Nothing Special   »   [go: up one dir, main page]

WO2022145436A1 - 延伸フィルムの製造方法 - Google Patents

延伸フィルムの製造方法 Download PDF

Info

Publication number
WO2022145436A1
WO2022145436A1 PCT/JP2021/048687 JP2021048687W WO2022145436A1 WO 2022145436 A1 WO2022145436 A1 WO 2022145436A1 JP 2021048687 W JP2021048687 W JP 2021048687W WO 2022145436 A1 WO2022145436 A1 WO 2022145436A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
monomer
acrylic
rubber particles
stretched film
Prior art date
Application number
PCT/JP2021/048687
Other languages
English (en)
French (fr)
Inventor
明 菊澤
貞吾 起
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN202180089200.7A priority Critical patent/CN116685641A/zh
Priority to JP2022573091A priority patent/JPWO2022145436A1/ja
Publication of WO2022145436A1 publication Critical patent/WO2022145436A1/ja
Priority to US18/217,760 priority patent/US20230340217A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/08Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of polarising materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2419/00Characterised by the use of rubbers not provided for in groups C08J2407/00 - C08J2417/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters

Definitions

  • the present invention relates to a method for producing a stretched film that can be used for an optical film or the like, a polarizing element protective film, and a polarizing plate.
  • an optical film made of an acrylic resin has been used as a polarizing element protective film for the purpose of improving moisture resistance and water absorption.
  • the optical film made of an acrylic resin has poor adhesiveness to the polarizing element, there is a problem that the polarizing plate characteristics such as color distortion and color unevenness due to warpage and deformation are impaired. It is under consideration.
  • Patent Document 1 proposes a method of setting the number average particle diameter of the rubber portion in the acrylic rubber particles in a predetermined range in a film containing the acrylic resin and the acrylic rubber particles.
  • Patent Document 2 describes heat resistance, dimensional stability, and mechanicalness by stretching a resin film containing an acrylic resin having a glass transition temperature of 120 ° C. or higher and acrylic rubber particles in a predetermined temperature range. A method for producing a stretched film having excellent properties and adhesiveness has been proposed.
  • the mechanical properties and adhesiveness of the acrylic resin film can be improved by blending the acrylic rubber particles with the acrylic resin and stretching the film.
  • the adhesiveness of the acrylic resin film is evaluated by providing an easy-adhesive layer containing a urethane resin and a cross-linking agent on the film and then bonding the film to the base material using an adhesive. (Paragraph 0156-0157).
  • an easy-adhesive layer containing a urethane resin and a cross-linking agent on the film and then bonding the film to the base material using an adhesive.
  • An object of one aspect of the present invention is to provide a method for producing a stretched film which is excellent in mechanical properties and can achieve good adhesive strength without providing an easy-adhesive layer.
  • An object of another aspect of the present invention is to provide a polarizing element protective film having excellent mechanical properties and capable of achieving sufficient adhesive strength with a polarizing element without providing an easy-adhesion layer, and a polarizing plate containing the protective film. To provide.
  • the present inventors stretch a resin film in which the amount of acrylic acid ester monomers constituting the acrylic rubber particles is controlled within a predetermined range at a predetermined temperature.
  • the present invention was completed by finding that the above-mentioned problems can be solved.
  • the present invention contains an acrylic resin having a glass transition temperature (Tg) of 115 ° C. or higher, and acrylic rubber particles, and the monomer constituting the acrylic resin and the monomer constituting the acrylic rubber particles.
  • the present invention relates to a method for producing a stretched film, which comprises a step of stretching a resin film in which the total amount of acrylic acid ester monomers constituting the acrylic rubber particles is 10 to 40% by weight based on the total amount at a temperature of Tg + 20 ° C. to Tg + 70 ° C.
  • the amount of the acrylic acid ester monomer in the monomers constituting the acrylic rubber particles is 45 to 90% by weight.
  • the ratio of the content of the acrylic rubber particles to the total content of the acrylic resin and the acrylic rubber particles is 15 to 50% by weight.
  • the acrylic acid ester monomer has the following structure.
  • R 1 represents a linear or branched alkyl group having 1 to 10 carbon atoms.
  • the acrylic rubber particles are a core-shell type elastic body containing a soft core layer and a hard shell layer, and the core layer is polyfunctional having two or more polymerizable functional groups in the molecule. It is formed of a monomer component (a) composed of a monomer (a1) and a monomer (a2) other than the polyfunctional monomer, and the monomer (a2) other than the polyfunctional monomer contains 40 to 100% by weight of an acrylic acid ester monomer. .
  • the shell layer is formed from the monomer component (b) containing 1 to 50% by weight of the acrylic acid ester monomer.
  • the amount of the polyfunctional monomer (a1) is 0.5 to 3.0 parts by weight with respect to 100 parts by weight of the monomer (a2) other than the polyfunctional monomer.
  • the average particle size of the core layer is 25 to 300 nm.
  • the number of reciprocating MIT reciprocating bends of the stretched film is 150 times or more.
  • the stretched film is attached to the PET film with an active energy ray-curable adhesive, and the value of 90 degree peel strength measured at 23 ° C. and 55% RH atmosphere is 1.0 N / 20 mm or more.
  • the present invention is a polarizing element protective film containing an acrylic resin having a Tg of 115 ° C. or higher and acrylic rubber particles.
  • the total amount of the acrylic acid ester monomer constituting the acrylic rubber particles is 10 to 40% by weight with respect to the total amount of the monomers constituting the acrylic resin and the monomers constituting the acrylic rubber particles.
  • the amount of the acrylic acid ester monomer in the monomers constituting the acrylic rubber particles is 45 to 90% by weight.
  • the polarizing element protection film is attached to a PET film with an active energy ray-curable adhesive, and the value of 90 degree peel strength measured in a 23 ° C. and 55% RH atmosphere is 1.0 N / 20 mm or more. Also related to film.
  • the polarizing element protective film has a MIT reciprocating bending number of 150 times or more.
  • the present invention also relates to a polarizing plate in which the polarizing element protective film, the adhesive layer, and the polarizing element are laminated in this order.
  • the polarizing plate does not include an easy-adhesive layer.
  • a method for producing a stretched film which is excellent in mechanical properties and can achieve good adhesive strength without providing an easy-adhesive layer.
  • a polarizing element protective film having excellent mechanical properties and capable of achieving sufficient adhesive strength with a polarizing element without providing an easy-adhesion layer, and a polarizing plate containing the protective film are provided. Can be provided.
  • the method for producing a stretched film according to the present disclosure contains an acrylic resin having a glass transition temperature (Tg) of 115 ° C. or higher, and acrylic rubber particles, and a monomer constituting the acrylic resin and the acrylic rubber particles.
  • Tg glass transition temperature
  • a step of stretching a resin film in which the total amount of the acrylic acid ester monomers constituting the acrylic rubber particles is 10% by weight to 40% by weight with respect to the total amount of the monomers constituting the above is included at a temperature of Tg + 20 ° C. to Tg + 70 ° C.
  • the resin film contains an acrylic resin.
  • the glass transition temperature (Tg) of the acrylic resin is not particularly limited as long as it is 115 ° C. or higher, but is preferably 117 ° C. or higher, more preferably 118 ° C. or higher, still more preferably 119 ° C. or higher.
  • the glass transition temperature of the acrylic resin may be 120 ° C. or higher, 125 ° C. or higher, or 130 ° C. or higher.
  • the upper limit is not particularly limited, but may be 170 ° C. or lower, or 160 ° C. or lower.
  • the glass transition temperature of the acrylic resin is the peak temperature in the DSC curve measured for the acrylic resin. Further, when the DSC curve is measured for the acrylic resin and the resin film containing the acrylic rubber particles, two peaks may appear. The peak temperature on the high temperature side can be determined as the glass transition temperature of the acrylic resin. Alternatively, the glass transition temperature of the acrylic resin is determined by dissolving the resin film in an appropriate solvent, separating the acrylic resin and the acrylic rubber particles by centrifugation, and measuring the DSC curve for the acrylic resin. You may.
  • the acrylic resin is preferably a polymer containing a methacrylic acid alkyl ester as a main component.
  • it may be a copolymer of 50% by weight or more of the methacrylic acid alkyl ester and 50% by weight or less of a monomer other than the methacrylic acid alkyl ester, or it may be a homopolymer of the methacrylic acid alkyl ester.
  • the methacrylic acid alkyl ester those having an alkyl group having 1 to 8 carbon atoms are usually used, those having 1 to 4 carbon atoms are preferable, and methyl methacrylate having 1 carbon atom is preferably used.
  • the monomer other than the methacrylic acid alkyl ester may be a monofunctional monomer having one polymerizable carbon-carbon double bond in the molecule, or two or more polymerizable carbons in the molecule. -Although it may be a polyfunctional monomer having a carbon double bond, a monofunctional monomer is preferably used here. Specifically, (meth) acrylic acid such as benzyl (meth) acrylate, cyclohexyl (meth) acrylate, phenyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate and the like.
  • the monomer composition of the acrylic resin shall have a methacrylic acid alkyl ester ratio of 70% by weight or more based on a total of 100% by weight of all the monomers. Is preferable, more preferably 80% by weight or more, still more preferably 90% by weight or more. Further, it is preferably 99% by weight or less.
  • the resin film contains acrylic rubber particles.
  • the acrylic rubber particles preferably have a total content of acrylic acid ester monomers of 45% by weight to 90% by weight with respect to the total amount of the monomers constituting the particles. From the viewpoint of mechanical strength and heat resistance, 48% by weight to 85% by weight is more preferable, 50% by weight to 80% by weight is further preferable, and 55% by weight to 75% by weight is particularly preferable.
  • the acrylic acid ester monomer is not particularly limited, but it is preferable to have the following structure from the viewpoint of mechanical strength.
  • R 1 represents a linear or branched alkyl group having 1 to 10 carbon atoms. Specific examples thereof include methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, hexyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, and isononyl acrylate. Butyl acrylate, 2-ethylhexyl acrylate, and isononyl acrylate are preferable, and butyl acrylate is particularly preferable from the viewpoint of mechanical strength and adhesiveness. Only one of these may be used, or two or more thereof may be used in combination.
  • the acrylic rubber particles are preferably a core-shell type elastic body including a soft core layer and a hard shell layer.
  • the Tg of the core layer is preferably 20 ° C. or lower, more preferably ⁇ 60 ° C. to 20 ° C., and even more preferably ⁇ 60 ° C. to 10 ° C.
  • the mechanical strength of the obtained stretched film can be good.
  • the Tg of the shell layer is preferably 50 ° C. or higher, more preferably 50 ° C. to 140 ° C., and even more preferably 60 ° C. to 130 ° C.
  • the heat resistance of the obtained stretched film can be improved.
  • the core layer is formed of a monomer component (a) composed of a polyfunctional monomer (a1) having two or more polymerizable functional groups in the molecule and a monomer (a2) other than the polyfunctional monomer. It is a layer.
  • the content of the core layer in the acrylic rubber particles is preferably 30% by weight to 95% by weight, more preferably 50% by weight to 90% by weight, still more preferably 60% by weight to 85% by weight. Particularly preferably, it is 60% by weight to 80% by weight.
  • the content of the shell layer in the acrylic rubber particles is preferably 5% by weight to 70% by weight, more preferably 10% by weight to 50% by weight, still more preferably 15% by weight to 40% by weight. Particularly preferably, it is 20% by weight to 40% by weight.
  • the acrylic rubber particles may contain any suitable other components as long as the effects of the invention are not impaired.
  • any suitable polymerizable monomer may be used, but at least an acrylic acid ester monomer is preferably used.
  • the content of the acrylic acid ester monomer in the monomer component (a2) forming the core layer is preferably 40% by weight to 100% by weight, more preferably 50% by weight to 100% by weight, and 60% by weight. It is more preferably% to 100% by weight, and particularly preferably 70% by weight to 100% by weight.
  • the upper limit may be 95% by weight or less, or 90% by weight or less.
  • the core layer contains a polyfunctional monomer (a1) having two or more polymerizable functional groups in the molecule.
  • the content of the polyfunctional monomer (a1) is preferably 0.5 parts by weight to 3.0 parts by weight, preferably 0.7 parts by weight, based on 100 parts by weight of the monomer (a2) other than the polyfunctional monomer. It is more preferably about 2.5 parts by weight, further preferably 0.8 parts by weight to 2.2 parts by weight, and particularly preferably 1.0 part by weight to 2.0 parts by weight.
  • polyfunctional monomer (a1) examples include aromatic divinyl monomers such as divinylbenzene, ethylene di (meth) acrylate, butylene di (meth) acrylate, hexylene di (meth) acrylate, and di (meth).
  • Poly (meth) acrylic acid alkane polyols such as oligoethylene acrylate, di (meth) acrylate trimerol propane, tri (meth) acrylate trimeryl propane, etc., di (meth) acrylate urethane, di (meth) acrylic Acrylic acid epoxy and the like can be mentioned.
  • examples of the polyfunctional monomer having different reactive vinyl groups include allyl (meth) acrylate, diallyl maleate, diallyl fumarate, diallyl itaconic acid and the like.
  • ethylene dimethacrylate, butylene diacrylate, and allyl methacrylate are preferable. Only one of these may be used, or two or more thereof may be used in combination.
  • the monomer (a2) other than the polyfunctional monomer may contain the acrylic acid ester monomer and another polymerizable monomer copolymerizable with the polyfunctional monomer having two or more polymerizable functional groups in the molecule. good.
  • the other polymerizable monomer is preferably contained in an amount of 0% by weight to 60% by weight, more preferably 5% by weight to 40% by weight, and 10% by weight or more. It is preferably contained in an amount of 30% by weight.
  • Examples of the other polymerizable monomer include methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, isononyl methacrylate, lauroyl methacrylate, stearyl methacrylate and the like.
  • Methacrylic acid ester having 1 to 20 carbon atoms of an alkyl group aromatic vinyl such as styrene, vinyltoluene and ⁇ -methylstyrene, vinyl cyanide such as aromatic vinylidene, acrylonitrile and methacrylic nitrile, vinylidene cyanide and methacrylic acid.
  • the other polymerizable monomer may be a monomer having a functional group such as an epoxy group, a carboxyl group, a hydroxyl group or an amino group.
  • examples of the monomer having an epoxy group include glycidyl methacrylate.
  • examples of the monomer having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, itaconic acid and the like.
  • Examples of the monomer having a hydroxyl group include 2-hydroxyethyl methacrylate and 2-hydroxyethyl acrylate.
  • the monomer having an amino group include diethylaminoethyl (meth) acrylate. Only one of these may be used, or two or more thereof may be used in combination.
  • the average particle size of the core layer is preferably 25 nm to 300 nm, more preferably 80 nm to 230 nm, from the viewpoint of dispersibility and handleability.
  • the shell layer is formed of a monomer component (b) that does not contain a polyfunctional monomer.
  • a monomer component (b) that does not contain a polyfunctional monomer.
  • Any suitable polymerizable monomer may be used as the monomer component (b), but the content of the acrylic acid ester monomer in the monomer component (b) is preferably 1% by weight to 50% by weight. It is more preferably 5% by weight to 40% by weight, and particularly preferably 8% by weight to 30% by weight.
  • the monomer component (b) forming the shell layer preferably contains at least one monomer selected from a methacrylic acid ester and an aromatic vinyl monomer. In 100% by weight of the monomer component (b) forming the shell layer, at least one selected from a methacrylic acid ester and an aromatic vinyl monomer is preferably contained in an amount of 50% by weight to 99% by weight, preferably 60% by weight to 95% by weight. % Is more preferable, and 70% by weight to 92% by weight is particularly preferable.
  • methacrylic acid ester for example, methyl methacrylate, ethyl methacrylate and the like, which have an alkyl group having 1 to 4 carbon atoms, are preferable, and methyl methacrylate is more preferable. Only one of these may be used, or two or more thereof may be used in combination.
  • aromatic vinyl monomer examples include styrene, vinyltoluene, ⁇ -methylstyrene and the like. Of these, styrene is preferable. Only one of these may be used, or two or more thereof may be used in combination.
  • the monomer component (b) forming the shell layer may contain other polymerizable monomers copolymerizable with the acrylic acid ester monomer, methacrylic acid ester and aromatic vinyl monomer.
  • the other polymerizable monomer is preferably contained in an amount of 0% by weight to 50% by weight, more preferably 0% by weight to 40% by weight, based on 100% by weight of the monomer component (b) forming the shell layer.
  • Examples of the other polymerizable monomer include vinyl cyanide such as acrylonitrile and methacrylic nitrile, vinylidene cyanide, and methacrylic acid esters, urethane acrylates, and urethane methacrylates other than those described above. Further, it may have a functional group such as an epoxy group, a carboxyl group, a hydroxyl group and an amino group. Examples of the monomer having an epoxy group include glycidyl methacrylate and the like. Examples of the monomer having a carboxyl group include methacrylic acid, acrylic acid, maleic acid, itaconic acid and the like. Examples of the monomer having a hydroxyl group include 2-hydroxymethacrylate and 2-hydroxyacrylate. Examples of the monomer having an amino group include diethylaminoethyl methacrylate and diethylaminoethyl acrylate. Only one of these may be used, or two or more thereof may be used in combination.
  • any appropriate method capable of producing core-shell type particles can be adopted.
  • the monomer component (a) forming the core layer is suspended or emulsion-polymerized to produce a suspension or emulsion dispersion containing core layer particles, and subsequently, a shell layer is added to the suspension or emulsion dispersion.
  • a method of obtaining a core-shell type elastic body having a multilayer structure in which the surface of the core layer is coated with the shell layer by radical polymerization by adding the monomer component (b) forming the above is mentioned.
  • the monomer component (a) forming the core layer and the monomer component (b) forming the shell layer may be polymerized in one stage, respectively, or may be polymerized in two or more stages by changing the composition ratio. You may.
  • the resin film contains an acrylic resin having a glass transition temperature (Tg) of 115 ° C. or higher, and acrylic rubber particles, and is the total of the monomers constituting the acrylic resin and the monomers constituting the acrylic rubber particles.
  • Tg glass transition temperature
  • the total content of the acrylic acid ester monomers constituting the acrylic rubber particles with respect to the amount is 10% by weight to 40% by weight. From the viewpoint of adhesiveness and heat resistance, 12% by weight to 35% by weight is preferable, and 14% by weight to 30% by weight is more preferable.
  • the contents of the acrylic resin and the acrylic rubber particles in the resin film are not particularly limited, but from the viewpoint of mechanical properties and optical properties, the acrylic resin among the total contents of the acrylic resin and the acrylic rubber particles.
  • the ratio of the content of the rubber particles is preferably 15% by weight to 50% by weight. From the viewpoint of adhesiveness, moisture permeability, and viscosity, 20% by weight to 45% by weight is preferable, 25% by weight to 42% by weight is more preferable, and 30% by weight to 40% by weight is further preferable.
  • the thickness of the resin film is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and particularly preferably 200 ⁇ m or less. Further, it is preferably 10 ⁇ m or more, more preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more, and particularly preferably 60 ⁇ m or more. If the thickness of the film is within the above range, there is an advantage that it is less likely to be deformed when vacuum forming using the film, and it is less likely to break at the deeply drawn portion, and further, the optical characteristics are uniform. A film having good transparency can be produced.
  • the thickness of the film exceeds the above range, the cooling of the film after molding tends to be non-uniform, and the optical characteristics tend to be non-uniform. Further, if the thickness of the film is less than the above range, it may be difficult to handle the film.
  • the present invention is not limited to this, and any conventionally known method can be used. Specific examples thereof include injection molding, melt extrusion molding, inflation molding, blow molding, compression molding and the like. Further, the resin film can be produced by a solution casting method or a spin coating method in which the acrylic resin and the acrylic rubber particles are dissolved and dispersed in a solvent and then molded.
  • the resin film is formed into a film by a melt extrusion method, first, the resin composition containing the acrylic resin and the acrylic rubber particles is pre-dried, then supplied to an extruder, and the resin composition is heated and melted. .. Further, it is supplied to a die such as a T die through a gear pump or a filter.
  • the resin composition supplied to the T-die is extruded as a sheet-shaped molten resin and cooled and solidified using a cooling roll or the like to obtain an unstretched film (also referred to as a raw film).
  • an unstretched film also referred to as a raw film.
  • a stretched film is obtained by stretching the resin film at a stretching temperature of Tg + 20 ° C. to Tg + 70 ° C. Since the stretching temperature is so high, the acrylic resin and the acrylic rubber particles can move more flexibly during stretching, so that the gaps between the molecular chains are increased and the particles are vacant. By doing so, the adhesive can easily penetrate and the adhesiveness can be improved.
  • the stretching temperature is preferably Tg + 25 ° C to Tg + 65 ° C, more preferably Tg + 30 ° C to Tg + 60 ° C, further preferably Tg + 35 ° C to Tg + 55 ° C, and particularly preferably Tg + 40 ° C to Tg + 50 ° C.
  • the Tg mentioned with respect to the stretching temperature is the glass transition temperature of the acrylic resin.
  • the stretching may be either uniaxial stretching or biaxial stretching.
  • Biaxial stretching is preferable in order to impart excellent mechanical properties in both the longitudinal direction (MD direction) and the width direction (TD direction).
  • the biaxial stretching may be either simultaneous biaxial stretching or sequential biaxial stretching. In the case of sequential biaxial stretching, it is preferable that the stretching temperature of the second stage is in the temperature range described above.
  • the draw ratio of the stretched film is not particularly limited, and may be determined according to the mechanical strength, surface properties, thickness accuracy, etc. of the stretched film to be manufactured. Although it depends on the stretching temperature, the stretching ratio is generally preferably selected in the range of 1.1 times to 5 times, more preferably in the range of 1.3 times to 4 times. It is more preferable to select in the range of 1.5 times to 3 times. When the draw ratio is within the above range, the mechanical properties such as the elongation rate, the tear propagation strength, and the kneading resistance of the film can be significantly improved.
  • the film is annealed in a stretching machine for 1 minute or longer, more preferably 3 minutes or longer, more preferably 5 minutes or longer, and then stretched, so that breakage of the film and non-uniformity of stretching can be suppressed. ..
  • the stretching speed is preferably 50 mm / min or more, and more preferably 75 mm / min or more. Further, it is preferably 300 mm / min or less, and more preferably 200 mm / min or less.
  • the stretching speed of the first stage and the stretching speed of the second stage may be the same or different, but it is preferable that the stretching speed of the second stage is equal to or higher than the stretching speed of the first stage.
  • the first stretching is usually the stretching in the longitudinal direction (MD direction)
  • the second stretching is the stretching in the width direction (TD direction).
  • the stretched film according to the present disclosure can improve the adhesive strength when bonded to the PET film via an active energy ray-curable adhesive.
  • the value of 90 degree peel strength measured in a 23 ° C. and 55% RH atmosphere is preferably 1.0 N / 20 mm or more, more preferably 1.5 N / 20 mm or more, and more preferably 2.0 N / 20 mm. It is more preferably 20 mm or more, further preferably 2.5 N / 20 mm or more, and particularly preferably 3.0 N / 20 mm or more. If the peel strength is 2.0 N / 20 mm or more, the reworkability and durability after bonding with the polarizing element are good.
  • the peel strength can be obtained by recording using a Force Logger and calculating the average value of the stable region of the obtained measurement data.
  • the stretched film according to the present disclosure can improve the number of MIT reciprocating bends (hereinafter, also referred to as the number of bends) until cutting in the MIT bending resistance test.
  • the number of times of bending is preferably 150 times or more in the longitudinal direction (MD direction) of the stretched film, more preferably 500 times or more, further preferably 1000 times or more, and even more particularly 2000 times or more. preferable.
  • MD direction longitudinal direction
  • Uniaxial stretching or biaxial stretching in the stretched film can be arbitrarily carried out.
  • the width direction (TD direction) tends to be easier to cut, but by stretching, the number of MIT reciprocating bendings until cutting in the MIT bending resistance test can be increased in both the MD direction and the TD direction. ..
  • the stretched film according to the present disclosure preferably has a total light transmittance of 85% or more, more preferably 88% or more, still more preferably 90% or more when measured at a film thickness of 50 ⁇ m.
  • the total light transmittance is within the above range, the transparency is high, so that it can be suitably used for optical members, decoration applications, interior applications, and vacuum forming applications where light transmittance is required.
  • the glass transition temperature of the stretched film according to the present disclosure may be 115 ° C. or higher, preferably 117 ° C. or higher, more preferably 118 ° C. or higher, still more preferably 119 ° C. or higher. Further, the temperature may be 120 ° C. or higher, 125 ° C. or higher, or 130 ° C. or higher. When the glass transition temperature is in the above range, a stretched film having excellent heat resistance can be obtained.
  • the upper limit is not particularly limited, but may be 170 ° C. or lower, or 160 ° C. or lower.
  • the average refractive index of the stretched film according to the present disclosure is preferably 1.48 or more.
  • the difference in refractive index between the acrylic resin and the acrylic rubber particles is preferably 0.02 or less, and more preferably 0.01 or less. Since the acrylic rubber particles are dispersed in the acrylic resin in the stretched film, the internal haze of the stretched film tends to decrease as the difference in refractive index between the acrylic resin and the acrylic rubber particles becomes smaller.
  • the average refractive index can be measured using an Abbe refractive index meter.
  • the stretched film according to the present disclosure preferably has a haze of 2.0% or less, more preferably 1.5% or less, still more preferably 1.3% or less, and 1.0. % Or less is particularly preferable.
  • the haze consists of the haze inside the film and the haze on the surface of the film (outside), and each is expressed as an internal haze and an external haze.
  • the resin film preferably has an internal haze of 1.5% or less, more preferably 1.0% or less, further preferably 0.5% or less, and particularly preferably 0.3% or less.
  • the stretched film according to the present disclosure can be used as an optical film in various situations, but it is preferable that the optical anisotropy is small, particularly when it is used as a polarizing element protection film.
  • the optical anisotropy in the in-plane direction (length direction, width direction) of the film but also the optical anisotropy in the thickness direction is small. That is, it is preferable that both the absolute values of the in-plane phase difference and the thickness direction phase difference are small. More specifically, the absolute value of the in-plane phase difference is preferably 10 nm or less, more preferably 6 nm or less, further preferably 5 nm or less, and particularly preferably 3 nm or less.
  • the absolute value of the phase difference in the thickness direction is preferably 50 nm or less, more preferably 20 nm or less, further preferably 15 nm or less, further preferably 10 nm or less, and further preferably 5 nm or less. Is most preferable.
  • a film having such a phase difference can be suitably used as a polarizing element protective film included in a polarizing plate of a liquid crystal display device.
  • the absolute value of the in-plane contrast difference of the film exceeds 10 nm or the absolute value of the thickness direction contrast difference exceeds 50 nm, the liquid crystal display device is used as a polarizing element protective film provided in the polarizing plate of the liquid crystal display device. In some cases, problems such as a decrease in contrast may occur.
  • phase difference is an index value calculated based on birefringence
  • in-plane phase difference (Re) and the thickness direction phase difference (Rth) can be calculated by the following equations, respectively.
  • both the in-plane phase difference Re and the thickness direction phase difference Rth are 0.
  • nx, ny, and nz each have an in-plane extension direction (polymer chain orientation direction) as the X-axis, a direction perpendicular to the X-axis as the Y-axis, and a film thickness direction as the Z-axis, respectively.
  • d represents the thickness of the film
  • nx-ny represents the orientation birefringence.
  • the MD direction of the film is the X-axis, but in the case of a stretched film, the stretching direction is the X-axis.
  • the resin film according to the present disclosure has an orientation birefringence value of preferably -2.6 ⁇ 10 -4 to 2.6 ⁇ 10 -4 , more preferably ⁇ 2.1 ⁇ 10 -4 to 2.1 ⁇ . 10 -4 , more preferably -1.7 x 10 -4 to 1.7 x 10 -4 , even more preferably -1.6 x 10 -4 to 1.6 x 10 -4 , even more preferably -1. .5 ⁇ 10 -4 to 1.5 ⁇ 10 -4 , especially preferably -1.0 ⁇ 10 -4 to 1.0 ⁇ 10 -4 , particularly preferably -0.5 ⁇ 10 -4 to 0.5 It is ⁇ 10 -4 , most preferably ⁇ 0.2 ⁇ 10 -4 to 0.2 ⁇ 10 -4 .
  • the orientation birefringence is within the above range, stable optical characteristics can be obtained without birefringence during molding. It is also very suitable as an optical film used for liquid crystal displays and the like.
  • the photoelastic coefficient has a small absolute value. More specifically, the value of the photoelastic coefficient is preferably ⁇ 6.0 ⁇ 10-12 to 6.0 ⁇ 10-12 , and more preferably ⁇ 5.0 ⁇ 10-12 to 5.0 ⁇ 10-12 . , -4.0 ⁇ 10 -12 to 4.0 ⁇ 10 -12 are even more preferable, ⁇ 3.0 ⁇ 10 -12 to 3.0 ⁇ 10 -12 are even more preferable, and ⁇ 2.0 ⁇ 10 -12 to 2.0 ⁇ 10-12 is even more preferable, and ⁇ 1.0 ⁇ 10-12 to 1.0 ⁇ 10-12 is most preferable.
  • the stretched film can be used as a polarizing element protective film.
  • a polarizing plate can be formed by laminating the stretched film with a polarizing element via an active energy ray-curable adhesive.
  • the active energy ray-curable adhesive is a resin that cures when irradiated with active energy rays, and examples of the active energy rays include ultraviolet rays, visible light, electron beams, and X-rays.
  • the active energy ray-curable resin may contain, for example, a cationically polymerizable curable compound or a radically polymerizable curable compound.
  • Examples of the cationically polymerizable curable compound include a compound having an epoxy group and a compound having an oxetanyl group.
  • Examples of the radically polymerizable curable compound include a compound having a carbon-carbon double bond such as a (meth) acryloyl group and a vinyl group, and a (meth) acrylamide derivative having a (meth) acrylamide group.
  • the easy-adhesive layer can be formed by using the known techniques described in JP-A-2009-193061 and JP-A-2010-55062.
  • Specific examples of the easy-adhesive that can form the easy-adhesive layer include an easy-adhesive composition containing a urethane-based resin or an epoxy-based resin having a carboxyl group as a main component and further containing a cross-linking agent.
  • the cross-linking agent include an epoxy-based cross-linking agent, an oxazoline-based cross-linking agent, and a carbodiimide-based cross-linking agent.
  • the stretched film according to the present disclosure has good adhesiveness, it can be bonded to the polarizing element without using an easy-adhesive layer.
  • the cost of forming the easy-adhesion layer can be reduced, and the material can be bonded to the polarizing element with high productivity.
  • the stator is not particularly limited, and any conventionally known polarizing element can be used.
  • a modulator obtained by containing iodine in stretched polyvinyl alcohol and the like can be mentioned.
  • This polarizing plate can be further bonded to various films and used in various products.
  • the application is not particularly limited, but it can be suitably used for an image display device such as a liquid crystal display or an organic EL display.
  • Acrylic resin (A1) a polymethylmethacrylate resin having a weight average molecular weight of 60,000 produced by bulk polymerization was used.
  • the glass transition temperature was 120 ° C.
  • the glass transition temperature (Tg) of each sample was determined in accordance with JIS K7121. Specifically, using a differential scanning calorimeter (manufactured by Hitachi, DSC7000X), a sample of about 5 mg is heated from 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min under a nitrogen gas atmosphere, and then the temperature lowering rate is 60. The temperature was lowered to 40 ° C. at ° C./min. The temperature was raised again from 40 ° C. to 200 ° C. at a heating rate of 10 ° C./min, and Tg was calculated from the DSC curve obtained by this second temperature rise.
  • the material mixture shown in the polymerization step (III) of Table 1 was continuously added over 70 minutes. After the addition was completed, the mixture was polymerized for 60 minutes to obtain a latex.
  • the latex was salted out with magnesium chloride, coagulated, washed with water and dried to obtain white powdery acrylic rubber particles (B1).
  • the internal temperature was set to 80 ° C., 0.03 part of potassium persulfate was added with a 2% aqueous solution, and then the material mixture shown in the polymerization step (I) of Table 1 was 81. It was added continuously over a minute. Further, the polymerization was continued for 60 minutes to obtain a polymer. The polymerization conversion was 89.9%.
  • the average particle size of the acrylic rubber particles was calculated by measuring light scattering having a wavelength of 546 nm using a U-5100 spectrophotometer manufactured by HITACHI.
  • the easy-adhesive surface (concavo-convex surface, not the above-mentioned easy-adhesive layer) of PET film (product name: Cosmo Shine 50A4100, manufactured by Toyobo Co., Ltd.) ) was covered and evenly adhered using a rubber roller.
  • the PET film surface side of the obtained laminate was attached to a glass plate using an adhesive tape, preheated at 50 ° C. for 1 minute, and UV (1000 mJ) was used with a UV irradiator manufactured by Eye Graphics Co., Ltd. It was irradiated with / cm 2 ) and annealed at 80 ° C.
  • the obtained sample is cut into strips with a width of 2 cm, and using "PE cloth double-sided tape (0.23 mm x 25 mm x 15 m)" manufactured by Sekisui Chemical Co., Ltd., a stretched film is placed underneath and a PET film is placed on a stainless steel table. The sample was pasted so that it was on top. The 90-degree peel strength when the PET film was peeled from the stretched film was measured at 23 ° C. and 55% RH atmosphere, and evaluated as the adhesive strength.
  • the resin mixture was supplied from the hopper at 1.5 kg / hr, the set temperature of each temperature control zone of the extruder was set to 230 ° C, and the screw rotation speed was set to 120 rpm.
  • the strands coming out of the die were cooled in a water tank and then pelletized with a pelletizer.
  • the pellets were supplied from the hopper at 1.5 kg / hr, the set temperature of each temperature control zone of the extruder was set to 230 ° C, the set temperature of the T-die was set to 255 ° C, and the screw rotation speed was set to 100 rpm.
  • the sheet-shaped molten resin extruded from the T-die provided at the outlet of the extruder was cooled by a cooling roll whose temperature was adjusted to 90 ° C. to obtain a resin film having a width of 120 mm and a thickness of 160 ⁇ m.
  • the obtained resin film was preheated at 145 ° C. for 5 minutes in a stretching machine using a simultaneous biaxial stretching machine (PHH-302) manufactured by ESPEC Co., Ltd., and then 2x2 simultaneous biaxial stretching was performed at a stretching speed of 100 mm / min. To obtain a stretched film.
  • PH-302 simultaneous biaxial stretching machine manufactured by ESPEC Co., Ltd.
  • 2x2 simultaneous biaxial stretching was performed at a stretching speed of 100 mm / min.
  • the adhesiveness and the number of bends were measured according to the above method, and the obtained results are shown in Table 2.
  • Examples 2 to 14, Comparative Examples 1 to 13 A stretched film was produced by performing the same operation as in Example 1 except that the content of the acrylic resin, the type or content of the acrylic rubber particles, or the stretching temperature was changed according to Table 2. The adhesiveness and the number of bends were measured according to the above method, and the obtained results are shown in Table 2.
  • the stretched films obtained in Examples 1 to 14 can achieve both high adhesiveness and good bending resistance, but the stretched films obtained in Comparative Examples 1 to 13 have adhesiveness or bending resistance. It turns out that it is not enough.
  • the reasons why good results were obtained in Examples 1 to 14 were that the adhesive was easily permeated by stretching at a stretching temperature at which the molecular chain could move sufficiently, and that the acrylic resin and acrylic rubber particles were easily penetrated. It is presumed that the amount of acrylic acid ester monomer contained in was appropriate.
  • Examples 2 to 5, 8, 9, and 12 are particularly excellent in adhesiveness, and Examples 2, 4, 5, 9, and 12 are particularly preferable as a balance between adhesiveness and bending resistance. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

ガラス転移温度(Tg)が115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有し、前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10~40重量%である樹脂フィルムを、Tg+20℃~Tg+70℃の温度で延伸することにより、延伸フィルムを製造する。

Description

延伸フィルムの製造方法
 本発明は、光学フィルム等に使用できる延伸フィルムの製造方法、偏光子保護フィルム、及び、偏光板に関する。
 近年、耐湿性、吸水性を改善する目的でアクリル系樹脂からなる光学フィルムが偏光子保護フィルムとして用いられてきている。しかしながら、アクリル系樹脂からなる光学フィルムは、偏光子との接着性が乏しいことから、反りや変形に起因する色彩の乱れや色ムラといった偏光板特性を損なうといった問題があり、接着性の改良に関して検討が行われている。
 例えば、特許文献1には、アクリル系樹脂とアクリル系ゴム粒子を含有するフィルムにおいて、アクリル系ゴム粒子中のゴム部の数平均粒径を所定の範囲に設定する方法が提案されている。
 更に、特許文献2には、ガラス転移温度が120℃以上であるアクリル系樹脂とアクリル系ゴム粒子を含有する樹脂フィルムを所定の温度範囲で延伸することによって、耐熱性、寸法安定性、機械的特性、接着性に優れた延伸フィルムを製造する方法が提案されている。
特開2010-231015号公報 国際公開第2018/168960号公報
 特許文献2に記載のようにアクリル系樹脂にアクリル系ゴム粒子を配合し、フィルムを延伸することにより、アクリル系樹脂フィルムの機械的特性及び接着性は改善され得る。
 しかし、特許文献2では、アクリル系樹脂フィルムの接着性は、ウレタン樹脂と架橋剤を含む易接着層をフィルムに設けた上で、さらに接着剤を用いて基材と貼り合わせることで評価されている(段落0156-0157)。このようにアクリル系樹脂フィルムでは、十分な接着強度を得るには、該フィルムと接着剤層の間に、プライマーとなる易接着層を設ける必要があった。
 本発明の一態様の目的は、機械的特性に優れ、かつ易接着層を設けなくても良好な接着強度を達成できる延伸フィルムの製造方法を提供することにある。
 本発明の別の態様の目的は、機械的特性に優れ、かつ易接着層を設けなくても偏光子との十分な接着強度を達成できる偏光子保護フィルム、及び該保護フィルムを含む偏光板を提供することにある。
 本発明者らは、アクリル系樹脂、及びアクリル系ゴム粒子を含有する樹脂フィルムにおいて、アクリル系ゴム粒子を構成するアクリル酸エステルモノマー量を所定の範囲に制御した樹脂フィルムを所定温度で延伸することによって、前記課題を解決できることを見出し、本発明を完成させた。
 即ち、本発明は、ガラス転移温度(Tg)が115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有し、前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10~40重量%である樹脂フィルムを、Tg+20℃~Tg+70℃の温度で延伸する工程を含む、延伸フィルムの製造方法に関する。
 好ましくは、前記アクリル系ゴム粒子を構成するモノマー中のアクリル酸エステルモノマー量が45~90重量%である。
 好ましくは、前記アクリル系樹脂と前記アクリル系ゴム粒子の合計含有量のうち前記アクリル系ゴム粒子の含有量の占める割合が15~50重量%である。
 好ましくは、前記アクリル酸エステルモノマーが下記構造を有する。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは、炭素数1~10の直鎖又は分岐アルキル基を示す。)
 好ましくは、前記アクリル系ゴム粒子が軟質のコア層と硬質のシェル層とを含むコアシェル型弾性体であって、前記コア層は、分子内に2個以上の重合性官能基を有する多官能性モノマー(a1)と前記多官能性モノマー以外のモノマー(a2)からなるモノマー成分(a)から形成され、前記多官能性モノマー以外のモノマー(a2)はアクリル酸エステルモノマーを40~100重量%含む。
 好ましくは、前記シェル層は、アクリル酸エステルモノマーを1~50重量%含むモノマー成分(b)から形成される。
 好ましくは、前記多官能性モノマー以外のモノマー(a2)100重量部に対する前記多官能性モノマー(a1)の量が0.5~3.0重量部である。
 好ましくは、前記コア層の平均粒子径が25~300nmである。
 好ましくは、前記延伸フィルムのMIT往復折り曲げ回数が150回以上である。
 好ましくは、前記延伸フィルムを、活性エネルギー線硬化性接着剤でPETフィルムに貼り付け、23℃、55%RH雰囲気において測定した90度剥離強度の値が1.0N/20mm以上である。
 また本発明は、Tgが115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有する偏光子保護フィルムであって、
 前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10~40重量%であり、
 前記アクリル系ゴム粒子を構成するモノマー中のアクリル酸エステルモノマー量が45~90重量%であり、
 前記偏光子保護フィルムを、活性エネルギー線硬化性接着剤でPETフィルムに貼り付け、23℃、55%RH雰囲気において測定した90度剥離強度の値が1.0N/20mm以上である、偏光子保護フィルムにも関する。
 好ましくは、前記偏光子保護フィルムはMIT往復折り曲げ回数が150回以上である。
 さらに本発明は、前記偏光子保護フィルム、接着層、及び偏光子をこの順で積層して含む偏光板にも関する。好ましくは、前記偏光板は、易接着層を含まない。
 本発明の一態様によれば、機械的特性に優れ、かつ易接着層を設けなくても良好な接着強度を達成できる延伸フィルムの製造方法を提供することができる。
 本発明の別の態様によれば、機械的特性に優れ、かつ易接着層を設けなくても偏光子との十分な接着強度を達成できる偏光子保護フィルム、及び該保護フィルムを含む偏光板を提供することができる。
 以下、本発明の実施形態を詳細に説明するが、本発明はこれらの実施形態に限定されない。本発明は、以下に説明する各構成に限定されるものではなく、特許請求の範囲に示した範囲での種々の変更が可能であり、異なる実施形態や実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態や実施例についても本発明の技術範囲に含まれる。
 本開示に係る延伸フィルムの製造方法は、ガラス転移温度(Tg)が115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有し、前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10重量%~40重量%である樹脂フィルムを、Tg+20℃~Tg+70℃の温度で延伸する工程を含む。
 (アクリル系樹脂)
 前記樹脂フィルムはアクリル系樹脂を含有する。
 前記アクリル系樹脂のガラス転移温度(Tg)は115℃以上であれば特に限定されないが、117℃以上であることが好ましく、118℃以上がより好ましく、119℃以上がさらに好ましい。アクリル系樹脂のガラス転移温度は、120℃以上であってもよく、125℃以上であってもよく、130℃以上であってもよい。上限は特に限定されないが、170℃以下であってもよく、160℃以下であってもよい。
 アクリル系樹脂のガラス転移温度は、当該アクリル系樹脂について測定したDSC曲線中のピーク温度である。
 また、アクリル系樹脂とアクリル系ゴム粒子を含む樹脂フィルムについてDSC曲線を測定した場合、2つのピークが現れる場合がある。そのうち高温側のピーク温度を、アクリル系樹脂のガラス転移温度と判断することができる。あるいは、前記樹脂フィルムを適当な溶媒に溶解させて遠心分離でアクリル系樹脂とアクリル系ゴム粒子を分別し、当該アクリル系樹脂についてDSC曲線を測定することで、アクリル系樹脂のガラス転移温度を決定してもよい。
 前記アクリル系樹脂は、メタクリル酸アルキルエステルを主成分とする重合体であるのが好ましい。例えば、メタクリル酸アルキルエステル50重量%以上とメタクリル酸アルキルエステル以外の単量体50重量%以下との共重合体であってもよく、メタクリル酸アルキルエステルの単独重合体であってもよい。メタクリル酸アルキルエステルとしては、通常、そのアルキル基の炭素数が1~8のものが用いられ、炭素数が1~4のものが好ましく、中でも炭素数が1のメタクリル酸メチルが好ましく用いられる。
 前記メタクリル酸アルキルエステル以外の単量体は、分子内に1個の重合性炭素-炭素二重結合を有する単官能単量体であってもよいし、分子内に2個以上の重合性炭素-炭素二重結合を有する多官能単量体であってもよいが、ここでは単官能単量体が好ましく用いられる。具体的には、(メタ)アクリル酸ベンジル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル等の、(メタ)アクリル酸アルキルエステル以外の(メタ)アクリル酸エステル、スチレンやアルキルスチレン等のスチレン系単量体、アクリロニトリルやメタクリロニトリル等の不飽和ニトリル、N-フェニルマレイミドやN-シクロヘキシルマレイミドなどのマレイミド系単量体などが挙げられる。
 機械的特性、耐熱性、透明性の観点から、アクリル系樹脂の単量体組成は、全単量体の合計100重量%を基準として、メタクリル酸アルキルエステルの割合が70重量%以上であることが好ましく、より好ましくは80重量%以上、さらに好ましくは90重量%以上である。また、好ましくは99重量%以下である。
 (アクリル系ゴム粒子)
 前記樹脂フィルムはアクリル系ゴム粒子を含有する。
 前記アクリル系ゴム粒子は、該粒子を構成するモノマー全量に対して、アクリル酸エステルモノマーの含有量の合計が45重量%~90重量%であることが好ましい。機械的強度、耐熱性の観点から、48重量%~85重量%がより好ましく、50重量%~80重量%がさらに好ましく、55重量%~75重量%が特に好ましい。
 前記アクリル酸エステルモノマーとしては特に限定されないが、下記構造を有することが機械的強度の観点から好ましい。
Figure JPOXMLDOC01-appb-C000003

 式中、R1は、炭素数1~10の直鎖又は分岐アルキル基を示す。
 具体的には、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ヘキシル、アクリル酸オクチル、アクリル酸2-エチルヘキシル、アクリル酸イソノニル等が挙げられる。アクリル酸ブチル、アクリル酸2-エチルヘキシル、アクリル酸イソノニルが好ましく、中でも機械的強度、接着性の観点から、アクリル酸ブチルが特に好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。
 前記アクリル系ゴム粒子は、軟質のコア層と硬質のシェル層とを含むコアシェル型弾性体であることが好ましい。
 コア層のTgは20℃以下が好ましく、-60℃~20℃がより好ましく、-60℃~10℃がさらに好ましい。コア層のTgが20℃以下であると、得られる延伸フィルムの機械的強度が良好となり得る。
 シェル層のTgは、50℃以上が好ましく、50℃~140℃がより好ましく、60℃~130℃がさらに好ましい。シェル層のTgが50℃以上であると、得られる延伸フィルムの耐熱性が良好となり得る。
 前記コア層は、分子内に2個以上の重合性官能基を有する多官能性モノマー(a1)と、前記多官能性モノマー以外のモノマー(a2)とからなるモノマー成分(a)から形成される層である。
 前記アクリル系ゴム粒子中のコア層の含有割合は、好ましくは30重量%~95重量%、より好ましくは50重量%~90重量%であり、さらに好ましくは60重量%~85重量%であり、特に好ましくは60重量%~80重量%である。前記アクリル系ゴム粒子中のシェル層の含有割合は、好ましくは5重量%~70重量%、より好ましくは10重量%~50重量%であり、さらに好ましくは15重量%~40重量%であり、特に好ましくは20重量%~40重量%である。前記アクリル系ゴム粒子には、発明の効果を損なわない範囲で、任意の適切なその他の成分を含んでいても良い。
 多官能性モノマー以外のモノマー(a2)としては、任意の適切な重合性モノマーを使用してよいが、少なくともアクリル酸エステルモノマーを使用することが好ましい。コア層を形成するモノマー成分(a2)中、アクリル酸エステルモノマーの含有量は、40重量%~100重量%であることが好ましく、50重量%~100重量%であることがより好ましく、60重量%~100重量%であることがさらに好ましく、70重量%~100重量%であることが特に好ましい。なお、上限は、95重量%以下であってもよく、90重量%以下であってもよい。
 前記コア層は、分子内に2個以上の重合性官能基を有する多官能性モノマー(a1)を含む。多官能性モノマー(a1)の含有量は、多官能性モノマー以外のモノマー(a2)100重量部に対して0.5重量部~3.0重量部であることが好ましく、0.7重量部~2.5重量部であることがより好ましく、0.8重量部~2.2重量部であることがさらに好ましく、1.0重量部~2.0重量部であることが特に好ましい。
 多官能性モノマー(a1)としては、例えば、ジビニルベンゼン等の芳香族ジビニルモノマー、ジ(メタ)アクリル酸エチレン、ジ(メタ)アクリル酸ブチレン、ジ(メタ)アクリル酸へキシレン、ジ(メタ)アクリル酸オリゴエチレン、ジ(メタ)アクリル酸トリメチロールプロパン、トリ(メタ)アクリル酸トリメチロールプロパン等のポリ(メタ)アクリル酸アルカンポリオール等や、ジ(メタ)アクリル酸ウレタン、ジ(メタ)アクリル酸エポキシ等が挙げられる。また、異なる反応性のビニル基を有する多官能性モノマーとして、例えば、(メタ)アクリル酸アリル、マレイン酸ジアリル、フマル酸ジアリル、イタコン酸ジアリル等が挙げられる。これらのなかでも、ジメタクリル酸エチレン、ジアクリル酸ブチレン、メタクリル酸アリルが好ましい。これらを1種のみ用いてもいいし、2種以上を併用してもいい。
 前記多官能性モノマー以外のモノマー(a2)には、前記アクリル酸エステルモノマーおよび分子内に2個以上の重合性官能基を有する多官能性モノマーと共重合可能な他の重合性モノマーを含んでも良い。前記コア層を形成するモノマー成分(a)中、他の重合性モノマーは0重量%~60重量%含まれることが好ましく、5重量%~40重量%含まれることがより好ましく、10重量%~30重量%含まれることが好ましい。
 前記他の重合性モノマーとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸イソノニル、メタクリル酸ラウロイル、メタクリル酸ステアリル等、アルキル基の炭素数が1~20のメタクリル酸エステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル、芳香族ビニリデン、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、シアン化ビニリデン、メタクリル酸メチル、ウレタンアクリレート、ウレタンメタクリレート等が挙げられる。また、他の重合性モノマーとしては、エポキシ基、カルボキシル基、水酸基、アミノ基等の官能基を有するモノマーでもよい。具体的には、エポキシ基を有するモノマーとして、例えば、メタクリル酸グリシジル等が挙げられる。カルボキシル基を有するモノマーとして、例えば、メタクリル酸、アクリル酸、マレイン酸、イタコン酸等が挙げられる。水酸基を有するモノマーとして、例えば、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル等が挙げられる。アミノ基を有するモノマーとして、例えば、(メタ)アクリル酸ジエチルアミノエチル等が挙げられる。これらは1種のみ用いても良いし、2種以上を併用しても良い。
 また、コア層の平均粒子径は、分散性、ハンドリング性の観点から、25nm~300nmが好ましく、80nm~230nmがより好ましい。
 前記シェル層は、多官能性モノマーを含有しないモノマー成分(b)から形成される。モノマー成分(b)としては、任意の適切な重合性モノマーを使用してもよいが、モノマー成分(b)中のアクリル酸エステルモノマーの含有量は1重量%~50重量%であることが好ましく、5重量%~40重量%であることがより好ましく、8重量%~30重量%であることが特に好ましい。
 前記シェル層を形成するモノマー成分(b)は、メタクリル酸エステルおよび芳香族ビニルモノマーから選ばれる少なくとも1種のモノマーを含むことが好ましい。前記シェル層を形成するモノマー成分(b)100重量%中、メタクリル酸エステルおよび芳香族ビニルモノマーから選ばれる少なくとも1種が50重量%~99重量%含まれることが好ましく、60重量%~95重量%含まれることがより好ましく、70重量%~92重量%含まれることが特に好ましい。
 前記メタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル等、アルキル基の炭素数が1~4のものが好ましく、メタクリル酸メチルがより好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。
 前記芳香族ビニルモノマーとしては、例えば、スチレン、ビニルトルエン、α-メチルスチレン等が挙げられる。これらのなかでも、スチレンが好ましい。これらは1種のみ用いても良いし、2種以上を併用しても良い。
 前記シェル層を形成するモノマー成分(b)は、前記アクリル酸エステルモノマー、メタクリル酸エステルおよび芳香族ビニルモノマーと共重合可能な他の重合性モノマーを含んでいても良い。前記シェル層を形成するモノマー成分(b)100重量%中、他の重合性モノマーは0重量%~50重量%含まれることが好ましく、0重量%~40重量%含まれることがより好ましい。
 前記他の重合性モノマーとしては、例えば、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、シアン化ビニリデン、前述したもの以外のメタクリル酸エステル、ウレタンアクリレート、ウレタンメタクリレート等が挙げられる。また、エポキシ基、カルボキシル基、水酸基、アミノ基等の官能基を有するものでもよい。エポキシ基を有するモノマーとしては、例えば、グリシジルメタクリレート等が挙げられる。カルボキシル基を有するモノマーとしては、例えば、メタクリル酸、アクリル酸、マレイン酸、イタコン酸等が挙げられる。水酸基を有するモノマーとしては、例えば、2-ヒドロキシメタクリレート、2-ヒドロキシアクリレート等が挙げられる。アミノ基を有するモノマーとしては、例えば、ジエチルアミノエチルメタクリレート、ジエチルアミノエチルアクリレート等が挙げられる。これらは1種のみ用いても良いし、2種以上を併用しても良い。
 前記コアシェル型弾性体を製造する方法としては、コアシェル型の粒子を製造し得る任意の適切な方法を採用することができる。
 例えば、コア層を形成するモノマー成分(a)を懸濁または乳化重合させて、コア層粒子を含む懸濁または乳化分散液を製造し、続いて、該懸濁液または乳化分散液にシェル層を形成するモノマー成分(b)を加えてラジカル重合させ、コア層の表面をシェル層が被覆してなる多層構造を有するコアシェル型弾性体を得る方法が挙げられる。ここで、コア層を形成するモノマー成分(a)、および、シェル層を形成するモノマー成分(b)は、各々、一段で重合しても良いし、組成比を変更して2段以上で重合してもよい。
 (樹脂フィルム)
 前記樹脂フィルムは、ガラス転移温度(Tg)が115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有し、前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマーの含有量の合計が10重量%~40重量%である。接着性、耐熱性の観点から、12重量%~35重量%が好ましく、14重量%~30重量%がより好ましい。
 前記樹脂フィルムにおけるアクリル系樹脂とアクリル系ゴム粒子の含有量は特に限定されないが、機械的特性、光学特性の観点から、前記アクリル系樹脂と前記アクリル系ゴム粒子の合計含有量のうち前記アクリル系ゴム粒子の含有量の占める割合が15重量%~50重量%が好ましい。接着性、透湿性、粘度といった観点から、20重量%~45重量%が好ましく、25重量%~42重量%がより好ましく、30重量%~40重量%がさらに好ましい。
 前記樹脂フィルムの厚みは特に限定されないが、500μm以下であることが好ましく、300μm以下であることがより好ましく、200μm以下であることが特に好ましい。また、10μm以上であることが好ましく、30μm以上であることがより好ましく、50μm以上であることがさらに好ましく、60μm以上であることが特に好ましい。フィルムの厚みが前記範囲内であれば、当該フィルムを用いて真空成形を実施する際に変形しにくく、深絞り部での破断が発生しにくいという利点があり、さらに、光学特性が均一で、透明性が良好なフィルムを製造することができる。一方、フィルムの厚みが前記範囲を超えると、成形後のフィルムの冷却が不均一になり、光学特性が不均一になる傾向がある。また、フィルムの厚みが前記範囲を下回ると、フィルムの取扱が困難になることがある。
 (樹脂フィルムの製造方法)
 前記樹脂フィルムの製造方法の一実施形態について説明するが、本発明はこれに限定されず、従来公知のあらゆる方法を用いることができる。
 具体的には、例えば、射出成形、溶融押出成形、インフレーション成形、ブロー成形、圧縮成形等が挙げられる。また、前記アクリル系樹脂およびアクリル系ゴム粒子を溶剤に溶解・分散させた後、成形させる溶液流延法やスピンコート法によって、前記樹脂フィルムを製造することができる。
 中でも、溶剤を使用しない溶融押出法を用いることが好ましい。溶融押出法によれば、製造コストや溶剤による地球環境や作業環境への負荷を低減することができる。
 前記樹脂フィルムを溶融押出法によりフィルムに成形する場合、まず、前記アクリル系樹脂およびアクリル系ゴム粒子を含む樹脂組成物を予備乾燥し、その後押出機に供給し、該樹脂組成物を加熱溶融させる。さらに、ギアポンプやフィルターを通して、Tダイなどのダイスに供給する。次に、Tダイに供給された樹脂組成物を、シート状の溶融樹脂として押し出し、冷却ロールなどを用いて冷却固化して、未延伸フィルム(原反フィルムともいう)を得る。この際、フィルムの表面性(平滑性)を良好にするために、金属ロールと金属製弾性外筒を備えたフレキシブルロールに挟み込むことも可能である。
 (延伸フィルム)
 本開示に係る製造方法によると、前記樹脂フィルムをTg+20℃~Tg+70℃の延伸温度で延伸することによって延伸フィルムを得る。延伸温度がこのように高いことにより、延伸時にアクリル系樹脂およびアクリル系ゴム粒子がより柔軟に運動することができるため、分子鎖間の隙間が多くなり、空いている状態になる。そうすることで接着剤が浸透しやすくなり、接着性が高くなり得る。
 前記延伸温度としてはTg+25℃~Tg+65℃が好ましく、Tg+30℃~Tg+60℃がより好ましく、Tg+35℃~Tg+55℃がさらに好ましく、Tg+40℃~Tg+50℃が特に好ましい。なお、延伸温度に関して言及しているTgとは、前記アクリル系樹脂のガラス転移温度である。
 延伸は、一軸延伸、二軸延伸のいずれであってもよい。長手方向(MD方向)と幅方向(TD方向)共に優れた機械的特性を付与するには、二軸延伸が好ましい。二軸延伸は、同時二軸延伸、逐次二軸延伸のいずれであってもよい。逐次二軸延伸の場合、二段目の延伸温度が前述した温度範囲にあることが好ましい。
 延伸フィルムの延伸倍率は、特に限定されるものではなく、製造する延伸フィルムの機械的強度、表面性、厚み精度等に応じて、決定すればよい。延伸温度にも依存するが、延伸倍率は、一般的には、1.1倍~5倍の範囲で選択することが好ましく、1.3倍~4倍の範囲で選択することがより好ましく、1.5倍~3倍の範囲で選択することがさらに好ましい。延伸倍率が前記範囲内であれば、フィルムの伸び率、引裂伝播強度、および耐揉疲労等の力学的性質を大幅に改善することができる。
 延伸する前の予熱として、1分以上、より好ましくは3分以上、さらに好ましくは5分以上、延伸機内でアニールしてから延伸を行うことで、フィルムの破断、延伸の不均一性を抑制できる。
 延伸速度については、50mm/min以上で行うことが好ましく、75mm/min以上で行うことがより好ましい。また、300mm/min以下であることが好ましく、200mm/min以下であることがより好ましい。逐次二軸延伸の場合は、一段目の延伸速度と二段目の延伸速度が同じでも、異なっていてもよいが、二段目の延伸速度が一段目の延伸速度以上であることが好ましい。逐次二軸延伸において、通常、一段目の延伸は長手方向(MD方向)の延伸であり、二段目の延伸は幅方向(TD方向)の延伸である。
 本開示に係る延伸フィルムは、活性エネルギー線硬化性接着剤を介してPETフィルムと接着した時の接着強度が改善され得る。接着強度は、23℃、55%RH雰囲気において測定した90度剥離強度の値が1.0N/20mm以上であることが好ましく、1.5N/20mm以上であることがより好ましく、2.0N/20mm以上であることがさらに好ましく、2.5N/20mm以上であることがよりさらに好ましく、3.0N/20mm以上であることが特に好ましい。2.0N/20mm以上の剥離強度であれば偏光子と貼り合わせた後のリワーク性および耐久性の点で良好となる。剥離強度は、Force Loggerを用いて記録し、得られた測定データの安定した領域の平均値を算出することによって求めることができる。
 本開示に係る延伸フィルムは、MIT耐屈曲試験における切断するまでのMIT往復折り曲げ回数(以下、折り曲げ回数とも記載する)が改善され得る。折り曲げ回数としては、延伸フィルムの長手方向(MD方向)で150回以上であることが好ましく、500回以上であることがより好ましく、1000回以上であることがさらに好ましく、2000回以上がより特に好ましい。150回以上になると、長尺製膜の工程による破断のリスク低減や、液晶パネルへ貼合した後のリワーク性の点で良好である。前記延伸フィルムにおける一軸延伸もしくは二軸延伸は任意で実施できる。一般に幅方向(TD方向)の方が切断されやすい傾向はあるものの、延伸を施すことで、MIT耐屈曲試験における切断するまでのMIT往復折り曲げ回数をMD方向およびTD方向いずれも増大させることが出来る。
 本開示に係る延伸フィルムは、膜厚50μmで測定した時に、全光線透過率が85%以上であることが好ましく、88%以上がより好ましく、90%以上がさらに好ましい。全光線透過率が上述の範囲であれば、透明性が高いため、光透過性が要求される光学部材、加飾用途、インテリア用途、真空成形用途に好適に使用できる。
 本開示に係る延伸フィルムのガラス転移温度は、115℃以上であってよく、117℃以上であることが好ましく、118℃以上がより好ましく、119℃以上がさらに好ましい。また、120℃以上であってもよく、125℃以上であってもよく、130℃以上であってもよい。ガラス転移温度が上述の範囲であれば、耐熱性に優れた延伸フィルムを得ることができる。上限は特に限定されないが、170℃以下であってもよく、160℃以下であってもよい。
 本開示に係る延伸フィルムの平均屈折率は1.48以上であることが好ましい。前記アクリル系樹脂と前記アクリル系ゴム粒子との屈折率差が0.02以下であることが好ましく、0.01以下であることがより好ましい。前記延伸フィルムはアクリル系ゴム粒子がアクリル系樹脂中に分散した状態であることから、アクリル系樹脂とアクリル系ゴム粒子の屈折率差が小さくなるほど、延伸フィルムの内部ヘイズが低下する傾向にある。平均屈折率は、アッベ屈折率計を用いて測定することができる。
 本開示に係る延伸フィルムは、膜厚50μmで測定した時に、ヘイズが2.0%以下であることが好ましく、1.5%以下がより好ましく、1.3%以下がさらに好ましく、1.0%以下が特に好ましい。なお、ヘイズはフィルム内部とフィルム表面(外部)のヘイズからなり、それぞれを内部ヘイズ、外部ヘイズと表現する。前記樹脂フィルムは、さらに、フィルムの内部ヘイズが1.5%以下であることが好ましく、1.0%以下がより好ましく、0.5%以下がさらに好ましく、0.3%以下が特に好ましい。ヘイズ、および内部ヘイズが上述の範囲であれば、透明性が高いため、光透過性が要求される光学部材、加飾用途、インテリア用途、真空成形用途に好適である。
 本開示に係る延伸フィルムは光学フィルムとして種々の場面で使用することができるが、特に偏光子保護フィルムとして使用する場合、光学異方性が小さいことが好ましい。特に、フィルムの面内方向(長さ方向、幅方向)の光学異方性だけでなく、厚み方向の光学異方性についても小さいことが好ましい。つまり、面内位相差および厚み方向位相差の絶対値がともに小さいことが好ましい。より具体的には、面内位相差の絶対値は10nm以下であることが好ましく、6nm以下であることがより好ましく、5nm以下であることがさらに好ましく、3nm以下であることが特に好ましい。
 また、厚み方向位相差の絶対値は50nm以下であることが好ましく、20nm以下であることがより好ましく、15nm以下であることがさらに好ましく、10nm以下であることがよりさらに好ましく、5nm以下であることが最も好ましい。このような位相差を有するフィルムは、液晶表示装置の偏光板が備える偏光子保護フィルムとして好適に使用することができる。一方、フィルムの面内位相差の絶対値が10nmを超えたり、厚み方向位相差の絶対値が50nmを超えたりすると、液晶表示装置の偏光板が備える偏光子保護フィルムとして用いる場合、液晶表示装置においてコントラストが低下するなどの問題が発生する場合がある。
 位相差は複屈折をベースに算出される指標値であり、面内位相差(Re)および厚み方向位相差(Rth)は、それぞれ、以下の式により算出することができる。3次元方向について完全光学等方である理想的なフィルムでは、面内位相差Re、厚み方向位相差Rthがともに0となる。
Re=(nx-ny)×d
Rth=((nx+ny)/2-nz)×d
前記式中において、nx、ny、およびnzは、それぞれ、面内において伸張方向(ポリマー鎖の配向方向)をX軸、X軸に垂直な方向をY軸、フィルムの厚さ方向をZ軸とし、それぞれの軸方向の屈折率を表す。また、dはフィルムの厚さを表し、nx-nyは配向複屈折を表す。なお、フィルムのMD方向をX軸とするが、延伸フィルムの場合は延伸方向をX軸とする。
 本開示に係る樹脂フィルムは、配向複屈折の値が、好ましくは-2.6×10-4~2.6×10-4、より好ましくは-2.1×10-4~2.1×10-4、さらに好ましくは-1.7×10-4~1.7×10-4、なおさら好ましくは-1.6×10-4~1.6×10-4、より一層好ましくは-1.5×10-4~1.5×10-4、ことさら好ましくは-1.0×10-4~1.0×10-4、特に好ましくは-0.5×10-4~0.5×10-4、最も好ましくは-0.2×10-4~0.2×10-4である。配向複屈折が前記範囲内であれば、成形加工時の複屈折が生じることなく、安定した光学特性を得ることができる。また液晶ディスプレイ等に使用される光学フィルムとしても非常に適している。
 また、光弾性係数も絶対値がともに小さいほうが好ましい。より具体的には、光弾性係数の値が-6.0×10-12~6.0×10-12が好ましく、-5.0×10-12~5.0×10-12がより好ましく、-4.0×10-12~4.0×10-12がさらに好ましく、-3.0×10-12~3.0×10-12がなおさら好ましく、-2.0×10-12~2.0×10-12がより一層好ましく、-1.0×10-12~1.0×10-12が最も好ましい。液晶表示装置で異なる材料に貼合された位相差フィルムが温度変化を受けると、各材料の寸法変化率の違いから位相差フィルムに応力が発生し、位相差が変化して表示に影響が出る。したがって、応力の影響が少ないすなわち光弾性係数の小さい前記範囲内のものが適している。
 (用途)
 前記延伸フィルムは、偏光子保護フィルムとして使用することができる。その場合、該延伸フィルムを、活性エネルギー線硬化性接着剤を介して偏光子と貼り合わせることで、偏光板を形成することができる。
 前記活性エネルギー線硬化性接着剤は、活性エネルギー線が照射されることにより、硬化する樹脂であり、活性エネルギー線としては、例えば、紫外線、可視光、電子線、又はX線が挙げられる。
 活性エネルギー線硬化性樹脂は、例えば、カチオン重合性の硬化性化合物、又はラジカル重合性の硬化性化合物を含んでいてもよい。
 カチオン重合性の硬化性化合物としては、例えば、エポキシ基を有する化合物、オキセタニル基を有する化合物などが挙げられる。ラジカル重合性の硬化性化合物としては、例えば、(メタ)アクリロイル基、ビニル基等の炭素-炭素2重結合を有する化合物、(メタ)アクリルアミド基を有する(メタ)アクリルアミド誘導体などが挙げられる。
 また、さらに易接着層を介することで接着性を向上させることが可能である。易接着層としては、特開2009-193061号公報、特開2010-55062号公報などに記載の公知技術を用いて形成されることができる。易接着層を形成し得る易接着剤の具体例としては、主成分として、カルボキシル基を有するウレタン系樹脂又はエポキシ系樹脂を含み、さらに、架橋剤を含む易接着剤組成物などが挙げられる。前記架橋剤としては、エポキシ系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤などが挙げられる。
 しかしながら、本開示に係る延伸フィルムは接着性が良好であるため、易接着層を介さず偏光子と張り合わせることが可能である。易接着層を使用しないことで、易接着層を形成するコストを削減でき、高い生産性で偏光子と貼り合わせることができる。
 前記偏光子としては特に限定されず、従来公知の任意の偏光子を用いることができる。例えば、延伸されたポリビニルアルコールにヨウ素を含有させて得た偏光子等が挙げられる。
 この偏光板はさらに種々のフィルムと貼り合わせて、各種製品に用いることができる。その用途は特に限定されるものではないが、例えば、液晶ディスプレイ、有機ELディスプレイなどの画像表示装置に好適に用いることができる。
 以下、本発明を実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。なお、実施例、および比較例に記載の各物性の試験方法は以下の通りである。
 <試験方法>
 <アクリル系樹脂の製造>
 (アクリル系樹脂(A1))
 アクリル系樹脂として、塊状重合にて製造した重量平均分子量60,000のポリメチルメタクリレート樹脂を使用した。ガラス転移温度は120℃であった。
 <ガラス転移温度の測定>
 各サンプルのガラス転移温度(Tg)はJIS K7121の規定に準拠して求めた。具体的には、示差走査熱量計(日立製、DSC7000X)を用い、窒素ガス雰囲気下、約5mgのサンプルを40℃から200℃まで昇温速度10℃/分で昇温した後、降温速度60℃/分で40℃まで降温した。再び40℃から200℃まで昇温速度10℃/分で昇温し、この2回目の昇温で得られたDSC曲線からTgを算出した。
 <アクリル系ゴム粒子の製造>
 (製造例1)
 (アクリル系ゴム粒子(B1)の製造)
 撹拌機付き8L重合装置に、以下の物質を仕込んだ。
脱イオン水                     180部
ポリオキシエチレンラウリルエーテルリン酸     0.04部
ホウ酸                       0.5部
炭酸ナトリウム                  0.05部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、2%水酸化ナトリウム水溶液0.01部と2%過硫酸カリウム水溶液0.107部を入れ、次いで表1の重合段階(II)に示した材料混合物を230分かけて連続的に添加した。添加60分後、追加で2%水酸化ナトリウム水溶液0.03部を入れた。添加終了後、2%過硫酸カリウム水溶液0.015部を添加し、120分重合し、(II)の重合物を得た。重合転化率は98.5%であり、平均粒子径は109nmであった。
 次いで、表1の重合段階(III)に示した材料混合物を70分かけて連続的に添加した。添加終了後、60分重合し、ラテックスを得た。ラテックスを塩化マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のアクリル系ゴム粒子(B1)を得た。
 (製造例2~3)
 (アクリル系ゴム粒子(B2)~(B3)の製造)
 使用原料の種類と量を表1に示すように変更した以外は、製造例1と同様にして、アクリル系ゴム粒子(B2)~(B3)を製造した。
 (製造例4)
 (アクリル系ゴム粒子(B4)の製造)
脱イオン水                     180部
ポリオキシエチレンラウリルエーテルリン酸    0.003部
ホウ酸                       0.5部
炭酸ナトリウム                  0.05部
水酸化ナトリウム                 0.01部
 重合機内を窒素ガスで充分に置換した後、内温を80℃にし、過硫酸カリウム0.03部を2%水溶液で添加し、次いで表1の重合段階(I)に示した材料混合物を81分かけて連続的に添加した。さらに60分重合を継続し重合物を得た。重合転化率は89.9%であった。
 その後、水酸化ナトリウム0.03部を2%水溶液で添加し、過硫酸カリウム0.08部を2%水溶液で添加し、次いで表1の重合段階(II)に示した材料混合物を150分かけて連続的に添加した。添加終了後、過硫酸カリウム純分0.02部を2%水溶液で添加し、120分重合を継続し、(II)の重合物を得た。重合転化率は97.5%であり、平均粒子径は221nmであった。
 その後、過硫酸カリウム0.02部を2%水溶液で添加し、次いで表1の重合段階(III)に示した材料混合物を70分かけて連続的に添加した。添加終了後、60分重合し、ラテックスを得た。重合転化率は99.9%であった。得られたラテックスを塩化マグネシウムで塩析、凝固し、水洗、乾燥を行い、白色粉末状のアクリル系ゴム粒子(B4)を得た。
Figure JPOXMLDOC01-appb-T000004

 <平均粒子径の測定>
 前記アクリル系ゴム粒子の平均粒子径は、546nmの波長の光散乱を、HITACHI製U-5100分光光度計を用いて測定し、算出した。
 <接着性測定>
 接着性評価サンプルは以下のようにして作製した。まず、各実施例又は比較例で得た延伸フィルムに、信光電気計装株式会社製コロナマスター(PS-1M)でコロナ放電処理(13V)を施した。該延伸フィルムに、活性エネルギー線硬化性接着剤(N-(2-ヒドロキシエチル)アクリルアミド/4-アクリロイルモルホリン/フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド=40/60/3(重量比))を塗布し、No.3バーコーター(ウェット膜厚6.87μm)で均一に広げた後、PETフィルム(製品名:コスモシャイン 50A4100、東洋紡株式会社製)の易接着面(凹凸面であり、前述した易接着層ではない)をかぶせてゴムローラーを用いて均一に接着した。得られた積層体のPETフィルム面側を、粘着テープを用いて、ガラス板に貼りつけた後、50℃で1分間予熱を行い、アイグラフィックス株式会社製のUV照射機で、UV(1000mJ/cm)を照射し、80℃で3分間アニールし、サンプルを得た。
 得られたサンプルを幅2cmの短冊状にカットし、積水化学工業株式会社製の「PEクロス両面テープ(0.23mmx25mmx15m)」を用いて、ステンレス製の台に、延伸フィルムが下、PETフィルムが上になるように前記サンプルを貼り付けた。PETフィルムを延伸フィルムから剥離する時の90度剥離強度を23℃、55%RH雰囲気において測定し、接着強度として評価した。
 <折り曲げ回数測定>
 各実施例又は比較例で得た延伸フィルムを幅1.5mmの短冊状にカットし、これを試験片とした。東洋精機株式会社製MIT耐柔疲労試験機型式Dを用いて、試験荷重200g、速度175回/分、折り曲げクランプの曲率半径Rは0.38mm、折り曲げ角度は左右へ135°で測定した。MD方向について測定した値の算術平均値を折り曲げ回数とした。
 [実施例1]
 前記アクリル系樹脂(A1)80重量部に対して、アクリル系ゴム粒子(B1)20重量部に計量した混合物を、口径15mmの噛み合い型同方向回転式二軸押出機(L/D=45)にて混錬した。ホッパーから樹脂混合物を1.5kg/hrで供給し、押出機各温調ゾーンの設定温度を230℃、スクリュー回転数を120rpmとした。ダイスから出てきたストランドを水槽で冷却した後、ペレタイザでペレット化した。
 得られたペレットを90℃で5時間乾燥後、押出機出口にTダイを備えた口径15mmの噛合い型同方向回転式二軸押出機(L/D=30)を用いて製膜した。ホッパーから前記ペレットを1.5kg/hrで供給し、押出機各温調ゾーンの設定温度を230℃、Tダイの設定温度を255℃、スクリュー回転数を100rpmとした。押出機出口に設けられたTダイから押し出されたシート状の溶融樹脂を90℃に温調した冷却ロールで冷却して、幅120mm、厚み160μmの樹脂フィルムを得た。
 得られた樹脂フィルムを、ESPEC株式会社製の同時二軸延伸機(PHH-302)を用いて、延伸機内において145℃で5分間予熱した後、延伸速度100mm/minで2x2同時二軸延伸を行って、延伸フィルムを得た。前記方法に従って接着性と折り曲げ回数を測定し、得られた結果を表2に示す。
 [実施例2~14、比較例1~13]
 アクリル系樹脂の含有量、アクリル系ゴム粒子の種類もしくは含有量、又は延伸温度を表2に従って変更した以外は、実施例1と同様の操作を行い、延伸フィルムを作製した。前記の方法に従って接着性と折り曲げ回数を測定し、得られた結果を表2に示す。
Figure JPOXMLDOC01-appb-T000005

 表2から、実施例1~14で得られた延伸フィルムは高い接着性と良好な耐折り曲げ性を両立できるものの、比較例1~13で得られた延伸フィルムは、接着性または耐折り曲げ性が十分ではないことが分かる。実施例1~14で良好な結果が得られた理由は、分子鎖が十分に運動し得る延伸温度で延伸することにより接着剤が浸透しやすくなったことと、アクリル系樹脂とアクリル系ゴム粒子に含まれるアクリル酸エステルモノマー量が適切であったためと推測される。
 中でも、実施例2~5、8、9、及び12は接着性に特に優れており、接着性と耐折り曲げ性とのバランスとしては、実施例2、4、5、9、及び12が特に好ましい。

Claims (14)

  1.  ガラス転移温度(Tg)が115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有し、前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10~40重量%である樹脂フィルムを、Tg+20℃~Tg+70℃の温度で延伸する工程を含む、延伸フィルムの製造方法。
  2.  前記アクリル系ゴム粒子を構成するモノマー中のアクリル酸エステルモノマー量が45~90重量%である、請求項1に記載の延伸フィルムの製造方法。
  3.  前記アクリル系樹脂と前記アクリル系ゴム粒子の合計含有量のうち前記アクリル系ゴム粒子の含有量の占める割合が15~50重量%である、請求項1又は2に記載の延伸フィルムの製造方法。
  4.  前記アクリル酸エステルモノマーが下記構造を有する、請求項1~3のいずれか1項に記載の延伸フィルムの製造方法。
    Figure JPOXMLDOC01-appb-C000001


    (式中、Rは、炭素数1~10の直鎖又は分岐アルキル基を示す。)
  5.  前記アクリル系ゴム粒子が軟質のコア層と硬質のシェル層とを含むコアシェル型弾性体であって、前記コア層は、分子内に2個以上の重合性官能基を有する多官能性モノマー(a1)と前記多官能性モノマー以外のモノマー(a2)からなるモノマー成分(a)から形成され、前記多官能性モノマー以外のモノマー(a2)はアクリル酸エステルモノマーを40~100重量%含む、請求項1~4のいずれか1項に記載の延伸フィルムの製造方法。
  6.  前記シェル層は、アクリル酸エステルモノマーを1~50重量%含むモノマー成分(b)から形成される、請求項5に記載の延伸フィルムの製造方法。
  7.  前記多官能性モノマー以外のモノマー(a2)100重量部に対する前記多官能性モノマー(a1)の量が0.5~3.0重量部である、請求項5又は6に記載の延伸フィルムの製造方法。
  8.  前記コア層の平均粒子径が25~300nmである、請求項5~7のいずれか1項に記載の延伸フィルムの製造方法。
  9.  前記延伸フィルムのMIT往復折り曲げ回数が150回以上である、請求項1~8のいずれか1項に記載の延伸フィルムの製造方法。
  10.  前記延伸フィルムを、活性エネルギー線硬化性接着剤でPETフィルムに貼り付け、23℃、55%RH雰囲気において測定した90度剥離強度の値が1.0N/20mm以上である、請求項1~9のいずれか1項に記載の延伸フィルムの製造方法。
  11.  Tgが115℃以上であるアクリル系樹脂、及びアクリル系ゴム粒子を含有する偏光子保護フィルムであって、
     前記アクリル系樹脂を構成するモノマーと前記アクリル系ゴム粒子を構成するモノマーの合計量に対する、前記アクリル系ゴム粒子を構成するアクリル酸エステルモノマー全量が10~40重量%であり、
     前記アクリル系ゴム粒子を構成するモノマー中のアクリル酸エステルモノマー量が45~90重量%であり、
     前記偏光子保護フィルムを、活性エネルギー線硬化性接着剤でPETフィルムに貼り付け、23℃、55%RH雰囲気において測定した90度剥離強度の値が1.0N/20mm以上である、偏光子保護フィルム。
  12.  MIT往復折り曲げ回数が150回以上である、請求項11に記載の偏光子保護フィルム。
  13.  請求項11又は12に記載の偏光子保護フィルム、接着層、及び偏光子をこの順で積層して含む偏光板。
  14.  易接着層を含まない、請求項13に記載の偏光板。
PCT/JP2021/048687 2021-01-04 2021-12-27 延伸フィルムの製造方法 WO2022145436A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180089200.7A CN116685641A (zh) 2021-01-04 2021-12-27 拉伸薄膜的制造方法
JP2022573091A JPWO2022145436A1 (ja) 2021-01-04 2021-12-27
US18/217,760 US20230340217A1 (en) 2021-01-04 2023-07-03 Method for producing stretched film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021000276 2021-01-04
JP2021-000276 2021-01-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/217,760 Continuation-In-Part US20230340217A1 (en) 2021-01-04 2023-07-03 Method for producing stretched film

Publications (1)

Publication Number Publication Date
WO2022145436A1 true WO2022145436A1 (ja) 2022-07-07

Family

ID=82260729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048687 WO2022145436A1 (ja) 2021-01-04 2021-12-27 延伸フィルムの製造方法

Country Status (4)

Country Link
US (1) US20230340217A1 (ja)
JP (1) JPWO2022145436A1 (ja)
CN (1) CN116685641A (ja)
WO (1) WO2022145436A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118266A (ja) * 2005-10-26 2007-05-17 Toray Ind Inc アクリル系フィルムの製造方法およびアクリル系フィルム
JP2009203348A (ja) * 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
WO2011121817A1 (ja) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 光学フィルム、偏光板および液晶表示装置
WO2014041803A1 (ja) * 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
WO2015098096A1 (ja) * 2013-12-25 2015-07-02 株式会社カネカ フィルムの製造方法、熱可塑性樹脂組成物、成形体およびフィルム
JP2015143842A (ja) * 2013-12-27 2015-08-06 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
WO2016158968A1 (ja) * 2015-03-30 2016-10-06 株式会社カネカ 光学フィルムの製造方法及び光学フィルム
WO2016157913A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 延伸アクリル系樹脂フィルムの製造方法
JP2016186081A (ja) * 2013-04-12 2016-10-27 株式会社クラレ アクリル系樹脂フィルム
WO2018168960A1 (ja) * 2017-03-15 2018-09-20 株式会社カネカ 延伸フィルムおよび延伸フィルムの製造方法
US20190382574A1 (en) * 2016-11-04 2019-12-19 Lg Chem, Ltd. Thermoplastic resin composition, method of preparing the same, and molded part including the same
WO2020027082A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルム、光学フィルムのロール体、および光学フィルムの製造方法
WO2020203833A1 (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルム、偏光板および光学フィルムの製造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007118266A (ja) * 2005-10-26 2007-05-17 Toray Ind Inc アクリル系フィルムの製造方法およびアクリル系フィルム
JP2009203348A (ja) * 2008-02-28 2009-09-10 Kaneka Corp 樹脂組成物、フィルムおよび偏光板
WO2011121817A1 (ja) * 2010-03-30 2011-10-06 コニカミノルタオプト株式会社 光学フィルム、偏光板および液晶表示装置
WO2014041803A1 (ja) * 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2016186081A (ja) * 2013-04-12 2016-10-27 株式会社クラレ アクリル系樹脂フィルム
WO2015098096A1 (ja) * 2013-12-25 2015-07-02 株式会社カネカ フィルムの製造方法、熱可塑性樹脂組成物、成形体およびフィルム
JP2015143842A (ja) * 2013-12-27 2015-08-06 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
WO2016158968A1 (ja) * 2015-03-30 2016-10-06 株式会社カネカ 光学フィルムの製造方法及び光学フィルム
WO2016157913A1 (ja) * 2015-03-31 2016-10-06 株式会社カネカ 延伸アクリル系樹脂フィルムの製造方法
US20190382574A1 (en) * 2016-11-04 2019-12-19 Lg Chem, Ltd. Thermoplastic resin composition, method of preparing the same, and molded part including the same
WO2018168960A1 (ja) * 2017-03-15 2018-09-20 株式会社カネカ 延伸フィルムおよび延伸フィルムの製造方法
WO2020027082A1 (ja) * 2018-07-31 2020-02-06 コニカミノルタ株式会社 光学フィルム、偏光板保護フィルム、光学フィルムのロール体、および光学フィルムの製造方法
WO2020203833A1 (ja) * 2019-03-29 2020-10-08 コニカミノルタ株式会社 光学フィルム、偏光板および光学フィルムの製造方法

Also Published As

Publication number Publication date
CN116685641A (zh) 2023-09-01
JPWO2022145436A1 (ja) 2022-07-07
US20230340217A1 (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP5798690B2 (ja) 樹脂組成物、およびそのフィルム
JP6236002B2 (ja) 非複屈折性樹脂材料、およびフィルム
JP7169411B2 (ja) 延伸フィルムおよび延伸フィルムの製造方法
JP5408885B2 (ja) 樹脂組成物、フィルムおよび偏光板
JP5666751B1 (ja) 光学樹脂材料および光学フィルム
WO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
EP3163334B1 (en) Optical resin composition and film
WO2016158968A1 (ja) 光学フィルムの製造方法及び光学フィルム
WO2015141340A1 (ja) 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
JP6594207B2 (ja) 光学用樹脂組成物、およびフィルム
JP6523176B2 (ja) 樹脂材料、およびそのフィルム
WO2015128995A1 (ja) 偏光板保護フィルム、その製造方法、偏光板及び液晶表示装置
JP7533217B2 (ja) 光学フィルム、偏光板、および光学フィルムの製造方法
WO2022145436A1 (ja) 延伸フィルムの製造方法
JP2021033258A (ja) 偏光子保護フィルムおよび偏光板
JPWO2009090900A1 (ja) アクリル樹脂含有フィルム及びその製造方法
JP7367756B2 (ja) 偏光板
JP7169137B2 (ja) 延伸フィルムおよび延伸フィルムの製造方法
WO2020217535A1 (ja) 偏光板および液晶表示装置
CN112513150A (zh) (甲基)丙烯酸系树脂膜和光学膜、(甲基)丙烯酸系树脂膜的制造方法
WO2024122626A1 (ja) アクリル樹脂粉粒体およびフィルム
JP2002265538A (ja) アクリル系樹脂、樹脂板及びその製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21915294

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022573091

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180089200.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21915294

Country of ref document: EP

Kind code of ref document: A1