Nothing Special   »   [go: up one dir, main page]

WO2022110977A1 - 一种并离网调度方法、装置及储能空调系统 - Google Patents

一种并离网调度方法、装置及储能空调系统 Download PDF

Info

Publication number
WO2022110977A1
WO2022110977A1 PCT/CN2021/117899 CN2021117899W WO2022110977A1 WO 2022110977 A1 WO2022110977 A1 WO 2022110977A1 CN 2021117899 W CN2021117899 W CN 2021117899W WO 2022110977 A1 WO2022110977 A1 WO 2022110977A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
axis
current
actual
grid
Prior art date
Application number
PCT/CN2021/117899
Other languages
English (en)
French (fr)
Inventor
黄颂儒
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to AU2021389718A priority Critical patent/AU2021389718A1/en
Priority to EP21896481.5A priority patent/EP4167418A4/en
Priority to US18/016,187 priority patent/US12119645B2/en
Publication of WO2022110977A1 publication Critical patent/WO2022110977A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/00125Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • the present application is based on the CN application number 202011331089.1 and the filing date is Nov. 24, 2020, and claims its priority.
  • the disclosure of the CN application is hereby incorporated into the present application as a whole.
  • the present disclosure relates to the technical field of electronic power, and in particular, to an on-grid and off-grid scheduling method, device, and energy storage air conditioning system.
  • Fig. 1 is a block diagram of grid-connected and off-grid scheduling control in the related art known to the inventor. During the process of the load on-grid and off-grid of this solution, due to the switching of the control loop of the converter, there is a certain power quality fluctuation in the switching process. In this case, it will cause the load to trip or damage the equipment, causing adverse effects.
  • embodiments of the present disclosure provide an on-grid and off-grid scheduling method, device, and energy storage air conditioning system, so as to solve the problem of power quality fluctuation during on-grid and off-grid switching in the related art.
  • an on-grid and off-grid scheduling method comprising:
  • the load is disconnected from the grid, and the energy storage converter is made to supply power to the load;
  • the output parameters of the energy storage converter are adjusted according to the given power, the given voltage, and the actual voltage and actual current output by the energy storage converter.
  • the step of determining the given power and the given voltage according to the voltage and current of the load obtained last time before the power grid is powered off includes:
  • the voltage of the load obtained last time before the grid is powered off is determined as the given voltage.
  • the step of adjusting the output of the energy storage converter according to the given power, the given voltage, and the actual voltage and actual current output by the energy storage converter includes:
  • a direct-axis voltage adjustment parameter is obtained according to the given power, the actual power, the direct-axis component of the actual current, and the direct-axis component of the actual voltage; and, according to the given voltage, the actual voltage, The quadrature axis component of the actual current and the quadrature axis component of the actual voltage obtain the quadrature axis voltage adjustment parameter;
  • the output parameter of the energy storage converter is adjusted according to the adjustment signal and the DC side voltage of the energy storage converter.
  • the step of obtaining a direct-axis voltage adjustment parameter according to the given power, the actual power, the direct-axis component of the actual current, and the direct-axis component of the actual voltage includes:
  • the direct-axis voltage adjustment parameter is obtained according to the direct-axis current adjustment parameter, the direct-axis component of the actual voltage, and a first decoupling amount; wherein the first decoupling amount is determined by the quadrature-axis component of the actual current Obtained after decoupling.
  • the step of obtaining a direct-axis component of a given current from the given power and the actual power includes:
  • the proportional-integral adjustment is performed on the power error value to obtain the direct-axis component of the given current.
  • the step of obtaining a direct-axis current adjustment parameter according to the direct-axis component of the given current and the direct-axis component of the actual current includes:
  • the proportional-integral adjustment is performed on the direct-axis component error value to obtain the direct-axis current adjustment parameter.
  • the formula based on the step of obtaining the direct-axis voltage adjustment parameter according to the direct-axis current adjustment parameter, the direct-axis component of the actual voltage, and the first decoupling amount is:
  • Vgd Ud-Id1+A1;
  • Vgd is the direct-axis voltage adjustment parameter
  • Id1 is the direct-axis current adjustment parameter
  • Ud is the direct-axis component of the actual voltage
  • A1 is the first decoupling amount.
  • the step of obtaining the quadrature-axis voltage adjustment parameter according to the given voltage, the actual voltage, the quadrature-axis component of the actual current, and the quadrature-axis component of the actual voltage includes:
  • the quadrature-axis voltage adjustment parameter is obtained according to the quadrature-axis current adjustment parameter, the quadrature-axis component of the actual voltage, and the second decoupling amount; wherein the second decoupling amount is determined by the direct-axis component of the actual current Obtained after decoupling.
  • the step of obtaining a quadrature component of a given current according to the given voltage and the actual voltage includes:
  • the proportional integral adjustment is performed on the voltage error value to obtain the quadrature axis component of the given current.
  • the step of obtaining the quadrature-axis current adjustment parameter according to the quadrature-axis component of the given current and the quadrature-axis component of the actual current includes:
  • the formula used is:
  • Vgq Uq+Iq1+A2;
  • Vgq is the quadrature axis voltage adjustment parameter
  • Iq1 is the quadrature axis current adjustment parameter
  • Uq is the quadrature axis component of the actual voltage
  • A2 is the second decoupling amount.
  • the step of obtaining an adjustment signal according to the direct-axis voltage adjustment parameter, the quadrature-axis voltage adjustment parameter and the positive sequence angle of the energy storage converter includes:
  • the step of adjusting the output parameter of the energy storage converter according to the adjustment signal and the DC side voltage of the energy storage converter includes:
  • the duty ratio of the power switch in the energy storage converter is adjusted according to the pulse signal, thereby adjusting the output parameter of the energy storage converter.
  • the method further includes:
  • Phase-lock processing is performed based on the ⁇ -axis voltage component and the ⁇ -axis voltage component to obtain the positive sequence angle of the energy storage converter;
  • Park transformation is performed based on the ⁇ -axis voltage component, the ⁇ -axis voltage component, and the positive sequence angle to obtain a direct-axis component of the actual voltage and an quadrature-axis component of the actual voltage.
  • the method further includes:
  • Park transformation is performed based on the ⁇ -axis current component, the ⁇ -axis current component and the positive sequence angle to obtain a direct-axis component of the actual current and an quadrature-axis component of the actual current.
  • the step of determining that the grid is out of power includes:
  • the first preset condition is that the grid voltage is less than a first threshold
  • the second preset condition is that the grid current is less than a second threshold
  • the present disclosure also provides an on-grid and off-grid scheduling device, which is applied to the above on-grid and off-grid scheduling method, and the device includes:
  • control module used to disconnect the load from the grid after it is determined that the power grid is powered off, and make the energy storage converter supply power to the load
  • the parameter determination module is used to determine the given power and given voltage according to the voltage and current of the load obtained at the last time before the power grid is powered off;
  • an acquisition module for acquiring the actual voltage and actual current output by the energy storage converter
  • An adjustment module configured to adjust the output parameters of the energy storage converter according to the given power, the given voltage, and the actual voltage and actual current output by the energy storage converter.
  • the present disclosure also provides an energy storage air conditioning system, including an energy storage inverter and the above-mentioned on-grid and off-grid dispatching device.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, wherein when the program is executed by a processor, the above-mentioned on- and off-grid scheduling method is implemented.
  • the load is disconnected from the grid, and the energy storage converter is made to supply power to the load;
  • the given power is determined according to the voltage and current of the load obtained for the last time before the power grid is powered off. and a given voltage; and, obtain the actual voltage and actual current output by the energy storage converter; according to the given power, the given voltage, and the actual voltage and actual current output by the energy storage converter
  • the output parameters of the energy storage converter are adjusted. In this way, the seamless switching from the grid-connected state to the off-grid state can be realized, the fluctuation of power quality during the switching process can be avoided, and the stability can be improved.
  • FIG. 1 is a block diagram of on-grid and off-grid scheduling control in the related art
  • FIG. 2 is a structural diagram of an energy storage air conditioning system according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of an on-grid and off-grid scheduling method according to an embodiment of the present disclosure
  • FIG. 5 is a structural diagram of an on-grid and off-grid scheduling apparatus according to an embodiment of the present disclosure
  • FIG. 6 is a structural diagram of an on-grid and off-grid scheduling apparatus according to another embodiment of the present disclosure.
  • FIG. 7 is a waveform diagram of the C-phase current I_inv_out_C of the AC/DC converter according to an embodiment of the present disclosure
  • FIG. 8 is a waveform diagram of a C-phase current I_grid_C of a power grid according to an embodiment of the present disclosure
  • FIG. 9 is a waveform diagram of a normalized load AC voltage signal U_load_ca and a C-phase current signal I_load_C according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe switches in embodiments of the present disclosure, these switches should not be limited by these terms. These terms are only used to distinguish between different switches.
  • the first switch may also be referred to as the second switch, and similarly, the second switch may also be referred to as the first switch, without departing from the scope of the embodiments of the present disclosure.
  • the words “if”, “if” as used herein may be interpreted as “at” or “when” or “in response to determining” or “in response to detecting”.
  • the phrases “if determined” or “if detected (the stated condition or event)” can be interpreted as “when determined” or “in response to determining” or “when detected (the stated condition or event),” depending on the context )” or “in response to detection (a stated condition or event)”.
  • FIG. 2 is a structural diagram of an energy storage air conditioning system according to an embodiment of the present disclosure. As shown in FIG. 2 , the energy storage air conditioning system includes: a load 1.
  • a first switch K1 is set between load 1 and power grid 2; wherein, the energy storage system 4 includes an air conditioning unit 41, a power generation unit 42, and an energy storage unit 43;
  • the power generation unit 42 is connected to the air conditioner unit 41 through a DC/AC converter, and the energy storage unit 43 is connected to the load 1 through the AC/DC converter, for supplying power to the load 1 when the load 1 is off-grid.
  • the AC/DC converter is an energy storage converter.
  • the load 1 may include a first load 11, a second load 12 and a third load 13, a second switch K2 is arranged between the first load 11 and the AC/DC converter, and a second switch K2 is arranged between the second load 12 and the AC/DC converter A third switch K3 is arranged therebetween, and a fourth switch K4 is arranged between the third load 13 and the AC/DC converter.
  • FIG. 3 is a flowchart of a method for scheduling on-grid and off-grid according to an embodiment of the present disclosure. As shown in FIG. 3 , the method includes:
  • the grid-connected and off-grid dispatching device 3 obtains the grid voltage U_grid_abc and the grid current I_grid_abc, and the voltage U_load_abc and the current I_load_abc of the load 1 in real time.
  • the grid voltage U_grid_abc is less than the first threshold (eg 0V) and/or the grid current I_grid_abc is less than the second threshold (eg 0A)
  • the on-grid and off-grid scheduling device 3 determines that the grid is powered off, disconnects the first switch K1, and makes the first switch K1 off.
  • the second switch K2, the third switch K3, and the fourth switch K4 all maintain the original state (for example, if the second switch K2, the third switch K3 has been closed, and the fourth switch K4 has been opened before the power failure occurs;
  • the on-grid and off-grid scheduling device 3 keeps the fourth switch K4 off), and at the same time enables the energy storage unit 43 to supply power to the load through the AC/DC converter.
  • S102 Determine a given power and a given voltage according to the voltage and current of the load obtained for the last time before the power grid is powered off; and obtain the actual voltage and actual current output by the energy storage converter.
  • the given power and given voltage are determined according to the voltage and current of the load obtained last time before the power grid is powered off, and the given power and given voltage are sent to the AC/DC converter.
  • S103 Adjust the output parameters of the energy storage converter according to the given power, the given voltage, and the actual voltage and actual current output by the energy storage converter.
  • double-loop PI adjustment is performed to control the output parameters of the AC/DC converter.
  • the load is off grid, and the energy storage converter is made to supply power to the load; the determination is based on the voltage and current of the load obtained last time before the power grid is powered off. given power and given voltage; and, obtaining the actual voltage and actual current output by the energy storage converter; according to the given power, the given voltage and the actual voltage output by the energy storage converter and the actual current to adjust the output parameters of the energy storage converter.
  • the seamless switching from the grid-connected state to the off-grid state can be realized, the fluctuation of power quality during the switching process can be avoided, and the stability can be improved.
  • This embodiment provides another on-grid and off-grid scheduling method.
  • the above step S102 includes: calculating the load obtained for the last time before the power grid is powered off The product of the voltage U_load_abc, the current I_load_abc and the power factor is obtained to obtain the given power P_ref; the voltage of the load obtained for the last time before the power grid is powered off is determined as the given voltage V_ref.
  • FIG. 4 is a block diagram of output parameter adjustment according to an embodiment of the present disclosure.
  • the step of adjusting the output parameters of the energy storage converter by the output actual voltage and actual current specifically includes: calculating actual power according to the actual voltage and actual current output by the energy storage converter; power, the direct-axis component of the actual current, and the direct-axis component of the actual voltage to obtain direct-axis voltage adjustment parameters, and the given voltage, the actual voltage, the quadrature-axis component of the actual current, and the The quadrature axis component of the actual voltage obtains the quadrature axis voltage adjustment parameter; the adjustment signal is obtained according to the direct axis voltage adjustment parameter, the quadrature axis voltage adjustment parameter and the positive sequence angle of the energy storage converter; according to the adjustment signal and the DC side voltage of the energy storage converter to adjust the output parameter of the
  • the actual power P_actual is calculated according to the actual voltage U_inv_out_abc and the actual current I_inv_out_abc output by the energy storage converter. Similar to calculating the given power P_ref, calculating the product of the actual voltage U_inv_out_abc output by the energy storage converter, the actual current I_inv_out_abc and the power factor is the actual power P_actual.
  • the direct-axis voltage adjustment parameter Vgd is obtained according to the given power P_ref, the actual power P_actual, the direct-axis component Id of the actual current, and the direct-axis component Ud of the actual voltage.
  • This step includes: obtaining the direct-axis component Id_ref of the given current according to the given power P_ref and the actual power P_actual, and in the specific implementation, the given power P_ref and the actual power P_actual are calculated to obtain a power error value, and the power error value is scaled Integrate adjustment to obtain the direct-axis component Id_ref of the given current; obtain the direct-axis current adjustment parameter Id1 according to the direct-axis component Id_ref of the given current and the direct-axis component Id of the actual current.
  • the direct-axis component Id_ref of the given current is Make the difference with the direct-axis component Id of the actual current to obtain the direct-axis component error value; perform proportional and integral adjustment on the direct-axis component error value to obtain the direct-axis current adjustment parameter Id1; according to the direct-axis current adjustment parameter Id1, the direct-axis component of the actual voltage
  • the component Ud and the first decoupling quantity A1 obtain the direct-axis voltage adjustment parameter Vgd.
  • the above-mentioned first decoupling quantity A1 is obtained by decoupling the quadrature-axis component Iq of the actual current.
  • the quadrature-axis current is controlled by both the quadrature-axis voltage and the direct-axis voltage.
  • direct shaft current is the same. This means that there is coupling between the direct axis and the quadrature axis, and the two are not independent. Therefore, in the specific implementation, the direct axis current adjustment parameter Id1, the direct axis component Ud of the actual voltage, and the first decoupling amount A1 are obtained.
  • the quadrature axis voltage adjustment parameter Vgq is obtained according to the given voltage V_ref, the actual voltage U_inv_out_abc, the quadrature axis component Iq of the actual current, and the quadrature axis component Uq of the actual voltage.
  • This step includes: obtaining the quadrature axis component Iq_ref of the given current according to the given voltage V_ref and the actual voltage U_inv_out_abc, specifically, making a difference between the given voltage V_ref and the actual voltage U_inv_out_abc to obtain a voltage error value, and performing proportional integration on the voltage error value Adjust to obtain the quadrature axis component Iq_ref of the given current; obtain the quadrature axis current adjustment parameter Iq1 according to the quadrature axis component Iq_ref of the given current and the quadrature axis component Iq of the actual current, specifically, compare the quadrature axis component Iq_ref of the given current with The quadrature axis component Iq of the actual current is different to obtain the quadrature axis component error value; the quadrature axis component error value is adjusted proportionally and integrally to obtain the quadrature axis current adjustment parameter Iq1; according to the quadrature axi
  • the steps of obtaining the quadrature voltage adjustment parameter Vgq from the quadrature component Iq of the actual current and the quadrature component Uq of the actual voltage can be performed simultaneously or one after the other, and the execution order is not limited.
  • the step of obtaining the adjustment signal according to the direct-axis voltage adjustment parameter Vgd, the quadrature-axis voltage adjustment parameter Vgq and the positive sequence angle ⁇ pos of the energy storage converter specifically includes: based on the direct-axis voltage adjustment parameter Vgd, the quadrature-axis voltage adjustment parameter Vgq and The positive sequence angle ⁇ pos of the energy storage converter is subjected to inverse Park transformation to obtain an adjustment signal.
  • the adjustment signal includes the ⁇ -axis voltage adjustment amount U ⁇ and the ⁇ -axis voltage adjustment amount U ⁇ .
  • the step of adjusting the output parameters of the energy storage converter according to the above adjustment signal and the DC side voltage of the energy storage converter specifically includes: performing space vector pulse width modulation (SVPWM) based on the adjustment signal and the DC side voltage of the energy storage converter. , obtain a pulse signal; adjust the duty ratio of the power switch in the energy storage converter according to the above pulse signal, and then adjust the output parameters of the energy storage converter.
  • SVPWM space vector pulse width modulation
  • the method further includes: performing Clark transformation on the actual voltage U_inv_out_abc to obtain the ⁇ -axis voltage component V ⁇ and the ⁇ -axis voltage component V ⁇ ; The positive sequence angle ⁇ pos of the energy storage converter; Park transform is performed based on the ⁇ -axis voltage component V ⁇ , the ⁇ -axis voltage component V ⁇ and the positive sequence angle ⁇ pos to obtain the direct-axis component Ud of the actual voltage and the quadrature-axis component Uq of the actual voltage.
  • This embodiment further includes: performing Clark transformation on the above-mentioned actual current I_inv_out_abc to obtain the ⁇ -axis current component I ⁇ and ⁇ -axis current component I ⁇ ; The direct-axis component Id of the current and the quadrature-axis component Iq of the actual current.
  • the step of determining that the grid is powered off includes: judging whether the grid voltage satisfies the first preset condition, and judging whether the grid current satisfies the second preset condition; if the grid voltage satisfies the first preset condition and the grid current satisfies the second preset condition If at least one of the above is established, it is determined that the power grid is powered off; otherwise, it is determined that the power grid is not powered off.
  • the first preset condition is that the grid voltage is less than a first threshold (eg, 5V), and the grid current is less than a second threshold (eg, 5A).
  • FIG. 5 is a structural diagram of an on-grid and off-grid scheduling device according to an embodiment of the present disclosure. As shown in FIG. 5 , the device includes: a control module 10 , a parameter determination module 20 , an acquisition module 30 and an adjustment module 40 .
  • the control module 10 is configured to disconnect the load from the grid after it is determined that the power grid is powered off, and enable the energy storage converter to supply power to the load.
  • the grid-connected and off-grid dispatching device 3 obtains the grid voltage U_grid_abc and the grid current I_grid_abc, and the voltage U_load_abc and the current I_load_abc of the load 1 in real time.
  • the on-grid and off-grid scheduling device 3 determines that the grid is powered off, disconnects the first switch K1, and makes the first switch K1 off.
  • the second switch K2, the third switch K3, and the fourth switch K4 are all kept in the original state (for example, if the second switch K2, the third switch K3 have been closed, and the fourth switch K4 has been opened before the power failure;
  • the on-grid and off-grid scheduling device 3 keeps the fourth switch K4 off), and at the same time enables the energy storage unit 43 to supply power to the load through the AC/DC converter.
  • the parameter determination module 20 is used to determine the given power P_ref and the given voltage V_ref from the voltage and current of the load obtained last time before the power grid is powered off. After the load is disconnected from the grid, the given power P_ref and the given voltage V_ref are determined according to the voltage and current of the load obtained last time before the power grid is powered off, and the given power P_ref and given voltage V_ref are sent to the AC/DC converter. streamer.
  • the obtaining module 30 is configured to obtain the actual voltage U_inv_out_abc and the actual current I_inv_out_abc output by the energy storage converter.
  • the adjustment module 40 is configured to adjust the output parameters of the energy storage converter according to the given power P_ref, the given voltage V_ref, and the actual voltage U_inv_out_abc and actual current I_inv_out_abc output by the energy storage converter. According to the given power P_ref, the given voltage V_ref, and the actual voltage U_inv_out_abc and actual current output by the energy storage converter, double-loop PI adjustment is performed to control the output parameters of the AC/DC converter (ie, the above energy storage converter).
  • the control module 10 disconnects the load from the grid and enables the energy storage converter to supply power to the load; the parameter determination module 20 obtains the power from the last time before the power grid is powered off by the parameter determination module 20
  • the voltage and current of the load determine the given power P_ref and the given voltage V_ref; the actual voltage U_inv_out_abc and the actual current I_inv_out_abc output by the energy storage converter are obtained through the obtaining module 30; V_ref and the actual voltage U_inv_out_abc and actual current I_inv_out_abc output by the energy storage converter adjust the output parameters of the energy storage converter. In this way, the seamless switching from the grid-connected state to the off-grid state can be realized, the fluctuation of power quality during the switching process can be avoided, and the stability can be improved.
  • FIG. 6 is a structural diagram of a on-grid and off-grid scheduling apparatus according to another embodiment of the present disclosure.
  • the parameter determination module 20 includes: a first determination unit, It is used to calculate the product of the voltage, current and power factor of the load obtained for the last time before the power grid is powered off, and obtain the given power P_ref; the first determination unit is used to determine the voltage of the load obtained last time before the power grid is powered off as the given power. Constant voltage V_ref.
  • the adjustment module 40 includes: a first operation unit 401 , a second operation unit 402 , a third operation unit 403 , a fourth operation unit 404 and an adjustment unit 405 .
  • the first operation unit 401 is configured to calculate the actual power P_actual according to the actual voltage U_inv_out_abc and the actual current I_inv_out_abc output by the energy storage converter. Similar to calculating the given power P_ref, calculating the product of the actual voltage U_inv_out_abc output by the energy storage converter, the actual current I_inv_out_abc and the power factor is the actual power P_actual.
  • the second operation unit 402 is configured to obtain the direct-axis voltage adjustment parameter Vgd according to the given power P_ref, the actual power P_actual, the direct-axis component Id of the actual current, and the direct-axis component Ud of the actual voltage.
  • the second operation unit 402 is specifically configured to: obtain the direct-axis component Id_ref of the given current according to the given power P_ref and the actual power P_actual, and in specific implementation, make a difference between the given power P_ref and the actual power P_actual, Obtain the power error value, perform proportional integral adjustment on the power error value, and obtain the direct-axis component Id_ref of the given current; obtain the direct-axis current adjustment parameter Id1 according to the direct-axis component Id_ref of the given current and the direct-axis component Id of the actual current.
  • the difference between the direct-axis component Id_ref of the given current and the direct-axis component Id of the actual current is obtained to obtain the direct-axis component error value; the proportional-integral adjustment of the direct-axis component error value is performed to obtain the direct-axis current adjustment parameter Id1;
  • the axis current adjustment parameter Id1, the direct axis component Ud of the actual voltage, and the first decoupling amount A1 obtain the direct axis voltage adjustment parameter Vgd, and the first decoupling amount is obtained by decoupling the quadrature axis component of the actual current, and the quadrature axis
  • the current is controlled by both the quadrature axis voltage and the direct axis voltage, and the direct axis current is the same.
  • the direct axis is obtained according to the direct axis current adjustment parameter Id1, the direct axis component Ud of the actual voltage, and the first decoupling amount.
  • Vgd Ud-Id1+A1
  • A1 ⁇ *L*Iq, where ⁇ is the angular velocity of the alternating current, and L is the inductance.
  • the third operation unit 403 is configured to obtain the quadrature voltage adjustment parameter Vgq according to the given voltage V_ref, the actual voltage U_inv_out_abc, the quadrature component of the actual current, and the quadrature component Uq of the actual voltage.
  • the third operation unit 403 is specifically configured to: obtain the quadrature component Iq_ref of the given current according to the given voltage V_ref and the actual voltage U_inv_out_abc, and specifically, make the difference between the given voltage V_ref and the actual voltage U_inv_out_abc to obtain the voltage error value, Perform proportional integral adjustment on the voltage error value to obtain the quadrature axis component Iq_ref of the given current; obtain the quadrature axis current adjustment parameter Iq1 according to the quadrature axis component Iq_ref of the given current and the quadrature axis component of the actual current.
  • the quadrature axis component Iq_ref is the difference between the quadrature axis component of the actual current and the quadrature axis component of the actual current to obtain the quadrature axis component error value; the quadrature axis component error value is adjusted proportionally and integrally to obtain the quadrature axis current adjustment parameter Iq1; according to the quadrature axis current adjustment parameter Iq1, actual
  • the quadrature-axis voltage adjustment parameter Vgq is obtained from the quadrature-axis component Uq of the voltage and the second decoupling quantity A2.
  • the above-mentioned second decoupling quantity is obtained after decoupling the direct-axis component Id of the actual current. There is coupling between the axes, and the two are not independent.
  • the fourth operation unit 404 is configured to obtain the adjustment signal according to the above-mentioned direct-axis voltage adjustment parameter Vgd, quadrature-axis voltage adjustment parameter Vgq and the positive sequence angle ⁇ pos of the energy storage converter. Specifically, an inverse Park transformation is performed based on the direct-axis voltage adjustment parameter, the quadrature-axis voltage adjustment parameter Vgq and the positive sequence angle ⁇ pos of the energy storage converter to obtain the adjustment signal.
  • the adjustment unit 405 is used to adjust the output parameters of the energy storage converter according to the above-mentioned adjustment signal and the DC side voltage of the energy storage converter, and specifically, based on the adjustment signal and the DC side voltage of the energy storage converter, the space vector pulse width is adjusted. modulate to obtain a pulse signal; adjust the duty ratio of the power switch in the energy storage converter according to the above pulse signal, and then adjust the output parameters of the energy storage converter.
  • the above device further includes: a first transformation module 50 , which is used to perform Clark transform on the above-mentioned actual voltage U_inv_out_abc to obtain the ⁇ -axis voltage component V ⁇ and the ⁇ -axis voltage component V ⁇ ; phase-lock processing based on the ⁇ -axis voltage component V ⁇ and the ⁇ -axis voltage component V ⁇ to obtain the positive voltage of the energy storage converter.
  • a first transformation module 50 which is used to perform Clark transform on the above-mentioned actual voltage U_inv_out_abc to obtain the ⁇ -axis voltage component V ⁇ and the ⁇ -axis voltage component V ⁇
  • phase-lock processing based on the ⁇ -axis voltage component V ⁇ and the ⁇ -axis voltage component V ⁇ to obtain the positive voltage of the energy storage converter.
  • the sequence angle ⁇ pos based on the ⁇ -axis voltage component V ⁇ , the ⁇ -axis voltage component V ⁇ and the positive sequence angle ⁇ pos, the Park transform is performed to obtain the direct-axis component Ud of the actual voltage and the quadrature-axis component Uq of the actual voltage.
  • the above-mentioned apparatus further includes: a second transformation module 60, configured to perform Clark transformation on the above-mentioned actual current I_inv_out_abc to obtain the ⁇ -axis current component I ⁇ and the ⁇ -axis current component I ⁇ ; based on the ⁇ -axis current component I ⁇ , ⁇ -axis
  • the current component I ⁇ and the positive sequence angle ⁇ pos are subjected to Park transformation to obtain the direct-axis component Id of the actual current and the quadrature-axis component Iq of the actual current.
  • the above device further includes: a power failure determination module 70, configured to determine whether the grid voltage and/or grid current meet the preset conditions; If yes, it is determined that the power grid is powered off; if no, it is determined that the power grid is not powered off, and the above preset conditions are: the grid voltage is less than the first threshold (eg 5V); or, the grid current is less than the second threshold (eg 5A), at least One of them was established.
  • a power failure determination module 70 configured to determine whether the grid voltage and/or grid current meet the preset conditions; If yes, it is determined that the power grid is powered off; if no, it is determined that the power grid is not powered off, and the above preset conditions are: the grid voltage is less than the first threshold (eg 5V); or, the grid current is less than the second threshold (eg 5A), at least One of them was established.
  • This embodiment provides an on-grid scheduling method, which is applied to an energy storage air conditioner.
  • the structure of the energy storage air conditioner is shown in FIG. 2 .
  • a first switch K1 is provided between the load 1 and the power grid 2; wherein, the energy storage system 4 includes an air conditioning unit 41, a power generation unit 42 (eg photovoltaic panel), and an energy storage unit 43; wherein, the power generation unit 42 passes through a DC/AC converter
  • the air conditioning unit 41 is connected, and the energy storage unit 43 is connected to the load 1 through an AC/DC converter, so as to supply power to the load 1 when the load 1 is off-grid.
  • the AC/DC converter is an energy storage converter.
  • the load 1 may include a first load 11, a second load 12 and a third load 13, a second switch K2 is arranged between the first load 11 and the AC/DC converter, and a second switch K2 is arranged between the second load 12 and the AC/DC converter A third switch K3 is arranged therebetween, and a fourth switch K4 is arranged between the third load 13 and the AC/DC converter.
  • the grid-connected and off-grid dispatching device 3 obtains the grid voltage U_grid_abc and grid current I_grid_abc in real time, as well as the voltage U_load_abc and current I_load_abc of the load 1; when the grid voltage U_grid_abc is less than the first threshold (eg 0V) and/or the grid When the current I_grid_abc is less than the second threshold (for example, 0A), the on-grid and off-grid dispatching device 3 determines that the power grid is powered off, disconnects the first switch K1, and keeps the second switch K2, the third switch K3, and the fourth switch K4 in the original state.
  • the first threshold eg 0V
  • the second threshold for example, 0A
  • the off-grid dispatching device 3 keeps the fourth switch K4 open) , and at the same time make the energy storage unit 43 supply power to the load through the AC/DC converter.
  • the output parameter adjustment process includes:
  • S4 use the positive sequence angle ⁇ pos of the AC/DC converter to perform Park transformation on the ⁇ -axis voltage component V ⁇ , the ⁇ -axis voltage component V ⁇ , and the ⁇ -axis current component I ⁇ and the ⁇ -axis current component I ⁇ , respectively, to convert the direct axis of the actual voltage.
  • FIG. 7 is a waveform diagram of the C-phase current I_inv_out_C of the AC/DC converter according to an embodiment of the present disclosure, and the current unit is A. As shown in FIG. 4 , before 0.5s, the C-phase current I_inv_out_C gradually increases, indicating that the AC The electric energy provided by the /DC converter to the load gradually increases.
  • FIG. 8 is a waveform diagram of the C-phase current I_grid_C of the power grid according to an embodiment of the present disclosure, and the current unit is A.
  • the C-phase current I_grid_C of the power grid gradually decreases, and the electric energy provided for the load is Gradually reduce; completely power off at 0.5s, switch from grid-connected to off-grid state, stop supplying power to the local load, and the C-phase current of the grid drops to 0A.
  • FIG. 9 is a waveform diagram of a normalized load AC voltage signal U_load_ca and a C-phase current signal I_load_C according to an embodiment of the present disclosure. As shown in FIG. 9 , during the entire running time period, especially the 0.5s connection and off-grid At the switching point, the AC voltage signal U_load_ca and the C-phase current signal I_load_C remain stable without any change; that is, at the moment of off-grid, the voltage and current signals of the load switch seamlessly without fluctuation.
  • This embodiment provides an energy storage air conditioning system, which includes an energy storage inverter, and the energy storage air conditioning system includes the above-mentioned on-grid and off-grid scheduling device, which is used to realize seamless switching between on-grid and off-grid, and improve the stability of the system.
  • This embodiment provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the on-grid and off-grid scheduling method in the foregoing embodiment.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence, or the parts that make contributions to related technologies, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic disks , optical disc, etc., including several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Inverter Devices (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

提供一种并离网调度方法、装置及储能空调系统。该并离网调度方法包括:在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取所述储能换流器输出的实际电压和实际电流;根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。能够实现由并网状态向离网状态的无缝切换,避免切换过程中电能质量波动,提高稳定性。

Description

一种并离网调度方法、装置及储能空调系统
相关申请的交叉引用
本申请是以CN申请号为202011331089.1,申请日为2020年11月24日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电子电力技术领域,具体而言,涉及一种并离网调度方法、装置及储能空调系统。
背景技术
储能空调系统在目前已经得到大量应用,是一种很好的就地采集和消纳新能源的应用系统。但是其也存在一些不足,导致空调系统的应用受限制。由于设置了储能系统,在电网故障的情况下,由储能系统继续为负载提供电能支撑。图1为发明人知晓的相关技术中的并离网调度控制框图,该方案的负载并离网的过程中,因为换流器控制环的切换,导致切换过程存在一定的电能质量波动,严重的情况下,会导致负载跳闸或损坏设备,造成不好的影响。
发明内容
有鉴于此,本公开实施例提供一种并离网调度方法、装置及储能空调系统,以解决相关技术中并离网切换过程中电能质量波动的问题。
根据本公开的一个方面,提供了一种并离网调度方法,包括:
在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;
根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取所述储能换流器输出的实际电压和实际电流;
根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。
在一些实施例中,根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压的步骤包括:
计算电网掉电前最后一次获取的负载的电压、电流以及功率因数的乘积,获得给 定功率;
将电网掉电前最后一次获取的负载的电压确定为给定电压。
在一些实施例中,根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出的步骤包括:
根据所述储能换流器输出的实际电压和实际电流计算实际功率;
根据所述给定功率、所述实际功率、所述实际电流的直轴分量以及所述实际电压的直轴分量获得直轴电压调节参数;以及,根据所述给定电压、所述实际电压、所述实际电流的交轴分量以及所述实际电压的交轴分量获取交轴电压调节参数;
根据所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度获得调节信号;
根据所述调节信号和所述储能换流器的直流侧电压调节所述储能换流器的输出参数。
在一些实施例中,根据所述给定功率、所述实际功率、所述实际电流的直轴分量以及所述实际电压的直轴分量获得直轴电压调节参数的步骤包括:
根据所述给定功率和所述实际功率获得给定电流的直轴分量;
根据所述给定电流的直轴分量和所述实际电流的直轴分量获得直轴电流调节参数;
根据所述直轴电流调节参数、所述实际电压的直轴分量以及第一解耦量获得所述直轴电压调节参数;其中,所述第一解耦量由所述实际电流的交轴分量解耦后获得。
在一些实施例中,根据所述给定功率和所述实际功率获得给定电流的直轴分量的步骤包括:
将所述给定功率与所述实际功率作差,获得功率误差值;
对所述功率误差值进行比例积分调节,获得所述给定电流的直轴分量。
在一些实施例中,根据所述给定电流的直轴分量和所述实际电流的直轴分量获得直轴电流调节参数的步骤包括:
将所述给定电流的直轴分量与所述实际电流的直轴分量作差,获得直轴分量误差值;
对所述直轴分量误差值进行比例积分调节,获得所述直轴电流调节参数。
在一些实施例中,根据所述直轴电流调节参数、所述实际电压的直轴分量以及第一解耦量获得所述直轴电压调节参数的步骤所依据的公式为:
Vgd=Ud-Id1+A1;
其中,Vgd为所述直轴电压调节参数,Id1为直轴电流调节参数,Ud为所述实际电压的直轴分量,A1为所述第一解耦量。
在一些实施例中,根据所述给定电压、所述实际电压、所述实际电流的交轴分量以及所述实际电压的交轴分量获取交轴电压调节参数的步骤包括:
根据所述给定电压和所述实际电压获得给定电流的交轴分量;
根据所述给定电流的交轴分量和所述实际电流的交轴分量获得交轴电流调节参数;
根据所述交轴电流调节参数、所述实际电压的交轴分量以及第二解耦量获得所述交轴电压调节参数;其中,所述第二解耦量由所述实际电流的直轴分量解耦后获得。
在一些实施例中,根据所述给定电压和所述实际电压获得给定电流的交轴分量的步骤包括:
将所述给定电压与所述实际电压作差,获得电压误差值;
对所述电压误差值进行比例积分调节,获得所述给定电流的交轴分量。
在一些实施例中,根据所述给定电流的交轴分量和所述实际电流的交轴分量获得交轴电流调节参数的步骤包括:
将所述给定电流的交轴分量与所述实际电流的交轴分量作差,获得交轴分量误差值;
对所述交轴分量误差值进行比例积分调节,获得所述交轴电流调节参数。
在一些实施例中,根据所述交轴电流调节参数、所述实际电压的交轴分量以及第二解耦量获得所述交轴电压调节参数时,所依据的公式为:
Vgq=Uq+Iq1+A2;
其中,Vgq为所述交轴电压调节参数,Iq1为交轴电流调节参数,Uq为所述实际电压的交轴分量,A2为所述第二解耦量。
在一些实施例中,根据所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度获得调节信号的步骤包括:
基于所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度进行反Park变换,获得所述调节信号。
在一些实施例中,根据所述调节信号和所述储能换流器的直流侧电压调节所述储能换流器的输出参数的步骤包括:
基于所述调节信号和所述储能换流器的直流侧电压进行空间矢量脉宽调制,获得脉冲信号;
根据所述脉冲信号调节所述储能换流器中的功率开关占空比,进而调节所述储能换流器的输出参数。
在一些实施例中,获取所述储能换流器输出的实际电压和实际电流之后,所述方法还包括:
对所述实际电压进行Clark变换,获得α轴电压分量和β轴电压分量;
基于所述α轴电压分量和所述β轴电压分量进行锁相处理,获得所述储能换流器的正序角度;
基于所述α轴电压分量、所述β轴电压分量和所述正序角度进行Park变换,获得实际电压的直轴分量和实际电压的交轴分量。
在一些实施例中,所述方法还包括:
对所述实际电流进行Clark变换,获得α轴电流分量和β轴电流分量;
基于所述α轴电流分量、所述β轴电流分量和所述正序角度进行Park变换,获得实际电流的直轴分量和实际电流的交轴分量。
在一些实施例中,确定电网掉电的步骤包括:
判断电网电压是否满足第一预设条件,以及判断电网电流是否满足第二预设条件;
如果电网电压满足第一预设条件和电网电流满足第二预设条件中的至少之一成立,则确定所述电网掉电,否则确定所述电网未掉电。
在一些实施例中,所述第一预设条件为:所述电网电压小于第一阈值,所述第二预设条件为所述电网电流小于第二阈值。
本公开还提供一种并离网调度装置,应用于上述并离网调度方法,该装置包括:
控制模块,用于在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;
参数确定模块,用于根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;
获取模块,用于获取所述储能换流器输出的实际电压和实际电流;
调节模块,用于根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。
本公开还提供一种储能空调系统,包括储能换流器和上述并离网调度装置。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现上述并离网调度方法。
应用本公开的技术方案,在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取所述储能换流器输出的实际电压和实际电流;根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。这样可实现由并网状态向离网状态的无缝切换,避免切换过程中电能质量波动,提高稳定性。
附图说明
图1为相关技术中的并离网调度控制框图;
图2为根据本公开实施例的储能空调系统的结构图;
图3为根据本公开实施例的并离网调度方法的流程图;
图4为根据本公开实施例的输出参数调节的框图;
图5为根据本公开实施例的并离网调度装置的结构图;
图6为根据本公开另一实施例的并离网调度装置的结构图;
图7为根据本公开实施例的AC/DC换流器的C相电流I_inv_out_C的波形图;
图8为根据本公开实施例的电网的C相电流I_gird_C的波形图;
图9为根据本公开实施例的归一化后的负载的交流电压信号U_load_ca和C相电流信号I_load_C的波形图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两 种。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本公开实施例中可能采用术语第一、第二、第三等来描述开关,但这些开关不应限于这些术语。这些术语仅用来将不同开关区分开。例如,在不脱离本公开实施例范围的情况下,第一开关也可以被称为第二开关,类似地,第二开关也可以被称为第一开关。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于检测”。类似地,取决于语境,短语“如果确定”或“如果检测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当检测(陈述的条件或事件)时”或“响应于检测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者装置中还存在另外的相同要素。
下面结合附图详细说明本公开的可选实施例。
实施例1
本实施例提供一种并离网调度方法,应用于储能空调系统,图2为根据本公开实施例的储能空调系统的结构图,如图2所示,该储能空调系统包括:负载1、电网2、并离网调度装置3、储能系统4,负载1与电网2之间设置第一开关K1;其中,储能系统4包括空调机组41、发电单元42、储能单元43;其中,发电单元42通过DC/AC换流器连接空调机组41,储能单元43通过AC/DC换流器连接负载1,用于在负载1离网时,为负载1供电。该AC/DC换流器即为储能换流器。负载1可以包括第一负载11、第二负载12和第三负载13,第一负载11与AC/DC换流器之间设置第二开关K2,第二负载12与AC/DC换流器之间设置第三开关K3,第三负载13与AC/DC换流器之间设置第四开关K4。
图3为根据本公开实施例的并离网调度方法的流程图,如图3所示,该方法包括:
S101,在确定电网掉电后,使负载离网,并使储能换流器为负载供电。
在负载并网状态下,并离网调度装置3实时获取电网电压U_grid_abc和电网电流I_grid_abc,以及,负载1的电压U_load_abc和电流I_load_abc。当电网电压U_grid_abc小于第一阈值(例如0V)和/或电网电流I_grid_abc小于第二阈值(例如0A)时,并离网调度装置3确定电网掉电,使第一开关K1断开,并使第二开关K2、第三开关K3、第四开关K4均保持原状态(例如,如果掉点前第二开关K2,第三开关K3已经闭合,第四开关K4断开;电网发生断电故障期间,并离网调度装置3使第四开关K4继续保持断开),同时使储能单元43通过AC/DC换流器为负载供电。
S102,根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取储能换流器输出的实际电压和实际电流。
在使负载离网后,根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压,并且将给定功率和给定电压下发至AC/DC换流器。
S103,根据给定功率、给定电压以及储能换流器输出的实际电压和实际电流调节储能换流器的输出参数。
根据给定功率、给定电压以及储能换流器输出的实际电压和实际电流进行双环PI调节,控制AC/DC换流器的输出参数。
本实施例的并离网调度方法,在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取所述储能换流器输出的实际电压和实际电流;根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。这样可实现由并网状态向离网状态的无缝切换,避免切换过程中电能质量波动,提高稳定性。
实施例2
本实施例提供另一种并离网调度方法,功率、电流、电压、功率因数之前存在特定的数量关系,在本实施例中,上述步骤S102,包括:计算电网掉电前最后一次获取的负载的电压U_load_abc、电流I_load_abc以及功率因数的乘积,获得给定功率P_ref;将电网掉电前最后一次获取的负载的电压确定为给定电压V_ref。
图4为根据本公开实施例的输出参数调节的框图,为了实现双环PI调节,以获得精确的调节效果,如图4所示,根据给定功率P_ref、给定电压V_ref以及储能换流器输出的实际电压和实际电流调节储能换流器的输出参数的步骤具体包括:根据所 述储能换流器输出的实际电压和实际电流计算实际功率;根据所述给定功率、所述实际功率、所述实际电流的直轴分量以及所述实际电压的直轴分量获得直轴电压调节参数,以及根据所述给定电压、所述实际电压、所述实际电流的交轴分量以及所述实际电压的交轴分量获取交轴电压调节参数;根据所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度获得调节信号;根据所述调节信号和所述储能换流器的直流侧电压调节所述储能换流器的输出参数。
根据储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc计算实际功率P_actual。与计算给定功率P_ref类似,计算储能换流器输出的实际电压U_inv_out_abc、实际电流I_inv_out_abc以及功率因数的乘积,即为实际功率P_actual。
根据给定功率P_ref、实际功率P_actual、实际电流的直轴分量Id以及实际电压的直轴分量Ud获得直轴电压调节参数Vgd。该步骤包括:根据给定功率P_ref和实际功率P_actual获得给定电流的直轴分量Id_ref,具体实施时,将给定功率P_ref与实际功率P_actual作差,获得功率误差值,对功率误差值进行比例积分调节,获得给定电流的直轴分量Id_ref;根据给定电流的直轴分量Id_ref和实际电流的直轴分量Id获得直轴电流调节参数Id1,具体地,将给定电流的直轴分量Id_ref与实际电流的直轴分量Id作差,获得直轴分量误差值;对直轴分量误差值进行比例积分调节,获得直轴电流调节参数Id1;根据直轴电流调节参数Id1、实际电压的直轴分量Ud以及第一解耦量A1获得直轴电压调节参数Vgd,上述第一解耦量A1由实际电流的交轴分量Iq解耦后获得,交轴的电流既受交轴电压控制还受直轴电压控制,直轴电流同理。这就说明直轴和交轴之间有耦合,两者不是独立的,因此,在具体实施时,根据直轴电流调节参数Id1、实际电压的直轴分量Ud以及第一解耦量A1获得直轴电压调节参数Vgd的步骤所依据的公式为:Vgd=Ud-Id1+A1;A1=ω*L*Iq,其中,ω为交流电的角速度,L为电感。
根据给定电压V_ref、实际电压U_inv_out_abc、实际电流的交轴分量Iq以及实际电压的交轴分量Uq获取交轴电压调节参数Vgq。该步骤包括:根据给定电压V_ref和实际电压U_inv_out_abc获得给定电流的交轴分量Iq_ref,具体地,将给定电压V_ref与实际电压U_inv_out_abc作差,获得电压误差值,对电压误差值进行比例积分调节,获得给定电流的交轴分量Iq_ref;根据给定电流的交轴分量Iq_ref和实际电流的交轴分量Iq获得交轴电流调节参数Iq1,具体地,将给定电流的交轴分量Iq_ref 与实际电流的交轴分量Iq作差,获得交轴分量误差值;对交轴分量误差值进行比例积分调节,获得交轴电流调节参数Iq1;根据交轴电流调节参数Iq1、实际电压的交轴分量Uq以及第二解耦量A2获得交轴电压调节参数Vgq,上述第二解耦量A2由实际电流的直轴分量Id解耦后获得,根据上文所述,直轴和交轴之间有耦合,两者不是独立的,因此,根据交轴电流调节参数Iq1、实际电压的交轴分量Uq以及第二解耦量A2获得交轴电压调节参数Vgq时,所依据的公式为:Vgq=Uq+Iq1+A2;A2=ω*L*Id,其中,ω为交流电的角速度,L为电感。
需要说明的是,根据给定功率P_ref、实际功率P_actual、实际电流的直轴分量Id以及实际电压的直轴分量Ud获得直轴电压调节参数Vgd的步骤和根据给定电压V_ref、实际电压U_inv_out_abc、实际电流的交轴分量Iq以及实际电压的交轴分量Uq获取交轴电压调节参数Vgq的步骤的执行可以同时进行,也可以一先一后执行,执行顺序不作限定。
根据所述直轴电压调节参数Vgd、交轴电压调节参数Vgq和储能换流器的正序角度θpos获得调节信号的步骤具体包括:基于直轴电压调节参数Vgd、交轴电压调节参数Vgq和储能换流器的正序角度θpos进行反Park变换,获得调节信号,调节信号中包括α轴电压调节量Uα和β轴电压调节量Uβ。
根据上述调节信号和储能换流器的直流侧电压调节储能换流器的输出参数的步骤具体包括:基于调节信号和储能换流器的直流侧电压进行空间矢量脉宽调制(SVPWM),获得脉冲信号;根据上述脉冲信号调节储能换流器中的功率开关占空比,进而调节所述储能换流器的输出参数。
由于上述步骤中,需要用到储能换流器的正序角度θpos、储能换流器的实际电流的直轴分量、交轴分量,因此,获取储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc之后,上述方法还包括:对上述实际电压U_inv_out_abc进行Clark变换,获得α轴电压分量Vα和β轴电压分量Vβ;基于α轴电压分量Vα和β轴电压分量Vβ进行锁相处理,获得储能换流器的正序角度θpos;基于α轴电压分量Vα、β轴电压分量Vβ和正序角度θpos进行Park变换,获得实际电压的直轴分量Ud和实际电压的交轴分量Uq。
本实施例还包括:对上述实际电流I_inv_out_abc进行Clark变换,获得α轴电流分量Iα和β轴电流分量Iβ;基于α轴电流分量Iα、β轴电流分量Iβ和正序角度θpos进行Park变换,获得实际电流的直轴分量Id和实际电流的交轴分量Iq。
在电网掉电之前,电网电压和电网电流会逐渐减小,以此确定电网掉电。确定电网掉电的步骤包括:判断电网电压是否满足第一预设条件,以及判断电网电流是否满足第二预设条件;如果电网电压满足第一预设条件和电网电流满足第二预设条件中的至少之一成立,确定所述电网掉电,否则确定所述电网未掉电。第一预设条件为:电网电压小于第一阈值(例如5V),电网电流小于第二阈值(例如5A)。
实施例3
本实施例提供一种并离网调度装置,应用于上述并离网调度方法。图5为根据本公开实施例的并离网调度装置的结构图,如图5所示,该装置包括:控制模块10、参数确定模块20、获取模块30和调节模块40。
控制模块10用于在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电。在负载并网状态下,并离网调度装置3实时获取电网电压U_grid_abc和电网电流I_grid_abc,以及,负载1的电压U_load_abc和电流I_load_abc。当电网电压U_grid_abc小于第一阈值(例如0V)和/或电网电流I_grid_abc小于第二阈值(例如0A)时,并离网调度装置3确定电网掉电,使第一开关K1断开,并使第二开关K2、第三开关K3、第四开关K4均保持原状态(例如,如果掉电前第二开关K2,第三开关K3已经闭合,第四开关K4断开;电网发生断电故障期间,并离网调度装置3使第四开关K4继续保持断开),同时使储能单元43通过AC/DC换流器为负载供电。
参数确定模块20用于电网掉电前最后一次获取的负载的电压和电流确定给定功率P_ref和给定电压V_ref。在使负载离网后,根据电网掉电前最后一次获取的负载的电压和电流确定给定功率P_ref和给定电压V_ref,并且将给定功率P_ref和给定电压V_ref下发至AC/DC换流器。
获取模块30用于获取储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc。
调节模块40用于根据给定功率P_ref、给定电压V_ref以及所述储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc调节所述储能换流器的输出参数。根据给定功率P_ref、给定电压V_ref以及储能换流器输出的实际电压U_inv_out_abc和实际电流进行双环PI调节,控制AC/DC换流器(即上述储能换流器)的输出参数。
本实施例的并离网调度装置,通过控制模块10在确定电网掉电后,使负载离网,并使储能换流器为负载供电;通过参数确定模块20根据电网掉电前最后一次获取的 负载的电压和电流确定给定功率P_ref和给定电压V_ref;通过获取模块30获取储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc;通过调节模块40根据给定功率P_ref、给定电压V_ref以及储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc调节所述储能换流器的输出参数。这样可实现由并网状态向离网状态的无缝切换,避免切换过程中电能质量波动,提高稳定性。
实施例4
本实施例提供另一种并离网调度装置,图6为根据本公开另一实施例的并离网调度装置的结构图,如图6所示:参数确定模块20包括:第一确定单元,用于计算电网掉电前最后一次获取的负载的电压、电流以及功率因数的乘积,获得给定功率P_ref;第一确定单元,用于将电网掉电前最后一次获取的负载的电压确定为给定电压V_ref。
在一些实施例中,调节模块40包括:第一运算单元401、第二运算单元402、第三运算单元403、第四运算单元404和调节单元405。
第一运算单元401用于根据储能换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc计算实际功率P_actual。与计算给定功率P_ref类似,计算储能换流器输出的实际电压U_inv_out_abc、实际电流I_inv_out_abc以及功率因数的乘积,即为实际功率P_actual。
第二运算单元402用于根据给定功率P_ref、实际功率P_actual、实际电流的直轴分量Id以及实际电压的直轴分量Ud获得直轴电压调节参数Vgd。在一些实施例中,第二运算单元402具体用于:根据给定功率P_ref和实际功率P_actual获得给定电流的直轴分量Id_ref,具体实施时,将给定功率P_ref与实际功率P_actual作差,获得功率误差值,对功率误差值进行比例积分调节,获得给定电流的直轴分量Id_ref;根据给定电流的直轴分量Id_ref和实际电流的直轴分量Id获得直轴电流调节参数Id1,具体地,将给定电流的直轴分量Id_ref与实际电流的直轴分量Id作差,获得直轴分量误差值;对直轴分量误差值进行比例积分调节,获得直轴电流调节参数Id1;根据直轴电流调节参数Id1、实际电压的直轴分量Ud以及第一解耦量A1获得直轴电压调节参数Vgd,上述第一解耦量由所述实际电流的交轴分量解耦后获得,交轴的电流既受交轴电压控制还受直轴电压控制,直轴电流同理。这就说明直轴和交轴之间有耦合,两者不是独立的,因此,在具体实施时,根据直轴电流调节参数Id1、实际电压的直轴分量Ud以及第一解耦量获得直轴电压调节参数Vgd时,所依据的公式为:Vgd=Ud-Id1+A1;A1=ω*L*Iq,其中,ω为交流电的角速度,L为电感。
第三运算单元403用于根据给定电压V_ref、实际电压U_inv_out_abc、实际电流的交轴分量以及实际电压的交轴分量Uq获取交轴电压调节参数Vgq。第三运算单元403具体用于:根据给定电压V_ref和实际电压U_inv_out_abc获得给定电流的交轴分量Iq_ref,具体地,将所述给定电压V_ref与实际电压U_inv_out_abc作差,获得电压误差值,对电压误差值进行比例积分调节,获得给定电流的交轴分量Iq_ref;根据给定电流的交轴分量Iq_ref和实际电流的交轴分量获得交轴电流调节参数Iq1,具体地,将给定电流的交轴分量Iq_ref与实际电流的交轴分量作差,获得交轴分量误差值;对交轴分量误差值进行比例积分调节,获得交轴电流调节参数Iq1;根据交轴电流调节参数Iq1、实际电压的交轴分量Uq以及第二解耦量A2获得交轴电压调节参数Vgq,上述第二解耦量由实际电流的直轴分量Id解耦后获得,根据上文所述,直轴和交轴之间有耦合,两者不是独立的,因此,根据交轴电流调节参数Iq1、实际电压的交轴分量Uq以及第二解耦量获得交轴电压调节参数Vgq时,所依据的公式为:Vgq=Uq+Iq1+A2;A2=ω*L*Id,其中,ω为交流电的角速度,L为电感。
第四运算单元404用于根据上述直轴电压调节参数Vgd、交轴电压调节参数Vgq和储能换流器的正序角度θpos获得调节信号。具体地,基于直轴电压调节参数、交轴电压调节参数Vgq和储能换流器的正序角度θpos进行反Park变换,获得调节信号。
调节单元405用于根据上述调节信号和储能换流器的直流侧电压调节储能换流器的输出参数,具体地,基于调节信号和储能换流器的直流侧电压进行空间矢量脉宽调制,获得脉冲信号;根据上述脉冲信号调节储能换流器中的功率开关占空比,进而调节所述储能换流器的输出参数。
由于上述步骤中,需要用到储能换流器的正序角度θpos、储能换流器的实际电流的直轴分量Id、交轴分量Iq,因此,上述装置还包括:第一变换模块50,用于对上述实际电压U_inv_out_abc进行Clark变换,获得α轴电压分量Vα和β轴电压分量Vβ;基于α轴电压分量Vα和β轴电压分量Vβ进行锁相处理,获得储能换流器的正序角度θpos;基于α轴电压分量Vα、β轴电压分量Vβ和正序角度θpos进行Park变换,获得实际电压的直轴分量Ud和实际电压的交轴分量Uq。
在一些实施例中,上述装置还包括:第二变换模块60,用于对上述实际电流I_inv_out_abc进行Clark变换,获得α轴电流分量Iα和β轴电流分量Iβ;基于α轴电流分量Iα、β轴电流分量Iβ和正序角度θpos进行Park变换,获得实际电流的直轴分量Id和实际电流的交轴分量Iq。
在电网掉电之前,电网电压和电网电流会逐渐减小,因此在一些实施例中,上述装置还包括:掉电确定模块70,用于判断电网电压和/或电网电流是否满足预设条件;如果是,则确定电网掉电;如果否,则确定电网未掉电,上预设条件为:电网电压小于第一阈值(例如5V);或者,电网电流小于第二阈值(例如5A),至少其中之一成立。
实施例5
本实施例提供一种并离网调度方法,应用于储能空调,该储能空调的结构如图2所示,包括:负载1、电网2、并离网调度装置3、储能系统4,负载1与电网2之间设置第一开关K1;其中,储能系统4包括空调机组41、发电单元42(例如光伏板)、储能单元43;其中,发电单元42通过DC/AC换流器连接空调机组41,储能单元43通过AC/DC换流器连接负载1,用于在负载1离网时,为负载1供电。该AC/DC换流器即为储能换流器。负载1可以包括第一负载11、第二负载12和第三负载13,第一负载11与AC/DC换流器之间设置第二开关K2,第二负载12与AC/DC换流器之间设置第三开关K3,第三负载13与AC/DC换流器之间设置第四开关K4。
在负载并网状态下,并离网调度装置3实时获取电网电压U_grid_abc和电网电流I_grid_abc,以及,负载1的电压U_load_abc和电流I_load_abc;当电网电压U_grid_abc小于第一阈值(例如0V)和/或电网电流I_grid_abc小于第二阈值(例如0A)时,并离网调度装置3确定电网掉电,使第一开关K1断开,并使第二开关K2、第三开关K3、第四开关K4均保持原状态(例如,如果掉点前第二开关K2,第三开关K3已经闭合,第四开关K4断开;电网发生断电故障期间,并离网调度装置3使第四开关K4继续保持断开),同时使储能单元43通过AC/DC换流器为负载供电。
控制AC/DC换流器为负载供电后,根据掉电前最后一次获取的负载1的电压U_load_abc和电流I_load_abc,确定给定功率P_ref和给定电压V_ref,并且,获取AC/DC换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc,根据给定功率P_ref和给定电压V_ref,以及AC/DC换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc调节AC/DC换流器的输出参数。
如上文中提及的图4所示,输出参数调节过程包括:
S1,通过硬件采样电路获取AC/DC换流器输出的实际电压U_inv_out_abc和实际电流I_inv_out_abc,即AC/DC换流器输出的三相电压Vab、Vbc、Vca,三相电流Ia、Ib、Ic;
S2,对上述三相电压Vab、Vbc、Vca和三相电流Ia、Ib、Ic分别进行变换Clark变换,转换为α轴电压分量Vα、β轴电压分量Vβ以及α电流分量Iα、β轴电流分量Iβ;
S3,对α轴电压分量Vα和β轴电压分量Vβ进行PLL锁相处理,得到AC/DC换流器的正序角度θpos;
S4,利用AC/DC换流器的正序角度θpos,对α轴电压分量Vα、β轴电压分量Vβ,以及α电流分量Iα、β轴电流分量Iβ分别进行Park变换,转换实际电压的直轴分量Ud、实际电压的交轴分量Uq以及实际电流的直轴分量Id、实际电流的交轴分量Iq;
S5,将并离网调度装置下发的给定功率P_ref与获取的实际功率P_actual两者进行算术减法,得到功率误差值;将功率误差值进行PI调节得到给定电流的直轴分量Id_ref;
S6,将给定电流的直轴分量Id_ref和AC/DC换流器输出的实际电流的直轴分量Id,两者进行算术减法,得到直轴误差值,然后进行PI调节,得到直轴电流调节参数Id1;
S7,将并离网调度装置下发的给定电压V_ref与AC/DC检测的实际电压U_inv_out_abc,两者进行算术减法,得到电压误差值;将电压误差值进行PI调节,得到给定电流的直轴分量Iq_ref;
S8,将给定电流的直轴分量Iq_ref和AC/DC换流器输出的实际电流的交轴分量Iq,两者进行算术减法,得到交轴误差值,然后进行PI调节,得到交轴电流调节参数Iq1;
S9,对AC/DC换流器输出的实际电流的交轴分量Iq进行解耦,计算第一解耦量A1;其中,A1=ω*L*Iq;
S10,根据公式Vgd=Ud-Id1+A1计算直轴电压调节参数Vgd;
S11,对AC/DC换流器输出的实际电流的直轴分量Id进行解耦,计算第二解耦量A2;其中,A2=ω*L*Id;
S12,根据公式Vgq=Ud+Iq1+A2,计算交轴电压调节参数Vgq;
S13,将直轴电压调节参数Vgd和交轴电压调节参数Vgq利用AC/DC换流器的正序角度θpos进行反Park变换,得到调节信号,其中,调节信号中包括α轴电压调节量Uα和β轴电压调节量Uβ;
S14,将α轴电压调节量Uα和β轴电压调节量Uβ传输至SVPWM模块,SVPWM 模块结合AC/DC换流器的直流侧电压Ud,进行电压空间矢量调制处理,生成多路脉冲控制信号;
S15,根据所述六路脉冲控制信号控制AC/DC换流器的多个功率开关的通断,以调节AC/DC换流器的输出参数。
图7为根据本公开实施例的AC/DC换流器的C相电流I_inv_out_C的波形图,电流单位为A,如图4所示,在0.5s之前,C相电流I_inv_out_C逐渐增大,说明AC/DC换流器为负载提供的电能逐渐增大。
图8为根据本公开实施例的电网的C相电流I_gird_C的波形图,电流单位为A,如图5所示,在0.5s之前,电网的C相电流I_gird_C逐渐减小,为负载提供的电能逐渐减小;在0.5s处彻底断电,由并网转换为离网状态,停止为本地负载供电,电网的C相电流降为0A。
图9为根据本公开实施例的归一化后的负载的交流电压信号U_load_ca和C相电流信号I_load_C的波形图,如图9所示,在整个运行时间段,特别是0.5s的并离网切换点,交流电压信号U_load_ca和C相电流信号I_load_C没有发生任何变化,保持稳定;即在离网瞬间,负载的电压及电流信号实现了无缝切换,没有波动。
实施例6
本实施例提供一种储能空调系统,其中包括储能换流器,所述储能空调系统包括上述并离网调度装置,用于实现并离网无缝切换,提高系统的稳定性。
实施例7
本实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例中的并离网调度方法。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者 网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (20)

  1. 一种并离网调度方法,包括:
    在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;
    根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;以及,获取所述储能换流器输出的实际电压和实际电流;
    根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。
  2. 根据权利要求1所述的方法,其中,根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压的步骤包括:
    计算电网掉电前最后一次获取的负载的电压、电流以及功率因数的乘积,获得给定功率;
    将电网掉电前最后一次获取的负载的电压确定为给定电压。
  3. 根据权利要求1所述的方法,其中,根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数的步骤包括:
    根据所述储能换流器输出的实际电压和实际电流计算实际功率;
    根据所述给定功率、所述实际功率、所述实际电流的直轴分量以及所述实际电压的直轴分量获得直轴电压调节参数,以及根据所述给定电压、所述实际电压、所述实际电流的交轴分量以及所述实际电压的交轴分量获取交轴电压调节参数;
    根据所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度获得调节信号;
    根据所述调节信号和所述储能换流器的直流侧电压调节所述储能换流器的输出参数。
  4. 根据权利要求3所述的方法,其中,根据所述给定功率、所述实际功率、所述实际电流的直轴分量以及所述实际电压的直轴分量获得直轴电压调节参数的步骤包括:
    根据所述给定功率和所述实际功率获得给定电流的直轴分量;
    根据所述给定电流的直轴分量和所述实际电流的直轴分量获得直轴电流调节参数;
    根据所述直轴电流调节参数、所述实际电压的直轴分量以及第一解耦量获得所述直轴电压调节参数;其中,所述第一解耦量由所述实际电流的交轴分量解耦后获得。
  5. 根据权利要求4所述的方法,其中,根据所述给定功率和所述实际功率获得给定电流的直轴分量的步骤包括:
    将所述给定功率与所述实际功率作差,获得功率误差值;
    对所述功率误差值进行比例积分调节,获得所述给定电流的直轴分量。
  6. 根据权利要求4所述的方法,其中,根据所述给定电流的直轴分量和所述实际电流的直轴分量获得直轴电流调节参数的步骤包括:
    将所述给定电流的直轴分量与所述实际电流的直轴分量作差,获得直轴分量误差值;
    对所述直轴分量误差值进行比例积分调节,获得所述直轴电流调节参数。
  7. 根据权利要求4所述的方法,其中,根据所述直轴电流调节参数、所述实际电压的直轴分量以及第一解耦量获得所述直轴电压调节参数的步骤所依据的公式为:
    Vgd=Ud-Id1+A1;
    其中,Vgd为所述直轴电压调节参数,Id1为直轴电流调节参数,Ud为所述实际电压的直轴分量,A1为所述第一解耦量。
  8. 根据权利要求3所述的方法,其中,根据所述给定电压、所述实际电压、所述实际电流的交轴分量以及所述实际电压的交轴分量获取交轴电压调节参数的步骤包括:
    根据所述给定电压和所述实际电压获得给定电流的交轴分量;
    根据所述给定电流的交轴分量和所述实际电流的交轴分量获得交轴电流调节参数;
    根据所述交轴电流调节参数、所述实际电压的交轴分量以及第二解耦量获得所述交轴电压调节参数;其中,所述第二解耦量由所述实际电流的直轴分量解耦后获得。
  9. 根据权利要求8所述的方法,其中,根据所述给定电压和所述实际电压获得给定电流的交轴分量的步骤包括:
    将所述给定电压与所述实际电压作差,获得电压误差值;
    对所述电压误差值进行比例积分调节,获得所述给定电流的交轴分量。
  10. 根据权利要求8所述的方法,其中,根据所述给定电流的交轴分量和所述实际电流的交轴分量获得交轴电流调节参数的步骤包括:
    将所述给定电流的交轴分量与所述实际电流的交轴分量作差,获得交轴分量误差值;
    对所述交轴分量误差值进行比例积分调节,获得所述交轴电流调节参数。
  11. 根据权利要求8所述的方法,其中,根据所述交轴电流调节参数、所述实际电压的交轴分量以及第二解耦量获得所述交轴电压调节参数的步骤所依据的公式为:
    Vgq=Uq+Iq1+A2;
    其中,Vgq为所述交轴电压调节参数,Iq1为交轴电流调节参数,Uq为所述实际电压的交轴分量,A2为所述第二解耦量。
  12. 根据权利要求3所述的方法,其中,根据所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度获得调节信号的步骤包括:
    基于所述直轴电压调节参数、所述交轴电压调节参数和所述储能换流器的正序角度进行反Park变换,获得所述调节信号。
  13. 根据权利要求3所述的方法,其中,根据所述调节信号和所述储能换流器的直流侧电压调节所述储能换流器的输出参数的步骤包括:
    基于所述调节信号和所述储能换流器的直流侧电压进行空间矢量脉宽调制,获得脉冲信号;
    根据所述脉冲信号调节所述储能换流器中的功率开关占空比,进而调节所述储能换流器的输出参数。
  14. 根据权利要求1所述的方法,其中,获取所述储能换流器输出的实际电压和实际电流之后,所述方法还包括:
    对所述实际电压进行Clark变换,获得α轴电压分量和β轴电压分量;
    基于所述α轴电压分量和所述β轴电压分量进行锁相处理,获得所述储能换流器的正序角度;
    基于所述α轴电压分量、所述β轴电压分量和所述正序角度进行Park变换,获得实际电压的直轴分量和实际电压的交轴分量。
  15. 根据权利要求14所述的方法,还包括:
    对所述实际电流进行Clark变换,获得α轴电流分量和β轴电流分量;
    基于所述α轴电流分量、所述β轴电流分量和所述正序角度进行Park变换,获得实际电流的直轴分量和实际电流的交轴分量。
  16. 根据权利要求1所述的方法,其中,确定电网掉电的步骤包括:
    判断电网电压是否满足第一预设条件,以及判断电网电流是否满足第二预设条件;
    如果电网电压满足第一预设条件和电网电流满足第二预设条件中的至少之一成立,则确定所述电网掉电,否则确定所述电网未掉电。
  17. 根据权利要求16所述的方法,其中,所述第一预设条件为:所述电网电压小于第一阈值,所述第二预设条件为所述电网电流小于第二阈值。
  18. 一种并离网调度装置,应用于权利要求1至17中任一项所述的并离网调度方法,其中,所述装置包括:
    控制模块,用于在确定电网掉电后,使负载离网,并使储能换流器为所述负载供电;
    参数确定模块,用于根据电网掉电前最后一次获取的负载的电压和电流确定给定功率和给定电压;
    获取模块,用于获取所述储能换流器输出的实际电压和实际电流;
    调节模块,用于根据所述给定功率、所述给定电压以及所述储能换流器输出的实际电压和实际电流调节所述储能换流器的输出参数。
  19. 一种储能空调系统,包括储能换流器和权利要求18所述的并离网调度装置。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1至17中任一项所述的方法。
PCT/CN2021/117899 2020-11-24 2021-09-13 一种并离网调度方法、装置及储能空调系统 WO2022110977A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021389718A AU2021389718A1 (en) 2020-11-24 2021-09-13 Method, apparatus, and energy-storage air conditioning system for on-grid and off-grid dispatch
EP21896481.5A EP4167418A4 (en) 2020-11-24 2021-09-13 ENERGY STORAGE AIR CONDITIONING METHOD, APPARATUS AND SYSTEM FOR ON-GRID AND OFF-GRID DISTRIBUTION
US18/016,187 US12119645B2 (en) 2020-11-24 2021-09-13 Method and device for on-grid and off-grid dispatch, and energy storage air-conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011331089.1 2020-11-24
CN202011331089.1A CN112383055B (zh) 2020-11-24 2020-11-24 一种并离网调度方法、装置及储能空调系统

Publications (1)

Publication Number Publication Date
WO2022110977A1 true WO2022110977A1 (zh) 2022-06-02

Family

ID=74588026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117899 WO2022110977A1 (zh) 2020-11-24 2021-09-13 一种并离网调度方法、装置及储能空调系统

Country Status (5)

Country Link
US (1) US12119645B2 (zh)
EP (1) EP4167418A4 (zh)
CN (1) CN112383055B (zh)
AU (1) AU2021389718A1 (zh)
WO (1) WO2022110977A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776130A (zh) * 2022-12-29 2023-03-10 北京索英电气技术股份有限公司 并离网切换方法、储能变流器、储能系统和电力系统
CN116001626A (zh) * 2022-12-19 2023-04-25 华北电力大学 一种充电站的控制方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383055B (zh) 2020-11-24 2022-12-09 珠海格力电器股份有限公司 一种并离网调度方法、装置及储能空调系统
CN118572698A (zh) * 2024-07-31 2024-08-30 国网浙江省电力有限公司诸暨市供电公司 用于智慧社区分布式能源的中心智能调度方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028271A1 (en) * 2014-07-22 2016-01-28 Rick Smith Grid tie charge controller
CN110212580A (zh) * 2019-06-18 2019-09-06 深圳市尚科新能源有限公司 一种适用于太阳能储能发电系统的孤岛控制方法及系统
CN111371340A (zh) * 2018-12-26 2020-07-03 北京天诚同创电气有限公司 储能变流器离网输出电压的控制方法、装置、设备及介质
CN112383055A (zh) * 2020-11-24 2021-02-19 珠海格力电器股份有限公司 一种并离网调度方法、装置及储能空调系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2989937C (en) * 2015-07-02 2019-03-12 Dynapower Company Llc Islanding a plurality of grid tied power converters
CN105006841B (zh) * 2015-07-30 2017-04-19 盐城工学院 一种三相并网逆变器的无缝并网控制器及其控制方法
US20170286882A1 (en) * 2016-04-01 2017-10-05 Demand Energy Networks, Inc. Control systems and methods for economical optimization of an electrical system
CN106786777B (zh) * 2017-02-23 2019-09-03 东南大学 一种基于内模控制的微电网并离网平滑切换控制方法
CN107994610A (zh) * 2017-12-13 2018-05-04 广州智光电气股份有限公司 一种储能系统的控制方法和装置
CN109980676B (zh) * 2017-12-28 2021-06-25 北京天诚同创电气有限公司 微电网控制系统及微电网
CN109103935B (zh) * 2018-09-30 2021-08-31 中国科学院广州能源研究所 一种三相储能变流器的离并网无缝切换控制方法
CN109638895A (zh) 2019-02-01 2019-04-16 阳光电源股份有限公司 一种储能逆变器并/离网切换控制方法和微网系统
CN110943486B (zh) * 2019-12-25 2023-02-21 深圳市永联科技股份有限公司 一种储能逆变器并离网及离并网无缝切换的控制方法
CN111711196B (zh) * 2020-07-03 2021-08-13 浙江大学 一种交直流混合配电网运行模式无缝切换控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160028271A1 (en) * 2014-07-22 2016-01-28 Rick Smith Grid tie charge controller
CN111371340A (zh) * 2018-12-26 2020-07-03 北京天诚同创电气有限公司 储能变流器离网输出电压的控制方法、装置、设备及介质
CN110212580A (zh) * 2019-06-18 2019-09-06 深圳市尚科新能源有限公司 一种适用于太阳能储能发电系统的孤岛控制方法及系统
CN112383055A (zh) * 2020-11-24 2021-02-19 珠海格力电器股份有限公司 一种并离网调度方法、装置及储能空调系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4167418A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116001626A (zh) * 2022-12-19 2023-04-25 华北电力大学 一种充电站的控制方法及装置
CN116001626B (zh) * 2022-12-19 2023-09-12 华北电力大学 一种充电站的控制方法及装置
CN115776130A (zh) * 2022-12-29 2023-03-10 北京索英电气技术股份有限公司 并离网切换方法、储能变流器、储能系统和电力系统
CN115776130B (zh) * 2022-12-29 2024-02-02 北京索英电气技术股份有限公司 并离网切换方法、储能变流器、储能系统和电力系统

Also Published As

Publication number Publication date
AU2021389718A1 (en) 2023-02-09
EP4167418A1 (en) 2023-04-19
US20230275428A1 (en) 2023-08-31
CN112383055A (zh) 2021-02-19
CN112383055B (zh) 2022-12-09
EP4167418A4 (en) 2024-01-03
US12119645B2 (en) 2024-10-15

Similar Documents

Publication Publication Date Title
WO2022110977A1 (zh) 一种并离网调度方法、装置及储能空调系统
Amrane et al. Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller
Arafat et al. Transition control strategy between standalone and grid-connected operations of voltage-source inverters
US10320193B2 (en) Electrical systems and related islanding detection methods
US10181724B2 (en) Seamless transitions between control modes
CN105262096B (zh) 计及光伏最大功率跟踪的主动配电网电压频率调整方法
EP3347960B1 (en) Method and apparatus for impedance matching in virtual impedance droop controlled power conditioning units
CN102290802B (zh) 基于同步旋转坐标系下的主动频率偏移孤岛检测方法
WO2018161590A1 (zh) 调节系统并联投入系统、控制方法、装置及存储介质
WO2024066583A1 (zh) 一种储能系统及孤岛检测方法
KR20160031114A (ko) 계통연계운전 및 독립운전을 수행하는 전력시스템 제어 방법
He et al. Impedance modeling and stability analysis for the PLL-less and voltage sensor-less grid-tied converters
US20130241462A1 (en) Electric power control system and efficiency optimization process for a polyphase synchronous machine
Shoeiby et al. A resonant current regulator based microgrid control strategy with smooth transition between islanded and grid-connected modes
Yao et al. A central control strategy of parallel inverters in AC microgrid
Zhao et al. A 6n-order low-frequency mathematical model of multiple inverters based microgrid
KR101762708B1 (ko) 계통연계형 태양광 병렬 인버터의 단독운전 검출방법
Fattahi et al. Improved reactive power sharing with adaptive droop control in islanded microgrids
Xiao et al. A virtual inertia control strategy of interlinking converters in islanded hybrid AC/DC microgrid
US11509137B2 (en) Voltage and current management in three-phase interconnected power systems using positive and negative sequence secondary control
CN115902401B (zh) 功率单元的相位检测方法及相关设备和介质
Ildar et al. Development, modeling, and testing of a unified controller for prosumers connected to 0.4 kv voltage level grids. part ii: Experimental validation
Jou et al. A new control algorithm of active power line conditioner for improving power quality
KR20190096622A (ko) 전력 계통 감시 장치
WO2022198598A1 (zh) 并离网模式切换的方法和储能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021896481

Country of ref document: EP

Effective date: 20230113

ENP Entry into the national phase

Ref document number: 2021389718

Country of ref document: AU

Date of ref document: 20210913

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE