Nothing Special   »   [go: up one dir, main page]

WO2022161070A1 - 一种安全型锂离子电池及其制备方法 - Google Patents

一种安全型锂离子电池及其制备方法 Download PDF

Info

Publication number
WO2022161070A1
WO2022161070A1 PCT/CN2021/141716 CN2021141716W WO2022161070A1 WO 2022161070 A1 WO2022161070 A1 WO 2022161070A1 CN 2021141716 W CN2021141716 W CN 2021141716W WO 2022161070 A1 WO2022161070 A1 WO 2022161070A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
positive electrode
ion battery
iron phosphate
electrode sheet
Prior art date
Application number
PCT/CN2021/141716
Other languages
English (en)
French (fr)
Inventor
曹辉
侯敏
付逊
刘婵
胡亦杨
Original Assignee
瑞浦兰钧能源股份有限公司
上海瑞浦青创新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞浦兰钧能源股份有限公司, 上海瑞浦青创新能源有限公司 filed Critical 瑞浦兰钧能源股份有限公司
Priority to AU2021422773A priority Critical patent/AU2021422773A1/en
Priority to EP21922659.4A priority patent/EP4156363A1/en
Publication of WO2022161070A1 publication Critical patent/WO2022161070A1/zh
Priority to US18/108,123 priority patent/US20230187709A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of lithium ion batteries, relates to a safe lithium ion battery and a preparation method thereof, and in particular relates to a safe lithium ion battery prepared by adding a redox shuttle agent in the production process of an electrode sheet (a positive electrode sheet or a negative electrode sheet). Ion battery and method of making the same.
  • redox shuttle additives are usually added to the electrolyte of lithium ion batteries in the art to develop lithium ion batteries with large current balancing capability.
  • the Chinese invention patent with the application number of 201310594341.1 discloses a floating charge-resistant lithium-ion battery module and a floating charging method thereof, which can meet the fields of energy storage and other fields in terms of electrical performance and safety performance. application requirements.
  • it also adds redox shuttle additives to the electrolyte.
  • the redox shuttle agent will be consumed during the self-equilibration process of lithium-ion batteries, and its self-equilibrium capacity (definition: self-equilibration capacity refers to the amount of electricity consumed when the battery continues to carry out the redox shuttle reaction at a specific self-equilibrium voltage.
  • the capacity the unit is Ah, reflects the strength of the battery's self-balancing ability) and the addition amount is basically proportional.
  • the addition of redox shuttle additives in the electrolyte is affected by the low solubility of the redox shuttle agent in the electrolyte solvent and the limited amount of electrolyte injected into the battery, the total amount of redox shuttle agent added is limited, and ultimately affects the battery.
  • Self-balancing capacity How to introduce more redox shuttle agents into the battery system to improve the self-equilibrium capacity of the battery is the key to its large-scale application. In addition, how to improve the self-balancing capacity of the battery and also make it have high rate characteristics, low temperature performance, and safety performance is also a technical problem to be solved urgently in the art.
  • the purpose of the present invention is to provide a safe lithium ion battery and a preparation method thereof.
  • the invention relates to a safe lithium ion battery, wherein the positive electrode sheet and/or the negative electrode sheet of the lithium ion battery contains a redox shuttle agent.
  • the redox shuttling agent is selected from 2,5-di-tert-butyl-1,4-dimethoxybenzene, 3,5-di-tert-butyl-1,2-dimethoxybenzene, 4-tert-butyl -One or more of 1,2-dimethoxybenzene, naphthalene, anthracene, thianthracene and anisole.
  • the positive electrode active material of the lithium ion battery is lithium iron phosphate, or a mixture of lithium iron phosphate and one or more of nickel cobalt lithium manganate, lithium manganate, and lithium cobalt oxide.
  • the positive active material of the lithium ion battery is a mixture of lithium iron phosphate and one or more of nickel cobalt lithium manganate, lithium manganate, and lithium cobalt oxide
  • the mass percentage of lithium iron phosphate accounts for greater than 60%.
  • the positive electrode active material of the lithium ion battery is a mixture of lithium iron phosphate, lithium manganese iron phosphate, and lithium rich lithium ferrite or both.
  • the positive electrode active material of the lithium ion battery is a mixture of lithium iron phosphate, lithium manganese iron phosphate, and lithium rich lithium ferrite, and the mass percentage of lithium iron phosphate is greater than 60%.
  • the redox shuttling agent is added during the pulping process of the positive electrode sheet or the negative electrode sheet, and is added in an amount of 0.1-10% of the total solid mass of the positive electrode or the negative electrode.
  • the ambient temperature of the lithium-ion battery during operation is -40°C to 70°C.
  • the present invention also relates to a method for preparing the aforementioned safe lithium-ion battery, the method comprising the following steps:
  • the positive electrode sheet A2 and the negative electrode sheet B1 are combined to assemble a dry cell, which is injected with liquid and allowed to stand.
  • step S1-1 the mass ratio of the positive electrode active material, the binder, the conductive agent, and the redox shuttling agent is 83-97:1-3:1.9-4:0.1-10.
  • step S2-1 the mass ratio of graphite, binder, conductive agent, and redox shuttling agent is 85-97:2-3:0-2:0.1-10.
  • step S1-2 the mass ratio of graphite, binder, and conductive agent is 93-97: 1-3: 1.9-4.
  • the mass ratio of graphite, binder, and conductive agent is 95-98:2-3:0-2.
  • the present invention has the following beneficial effects:
  • the self-equilibrium start-up voltage ranges from 3.8-3.95V;
  • the self-equilibrium current is from 1 ampere to 10 ampere level
  • the self-equilibrium capacity can reach several to several hundred times the capacity of the battery cell
  • the positive and negative electrodes are constructed into microscopic porous electrodes, which is conducive to the transport of lithium ions during the charging and discharging process, and is conducive to improving the charge-discharge rate and low-temperature characteristics of the battery;
  • the upper limit voltage of the battery is adjusted to more than 3.95V.
  • the redox shuttle agent plays a role, The battery will continue to work at a constant voltage.
  • the redox shuttle agent inside the pole piece will also slowly dissolve, so that the battery has a safety protection function to prevent overcharge throughout the life cycle.
  • the positive electrode active material is mainly lithium iron phosphate, and the mass percentage is greater than 60%, and nickel cobalt lithium manganate, lithium manganate, lithium cobalt oxide, lithium manganese iron phosphate, lithium rich lithium iron oxide can be added.
  • nickel cobalt lithium manganate, lithium manganate, lithium cobalt oxide, lithium manganese iron phosphate, lithium rich lithium iron oxide can be added.
  • nickel cobalt lithium manganate, lithium manganate, lithium cobalt oxide, lithium manganese iron phosphate, lithium rich lithium iron oxide can be added.
  • nickel cobalt lithium manganate, lithium manganate, lithium cobalt oxide, lithium manganese iron phosphate, lithium rich lithium iron oxide can be added.
  • nickel cobalt lithium manganate, lithium manganate, lithium cobalt oxide, lithium manganese iron phosphate, lithium rich lithium iron oxide can be added.
  • FIG. 1 is a schematic structural diagram of a lithium-ion secondary battery 71173200-280Ah;
  • Example 2 is a schematic diagram of a voltage-time curve of the lithium ion secondary battery of Example 1;
  • Example 3 is a schematic diagram of a voltage-capacity multiple curve diagram of the lithium ion secondary battery of Example 1;
  • FIG. 4 is a schematic diagram of the voltage-discharge capacity percentage curves of the lithium ion secondary batteries of Examples 1, 2, 3, 4, 5 and Comparative Example 1 (-20°C 0.2C rate);
  • FIG. 6 is a schematic diagram of the voltage-discharge capacity percentage curves (2C rate) of the lithium ion secondary batteries of Examples 1, 2, 3, 4, 5 and Comparative Example 1;
  • Example 7 is a schematic diagram of a voltage-time curve of the lithium ion secondary battery of Example 4.
  • Example 8 is a schematic diagram of a voltage-capacity multiple curve diagram of the lithium ion secondary battery of Example 4.
  • shuttle agent 1 2,5-di-tert-butyl-1,4-dimethoxybenzene: hereinafter referred to as shuttle agent 1;
  • shuttle agent 2 Thianthrene: hereinafter referred to as shuttle agent 2;
  • PVDF Polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • Example 1 Lithium-ion battery with self-balancing voltage of 3.8-3.95V
  • Preparation of positive electrode plate First, take the binder PVDF and the shuttle agent 1, dissolve them in the solvent NMP, and fully dissolve until the solution is clear; add the lithium iron phosphate active material LiFePO 4 and the conductive agent SP into the above solution, and mix to form a slurry , wherein the solid mass ratio of LiFePO 4 , SP, PVDF, and shuttle agent 1 is 94:2:2:2, and the solid content of the slurry solution is 50%; the slurry is coated on a 13 ⁇ m thick blank aluminum foil current collector ( On the positive electrode current collector), the solvent is completely evaporated after baking in the oven, and the surface density of the coating is 340g/m 2 (double-sided), and then it is rolled by the pole piece, and the compaction density is 2.4g/cm 3 to obtain the positive pole piece. .
  • Graphite, conductive agent SP, binder PVDF and NMP are stirred and dispersed uniformly into a slurry (the mass ratio of graphite, SP and binder is 96:1:3), and the solid content of the slurry is 50% , coated on a 6 ⁇ m blank copper foil, the solvent was completely evaporated after baking in an oven, the surface density of the coating was 150g/m 2 (double-sided), and then rolled by a pole piece, the compaction density was 1.65g/cm 3 , Get the negative pole piece.
  • lithium ion secondary battery Preparation of lithium ion secondary battery: the positive and negative pole pieces and the separator (using PP single-layer diaphragm) are wound into the battery cell; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate); welding and sealing, and then through the formation and aging process to obtain a lithium ion secondary battery 71173200-280Ah; as shown in Figure 1.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Test process test environment temperature control 25 ⁇ 2°C;
  • Example 2 Lithium-ion battery with self-balancing voltage of 3.8-3.95V
  • Preparation of positive electrode plate First, take the binder PVDF, dissolve it in the solvent NMP, and dissolve it fully until the solution is clear; add the lithium iron phosphate active material LiFePO 4 and the conductive agent SP into the above solution, and mix to form a slurry. Among them, LiFePO 4.
  • the solid mass ratio of SP and PVDF is 96:2:2, and the solid content of the slurry solution is 50%; the slurry is coated on a blank aluminum foil current collector (positive current collector) with a thickness of 13 ⁇ m, and baked in an oven The solvent was completely volatilized, and the surface density of the coating was 340 g/m 2 (both sides), and then the pole piece was rolled and the compacted density was 2.4 g/cm 3 to obtain a positive pole piece.
  • Graphite, conductive agent SP, binder PVDF, shuttle agent 1 and NMP are stirred and dispersed uniformly into a slurry (wherein the mass ratio of graphite, SP, binder and shuttle agent 1 is 92:1:3 :4), the solid content of the slurry is 50%, and it is coated on a 6 ⁇ m blank copper foil, and the solvent is completely evaporated after baking in an oven.
  • the surface density of the coating is 150g/m
  • the solid density was 1.65 g/cm 3 , and a negative electrode piece was obtained.
  • lithium ion secondary battery Preparation of lithium ion secondary battery: the positive and negative pole pieces and the separator (using PP single-layer diaphragm) are wound into the battery cell; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate); welding and sealing, and then through the formation and aging process to obtain a lithium ion secondary battery 71173200-280Ah.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 3 Lithium-ion battery with self-balancing voltage of 3.8-3.95V
  • Preparation of positive electrode plate First, take the binder PVDF and the shuttle agent 1, dissolve them in the solvent NMP, and fully dissolve until the solution is clear; add the lithium iron phosphate active material LiFePO 4 and the conductive agent SP into the above solution, and mix to form a slurry , wherein the solid mass ratio of LiFePO 4 , SP, PVDF, and shuttle agent 1 is 95:2:2:1, and the solid content of the slurry solution is 50%; the slurry is coated on a 13 ⁇ m thick blank aluminum foil current collector ( On the positive electrode current collector), the solvent is completely evaporated after baking in the oven, and the surface density of the coating is 340g/m 2 (double-sided), and then it is rolled by the pole piece, and the compaction density is 2.4g/cm 3 to obtain the positive pole piece. .
  • Graphite, conductive agent SP, binder PVDF, shuttle agent 1 and NMP are stirred and dispersed uniformly into a slurry (wherein the mass ratio of graphite, SP, binder and shuttle agent 1 is 94:1:3 :2), the solid content of the slurry is 50%, and it is coated on a 6 ⁇ m blank copper foil, and the solvent is completely evaporated after baking in an oven.
  • the surface density of the coating is 150g/m
  • the solid density was 1.65 g/cm 3 , and a negative electrode piece was obtained.
  • lithium ion secondary battery Preparation of lithium ion secondary battery: the positive and negative pole pieces and the separator (using PP single-layer diaphragm) are wound into the battery cell; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate); welding and sealing, and then through the formation and aging process to obtain a lithium ion secondary battery 71173200-280Ah.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 4 Lithium-ion battery with self-balancing voltage of 3.8-3.95V
  • Preparation of positive electrode plate First, take the binder PVDF and the shuttle agent 2, dissolve them in the solvent NMP, and fully dissolve until the solution is clear; add the lithium iron phosphate active material LiFePO 4 and the conductive agent SP into the above solution, and mix to form a slurry , wherein the solid mass ratio of LiFePO 4 , SP, PVDF, and shuttle agent 2 is 94:2:2:2, and the solid content of the slurry solution is 50%; the slurry is coated on a 13 ⁇ m thick blank aluminum foil current collector ( On the positive electrode current collector), the solvent is completely evaporated after baking in the oven, and the surface density of the coating is 340g/m 2 (double-sided), and then it is rolled by the pole piece, and the compaction density is 2.4g/cm 3 to obtain the positive pole piece. .
  • Graphite, conductive agent SP, binder PVDF and NMP are stirred and dispersed uniformly into a slurry (the mass ratio of graphite, SP and binder is 96:1:3), and the solid content of the slurry is 50% , coated on a 6 ⁇ m blank copper foil, the solvent was completely evaporated after baking in an oven, the surface density of the coating was 150g/m 2 (double-sided), and then rolled by a pole piece, the compaction density was 1.65g/cm 3 , Get the negative pole piece.
  • lithium ion secondary battery Preparation of lithium ion secondary battery: the positive and negative pole pieces and the separator (using PP single-layer diaphragm) are wound into the battery cell; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate); welding and sealing, and then through the formation and aging process to obtain a lithium ion secondary battery 71173200-280Ah.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Example 5 Lithium-ion battery with self-balancing voltage of 3.8-3.95V
  • the preparation of the positive electrode plate First, take the binder PVDF and the shuttle agent 1, dissolve them in the solvent NMP, and fully dissolve until the solution is clear; add the active materials LiFePO 4 , lithium manganese iron phosphate and conductive agent SP into the above solution, and mix to form a slurry, wherein the solid mass ratio of LiFePO 4 , lithium iron manganese phosphate, SP, PVDF, and shuttle agent 1 is 70:24:2:2:2, and the solid content of the slurry solution is 50%; the slurry is coated On a blank aluminum foil current collector (positive current collector) with a thickness of 13 ⁇ m, the solvent was completely evaporated after baking in an oven, and the surface density of the coating was 340 g/m 2 (double-sided), and then the pole piece was rolled and the compacted density was 2.4 g /cm 3 , a positive pole piece was prepared.
  • the active materials LiFePO 4 , lithium manganese iron phosphate and conductive agent SP into the above
  • Graphite, conductive agent SP, binder PVDF and NMP are stirred and dispersed uniformly into a slurry (the mass ratio of graphite, SP and binder is 96:1:3), and the solid content of the slurry is 50% , coated on a 6 ⁇ m blank copper foil, the solvent was completely evaporated after baking in an oven, the surface density of the coating was 150g/m 2 (double-sided), and then rolled by a pole piece, the compaction density was 1.65g/cm 3 , Get the negative pole piece.
  • lithium ion secondary battery Preparation of lithium ion secondary battery: the positive and negative pole pieces and the separator (using PP single-layer diaphragm) are wound into the battery cell; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate); welding and sealing, and then through the formation and aging process to obtain a lithium ion secondary battery 71173200-280Ah; as shown in Figure 1.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • Preparation of positive electrode plate First, take the binder PVDF, dissolve it in the solvent NMP, and dissolve it fully until the solution is clear; add the lithium iron phosphate active material LiFePO 4 and the conductive agent SP into the above solution, and mix to form a slurry. Among them, LiFePO 4.
  • the solid mass ratio of SP and PVDF is 96:2:2, and the solid content of the slurry solution is 50%; the slurry is coated on a blank aluminum foil current collector (positive current collector) with a thickness of 13 ⁇ m, and baked in an oven The solvent was completely volatilized, and the surface density of the coating was 340 g/m 2 (both sides), and then the pole piece was rolled and the compacted density was 2.4 g/cm 3 to obtain a positive pole piece.
  • Graphite, conductive agent SP, binder PVDF and NMP are stirred and dispersed uniformly into a slurry (the mass ratio of graphite, SP and binder is 96:1:3), and the solid content of the slurry is 50% , coated on a 6 ⁇ m blank copper foil, the solvent was completely evaporated after baking in an oven, the surface density of the coating was 150g/m 2 (double-sided), and then it was rolled by a pole piece, and the compacted density was 1.65g/cm 3 . Get the negative pole piece.
  • Preparation of lithium ion secondary battery The positive and negative pole pieces and the separator (using PP single-layer diaphragm) are made into the battery core by winding; then the battery core is loaded into the battery case, and the moisture is removed by baking; Liquid (1.1mol/L LiPF 6 EC (ethylene carbonate)/EMC (ethyl methyl carbonate)/DMC (dimethyl carbonate) electrolyte, where the mass ratio of EC:EMC:DMC is 3:4:3) , 2% VC (vinylene carbonate), 1% shuttling agent 1; welding and sealing, and then through chemical formation, aging process to obtain lithium ion secondary battery 71173200-280Ah.
  • LiPF 6 EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • DEC dimethyl carbonate
  • Example 1 From the above Examples 1, 2, 3, 4 and Comparative Example 1, due to the increase in the amount of the shuttle agent added, the low temperature performance and rate performance of the battery are improved, and the self-balancing capacity of the battery is also greatly improved. safety performance. From Example 1 and Example 5, different positive electrode materials (separate lithium iron phosphate, lithium iron phosphate and lithium iron manganese phosphate blend), the self-equilibrium capacity of the battery does not change, and the low temperature performance is due to the lithium iron manganese phosphate. The properties of the material itself are improved, and the rate performance is deteriorated due to the properties of the lithium iron manganese phosphate material. From the examples 1 and 4, the performance of the shuttle agent 1 is better than that of the shuttle agent 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种安全型锂离子电池及其制备方法,该电池正极材料是磷酸铁锂或者磷酸铁锂与镍钴锰酸锂、锰酸锂、钴酸锂其中的一种或几种的混合物或者磷酸铁锂与磷酸锰铁锂、富锂铁酸锂的一种或两种的混合物,且磷酸铁锂占比大于60%(质量比),在电极片(正极片或负极片)制作过程中,加入了氧化还原穿梭剂作为添加剂,该添加剂能在特定电压下启动氧化还原穿梭反应,将多余的电能转化为热能;能够在3.8-3.95V的电压下耐受持续的充电,从而提升电池的安全性能。

Description

一种安全型锂离子电池及其制备方法 技术领域
本发明涉及锂离子电池领域,涉及一种安全型锂离子电池及其制备方法,具体涉及一种在电极片(正极片或负极片)的制作过程中加入氧化还原穿梭剂制成的安全型锂离子电池及其制备方法。
背景技术
近年来,随着电动汽车的普及,对电池的能量密度、循环寿命、倍率特性、低温性能、安全性能的要求越来越高。
由于电池单体越做越大,普遍已经超过100-200安时,仅仅靠保护板以及电子控制装置提供的100毫安级别的均衡电流已经远远不能满足实际应用的需求。开发出具有1安培大至10安培级别大电流均衡能力的锂离子电池迫在眉睫。
目前,本领域通常在锂离子电池电解液中添加氧化还原穿梭添加剂来进行大电流均衡能力的锂离子电池研发。
通过对现有专利文献的检索发现,申请号为201310594341.1的中国发明专利公开了一种耐浮充锂离子电池模块及其浮充方法,其在电性能及安全性能方面均能满足储能等领域的应用要求。然而,其也是在电解液中添加氧化还原穿梭添加剂。氧化还原穿梭剂在锂离子电池自均衡过程中会有消耗,其自均衡容量(定义:自均衡容量是指电池在某个特定自均衡电压下,持续进行氧化还原穿梭反应时,所消耗的电容量,单位是Ah,反映的是电池自均衡能力的强弱)和添加量基本上成正比。在电解液中添加氧化还原穿梭添加剂,受到氧化还原穿梭剂在电解液溶剂中溶解度低以及电解液在电池中注液量有限的影响,氧化还原穿梭剂的总添加量受限,最终影响电池的自均衡容量。如何能在电池体系里引入更多的氧化还原穿梭剂,从而提高电池的自均衡容量,是其大规模应用的关键所在。此外,如何在提高电池的自均衡容量的同时还使其具备高的倍率特性、低温性能、安全性能,也是本领域亟待解决的技术难题。
发明内容
本发明的目的在于提供一种安全型锂离子电池及其制备方法。
本发明涉及一种安全型锂离子电池,所述锂离子电池的正极片和/或负极片中含氧化还原穿梭剂。
所述氧化还原穿梭剂选自2,5-二叔丁基-1,4二甲氧基苯、3,5-二叔丁基-1,2-二甲氧基苯、4-叔丁基-1,2-二甲氧基苯、萘、蒽、噻蒽、苯甲醚中的一种或几种。
作为一个实施方案,所述锂离子电池的正极活性材料为磷酸铁锂,或者磷酸铁锂与镍钴锰酸锂、锰酸锂、钴酸锂中的一种或几种的混合物。
作为一个实施方案,所述锂离子电池的正极活性材料为磷酸铁锂与镍钴锰酸锂、锰酸锂、钴酸锂中的一种或几种的混合物时,磷酸铁锂质量百分比占比大于60%。
作为一个实施方案,所述锂离子电池的正极活性材料为磷酸铁锂与磷酸锰铁锂、富锂铁酸锂的一种或两种的混合物。
作为一个实施方案,所述锂离子电池的正极活性材料为磷酸铁锂与磷酸锰铁锂、富锂铁酸锂的一种或两种的混合物,磷酸铁锂质量百分比占比大于60%。
作为一个实施方案,所述氧化还原穿梭剂在正极片或负极片的制浆过程中加入,以占正极或负极总固体质量的百分比为0.1-10%的量添加。
作为一个实施方案,所述锂离子电池工作时的环境温度为-40℃~70℃。
本发明还涉及一种前述的安全型锂离子电池的制备方法,所述方法包括如下步骤:
S1.制备正极片;
S1-1.将正极活性物质、粘结剂、导电剂、氧化还原穿梭剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成正极浆料,涂布在正极集流体上形成正极片A1;
或,
S1-2.将正极活性物质、粘结剂、导电剂混合,以N-甲基吡咯烷酮为分散介质,搅拌,制备、成正极浆料,涂布在正极集流体上形成正极片A2;
S2.制备负极片;
S2-1.将石墨、粘结剂、导电剂、氧化还原穿梭剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成负极浆料,涂布在负极集流体上形成负极片B1;
或,
S2-2.将石墨、粘结剂、导电剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成负极浆料,涂布在负极集流体上形成负极片B2;
S3.将所述正极片A1与负极片B1或负极片B2组合组装成干电芯,通过注液及静置;
或,将所述正极片A2与负极片B1组合组装成干电芯,通过注液及静置。
作为一个实施方案,步骤S1-1中,正极活性物质、粘结剂、导电剂、氧化还原穿梭剂的质量比为83~97:1~3:1.9~4:0.1~10。
作为一个实施方案,步骤S2-1中,石墨、粘结剂、导电剂、氧化还原穿梭剂的质量比为85~97:2~3:0~2:0.1~10。
作为一个实施方案,步骤S1-2中,石墨、粘结剂、导电剂的质量比为93~97:1~3:1.9~4.
作为一个实施方案,步骤S2-2中,石墨、粘结剂、导电剂的质量比为95~98:2~3:0~2。
与现有技术相比,本发明具有如下有益效果:
(1)视氧化还原穿梭剂种类以及配比,自均衡启动电压从3.8-3.95V不等;
(2)视氧化还原穿梭剂加入量的多少,自均衡电流从1安培大至10安培级别;
(3)视氧化还原穿梭剂加入量的多少,自均衡容量可达到电池单体容量的几倍到几百倍;
(4)本发明的电池在预充过程中,采用小电流充电时,存在正极片或负极片中的少量氧化还原穿梭剂就会逐步溶解,在正负极颗粒微观界面与电解液一起参与形成界面钝化膜,同时由于氧化还原穿梭剂的溶出,导致正负极构筑成微观的多孔电极,从而有利于充放电过程中锂离子的传输,有利于提高电池的充放电倍率及低温特性;
(5)本发明的电池在正常充放电过程中,当需要启动自均衡功能时,将电池的上限电压调整至3.95V以上,当电池充电至3.8-3.95V区间,氧化还原穿梭剂发挥作用,电池会恒定在某个电压下持续工作。同时在极片内部的氧化还原穿梭剂也会慢慢溶出,使电池全寿命周期均具有防止过充的安全保护功能。
(6)本发明的电池,正极活性材料以磷酸铁锂为主,质量百分比大于60%,可以添加镍钴锰酸锂、锰酸锂、钴酸锂、磷酸锰铁锂、富锂铁酸锂中的一种或几种,用来调节电池的其它性能,例如倍率性能、低温性能、安全性能、质量能量密度、体积能量密度等。
附图概述
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为锂离子二次电池71173200-280Ah的结构示意图;
图2为实施例1的锂离子二次电池的电压-时间曲线示意图;
图3为实施例1的锂离子二次电池的电压-容量倍数曲线示意图;
图4为实施例1、2、3、4、5和对比例1的锂离子二次电池的电压-放电容量百分比曲线示意图(-20℃0.2C倍率);
图5为实施例1、2、3、4、5和对比例1的锂离子二次电池的电压-充电容量百分比曲线示意图(2C倍率);
图6为实施例1、2、3、4、5和对比例1的锂离子二次电池的电压-放电容量百分比曲线示意图(2C倍率);
图7为实施例4的锂离子二次电池的电压-时间曲线示意图;
图8为实施例4的锂离子二次电池的电压-容量倍数曲线示意图;
本发明的较佳实施方式
下面结合实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干调整和改进。这些都属于本发明的保护范围。另外,以下实施例中的具体的工艺的参数也需要根据实际情况调整为合适的参数。
定义:
2,5-二叔丁基-1,4二甲氧基苯:以下简称为穿梭剂1;
噻蒽:以下简称为穿梭剂2;
聚偏二氟乙烯:以下简称为PVDF;
N-甲基吡咯烷酮:以下简称为NMP;
实施例和对比例中的配方比例,如无特殊说明,均为质量比。
实施例1、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF和穿梭剂1,溶于溶剂NMP中,充分溶解直 至溶液澄清;将磷酸铁锂活性材料LiFePO 4以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、SP、PVDF、穿梭剂1的固体质量比为94:2:2:2,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂的质量比为96:1:3),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC:DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯);焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah;如图1所示。
测试过程:测试环境温度控制25±2℃;
按照下列工步测试电池的自均衡性能:
(1)恒流恒压充电,电流280A,截止电压3.65V,截止电流14A;
(2)恒流充电,电流14A,截止电压4.0V,截止时间12h;
(3)结束。
从图2的电压-时间曲线可以看出,电池电压稳定在3.83V,说明穿梭剂1在进行氧化还原穿梭反应,把电能转化成热能,使得电池电压保持稳定,不再上升。
按照下列工步测试电池的自均衡容量:
(1)恒流恒压充电,电流280A,截止电压3.65V,截止电流14A;
(2)恒流充电,电流14A,截止电压4.0V,截止时间6000h;
(3)结束。
从图3的电压-容量倍数曲线可以看出,穿梭剂1在进行氧化还原穿梭反应中,会慢慢消耗,电池电压会缓慢上升,自均衡容量到单体电池容量的约120倍(按照14A充电电流折算,约2400h)后,穿梭剂1消耗殆尽,电池不再具有自均衡能力,电池电压达到保护电压4.0V,实验停止。
按照下列工步测试电池的低温特性:
(1)恒流恒压充电,电流280A,截止电压3.65V,截止电流14A;
(2)将电芯放入-20摄氏度烘箱,静置24h;
(3)恒流放电,电流56A,截止电压2.0V;
(4)结束。
按照下列工步测试电池的倍率充电特性:
(1)恒流放电,电流280A,截止电压2.0V;
(2)静置30min;
(3)恒流充电,电流560A,截止电压3.65V;
(4)结束。
按照下列工步测试电池的倍率放电特性:
(1)恒流恒压充电,电流280A,截止电压3.65V,截止电流14A;
(2)静置30min;
(3)恒流放电,电流560A,截止电压2.0V;
(4)结束。
具体数据见图4、图5、图6和表1。
实施例2、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF,溶于溶剂NMP中,充分溶解直至溶液澄清;将磷酸铁锂活性材料LiFePO 4以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、SP、PVDF的固体质量比为96:2:2,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF、穿梭剂1以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂、穿梭剂1的质量比为92:1:3:4),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC: DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯);焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah。
测试电池的自均衡性能、自均衡容量、低温特性,倍率充电特性,倍率放电特性;结果如表1所示。
实施例3、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF和穿梭剂1,溶于溶剂NMP中,充分溶解直至溶液澄清;将磷酸铁锂活性材料LiFePO 4以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、SP、PVDF、穿梭剂1的固体质量比为95:2:2:1,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF、穿梭剂1以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂、穿梭剂1的质量比为94:1:3:2),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC:DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯);焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah。
测试电池的自均衡性能、自均衡容量、低温特性,倍率充电特性,倍率放电特性;结果如表1所示。
实施例4、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF和穿梭剂2,溶于溶剂NMP中,充分溶解直至溶液澄清;将磷酸铁锂活性材料LiFePO 4以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、SP、PVDF、穿梭剂2的固体质量比为94:2:2:2,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂的质量比为96:1:3),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC:DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯);焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah。
测试电池的自均衡性能;从图7的电压-时间曲线可以看出,电池电压稳定在3.88V,说明穿梭剂2在进行氧化还原穿梭反应,把电能转化成热能,使得电池电压保持稳定,不再上升。
测试电池的自均衡容量;从图8的电压-容量倍数曲线可以看出,自均衡容量到单体电池容量的约20倍后,穿梭剂2消耗殆尽,电池不再具有自均衡能力,电池电压达到保护电压4.0V,实验停止。
测试电池的低温特性,倍率充电特性,倍率放电特性;结果如表1所示。
实施例5、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF和穿梭剂1,溶于溶剂NMP中,充分溶解直至溶液澄清;将活性材料LiFePO 4、磷酸锰铁锂以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、磷酸锰铁锂、SP、PVDF、穿梭剂1的固体质量比为70:24:2:2:2,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂的质量比为96:1:3),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6 的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC:DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯);焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah;如图1所示。
对比例1、自均衡电压为3.8-3.95V的锂离子电池
正极极片制备:首先取粘结剂PVDF,溶于溶剂NMP中,充分溶解直至溶液澄清;将磷酸铁锂活性材料LiFePO 4以及导电剂SP加入上述溶液中,混匀成浆料,其中,LiFePO 4、SP、PVDF的固体质量比为96:2:2,浆料溶液的固含量为50%;将浆料涂布在13μm厚的空白铝箔集流体(正极集流体)上,经烤箱烘烤溶剂完全挥发,涂层面密度为340g/m 2(双面),再经极片辊压,压实密度为2.4g/cm 3,制得正极极片。
负极极片制备:将石墨、导电剂SP、粘接剂PVDF以及NMP搅拌分散均匀成浆料(其中石墨、SP、粘接剂的质量比为96:1:3),浆料固含量50%,涂覆在6μm空白铜箔上,经烤箱烘烤溶剂完全挥发,涂层面密度为150g/m 2(双面),再经极片辊压,压实密度为1.65g/cm 3,制得负极极片。
制备锂离子二次电池:将正负极极片和隔离膜(采用PP单层隔膜)按卷绕方式制成电芯;然后将电芯装入电池壳,经烘烤除去水分;然后注入电解液(1.1mol/L LiPF 6的EC(碳酸乙烯酯)/EMC(碳酸甲乙酯)/DMC(碳酸二甲酯)电解液,其中EC:EMC:DMC的质量比为3:4:3),2%VC(碳酸亚乙烯酯),1%穿梭剂1;焊接密封,再经化成、老化工艺制得锂离子二次电池71173200-280Ah。
测试电池的自均衡性能、自均衡容量、低温特性,倍率充电特性,倍率放电特性;结果如表1所示。
上述实施例和对比例的方案和结果汇总如下表1:
表1
Figure PCTCN2021141716-appb-000001
Figure PCTCN2021141716-appb-000002
从上述实施例1、2、3、4和对比例1看,由于穿梭剂添加量的增加,提高了电池的低温性能、倍率性能,同时电池的自均衡容量也达到大幅提高,同时提升了电池的安全性能。从实施例1和实施例5看,不同的正极材料(单独的磷酸铁锂、磷酸铁锂和磷酸铁锰锂掺混),电池的自均衡容量并未发生变化,低温性能由于磷酸锰铁锂材料自身特性而变好,倍率性能由于磷酸锰铁锂材料自身特性而变差,从实施例1和实施例4看,穿梭剂1的性能要优于穿梭剂2。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (12)

  1. 一种安全型锂离子电池,其特征在于,所述锂离子电池的正极片和/或负极片中含氧化还原穿梭剂。
  2. 根据权利要求1所述的安全型锂离子电池,其特征在于,所述氧化还原穿梭剂选自2,5-二叔丁基-1,4二甲氧基苯、3,5-二叔丁基-1,2-二甲氧基苯、4-叔丁基-1,2-二甲氧基苯、萘、蒽、噻蒽、苯甲醚中的一种或几种。
  3. 根据权利要求1所述的安全型锂离子电池,其特征在于,所述锂离子电池的正极活性材料为磷酸铁锂,或者磷酸铁锂与镍钴锰酸锂、锰酸锂、钴酸锂中的一种或几种的混合物。
  4. 根据权利要求3所述的安全型锂离子电池,其特征在于,所述锂离子电池的正极活性材料为磷酸铁锂与镍钴锰酸锂、锰酸锂、钴酸锂中的一种或几种的混合物时,磷酸铁锂质量百分比占比大于60%。
  5. 根据权利要求1所述的安全型锂离子电池,其特征在于,所述锂离子电池的正极活性材料为磷酸铁锂与磷酸锰铁锂、富锂铁酸锂的一种或两种的混合物。
  6. 根据权利要求5所述的安全型锂离子电池,其特征在于,所述锂离子电池的正极活性材料为磷酸铁锂与磷酸锰铁锂、富锂铁酸锂的一种或两种的混合物,磷酸铁锂质量百分比占比大于60%。
  7. 根据权利要求1所述的安全型锂离子电池,其特征在于,所述氧化还原穿梭剂在正极片或负极片的制浆过程中加入,以占正极或负极总固体质量的百分比为0.1-10%的量添加。
  8. 根据权利要求1所述的安全型锂离子电池,其特征在于,所述锂离子电池工作时的环境温度为-40℃~70℃。
  9. 一种根据权利要求1~8中任一项所述的安全型锂离子电池的制备方法,其特征在于,所述方法包括如下步骤:
    S1.制备正极片;
    S1-1.将正极活性物质、粘结剂、导电剂、氧化还原穿梭剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成正极浆料,涂布在正极集流体上形成正极片A1;
    或,
    S1-2.将正极活性物质、粘结剂、导电剂混合,以N-甲基吡咯烷酮为分散介质,搅拌,制备、成正极浆料,涂布在正极集流体上形成正极片A2;
    S2.制备负极片;
    S2-1.将石墨、粘结剂、导电剂、氧化还原穿梭剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成负极浆料,涂布在负极集流体上形成负极片B1;
    或,
    S2-2.将石墨、粘结剂、导电剂混合,以N-甲基吡咯烷酮为分散介质,搅拌、制备成负极浆料,涂布在负极集流体上形成负极片B2;
    S3.将所述正极片A1与负极片B1或负极片B2组合组装成干电芯,通过注液及静置;
    或,将所述正极片A2与负极片B1组合组装成干电芯,通过注液及静置。
  10. 根据权利要求9所述的安全型锂离子电池的制备方法,其特征在于,步骤S1-1中,正极活性物质、粘结剂、导电剂、氧化还原穿梭剂的质量比为83~97:1~3:1.9~4:0.1~10。
  11. 根据权利要求9所述的安全型锂离子电池的制备方法,其特征在于,步骤S2-1中,石墨、粘结剂、导电剂、氧化还原穿梭剂的质量比为85~97:2~3:0~2:0.1~10。
  12. 根据权利要求9所述的安全型锂离子电池的制备方法,其特征在于,步骤S1-2中,正极活性物质、粘结剂、导电剂的质量比为93~97:1~3:1.9~4;步骤S2-2中,石墨、粘结剂、导电剂的质量比为95~98:2~3:0~2。
PCT/CN2021/141716 2021-01-28 2021-12-27 一种安全型锂离子电池及其制备方法 WO2022161070A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2021422773A AU2021422773A1 (en) 2021-01-28 2021-12-27 Safe lithium-ion battery and manufacturing method therefor
EP21922659.4A EP4156363A1 (en) 2021-01-28 2021-12-27 Safe lithium-ion battery and manufacturing method therefor
US18/108,123 US20230187709A1 (en) 2021-01-28 2023-02-10 Safe Lithium-Ion Battery and Manufacturing Method Therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110114583.0 2021-01-28
CN202110114583.0A CN112467193B (zh) 2021-01-28 2021-01-28 一种安全型锂离子电池及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/108,123 Continuation US20230187709A1 (en) 2021-01-28 2023-02-10 Safe Lithium-Ion Battery and Manufacturing Method Therefor

Publications (1)

Publication Number Publication Date
WO2022161070A1 true WO2022161070A1 (zh) 2022-08-04

Family

ID=74802732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141716 WO2022161070A1 (zh) 2021-01-28 2021-12-27 一种安全型锂离子电池及其制备方法

Country Status (5)

Country Link
US (1) US20230187709A1 (zh)
EP (1) EP4156363A1 (zh)
CN (1) CN112467193B (zh)
AU (1) AU2021422773A1 (zh)
WO (1) WO2022161070A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040600A (zh) * 2023-02-23 2023-05-02 无锡晶石新型能源股份有限公司 一种利用回收的锰酸锂和磷酸铁锂制备磷酸锰铁锂的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467193B (zh) * 2021-01-28 2021-10-29 上海瑞浦青创新能源有限公司 一种安全型锂离子电池及其制备方法
WO2024065181A1 (zh) * 2022-09-27 2024-04-04 宁德时代新能源科技股份有限公司 负极组合物及制备方法、负极浆料及制备方法、负极极片及制备方法、二次电池、用电装置以及噻蒽类化合物的应用
CN116130782A (zh) * 2023-02-09 2023-05-16 湖北亿纬动力有限公司 一种制备锂离子电池的方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231976A (ja) * 1996-02-21 1997-09-05 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09232001A (ja) * 1996-02-21 1997-09-05 Fuji Elelctrochem Co Ltd 非水電解液二次電池
US5858573A (en) * 1996-08-23 1999-01-12 Eic Laboratories, Inc. Chemical overcharge protection of lithium and lithium-ion secondary batteries
US6045952A (en) * 1998-03-23 2000-04-04 The United States Of America As Represented By The United States Department Of Energy Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes
CN1965427A (zh) * 2004-04-01 2007-05-16 3M创新有限公司 用于可再充电锂离子电池的氧化还原对
CN1969421A (zh) * 2004-04-01 2007-05-23 3M创新有限公司 用于可再充电锂离子电池中过放电保护的氧化还原对
CN102084523A (zh) * 2008-05-02 2011-06-01 奥克斯能源有限公司 具有锂负极的可充电电池组
JP2013178935A (ja) * 2012-02-28 2013-09-09 Tdk Corp リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
CN104364947A (zh) * 2012-05-31 2015-02-18 株式会社日立制作所 锂离子二次电池
CN105552426A (zh) * 2015-12-16 2016-05-04 上海航天电源技术有限责任公司 一种具有过充保护功能的锂离子电池
CN112467193A (zh) * 2021-01-28 2021-03-09 上海瑞浦青创新能源有限公司 一种安全型锂离子电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963186B2 (ja) * 2006-03-31 2012-06-27 パナソニック株式会社 非水電解質二次電池
CN101577348B (zh) * 2009-05-15 2011-03-23 中南大学 锂离子电池多重过充防护功能性电解液
CN106654331B (zh) * 2015-11-04 2020-05-08 天津大学 一种有机相氧化还原电解液及其在液流电池中的应用
TWI686415B (zh) * 2016-08-05 2020-03-01 德商贏創運營有限公司 含有噻嗯之聚合物作為電荷儲存裝置之用途

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09231976A (ja) * 1996-02-21 1997-09-05 Fuji Elelctrochem Co Ltd 非水電解液二次電池
JPH09232001A (ja) * 1996-02-21 1997-09-05 Fuji Elelctrochem Co Ltd 非水電解液二次電池
US5858573A (en) * 1996-08-23 1999-01-12 Eic Laboratories, Inc. Chemical overcharge protection of lithium and lithium-ion secondary batteries
US6045952A (en) * 1998-03-23 2000-04-04 The United States Of America As Represented By The United States Department Of Energy Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes
CN1965427A (zh) * 2004-04-01 2007-05-16 3M创新有限公司 用于可再充电锂离子电池的氧化还原对
CN1969421A (zh) * 2004-04-01 2007-05-23 3M创新有限公司 用于可再充电锂离子电池中过放电保护的氧化还原对
CN102084523A (zh) * 2008-05-02 2011-06-01 奥克斯能源有限公司 具有锂负极的可充电电池组
JP2013178935A (ja) * 2012-02-28 2013-09-09 Tdk Corp リチウムイオン二次電池及びそれを用いた組電池並びに蓄電装置
CN104364947A (zh) * 2012-05-31 2015-02-18 株式会社日立制作所 锂离子二次电池
CN105552426A (zh) * 2015-12-16 2016-05-04 上海航天电源技术有限责任公司 一种具有过充保护功能的锂离子电池
CN112467193A (zh) * 2021-01-28 2021-03-09 上海瑞浦青创新能源有限公司 一种安全型锂离子电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040600A (zh) * 2023-02-23 2023-05-02 无锡晶石新型能源股份有限公司 一种利用回收的锰酸锂和磷酸铁锂制备磷酸锰铁锂的方法

Also Published As

Publication number Publication date
CN112467193B (zh) 2021-10-29
CN112467193A (zh) 2021-03-09
EP4156363A1 (en) 2023-03-29
AU2021422773A1 (en) 2023-08-10
US20230187709A1 (en) 2023-06-15

Similar Documents

Publication Publication Date Title
WO2022161070A1 (zh) 一种安全型锂离子电池及其制备方法
CN108878956B (zh) 锂离子二次电池
CN105810899A (zh) 一种锂离子电池
WO2021057483A1 (zh) 二次电池及含有该二次电池的电池模组、电池包、装置
CN104600362A (zh) 一种动力电池及其锂离子电解液
CN113066954B (zh) 一种负极片及其应用
CN105633454A (zh) 一种3c数码用高电压、宽温幅聚合物锂电及其制造方法
CN115566255B (zh) 一种二次电池及用电设备
WO2024124969A1 (zh) 一种二次电池和用电装置
CN110098387B (zh) 一种磷酸锂配合导电碳材料包覆的三元正极材料及其制备方法和应用
CN113422044A (zh) 一种锂离子电池及其制备方法
CN113067033B (zh) 电化学装置及电子装置
CN113130988A (zh) 一种电解液及应用的电化学装置
CN112687956A (zh) 锂电池的非水电解液及基于其的锂离子电池
WO2013029208A1 (zh) 高比能富锂多元系锂离子蓄电池及其制造方法
CN114204038A (zh) 集流体及其应用
WO2024217031A1 (zh) 一种二次电池和用电设备
WO2024183283A1 (zh) 一种二次电池
CN115632158B (zh) 二次电池及用电装置
CN116914083A (zh) 一种电池及用电设备
CN116190919A (zh) 一种补锂复合隔膜及其制备方法和应用
CN115663118A (zh) 正极极片、二次电池及用电装置
CN114497746A (zh) 一种电池
CN113851785A (zh) 一种FeNi合金复合CNTs改性隔膜及其制备方法和应用
CN112713308A (zh) 一种非水电解液及基于其的锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922659

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021922659

Country of ref document: EP

Effective date: 20221221

ENP Entry into the national phase

Ref document number: 2021422773

Country of ref document: AU

Date of ref document: 20211227

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE