WO2022194284A1 - 一种活性炭及其制备方法和在油脂中的应用 - Google Patents
一种活性炭及其制备方法和在油脂中的应用 Download PDFInfo
- Publication number
- WO2022194284A1 WO2022194284A1 PCT/CN2022/081739 CN2022081739W WO2022194284A1 WO 2022194284 A1 WO2022194284 A1 WO 2022194284A1 CN 2022081739 W CN2022081739 W CN 2022081739W WO 2022194284 A1 WO2022194284 A1 WO 2022194284A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- activated carbon
- grease
- content
- transesterification
- oil
- Prior art date
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 284
- 239000004519 grease Substances 0.000 title claims abstract description 30
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 235000007164 Oryza sativa Nutrition 0.000 claims abstract description 111
- 235000009566 rice Nutrition 0.000 claims abstract description 111
- 239000010903 husk Substances 0.000 claims abstract description 98
- 238000005809 transesterification reaction Methods 0.000 claims abstract description 77
- 238000000034 method Methods 0.000 claims abstract description 50
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 42
- -1 3-MCPD ester Chemical class 0.000 claims abstract description 40
- 239000003344 environmental pollutant Substances 0.000 claims abstract description 24
- 231100000719 pollutant Toxicity 0.000 claims abstract description 20
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 18
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 13
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011574 phosphorus Substances 0.000 claims abstract description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 7
- 239000000344 soap Substances 0.000 claims abstract description 6
- 239000003921 oil Substances 0.000 claims description 116
- 241000209094 Oryza Species 0.000 claims description 110
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 66
- 239000003513 alkali Substances 0.000 claims description 59
- 239000000243 solution Substances 0.000 claims description 42
- 238000005406 washing Methods 0.000 claims description 35
- 238000006243 chemical reaction Methods 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000003925 fat Substances 0.000 claims description 22
- 239000007787 solid Substances 0.000 claims description 21
- 238000001035 drying Methods 0.000 claims description 19
- 239000002253 acid Substances 0.000 claims description 17
- 238000004090 dissolution Methods 0.000 claims description 16
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 10
- 230000035484 reaction time Effects 0.000 claims description 9
- 238000005554 pickling Methods 0.000 claims description 7
- 239000012670 alkaline solution Substances 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 5
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 4
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 4
- 239000000194 fatty acid Substances 0.000 claims description 4
- 229930195729 fatty acid Natural products 0.000 claims description 4
- 230000006872 improvement Effects 0.000 claims description 3
- 239000004615 ingredient Substances 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 19
- 230000004048 modification Effects 0.000 abstract description 9
- 238000012986 modification Methods 0.000 abstract description 9
- 238000012545 processing Methods 0.000 abstract description 5
- 230000000704 physical effect Effects 0.000 abstract description 3
- 238000009776 industrial production Methods 0.000 abstract description 2
- 240000007594 Oryza sativa Species 0.000 abstract 1
- 239000012467 final product Substances 0.000 abstract 1
- 235000019198 oils Nutrition 0.000 description 112
- 230000000052 comparative effect Effects 0.000 description 62
- 230000000694 effects Effects 0.000 description 40
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 34
- 238000002844 melting Methods 0.000 description 22
- 230000008018 melting Effects 0.000 description 22
- 235000011121 sodium hydroxide Nutrition 0.000 description 21
- 239000012535 impurity Substances 0.000 description 20
- 239000000047 product Substances 0.000 description 19
- 229910052742 iron Inorganic materials 0.000 description 17
- 239000012065 filter cake Substances 0.000 description 15
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 14
- 239000002002 slurry Substances 0.000 description 14
- 239000008234 soft water Substances 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 13
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 239000003054 catalyst Substances 0.000 description 13
- 235000013339 cereals Nutrition 0.000 description 13
- 238000002485 combustion reaction Methods 0.000 description 13
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 239000004927 clay Substances 0.000 description 12
- 229910052799 carbon Inorganic materials 0.000 description 10
- 229910001873 dinitrogen Inorganic materials 0.000 description 9
- 239000003245 coal Substances 0.000 description 8
- 239000002023 wood Substances 0.000 description 8
- 239000000356 contaminant Substances 0.000 description 7
- 238000005336 cracking Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 238000000605 extraction Methods 0.000 description 6
- 230000007935 neutral effect Effects 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 229960000892 attapulgite Drugs 0.000 description 5
- 230000005587 bubbling Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 229910052625 palygorskite Inorganic materials 0.000 description 5
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 4
- 239000012496 blank sample Substances 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 229910052791 calcium Inorganic materials 0.000 description 4
- 230000002255 enzymatic effect Effects 0.000 description 4
- 238000006911 enzymatic reaction Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- 229910052749 magnesium Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 description 4
- 150000004692 metal hydroxides Chemical class 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 229910052681 coesite Inorganic materials 0.000 description 3
- 229910052906 cristobalite Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 229910052682 stishovite Inorganic materials 0.000 description 3
- 239000010902 straw Substances 0.000 description 3
- 238000000967 suction filtration Methods 0.000 description 3
- 229910052905 tridymite Inorganic materials 0.000 description 3
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000003546 flue gas Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000002932 luster Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- HXITXNWTGFUOAU-UHFFFAOYSA-N phenylboronic acid Chemical compound OB(O)C1=CC=CC=C1 HXITXNWTGFUOAU-UHFFFAOYSA-N 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 235000010692 trans-unsaturated fatty acids Nutrition 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 239000005909 Kieselgur Substances 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000000567 combustion gas Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004042 decolorization Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- VMPITZXILSNTON-UHFFFAOYSA-N o-anisidine Chemical compound COC1=CC=CC=C1N VMPITZXILSNTON-UHFFFAOYSA-N 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical class [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- PHYFQTYBJUILEZ-IUPFWZBJSA-N triolein Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC(OC(=O)CCCCCCC\C=C/CCCCCCCC)COC(=O)CCCCCCC\C=C/CCCCCCCC PHYFQTYBJUILEZ-IUPFWZBJSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/18—Carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28002—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
- B01J20/28011—Other properties, e.g. density, crush strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3071—Washing or leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3078—Thermal treatment, e.g. calcining or pyrolizing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/30—Active carbon
- C01B32/312—Preparation
- C01B32/318—Preparation characterised by the starting materials
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/04—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils
- C11C3/10—Ester interchange
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/40—Aspects relating to the composition of sorbent or filter aid materials
- B01J2220/48—Sorbents characterised by the starting material used for their preparation
- B01J2220/4875—Sorbents characterised by the starting material used for their preparation the starting material being a waste, residue or of undefined composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0953—Gasifying agents
- C10J2300/0956—Air or oxygen enriched air
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1625—Integration of gasification processes with another plant or parts within the plant with solids treatment
- C10J2300/1628—Ash post-treatment
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/46—Gasification of granular or pulverulent flues in suspension
- C10J3/54—Gasification of granular or pulverulent fuels by the Winkler technique, i.e. by fluidisation
Definitions
- the invention relates to an activated carbon, a preparation method thereof and an application in grease, and belongs to the technical field of grease processing.
- Oil modification is to change the physical and chemical properties of oil by changing the composition and structure of triglycerides.
- the methods of oil modification mainly include hydrogenation, transesterification and so on.
- partially hydrogenated oils have been controversial because they contain trans fatty acids that are harmful to human health and are currently banned in many countries.
- Transesterification is one of the important oil modification technologies.
- the method changes the properties of fats and oils by changing the distribution of fatty acids in triglycerides, especially changes the crystallization and melting characteristics of fats and oils to form different combinations of fats and oils to obtain oils with better physical properties.
- Trans-fatty acids are not produced in the process of transesterification, so transesterification oil is more favored by manufacturers and consumers.
- transesterification methods include industrial enzymatic and chemical methods. Chemical transesterification is usually produced in batches, and alkaline catalysts are used in the process; enzymatic transesterification reactors generally consist of multiple fixed beds in series, which can realize continuous production, and enzymes need to be replaced regularly. However, the existing transesterification process also has some problems that need to be solved urgently. First of all, whether it is a chemical method or an enzymatic method, there are high requirements on the phosphorus content, water content and peroxide value of the raw materials, as shown in the following table shown:
- the enzymatic method may cause the enzyme preparation to fall off the carrier and be introduced into the downstream oil, which brings certain risks. Moreover, regardless of the chemical method and the enzymatic method, the color of the oil obtained by the reaction is darker.
- the present invention provides an activated carbon
- the content of silica in the activated carbon is 5.5%-30% by mass, preferably 10%-20%, such as 5.5%, 6%, 6.5%, 7% , 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12wt%, 12.5%, 13%, 13.5%, 14%, 14.5%, 15%, 15.5 %, 16%, 16.5%, 17%, 17.5%, 18%, 18.5%, 19%, 19.5%, 20%, 20.5%, 21%, 21.5%, 22wt%, 22.5%, 23%, 23.5%, 24%, 24.5%, 25%, 25.5%, 26%, 26.5%, 27%, 27.5%, 28%, 28.5%, 29%, 29.5% or 30%.
- the electrical conductivity of the activated carbon is greater than 1000 ⁇ s/cm and less than 30000 ⁇ s/cm, such as 2000-25000 ⁇ s/cm, preferably 10000-16000 ⁇ s/cm, such as 2500, 3000, 3500, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 15000, 18000, 20000, 22000, 24000 or 25000 ⁇ s/cm.
- the electrical conductivity of the activated carbon is measured by the method specified in the GB/T 12496.17-1999 national standard.
- the mass concentration of metal ions in the activated carbon is greater than 4000 ppm and less than 6500 ppm, such as 4500-6000 ppm, such as 4500, 4800, 5000, 5200, 5400, 5500, 5600, 5800 or 6000 ppm.
- the mass concentration of metal ions in the activated carbon is determined by the method specified in the GB/T 12496.21-22 national standard.
- the metal ions include one, two or more selected from ions such as sodium, magnesium, potassium, calcium and iron.
- the pH of the activated carbon is 10-11, such as 10.1-10.6, such as 10.1, 10.2, 10.3, 10.4, 10.5 or 10.6.
- the pH value of the activated carbon is measured by the national standard GB/T 12496-7-1999.
- the content of moisture in the activated carbon is 3% by mass to 10% by mass, such as 3% by mass, 4% by mass, 5% by mass, 6% by mass, 7% by mass, 8% by mass, 9% by mass, and 9% by mass. mass % or 10 mass %.
- the activated carbon is preferably activated carbon prepared by the method of the present invention, such as specialty activated carbon.
- content in the context of the present application refers to mass percent content (mass % or wt %).
- the present invention also provides a method for preparing the above-mentioned activated carbon, the method comprising the steps of:
- the obtained solid component is washed with water and dried to prepare activated carbon.
- the method comprises the steps of:
- step (2) optionally, pickling and/or washing is carried out to the rice husk ash of step (1);
- step (3) mixing the rice husk ash obtained in step (1) or step (2) with an alkali solution, and carrying out an alkali dissolution reaction to obtain a solid component;
- step (3) Washing and drying the solid component obtained in step (3) to prepare activated carbon.
- step (1) the rice husk ash is prepared by the following method:
- step (1-1) the rice husk of step (1-1) is subjected to cracking reaction to obtain rice husk ash;
- step (1-2) the rice husk ash of step (1-2) is screened and dedusted to remove impurities such as rice grains, raw rice husks and fine dust that are not carbonized completely;
- step (1-4) pass the rice husk ash of step (1-2) or step (1-3) through an iron remover to remove iron impurities in the rice husk ash.
- the rice husks are prepared, for example, by the following method: the rice is milled by a rice huller, the rice grains are separated from the rice husks, and then the grains are extracted and selected by wind. and other operations to separate impurities such as broken rice, shriveled rice, green grains, straw and dust contained in the rice husks to obtain rice husks.
- the grain content in the rice husk is lower than 0.1 wt %, and preferably, after the rice husk is sieved with 60 mesh, the content of the material under the sieve is lower than 15 wt %.
- step (1-2) the cracking reaction is carried out in a reaction furnace.
- the rice husks are subjected to suspension combustion to make the rice husks burn as completely as possible.
- the inventors found that the rice husk ash obtained after incomplete combustion of rice husks contains substances such as fat and protein, which is not conducive to the subsequent high temperature activation and transesterification process.
- the temperature of the cleavage reaction is 500-1000° C.
- the time of the cleavage reaction is 10-120 min
- the cleavage reaction is carried out in an air atmosphere.
- step (1-4) using, for example, a permanent magnet with a magnetic force of 10,000G, through the permanent magnet, impurities such as iron wires, screws, etc. mixed therein, as well as metallic iron in the rice husk ash component, are removed.
- impurities such as iron wires, screws, etc. mixed therein, as well as metallic iron in the rice husk ash component
- the acid washing is to wash the rice husk ash in step (1) with an acidic aqueous solution to remove residual protein, starch and other organic impurities and calcium, magnesium, iron, etc. Metal salt impurities.
- the pickling is, for example, mixed with sulfuric acid with a concentration of 1%-10%, heated to 40-80° C., and soaked for 30-60min, so that the content of organic impurities in the rice husk ash is controlled in the range of 50-200ppm. Inside, the content of inorganic impurities is controlled within the range of 500-5000ppm.
- the water washing is to wash the acid-washed solid component with soft water to a pH of 6-8, for example, to a neutral pH.
- the water washing is, for example, using soft water to wash rice husk ash to a wet cake with a conductivity of 500-1500 ⁇ s/cm, a pH of 6-8, and a moisture content of 50-65 mass%.
- the alkali solution is an aqueous solution of metal hydroxide, preferably, the alkali is selected from sodium hydroxide, potassium hydroxide and calcium hydroxide.
- the mass percentage concentration of the alkali solution can be 8-20 mass %, for example, it can be selected from an aqueous sodium hydroxide solution with a concentration of 8-20 mass %, a sodium hydroxide solution with a concentration of 8-20 mass % Potassium hydroxide aqueous solution or calcium hydroxide aqueous solution with a concentration of 8% by mass to 20% by mass.
- the mass percentage concentration of the alkali solution may be 8 mass %, 10 mass %, 12 mass %, 14 mass %, 16 mass %, 18 mass % or 20 mass %.
- the mass ratio of the rice husk ash in step (2) to the alkali in the alkali solution is not particularly limited, as long as the quality of the alkali is excessive relative to the rice husk ash.
- the mass ratio of the rice husk ash in step (2) to the alkali in the alkali solution is 3:1-5:1, such as 3:1, 4:1 or 5:1.
- the inventor found that the alkali content in the alkali solution used light alkali, if the mass ratio of rice husk ash and alkali in the alkali solution was higher than 5:1 (that is, the alkali content was less than about 16.67%), Too little alkali will affect the extraction of silicon, and the silicon content of activated carbon is too high, which is not suitable for the subsequent transesterification; 25%), the amount of alkali is too much, the silicon content in the activated carbon is too low, and it is not suitable for the subsequent transesterification.
- an appropriate ash-to-alkali ratio can ensure that the content of silica in the rice husk ash after alkaline solution treatment is in an appropriate range, reaching more than 10 mass %, for example, 10 mass %-50 mass %, so as to satisfy the subsequent follow-up Application requirements.
- the temperature of the reaction may be 50-200°C, such as 50°C, 70°C, 90°C, 100°C, 120°C, 140°C, 160°C, 180°C or 200°C;
- the reaction time can be 3-5h, such as 3h, 4h or 5h;
- the reaction pressure is 0-0.5MPa, such as 0MPa, 0.1MPa, 0.2MPa, 0.3MPa, 0.4MPa or 0.5MPa.
- the water washing is to wash the solid component obtained in step (3) with water (eg, soft water) until neutrality.
- water eg, soft water
- the solid component obtained in step (3) is uniformly mixed with water at a temperature of 50-80° C., and the mass ratio of the solid component to water is controlled at 1:1-1:5.
- the electrical conductivity of the washing solution after washing is controlled to be greater than 2000 ⁇ s/cm, for example, the electrical conductivity is 2500-25000 ⁇ s/cm, preferably 10000-16000 ⁇ s/cm, and the pH value is 10-12, preferably 10- 11.5.
- step (4) the drying is achieved, for example, by the following method: hot air at 300-350° C. is blown into the drying chamber at a speed of 24 m/s from a hot air pipe, which produces strong shearing effect on the material.
- the activated carbon is prepared by cutting, blowing, and rotating.
- the term “optional” means that the feature defined by the term may or may not be present, eg, the step defined by the term may or may not be performed.
- the present invention also provides an activated carbon prepared by the above method, preferably a special activated carbon.
- the present invention also provides the use of the activated carbon for preparing grease, preferably the use for preparing transesterified grease.
- the present invention provides the use of the activated carbon as a catalyst for preparing transesterified oils.
- the activated carbon is used to reduce the content of unfavorable components (such as pollutants) in the transesterified fat and/or improve the properties of the transesterified fat.
- the unfavorable ingredient comprises one, two or more selected from 3-MCPD ester (3-chloro-1,2-propanediol ester), GE (glycidyl fatty acid ester), phosphorus, soap;
- improving the properties of the transesterified fat refers to improving its color and/or acid value.
- transesterified fats and oils refers to oil and fat products obtained by subjecting fats and oils to a transesterification reaction.
- the present invention also provides a method for preparing transesterified fats and oils.
- the method performs the transesterification reaction of fats and oils in the presence of the activated carbon to prepare the transesterified fats and oils.
- the added amount of the activated carbon is 0.5-5wt% of the oil mass, such as 0.5wt%, 1.0wt%, 1.5wt%, 2.0wt%, 2.5wt%, 3.0wt%, 3.5wt% wt %, 4.0 wt %, 4.5 wt % or 5.0 wt %, preferably 2-3 wt %.
- the temperature of the transesterification reaction is 160-200°C, preferably 185-195°C, such as 190°C.
- the time of the transesterification reaction is 0.5-2 h, such as 0.5 h, 1.0 h, 1.5 h or 2.0 h.
- the oil is subjected to drying treatment, and the drying is to stay at 100-120° C. for 10-30 min.
- the temperature is lowered to below 60° C. and filtered to obtain the transesterified fat.
- the inventor unexpectedly found that by controlling the electrical conductivity, pH value, silicon dioxide content and/or metal ion content of the rice husk ash source activated carbon, after making the oil react under non-vacuum conditions, it can meet the transesterification requirements.
- the phosphorus content and soap content in the oil can be reduced, the color of the oil can be improved, and the content of 3-MCPD ester and GE in the oil can be simultaneously reduced to obtain high-quality and low-pollutant transesterified oil.
- the degree of transesterification is controlled by process parameters. Surprisingly, when the transesterification is completed, the content of various pollutants in the final oil product can be effectively controlled, so it is suitable for the industrial production of oil.
- the activated carbon used in the present invention has a simple preparation process, high utilization rate of rice husks, and low processing cost; the preparation method of the low-pollutant transesterified oil has no strict requirements on the oil and fat raw materials; the low-pollutant transesterified oil
- the use of vacuum is not involved, and processes such as citric acid, water washing, decolorization and adsorption are not required after the reaction;
- the content of MCPD ester and GE can improve the color of oil and inhibit the rise of acid value; in addition, the degree of transesterification can also be controlled by process parameters, and the new process is compared with the existing process, the product's solid ester content, melting point and other indicators similar.
- the oil samples handled by the following examples and comparative examples are primary refining palm olein (provided by Kerry Specialty Oils (Shanghai) Co., Ltd.), the phosphorus content is: 12.1 ppm, the acid value is: 0.2 mgKOH/g, and the color and luster are: 2.4R, 3-MCPD ester content: 4.03ppm, GE content: 2.87ppm, melting point 22.9°C.
- Detection method of 3-MCPD ester and GE refer to ISO 18363-1 (equivalent to AOCS Cd 29c-13), use the method of basic transesterification, hydrolyze the ester state 3-MCPD ester and GE into free state, and then combine with After derivatization with phenylboronic acid, it was detected by GC-MS.
- Electrical conductivity detection method adopt the method specified in GB/T 12496.17-1999 national standard;
- Detection method of metal ion concentration adopt the method specified in GB/T 12496.21-22 national standard;
- Determination method of pH value of activated carbon use GB/T 12496-7-1999 national standard for determination;
- Detection method of silica content adopt the method specified in HG/T 3062 industry standard.
- the present invention provides a preparation method of activated carbon, in particular to a preparation method of special activated carbon.
- the activated carbon obtains rice husk ash by suspending and burning rice husks by controlling combustion conditions, and acidifying the obtained rice husk ash. After washing and removing impurities, it is formed by alkali dissolution reaction. After the alkali dissolution reaction, acid washing is no longer performed.
- the specific operations are:
- Rice husk collection and impurity removal the rice is milled by a rice husk, and the rice grains are separated from the rice husks, and then broken rice, shriveled rice, green grains, and straws contained in the rice husks are separated through operations such as grain extraction and wind selection. and dust and other impurities.
- the grain content is less than 0.1 wt%, and the undersize of 60 mesh is less than 15%.
- Rice husk combustion the rice husks collected in step 1) are transported into a circulating fluidized bed gasifier, and cracked to obtain rice husk ash.
- the conditions for rice husk cracking are as follows: a feeding port is set on the side of the gasifier, and a fan is set on the bottom. The collected rice husks are introduced into the furnace chamber of the gasifier through the feeding port, and the introduction rate is 5.0-5.5 tons/hour; at the same time, the fan continuously blows air into the gasifier, and the air equivalent ratio is 0.25-0.3.
- the inner temperature (that is, the cracking temperature) is 500-1000 °C; when the load of the gasifier is 50%, the air equivalence ratio is controlled at 0.35-0.4, the temperature in the furnace is controlled at 780-820 °C, and the flue gas (drum) in the furnace is controlled.
- the cross-sectional velocity of the mixed gas of the incoming air and the combustion gas) is raised to 3m/s.
- the gas generated in the cracking process is discharged from the top of the gasifier, the gas volume generated per hour is 10000-11000m 3 , and the heat generated is 5300-6000kJ/m 3 .
- the above-mentioned cracking time is 10-120min, preferably 30-80min.
- the rice husks are always in a suspended state, that is, suspended combustion, so that the rice husks are completely and fully burned.
- the acid washing is to wash the rice husk ash obtained in step 2) with an acid solution to remove residual organic impurities such as protein and starch and metal salt impurities such as calcium, magnesium and iron.
- the acid solution is selected from protic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid.
- the pickling is to soak the rice husk ash with sulfuric acid with a concentration of 1%-10% at 40-80° C. for 30-60min. After removing impurities and washing with water, the moisture content of the obtained rice husk ash wet cake is 50%-65%, the content of organic impurities is 50-200ppm, and the content of inorganic impurities is 500-5000ppm.
- the acid washing step is preferred, but not required. Without pickling, it can be directly dissolved in alkali, and the amount of alkali used is increased. However, those skilled in the art should know that if acid washing is performed, the acid washing step must be performed before the alkali dissolving step, and there is no need to perform acid washing after the alkali dissolving.
- the steps of dust removal and iron removal are further included.
- the dedusting step is to sieve and dedust the rice husk ash obtained in step 2) to remove impurities such as rice grains, raw rice husks, and fine dust that are not completely carbonized.
- the iron removal step is to pass the obtained rice husk ash through an iron remover to remove iron impurities in the rice husk ash.
- the iron remover is a permanent magnet.
- a permanent magnet with a magnetic force of 10,000G is installed under the rice husk ash storage tank. During the process of conveying the rice husk ash to the workshop, the permanent magnet is used to remove the iron wires, screws and other sundries mixed in it and the metals in the rice husk ash components. Iron etc.
- Alkali-solution reaction mixing and reacting the rice husk ash wet cake obtained in step 3) or the rice husk ash obtained in step 2) with an alkaline solution to prepare a slurry containing carbon and silicate, in which the two The extraction rate of silicon oxide is 50%-90%, based on the total silicon content in rice husk ash.
- the alkaline solution is an aqueous solution of metal hydroxide, and the metal hydroxide is selected from sodium hydroxide, potassium hydroxide and calcium hydroxide; preferably, the alkaline solution is an aqueous solution with a concentration of 8%-20% caustic soda solution.
- the mass ratio (ash-alkali ratio) of the dry basis of the rice husk ash and the dry basis of the metal hydroxide is between 3:1-5:1.
- the reaction has one or more of the following characteristics: the reaction temperature is 50-200° C., the reaction time is 3-5h, and the pressure in the reactor is 0-0.5MPa.
- Pressure filtration separation filter the slurry obtained in step 4) to obtain a carbon-containing filter cake.
- the filtration is carried out by a plate and frame filter press at a pressure of 0.04-0.06 MPa.
- Activated carbon washing the carbon-containing filter cake obtained in step 5) is washed with water until the pH value of the washing solution is 10-12, for example, 10-11.5; 16000 ⁇ s/cm to obtain a wet cake of activated carbon.
- the temperature of water washing is 50-80° C.
- the mass ratio of the carbon-containing filter cake to water is 1:1-1:5.
- the pH of the wash solution here is used to estimate the pH of the finished activated carbon, which guides the end point of production.
- Activated carbon drying flash drying the activated carbon wet cake obtained in step 6) to obtain an activated carbon product.
- the flash drying is performed by blowing hot air at a temperature of 300-350°C into the drying chamber at a speed of 24m/s, so as to produce strong shearing, blowing, and rotating effects on the material.
- the electrical conductivity of the activated carbon is greater than 2000 ⁇ s/cm, such as 2500-25000 ⁇ s/cm, and further such as 10000-16000 ⁇ s/cm, such as 15710 ⁇ s/cm; the mass concentration of metal ions in the activated carbon is greater than 4000 ppm, such as 4500-6000 ppm, and then Such as 4610ppm; the mass percentage content of silica of the activated carbon is 5.5%-30%, such as 10%-20%, and then 14.1%; the pH value of the activated carbon is 10-11, such as 10.1-10.6, and then Such as 10.36.
- the metal ions include sodium, magnesium, potassium, calcium, iron and the like.
- the present invention also studies the application of the activated carbon prepared above in oil treatment.
- the activated carbon prepared above is added to the grease in an amount of 0.5-5 wt %, preferably 2-3 wt %.
- Bubble with a trace amount of nitrogen gas heat the oil to 100-120°C and stir at constant temperature for 10-30min; then, rapidly heat up to 160-200°C for 0.5-2h, preferably 185-195°C, more preferably 190°C.
- the temperature was lowered to below 60°C and filtered.
- the 3-MCPD ester, GE and melting point of the treated oil were detected.
- the rice husks are separated from the rice husks, and then impurities such as broken rice, shriveled rice, green grains, straw and dust contained in the rice husks are separated through operations such as grain extraction and wind selection.
- the collected rice husks have a grain content lower than 0.1%, 60 mesh undersize is less than 15%.
- the collected rice husks are transported to the furnace chamber of the gasifier at a rate of 5 tons/hour, and the bottom fan blows air into the furnace chamber at an air equivalent ratio of 0.3, so that the rice husks are burned in a suspended state, and the temperature in the gasifier is 820°C; when the load of the gasifier is 50%, the air equivalence ratio is 0.4, the temperature in the furnace is 780-820°C, the cross-sectional velocity of the flue gas in the furnace is 3m/s, and the cracking time is 60min to obtain rice husk ash .
- the obtained rice husk ash is sieved and dedusted, and then passed through an iron remover.
- the rice husk ash was soaked in a sulfuric acid solution with a concentration of 5% at 60° C. for 40 min, and then washed with soft water until neutral, to obtain a rice husk ash wet cake.
- the slurry was prepared by reacting at 100° C. and 0.5 MPa for 3 hours, and the SiO 2 extraction rate of the slurry was 80%, based on the total silicon content of rice husk ash.
- the obtained slurry was filtered through a plate and frame filter press at 0.05 MPa to obtain a carbon-containing filter cake.
- the carbon-containing filter cake was washed with soft water at 60° C. until the pH value was 12, and the mass ratio of the carbon-containing filter cake to water was 1:1 to obtain an activated carbon wet cake.
- the activated carbon wet cake was placed in a drying chamber, and hot air at 350°C was blown into the drying chamber at a speed of 24 m/s for flash drying to obtain activated carbon.
- the SiO2 content, electrical conductivity and pH value of the obtained activated carbon were measured.
- the activated carbon prepared above was added to the oil in an amount of 2wt%. Bubbling with a trace amount of nitrogen gas, the oil was heated to 120°C and stirred at constant temperature for 20min; then, the temperature was rapidly raised to 190°C and reacted for 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- Example 2 The difference from Example 1 is that the ratio of ash to alkali in the alkali dissolution reaction of Example 2 is 4:1.
- Example 3 The difference from Example 1 is that in the alkali dissolution reaction of Example 3, the ash-to-alkali ratio is 5:1.
- Comparative Example 1 The difference from Example 1 is that the ratio of ash to alkali in the alkali dissolution reaction of Comparative Example 1 is 2:1.
- Comparative Example 2 The difference from Example 1 is that the ratio of ash to alkali in the alkali dissolution reaction of Comparative Example 2 is 6:1.
- Example 4 The difference from Example 2 is that after alkali dissolving, the solution was washed with soft water until the pH value was 10.
- Comparative Example 3 The difference from Example 2 is that after alkali dissolving, it is washed with soft water to pH 9.
- Comparative Example 4 The difference from Example 2 is that after alkali dissolving, it is washed with soft water to pH 13.
- Example 5 The difference from Example 1 is that the alkali-dissolved ash-to-alkali ratio is 5:1, and the alkaline-dissolved solution is washed to a pH value of 10 and a conductivity of 2000 ⁇ s/cm.
- Example 6 The difference from Example 5 lies in that the conductivity is 10,000 ⁇ s/cm after alkali dissolution.
- Example 7 The difference from Example 5 is that the conductivity is 15710 ⁇ s/cm after alkali dissolution.
- Example 8 The difference from Example 5 lies in that the conductivity is 25000 ⁇ s/cm after washing with alkali.
- Comparative Example 5 The difference from Example 5 is that the conductivity was washed to 30000 ⁇ s/cm after alkali dissolution.
- Comparative Example 6 The difference from Example 5 is that the conductivity was washed to 1000 ⁇ s/cm after alkali dissolution.
- Example 2 Example 4, and Comparative Examples 3-4 studied the effect of pH value of water washing after alkali dissolution on the performance of activated carbon products.
- the pH value of water washing directly affects the pH value of the product.
- the increase of pH value will increase the degree of transesterification, too high pH will bring negative effects such as deepening of color and increase of GE.
- Comparative Example 7 The blank sample of oil and fat was detected to obtain 3-MCPD ester, GE and its melting point.
- Examples 9-12 and Comparative Examples 8-10 The prepared activated carbon was added to the grease, and the addition amount was 2 wt %. The characteristics of the activated carbon are shown in Table 2. Bubbling with a trace amount of nitrogen gas, the oil was heated to 120°C and stirred at constant temperature for 20min; then, the temperature was rapidly raised to 190°C and reacted for 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected. These examples and comparative examples do not introduce additional metal ions, which does not affect the conductivity, but only changes the content of SiO 2 .
- Table 2 shows that the content of silica in activated carbon products has a greater impact on the degree of transesterification and pollutant control.
- silica content lower than 5.5% or higher than 30%, even if pH and conductivity are controlled under optimal conditions, effective transesterification and contaminant control effects cannot be achieved.
- the silica content in the range of 10%-20%, especially about 15% has the best removal effect on 3-MCPD ester and GE, and the melting point is the highest, indicating that the degree of transesterification is the highest.
- Examples 10, 13-15 and comparative examples 11-13 The prepared activated carbon was added to grease, and the addition amount was 2 wt %.
- the characteristics of the activated carbon are shown in Table 3. Bubbling with a trace amount of nitrogen gas, the oil was heated to 120°C and stirred at constant temperature for 20min; then, the temperature was rapidly raised to 190°C and reacted for 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- Table 3 shows the effect of different activated carbon pH values on oil treatment. The comparison shows that the pH value of activated carbon is different, which has a certain degree of influence on pollutant control and transesterification reaction. It shows that the degree of transesterification is high. Below pH 10, the transesterification effect and contaminant control level will be significantly reduced, while too high pH will bring a series of negative effects such as color deepening, GE increase, and loss increase.
- Examples 10, 16-18 and comparative examples 13-14 The prepared activated carbon was added to the grease, and the addition amount was 2 wt %.
- the characteristics of the activated carbon are shown in Table 4. Bubbling with a trace amount of nitrogen gas, the oil was heated to 120°C and stirred at constant temperature for 20min; then, the temperature was rapidly raised to 190°C and reacted for 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- Table 4 shows that the conductivity of different activated carbons directly affects its transesterification effect. When the conductivity is in the range of 2500-16000 ⁇ s/cm, it has a good effect on pollutant removal and transesterification. When the conductivity is about 15000 ⁇ s/cm Best results.
- Comparative Example 15 Under the vacuum degree of 20mbar, solid sodium methoxide was added to the oil to be treated in an amount of 0.15wt% of the weight of the oil, the transesterification temperature was 105°C, and the reaction time was 30-120min.
- Comparative Example 16 under vacuum of 20 mbar, solid NaOH was added to the oil to be treated in an amount of 0.15 wt % of the weight of the oil, the transesterification temperature was 105°C, and the reaction time was 30-120 min.
- Comparative Example 17 Under normal pressure, solid NaOH was added to the oil to be treated in an amount of 0.15wt% of the weight of the oil, the transesterification temperature was 190°C, and the reaction time was 30-120min.
- Comparative Example 18 Under normal pressure, add 0.25% NaOH solution to the oil to be treated, the amount of NaOH solution is 2wt% of the weight of the oil, the transesterification temperature is 190°C, and the reaction time is 30-120min.
- Comparative Example 19 Under normal pressure, add NaCl solution with a concentration of 0.25% to the oil to be treated, the addition amount of the NaCl solution is 2wt% of the weight of the oil, the transesterification temperature is 190°C, and the reaction time is 30-120min.
- Comparative Example 20 Under normal pressure, add a NaCl solution with a concentration of 1% to the oil to be treated, the addition amount of the NaCl solution is 2wt% of the weight of the oil, the transesterification temperature is 190°C, and the reaction time is 30-120min.
- Table 5 is a comparison of the effect of transesterification and removal of 3-MCPD ester/GE under different catalyst conditions, wherein the comparative example 7 is a blank sample of the oil to be treated, and the comparative example 15 uses solid sodium methoxide as a catalyst. It can be seen that compared with the blank sample of Comparative Example 7, the melting point increased by 65%, indicating that the degree of transesterification is very high; however, 3-MCPD ester and GE increased instead, In particular, GE was significantly increased, indicating that conventional transesterification technology could not remove the pollutants 3-MCPD ester and GE at the same time.
- Comparative Example 18 NaOH solution was used as the catalyst under normal pressure.
- the electrical conductivity and pH value both reach the scope of the present invention, and the addition amount is the same as that of Example 10 of the present invention, but the melting point is only increased by 1.7%, indicating that the transesterification reaction basically does not occur; at the same time, 3-MCPD Ester only decreased by 3.9%, but GE increased slightly, indicating that it was basically ineffective in removing pollutants.
- This comparative example also shows that the effect of simultaneous transesterification and removal of pollutants in the present invention cannot be achieved only by satisfying the conductivity and pH value of the present invention.
- Comparative example 19 uses NaCl solution as catalyst, wherein pH is neutral and does not meet the pH value range of the present invention, but the electrical conductivity is within the scope of the present invention, which is 4810 ⁇ s/cm; Comparative example 20 is a higher concentration of NaCl.
- the solution is used as a catalyst, and the pH is neutral, which does not meet the scope of the present invention, but the electrical conductivity meets the scope of the present invention and is 17200 ⁇ s/cm.
- the melting points of Comparative Examples 19 and 20 were basically unchanged, indicating that no transesterification reaction occurred, and the 3-MCPD ester was slightly increased, and the GE was slightly decreased, indicating that the pollutants could not be removed.
- Example 10 uses the activated carbon of the present invention as a catalyst. Under the range that the SiO 2 content meets the requirements of the present invention (refer to the aforementioned Table 2), the electrical conductivity and pH value both meet the scope of the present invention. Treating grease with the activated carbon of Example 10 not only occurs transesterification, but also has a remarkable effect in removing pollutants 3-MCPD ester and GE. It is also found in Comparative Example 10 and Comparative Example 15 that the use of the activated carbon of the present invention is equivalent to the effect of conventional transesterification using sodium methoxide in the degree of transesterification.
- the activated carbon of the present invention can be removed by filtration, the hidden pollution and safety risks of chemical reagents are avoided, therefore, the activated carbon of the present invention can completely replace sodium methoxide for transesterification, and at the same time, it can also remove pollutants, and achieve unexpected technical effects. .
- Table 5 shows the color and luster of the oil obtained by the existing oil treatment technology, the treatment technology of the present invention, and the blank sample, and it can be seen that It is found that the color of the oil obtained by the existing oil treatment technology is darkened, and the color of the oil of the present invention will not be darkened, or even reduced.
- the activated clay (commercially available) was soaked in a sulfuric acid solution with a concentration of 5% at 60° C. for 40 minutes, then washed with soft water until neutral, and suction filtered to obtain a wet cake of activated clay.
- the wet cake is mixed with caustic soda solution, and the mass ratio of activated clay dry base and caustic soda is 3:1.
- the reaction was carried out at 60°C for 3 hours to prepare a slurry.
- the obtained slurry was subjected to suction filtration to obtain a filter cake.
- the filter cake was washed with soft water at 60°C to pH 10.5 to obtain activated clay wet cake.
- the activated clay wet cake was dried in a drying oven at 105°C to obtain modified activated clay, and its pH value was measured.
- the modified activated clay was added to the oil to be treated, and the addition amount was 2wt% of the weight of the oil to be treated.
- a small amount of nitrogen was bubbled in, and the oil was heated to 120°C and stirred at a constant temperature for 20min; then, the temperature was rapidly raised to 190°C for 1 hour of reaction. . Subsequently, the temperature was lowered to below 60°C and filtered.
- the 3-MCPD ester, GE and melting point of the treated oil were detected.
- Comparative Example 22 The difference from Comparative Example 21 is that attapulgite was used instead of activated clay to prepare modified attapulgite, and the modified attapulgite was used to treat the grease.
- Comparative Example 23 The difference from Comparative Example 21 is that diatomaceous earth is used instead of activated clay to prepare modified diatomaceous earth, and the modified diatomaceous earth is used to treat the oil.
- Comparative Examples 7, 21-23 and Example 10 Please refer to Table 6 for the comparison of Comparative Examples 7, 21-23 and Example 10.
- the common feature is that they are all alkaline load media, the pH values are roughly the same, and they all have adsorption performance.
- the modified activated clay, modified attapulgite, and modified diatomite of Comparative Examples 21-23 were all modified with adsorbent materials such as commercially available activated clay, attapulgite and diatomite, and the modification methods were similar, namely, After acid washing, alkali-dissolving and washing with water to control the final pH value.
- the modified adsorbent was used to treat the grease.
- the wood activated carbon (SiO 2 content is 0, commercially available, purchased from Cabot Norit) is added to the oil to be treated, the addition amount is 2wt%, a trace amount of nitrogen gas is bubbled, and the oil is heated to 120 ° C and stirred at a constant temperature for 20 min; , the temperature was rapidly raised to 190 °C for 1 h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- Coal-based activated carbon (SiO 2 content is 0, commercially available, purchased from Cabot Norit) is added to the oil to be treated, the addition amount is 2wt%, a trace amount of nitrogen gas is bubbled, and the oil is heated to 120 ° C and stirred at a constant temperature for 20 min; Subsequently, the temperature was rapidly raised to 190 °C for 1 h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- the wood activated carbon was directly mixed with caustic soda solution, and the mass ratio of dry basis and caustic soda was 3:1.
- the reaction was carried out at 60°C for 3 hours to prepare a slurry.
- the obtained slurry was subjected to suction filtration to obtain a filter cake.
- the filter cake was washed with soft water at 60°C to pH 10.5 to obtain an activated carbon wet cake.
- the activated carbon wet cake was dried in a drying oven at 105°C to obtain modified activated carbon, and its pH value and conductivity were measured.
- the prepared modified wood activated carbon (SiO 2 content is 0) is added to the oil to be treated, and the addition amount is 2 wt %, and a trace amount of nitrogen gas is bubbled, and the oil is heated to 120 ° C and stirred at a constant temperature for 20 min; then, the temperature is rapidly increased. To 190 °C reaction 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- the coal-based activated carbon is directly mixed with the caustic soda solution, and the mass ratio of dry basis and caustic soda is 3:1.
- the reaction was carried out at 60°C for 3 hours to prepare a slurry.
- the obtained slurry was subjected to suction filtration to obtain a filter cake.
- the filter cake was washed with soft water at 60°C to pH 10.5 to obtain an activated carbon wet cake.
- the activated carbon wet cake was dried in a drying oven at 105°C to obtain modified activated carbon, and its pH value and conductivity were measured.
- the prepared modified coal-based activated carbon (SiO 2 content is 0) was added to the oil to be treated in an amount of 2 wt %, a small amount of nitrogen was bubbled in, and the oil was heated to 120° C. under constant temperature stirring for 20 min; then, rapidly The temperature was raised to 190 °C for 1 h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- modified wood activated carbon and modified coal activated carbon are obtained after modification on the basis of commercially available wood activated carbon and coal-based activated carbon.
- the control of the modification process that is, the control of acid washing, alkali dissolution and water washing, the pH value, electrical conductivity and metal ion concentration are finally controlled.
- Comparative Examples 26 and 27 illustrate that the process of alkali-dissolving after acid washing of the present invention and then washing to alkalinity is repeated for other activated carbons, and the modified activated carbon obtained does not contain SiO 2 , even if the pH value, electrical conductivity and metal content of the present invention are reached. The range of the ion concentration still cannot achieve the technical effect of the present invention of simultaneously transesterifying and reducing pollutants.
- the above examples and comparative examples illustrate that the activated carbon prepared by the present invention can not only produce obvious transesterification effect, but also reduce the content of 3-MCPD ester and GE in the oil at the same time. Compared with chemical transesterification, not only the grease safety of transesterification is improved, but also pollutants can be removed at the same time. In addition, other activated carbons or adsorbents are treated in the same way, even if the conductivity and pH value meet the requirements of the present invention, the effect of transesterification cannot be produced.
- the inventors also conducted research on different combustion processes of rice husks.
- the rice husks are stacked into a rice husk layer with a thickness of 30-80 cm, and smoldering is carried out at the same temperature and time (no air is introduced into the smoldering process). During the smoldering process, the rice husks undergo incomplete combustion , to get rice husk ash.
- the obtained rice husk ash is sieved and dedusted, and then passed through an iron remover.
- the rice husk ash was soaked in a sulfuric acid solution with a concentration of 5% at 60° C. for 40 min, and then washed with soft water until neutral, to obtain a rice husk ash wet cake.
- the slurry was prepared by reacting at 100° C. and 0.5 MPa for 3 hours, and the SiO 2 extraction rate of the slurry was 80%, based on the total silicon content of rice husk ash.
- the obtained slurry was filtered through a plate and frame filter press at 0.05 MPa to obtain a carbon-containing filter cake.
- the carbon-containing filter cake was washed with soft water at 60°C to a pH value of 12, and the mass ratio of the carbon-containing filter cake to water was 1:1 to obtain an activated carbon wet cake, and the conductivity of the activated carbon wet cake was 15000 ⁇ s/cm .
- the activated carbon wet cake was placed in a drying chamber, and hot air at 350°C was blown into the drying chamber at a speed of 24 m/s for flash drying to obtain activated carbon.
- the SiO2 content, electrical conductivity and pH value of the obtained activated carbon were measured.
- the activated carbon prepared above was added to the oil in an amount of 2wt%. Bubbling with a trace amount of nitrogen gas, the grease was heated to 120°C and stirred at constant temperature for 20min; the temperature was rapidly raised to 190°C and the reaction was performed for 1h. Subsequently, the temperature was lowered to below 60°C and filtered. The 3-MCPD ester, GE and melting point of the treated oil were detected.
- Table 8 compares Example 10 of the present invention with Comparative Example 28.
- the two rice husk combustion conditions are different, and the modified SiO 2 content, pH value, electrical conductivity, metal ion concentration, etc. are basically equivalent through the same subsequent process. . It can be seen from the comparison that the modified activated carbon obtained by the combustion process of Comparative Example 28 has a weak effect in catalyzing transesterification and cannot perform normal transesterification.
- the activated carbon of the present invention has unique internal structure, SiO 2 content and crystal form due to the special combustion process and post-processing technology.
- Using the activated carbon of the present invention can not only replace the prior art sodium methoxide catalyzed transesterification of oil and fat, making the oil safer, but also remove 3-MCPD ester and GE at the same time.
- the transesterification that adopts the activated carbon of the present invention to carry out compared with the chemical transesterification and the enzymatic transesterification of the prior art, also has the following unique advantages, as shown in the following table 9:
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fats And Perfumes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
提供了一种活性炭及其制备方法和在油脂中的应用,属于油脂加工技术领域。所述活性炭中二氧化硅的质量百分比含量为5.5%-30%。本发明通过控制稻壳灰的电导率、pH、二氧化硅的含量和/或金属离子的含量,使得油脂在非真空的条件下发生反应后,可以在满足酯交换油脂物理性质的前提下,降低油脂中的磷含量、皂含量,改善油脂的色泽,且能同步降低油脂中3-MCPD酯和GE的含量,得到优质的低污染物的酯交换油脂,并可以通过工艺参数来控制其酯交换程度。在完成酯交换改性的同时,可以有效的控制油脂终产品中各个污染物的含量,适用于油脂工业化生产。
Description
本申请要求2021年3月19日向中国国家知识产权局提交的专利申请号为202110298546.X,发明名称为“一种活性炭及其制备方法和在油脂中的应用”的在先申请的优先权。该在先申请的全文通过引用的方式结合于本申请中。
本发明涉及一种活性炭及其制备方法和在油脂中的应用,属于油脂加工技术领域。
油脂改性是通过改变甘三酯的组成和结构,使油脂的物理性质和化学性质发生改变。油脂改性的方法主要有氢化、酯交换等。近年来,部分氢化油由于含有对人体健康有害的反式脂肪酸而饱受争议,目前在很多国家已经禁止使用。
酯交换是重要的油脂改性技术之一。该方法通过改变甘三酯中脂肪酸的分布来改变油脂的性质,尤其是使油脂的结晶及熔化特征发生改变,形成不同的油脂组合,得到更好物理性能的油脂。酯交换改性过程中不会产生反式脂肪酸,因此酯交换油更加受到生产厂商和消费者的青睐。
现有的酯交换方法包括工业酶法和化学法。化学法酯交换通常采用批次生产,过程中采用碱性催化剂;酶法酯交换反应器一般由多个固定床串联,可以实现连续生产,酶需要定期更换。但是,现有的酯交换工艺也存在一些亟需解决的问题,首先,无论是化学法还是酶法,对原料的含磷量、含水量和过氧化值等都有很高的要求,如下表所示:
化学法 | 酶法 | |
游离脂肪酸/% | <0.05 | <0.1 |
含磷量/(mg/kg) | <2 | <3 |
过氧化值/(meq/kg) | <1 | <2 |
茴香胺值 | <10 | <5 |
含水量/% | <0.01 | <0.1 |
然而,即便如此,化学法中还会发生皂化反应,生成皂的同时会造成油脂损失。并且,化学法的反应过程需要维持较高的真空,反应结束后需要使用柠檬酸终止反应,并水洗、离心,通过白土吸附进一步降低含皂量,工艺繁琐,成本高。化学法在反应结束后,油脂中的GE(缩水甘油脂肪酸酯)含量上升明显,且3-MCPD酯(3-氯-1,2-丙二醇酯)的含量维持不变。并且,对于棕榈油等含此类污染物较高的油脂,还需要单独的工艺进行去除,工艺成本较高,难度较大。
此外,酶法会有酶制剂从载体脱落引入到下游油脂中,带来一定的风险。而且,无论是化学法和酶法,反应得到的油脂颜色均较深。
因此,有必要改善现有技术的缺陷,在完成油脂加工和改性的同时,去除污染物或降低污染物的含量,避免后续额外的二次加工步骤。
发明内容
为改善上述技术问题,本发明提供一种活性炭,所述活性炭中二氧化硅的质量百分比含量为5.5%-30%,优选10%-20%,例如5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12wt%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22wt%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%或30%。
根据本发明的实施方案,所述活性炭的电导率大于1000μs/cm且小于30000μs/cm,例如为2000-25000μs/cm,优选10000-16000μs/cm,例如为2500、3000、3500、4000、5000、6000、7000、8000、9000、10000、11000、12000、13000、15000、18000、20000、22000、24000或25000μs/cm。
根据本发明,所述活性炭的电导率采用GB/T 12496.17-1999国家标准规定的方法测定。
根据本发明的实施方案,所述活性炭中金属离子的质量浓度大于4000ppm且小于6500ppm,例如为4500-6000ppm,例如为4500、4800、5000、5200、5400、5500、5600、5800或6000ppm。
根据本发明,所述活性炭中金属离子的质量浓度采用GB/T 12496.21-22国家标准规定的方法测定。
根据本发明的实施方案,所述金属离子包括选自钠、镁、钾、钙和铁等离子中的 一种、两种或更多种。
根据本发明的实施方案,所述活性炭的pH值为10-11,例如为10.1-10.6,例如为10.1、10.2、10.3、10.4、10.5或10.6。
根据本发明,所述活性炭的pH值采用GB/T 12496-7-1999国家标准测定。
根据本发明的实施方案,所述活性炭中水分的含量为3质量%-10质量%,例如为3质量%、4质量%、5质量%、6质量%、7质量%、8质量%、9质量%或10质量%。
根据本发明的实施方案,所述活性炭优选为由本发明的方法制备的活性炭,例如特种活性炭。
除非另有说明,本申请上下文中的术语“含量”指质量百分含量(质量%或wt%)。
本发明还提供上述活性炭的制备方法,所述方法包括如下步骤:
将稻壳灰与碱溶液混合反应,得到固体组分;和
将得到的固体组分进行水洗、干燥,制备得到活性炭。
根据本发明的实施方案,所述方法包括如下步骤:
(1)制备稻壳灰;
(2)任选地,对步骤(1)的稻壳灰进行酸洗和/或水洗;
(3)将步骤(1)或步骤(2)得到的稻壳灰与碱溶液混合,进行碱溶反应,得到固体组分;
(4)将步骤(3)得到的固体组分水洗、干燥,制备得到活性炭。
根据本发明的实施方案,步骤(1)中,所述稻壳灰是采用如下方法制备得到的:
(1-1)收集稻壳;
(1-2)将步骤(1-1)的稻壳进行裂解反应,得到稻壳灰;
(1-3)任选地,将步骤(1-2)的稻壳灰经过筛分、除尘,除去其中未碳化完全的米粒、生稻壳及细粉尘等杂质;
(1-4)任选地,将步骤(1-2)或步骤(1-3)的稻壳灰通过除铁器,除去稻壳灰中的铁杂质。
根据本发明的实施方案,步骤(1-1)中,所述稻壳例如是通过如下方法制备得到的:水稻经砻谷机碾磨,将米粒与稻壳分离,再通过提粮、风选等操作分离出稻壳中含有的碎米、瘪稻、青粒、秸秆及尘土等杂质,获得稻壳。
其中,所述稻壳中含粮率低于0.1wt%,优选地,所述稻壳经60目过筛后,筛下物料的含量低于15wt%。
根据本发明的实施方案,步骤(1-2)中,所述裂解反应是在反应炉中进行的。
在所述反应炉中,稻壳经过悬浮燃烧,尽可能地使稻壳燃烧完全。发明人发现,稻壳不完全燃烧后获得的稻壳灰含有脂肪、蛋白质等物质,不利于后续的高温活化和酯交换反应过程的进行。
根据本发明的实施方案,步骤(1-2)中,所述裂解反应的温度为500-1000℃,所述裂解反应的时间为10-120min,所述裂解反应是在空气气氛下进行的。
根据本发明的实施方案,步骤(1-4)中,利用例如磁力为10000G的永磁铁,通过永磁铁,除去其中混入的铁丝、螺钉等杂物以及稻壳灰组分中的金属铁等。
根据本发明的实施方案,步骤(2)中,所述酸洗是对步骤(1)的稻壳灰经酸性水溶液进行洗涤,除去其中残留的蛋白质、淀粉等有机杂质及钙、镁、铁等金属盐杂质。示例性地,所述酸洗例如是与浓度为1%-10%的硫酸混合,加热至40-80℃,浸泡30-60min,以使稻壳灰中有机杂质的含量控制在50-200ppm范围内,无机杂质的含量控制在500-5000ppm范围内。
根据本发明的实施方案,步骤(2)中,所述水洗是对酸洗后的固体组分经软水洗涤至pH值为6-8,例如洗涤至pH值为中性。示例性地,所述水洗例如是采用软水将稻壳灰洗涤至电导率为500-1500μs/cm,pH值为6-8,水分含量为50质量%-65质量%的湿饼。
根据本发明的实施方案,步骤(3)中,所述碱溶液为金属氢氧化物的水溶液,优选地,所述的碱选自氢氧化钠、氢氧化钾及氢氧化钙。优选地,所述碱溶液的质量百分比浓度可以为8质量%-20质量%,例如可以选自浓度为8质量%-20质量%的氢氧化钠水溶液、浓度为8质量%-20质量%的氢氧化钾水溶液或浓度为8质量%-20质量%的氢氧化钙水溶液。作为实例,所述碱溶液的质量百分比浓度可以为8质量%、10质量%、12质量%、14质量%、16质量%、18质量%或20质量%。
根据本发明的实施方案,步骤(3)中,步骤(2)的稻壳灰与碱溶液中碱的质量比没有特别的限定,只要碱的质量相对于稻壳灰过量即可。示例性地,步骤(2)的稻壳灰与碱溶液中碱的质量比为3:1-5:1,例如3:1、4:1或5:1。发明人在研究过程中发现,碱溶液中的碱含量使用的是轻量碱,如果稻壳灰与碱溶液中碱的质量比高于5:1(即碱的含量小于约16.67%)时,碱量过少,影响硅的提取、活性炭的硅含量过高,不适于后续的酯交换;而且,如果稻壳灰与碱溶液中碱的质量比低于3:1(即碱的含量高于25%)时,碱量过多,活性炭中的硅含量过低,也不适于后续 的酯交换。因此,适当的灰碱比可以保证碱性溶液处理后的稻壳灰中的二氧化硅的含量在适当的范围内,达到10质量%以上,例如10质量%-50质量%,从而满足后续的应用需求。
根据本发明的实施方案,步骤(3)中,所述反应的温度可以为50-200℃,例如50℃、70℃、90℃、100℃、120℃、140℃、160℃、180℃或200℃;所述反应的时间可以为3-5h,例如3h、4h或5h;所述反应的压力为0-0.5MPa,例如0MPa、0.1MPa、0.2MPa、0.3MPa、0.4MPa或0.5MPa。
根据本发明的实施方案,步骤(4)中,所述水洗是将步骤(3)得到的固体组分经水(如软水)洗涤至中性。
示例性地,将步骤(3)得到的固体组分与温度为50-80℃的水混合均匀,固体组分与水的质量比控制在1:1-1:5。控制水洗后的洗涤液(水洗产生的滤液)的电导率为大于2000μs/cm,例如所述电导率为2500-25000μs/cm,优选10000-16000μs/cm,pH值为10-12,优选10-11.5。
根据本发明的实施方案,步骤(4)中,所述干燥例如通过如下方法实现:300-350℃的热空气由热风管以24m/s的速度吹入干燥室,对物料产生强烈的剪切、吹浮、旋转作用,制备得到活性炭。
除非另有说明,本申请的上下文中,术语“任选”表示该术语所限定的特征可以存在或不存在,例如该术语限定的步骤可以进行或不进行。
本发明还提供一种通过上述方法制备得到的活性炭,优选特种活性炭。
本发明还提供所述活性炭用于制备油脂的用途,优选用于制备酯交换油脂的用途。优选地,本发明提供所述活性炭作为催化剂用于制备酯交换油脂的用途。
还优选地,所述活性炭用于降低酯交换油脂中的不利成分(如污染物)的含量和/或改善酯交换油脂的性质。例如,所述不利成分包含选自3-MCPD酯(3-氯-1,2-丙二醇酯)、GE(缩水甘油脂肪酸酯)、磷、皂中的一种、两种或更多种;例如,所述改善酯交换油脂的性质是指改善其色泽和/或酸价。
除非另有说明,本申请的上下文中,术语“酯交换油脂”表示通过将油脂进行酯交换反应得到的油脂产品。
本发明还提供一种酯交换油脂的制备方法,所述方法在所述活性炭的存在下进行油脂的酯交换反应,制备得到酯交换油脂。
根据本发明的实施方案,所述活性炭的加入量为所述油脂质量的0.5-5wt%,例如 0.5wt%、1.0wt%、1.5wt%、2.0wt%、2.5wt%、3.0wt%、3.5wt%、4.0wt%、4.5wt%或5.0wt%,优选2-3wt%。
根据本发明的实施方案,所述酯交换反应的温度为160-200℃,优选185-195℃,例如190℃。
根据本发明的实施方案,所述酯交换反应的时间为0.5-2h,例如0.5h、1.0h、1.5h或2.0h。
优选地,在酯交换反应之前,对油脂进行干燥处理,所述干燥是在100-120℃停留10-30min。
根据本发明的实施方案,所述酯交换反应结束后,降温至60℃以下过滤,获得酯交换油脂。
发明人出人意料地发现,通过控制稻壳灰源活性炭的电导率、pH值、二氧化硅的含量和/或金属离子的含量,使得油脂在非真空的条件下发生反应后,可以在满足酯交换油脂物理性质的前提下,降低油脂中的磷含量、皂含量,改善油脂的色泽,且能同步降低油脂中3-MCPD酯和GE的含量,得到优质的低污染物的酯交换油脂,并可以通过工艺参数来控制其酯交换程度。出人意料的是,在完成酯交换改性的同时,可以有效控制油脂终产品中各个污染物的含量,从而适用于油脂的工业化生产。
并且,本发明采用的活性炭制备工艺简单,对稻壳的利用率较高,加工成本低;低污染物的酯交换油脂的制备方法中对油脂原料没有严格的要求;低污染物的酯交换油脂的制备方法中,不涉及使用真空,反应结束后无需柠檬酸、水洗、脱色吸附等工艺;低污染物的酯交换油脂的制备方法,没有皂的产生,能同步降低其含磷量、3-MCPD酯和GE的含量,改善油脂的色泽,并抑制酸价的上升;此外,还可以通过工艺参数来控制其酯交换程度,且新工艺对比现有工艺,产品的固酯含量、熔点等指标相近。
下文将结合具体实施例对本发明做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
仪器:
金属离子测定仪器:ICP-MS;
电导率测定仪器:Mettler Toledo实验室电导率仪。
原料:
以下各实施例及对比例所处理的油脂样品为一次精炼棕榈液油(嘉里特种油脂(上海)有限公司提供),磷含量为:12.1ppm,酸价为:0.2mgKOH/g,色泽为:2.4R,3-MCPD酯含量为:4.03ppm,GE含量为:2.87ppm,熔点22.9℃。
检测方法:
3-MCPD酯和GE的检测方法:参考ISO 18363-1(等同于AOCS Cd 29c-13),使用碱性酯交换的方法,将酯态的3-MCPD酯和GE水解为游离态的,再与苯硼酸衍生后用GC-MS检测。
电导率的检测方法:采用GB/T 12496.17-1999国家标准规定的方法;
金属离子浓度的检测方法:采用GB/T 12496.21-22国家标准规定的方法;
活性炭的pH值的测定方法:采用GB/T 12496-7-1999国家标准进行测定;
二氧化硅含量的检测方法:采用HG/T 3062行业标准规定的方法。
本发明提供一种活性炭的制备方法,特别是提供一种特种活性炭的制备方法,所述活性炭是通过控制燃烧条件,将稻壳进行悬浮燃烧,得到稻壳灰,并对所得稻壳灰进行酸洗除杂后,进行碱溶反应而成。在碱溶反应之后,不再进行酸洗。具体操作为:
1)稻壳收集及除杂:水稻经砻谷机碾磨,将米粒与稻壳分离,再通过提粮、风选等操作分离出稻壳中含有的碎米、瘪稻、青粒、秸秆及尘土等杂质。优选地,所收集的稻壳中,含粮率低于0.1wt%,60目筛下物低于15%。
2)稻壳燃烧:将步骤1)所收集的稻壳输送至循环流化床气化炉内,裂解得到稻壳灰。具体来说,稻壳裂解的条件为:气化炉的侧部设置给料口,底部设置风机。所收集的稻壳通过给料口引入气化炉的炉膛内,引入速率为5.0-5.5吨/小时;同时,风机向气化炉内持续鼓入空气,空气当量比0.25-0.3,气化炉内温度(即裂解温度)为500-1000℃;当气化炉的负荷为50%时,空气当量比控制在0.35-0.4,控制炉内温度为780-820℃,将炉内烟气(鼓入的空气与燃烧形成的燃气的混合气体)截面速度提至3m/s。裂解过程中产生的燃气从气化炉顶部排出,每小时产生的燃气量为 10000-11000m
3,产生热量为5300-6000kJ/m
3。上述裂解时间为10-120min,优选30-80min。
在气化炉内的燃烧过程中,稻壳始终处于悬浮状态,亦即悬浮燃烧,从而使得稻壳被完全燃烧、充分燃烧。
3)稻壳灰除杂:可选地,将步骤2)得到的稻壳灰进行酸洗,随后水洗至中性,得到稻壳灰湿饼;所述稻壳灰湿饼的pH值为6-8及电导率为500-1500μs/cm。具体来说,所述酸洗是将步骤2)得到的稻壳灰经酸溶液洗涤,除去其中残留的蛋白质、淀粉等有机杂质及钙、镁、铁等金属盐杂质。在一些实施例中,所述酸溶液选自盐酸、硫酸、磷酸等质子酸。更具体来说,所述酸洗是用浓度为1%-10%的硫酸在40-80℃下将稻壳灰浸泡30-60min。经除杂及水洗后,所得到的稻壳灰湿饼的水分50%-65%、有机杂质的含量为50-200ppm、无机杂质的含量为500-5000ppm。
本领域技术人员可以理解,所述酸洗步骤是优选的,但不是必需的。不经酸洗,可以直接进行碱溶,并且加大用碱量。但是,本领域技术人员应当知晓,如果进行酸洗,酸洗步骤必须在碱溶步骤前进行,在碱溶之后无需进行酸洗。
可选地,在本发明的一些实施例中,在对稻壳灰进行酸洗之前还包括除尘和除铁步骤。具体为:所述除尘步骤是将步骤2)得到的稻壳灰经过筛分、除尘,除去其中未碳化完全的米粒、生稻壳及细粉尘等杂质。所述除铁步骤是将上述得到的稻壳灰通过除铁器,除去稻壳灰中的铁杂质,在一些实施例中,所述除铁器是永磁铁。具体来说,稻壳灰储罐下安装有磁力为10000G的永磁铁,稻壳灰输送至车间过程中通过永磁铁,除去其中混入的铁丝、螺钉等杂物以及稻壳灰组分中的金属铁等。
4)碱溶反应:将步骤3)得到的稻壳灰湿饼或者步骤2)得到的稻壳灰与碱溶液混合、反应来制备包含碳和硅酸盐的料浆,所述料浆中二氧化硅的提取率为50%-90%,以稻壳灰中的总硅含量为基准。其中,所述碱溶液为金属氢氧化物的水溶液,所述金属氢氧化物选自氢氧化钠、氢氧化钾及氢氧化钙;优选地,所述碱溶液为浓度为8%-20%的烧碱溶液。所述稻壳灰干基与金属氢氧化物干基的质量比(灰碱比)为3:1-5:1之间。所述反应具备以下特征中的一种或多种:反应温度为50-200℃、反应时间为3-5h、反应器内压力为0-0.5MPa。
5)压滤分离:将步骤4)获得的料浆过滤,获得含碳滤饼。所述过滤在压力0.04-0.06MPa下通过板框压滤机进行。
6)活性炭洗涤:将步骤5)所得含碳滤饼水洗至洗涤液的pH值为10-12,例如 10-11.5;电导率为大于2000μs/cm,例如为2500-25000μs/cm,优选10000-16000μs/cm,得到活性炭湿饼。具体来说,水洗的温度为50-80℃,所述含碳滤饼与水的质量比为1:1-1:5。此处洗涤液的pH值用于预估成品活性炭的pH,指导生产的终点。
7)活性炭干燥:将步骤6)得到的活性炭湿饼进行闪蒸干燥,得到活性炭产品。优选地,所述闪蒸干燥是将300-350℃的热空气以24m/s的速度吹入干燥室而进行,从而对物料产生强烈的剪切、吹浮、旋转作用。
以上制备方法所得到的活性炭产品具有以下特征中的一种或多种:
所述活性炭的电导率大于2000μs/cm,例如2500-25000μs/cm,再如10000-16000μs/cm,例如为15710μs/cm;所述活性炭中金属离子的质量浓度大于4000ppm,例如4500-6000ppm,再如4610ppm;所述活性炭的二氧化硅的质量百分比含量为5.5%-30%,例如10%-20%,再如14.1%;所述活性炭的pH值为10-11,例如10.1-10.6,再如10.36。所述金属离子包括钠、镁、钾、钙、铁等。
本发明还研究了上述制备的活性炭在油脂处理中的应用。
具体为:将上述制得的活性炭加入油脂中,添加量为0.5-5wt%,优选2-3wt%。通入微量氮气鼓泡,将油脂加温至100-120℃恒温搅拌10-30min;随后,迅速升温至160-200℃反应0.5-2h,优选185-195℃,更优选190℃。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
以下将通过具体的实施例及对比例,对本发明制备的活性炭的性能进行进一步研究。
实施例1:
将米粒与稻壳分离,再通过提粮、风选等操作分离出稻壳中含有的碎米、瘪稻、青粒、秸秆及尘土等杂质,所收集的稻壳中,含粮率低于0.1%、60目筛下物低于15%。将收集的稻壳以5吨/小时的速率输送至气化炉的炉膛内,同时底部风机以0.3的空气当量比向炉膛内鼓入空气,使得稻壳处于悬浮状态燃烧,气化炉内温度为820℃;当气化炉的负荷为50%时,空气当量比为0.4,炉内温度为780-820℃,炉内烟气的截面速度为3m/s,裂解时间60min,得到稻壳灰。
所得稻壳灰经筛分、除尘后,通过除铁器。用浓度为5%的硫酸溶液在60℃下将稻壳灰浸泡40min,随后用软水洗涤至中性,得到稻壳灰湿饼。将稻壳灰湿饼与烧碱溶液混合,灰碱比为3:1。在100℃、0.5MPa下反应3小时,制备料浆,所述料浆的SiO
2 提取率为80%,以稻壳灰的总硅含量为基准。对获得的料浆在0.05MPa下通过板框压滤机进行压滤,获得含碳滤饼。将所述含碳滤饼在60℃用软水洗涤至pH值为12,含碳滤饼与水的质量比为1:1,得到活性炭湿饼。
将活性炭湿饼置于干燥室中,将350℃的热空气以24m/s的速度吹入干燥室,进行闪蒸干燥,得到活性炭。测定所得活性炭的SiO
2含量、电导率和pH值。
将上述制得的活性炭加入油脂中,添加量为2wt%。通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
实施例2:与实施例1不同之处在于,实施例2的碱溶反应中灰碱比为4:1。
实施例3:与实施例1不同之处在于,实施例3的碱溶反应中灰碱比为5:1。
对比例1:与实施例1不同之处在于,对比例1的碱溶反应中灰碱比为2:1。
对比例2:与实施例1不同之处在于,对比例2的碱溶反应中灰碱比为6:1。
实施例4:与实施例2不同之处在于,碱溶之后用软水洗涤至pH值为10。
对比例3:与实施例2不同之处在于,碱溶之后用软水洗涤至pH值为9。
对比例4:与实施例2不同之处在于,碱溶之后用软水洗涤至pH值为13。
实施例5:与实施例1的区别在于,碱溶的灰碱比为5:1,碱溶后洗涤至pH值为10且电导率为2000μs/cm。
实施例6:与实施例5的区别在于,碱溶后洗涤至电导率为10000μs/cm。
实施例7:与实施例5的区别在于,碱溶后洗涤至电导率为15710μs/cm。
实施例8:与实施例5的区别在于,碱溶后洗涤至电导率为25000μs/cm。
对比例5:与实施例5的区别在于,碱溶后洗涤至电导率为30000μs/cm。
对比例6:与实施例5的区别在于,碱溶后洗涤至电导率为1000μs/cm。
表1碱溶反应中灰碱比对活性炭处理的油脂性能的影响
以上实施例1-3及对比例1-2研究了碱溶步骤的灰碱比对活性炭产品的影响,结果见表1所示。对比可知,灰碱比直接影响了产品的二氧化硅的含量,而如二氧化硅的含量过高则影响酯交换的反应程度。
如表1所示,实施例2与实施例4、对比例3-4研究了碱溶之后的水洗pH值对活性炭产品的性能的影响。水洗pH值,直接影响着产品的pH值,尽管pH值提高将使酯交换反应程度越高,但过高的pH带来颜色加深、GE升高等负面影响。
以上实施例5-8及对比例5-6研究了碱溶后洗涤所得活性炭湿饼的电导率对活性炭产品的性能的影响。对比可知,水洗电导率的值影响产品的电导率值。尽管电导率的提高将使酯交换的反应程度越高,可以弥补pH低的劣势,但过高的电导率将导致油脂产品污染物的控制水平较差。以下将所制备的特征活性炭产品对油脂处理的性能进行进一步研究。
活性炭产品的二氧化硅含量对油脂处理的影响:
对比例7:对油脂的空白样品进行检测,得到3-MCPD酯、GE及其熔点。
实施例9-12及对比例8-10:将制得的活性炭加入油脂中,添加量为2wt%,所述活性炭的特性见表2所示。通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。这些实施例及对比例不额外引入金属离子,此不影响电导率,只改变SiO
2含量。
表2活性炭产品的二氧化硅含量对油脂处理的影响
表2显示,活性炭产品中二氧化硅的含量,对酯交换和污染物控制的程度影响较大。对于二氧化硅含量低于5.5%或者高于30%的活性炭产品,即使将pH值和电导率控制在最佳条件下,也无法产生有效的酯交换和污染物控制的效果。并且,二氧化硅含量在10%-20%范围内,尤其在15%左右对3-MCPD酯和GE的去除效果最好,而且熔点最高,说明酯交换程度最高。
活性炭产品的pH值对油脂处理的影响:
实施例10、13-15及对比例11-13:将制得的活性炭加入油脂中,添加量为2wt%,所述活性炭的特性见表3所示。通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
表3活性炭产品的pH值对油脂处理的影响
表3显示不同的活性炭的pH值对油脂处理的影响。对比说明,活性炭的pH值不同,对污染物控制和酯交换反应都有一定程度的影响,pH值在10-12范围内的污染物3-MCPD酯及GE的含量较低,熔点较高,说明酯交换程度较高。pH值低于10,酯交换效果和污染物控制水平都会显著降低,而pH值过高会带来一系列如颜色的加深、GE升高、损耗的增加等的负面影响。
活性炭的电导率对油脂处理的影响:
实施例10、16-18及对比例13-14:将制得的活性炭加入油脂中,添加量为2wt%, 所述活性炭的特性见表4所示。通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
表4活性炭的电导率对油脂处理的影响
表4显示了不同活性炭的电导率直接影响了其酯交换效果,电导率在2500-16000μs/cm范围内时,对污染物去除和酯交换反应都有较好的效果,在15000μs/cm左右时效果最佳。
不同碱性催化剂对油脂处理的作用:
此外,现有技术中的化学法酯交换通常是在甲醇钠做催化剂的情况下进行。为了进一步与现有技术的化学法酯交换作比较,发明人还尝试了如下的实验:
对比例15:在真空度20mbar下,向待处理油脂中加入固体甲醇钠,添加量为油脂重量的0.15wt%,酯交换反应温度105℃,反应时间30-120min。
对比例16:在真空度20mbar下,向待处理油脂中加入固体NaOH,添加量为油脂重量的0.15wt%,酯交换反应温度为105℃,反应时间30-120min。
对比例17:在常压下,向待处理油脂中加入固体NaOH,添加量为油脂重量的0.15wt%,酯交换反应温度为190℃,反应时间30-120min。
对比例18:在常压下,向待处理油脂中添加浓度为0.25%的NaOH溶液,NaOH溶液的添加量为油脂重量的2wt%,酯交换反应温度为190℃,反应时间30-120min。
对比例19:在常压下,向待处理油脂中添加浓度为0.25%的NaCl溶液,NaCl溶液的添加量为油脂重量的2wt%,酯交换反应温度为190℃,反应时间30-120min。
对比例20:在常压下,向待处理油脂中添加浓度为1%的NaCl溶液,NaCl溶液的添加量为油脂重量的2wt%,酯交换反应温度为190℃,反应时间30-120min。
对比例15-20与实施例10的油脂处理效果见表5。
表5不同催化剂条件下对油脂的处理效果
表5是对不同催化剂条件下的酯交换及去除3-MCPD酯/GE的效果对比,其中对比例7是待处理油脂的空白样品,对比例15是以固体甲醇钠作催化剂,在加压条件下进行酯交换,属于常规酯交换技术,可以看出,相对于对比例7的空白样,熔点增长了65%,说明酯交换程度很高;但是,3-MCPD酯和GE反而升高了,尤其GE显著升高,这说明常规酯交换技术并不能同时去除污染物3-MCPD酯和GE。
对比例16是在加压条件下以固体NaOH做催化剂,对比例17是常压下以固体NaOH做催化剂。对比例16和17用固体NaOH替换固体甲醇钠,不管是常压还是加压下,熔点基本不变,说明即使提供了碱性条件,仍然没有发生酯交换反应。另外,3-MCPD酯略有降低,但是GE反而升高,总体在去除污染物方面没有明显效果。这两个对比例还说明,仅仅提供碱性条件并不能导致酯交换的发生。
对比例18是常压下以NaOH溶液作为催化剂。在此对比例中,电导率和pH值均达到本发明的范围,添加量与本发明实施例10一样,但是熔点仅仅升高了1.7%,说明基本未发生酯交换反应;同时,3-MCPD酯仅降低了3.9%,GE反而略升高,说明在去除污染物方面基本没有效果。这一对比例也说明,仅仅满足本发明的电导率和pH值,仍无法达到本发明同时发生酯交换和去除污染物的效果。
对比例19是以NaCl溶液做催化剂,其中pH为中性,不满足本发明的pH值范围,但是电导率在本发明的范围内,为4810μs/cm;对比例20是以浓度更高的NaCl溶液做催化剂,pH为中性,不满足本发明范围,但电导率满足本发明的范围,为17200μs/cm。 对比例19和20的熔点基本不变,说明没有发生酯交换反应,并且3-MCPD酯略有升高,GE略降低,说明不能去除污染物。这两个对比例说明,仅仅电导率满足本发明范围,既不能发生酯交换反应,又不能去除污染物。
与对比例15-20相比,实施例10使用本发明的活性炭做催化剂,在SiO
2含量满足本发明要求的范围下(参考前述表2),电导率、pH值均满足本发明的范围。用实施例10的活性炭处理油脂,不仅发生酯交换反应,同时还在去除污染物3-MCPD酯和GE方面有显著的效果。对比实施例10和对比例15还发现,使用本发明的活性炭,在酯交换程度上与常规酯交换采用甲醇钠的效果相当。由于本发明的活性炭可以过滤去除,避免了化学试剂的隐性污染和安全风险,因此,本发明的活性炭能够完全代替甲醇钠进行酯交换,同时还能去除污染物,取得意料不到的技术效果。
关于改善油脂的色值,需要说明的是,正常酯交换反应后,油脂色泽会加深;表5给出了现有油脂处理技术、本发明的处理技术、以及空白样所得油脂的色泽,可以看出,现有油脂处理技术得到的油脂颜色加深,本发明的油脂颜色不会加深,甚至降低。
不同负载介质对油脂的污染物去除的效果对比:
为了进一步探究使用本发明的活性炭能够去除3-MCPD酯和GE是否由于活性炭的吸附作用,发明人还进行了以下试验。
对比例21:
将活性白土(市售)用浓度为5%的硫酸溶液在60℃下浸泡40min,随后用软水洗涤至中性,抽滤,得到活性白土的湿饼。将湿饼与烧碱溶液混合,活性白土干基与烧碱的质量比为3:1。在60℃下反应3小时,制备料浆。对获得的料浆进行抽滤,获得滤饼。将滤饼在60℃用软水洗涤至pH值为10.5,得到活性白土湿饼。将活性白土湿饼置于105℃干燥箱干燥,得到改性活性白土,测定其pH值。
将改性活性白土添加至待处理油脂中,添加量为待处理油脂重量的2wt%,通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
对比例22:与对比例21的区别在于,用凹凸棒土代替活性白土,制备改性凹凸棒土,并用改性凹凸棒土处理油脂。
对比例23:与对比例21的区别在于,用硅藻土代替活性白土,制备改性硅藻土, 并用改性硅藻土处理油脂。
表6碱性负载介质对油脂处理的效果
对比例7、21-23与实施例10的对比请参考表6,其共同特点是均为碱性负载介质,pH值大体相当,均具有吸附性能。对比例21-23的改性活性白土、改性凹凸棒土、改性硅藻土均对市售的活性白土、凹凸棒土和硅藻土等吸附材料进行改性,改性方法类似,即酸洗后碱溶再水洗,控制最终pH值。采用改性后的吸附材料处理油脂,对比例21-23的结果说明:在碱性条件下,熔点基本不变,说明并未发生酯交换反应;同时,去除3-MCPD酯效果微弱、去除GE几乎没效果。这说明将其它负载介质改性之后,既无法达到酯交换的目的,又无法达到去除污染物的效果;由此说明本发明的活性炭能够达到酯交换和去除污染物的作用,并不是由于活性炭的吸附作用导致的。
活性炭中有无SiO
2对油脂处理的影响:
为了进一步探讨不同活性炭的作用机理、以及SiO
2对油脂处理的影响,本发明人对不同的活性炭进行了对比研究,见表7所示,其中:
对比例24:
将木质活性炭(SiO
2含量为0,市售,购自Cabot Norit)添加至待处理油脂中,添加量为2wt%,通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
表7活性炭中有无SiO
2对油脂处理的影响
对比例25:
将煤质活性炭(SiO
2含量为0,市售,购自Cabot Norit)添加至待处理油脂中,添加量为2wt%,通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
对比例26:改性木质活性炭
将木质活性炭直接与烧碱溶液混合,干基与烧碱的质量比为3:1。在60℃下反应3小时,制备料浆。对获得的料浆进行抽滤,获得滤饼。将滤饼在60℃用软水洗涤至pH值为10.5,得到活性炭湿饼。将活性炭湿饼置于105℃干燥箱干燥,得到改性活性炭,测定其pH值和电导率。
将所制备的改性木质活性炭(SiO
2含量为0)添加至待处理油脂中,添加量为2wt%,通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
对比例27:改性煤质活性炭
将煤质活性炭直接与烧碱溶液混合,干基与烧碱的质量比为3:1。在60℃下反应3小时,制备料浆。对获得的料浆进行抽滤,获得滤饼。将滤饼在60℃用软水洗涤至pH值为10.5,得到活性炭湿饼。将活性炭湿饼置于105℃干燥箱干燥,得到改性活性炭,测定其pH值和电导率。
将所制备的改性煤质活性炭(SiO
2含量为0)添加至待处理油脂中,添加量为2wt%,通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;随后,迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
其中,改性木质活性炭和改性煤质活性炭为在市售的木质活性炭和煤质基活性炭的基础上进行改性后获得的。通过改性工艺的控制,即控制酸洗后碱溶再水洗,最终控制pH值、电导率和金属离子浓度。
表7对不同的活性炭进行油脂处理,对比例24、25采用常规的木质活性炭、煤质活性炭对3-MCPD酯/GE酯基本没有吸附作用;对比例26、27采用改性木质活性炭、改性煤质活性炭,对3-MCPD酯含量的降低有一定的效果,但GE含量上升,熔点不变,无法达到同时进行酯交换和降低污染物的目的。对比例26和27说明,对其他活性炭重复本发明的酸洗后碱溶再水洗至碱性的工艺,得到的改性活性炭中不含有SiO
2,即使达到本发明的pH值、电导率和金属离子浓度的范围,仍无法达到本发明同时进行酯交换和降低污染物的技术效果。
以上实施例及对比例说明,采用本发明制备的活性炭处理油脂,除了可以产生明显的酯交换效果之外,还能同时降低油脂中的3-MCPD酯和GE的含量。相比于化学酯交换,不仅酯交换的油脂安全性提高,还能同时去除污染物。另外,其他活性炭或者吸附材料进行同样处理,即使电导率和pH值满足本发明的要求,也不能产生酯交换的效果。
稻壳不同燃烧工艺对油脂处理的影响:
进一步地,发明人还对稻壳的不同燃烧工艺进行了研究。
对比例28:
在反应炉中,将稻壳堆积成厚度为30-80cm的稻壳层,在相同的温度和时间下进行闷烧(闷烧过程不通入空气)在闷烧过程中,稻壳进行不完全燃烧,得到稻壳灰。
所得稻壳灰经筛分、除尘后,通过除铁器。用浓度为5%的硫酸溶液在60℃下将稻壳灰浸泡40min,随后用软水洗涤至中性,得到稻壳灰湿饼。将稻壳灰湿饼与烧碱溶液混合,灰碱比为3:1。在100℃、0.5MPa下反应3小时,制备料浆,所述料浆的SiO
2提取率为80%,以稻壳灰的总硅含量为基准。对获得的料浆在0.05MPa下通过板框压滤机进行压滤,获得含碳滤饼。将所述含碳滤饼在60℃用软水洗涤至pH值为12,含碳滤饼与水的质量比为1:1,得到活性炭湿饼,所述活性炭湿饼的电导率为15000μs/cm。
将活性炭湿饼置于干燥室中,将350℃的热空气以24m/s的速度吹入干燥室,进行闪蒸干燥,得到活性炭。测定所得活性炭的SiO
2含量、电导率和pH值。
将上述制得的活性炭加入油脂中,添加量为2wt%。通入微量氮气鼓泡,将油脂加温至120℃恒温搅拌20min;迅速升温至190℃反应1h。随后,降温至60℃以下过滤。检测被处理过的油脂的3-MCPD酯、GE及熔点。
表8稻壳不同燃烧工艺对油脂处理的影响
表8将本发明的实施例10与对比例28作对比,两者稻壳燃烧条件不同,通过相同的后续工艺使得改性后的SiO
2含量、pH值、电导率、金属离子浓度等基本相当。对比可知,采用对比例28的燃烧工艺所得的改性活性炭,在催化酯交换方面有微弱的效果,无法进行正常酯交换。
以上结果说明,本发明的活性炭由于采用特殊的燃烧工艺和后处理技术,从而得到独特的内部结构、SiO
2含量及晶型等。采用本发明的活性炭,不仅能代替现有技术的甲醇钠催化油脂的酯交换反应,使得油脂更加安全,还能同时去除3-MCPD酯和GE。
同时,采用本发明的活性炭进行的酯交换,相较于现有技术的化学酯交换、酶法酯交换,还具有以下独特的优势,见下表9所示:
表9本发明活性炭的酯交换与化学法酯交换、酶法酯交换的对比
以上对本发明示例性的实施方式进行了说明。但是,本发明的保护范围不限定于上述具体的实施方式。凡在本发明的精神和原则之内,本领域技术人员所作出的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
Claims (10)
- 一种活性炭,其中,所述活性炭中二氧化硅的质量百分比含量为5.5%-30%。
- 根据权利要求1所述的活性炭,其中,所述活性炭的电导率大于1000μs/cm且小于30000μs/cm,例如为2000-25000μs/cm,优选10000-16000μs/cm;优选地,所述活性炭中金属离子的质量浓度大于4000ppm且小于6500ppm,例如为4500-6000ppm;优选地,所述活性炭的pH为10-11,例如为10.1-10.6;优选地,所述活性炭中水分的含量为3质量%-10质量%。
- 权利要求1或2所述的活性炭的制备方法,所述方法包括如下步骤:将稻壳灰与碱溶液混合反应,得到固体组分;和将得到的固体组分进行水洗、干燥,制备得到活性炭。
- 根据权利要求3所述的制备方法,其中,所述方法包括如下步骤:(1)制备稻壳灰;(2)任选地,对步骤(1)的稻壳灰进行酸洗和/或水洗;(3)将步骤(1)或步骤(2)得到的稻壳灰与碱溶液混合,进行碱溶反应,得到固体组分;(4)将步骤(3)得到的固体组分水洗、干燥,制备得到活性炭。
- 根据权利要求4所述的制备方法,其中,步骤(3)中,所述碱溶液例如是浓度为8%-20%的氢氧化钠水溶液、氢氧化钾水溶液、氢氧化钙水溶液;优选地,步骤(3)中,步骤(2)的稻壳灰与碱溶液中碱的质量比为3:1-5:1;优选地,步骤(3)中,所述反应的温度为50-200℃,所述反应的时间为3-5h,所述反应的压力为0-0.5MPa。
- 一种活性炭,所述活性炭是通过权利要求3-5任一项所述方法制备得到的。
- 权利要求1-2和6中任一项所述的活性炭在油脂中的用途;优选地,所述活性炭用于制备酯交换油脂。
- 根据权利要求7所述的用途,其中,所述活性炭用于降低酯交换油脂中的不利成分(如污染物)的含量和/或改善酯交换油脂的性质;优选地,所述不利成分包含选自3-MCPD酯(3-氯-1,2-丙二醇酯)、GE(缩水甘油脂肪酸酯)、磷、皂中的一种、两种或更多种;所述改善酯交换油脂的性质是指改善其色泽和/或酸价。
- 一种酯交换油脂的制备方法,所述方法包括如下步骤:将权利要求1-2和6中任一项所述的活性炭的存在下进行油脂的酯交换反应,制备得到酯交换油脂。
- 根据权利要求9所述的制备方法,其中,所述活性炭的加入量为所述油脂质量的0.5-5wt%,例如2-3wt%;优选地,所述酯交换反应的温度为160-200℃,所述酯交换反应的时间为0.5-2h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112022001608.6T DE112022001608T5 (de) | 2021-03-19 | 2022-03-18 | Aktivkohle, Verfahren zu ihrer Herstellung und ihre Verwendung in Fetten |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110298546.X | 2021-03-19 | ||
CN202110298546.XA CN115106075B (zh) | 2021-03-19 | 2021-03-19 | 一种活性炭及其制备方法和在油脂中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022194284A1 true WO2022194284A1 (zh) | 2022-09-22 |
Family
ID=83321915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/081739 WO2022194284A1 (zh) | 2021-03-19 | 2022-03-18 | 一种活性炭及其制备方法和在油脂中的应用 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN115106075B (zh) |
DE (1) | DE112022001608T5 (zh) |
WO (1) | WO2022194284A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116492806A (zh) * | 2023-03-06 | 2023-07-28 | 南京鑫豪高分子材料有限公司 | 一种螯合剂处理焚烧飞灰后异味去除方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003171114A (ja) * | 2000-05-08 | 2003-06-17 | B M:Kk | シリカゲルの製造方法 |
CN103566878A (zh) * | 2013-09-26 | 2014-02-12 | 蚌埠华纺滤材有限公司 | 一种二氧化硅改性活性炭及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6114280A (en) * | 1996-05-06 | 2000-09-05 | Agritec, Inc. | Highly activated carbon from caustic digestion of rice hull ash and method |
CN103468668B (zh) * | 2012-06-06 | 2017-10-24 | 益海(佳木斯)生物质能发电有限公司 | 一种固定脂肪酶的方法及其用途 |
CN105080480B (zh) * | 2014-04-28 | 2018-09-14 | 益海(佳木斯)生物质能发电有限公司 | 碳硅吸附剂及其制备方法和用途 |
-
2021
- 2021-03-19 CN CN202110298546.XA patent/CN115106075B/zh active Active
-
2022
- 2022-03-18 DE DE112022001608.6T patent/DE112022001608T5/de active Pending
- 2022-03-18 WO PCT/CN2022/081739 patent/WO2022194284A1/zh active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003171114A (ja) * | 2000-05-08 | 2003-06-17 | B M:Kk | シリカゲルの製造方法 |
CN103566878A (zh) * | 2013-09-26 | 2014-02-12 | 蚌埠华纺滤材有限公司 | 一种二氧化硅改性活性炭及其制备方法 |
Non-Patent Citations (2)
Title |
---|
DAI WEIDI, WANG TAOLIN, LIU HANCHAO: "Activated Carbon Conductivity Test and Related Factors Test", JOURNAL OF CHEMICAL INDUSTRY OF FOREST PRODUCTS, vol. 27, no. 6, 31 December 1993 (1993-12-31), pages 23 - 25, XP055967330, ISSN: 1005-3433 * |
JI JUNMIN, ZHANG HAO, ZHAO ZHEN-YU: "Preparation of Industrial Oil Decolorant from Rice Hull Ash of Power Generation Residues", HENAN GONGYE DAXUE XUEBAO (ZIRAN KEXUE BAN) - JOURNAL OF HENAN UNIVERSITY OF TECHNOLOGY NATURAL SCIENCE EDITION, HENAN GONGYE DAXUE, CN, vol. 31, no. 6, 31 December 2010 (2010-12-31), CN , XP055967329, ISSN: 1673-2383, DOI: 10.16433/j.cnki.issn1673-2383.2010.06.010 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116492806A (zh) * | 2023-03-06 | 2023-07-28 | 南京鑫豪高分子材料有限公司 | 一种螯合剂处理焚烧飞灰后异味去除方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112022001608T5 (de) | 2023-12-28 |
CN115106075A (zh) | 2022-09-27 |
CN115106075B (zh) | 2024-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101474055B1 (ko) | 에스테르 교환유의 정제 방법 | |
WO2022194284A1 (zh) | 一种活性炭及其制备方法和在油脂中的应用 | |
KR20130071451A (ko) | 왕겨로부터 고순도의 실리카를 제조하는 방법 | |
JP2023504231A (ja) | 使用済みタイヤの熱分解から得られたカーボンブラックの環境に優しい精製及び再活性化方法 | |
CN107235570B (zh) | 一种冷轧酸性废水达标及回用的方法和系统 | |
US7279147B2 (en) | Method of producing an adsorbent from rice hull ash | |
JPWO2004058423A1 (ja) | 焼却灰中の重金属除去方法 | |
WO2019096066A1 (zh) | 一种吸附黄曲霉毒素滤布、制备方法及其应用 | |
CN113318701A (zh) | 去除土榨花生油中黄曲霉毒素b1的吸附剂及其制备方法 | |
CN107555429B (zh) | 一种低重金属含量的煤质活性炭的制备方法 | |
CN115109649B (zh) | 一种南极磷虾油的精炼工艺 | |
CN116924396A (zh) | 一种生物质基多孔炭及其制备方法 | |
CN106745146A (zh) | 一种废弃钢渣处理方法 | |
CN117228671A (zh) | 高四氯化碳吸附率活性炭的制备方法以及活性炭 | |
CN116445223A (zh) | 一种丙氧基甘油脂肪酸酯的制备方法 | |
RU2735837C1 (ru) | Способ получения углеродного сорбента для очистки сточных вод от нефтепродуктов | |
CN113337337B (zh) | 一种废油脂的再生处理方法 | |
CN112320880A (zh) | 一种天然沸石在处理油墨废水中的应用 | |
US12006215B2 (en) | Method of carbonizate purification | |
CN117715528A (zh) | 用于从原料中去除破乳剂的新方法 | |
CN113289495A (zh) | 一种处理含油物质的陶瓷膜清洗液的方法 | |
CN115722188B (zh) | 一种多孔炭负载金属氧化物吸附剂及其制备方法和应用 | |
CN119040041B (zh) | 一种低凝生物柴油及其制备方法 | |
CN1126751C (zh) | 一种降低苯酐色号的方法 | |
CN1190361C (zh) | 二步法分离精制硅藻土的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22770636 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022001608 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22770636 Country of ref document: EP Kind code of ref document: A1 |