image pickup device 50 as seen from the optical axis direction DL is known, and the second arrangement relationship between the representative point TRP of the target device 310B and the target 370a is known. be. The control unit 330A may control the movable unit 40 to track the target device 310B based on the image of the target 370a imaged by the image pickup device 50, the first arrangement relationship, and the second arrangement relationship. good. In this case, the control unit 330A represents the target device 310B in the captured image (image) based on the image of the target 370a imaged by the image pickup device 50 and the second arrangement relationship between the target 370a and the representative point TRP. The point TRP is specified, and the offset amount OSI between the electromagnetic wave device 360A and the image pickup device 50 is acquired based on the first arrangement relationship between the electromagnetic wave device 360A and the image pickup device 50 as seen from the optical axis direction DL, and the captured image (image). ), The movable portion 40 is rotated around the first rotation axis AXy so that the first axis Fy extending in the first direction D1 overlaps the representative point TRP in the photographed image (image), and is in the photographed image (image). The movable portion 40 may be rotated around the second rotation axis AXp so that the second axis Fx extending in the second direction D2 is in contact with a circle centered on the representative point TRP and having an offset amount OSI as a radius.
 また、制御部330Aは、上述した第2実施形態のように追跡目標位置TPを決定する場合、当該第1配置関係と当該第2配置関係とに基づいて撮影像(画像)上における追跡目標位置TPを決定する。本実施形態において既知の第2配置関係は、代表点TRPに関する第1ターゲット71と第2ターゲット72との配置関係を含む。制御部330Aは、追跡目標位置TPを決定する場合、第1ターゲット71と第2ターゲット72とのいずれかに基づいて追跡目標位置TPを決定する。 Further, when the control unit 330A determines the tracking target position TP as in the second embodiment described above, the tracking target position on the captured image (image) is based on the first arrangement relationship and the second arrangement relationship. Determine the TP. The second placement relationship known in the present embodiment includes the placement relationship between the first target 71 and the second target 72 with respect to the representative point TRP. When the control unit 330A determines the tracking target position TP, the control unit 330A determines the tracking target position TP based on either the first target 71 or the second target 72.
 なお、電磁波装置360Aは、光ビームを送出し、反射光を受光することによって距離を計測する光測距装置であってもよい。この場合、光測距装置の光源は、例えば、光周波数コムであってもよい。また、この場合、ターゲット装置310Bは、電磁波無線通信機360Bの代わりに、電磁波装置360Aから送出された光ビームを反射する反射装置を含んでもよい。当該反射装置は、例えば、レトロリフレクタである。この場合、反射装置によって反射された光ビームが反射光として光測距装置としての電磁波装置360Aに受光される。これにより、電磁波装置360Aによって、トラッキング装置310Aからターゲット装置310Bまでの距離を計測できる。また、この場合、代表点TRPは、当該反射装置に設定されている。そのため、トラッキング装置310Aによってターゲット装置310Bを追跡することで、反射装置と光測距装置としての電磁波装置360Aとを対向して配置することができる。これにより、電磁波装置360Aと反射装置とを用いて、トラッキング装置310Aとターゲット装置310Bとの間の距離を好適に計測できる。 The electromagnetic wave device 360A may be an optical ranging device that measures a distance by transmitting a light beam and receiving reflected light. In this case, the light source of the optical ranging device may be, for example, an optical frequency comb. Further, in this case, the target device 310B may include a reflecting device that reflects the light beam transmitted from the electromagnetic wave device 360A instead of the electromagnetic wave wireless communication device 360B. The reflector is, for example, a retroreflector. In this case, the light beam reflected by the reflecting device is received as reflected light by the electromagnetic wave device 360A as the optical ranging device. As a result, the distance from the tracking device 310A to the target device 310B can be measured by the electromagnetic wave device 360A. Further, in this case, the representative point TRP is set to the reflecting device. Therefore, by tracking the target device 310B by the tracking device 310A, the reflecting device and the electromagnetic wave device 360A as the optical ranging device can be arranged so as to face each other. Thereby, the distance between the tracking device 310A and the target device 310B can be suitably measured by using the electromagnetic wave device 360A and the reflecting device.
 電磁波装置360Aは、電磁波EWの送信と受信の一方を行う電磁波無線通信機であってもよく、ターゲット装置310Bは、電磁波EWの送信と受信の他方を行う電磁波無線通信機を含んでもよい。電磁波装置360Aは、レーザートラッカであってもよい。追跡目標となる代表点TRPは、ターゲット370aに設定されていてもよい。ターゲット370aは、第3実施形態と同様に、発光可能な発光部を有してもよい。 The electromagnetic wave device 360A may be an electromagnetic wave wireless communication device that transmits and receives electromagnetic wave EW, and the target device 310B may include an electromagnetic wave wireless communication device that transmits and receives electromagnetic wave EW. The electromagnetic wave device 360A may be a laser tracker. The representative point TRP as a tracking target may be set to the target 370a. The target 370a may have a light emitting unit capable of emitting light as in the third embodiment.
 上述したトラッキングシステム300を用いるトラッキング方法としては、上述した各実施形態におけるトラッキング方法のいずれを採用することもできる。
 本実施形態のトラッキングシステム300を用いるトラッキング方法は、電磁波EWの送信と受信との少なくとも一方を行う電磁波装置360Aの標的(ターゲット装置310B)を、電磁波装置360Aで追跡するトラッキング方法であって、当該標的に関連付けられたターゲット370aを、電磁波装置360Aに関連付けられた撮像装置50で撮像し、撮像された撮影像(画像)中のターゲット370aの像から、撮影像(画像)中における当該標的の位置を特定し、特定された当該標的の位置と、電磁波装置360Aと撮像装置50との位置関係と、に基づいて、電磁波装置360Aを当該標的の方向に向けるトラッキング方法である。本実施形態において電磁波装置360Aの標的は、ターゲット装置310Bである。
As the tracking method using the tracking system 300 described above, any of the tracking methods in each of the above-described embodiments can be adopted.
The tracking method using the tracking system 300 of the present embodiment is a tracking method for tracking a target (target device 310B) of the electromagnetic wave device 360A that transmits and receives at least one of the electromagnetic wave EW with the electromagnetic wave device 360A. The target 370a associated with the target is imaged by the imaging device 50 associated with the electromagnetic wave device 360A, and the position of the target in the captured image (image) from the image of the target 370a in the captured image (image). This is a tracking method for directing the electromagnetic wave device 360A toward the target based on the position of the specified target and the positional relationship between the electromagnetic wave device 360A and the image pickup device 50. In the present embodiment, the target of the electromagnetic wave device 360A is the target device 310B.
 上述したようにターゲット370aは第1ターゲット71と第2ターゲット72とを含むため、本実施形態のトラッキングシステム300を用いるトラッキング方法は、標的(ターゲット装置310B)に関連付けられた第1ターゲット71と第2ターゲット72とを、電磁波装置360Aに関連付けられた撮像装置50で撮像し、撮像された撮影像(画像)中の第1ターゲット71の像と第2ターゲット72の像とのいずれか一方に基づいて、撮影像(画像)中における当該標的の位置を特定し、電磁波装置360Aを当該標的の方向に向ける方法である。 As described above, since the target 370a includes the first target 71 and the second target 72, the tracking method using the tracking system 300 of the present embodiment includes the first target 71 and the first target 71 associated with the target (target device 310B). The two targets 72 are imaged by the image pickup device 50 associated with the electromagnetic wave device 360A, and are based on either the image of the first target 71 or the image of the second target 72 in the captured image (image). This is a method of identifying the position of the target in the captured image (image) and directing the electromagnetic wave device 360A toward the target.
 トラッキングシステム300を用いるトラッキング方法においては、標的(ターゲット装置310B)と電磁波装置360Aとの間の距離に応じて、追跡に用いるターゲット370aを第1ターゲット71と第2ターゲット72とから選択してもよい。また、トラッキングシステム300を用いるトラッキング方法においては、第1ターゲット71の像に基づいた追跡に先立って、第2ターゲット72の像を用いて標的(ターゲット装置310B)の位置を特定してもよい。トラッキングシステム300を用いるトラッキング方法においては、電磁波装置360Aと撮像装置50との位置関係に基づいて、撮影像(画像)中における追跡目標位置TPを決定し、撮影像(画像)中の標的(ターゲット装置310B)の像が、追跡目標位置TPと重なるように電磁波装置360Aを移動させてもよい。 In the tracking method using the tracking system 300, the target 370a used for tracking may be selected from the first target 71 and the second target 72 according to the distance between the target (target device 310B) and the electromagnetic wave device 360A. good. Further, in the tracking method using the tracking system 300, the position of the target (target device 310B) may be specified by using the image of the second target 72 prior to the tracking based on the image of the first target 71. In the tracking method using the tracking system 300, the tracking target position TP in the captured image (image) is determined based on the positional relationship between the electromagnetic wave device 360A and the imaging device 50, and the target (target) in the captured image (image) is determined. The electromagnetic wave device 360A may be moved so that the image of the device 310B) overlaps the tracking target position TP.
 上述した実施形態の電磁波無線通信システムおよびトラッキングシステムにおいて、ターゲットは、特に限定されない。ターゲットは、第1ターゲットおよび第2ターゲットのいずれか一方を有しなくてもよいし、いずれも有しなくてもよい。ターゲットは、第1ターゲットおよび第2ターゲットに加えて、第1ターゲットおよび第2ターゲットとは異なる他のターゲットを含んでもよい。第1ターゲットの形状、および第2ターゲットの形状は、特に限定されない。第1ターゲットの形状は、三角形状であってもよい。第2ターゲットの形状は、第1方向および第2方向のいずれか一方のみに対称で、かつ、いずれか他方に非対称な形状であってもよい。この場合、第2ターゲット72の幾何中心72pは、電磁波無線通信機60の中心60p(仮想円Cの中心Cp)と必ずしも重ならなくてもよい。この場合、代わりに、第2ターゲット72の形状と電磁波無線通信機60の中心60p(仮想円Cの中心Cp)との位置関係を既知の関係とし、記憶しておけばよい。 In the electromagnetic wave wireless communication system and the tracking system of the above-described embodiment, the target is not particularly limited. The target may or may not have either a first target or a second target. In addition to the first target and the second target, the target may include other targets different from the first target and the second target. The shape of the first target and the shape of the second target are not particularly limited. The shape of the first target may be triangular. The shape of the second target may be symmetrical in only one of the first direction and the second direction, and may be asymmetrical in either of the other directions. In this case, the geometric center 72p of the second target 72 does not necessarily have to overlap with the center 60p of the electromagnetic wave wireless communication device 60 (center Cp of the virtual circle C). In this case, instead, the positional relationship between the shape of the second target 72 and the center 60p of the electromagnetic wave wireless communication device 60 (center Cp of the virtual circle C) may be a known relationship and stored.
 第1ターゲットの形状と第2ターゲットの形状とが互いに同じで、第1ターゲットの大きさと第2ターゲットの大きさとが互いに異なってもよい。この場合、例えば、第2ターゲットの方が第1ターゲットよりも大きい。第1ターゲットの数は、特に限定されず、1つ以上、3つ以下であってもよいし、5つ以上であってもよい。第1ターゲットと第2ターゲットとは、それぞれ異なる部材に別々に設けられてもよい。例えば、第1ターゲットが設けられた第1ターゲット部材と第2ターゲットが設けられた第2ターゲット部材とがそれぞれ可動部に取り付けられてもよい。 The shape of the first target and the shape of the second target may be the same, and the size of the first target and the size of the second target may be different from each other. In this case, for example, the second target is larger than the first target. The number of the first targets is not particularly limited, and may be 1 or more, 3 or less, or 5 or more. The first target and the second target may be separately provided on different members. For example, the first target member provided with the first target and the second target member provided with the second target may be attached to the movable portion, respectively.
 上述した実施形態の電磁波無線通信システムおよびトラッキングシステムにおいて、可動部は、移動可能な部分であれば、特に限定されない。可動部は、一つの軸回りにのみ回転可能であってもよいし、3つ以上の軸回りに回転可能であってもよい。可動部は、回転以外の移動方法によって移動可能であってもよい。可動部は、例えば、所定の方向に直線移動可能であってもよい。 In the electromagnetic wave wireless communication system and the tracking system of the above-described embodiment, the movable portion is not particularly limited as long as it is a movable portion. The movable portion may be rotatable around only one axis, or may be rotatable around three or more axes. The movable portion may be movable by a moving method other than rotation. The movable portion may be, for example, linearly movable in a predetermined direction.
 上述した実施形態の電磁波無線通信システムおよびトラッキングシステムにおいて、トラッキング装置は、ジャイロスタビライザを有していてもよい。この場合、ジャイロスタビライザは、撮像装置が水平になるようにトラッキング装置の姿勢を保持する。
 以上に説明した本明細書の各構成および各方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。
In the electromagnetic wave wireless communication system and the tracking system of the above-described embodiment, the tracking device may have a gyro stabilizer. In this case, the gyro stabilizer holds the posture of the tracking device so that the image pickup device is horizontal.
Each configuration and each method of the present specification described above can be appropriately combined within a range that does not contradict each other.
 10,10A,10B,310A…トラッキング装置
 30,330A,330B…制御部
 40…可動部
 50…撮像装置
 60,360B…電磁波無線通信機
 61…送信部
 62…受信部
 70a,270a,370a…ターゲット
 71…第1ターゲット
 71p,72p…幾何中心
 72…第2ターゲット
 72a…第1凹部
 72b…第2凹部
 72c,72d…円弧
 100…電磁波無線通信システム
 274…発光部
 300…トラッキングシステム
 310B…ターゲット装置
 360A…電磁波装置
 AXo…光軸
 AXp…第2回転軸
 AXy…第1回転軸
 C,CI…仮想円
 D1…第1方向
 D2…第2方向
 DL…光軸方向
 EW…電磁波
 Fx…第2軸
 Fy…第1軸
 L1,L2…直線
 OS,OSI…オフセット量
 PI…撮影像(画像)
 Rc,RcI…半径
 RP,TRP…代表点
 TP…追跡目標位置
10, 10A, 10B, 310A ... Tracking device 30, 330A, 330B ... Control unit 40 ... Movable unit 50 ... Image pickup device 60, 360B ... Electromagnetic wave wireless communication device 61 ... Transmission unit 62 ... Receiver unit 70a, 270a, 370a ... Target 71 ... 1st target 71p, 72p ... Geometric center 72 ... 2nd target 72a ... 1st recess 72b ... 2nd recess 72c, 72d ... Arc 100 ... Electromagnetic wave wireless communication system 274 ... Light emitting unit 300 ... Tracking system 310B ... Target device 360A ... Electromagnetic wave device AXo ... Optical axis AXp ... 2nd rotation axis AXy ... 1st rotation axis C, CI ... Virtual circle D1 ... 1st direction D2 ... 2nd direction DL ... Optical axis direction EW ... Electromagnetic wave Fx ... 2nd axis Fy ... 1-axis L1, L2 ... Straight line OS, OSI ... Offset amount PI ... Photographed image (image)
Rc, RcI ... Radius RP, TRP ... Representative point TP ... Tracking target position

Claims (88)

  1.  互いの位置を追跡可能な複数のトラッキング装置を備え、
     前記複数のトラッキング装置のそれぞれは、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、
      前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、
      前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、
     を有し、
     前記ターゲットは、
      第1ターゲットと、
      前記第1ターゲットとは形状が異なる第2ターゲットと、
     を含む、電磁波無線通信システム。
    Equipped with multiple tracking devices that can track each other's position,
    Each of the plurality of tracking devices
    Moving parts and
    An electromagnetic wave wireless communication device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and
    A target provided on the movable part and tracked by the other tracking device,
    An image pickup device attached to the movable portion and imaging the target in the other tracking device, and an image pickup device.
    Have,
    The target is
    With the first target
    A second target having a shape different from that of the first target,
    Including electromagnetic radio communication system.
  2.  前記第2ターゲットは、前記トラッキング装置による追跡可能な距離が前記第1ターゲットよりも長い、請求項1に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 1, wherein the second target has a longer traceable distance by the tracking device than the first target.
  3.  前記第2ターゲットは、前記第1ターゲットよりも面積が広い、請求項1または2に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 1 or 2, wherein the second target has a larger area than the first target.
  4.  前記第1ターゲットは、複数設けられ、
     複数の前記第1ターゲットは、同一の仮想円の円周上に配置され、
     前記電磁波無線通信機は、前記仮想円の中心と重なるように配置されている、請求項1から3のいずれか一項に記載の電磁波無線通信システム。
    A plurality of the first targets are provided, and the first target is provided.
    The plurality of first targets are arranged on the circumference of the same virtual circle, and the plurality of first targets are arranged on the circumference of the same virtual circle.
    The electromagnetic wave wireless communication system according to any one of claims 1 to 3, wherein the electromagnetic wave wireless communication device is arranged so as to overlap the center of the virtual circle.
  5.  複数の前記第1ターゲットの幾何中心のそれぞれは、前記仮想円の円周上に配置されている、請求項4に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 4, wherein each of the plurality of geometric centers of the first target is arranged on the circumference of the virtual circle.
  6.  前記第2ターゲットの幾何中心は、前記電磁波無線通信機と重なっている、請求項4または5に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 4 or 5, wherein the geometric center of the second target overlaps with the electromagnetic wave wireless communication device.
  7.  互いの位置を追跡可能な複数のトラッキング装置を備え、
     前記複数のトラッキング装置のそれぞれは、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、
      前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、
      前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、
     を有し、
     前記ターゲットは、
      複数の第1ターゲットと、
      第2ターゲットと、
     を含み、
     複数の前記第1ターゲットは、同一の仮想円の円周上に配置され、
     前記電磁波無線通信機は、前記仮想円の中心と重なるように配置されており、
     前記第2ターゲットの幾何中心は、前記電磁波無線通信機と重なっている、電磁波無線通信システム。
    Equipped with multiple tracking devices that can track each other's position,
    Each of the plurality of tracking devices
    Moving parts and
    An electromagnetic wave wireless communication device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and
    A target provided on the movable part and tracked by the other tracking device,
    An image pickup device attached to the movable portion and imaging the target in the other tracking device, and an image pickup device.
    Have,
    The target is
    With multiple primary targets,
    With the second target
    Including
    The plurality of first targets are arranged on the circumference of the same virtual circle, and the plurality of first targets are arranged on the circumference of the same virtual circle.
    The electromagnetic wave wireless communication device is arranged so as to overlap the center of the virtual circle.
    The geometric center of the second target is an electromagnetic wave wireless communication system that overlaps with the electromagnetic wave wireless communication device.
  8.  前記第2ターゲットの幾何中心は、前記仮想円の中心と重なっている、請求項6または7に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 6 or 7, wherein the geometric center of the second target overlaps with the center of the virtual circle.
  9.  互いの位置を追跡可能な複数のトラッキング装置を備え、
     前記複数のトラッキング装置のそれぞれは、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、
      前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、
      前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、
     を有し、
     前記ターゲットは、
      複数の第1ターゲットと、
      第2ターゲットと、
     を含み、
     複数の前記第1ターゲットは、同一の仮想円の円周上に配置され、
     前記第2ターゲットの幾何中心は、前記仮想円の中心と重なっている、電磁波無線通信システム。
    Equipped with multiple tracking devices that can track each other's position,
    Each of the plurality of tracking devices
    Moving parts and
    An electromagnetic wave wireless communication device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and
    A target provided on the movable part and tracked by the other tracking device,
    An image pickup device attached to the movable portion and imaging the target in the other tracking device, and an image pickup device.
    Have,
    The target is
    With multiple primary targets,
    With the second target
    Including
    The plurality of first targets are arranged on the circumference of the same virtual circle, and the plurality of first targets are arranged on the circumference of the same virtual circle.
    The electromagnetic wave wireless communication system whose geometric center of the second target overlaps with the center of the virtual circle.
  10.  前記電磁波無線通信機は、
      電磁波を送信する送信部と、
      電磁波を受信する受信部と、
     を有し、
     前記送信部と前記受信部とは、並んで配置され、
     前記電磁波無線通信機のうち前記送信部と前記受信部との間に位置する部分は、前記仮想円の中心と重なっている、請求項4から9のいずれか一項に記載の電磁波無線通信システム。
    The electromagnetic wave wireless communication device is
    A transmitter that transmits electromagnetic waves and
    A receiver that receives electromagnetic waves and
    Have,
    The transmitting unit and the receiving unit are arranged side by side.
    The electromagnetic wave wireless communication system according to any one of claims 4 to 9, wherein a portion of the electromagnetic wave wireless communication device located between the transmitting unit and the receiving unit overlaps the center of the virtual circle. ..
  11.  前記電磁波無線通信機と前記撮像装置とは、前記撮像装置の光軸方向と直交する第1方向にオフセット量だけずれて配置されている、請求項4から10のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave according to any one of claims 4 to 10, wherein the electromagnetic wave wireless communication device and the image pickup device are arranged so as to be offset by an offset amount in a first direction orthogonal to the optical axis direction of the image pickup device. Wireless communication system.
  12.  前記第2ターゲットは、前記光軸方向および前記第1方向の両方と直交する第2方向に対称な形状である、請求項11に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 11, wherein the second target has a shape symmetrical in a second direction orthogonal to both the optical axis direction and the first direction.
  13.  前記第2ターゲットは、前記第1方向に対称な形状である、請求項12に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 12, wherein the second target has a shape symmetrical to the first direction.
  14.  前記撮像装置の光軸は、前記仮想円の円周上に配置されている、請求項11から13のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 11 to 13, wherein the optical axis of the image pickup apparatus is arranged on the circumference of the virtual circle.
  15.  前記第2ターゲットは、前記第1方向に窪む第1凹部を有し、
     前記撮像装置は、前記第1凹部の内側に位置する、請求項11から14のいずれか一項に記載の電磁波無線通信システム。
    The second target has a first recess that is recessed in the first direction.
    The electromagnetic wave wireless communication system according to any one of claims 11 to 14, wherein the image pickup apparatus is located inside the first recess.
  16.  前記第2ターゲットは、前記第1方向に窪む第2凹部を有し、
     前記第1凹部と前記第2凹部とは、前記電磁波無線通信機を前記第1方向に挟んで配置されている、請求項15に記載の電磁波無線通信システム。
    The second target has a second recess that is recessed in the first direction.
    The electromagnetic wave wireless communication system according to claim 15, wherein the first recess and the second recess are arranged so as to sandwich the electromagnetic wave wireless communication device in the first direction.
  17.  前記第1凹部の内縁と前記第2凹部の内縁とは、互いに逆向きに凹となる円弧形状であり、
     前記第2ターゲットの外縁は、前記第1凹部の内縁の両端と前記第2凹部の内縁の両端とが、前記仮想円と同心の一対の円弧によってそれぞれ繋げられて構成された形状である、請求項16に記載の電磁波無線通信システム。
    The inner edge of the first recess and the inner edge of the second recess have an arc shape that is concave in opposite directions.
    The outer edge of the second target has a shape in which both ends of the inner edge of the first recess and both ends of the inner edge of the second recess are connected by a pair of arcs concentric with the virtual circle. Item 16. The electromagnetic wave wireless communication system according to Item 16.
  18.  前記可動部は、前記光軸方向と交差する方向に延びる第1回転軸回りに回転可能である、請求項11から17のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 11 to 17, wherein the movable portion can rotate around a first rotation axis extending in a direction intersecting the optical axis direction.
  19.  前記可動部は、前記光軸方向と交差し、かつ、前記第1回転軸が延びる方向と直交する方向に延びる第2回転軸回りに回転可能である、請求項18に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 18, wherein the movable portion is rotatable around a second rotation axis that intersects the optical axis direction and extends in a direction orthogonal to the direction in which the first rotation axis extends. ..
  20.  前記トラッキング装置は、制御部を有し、
     前記制御部は、前記撮像装置によって撮像された他の前記トラッキング装置における前記ターゲットおよび前記電磁波無線通信機が映る画像に基づいて、前記可動部を制御して他の前記トラッキング装置を追跡する、請求項19に記載の電磁波無線通信システム。
    The tracking device has a control unit and has a control unit.
    The control unit controls the movable unit to track the other tracking device based on the image of the target and the electromagnetic wave wireless communication device in the other tracking device captured by the image pickup device. Item 19. The electromagnetic wave wireless communication system according to Item 19.
  21.  前記画像は、前記第1ターゲットの像と前記第2ターゲットの像とを含み、
     前記制御部は、前記第1ターゲットの像の像質と前記第2ターゲットの像の像質とに応じて、追跡に用いるターゲットを選択する、請求項20記載の電磁波無線通信システム。
    The image includes an image of the first target and an image of the second target.
    The electromagnetic wave wireless communication system according to claim 20, wherein the control unit selects a target to be used for tracking according to the image quality of the image of the first target and the image quality of the image of the second target.
  22.  前記制御部は、2機の前記トラッキング装置間の距離に応じて、追跡に用いるターゲットを選択する、請求項20に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 20, wherein the control unit selects a target to be used for tracking according to the distance between the two tracking devices.
  23.  前記制御部は、前記第1ターゲットの像に基づいた追跡に先立って、前記第2ターゲットの像を用いて他の前記トラッキング装置の前記画像中での位置を特定する、請求項20に記載の電磁波無線通信システム。 20. Electromagnetic wave wireless communication system.
  24.  前記制御部は、
      前記画像に映る前記ターゲットに基づいて、前記画像中における前記電磁波無線通信機の代表点を取得し、
      前記画像中において前記第1方向に延びる第1軸が、前記画像中における前記代表点と重なるように、前記可動部を前記第1回転軸回りに回転させ、
      前記画像中において前記第1方向と直交する第2方向に延びる第2軸が、前記代表点を中心とし、前記画像中における前記オフセット量を半径とする円と接するように、前記可動部を前記第2回転軸回りに回転させる、請求項20から23のいずれか一項に記載の電磁波無線通信システム。
    The control unit
    Based on the target reflected in the image, the representative points of the electromagnetic wave wireless communication device in the image are acquired.
    The movable portion is rotated around the first rotation axis so that the first axis extending in the first direction in the image overlaps with the representative point in the image.
    The movable portion is moved so that the second axis extending in the second direction orthogonal to the first direction in the image is in contact with a circle centered on the representative point and having the offset amount as a radius in the image. The electromagnetic wave radio communication system according to any one of claims 20 to 23, which is rotated around a second rotation axis.
  25.  前記制御部は、前記仮想円の中心を前記代表点として取得する、請求項24に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 24, wherein the control unit acquires the center of the virtual circle as the representative point.
  26.  前記制御部は、前記画像に映る前記第2ターゲットの幾何中心を前記代表点として取得する、請求項24または25に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 24 or 25, wherein the control unit acquires the geometric center of the second target reflected in the image as the representative point.
  27.  前記制御部は、
      前記トラッキング装置同士の距離が所定距離以下の場合に、前記仮想円の中心を前記代表点として取得し、
      前記トラッキング装置同士の距離が所定距離よりも大きい場合に、前記画像に映る前記第2ターゲットの幾何中心を前記代表点として取得する、請求項24から26のいずれか一項に記載の電磁波無線通信システム。
    The control unit
    When the distance between the tracking devices is equal to or less than a predetermined distance, the center of the virtual circle is acquired as the representative point.
    The electromagnetic wave wireless communication according to any one of claims 24 to 26, wherein when the distance between the tracking devices is larger than a predetermined distance, the geometric center of the second target reflected in the image is acquired as the representative point. system.
  28.  前記制御部は、機械学習に基づいて、前記仮想円の中心を前記代表点として取得するか、前記画像に映る前記第2ターゲットの幾何中心を前記代表点として取得するか、を選択する、請求項24から27のいずれか一項に記載の電磁波無線通信システム。 Based on machine learning, the control unit selects whether to acquire the center of the virtual circle as the representative point or the geometric center of the second target reflected in the image as the representative point. Item 2. The electromagnetic wave radio communication system according to any one of Items 24 to 27.
  29.  前記制御部は、前記画像に映る前記ターゲットの像に基づいて、前記画像中における前記オフセット量を取得する、請求項24から28のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 24 to 28, wherein the control unit acquires the offset amount in the image based on the image of the target reflected in the image.
  30.  前記画像中における前記オフセット量は、前記画像中において複数の前記第1ターゲットに基づいて得られる前記仮想円の半径である、請求項29に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 29, wherein the offset amount in the image is the radius of the virtual circle obtained based on the plurality of first targets in the image.
  31.  前記第1ターゲットの全体は、前記第2ターゲットの外縁の内側に位置する、請求項1から30のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 1 to 30, wherein the entire first target is located inside the outer edge of the second target.
  32.  前記第1ターゲットは、円環状である、請求項1から31のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 1 to 31, wherein the first target is an annular shape.
  33.  互いの位置を追跡可能な複数のトラッキング装置を備え、
     前記トラッキング装置のそれぞれは、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、
      前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、
      前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、
      前記可動部を制御する制御部と、
     を有し、
     前記電磁波無線通信機と前記撮像装置とは、前記撮像装置の光軸方向と直交する第1方向にオフセット量だけずれて配置され、
     前記可動部は、
      前記光軸方向と交差する方向に延びる第1回転軸回りと、
      前記光軸方向と交差し、かつ、前記第1回転軸が延びる方向と直交する方向に延びる第2回転軸回りと、
     に回転可能であり、
     前記制御部は、
      前記撮像装置によって、他の前記トラッキング装置における前記ターゲットおよび前記電磁波無線通信機が映る画像を取得し、
      前記画像に映る前記ターゲットに基づいて、前記画像中における前記電磁波無線通信機の代表点を取得し、
      前記画像中において前記第1方向に延びる第1軸が、前記画像中における前記代表点と重なるように、前記可動部を前記第1回転軸回りに回転させ、
      前記画像中において前記第1方向と直交する第2方向に延びる第2軸が、前記代表点を中心とし、前記画像中における前記オフセット量を半径とする円と接するように、前記可動部を前記第2回転軸回りに回転させる、電磁波無線通信システム。
    Equipped with multiple tracking devices that can track each other's position,
    Each of the tracking devices
    Moving parts and
    An electromagnetic wave wireless communication device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and
    A target provided on the movable part and tracked by the other tracking device,
    An image pickup device attached to the movable portion and imaging the target in the other tracking device, and an image pickup device.
    A control unit that controls the movable unit and
    Have,
    The electromagnetic wave wireless communication device and the image pickup device are arranged so as to be offset by an offset amount in the first direction orthogonal to the optical axis direction of the image pickup device.
    The movable part is
    Around the first rotation axis extending in the direction intersecting the optical axis direction,
    Around the second rotation axis that intersects the optical axis direction and extends in a direction orthogonal to the direction in which the first rotation axis extends.
    Can rotate to
    The control unit
    The image pickup device acquires an image of the target and the electromagnetic wave wireless communication device in the other tracking device.
    Based on the target reflected in the image, the representative points of the electromagnetic wave wireless communication device in the image are acquired.
    The movable portion is rotated around the first rotation axis so that the first axis extending in the first direction in the image overlaps with the representative point in the image.
    The movable portion is moved so that the second axis extending in the second direction orthogonal to the first direction in the image is in contact with a circle centered on the representative point and having the offset amount as a radius in the image. An electromagnetic radio communication system that rotates around the second rotation axis.
  34.  前記第1軸は、前記画像における前記第2方向の中心を通り、
     前記第2軸は、前記画像における前記第1方向の中心を通る、請求項24から30,33のいずれか一項に記載の電磁波無線通信システム。
    The first axis passes through the center of the second direction in the image.
    The electromagnetic wave wireless communication system according to any one of claims 24 to 30, 33, wherein the second axis passes through the center of the first direction in the image.
  35.  前記トラッキング装置は、制御部を有し、
     前記制御部は、前記撮像装置によって撮像された他の前記トラッキング装置における前記ターゲットの像に基づいて、前記可動部を制御して他の前記トラッキング装置を追跡する、請求項1から3のいずれか一項に記載の電磁波無線通信システム。
    The tracking device has a control unit and has a control unit.
    One of claims 1 to 3, wherein the control unit controls the movable unit to track the other tracking device based on the image of the target in the other tracking device imaged by the image pickup device. The electromagnetic wave wireless communication system according to claim 1.
  36.  前記電磁波無線通信機と前記撮像装置とは、前記撮像装置の光軸方向に関して非同軸に配置され、
     前記光軸方向から見た場合における、所定の代表点に関する、前記電磁波無線通信機、前記撮像装置、および前記ターゲットそれぞれの配置関係は、既知である、請求項35に記載の電磁波無線通信システム。
    The electromagnetic wave wireless communication device and the image pickup device are arranged non-coaxially with respect to the optical axis direction of the image pickup device.
    The electromagnetic wave wireless communication system according to claim 35, wherein the arrangement relationship of the electromagnetic wave wireless communication device, the image pickup device, and the target with respect to a predetermined representative point when viewed from the optical axis direction is known.
  37.  前記制御部は、前記ターゲットの像と前記配置関係とに基づいて、前記撮像装置の撮影像上における追跡目標位置を決定する、請求項36に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 36, wherein the control unit determines a tracking target position on a captured image of the image pickup device based on the image of the target and the arrangement relationship.
  38.  前記第1ターゲットの前記代表点に関する配置関係と前記第2ターゲットの前記代表点に関する配置関係とは、既知であり、
     前記制御部は、前記第1ターゲットの像と前記第2ターゲットの像とのいずれかに基づいて前記追跡目標位置を決定する、請求項37に記載の電磁波無線通信システム。
    The arrangement relationship of the first target with respect to the representative point and the arrangement relationship of the second target with respect to the representative point are known.
    The electromagnetic wave wireless communication system according to claim 37, wherein the control unit determines the tracking target position based on either the image of the first target and the image of the second target.
  39.  前記制御部は、前記第1ターゲットの像の像質と前記第2ターゲットの像の像質とに応じて、追跡に用いるターゲットを選択する、請求項38記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 38, wherein the control unit selects a target to be used for tracking according to the image quality of the image of the first target and the image quality of the image of the second target.
  40.  前記制御部は、2機の前記トラッキング装置間の距離に応じて、追跡に用いるターゲットを選択する、請求項38または39に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 38 or 39, wherein the control unit selects a target to be used for tracking according to the distance between the two tracking devices.
  41.  前記制御部は、前記第1ターゲットの像に基づいた追跡に先立って、前記第2ターゲットの像を用いて他の前記トラッキング装置の前記撮影像上での位置を特定する、請求項38に記載の電磁波無線通信システム。 38. Electromagnetic wave wireless communication system.
  42.  前記制御部は、前記第1ターゲットの像と前記第2ターゲットの像とのいずれに基づいて前記追跡目標位置を決定するかを、機械学習によって決定する、請求項38から40のいずれか一項に記載の電磁波無線通信システム。 One of claims 38 to 40, wherein the control unit determines by machine learning whether to determine the tracking target position based on the image of the first target or the image of the second target. The electromagnetic wave wireless communication system described in.
  43.  前記制御部は、前記撮影像上において、他の前記トラッキング装置の前記代表点が前記追跡目標位置と重なるよう前記可動部を制御する、請求項37から42のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave radio according to any one of claims 37 to 42, wherein the control unit controls the movable unit so that the representative point of the other tracking device overlaps the tracking target position on the captured image. Communications system.
  44.  互いの位置を追跡可能な複数のトラッキング装置を備え、
     前記トラッキング装置のそれぞれは、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機と、
      前記可動部に設けられ、他の前記トラッキング装置によって追跡されるターゲットと、
      前記可動部に取り付けられ、他の前記トラッキング装置における前記ターゲットを撮像する撮像装置と、
      制御部と、
     を有し、
     前記制御部は、前記撮像装置によって撮像された他の前記トラッキング装置における前記ターゲットの像に基づいて、前記可動部を制御して他の前記トラッキング装置を追跡する、電磁波無線通信システム。
    Equipped with multiple tracking devices that can track each other's position,
    Each of the tracking devices
    Moving parts and
    An electromagnetic wave wireless communication device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and
    A target provided on the movable part and tracked by the other tracking device,
    An image pickup device attached to the movable portion and imaging the target in the other tracking device, and an image pickup device.
    Control unit and
    Have,
    The control unit is an electromagnetic wave wireless communication system that controls the movable unit to track the other tracking device based on the image of the target in the other tracking device imaged by the image pickup device.
  45.  前記電磁波無線通信機と前記撮像装置とは、前記撮像装置の光軸方向に関して非同軸に配置され、
     前記光軸方向から見た場合における、所定の代表点に関する、前記電磁波無線通信機、前記撮像装置、および前記ターゲットそれぞれの配置関係は既知である、請求項44に記載の電磁波無線通信システム。
    The electromagnetic wave wireless communication device and the image pickup device are arranged non-coaxially with respect to the optical axis direction of the image pickup device.
    The electromagnetic wave wireless communication system according to claim 44, wherein the arrangement relationship of the electromagnetic wave wireless communication device, the image pickup device, and the target with respect to a predetermined representative point when viewed from the optical axis direction is known.
  46.  前記制御部は、前記ターゲットの像と前記配置関係とに基づいて、前記撮像装置の撮影像上における追跡目標位置を決定する、請求項45に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 45, wherein the control unit determines a tracking target position on a captured image of the image pickup device based on the image of the target and the arrangement relationship.
  47.  前記制御部は、前記撮像装置の撮影像上において、他の前記トラッキング装置の前記代表点が追跡目標位置と重なるよう前記可動部を制御する、請求項45または46に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to claim 45 or 46, wherein the control unit controls the movable unit so that the representative point of the other tracking device overlaps with the tracking target position on the captured image of the imaging device.
  48.  前記ターゲットは、発光可能な発光部を含む、請求項1から47のいずれか一項に記載の電磁波無線通信システム。 The electromagnetic wave wireless communication system according to any one of claims 1 to 47, wherein the target includes a light emitting unit capable of emitting light.
  49.  請求項1から請求項48のいずれか一項に記載された電磁波無線通信システムを用いて通信を行う、電磁波無線通信方法。 An electromagnetic wave wireless communication method for communicating using the electromagnetic wave wireless communication system according to any one of claims 1 to 48.
  50.  電磁波無線通信機間で通信を行う電磁波無線通信方法であって、
     一の電磁波無線通信機に関連付けられた第1ターゲットと第2ターゲットとを、他の電磁波無線通信機に関連付けられた撮像装置で撮像し、
     前記撮像した画像中の前記第1ターゲットの像および前記第2ターゲットの像を特定し、
     特定された前記第1ターゲットの像と前記第2ターゲットの像とのいずれか一方に基づいて、前記他の電磁波無線通信機を前記一の電磁波無線通信機の方向に向ける、電磁波無線通信方法。
    It is an electromagnetic wave wireless communication method that communicates between electromagnetic wave wireless communication devices.
    The first target and the second target associated with one electromagnetic wave wireless communication device are imaged by an imaging device associated with another electromagnetic wave wireless communication device.
    The image of the first target and the image of the second target in the captured image are identified.
    An electromagnetic wave radio communication method for directing the other electromagnetic wave radio communication device toward the one electromagnetic wave radio communication device based on either one of the specified image of the first target and the image of the second target.
  51.  前記撮像装置によって撮像された前記第1ターゲットの像の像質と前記第2ターゲットの像の像質とに応じて、追跡に用いるターゲットを選択する、請求項50記載の電磁波無線通信方法。 The electromagnetic wave wireless communication method according to claim 50, wherein a target to be used for tracking is selected according to the image quality of the image of the first target and the image quality of the image of the second target captured by the image pickup apparatus.
  52.  前記電磁波無線通信機間の距離に応じて、前記第1ターゲットと前記第2ターゲットとのいずれか一方を追跡に用いるターゲットとして選択する、請求項50または51に記載の電磁波無線通信方法。 The electromagnetic wave wireless communication method according to claim 50 or 51, wherein either one of the first target and the second target is selected as a target to be used for tracking according to the distance between the electromagnetic wave wireless communication devices.
  53.  前記一の電磁波無線通信機と、前記第1ターゲットまたは前記第2ターゲットとの位置関係に基づいて、前記特定された前記第1ターゲットの像または前記第2ターゲットの像から前記撮像された撮影像中における前記一の電磁波無線通信機の位置を特定し、
     前記他の電磁波無線通信機と前記撮像装置との位置関係に基づいて、前記撮影像中における追跡目標位置を決定し、
     前記撮影像中の前記一の電磁無線通信機の位置が、前記追跡目標位置と重なるように前記他の電磁波無線通信機を移動する、請求項50から52のいずれか一項に記載の電磁波無線通信方法。
    An image taken from the specified image of the first target or the image of the second target based on the positional relationship between the electromagnetic wave radio communication device and the first target or the second target. Identify the position of the above-mentioned electromagnetic wave wireless communication device in the inside,
    Based on the positional relationship between the other electromagnetic wave wireless communication device and the image pickup device, the tracking target position in the captured image is determined.
    The electromagnetic wave radio according to any one of claims 50 to 52, wherein the other electromagnetic wave radio communication device is moved so that the position of the one electromagnetic wave radio communication device in the captured image overlaps with the tracking target position. Communication method.
  54.  電磁波無線通信機間で通信を行う電磁波無線通信方法であって、
     一の電磁波無線通信機に関連付けられたターゲットを、他の電磁波無線通信機に関連付けられた撮像装置で撮像し、
     前記撮像された前記ターゲットの像から、前記撮像された撮影像中における一の前記電磁波無線通信機の位置を特定し、
     特定された前記一の電磁波無線通信機の位置と、前記他の電磁波無線通信機と前記撮像装置との位置関係と、に基づいて、前記他の電磁波無線通信機を前記一の電磁波無線通信機の方向に向ける、電磁波無線通信方法。
    It is an electromagnetic wave wireless communication method that communicates between electromagnetic wave wireless communication devices.
    The target associated with one electromagnetic wave radio communication device is imaged by the image pickup device associated with another electromagnetic wave radio communication device.
    From the captured image of the target, the position of one of the electromagnetic wave radio communication devices in the captured image is specified.
    Based on the position of the one electromagnetic wave radio communication device specified and the positional relationship between the other electromagnetic wave radio communication device and the image pickup device, the other electromagnetic wave radio communication device is referred to as the one electromagnetic wave radio communication device. An electromagnetic wave wireless communication method that points in the direction of.
  55.  前記他の電磁波無線通信機と前記撮像装置との前記位置関係に基づいて、前記撮影像中における追跡目標位置を決定し、
     前記撮影像中の前記一の電磁波無線通信機の位置が、前記追跡目標位置と重なるように前記他の電磁波無線通信機を移動する、請求項54に記載の電磁波無線通信方法。
    Based on the positional relationship between the other electromagnetic wave wireless communication device and the image pickup device, the tracking target position in the captured image is determined.
    The electromagnetic wave radio communication method according to claim 54, wherein the other electromagnetic wave radio communication device is moved so that the position of the one electromagnetic wave radio communication device in the captured image overlaps with the tracking target position.
  56.  ターゲットを有するターゲット装置と、前記ターゲット装置を追跡可能なトラッキング装置とを備えるトラッキングシステムであって、
     前記トラッキング装置は、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波装置と、
      前記可動部に取り付けられ、前記ターゲット装置における前記ターゲットを撮像する撮像装置と、
     を有し、
    前記ターゲット装置には、前記電磁波の標的となる代表点が設定され、
     前記ターゲットは、
      第1ターゲットと、
      前記第1ターゲットとは形状が異なる第2ターゲットと、
     を含む、トラッキングシステム。
    A tracking system including a target device having a target and a tracking device capable of tracking the target device.
    The tracking device is
    Moving parts and
    An electromagnetic wave device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and an electromagnetic wave device.
    An image pickup device attached to the movable portion and taking an image of the target in the target device,
    Have,
    A representative point that is a target of the electromagnetic wave is set in the target device, and the target device is set.
    The target is
    With the first target
    A second target having a shape different from that of the first target,
    Including tracking system.
  57.  前記第2ターゲットは、前記トラッキング装置による追跡可能な距離が前記第1ターゲットよりも長い、請求項56に記載のトラッキングシステム。 The tracking system according to claim 56, wherein the second target has a longer traceable distance by the tracking device than the first target.
  58.  前記第2ターゲットは、前記第1ターゲットよりも面積が広い、請求項56または57に記載のトラッキングシステム。 The tracking system according to claim 56 or 57, wherein the second target has a larger area than the first target.
  59.  前記トラッキング装置は、制御部を有し、
     前記制御部は、前記撮像装置によって撮像された前記ターゲットの画像に基づいて、前記可動部を制御して前記ターゲット装置を追跡する、請求項56から58のいずれか一項に記載のトラッキングシステム。
    The tracking device has a control unit and has a control unit.
    The tracking system according to any one of claims 56 to 58, wherein the control unit controls the movable unit to track the target device based on an image of the target captured by the image pickup device.
  60.  前記画像は、前記第1ターゲットの像と前記第2ターゲットの像とを含み、
     前記制御部は、前記第1ターゲットの像の像質と前記第2ターゲットの像の像質とに応じて追跡に用いるターゲットを選択する、請求項59に記載のトラッキングシステム。
    The image includes an image of the first target and an image of the second target.
    The tracking system according to claim 59, wherein the control unit selects a target to be used for tracking according to the image quality of the image of the first target and the image quality of the image of the second target.
  61.  前記制御部は、前記ターゲット装置と前記トラッキング装置との間の距離に応じて追跡に用いるターゲットを選択する、請求項59または60に記載のトラッキングシステム。 The tracking system according to claim 59 or 60, wherein the control unit selects a target to be used for tracking according to a distance between the target device and the tracking device.
  62.  前記制御部は、前記第1ターゲットの像に基づいた追跡に先立って、前記第2ターゲットの像を用いて他の前記トラッキング装置の前記画像中の位置を特定する、請求項59から61のいずれか一項に記載のトラッキングシステム。 Any of claims 59 to 61, wherein the control unit identifies the position of another tracking device in the image using the image of the second target prior to tracking based on the image of the first target. The tracking system described in one item.
  63.  前記制御部は、機械学習によって前記第1ターゲットと前記第2ターゲットのいずれに基づいて前記画像上における追跡目標位置を決定するかを決定する、請求項59から62のいずれか一項に記載のトラッキングシステム。 The control unit according to any one of claims 59 to 62, wherein the control unit determines whether to determine a tracking target position on the image based on whether the first target or the second target is determined by machine learning. Tracking system.
  64.  前記電磁波装置と前記撮像装置とは、前記撮像装置の光軸方向に関して非同軸に配置され、
     前記光軸方向から見た前記電磁波装置と前記撮像装置との第1配置関係が既知であり、
     前記ターゲット装置の前記代表点と前記ターゲットとの第2配置関係が既知である、請求項59から63のいずれか一項に記載のトラッキングシステム。
    The electromagnetic wave device and the image pickup device are arranged non-coaxially with respect to the optical axis direction of the image pickup device.
    The first arrangement relationship between the electromagnetic wave device and the image pickup device as seen from the optical axis direction is known.
    The tracking system according to any one of claims 59 to 63, wherein the second arrangement relationship between the representative point of the target device and the target is known.
  65.  前記制御部は、前記第1配置関係と前記第2配置関係とに基づいて前記画像上における追跡目標位置を決定する、請求項64に記載のトラッキングシステム。 The tracking system according to claim 64, wherein the control unit determines a tracking target position on the image based on the first arrangement relationship and the second arrangement relationship.
  66.  既知の前記第2配置関係は、前記代表点に関する前記第1ターゲットと前記第2ターゲットとの配置関係を含み、
     前記制御部は、前記第1ターゲットと前記第2ターゲットとのいずれかに基づいて前記追跡目標位置を決定する、請求項65に記載のトラッキングシステム。
    The known second placement relationship includes a placement relationship between the first target and the second target with respect to the representative point.
    The tracking system according to claim 65, wherein the control unit determines the tracking target position based on either the first target or the second target.
  67.  前記制御部は、前記画像上において、前記ターゲット装置の前記代表点が前記追跡目標位置と重なるよう前記可動部を制御する、請求項65または66に記載のトラッキングシステム。 The tracking system according to claim 65 or 66, wherein the control unit controls the movable unit so that the representative point of the target device overlaps with the tracking target position on the image.
  68.  前記第1ターゲットは、複数設けられ、
     前記第1ターゲットの幾何中心は、前記代表点を中心とする仮想円の円周上に配置されている、請求項56から67のいずれか一項に記載のトラッキングシステム。
    A plurality of the first targets are provided, and the first target is provided.
    The tracking system according to any one of claims 56 to 67, wherein the geometric center of the first target is arranged on the circumference of a virtual circle centered on the representative point.
  69.  前記第2ターゲットの幾何中心は、前記代表点と重なっている、請求項68に記載のトラッキングシステム。 The tracking system according to claim 68, wherein the geometric center of the second target overlaps with the representative point.
  70.  前記第2ターゲットは、前記代表点を中心とする仮想円の直径を含む一の直線に関して対称な形状である、請求項69に記載のトラッキングシステム。 The tracking system according to claim 69, wherein the second target has a shape symmetrical with respect to a straight line including the diameter of a virtual circle centered on the representative point.
  71.  前記第2ターゲットは、前記一の直線と直交する他の直線に関して対称な形状である、請求項70に記載のトラッキングシステム。 The tracking system according to claim 70, wherein the second target has a shape symmetrical with respect to another straight line orthogonal to the one straight line.
  72.  追跡目標となる代表点が設定されたターゲットを有するターゲット装置と、前記ターゲット装置を追跡可能なトラッキング装置とを備えるトラッキングシステムであって、
     前記トラッキング装置は、
      可動部と、
      前記可動部に取り付けられ、電磁波の送信と受信の少なくともいずれか一方を行う電磁波装置と、
      前記可動部に取り付けられ、前記ターゲット装置における前記ターゲットを撮像する撮像装置と、
      制御部と、
     を有し、
     前記電磁波装置と前記撮像装置とは、前記撮像装置の光軸方向に関して非同軸に前記可動部上に配置され、
     前記光軸方向から見た前記電磁波装置と前記撮像装置との第1配置関係が既知であり、前記ターゲットと前記代表点との第2配置関係が既知であって、
     前記制御部は、前記撮像装置によって撮像された前記ターゲットの像と、前記第1配置関係と、前記第2配置関係とに基づいて、前記可動部を制御して前記ターゲット装置を追跡する、トラッキングシステム。
    A tracking system including a target device having a target set with a representative point as a tracking target and a tracking device capable of tracking the target device.
    The tracking device is
    Moving parts and
    An electromagnetic wave device attached to the movable part and performing at least one of transmission and reception of electromagnetic waves, and an electromagnetic wave device.
    An image pickup device attached to the movable portion and taking an image of the target in the target device,
    Control unit and
    Have,
    The electromagnetic wave device and the image pickup device are arranged on the movable portion non-coaxially with respect to the optical axis direction of the image pickup device.
    The first arrangement relationship between the electromagnetic wave device and the image pickup device as seen from the optical axis direction is known, and the second arrangement relationship between the target and the representative point is known.
    The control unit controls the movable unit to track the target device based on the image of the target captured by the image pickup device, the first arrangement relationship, and the second arrangement relationship. system.
  73.  前記電磁波装置と前記撮像装置とは、前記撮像装置の光軸方向と直交する第1方向にずれて配置されている、請求項60から72のいずれか一項に記載のトラッキングシステム。 The tracking system according to any one of claims 60 to 72, wherein the electromagnetic wave device and the image pickup device are arranged so as to be offset in a first direction orthogonal to the optical axis direction of the image pickup device.
  74.  前記可動部は、前記光軸方向と交差する方向に延びる第1回転軸回りに回転可能である、請求項73に記載のトラッキングシステム。 The tracking system according to claim 73, wherein the movable portion is rotatable around a first rotation axis extending in a direction intersecting the optical axis direction.
  75.  前記可動部は、前記光軸方向と交差し、かつ、前記第1回転軸が延びる方向と直交する方向に延びる第2回転軸回りに回転可能である、請求項74に記載のトラッキングシステム。 The tracking system according to claim 74, wherein the movable portion is rotatable around a second rotation axis that intersects the optical axis direction and extends in a direction orthogonal to the direction in which the first rotation axis extends.
  76.  前記トラッキング装置は、制御部を有し、
     前記制御部は、
      前記撮像装置によって撮像された前記ターゲットの像と、前記ターゲットと前記代表点との第2配置関係とに基づいて、前記画像中における前記ターゲット装置の前記代表点を特定し、
      前記光軸方向から見た前記電磁波装置と前記撮像装置との第1配置関係に基づいて、前記電磁波装置と前記撮像装置とのオフセット量を取得し、
      前記画像中において前記第1方向に延びる第1軸が、前記画像中における前記代表点と重なるように、前記可動部を前記第1回転軸回りに回転させ、
      前記画像中において前記第1方向と直交する第2方向に延びる第2軸が、前記代表点を中心とし前記オフセット量を半径とする円と接するように、前記可動部を前記第2回転軸回りに回転させる、請求項75に記載のトラッキングシステム。
    The tracking device has a control unit and has a control unit.
    The control unit
    Based on the image of the target captured by the image pickup device and the second arrangement relationship between the target and the representative point, the representative point of the target device in the image is specified.
    Based on the first arrangement relationship between the electromagnetic wave device and the image pickup device as seen from the optical axis direction, the offset amount between the electromagnetic wave device and the image pickup device is acquired.
    The movable portion is rotated around the first rotation axis so that the first axis extending in the first direction in the image overlaps with the representative point in the image.
    In the image, the movable portion is rotated around the second rotation axis so that the second axis extending in the second direction orthogonal to the first direction is in contact with a circle centered on the representative point and having the offset amount as a radius. The tracking system according to claim 75, which is rotated to.
  77.  前記電磁波装置は、電磁波の送信と受信の少なくともいずれか一方を行う電磁波無線通信機であり、
     前記ターゲット装置は、電磁波の送信と受信の少なくともいずれか他方を行う電磁波無線通信機を含み、
     前記代表点は、前記ターゲット装置の電磁波無線通信機に設定されている、請求項56から76のいずれか一項に記載のトラッキングシステム。
    The electromagnetic wave device is an electromagnetic wave wireless communication device that transmits and receives at least one of electromagnetic waves.
    The target device includes an electromagnetic wave radio communication device that transmits and receives at least one of electromagnetic waves.
    The tracking system according to any one of claims 56 to 76, wherein the representative point is set in the electromagnetic wave wireless communication device of the target device.
  78.  前記電磁波装置は、光ビームを送出し、反射光を受光することによって距離を計測する光測距装置である、請求項56から77のいずれか一項に記載のトラッキングシステム。 The tracking system according to any one of claims 56 to 77, wherein the electromagnetic wave device is an optical ranging device that measures a distance by transmitting a light beam and receiving reflected light.
  79.  前記ターゲット装置は、前記光ビームを反射する反射装置を含み、
     前記代表点は、前記反射装置に設定されている、請求項78に記載のトラッキングシステム。
    The target device includes a reflector that reflects the light beam.
    The tracking system according to claim 78, wherein the representative point is set in the reflection device.
  80.  前記ターゲットは、発光可能な発光部を有する、請求項56から79のいずれか一項に記載のトラッキングシステム。 The tracking system according to any one of claims 56 to 79, wherein the target has a light emitting unit capable of emitting light.
  81.  請求項56から80のいずれか一項に記載のトラッキングシステムを用いる、トラッキング方法。 A tracking method using the tracking system according to any one of claims 56 to 80.
  82.  電磁波の送信と受信との少なくとも一方を行う電磁波装置の標的を、前記電磁波装置で追跡するトラッキング方法であって、
     前記標的に関連付けられた第1ターゲットと第2ターゲットとを、前記電磁波装置に関連付けられた撮像装置で撮像し、
     前記撮像された画像中の前記第1ターゲットの像と前記第2ターゲットの像とのいずれか一方に基づいて、前記画像中における前記標的の位置を特定し、
     前記電磁波装置を前記標的の方向に向ける、トラッキング方法。
    A tracking method in which the target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves is tracked by the electromagnetic wave device.
    The first target and the second target associated with the target are imaged by the imaging device associated with the electromagnetic wave device.
    The position of the target in the image is specified based on either the image of the first target or the image of the second target in the captured image.
    A tracking method for directing the electromagnetic wave device toward the target.
  83.  前記撮像された画像中の前記第1ターゲットの像の像質と前記第2ターゲットの像の像質とに応じて追跡に用いるターゲットを選択する、請求項82記載のトラッキング方法。 The tracking method according to claim 82, wherein a target to be used for tracking is selected according to the image quality of the image of the first target and the image quality of the image of the second target in the captured image.
  84.  前記標的と前記電磁波装置との間の距離に応じて、追跡に用いるターゲットを前記第1ターゲットと前記第2ターゲットとから選択する、請求項82または83に記載のトラッキング方法。 The tracking method according to claim 82 or 83, wherein the target used for tracking is selected from the first target and the second target according to the distance between the target and the electromagnetic wave device.
  85.  前記第1ターゲットの像に基づいた追跡に先立って、前記第2ターゲットの像を用いて前記標的の位置を特定する、請求項82に記載のトラッキング方法。 The tracking method according to claim 82, wherein the position of the target is specified by using the image of the second target prior to the tracking based on the image of the first target.
  86.  前記電磁波装置と前記撮像装置との位置関係に基づいて、前記画像中における追跡目標位置を決定し、
     前記画像中の前記標的の像が、前記追跡目標位置と重なるように前記電磁波装置を移動する、請求項82から85のいずれか一項に記載のトラッキング方法。
    Based on the positional relationship between the electromagnetic wave device and the image pickup device, the tracking target position in the image is determined.
    The tracking method according to any one of claims 82 to 85, wherein the electromagnetic wave device is moved so that the image of the target in the image overlaps with the tracking target position.
  87.  電磁波の送信と受信との少なくとも一方を行う電磁波装置の標的を、前記電磁波装置で追跡するトラッキング方法であって、
     前記標的に関連付けられたターゲットを、前記電磁波装置に関連付けられた撮像装置で撮像し、
     前記撮像された画像中の前記ターゲットの像から、前記画像中における前記標的の位置を特定し、
     特定された前記標的の位置と、前記電磁波装置と前記撮像装置との位置関係と、に基づいて、前記電磁波装置を前記標的の方向に向ける、トラッキング方法。
    A tracking method in which the target of an electromagnetic wave device that transmits and receives at least one of electromagnetic waves is tracked by the electromagnetic wave device.
    The target associated with the target is imaged by the imaging device associated with the electromagnetic wave device, and the target is imaged.
    From the image of the target in the captured image, the position of the target in the image is specified.
    A tracking method for directing the electromagnetic wave device toward the target based on the identified position of the target and the positional relationship between the electromagnetic wave device and the image pickup device.
  88.  前記電磁波装置と前記撮像装置との前記位置関係に基づいて、前記画像中における追跡目標位置を決定し、
     前記画像中の前記標的の像が、前記追跡目標位置と重なるように前記電磁波装置を移動する、請求項87に記載のトラッキング方法。
    A tracking target position in the image is determined based on the positional relationship between the electromagnetic wave device and the image pickup device.
    The tracking method according to claim 87, wherein the electromagnetic wave device is moved so that the image of the target in the image overlaps with the tracking target position.
PCT/JP2020/044232 2020-11-27 2020-11-27 Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method WO2022113272A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044232 WO2022113272A1 (en) 2020-11-27 2020-11-27 Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/044232 WO2022113272A1 (en) 2020-11-27 2020-11-27 Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method

Publications (1)

Publication Number Publication Date
WO2022113272A1 true WO2022113272A1 (en) 2022-06-02

Family

ID=81755440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/044232 WO2022113272A1 (en) 2020-11-27 2020-11-27 Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method

Country Status (1)

Country Link
WO (1) WO2022113272A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464082A (en) * 1990-07-02 1992-02-28 Sony Corp Reflector for automatic tracking device
JPH0763558A (en) * 1993-08-30 1995-03-10 Fujita Corp Method for collimating tracking device
JP2000227309A (en) * 1999-02-04 2000-08-15 Olympus Optical Co Ltd Three-dimensional position posture sensing device
JP2005262378A (en) * 2004-03-18 2005-09-29 Oki Electric Ind Co Ltd Autonomous robot and its control method
JP2009080804A (en) * 2007-09-03 2009-04-16 Hitachi Industrial Equipment Systems Co Ltd Autonomous mobile robot system
JP2015503099A (en) * 2011-12-06 2015-01-29 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Laser tracker with position sensitive detector to search for targets
JP2018189470A (en) * 2017-05-01 2018-11-29 株式会社トプコン Survey system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0464082A (en) * 1990-07-02 1992-02-28 Sony Corp Reflector for automatic tracking device
JPH0763558A (en) * 1993-08-30 1995-03-10 Fujita Corp Method for collimating tracking device
JP2000227309A (en) * 1999-02-04 2000-08-15 Olympus Optical Co Ltd Three-dimensional position posture sensing device
JP2005262378A (en) * 2004-03-18 2005-09-29 Oki Electric Ind Co Ltd Autonomous robot and its control method
JP2009080804A (en) * 2007-09-03 2009-04-16 Hitachi Industrial Equipment Systems Co Ltd Autonomous mobile robot system
JP2015503099A (en) * 2011-12-06 2015-01-29 ライカ ジオシステムズ アクチエンゲゼルシャフトLeica Geosystems AG Laser tracker with position sensitive detector to search for targets
JP2018189470A (en) * 2017-05-01 2018-11-29 株式会社トプコン Survey system

Similar Documents

Publication Publication Date Title
JP6813639B2 (en) Equipment and methods for rotary joints with multiple radio links
US12018457B2 (en) Construction machine with measuring system and construction site measuring system
US9800332B2 (en) Acquisition, tracking, and pointing apparatus for free space optical communications with moving focal plane array
JP4729104B2 (en) Acquisition, indication, and tracking architecture for laser communications
CN102906594B (en) Method and apparatus for using gestures to control laser tracker
KR20140091342A (en) Panoramic scan ladar and panoramic laser scanning method
US11619481B2 (en) Coordinate measuring device
CN110954876B (en) Sensor shaft adjustment device and sensor shaft adjustment method
WO2022113272A1 (en) Electromagnetic wave wireless communication system, electromagnetic wave wireless communication method, tracking system, and tracking method
CN211905686U (en) Environmental perception system based on laser radar and panoramic vision
CN110927697B (en) Retroreflector including fisheye lens
JP6101037B2 (en) Tracking laser device and measuring device
WO2022259538A1 (en) Position-measuring device, position-measuring system, and measuring device
KR102610855B1 (en) Integrated fusion sensor apparatus including detachable light source with built-in intelligent camera
KR102041194B1 (en) Apparatus and method for free space optical communications
US10885368B2 (en) Six-dimensional smart target
US11486972B2 (en) Laser scanner
CN110940268B (en) Vehicle inspection system and vehicle inspection method
CN114157351A (en) Acousto-optic composite positioning scanning-free space laser communication device and capturing method
CN110596673A (en) Coaxial laser radar system
KR102041195B1 (en) Apparatus and method for free space optical communications
WO2022076187A1 (en) Optical sensor with jitter stabilization
JPS63215125A (en) Light transmitter-receiver
CN113759351A (en) Laser radar receiving end calibration system and method
JP2018163245A (en) Boresight adjustment device and method of retracing light path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963536

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP