Nothing Special   »   [go: up one dir, main page]

WO2016157913A1 - 延伸アクリル系樹脂フィルムの製造方法 - Google Patents

延伸アクリル系樹脂フィルムの製造方法 Download PDF

Info

Publication number
WO2016157913A1
WO2016157913A1 PCT/JP2016/001875 JP2016001875W WO2016157913A1 WO 2016157913 A1 WO2016157913 A1 WO 2016157913A1 JP 2016001875 W JP2016001875 W JP 2016001875W WO 2016157913 A1 WO2016157913 A1 WO 2016157913A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylic resin
resin film
weight
stretched
monomer
Prior art date
Application number
PCT/JP2016/001875
Other languages
English (en)
French (fr)
Inventor
治規 小山
史延 北山
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Publication of WO2016157913A1 publication Critical patent/WO2016157913A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/16Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial simultaneously
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for producing a stretched acrylic resin film.
  • a liquid crystal display device usually two polarizing plates are arranged on both sides of a liquid crystal cell.
  • the polarizing plate generally has a polarizer protective film bonded to both sides of the polarizer, and a film made of a cellulose-based material is usually used as the polarizer protective film.
  • a polarizer protective film made of an acrylic resin has been proposed for the purpose of improving durability (see, for example, Patent Documents 1 and 2).
  • an acrylic resin film has a low strength, and thus a treatment such as biaxial stretching is performed to improve the strength.
  • a stretched acrylic resin film is desired to further increase the strength.
  • the use of a crosslinked elastic body in a stretched acrylic resin film has been studied.
  • the average particle diameter of the crosslinked elastic body needs to be 150 nm or more.
  • the stretched acrylic resin film has a high haze, and the film is not suitable for optical use such as a polarizer protective film.
  • an object of the present invention is to provide a method that enables production of a stretched acrylic resin film excellent in optical properties such as haze and toughness.
  • the present invention relates to 99 to 50% by weight of acrylic resin (A), 1 to 50% by weight of rubber-containing graft copolymer (B), and 100% by weight (total amount of acrylic resin and rubber-containing graft copolymer). %)) Of a stretched acrylic resin film comprising a composition comprising:
  • the rubber-containing graft copolymer (B) comprises an innermost layer made of a polymer containing methacrylic acid ester as a main monomer, and a polymer containing an alkyl acrylate ester having 4 to 12 carbon atoms in the alkyl group as a main monomer.
  • the innermost layer and the intermediate layer constitute a crosslinked elastic body, and the crosslinked elastic body has an average particle diameter of 150 to 400 nm, Under conditions where the stretching temperature is Tg + 5 to Tg + 50 ° C. (where Tg represents the glass transition temperature of the acrylic resin film made of the composition), the acrylic resin film made of the composition is stretched horizontally or simultaneously.
  • the present invention relates to a method for producing a stretched acrylic resin film including a step of axial stretching (hereinafter sometimes referred to as “the method for producing a stretched acrylic resin film of the present invention”).
  • the rubber-containing graft copolymer (B) is obtained by polymerizing the following monomer mixtures (B-1) to (B-4) in sequence: A polymer is preferred.
  • B-1) Methacrylic acid ester (b-1-1) 60 to 100% by weight, monomer (b-1-2) 40 to 0% by weight copolymerizable therewith, and polyfunctional monomer (B-1-3) A monomer mixture comprising 0.05 to 20 parts by weight (relative to 100 parts by weight of (b-1-1) + (b-1-2)).
  • (B-2) Acrylic ester (b-2-1) 50 to 100% by weight, monomer (b-2-2) 50 to 0% by weight copolymerizable therewith, and polyfunctional monomer (B-2-3) A monomer mixture comprising 0.05 to 20 parts by weight (relative to (b-2-1) + (b-2-2) 100 parts by weight).
  • (B-3) A monomer mixture comprising 50 to 100% by weight of methacrylic acid ester (b-3-1) and 50 to 0% by weight of monomer (b-3-2) copolymerizable therewith
  • (B -4) A monomer mixture comprising 0 to 70% by weight of methacrylic acid ester (b-4-1) and 100 to 30% by weight of monomer (b-4-2) copolymerizable therewith.
  • the glass transition temperature of the acrylic resin is preferably 110 ° C. or higher.
  • the number of times of bending the stretched acrylic resin film (width 15 mm, length 120 mm) measured according to JIS P8115 under a load of 200 g is 500 times or more. Preferably there is.
  • the retardation value of the stretched acrylic resin film is such that the in-plane retardation Re is 5.0 nm or less and the thickness direction retardation Rth is 20.0 nm or less. preferable.
  • the stretched acrylic resin film preferably has a photoelastic coefficient of ⁇ 10 ⁇ 10 ⁇ 12 to 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the total haze of the stretched acrylic resin film is preferably 2% or less.
  • the internal haze of the stretched acrylic resin film is preferably 1% or less.
  • the method for producing a stretched acrylic resin film of the present invention may further include a step of forming an adhesive layer.
  • the stretched acrylic resin film may be an optical film.
  • a stretched acrylic resin film having excellent optical properties and toughness can be produced.
  • the acrylic resin (A) is not particularly limited as long as it is a thermoplastic acrylic resin.
  • An acrylic resin is a resin generally having a (meth) acrylic acid ester unit and / or a (meth) acrylic acid unit, and is a structural unit derived from a (meth) acrylic acid ester or a derivative of (meth) acrylic acid. You may have.
  • (meth) acryl refers to “methacryl or acrylic”.
  • the total proportion of structural units derived from (meth) acrylic acid ester units, (meth) acrylic acid units and derivatives of these units in all structural units of the acrylic resin is usually 50% by weight or more, preferably It is 60% by weight or more, more preferably 70% by weight or more.
  • Examples of the (meth) acrylate unit include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and t- (meth) acrylate.
  • an acrylic resin having a methyl (meth) acrylate unit is preferable because thermal stability is improved, and in particular, 30 to 100% by weight of methyl methacrylate units among all the structural units, and copolymerized therewith.
  • Acrylic resins containing 70 to 0% by weight of possible monomer units are more preferred.
  • any structural units enumerated as a (meth) acrylic acid ester unit and a (meth) acrylic acid unit may have two or more types of any structural units enumerated as a (meth) acrylic acid ester unit and a (meth) acrylic acid unit.
  • styrene vinyl toluene, ⁇ -methyl styrene, acrylonitrile, methyl vinyl ketone, ethylene, propylene, vinyl acetate, methallyl alcohol, allyl alcohol, 2-hydroxymethyl-1-butene, ⁇ -hydroxymethylstyrene, ⁇ -hydroxy 2- (hydroxyalkyl) acrylic acid esters such as ethylstyrene, methyl 2- (hydroxyethyl) acrylate, 2- (hydroxyalkyl) acrylic acids such as 2- (hydroxyethyl) acrylic acid, maleic acid, fumaric acid and the like
  • Esters such as vinyl chloride, vinyl bromide and chloroprene; vinyl acetate; vinyl acetate; alkenes such as ethylene, propylene, butylene, butadiene and isobutylene: halogenated alkenes; allyl methacrylate; Diallyl phthalate, triallyl cyanurate, monoethylene glycol dimethacryl
  • An acrylic resin is preferable in terms of excellent optical properties, heat resistance, molding processability, and the like.
  • the acrylic resin preferably has a glass transition temperature of 110 ° C. or higher, more preferably 115 ° C. or higher, and further preferably 120 ° C. or higher.
  • the glass transition temperature is less than 110 ° C., the heat resistance of the film is inferior, so that the physical property change at high temperature becomes large, the application range becomes narrow, especially when used for optical applications, the film is used in a high temperature environment. Distortion tends to occur, and there is a tendency that stable optical characteristics cannot be obtained.
  • the glass transition temperature can be measured using a differential scanning calorimeter (DSC).
  • acrylic resin having a glass transition temperature of 120 ° C. or more specifically, a glutarimide structure, a glutaric anhydride structure, a maleic anhydride structure, a (meth) acrylic acid unit, a lactone ring, or a maleimide structure in the molecule
  • An acrylic resin is included.
  • acrylic polymers containing cyclic acid anhydride repeating units such as polyglutarimide acrylic resins, glutaric anhydride structure-containing acrylic resins and maleic anhydride structure-containing acrylic resins, lactone-cyclized acrylic resins, hydroxyl groups And / or an acrylic resin containing a carboxyl group, a methacrylic resin, a maleimide structure-containing acrylic resin, and the like.
  • resins with a glass transition temperature of 120 ° C or higher include partial hydrogenation of aromatic rings of styrene unit-containing acrylic polymers obtained by polymerizing styrene monomers and other monomers copolymerizable therewith.
  • styrene unit-containing acrylic polymer obtained by polymerizing styrene monomers and other monomers copolymerizable therewith.
  • a partially hydrogenated styrene unit-containing acrylic polymer can be used.
  • the rubber-containing graft copolymer (B) used in the present invention is an innermost layer made of a polymer having a methacrylic acid ester as a main monomer, and a heavy polymer having an alkyl acrylate having 4 to 12 carbon atoms as the main monomer.
  • An intermediate layer made of a combination and one or more outermost layers made of a polymer having a methacrylic acid ester as a monomer are included.
  • the rubber-containing graft copolymer (B) of the present invention is preferably a multistage polymer obtained by sequentially polymerizing the monomer mixtures (B-1) to (B-4) described below from the viewpoint of strength. .
  • the monomer mixture (B-1) is polymerized to obtain the innermost layer polymer.
  • the monomer mixture (B-1) used in the present invention is 60 to 100% by weight of a methacrylic acid ester (b-1-1), an ethylenically unsaturated monomer (b-1-2) copolymerizable therewith. 40 to 0% by weight, and 0.05 to 20 parts by weight of the polyfunctional monomer (b-1-3) ((b-1-1) + (b-1-2) 100 parts by weight) ). All the monomers may be mixed and used, or may be used in two or more stages by changing the monomer composition.
  • a methacrylic acid alkyl ester is preferable in view of polymerizability and cost.
  • the alkyl group having 1 to 4 carbon atoms is more preferable, and the alkyl group may be linear or branched. Specific examples thereof include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, octyl acrylate, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, glycidyl methacrylate. These monomers may be used in combination of two or more.
  • the content of the methacrylic acid ester (b-1-1) is preferably 60 to 100% by weight, more preferably 70 to 100% by weight of the total amount of (b-1-1) and (b-1-2). 80 to 100% by weight is most preferable. If it is less than 60% by weight, the surface hardness and transparency of the film may deteriorate.
  • an ethylenically unsaturated monomer (b-1-2) copolymerizable with the methacrylic acid ester (b-1-1) may be copolymerized.
  • these copolymerizable ethylenically unsaturated monomers include acrylic esters, and alkyl acrylates are preferred from the viewpoint of polymerization reactivity and cost.
  • the alkyl group having 1 to 12 carbon atoms is more preferable, and the alkyl group may be linear or branched.
  • ethylenically unsaturated monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl esters such as vinyl formate, vinyl acetate and vinyl propionate.
  • Aromatic vinyl derivatives such as styrene, vinyltoluene, ⁇ -methylstyrene, vinylidene halides such as vinylidene chloride and vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, methacrylic acid, Examples thereof include methacrylic acid such as sodium methacrylate and calcium methacrylate, and salts thereof, and two or more of these monomers may be used in combination.
  • a polyfunctional monomer (b-1-3) having two or more non-conjugated reactive double bonds per molecule is copolymerized. Therefore, the polymer obtained becomes a crosslinked elastic body.
  • the polyfunctional monomer (b-1-3) used here include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene ethylene glycol -Dimethacrylate, divinylbenzene ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol dimethacrylate, triethylene glycol diacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, Tetramethylol methane tetramethacrylate, tetramethylol methane tetraacrylate,
  • the addition amount of the polyfunctional monomer (b-1-3) in the monomer mixture (B-1) is 100 parts by weight of (b-1-1) + (b-1-2). 0.05 to 20 parts by weight is preferable, and 0.1 to 10 parts by weight is more preferable. If the addition amount of the polyfunctional monomer is less than 0.05 parts by weight, there is a tendency that a crosslinked elastic body cannot be formed, and if it exceeds 20 parts by weight, the crack resistance of the film tends to be lowered.
  • the monomer mixture (B-2) is polymerized in the presence of the innermost layer polymer (polymer of (B-1)) to obtain a crosslinked elastic body.
  • the monomer mixture (B-2) used in the present invention is 50 to 100% by weight of the acrylic ester (b-2-1), an ethylenically unsaturated monomer (b-2-2) copolymerizable therewith. ) 50 to 0% by weight, and 0.05 to 20 parts by weight of the polyfunctional monomer (b-2-3) ((b-2-1) + (b-2-2) 100 parts by weight) ). All the monomers may be mixed and used, or may be used in two or more stages by changing the monomer composition.
  • the acrylic ester (b-2-1) used here is preferably an alkyl acrylate in view of polymerization reactivity and cost.
  • the alkyl group having 1 to 12 carbon atoms is more preferable, and the alkyl group may be linear or branched.
  • acrylate ester (b-2-1) is preferably 50 to 100% by weight, more preferably 60 to 100% by weight of the total amount of (b-2-1) and (b-2-2). 70 to 100% by weight is most preferable. If it is less than 50% by weight, the crack resistance of the film may deteriorate.
  • an ethylenically unsaturated monomer (b-2-2) copolymerizable with the acrylate ester (b-2-1) may be copolymerized.
  • these copolymerizable ethylenically unsaturated monomers include methacrylic acid esters, and methacrylic acid alkyl esters are preferred from the viewpoint of polymerizability and cost.
  • the alkyl group having 1 to 12 carbon atoms is more preferable, and the alkyl group may be linear or branched.
  • ethylenically unsaturated monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl esters such as vinyl formate, vinyl acetate and vinyl propionate.
  • Aromatic vinyl derivatives such as styrene, vinyltoluene, ⁇ -methylstyrene, vinylidene halides such as vinylidene chloride and vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, methacrylic acid, Examples thereof include methacrylic acid such as sodium meacrylate and calcium methacrylate and salts thereof, and two or more of these monomers may be used in combination.
  • a polyfunctional monomer (b-2-3) having two or more non-conjugated reactive double bonds per molecule is copolymerized. Therefore, the polymer obtained becomes a crosslinked elastic body.
  • the polyfunctional monomer (b-2-3) used here include allyl methacrylate, allyl acrylate, triallyl cyanurate, triallyl isocyanurate, diallyl phthalate, diallyl malate, divinyl adipate, divinylbenzene ethylene glycol -Dimethacrylate, divinylbenzene ethylene glycol diacrylate, diethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol dimethacrylate, triethylene glycol diacrylate, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, Tetramethylol methane tetramethacrylate, tetramethylol methane tetraacrylate,
  • the addition amount of the polyfunctional monomer (b-2-3) in the monomer mixture (B-2) is 100 parts by weight of (b-2-1) + (b-2-2). 0.05 to 20 parts by weight is preferable, and 0.1 to 10 parts by weight is more preferable. If the addition amount of the polyfunctional monomer is less than 0.05 parts by weight, there is a tendency that a crosslinked elastic body cannot be formed, and if it exceeds 20 parts by weight, the crack resistance of the film tends to be lowered.
  • the monomer mixture (B-3) is polymerized in the presence of a crosslinked elastic body (polymer of (B-1) + (B-2)) to obtain a graft copolymer.
  • the monomer mixture (B-3) used in the present invention is 50 to 100% by weight of the methacrylic acid ester (b-3-1), and the monomer (b-3-2) 50 to 0 copolymerizable therewith. It consists of weight percent. All the monomers may be mixed and used, or may be used in two or more stages by changing the monomer composition.
  • the methacrylic acid ester (b-3-1) used here is preferably an alkyl methacrylic acid ester from the viewpoint of polymerizability and cost.
  • the alkyl group having 1 to 4 carbon atoms is more preferable, and the alkyl group may be linear or branched. Specific examples thereof include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, octyl acrylate, ⁇ -hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, glycidyl methacrylate. These monomers may be used in combination of two or more.
  • the content of the methacrylic acid ester (b-3-1) is preferably 50 to 100% by weight, more preferably 70 to 100% by weight of the total amount of (b-3-1) and (b-3-2). 80 to 100% by weight is most preferable. If it is less than 50% by weight, the surface hardness and transparency of the film may deteriorate.
  • an ethylenically unsaturated monomer (b-3-2) copolymerizable with the methacrylic acid ester (b-3-1) may be copolymerized.
  • these copolymerizable ethylenically unsaturated monomers include acrylic esters, and alkyl acrylates are preferred from the viewpoint of polymerization reactivity and cost.
  • the alkyl group having 1 to 12 carbon atoms is more preferable, and the alkyl group may be linear or branched.
  • ethylenically unsaturated monomers include vinyl halides such as vinyl chloride and vinyl bromide, vinyl cyanides such as acrylonitrile and methacrylonitrile, vinyl esters such as vinyl formate, vinyl acetate and vinyl propionate.
  • Aromatic vinyl derivatives such as styrene, vinyltoluene, ⁇ -methylstyrene, vinylidene halides such as vinylidene chloride and vinylidene fluoride, acrylic acid such as acrylic acid, sodium acrylate, calcium acrylate and salts thereof, methacrylic acid, Examples thereof include methacrylic acid such as sodium meacrylate and calcium methacrylate and salts thereof, and two or more of these monomers may be used in combination.
  • the monomer mixture (B-3) preferably does not contain a polyfunctional monomer having two or more non-conjugated reactive double bonds per molecule.
  • the monomer mixture (B-4) is polymerized in the presence of the graft copolymer (polymer of (B-1) + (B-2) + (B-3)) to obtain a rubber-containing graft copolymer.
  • a polymer (B) is obtained.
  • the monomer mixture (B-4) used in the present invention is a methacrylic acid ester (b-4-1) 0 to 70% by weight, and a monomer (b-4-2) 100 to 30 copolymerizable therewith. It consists of weight percent. All the monomers may be mixed and used, or may be used in two or more stages by changing the monomer composition.
  • methacrylic acid ester (b-4-1) used here those exemplified in the above (B-3) can be used in the same manner, and preferable examples are also preferable.
  • the content of the methacrylic acid ester (b-4-1) is preferably 0 to 70% by weight, more preferably 20 to 70% by weight of the total amount of (b-4-1) and (b-4-2). 30 to 70% by weight is most preferable. When it exceeds 70% by weight, it becomes a fine powder when the latex is powdered after the polymerization, and the transparency may be deteriorated because the dispersibility deteriorates at the time of molding.
  • the monomer (b-4-2) copolymerizable with the methacrylic acid ester (b-4-1) those exemplified above for the monomer (b-3-2) can be used as well. Preferred examples are also preferred. Two or more of these monomers may be used in combination. It is preferable that the monomer mixture (B-4) does not contain a polyfunctional monomer having two or more non-conjugated reactive double bonds per molecule.
  • the average particle size of a crosslinked elastic body (hereinafter also referred to as “rubber particles”) composed of an innermost layer and an intermediate layer is 150 to 400 nm. If the thickness is less than 150 nm, the toughness of the obtained stretched acrylic resin film is insufficient. When it exceeds 400 nm, the haze of a film will become high. From the viewpoint of strength, 200 nm or more is preferable. On the other hand, 350 nm or less is preferable and 300 nm or less is more preferable.
  • the average particle diameter of the cross-linked elastic body here is measured in the latex state of the cross-linked elastic body and is 546 nm using MICROTRAC UPA150 manufactured by Nikkiso Co., Ltd., which is a laser diffraction / scattering particle size distribution measuring apparatus. It is a value measured by wavelength.
  • the acrylic resin film of the present invention has an acrylic resin of 99 to 50% by weight and a rubber-containing graft copolymer of 1 to 50% by weight (based on the total amount of the acrylic resin and the rubber-containing graft copolymer of 100% by weight). Containing. From the viewpoint of haze, 99 to 60% by weight of acrylic resin and 1 to 40% by weight of rubber-containing graft copolymer are more preferable.
  • the acrylic resin film of the present invention may contain other thermoplastic resins in addition to the acrylic resin.
  • other thermoplastic resins include olefin polymers, halogenated vinyl polymers, styrene polymers, ester polymers, amide polymers, and the like.
  • the content ratio of the other thermoplastic resin in the acrylic resin film of the present invention is preferably 0 to 50% by weight (when the total amount of the acrylic resin, the rubber-containing graft copolymer, and the other thermoplastic resin is 100% by weight). 0 to 30% by weight is more preferable.
  • the acrylic resin film of the present invention may contain any additive as necessary.
  • additives include stabilizers such as antioxidants, light-resistant stabilizers, weather-resistant stabilizers, and heat stabilizers, ultraviolet absorbers, flame retardants, antistatic agents, fillers, plasticizers, and lubricants.
  • Examples of a method for forming the obtained mixture into a film include any suitable film forming methods such as a solution casting method, a melt extrusion method, a calendar method, and a compression molding method. Of these molding methods, the melt extrusion method is preferred from the balance between cost and performance.
  • melt extrusion method examples include a T-type die method and an inflation method.
  • the molding temperature is preferably 150 to 350 ° C, more preferably 200 to 300 ° C.
  • the T-type die can be attached to the tip of a single screw extruder or a twin screw extruder.
  • a stretched acrylic resin film can be obtained by stretching the acrylic resin film obtained by the above molding method.
  • the stretching process may be performed continuously with the molding process, or after the molding process, the film may be wound into a roll and then the stretching process may be performed.
  • stretching methods generally, a longitudinal stretching method using a roll or a hot air channel, a transverse stretching method using a tenter, a sequential biaxial stretching method in which longitudinal stretching and transverse stretching are performed sequentially, and simultaneous stretching in which longitudinal stretching and transverse stretching are performed simultaneously.
  • Axial stretching is known.
  • at least transverse stretching or simultaneous biaxial stretching is performed.
  • sequential biaxial stretching can be performed by longitudinal stretching before and after transverse stretching.
  • the stretched acrylic resin film of the present invention may be a uniaxially stretched film or a biaxially stretched film.
  • stretching conditions such as temperature and magnification may be the same in longitudinal stretching and lateral stretching, and these conditions may be intentionally changed in longitudinal stretching and lateral stretching.
  • the preheating temperature is preferably Tg + 5 to Tg + 50 ° C. From the viewpoint of breaking and haze during stretching, Tg + 10 to Tg + 40 ° C. is more preferable, Tg + 10 to Tg + 35 ° C. is more preferable, Tg + 14 to Tg + 35 ° C. is still more preferable, and Tg + 14 to Tg + 30 ° C. is particularly preferable. If the preheating temperature is less than Tg + 5 ° C., the film may be easily broken during the stretching process and may not be sufficiently stretched, and even if it does not break, the resulting stretched film has a high haze and excellent optical properties. A stretched film cannot be obtained. On the other hand, if it exceeds Tg + 50 ° C., it becomes close to the melting temperature of the film and cannot be stretched.
  • the transverse stretching step or the simultaneous biaxial stretching step is performed under the conditions where the stretching temperature is Tg + 5 to Tg + 50 ° C.
  • the stretching temperature refers to a temperature measured in the atmosphere around the film when the film is stretched in the stretching step.
  • Tg is the glass transition temperature (° C.) of the acrylic resin film.
  • the stretching temperature is more preferably Tg + 10 to Tg + 40 ° C., further preferably Tg + 10 to Tg + 35 ° C., still more preferably Tg + 14 to Tg + 35 ° C., and particularly preferably Tg + 14 to Tg + 30 ° C.
  • the stretching temperature is less than Tg + 5 ° C.
  • the film may be easily broken during the stretching process and may not be sufficiently stretched, and even if it does not break, the resulting stretched film has a high haze and excellent optical properties.
  • a stretched film cannot be obtained.
  • Tg + 50 ° C. it becomes close to the melting temperature of the film and cannot be stretched.
  • heat treatment may be performed after stretching.
  • the heat treatment temperature after stretching is preferably Tg + 5 to Tg + 50 ° C.
  • Tg + 10 to Tg + 40 ° C. is more preferable
  • Tg + 10 to Tg + 35 ° C. is more preferable
  • Tg + 14 to Tg + 35 ° C. is still more preferable
  • Tg + 14 to Tg + 30 ° C. is particularly preferable. If the heat treatment temperature is lower than Tg + 5 ° C., the film may be rapidly cooled to break the film. On the other hand, if it exceeds Tg + 50 ° C., the film is close to the melting temperature of the film, and the film may adhere to the heat treatment roll or tenter and break.
  • the stretching ratio of the film and the stretching temperature in other stretching steps are optical characteristics required for the stretched film. , Strength, surface properties, and thickness accuracy can be appropriately adjusted as indices.
  • the stretching temperature during transverse stretching is as described above, but the stretching temperature during longitudinal stretching is not particularly limited and may be set as appropriate.
  • the stretching temperature during the longitudinal stretching is preferably in the vicinity of the glass transition temperature of the acrylic resin film, specifically Tg to Tg + 30 ° C. From the viewpoint of preventing sticking to the substrate, Tg + 10 to Tg + 30 ° C. is more preferable.
  • Tg here is the glass transition temperature of an acrylic resin film as described above.
  • the stretching ratio is not particularly limited, but is preferably 1.1 to 10 times, more preferably 1.4 to 5 times in the transverse direction. If the draw ratio is less than 1.1 times, the effect of improving the strength by drawing is not sufficient.
  • the stretching ratio in the longitudinal direction is preferably the same.
  • the stretched acrylic resin film of the present invention is excellent in toughness and has a characteristic that it is not easily broken even when bent. Specifically, as an index indicating such bending resistance, the number of bendings was measured in accordance with JIS P8115 under the condition of a load of 200 g for the stretched acrylic resin film of the present invention having a width of 15 mm and a length of 120 mm. The folding number is preferably 500 times or more.
  • the in-plane retardation Re is preferably 5.0 nm or less
  • the thickness direction retardation Rth is preferably 20.0 nm or less
  • Re is 4.0 nm or less
  • Rth is 15.0 nm or less is more preferable, and when the value of the retardation exceeds these values, the optical characteristics may be deteriorated.
  • the photoelastic coefficient of the stretched acrylic resin film of the present invention is preferably ⁇ 10 ⁇ 10 ⁇ 12 to + 10 ⁇ 10 ⁇ 12 Pa ⁇ 1, more preferably ⁇ 7 ⁇ 10 ⁇ 12 to + 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 .
  • the range of ⁇ 5 ⁇ 10 ⁇ 12 to + 5 ⁇ 10 ⁇ 12 Pa ⁇ 1 is most preferable. If the photoelastic constant is within the above range, even if the film is used in a liquid crystal display device, the birefringence generated is small even when stress is applied to the molded body in an environment such as high temperature and high humidity, and phase difference unevenness occurs And the contrast at the periphery of the display screen does not decrease and light leakage does not occur.
  • the thickness of the stretched acrylic resin film of the present invention is preferably 5 to 100 ⁇ m, more preferably 10 to 80 ⁇ m. If the thickness is less than 5 ⁇ m, sufficient strength cannot be obtained, and if the thickness exceeds 100 ⁇ m, the cost may increase or the thickness of the polarizing plate may increase.
  • the film surface may be subjected to corona discharge treatment, plasma treatment, ozone treatment, ultraviolet irradiation, flame treatment, chemical treatment, and the like. Of these, corona discharge treatment and plasma treatment are preferred.
  • the total haze is preferably 2% or less, and preferably 1.5% or less, from the viewpoint that the glossiness peculiar to the acrylic resin film is maintained and the appearance is good. More preferred.
  • the stretched acrylic resin film of the present invention preferably has an internal haze of 1% or less, more preferably 0.7% or less, and 0.5% or less from the viewpoint of brightness and polarization degree. Is most preferred.
  • an internal haze is a haze value resulting from scattering inside a film.
  • the stretched acrylic resin film of the present invention preferably has an external haze of 1.5% or less, more preferably 1.2% or less, from the viewpoint of brightness and appearance when used as a printing film. Most preferably, it is 1.0% or less.
  • the external haze is a haze value resulting from scattering on the film surface.
  • the stretched acrylic resin film of the present invention is suitable for optical applications and can also be used as a polarizer protective film for polarizing plates.
  • a polarizing plate can be produced as follows, for example.
  • any polarizer may be used as long as it has a function of transmitting only light having a specific vibration direction.
  • a PVA (polyvinyl alcohol) polarizer is preferably used.
  • the PVA polarizer examples include a uniaxially stretched film obtained by adsorbing a dichroic substance such as iodine or a dichroic dye on a hydrophilic polymer film such as a PVA film.
  • the thickness of the polarizer is not particularly limited, and is generally about 1 to 100 ⁇ m.
  • an adhesive layer may be provided on the surface in contact with the polarizer to improve the adhesion with the polarizer, thereby improving the adhesion.
  • the adhesive forming the adhesive layer urethane resin, acrylic resin, epoxy resin, silicone resin, and cellulose resin are preferable from the viewpoint of adhesion.
  • the thickness of the adhesive layer is preferably 0.1 ⁇ m to 10 ⁇ m, and more preferably 0.2 to 5 ⁇ m. If it is less than 0.1 ⁇ m, the adhesion cannot be secured, and if it exceeds 10 ⁇ m, the drying time becomes long and the productivity is lowered.
  • the adhesive composition includes a one-pack type and a two-pack type, and both can be suitably used.
  • Adhesiveness with polyvinyl alcohol varies depending on the type of polyvinyl alcohol and the type of adhesive, and the required adhesion also varies depending on the application. There are uses that can be used if the adhesion is 1 N / 25 mm or more, but in the case of use in a wider range of applications, the adhesion is preferably 3 N / 25 mm or more.
  • Any appropriate application method can be adopted as a method for forming the adhesive layer. Examples thereof include a bar coating method, a roll coating method, a gravure coating method, a rod coating method, a slot orifice coating method, a curtain coating method, and a fountain coating method.
  • the drying temperature of the adhesive is preferably 50 ° C. or higher, and more preferably 80 ° C. or higher.
  • the adhesive may further contain any appropriate additive.
  • additives include anti-blocking agents, dispersion stabilizers, thixotropic agents, antioxidants, ultraviolet absorbers, antifoaming agents, thickeners, dispersants, surfactants, catalysts, fillers, lubricants, and antistatic agents. Agents and the like.
  • the polarizer protective film can be provided on at least one surface of the polarizer.
  • a polarizing plate formed by laminating a polarizer protective film and a polarizer can be further laminated on a substrate such as glass via an adhesive, a pressure-sensitive adhesive or the like.
  • an adhesive layer can be provided on the polarizer protective film and bonded.
  • Arbitrary appropriate adhesives can be used for the adhesive agent used for a contact bonding layer.
  • an adhesive composition containing a polyvinyl alcohol resin is preferred, and an adhesive composition containing an acetoacetyl group-containing polyvinyl alcohol resin is particularly preferred.
  • the average degree of polymerization of the polyvinyl alcohol resin is not particularly limited, but is preferably about 100 to 5000, and more preferably 1000 to 4000.
  • the above adhesive composition may contain a crosslinking agent as required.
  • a crosslinking agent a compound having a functional group having reactivity with the polyvinyl alcohol resin is preferable.
  • Examples of functional groups reactive with polyvinyl alcohol resins include amine groups, isocyanate groups, epoxy groups, aldehyde groups, and methylol groups. Among them, a methylol group is preferable, and a methylol melamine is particularly preferable as a compound having a methylol group.
  • the amount of the crosslinking agent is not particularly limited, but is preferably about 10 to 60 parts by weight, more preferably 20 to 50 parts by weight with respect to 100 parts by weight of the polyvinyl alcohol resin.
  • various coupling agents and tackifiers may be added to the adhesive composition.
  • a silane coupling agent is preferable.
  • an ultraviolet absorber, an antioxidant, a heat stabilizer, a hydrolysis stabilizer, and the like may be added.
  • the above adhesive composition is usually used as an aqueous solution.
  • concentration of the resin is preferably from 0.1 to 30% by weight, more preferably from 0.5 to 25% by weight, from the balance between coatability and stability.
  • the thickness of the adhesive layer formed from the adhesive composition is set according to the composition of the adhesive composition.
  • the thickness is preferably 10 to 300 nm, and particularly preferably 20 to 150 nm from the viewpoint of adhesiveness.
  • the polarizing plate using the stretched acrylic resin film of the present invention can be suitably used for image display devices such as liquid crystal display devices and self-luminous display devices.
  • the imidation ratio was calculated as follows using IR.
  • the product pellets were dissolved in methylene chloride, and the IR spectrum of the solution was measured at room temperature using a TravelIR manufactured by SensIR Technologies. From the obtained IR spectrum, and the absorption intensity attributable to the ester carbonyl group of 1720cm -1 (Absester), the imidization ratio from the ratio of the absorption intensity attributable to the imide carbonyl group of 1660cm -1 (Absimide) (Im% ( IR)).
  • the “imidation rate” refers to the ratio of the imide carbonyl group in the total carbonyl group.
  • the film thickness was measured using a Digimatic Indicator (manufactured by Mitutoyo Corporation).
  • Glass-transition temperature For the glutarimide acrylic resin (A1) obtained in Production Example 1 and the unstretched films obtained in Examples and Comparative Examples, a differential scanning calorimeter (DSC) SSC-5200 manufactured by Seiko Instruments Inc. was used. The sample was heated up to 200 ° C. at a rate of 25 ° C./minute, held for 10 minutes, and subjected to a preliminary adjustment for lowering the temperature to 50 ° C. at a rate of 25 ° C./minute. The measurement was performed while the temperature was raised to 200 ° C., the integral value was determined from the obtained DSC curve (DDSC), and the glass transition temperature was determined from the maximum point.
  • DSC differential scanning calorimeter
  • Total light transmittance / haze value The total light transmittance and the total haze value of the stretched films obtained in Examples and Comparative Examples were measured by the method described in JIS K7105 using Nippon Denshoku Industries NDH-300A. The internal haze value was measured under the same conditions as for all haze values except that pure water was added to the quartz cell. The external haze value was calculated by subtracting the internal haze value from the total haze value.
  • the average particle size of the rubber particles was measured in a latex state of the rubber particles. The measurement was performed using light scattering at a wavelength of 546 nm using a U-5100 type ratio beam spectrophotometer manufactured by Hitachi High-Technologies Corporation.
  • Polymerization conversion rate (%) [(Total weight of charged raw material x solid component ratio-total weight of raw materials other than water and monomer) / weight of charged monomer] x 100 (Production Example 1) ⁇ Manufacture of glutarimide acrylic resin (A1)> A glutarimide acrylic resin (A1) was produced using polymethyl methacrylate as a raw material and monomethylamine as an imidizing agent.
  • a tandem type reaction extruder in which two extrusion reactors were arranged in series was used.
  • the meshing type co-directional twin-screw extruder having a diameter of 75 mm for both the first and second extruders and L / D (ratio of the length L to the diameter D of the extruder) of 74.
  • the raw material was supplied to the raw material supply port of the first extruder using a low-weight feeder (manufactured by Kubota Corporation).
  • the degree of vacuum of each vent in the first extruder and the second extruder was ⁇ 0.095 MPa.
  • the pressure control mechanism in the part connects the first extruder and the second extruder with a pipe having a diameter of 38 mm and a length of 2 m, and connects the resin discharge port of the first extruder and the raw material supply port of the second extruder. Used a constant flow pressure valve. The resin discharged from the second extruder was cooled with a cooling conveyor, and then cut into pellets with a pelletizer.
  • the discharge port of the first extruder, the first extruder and the first extruder Resin pressure gauges were provided at the center of the connecting parts between the two extruders and at the outlet of the second extruder.
  • a polymethyl methacrylate resin (Mw: 105,000) was used as a raw material resin, and an imide resin intermediate 1 was produced using monomethylamine as an imidizing agent.
  • the temperature of the highest temperature part of the extruder was 280 ° C.
  • the screw rotation speed was 55 rpm
  • the raw material resin supply amount was 150 kg / hour
  • the addition amount of monomethylamine was 2.0 parts relative to 100 parts of the raw material resin.
  • the constant flow pressure valve was installed immediately before the raw material supply port of the second extruder, and the monomethylamine press-fitting portion pressure of the first extruder was adjusted to 8 MPa.
  • the imidizing agent and by-products remaining in the rear vent and vacuum vent were degassed, and then dimethyl carbonate was added as an esterifying agent to produce an imide resin intermediate 2.
  • the barrel temperature of the extruder was 260 ° C.
  • the screw rotation speed was 55 rpm
  • the addition amount of dimethyl carbonate was 3.2 parts with respect to 100 parts of the raw resin.
  • it was extruded from a strand die, cooled in a water tank, and then pelletized with a pelletizer to obtain a glutarimide acrylic resin (A1).
  • the imidization rate, the content of glutarimide units, the acid value, and the glass transition temperature were measured according to the above methods.
  • the imidation ratio was 13%
  • the content of glutarimide units was 7% by weight
  • the acid value was 0.4 mmol / g
  • the glass transition temperature was 124 ° C.
  • the obtained innermost layer polymer latex was kept at 80 ° C. in a nitrogen stream, 0.1 parts of potassium persulfate was added, and then a single unit consisting of 41 parts of n-butyl acrylate, 9 parts of styrene, and 1 part of allyl methacrylate.
  • the monomer mixture ((B-2) of Production Example 1 in Table 1) was continuously added over 5 hours. During this time, 0.1 part of potassium oleate was added in three portions. After completing the addition of the monomer mixture, 0.05 part of potassium persulfate was further added and held for 2 hours to complete the polymerization, thereby obtaining a rubber particle latex.
  • the polymerization conversion rate of the obtained rubber particles was 99%.
  • graft copolymer The obtained rubber particle latex was kept at 80 ° C., 0.02 part of potassium persulfate was added, and then a monomer mixture of 14 parts of methyl methacrylate and 1 part of n-butyl acrylate (of Production Example 1 in Table 1). (B-3)) was continuously added over 1 hour. After completion of the addition of the monomer mixture, the mixture was held for 1 hour to obtain a graft copolymer latex. The polymerization conversion rate was 99%.
  • Example 1 Manufacture of stretched acrylic resin film
  • 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) were pelletized by a twin screw extruder at a resin temperature of about 255 ° C.
  • the obtained pellets were supplied to a biaxial extruder and melt-extruded into a sheet at about 260 ° C. to obtain an unstretched film having a thickness of 125 ⁇ m.
  • This unstretched film is preheated at 132 ° C. for 5 minutes, stretched at a stretching speed of 120 mm / min and stretched at 132 ° C., and simultaneously biaxially stretched 1.8 times in length and 1.8 times in width.
  • a resin film (thickness 40 ⁇ m) was prepared.
  • Example 2 Manufacture of stretched acrylic resin film
  • Pellets of 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film was preheated at 136 ° C. for 5 minutes, and simultaneously biaxially stretched 1.8 times in length and 1.8 times in width under the stretching temperature condition of 120 mm / min and 136 ° C.
  • a resin film (thickness 40 ⁇ m) was prepared.
  • Example 3 Manufacture of stretched acrylic resin film
  • Pellets of 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film is preheated at 140 ° C. for 5 minutes, stretched at 120 mm / min, at a stretching temperature of 140 ° C. and simultaneously biaxially stretched 1.8 times in length and 1.8 times in width, and then stretched acrylic.
  • a resin film (thickness 40 ⁇ m) was prepared.
  • Example 4 Manufacture of stretched acrylic resin film
  • Pellets of 90 parts by weight of glutarimide acrylic resin (A1) and 10 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film is preheated at 132 ° C. for 5 minutes, stretched at a stretching speed of 120 mm / min and stretched at 132 ° C., and simultaneously biaxially stretched 1.8 times in length and 1.8 times in width.
  • a resin film (thickness 40 ⁇ m) was prepared.
  • Example 5 Manufacture of stretched acrylic resin film
  • Pellets of 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film was preheated at 136 ° C. for 5 minutes, first stretched at a length of 1.8 times, and stretched 1.8 times as it was after the lengthwise stretching. Both longitudinal stretching and lateral stretching were successively biaxially stretched 1.8 times in length and 1.8 times in width under a stretching temperature condition of 136 ° C. to prepare a stretched acrylic resin film (40 ⁇ m thickness).
  • Example 6 Manufacture of stretched acrylic resin film
  • pellets of 95 parts by weight of rubber-containing graft copolymer (B1) are fed to a twin screw extruder. Then, it was melt extruded into a sheet at about 260 ° C. to obtain an unstretched film having a thickness of 125 ⁇ m.
  • This unstretched film was simultaneously biaxially stretched 1.8 times in length and 1.8 times in width under a stretching temperature condition of 130 ° C. to produce a stretched acrylic resin film (40 ⁇ m thickness).
  • Comparative Example 1 Manufacture of stretched acrylic resin film
  • Pellets of 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film was simultaneously biaxially stretched 1.8 times in length and 1.8 times in width under a stretching temperature condition of 115 ° C., but the film broke during stretching.
  • Comparative Example 2 Manufacture of stretched acrylic resin film
  • Pellets of 80 parts by weight of glutarimide acrylic resin (A1) and 20 parts by weight of rubber-containing graft copolymer (B1) are fed to a biaxial extruder and melt extruded into a sheet at about 260 ° C. to obtain a thickness.
  • An unstretched film of 125 ⁇ m was obtained.
  • This unstretched film was simultaneously biaxially stretched 1.8 times in length and 1.8 times in width under a stretching temperature condition of 122 ° C. to prepare a stretched acrylic resin film (40 ⁇ m thickness).
  • Table 2 shows the results of measuring various physical properties of the stretched acrylic resin films obtained in Examples and Comparative Examples.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polarising Elements (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

アクリル系樹脂(A)99~50重量%と、ゴム含有グラフト共重合体(B)1~50重量%と(両者の合計量100重量%)を含む組成物からなる延伸アクリル系樹脂フィルムの製造方法であって、前記(B)が、メタクリル酸エステルを主要モノマーとする重合体からなる最内層、アルキル基の炭素数が4~12のアクリル酸アルキルエステルを主要モノマーとする重合体からなる中間層、及び、メタクリル酸エステルをモノマーとする重合体からなる1層以上の最外層を含み、前記最内層および前記中間層が架橋弾性体を構成し、当該架橋弾性体の平均粒子径が150~400nmであり、延伸温度がTg+5~Tg+50℃(Tgは前記組成物からなるアクリル系樹脂フィルムのガラス転移温度)の条件下、前記組成物からなるアクリル系樹脂フィルムを、横延伸または同時二軸延伸する工程を含む。

Description

延伸アクリル系樹脂フィルムの製造方法
 本発明は、延伸アクリル系樹脂フィルムの製造方法に関する。
 液晶表示装置には、通常、液晶セルの両側に二枚の偏光板が配置される。偏光板は偏光子の両側に偏光子保護フィルムを貼合したものが一般的であり、偏光子保護フィルムとしては、通常、セルロース系材料からなるフィルムが使用される。近年、耐久性の向上を目的として、アクリル系樹脂からなる偏光子保護フィルムが提案されている(例えば特許文献1及び2を参照)。
 一般にアクリル系樹脂フィルムは、強度が低いことから、強度向上のために二軸延伸などの処理を施される。しかし、延伸アクリル系樹脂フィルムであってもさらに強度を高めることが望まれている。更なる強度向上を目的に、延伸アクリル系樹脂フィルムにおいて架橋弾性体を使用することが検討されている。
特開2007-127893号公報 特開2009-193061号公報
 架橋弾性体を含む延伸アクリル系樹脂フィルムに靭性を付与する為には、当該架橋弾性体の平均粒子径を150nm以上とすることが必要となる。しかし平均粒子径が150nm以上の架橋弾性体を用いると、延伸アクリル系樹脂フィルムのヘイズが高くなり、当該フィルムは、偏光子保護フィルム等の光学用途に適さないという問題があった。
 そこで、本発明の目的は、ヘイズ等の光学特性、及び、靭性に優れた延伸アクリル系樹脂フィルムの製造を可能とする方法を提供することにある。
 本発明者らが鋭意検討を重ねた結果、架橋弾性体の平均粒子径が150nm以上であるゴム含有グラフト共重合体を含有するアクリル系樹脂フィルムを延伸するにあたって、横延伸または同時二軸延伸時の延伸温度を特定の温度に制御する事で上記の課題が解決できることを見出し、本発明を完成した。
 すなわち、本発明は、アクリル系樹脂(A)99~50重量%と、ゴム含有グラフト共重合体(B)1~50重量%と(アクリル系樹脂およびゴム含有グラフト共重合体の合計量100重量%)を含む組成物からなる延伸アクリル系樹脂フィルムの製造方法であって、
前記ゴム含有グラフト共重合体(B)が、メタクリル酸エステルを主要モノマーとする重合体からなる最内層、アルキル基の炭素数が4~12のアクリル酸アルキルエステルを主要モノマーとする重合体からなる中間層、及び、メタクリル酸エステルをモノマーとする重合体からなる1層以上の最外層を含み、
前記最内層および前記中間層が架橋弾性体を構成し、当該架橋弾性体の平均粒子径が150~400nmであり、
延伸温度がTg+5~Tg+50℃(ここで、Tgは前記組成物からなるアクリル系樹脂フィルムのガラス転移温度を表す。)の条件下、前記組成物からなるアクリル系樹脂フィルムを、横延伸または同時二軸延伸する工程を含む、延伸アクリル系樹脂フィルムの製造方法(以下、「本発明の延伸アクリル系樹脂フィルムの製造方法」と称することがある。)に関する。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記ゴム含有グラフト共重合体(B)が、以下の単量体混合物(B-1)~(B-4)を順に重合して得られる多段重合体であることが好ましい。
(B-1)メタクリル酸エステル(b-1-1)60~100重量%、これと共重合可能な単量体(b-1-2)40~0重量%、および多官能性単量体(b-1-3)0.05~20重量部((b-1-1)+(b-1-2)100重量部に対して)からなる単量体混合物。
(B-2)アクリル酸エステル(b-2-1)50~100重量%、これと共重合可能な単量体(b-2-2)50~0重量%、および多官能性単量体(b-2-3)0.05~20重量部((b-2-1)+(b-2-2)100重量部に対して)からなる単量体混合物。
(B-3)メタクリル酸エステル(b-3-1)50~100重量%、これと共重合可能な単量体(b-3-2)50~0重量%からなる単量体混合物
(B-4)メタクリル酸エステル(b-4-1)0~70重量%、これと共重合可能な単量体(b-4-2)100~30重量%からなる単量体混合物。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記アクリル系樹脂のガラス転移温度が110℃以上であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルム(幅15mm、長さ120mm)を、荷重200gの条件で、JIS P8115に準拠して測定した折り曲げ回数が500回以上であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルムの位相差値が、面内位相差Reが5.0nm以下、厚み方向位相差Rthが20.0nm以下であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルムの光弾性係数が、-10×10-12~10×10-12Pa-1であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルムの全ヘイズが2%以下であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルムの内部ヘイズが1%以下であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、さらに、接着層を形成する工程を含んでもよい。
 本発明の延伸アクリル系樹脂フィルムの製造方法において、上記延伸アクリル系樹脂フィルムが光学フィルムであってもよい。
 本発明によれば、光学特性と靱性に優れる延伸アクリル系樹脂フィルムを製造できる。
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されるものではない。
 [アクリル系樹脂(A)]
 アクリル系樹脂(A)は、熱可塑性アクリル樹脂である限り特に限定されない。アクリル系樹脂とは、一般に(メタ)アクリル酸エステル単位および/または(メタ)アクリル酸単位を有する樹脂のことであり、(メタ)アクリル酸エステルまたは(メタ)アクリル酸の誘導体に由来する構成単位を有していてもよい。なお、本願において「(メタ)アクリル」とは、「メタクリルまたはアクリル」を指すものとする。
 アクリル系樹脂が有する全構成単位における、(メタ)アクリル酸エステル単位、(メタ)アクリル酸単位およびこれら単位の誘導体に由来する構成単位の割合の合計は、通常50重量%以上であり、好ましくは60重量%以上、より好ましくは70重量%以上である。
 (メタ)アクリル酸エステル単位としては、例えば(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸クロロメチル、(メタ)アクリル酸2-クロロエチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2,3,4,5,6-ペンタヒドロキシヘキシル、(メタ)アクリル酸2,3,4,5-テトラヒドロキシペンチル、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシエチル)アクリル酸メチル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸エポキシシクロヘキシルメチル、(メタ)アクリル酸ジシクロペンタニル、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,2-トリクロロエチル(メタ)アクリレート、(メタ)アクリル酸イソボロニル等などの単量体に由来する構成単位が挙げられる。特に、熱安定性が向上することから、(メタ)アクリル酸メチル単位を有するアクリル系樹脂が好ましく、特に、全構成単位のうち、メタクリル酸メチル単位30~100重量%、および、これと共重合可能なモノマー単位70~0重量%を含むアクリル系樹脂がより好ましい。
 なお、(メタ)アクリル酸エステル単位および(メタ)アクリル酸単位として列挙したいずれかの構成単位を2種類以上有していても良い。また、(メタ)アクリル酸エステル単位または(メタ)アクリル酸単位以外の構成単位を有していても良い。例えば、スチレン、ビニルトルエン、α-メチルスチレン、アクリロニトリル、メチルビニルケトン、エチレン、プロピレン、酢酸ビニル、メタリルアルコール、アリルアルコール、2-ヒドロキシメチル-1-ブテン、α-ヒドロキシメチルスチレン、α-ヒドロキシエチルスチレン、2-(ヒドロキシエチル)アクリル酸メチルなどの2-(ヒドロキシアルキル)アクリル酸エステル、2-(ヒドロキシエチル)アクリル酸などの2-(ヒドロキシアルキル)アクリル酸、マレイン酸、フマール酸およびそれらのエステル等;塩化ビニル、臭化ビニル、クロロプレンなどのハロゲン化ビニル類;酢酸ビニル;エチレン、プロピレン、ブチレン、ブタジエン、イソブチレンなどのアルケン類:ハロゲン化アルケン類;アリルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、モノエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ジビニルベンゼンなどの多官能性モノマーが挙げられる。これらのビニル系単量体は単独でまたは2種類以上を併用して使用することができる。なお、上記構成単位の比率を調整することで、任意の固有複屈折を与えることも可能である。
 アクリル系樹脂は、優れた光学特性、耐熱性、成形加工性などの面で好ましい。
 アクリル系樹脂は、ガラス転移温度が110℃以上であることが好ましく、115℃以上であることがより好ましく、120℃以上であることがさらに好ましい。ガラス転移温度が110℃未満であると、フィルムの耐熱性が劣るため、高温時の物性変化が大きくなり、適用範囲が狭くなり、特に光学用途に使用される場合には、高温環境下でフィルムにゆがみなどが生じ易く、安定した光学的特性が得られない傾向があり、好ましくない。ここで、ガラス転移温度は、示差走査熱量分析装置(DSC)を用いて測定することができる。
 ガラス転移温度が120℃以上のアクリル系樹脂として、具体的には、グルタルイミド構造、無水グルタル酸構造、無水マレイン酸構造、(メタ)アクリル酸単位、ラクトン環、または、マレイミド構造を分子中に含むアクリル系樹脂が挙げられる。例えば、ポリグルタルイミドアクリル系樹脂、無水グルタル酸構造含有アクリル系樹脂や無水マレイン酸構造含有アクリル系樹脂などの環状酸無水物繰り返し単位を含有するアクリル系重合体、ラクトン環化アクリル系樹脂、水酸基および/またはカルボキシル基を含有するアクリル系樹脂、メタクリル系樹脂、マレイミド構造含有アクリル系樹脂等が挙げられる。ガラス転移温度が120℃以上のその他の樹脂としては、スチレン単量体およびそれと共重合可能な他の単量体を重合して得られるスチレン単位含有アクリル系重合体の芳香族環を部分水素添加して得られる部分水添スチレン単位含有アクリル系重合体等が使用できる。
 [ゴム含有グラフト共重合体(B)]
 本発明に用いるゴム含有グラフト共重合体(B)は、メタクリル酸エステルを主要モノマーとする重合体からなる最内層、アルキル基の炭素数が4~12のアクリル酸アルキルエステルを主要モノマーとする重合体からなる中間層、及び、メタクリル酸エステルをモノマーとする重合体からなる1層以上の最外層を含む。
 本発明のゴム含有グラフト共重合体(B)は、強度の観点から、以下に説明する単量体混合物(B-1)~(B-4)を順に重合して得られる多段重合体が好ましい。
 まず単量体混合物(B-1)を重合し、最内層重合体を得る。本発明で用いられる単量体混合物(B-1)はメタクリル酸エステル(b-1-1)60~100重量%、これと共重合可能なエチレン系不飽和単量体(b-1-2)40~0重量%、および多官能性単量体(b-1-3)0.05~20重量部((b-1-1)+(b-1-2)100重量部に対して)からなる。単量体を全部混合して使用してもよく、また単量体組成を変化させて2段以上で使用してもよい。
 ここで用いられるメタクリル酸エステル(b-1-1)としては、重合性やコストの点よりメタクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~4であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等があげられ、これらの単量体は2種以上併用してもよい。メタクリル酸エステル(b-1-1)の含有量は(b-1-1)と(b-1-2)の合計量のうち60~100重量%が好ましく、70~100重量%がより好ましく、80~100重量%が最も好ましい。60重量%未満ではフィルムの表面硬度、透明性が悪化する場合がある。
 また、必要に応じて、メタクリル酸エステル(b-1-1)と共重合可能なエチレン系不飽和単量体(b-1-2)を共重合してもよい。これらの共重合可能なエチレン系不飽和単量体としては、例えば、アクリル酸エステルがあげられ、重合反応性やコストの点からアクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~12であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、等があげられる。また、他のエチレン系不飽和単量体としては、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メタクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩等があげられ、これらの単量体は2種以上が併用されてもよい。
 単量体混合物(B-1)の重合体では、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体(b-1-3)が共重合されているため、得られる重合体が架橋弾性体となる。ここで用いられる多官能性単量体(b-1-3)としては、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼンエチレングリコ-ルジメタクリレート、ジビニルベンゼンエチレングリコ-ルジアクリレート、ジエチレングリコ-ルジメタクリレート、ジエチレングリコ-ルジアクリレート、トリエチレングリコ-ルジメタクリレート、トリエチレングリコ-ルジアクリレート、トリメチロ-ルプロパントリメタクリレート、トリメチロ-ルプロパントリアクリレート、テトラメチロ-ルメタンテトラメタクリレート、テトラメチロ-ルメタンテトラアクリレート、ジプロピレングリコ-ルジメタクリレートおよびジプロピレングリコ-ルジアクリレート等があげられ、これらは2種以上が併用されてもよい。
 単量体混合物(B-1)における多官能性単量体(b-1-3)の添加量は、(b-1-1)+(b-1-2)100重量部に対して、0.05~20重量部が好ましく、0.1~10重量部がより好ましい。多官能性単量体の添加量が0.05重量部未満では、架橋弾性体を形成できない傾向があり、20重量部を超えると、フィルムの耐割れ性が低下する傾向がある。
 次に、最内層重合体((B-1)の重合物)の存在下において単量体混合物(B-2)を重合し、架橋弾性体を得る。本発明で用いられる単量体混合物(B-2)はアクリル酸エステル(b-2-1)50~100重量%、これと共重合可能なエチレン系不飽和単量体(b-2-2)50~0重量%、および多官能性単量体(b-2-3)0.05~20重量部((b-2-1)+(b-2-2)100重量部に対して)からなるものである。単量体を全部混合して使用してもよく、また単量体組成を変化させて2段以上で使用してもよい。ここで用いられるアクリル酸エステル(b-2-1)としては、重合反応性やコストの点からアクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~12であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル等があげられ、これらの単量体は1種または2種以上が併用されてもよい。アクリル酸エステル(b-2-1)の含有量は(b-2-1)と(b-2-2)の合計量のうち50~100重量%が好ましく、60~100重量%がより好ましく、70~100重量%が最も好ましい。50重量%未満ではフィルムの耐割れ性が悪化する場合がある。
 また、必要に応じて、アクリル酸エステル(b-2-1)と共重合可能なエチレン系不飽和単量体(b-2-2)を共重合してもよい。これらの共重合可能なエチレン系不飽和単量体としては、例えば、メタクリル酸エステルがあげられ、重合性やコストの点よりメタクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~12であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等があげられる。また、他のエチレン系不飽和単量体としては、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メアクリル酸ナトリウム、メタクリル酸カルシウム等のメタクリル酸およびその塩等があげられ、これらの単量体は2種以上が併用されてもよい。
 単量体混合物(B-2)の重合体では、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体(b-2-3)が共重合されているため、得られる重合体が架橋弾性体となる。ここで用いられる多官能性単量体(b-2-3)としては、アリルメタクリレート、アリルアクリレート、トリアリルシアヌレート、トリアリルイソシアヌレート、ジアリルフタレート、ジアリルマレート、ジビニルアジペート、ジビニルベンゼンエチレングリコ-ルジメタクリレート、ジビニルベンゼンエチレングリコ-ルジアクリレート、ジエチレングリコ-ルジメタクリレート、ジエチレングリコ-ルジアクリレート、トリエチレングリコ-ルジメタクリレート、トリエチレングリコ-ルジアクリレート、トリメチロ-ルプロパントリメタクリレート、トリメチロ-ルプロパントリアクリレート、テトラメチロ-ルメタンテトラメタクリレート、テトラメチロ-ルメタンテトラアクリレート、ジプロピレングリコ-ルジメタクリレートおよびジプロピレングリコ-ルジアクリレート等があげられ、これらは2種以上が併用されてもよい。
 単量体混合物(B-2)における多官能性単量体(b-2-3)の添加量は、(b-2-1)+(b-2-2)100重量部に対して、0.05~20重量部が好ましく、0.1~10重量部がより好ましい。多官能性単量体の添加量が0.05重量部未満では、架橋弾性体を形成できない傾向があり、20重量部を超えても、フィルムの耐割れ性が低下する傾向がある。
 次に、架橋弾性体((B-1)+(B-2)の重合物)の存在下において単量体混合物(B-3)を重合し、グラフト共重合体を得る。本発明で用いられる単量体混合物(B-3)はメタクリル酸エステル(b-3-1)50~100重量%、これと共重合可能な単量体(b-3-2)50~0重量%からなるものである。単量体を全部混合して使用してもよく、また単量体組成を変化させて2段以上で使用してもよい。ここで用いられるメタクリル酸エステル(b-3-1)としては、重合性やコストの点よりメタクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~4であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸2-エチルヘキシル、アクリル酸オクチル、メタクリル酸β-ヒドロキシエチル、メタクリル酸ジメチルアミノエチル、メタクリル酸グリシジル等があげられ、これらの単量体は2種以上併用してもよい。メタクリル酸エステル(b-3-1)の含有量は(b-3-1)と(b-3-2)の合計量のうち50~100重量%が好ましく、70~100重量%がより好ましく、80~100重量%が最も好ましい。50重量%未満ではフィルムの表面硬度、透明性が悪化する場合がある。
 また、必要に応じて、メタクリル酸エステル(b-3-1)と共重合可能なエチレン系不飽和単量体(b-3-2)を共重合してもよい。これらの共重合可能なエチレン系不飽和単量体としては、例えば、アクリル酸エステルがあげられ、重合反応性やコストの点からアクリル酸アルキルエステルが好ましい。アルキル基の炭素数が1~12であるものがより好ましく、直鎖状でも分岐状でもよい。その具体例としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸-2-エチルヘキシル、アクリル酸n-オクチル、アクリル酸β-ヒドロキシエチル、アクリル酸ジメチルアミノエチル、アクリル酸グリシジル、等があげられる。また、他のエチレン系不飽和単量体としては、塩化ビニル、臭化ビニル等のハロゲン化ビニル、アクリロニトリル、メタクリロニトリル等のシアン化ビニル、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル等のビニルエステル、スチレン、ビニルトルエン、α-メチルスチレン等の芳香族ビニル誘導体、塩化ビニリデン、弗化ビニリデン等のハロゲン化ビニリデン、アクリル酸、アクリル酸ナトリウム、アクリル酸カルシウム等のアクリル酸およびその塩、メタクリル酸、メアクリル酸ナトリウム、メタアクリル酸カルシウム等のメタクリル酸およびその塩等があげられ、これらの単量体は2種以上が併用されてもよい。単量体混合物(B-3)は、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体を含まないことが好ましい。
 次に、グラフト共重合体((B-1)+(B-2)+(B-3)の重合物)の存在下において単量体混合物(B-4)を重合し、ゴム含有グラフト共重合体(B)を得る。本発明で用いられる単量体混合物(B-4)はメタクリル酸エステル(b-4-1)0~70重量%、これと共重合可能な単量体(b-4-2)100~30重量%からなるものである。単量体を全部混合して使用してもよく、また単量体組成を変化させて2段以上で使用してもよい。ここで用いられるメタクリル酸エステル(b-4-1)としては、上述の(B-3)で例示されたものが同様に使用でき、好ましい例示も同様に好ましい。メタクリル酸エステル(b-4-1)の含有量は(b-4-1)と(b-4-2)の合計量のうち0~70重量%が好ましく、20~70重量%がより好ましく、30~70重量%が最も好ましい。70重量%を超えると、重合後ラテックスをパウダー化する際に微粉となり、また、成形の際に分散性が悪化するため透明性が悪化する場合がある。
 メタクリル酸エステル(b-4-1)と共重合可能な単量体(b-4-2)としては、上述の単量体(b-3-2)に例示されたものが同様に使用でき、好ましい例示も同様に好ましい。これらの単量体は2種以上が併用されてもよい。単量体混合物(B-4)は、1分子あたり2個以上の非共役な反応性二重結合を有する多官能性単量体を含まないことが好ましい。
 本発明のゴム含有グラフト共重合体は、最内層と中間層から構成される架橋弾性体(以下「ゴム粒子」ともいう)の平均粒子径が150~400nmである。150nm未満であると、得られる延伸アクリル系樹脂フィルムの靱性が不足する。400nmを超えると、フィルムのヘイズが高くなる。強度の観点から、200nm以上が好ましい。一方、350nm以下が好ましく、300nm以下がより好ましい。ここでいう架橋弾性体の平均粒子径は、架橋弾性体のラテックスの状態で計測し、レーザー回折・散乱式の粒子径分布測定装置である、日機装株式会社製のMICROTRAC UPA150を用いて、546nmの波長で測定した値である。
 本発明のアクリル系樹脂フィルムは、アクリル系樹脂99~50重量%およびゴム含有グラフト共重合体1~50重量%(アクリル系樹脂およびゴム含有グラフト共重合体の合計量100重量%に対して)を含有する。ヘイズの観点から、アクリル系樹脂99~60重量%、ゴム含有グラフト共重合体1~40重量%がより好ましい。
 本発明のアクリル系樹脂フィルムは、上記アクリル系樹脂以外に、他の熱可塑性樹脂を含有していてもよい。他の熱可塑性樹脂としては、オレフィン系重合体、ハロゲン化ビニル系重合体、スチレン系重合体、エステル系重合体、アミド系重合体等が挙げられる。
 本発明のアクリル系樹脂フィルムにおける他の熱可塑性樹脂の含有割合は、0~50重量%(アクリル系樹脂、ゴム含有グラフト共重合体および他の熱可塑性樹脂の合計量100重量%において)が好ましく、0~30重量%がより好ましい。
 本発明のアクリル系樹脂フィルムは、必要に応じて任意の添加剤を含有していてもよい。添加剤としては、例えば、酸化防止剤、耐光安定剤、耐候安定剤、熱安定剤等の安定剤、紫外線吸収剤、難燃剤、帯電防止剤、充填剤、可塑剤、滑剤等が挙げられる。
 アクリル系樹脂(A)およびゴム含有グラフト共重合体(B)の混合方法としては、特に制限はないが、上記のフィルム原料を予備混合した後に、押出機にて溶融混練する方法が挙げられる。
 得られた混合物をフィルム状に成形する方法としては、例えば、溶液流延法、溶融押出法、カレンダー法、圧縮成形法等、任意の適切なフィルム成形法が挙げられる。これらの成形法のうち、コストと性能のバランスから溶融押出法が好ましい。
 上記溶融押出法としては、例えば、T型ダイス法、インフレーション法等が挙げられる。成形温度は150~350℃が好ましく、200~300℃がより好ましい。
 上記T型ダイス法でフィルム成形する場合は、単軸押出機や二軸押出機の先端部にT型ダイスを取り付けて行なう事ができる。
 以上の成形法により得られたアクリル系樹脂フィルムを延伸することで、延伸アクリル系樹脂フィルムが得られる。延伸工程は、成形工程と連続して行なっても良いし、成形工程の後、フィルムをロール状に巻き取る工程を行ってから、延伸工程を実施してもよい。延伸法としては、一般に、ロールや熱風路を用いた縦延伸法、テンターを用いた横延伸法、縦延伸と横延伸を逐次行う逐次二軸延伸法、縦延伸と横延伸を同時に行う同時二軸延伸法が知られている。本発明では、少なくとも、横延伸、または、同時二軸延伸を行う。本発明で横延伸を行う場合には、横延伸の前後に縦延伸を行うことで、逐次二軸延伸を実施することができる。
 本発明の延伸アクリル系樹脂フィルムは、一軸延伸フィルムであってもよいし、二軸延伸フィルムであってもよい。二軸延伸を行なう場合、温度や倍率といった延伸条件は縦延伸と横延伸で同等であってもよいし、また、これらの条件を縦延伸と横延伸で意図的に変えてもよい。
 本発明においては、延伸工程前に予熱処理をすることが好ましい。予熱温度は、Tg+5~Tg+50℃が好ましい。延伸時の破断とヘイズの観点から、Tg+10~Tg+40℃がより好ましく、Tg+10~Tg+35℃がさらに好ましく、Tg+14~Tg+35℃が尚更好ましく、Tg+14~Tg+30℃が特に好ましい。予熱温度がTg+5℃未満であると、延伸工程中にフィルムが破断しやすく延伸が十分に行なえない可能性があり、また、破断しなくとも、得られる延伸フィルムのヘイズが高くなり光学特性に優れた延伸フィルムを得ることができない。一方、Tg+50℃を超えると、フィルムの溶融温度に近くなり延伸できなくなる。
 本発明においては、横延伸工程又は同時二軸延伸工程を、延伸温度がTg+5~Tg+50℃の条件下で行う。ここで、延伸温度は、延伸工程でフィルムを延伸する際にフィルム周囲の雰囲気において測定される温度をいう。また、Tgは、アクリル系樹脂フィルムのガラス転移温度(℃)である。ヘイズの観点から、延伸温度は、Tg+10~Tg+40℃がより好ましく、Tg+10~Tg+35℃がさらに好ましく、Tg+14~Tg+35℃が尚更好ましく、Tg+14~Tg+30℃が特に好ましい。延伸温度がTg+5℃未満であると、延伸工程中にフィルムが破断しやすく延伸が十分に行なえない可能性があり、また、破断しなくとも、得られる延伸フィルムのヘイズが高くなり光学特性に優れた延伸フィルムを得ることができない。Tg+50℃を超えると、フィルムの溶融温度に近くなり延伸できなくなる。
 本発明では、延伸後に熱処理してもよい。延伸後の熱処理温度は、Tg+5~Tg+50℃が好ましい。クラックが発生しにくくなる点から、Tg+10~Tg+40℃がより好ましく、Tg+10~Tg+35℃がさらに好ましく、Tg+14~Tg+35℃が尚更好ましく、Tg+14~Tg+30℃が特に好ましい。熱処理温度がTg+5℃未満であると、急激に冷やされてフィルムが破断する可能性がある。一方、Tg+50℃を超えると、フィルムの溶融温度に近くなり熱処理ロールやテンターにフィルムが粘着し破断する可能性がある。
 本発明では、横延伸工程又は同時二軸延伸工程時の延伸温度が上述の範囲に設定される限り、フィルムの延伸倍率、及び、その他の延伸工程における延伸温度は、延伸フィルムに求められる光学特性、強度、表面性、及び厚み精度を指標として適宜調整することができる。
 本発明において逐次二軸延伸を採用する場合、横延伸時の延伸温度は上記のとおりであるが、縦延伸時の延伸温度は特に限定されず、適宜設定してよい。しかし、フィルムの破断を防止する観点から、縦延伸時の延伸温度は、アクリル系樹脂フィルムのガラス転移温度近傍であることが好ましく、具体的にはTg~Tg+30℃が好ましく、フィルムの縦延伸ロールへの粘着を防ぐ観点から、Tg+10~Tg+30℃がより好ましい。ここでいうTgは、上記と同様、アクリル系樹脂フィルムのガラス転移温度である。
 本発明において、延伸の倍率は特に限定されないが、横方向に、1.1~10倍が好ましく、1.4~5倍がより好ましい。延伸倍率が1.1倍未満であると、延伸による強度向上効果が十分ではない。横方向に加えて縦方向に延伸する場合、縦方向の延伸倍率も、同程度の延伸倍率が好ましい。
 本発明の延伸アクリル系樹脂フィルムは、靱性に優れたものであり、折り曲げても破断しにくいという特性を有している。このような耐折り曲げ性を示す指標として、具体的には、幅15mm、長さ120mmの本発明の延伸アクリル系樹脂フィルムについて、荷重200gの条件で、JIS P8115に準拠して折り曲げ回数を測定し、その折り曲げ回数が500回以上であることが好ましい。
 本発明の延伸アクリル系樹脂フィルムの位相差値は小さいほどよく、面内位相差Reが5.0nm以下、厚み方向位相差Rthが20.0nm以下が好ましく、Reが4.0nm以下、Rthが15.0nm以下がより好ましく、位相差の値がこれらの値を超えると、光学的特性が低下するおそれがある。
 本発明の延伸アクリル系樹脂フィルムの光弾性係数は-10×10-12~+10×10-12Pa-1が好ましく、-7×10-12~+7×10-12Pa-1がより好ましく、-5×10-12~+5×10-12Pa-1が最も好ましい。光弾性定数が上記範囲内であれば、フィルムを液晶表示装置に用いても、高温高湿などの環境下において成形体に応力がかかった際にも生じる複屈折が小さく、位相差ムラが発生したり、表示画面周辺部のコントラストが低下したり、光漏れが発生したりすることがない。
 本発明の延伸アクリル系樹脂フィルムの厚さは、5~100μmが好ましく、10~80μmがより好ましい。厚さが5μm未満であると、十分な強度が得られず、厚さが100μmを超えると、コストが高くなったり、偏光板の厚さが厚くなってしまう場合がある。表面の濡れ張力を高めるために、フィルム表面に、コロナ放電処理、プラズマ処理、オゾン処理、紫外線照射、火炎処理、化学薬品処理等を施してもよい。これらの中で、コロナ放電処理、プラズマ処理が好ましい。
 本発明の延伸アクリル系樹脂フィルムは、アクリル系樹脂フィルム特有の光沢感を維持するとともに外観が良好である点から、全ヘイズが2%以下であることが好ましく、1.5%以下であることより好ましい。
 本発明の延伸アクリル系樹脂フィルムは、輝度や偏光度の観点から、内部ヘイズが1%以下であることが好ましく、0.7%以下であることがより好ましく、0.5%以下であることが最も好ましい。なお、内部ヘイズとは、フィルム内部の散乱に起因するヘイズ値である。
 本発明の延伸アクリル系樹脂フィルムは、輝度や印刷フィルムとして使用した時の外観の観点から、外部ヘイズが1.5%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることが最も好ましい。なお、外部ヘイズとは、フィルム表面の散乱に起因するヘイズ値である。
 本発明の延伸アクリル系樹脂フィルムは、光学用途に好適であり、偏光板の偏光子保護フィルムとして使用することも出来る。偏光子保護フィルムに使用する場合、例えば以下のようにして偏光板を作製することができる。
 偏光板で用いる偏光子としては、特定の振動方向をもつ光のみを透過する機能を有する偏光子であればいかなるものでもよく、一般的にはPVA(ポリビニルアルコール)系偏光子が好ましく用いられる。
 PVA系偏光子としては、例えばPVA系フィルムなどの親水性高分子フィルムに、ヨウ素や二色性染料などの二色性物質を吸着させて一軸延伸したものが挙げられる。偏光子の厚さは特に制限されず、一般的に、1~100μm程度である。
 本発明の延伸アクリル系樹脂フィルムでは、偏光子と接する面に、偏光子との密着性を向上させるために接着層(プライマー層)を設けて密着性を高めることができる。その接着層を形成する接着剤としては、密着性の観点から、ウレタン系樹脂、アクリル系樹脂、エポキシ系樹脂、シリコーン系樹脂、セルロース系樹脂が好ましい。接着層の厚みは0.1μm~10μmが好ましく、0.2~5μmである事がより好ましい。0.1μ未満であると密着力を確保できず、10μmを超えると乾燥時間が長くなり生産性が落ちる。
 接着剤組成物には水系のものと有機系のものがあるが、環境面や作業性の観点から、水系の接着剤組成物が好ましい。しかし、分散性や溶解性の観点から、有機溶媒を含有してもよい。上記接着剤組成物には一液型と二液型があり、どちらも好適に使用できる。
 ポリビニルアルコールとの密着性はポリビニルアルコールの種類、接着剤の種類によって異なり、求められる密着力に関しても用途によって異なる。密着力が1N/25mm以上であれば使用可能な用途はあるが、さらに幅広い用途で使用する場合には密着力が3N/25mm以上であることが好ましい。
 上記接着層の形成方法としては、任意の適切な塗布方法が採用できる。例えば、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法等が挙げられる。
 接着剤がウレタン系樹脂又はアクリル系樹脂である場合、接着剤の乾燥温度としては50℃以上が好ましく、80℃以上がより好ましい。
 上記接着剤には、任意の適切な添加剤をさらに含有しても良い。添加剤としては、例えば、ブロッキング防止剤、分散安定剤、揺変剤、酸化防止剤、紫外線吸収剤、消泡剤、増粘剤、分散剤、界面活性剤、触媒、フィラー、滑剤、帯電防止剤等が挙げられる。
 偏光子保護フィルムは、偏光子の少なくとも一方の面に設けることができる。偏光子保護フィルムと偏光子が積層されてなる偏光板は、さらに接着剤、粘着剤などを介して、ガラス等の基材に積層する事が出来る。
 偏光板と基材との積層には、偏光子保護フィルムに接着層を設けて接着することができる。接着層に用いる接着剤は、任意の適切な接着剤を使用できる。偏光子との親和性から、ポリビニルアルコール系樹脂を含む接着剤組成物が好ましく、アセトアセチル基含有ポリビニルアルコール樹脂を含む接着剤組成物が特に好ましい。アセトアセチル基含有ポリビニルアルコール樹脂を含む接着剤組成物を用いることで、偏光子と基材との密着性がさらに向上する。
 上記ポリビニルアルコール系樹脂の平均重合度に特に制限はないが、好ましくは100~5000程度、さらに好ましくは1000~4000である。
 上記の接着剤組成物には必要に応じて架橋剤を含有してもよい。架橋剤としては、上記のポリビニルアルコール系樹脂と反応性を有する官能基を有する化合物が好ましい。
 ポリビニルアルコール系樹脂と反応性を有する官能基としては、アミン基、イソシアネート基、エポキシ基、アルデヒド基、メチロール基等が挙げられる。中でもメチロール基が好ましく、メチロール基を有する化合物としては、メチロールメラミンが特に好ましい。
 上記架橋剤の配合量は、特に制限はないが、ポリビニルアルコール系樹脂100重量部に対して、10~60重量部程度が好ましく、より好ましくは20~50重量部である。
 上記接着剤組成物には、更に接着性を向上させるために、各種のカップリング剤や粘着付与剤を添加してよい。カップリング剤としては、シランカップリング剤が好ましい。その他、紫外線吸収剤、酸化防止剤、耐熱安定剤、耐加水分解安定剤などを添加してもよい。
 上記接着剤組成物は、通常水溶液として使用される。樹脂の濃度は、塗工性と安定性のバランスから、0.1~30重量%が好ましく、0.5~25重量%がより好ましい。
 上記接着剤組成物から形成された接着剤層の厚みは、接着剤組成物の組成等に応じて設定される。10~300nmが好ましく、接着性の観点から、特に20~150nmが好ましい。
 本発明の延伸アクリル系樹脂フィルムを使用した偏光板は、液晶表示装置や自発光型表示装置などの画像表示装置に好適に使用され得る。
 以下、実施例にて具体的に説明するが、本発明はこれら実施例に限定されるものではない。以下で「部」および「%」は、特記ない限り、「重量部」および「重量%」を意味する。
 (イミド化率)
 イミド化率の算出は、IRを用いて下記の通り行った。生成物のペレットを塩化メチレンに溶解し、その溶液について、SensIR Tecnologies社製TravelIRを用いて、室温にてIRスペクトルを測定した。得られたIRスペクトルより、1720cm-1のエステルカルボニル基に帰属する吸収強度(Absester)と、1660cm-1のイミドカルボニル基に帰属する吸収強度(Absimide)との比からイミド化率(Im%(IR))を求めた。ここで、「イミド化率」とは、全カルボニル基中のイミドカルボニル基の占める割合をいう。
 (グルタルイミド単位の含有量)
 H-NMR BRUKER AvanceIII(400MHz)を用いて、樹脂のH-NMR測定を行い、樹脂中のグルタルイミド単位またはエステル単位などの各モノマー単位それぞれの含有量(mol%)を求め、当該含有量(mol%)を、各モノマー単位の分子量を使用して含有量(重量%)に換算した。
 (酸価)
 得られたグルタルイミドアクリル系樹脂0.3gを37.5mlの塩化メチレンおよび37.5mlのメタノールの混合溶媒の中で溶解した。フェノールフタレインエタノール溶液を2滴加えた後に、0.1Nの水酸化ナトリウム水溶液を5ml加えた。過剰の塩基を0.1N塩酸で滴定し、添加した塩基と中和に達するまでに使用した塩酸との間のミリ当量で示す差で酸価を算出した。
 (膜厚)
 フィルムの膜厚は、デジマティックインジケーター(株式会社ミツトヨ製)を用いて測定した。
 (ガラス転移温度)
 製造例1で得られたグルタルイミドアクリル系樹脂(A1)、および、実施例および比較例で得られた未延伸フィルムに対して、セイコーインスツルメンツ製の示差走査熱量分析装置(DSC)SSC-5200を用い、試料を一旦200℃まで25℃/分の速度で昇温した後10分間ホールドし、25℃/分の速度で50℃まで温度を下げる予備調整を経て、10℃/分の昇温速度で200℃まで昇温する間の測定を行い、得られたDSC曲線から積分値を求め(DDSC)、その極大点からガラス転移温度を求めた。
 (全光線透過率・ヘイズ値)
 実施例および比較例で得られた延伸フィルムの全光線透過率、及び、全ヘイズ値は、(株)日本電色工業 NDH-300Aを用い、JIS K7105に記載の方法にて測定した。内部ヘイズ値は、石英セルに純水を入れた以外は、全ヘイズ値と同様の条件で測定した。外部ヘイズ値は、全ヘイズ値から内部ヘイズ値を差し引いて算出した。
 (面内位相差Re、及び厚み方向位相差Rth)
 実施例および比較例で得られた延伸フィルムに対して、自動複屈折計(王子計測株式会社製 KOBRA-WR)を用いて、温度23±2℃、湿度50±5%において、波長590nm、入射角0°にて、面内位相差Re、厚み方向位相差Rth(入射角40°)を測定した。
 (光弾性係数)
 実施例および比較例で得られた膜厚125μmの未延伸フィルムからTD方向に15mm×90mmの短冊状に試験片を切断した(TD方向に長辺がくるように切り出す)。自動複屈折系(王子計測株式会社製KOBRA-WR)を用いて、温度23℃±2℃、湿度50±5%において、波長590nm、入射角0°にて測定した。測定は、フィルムの長辺を固定し、他方は無荷重から4kgfまで0.5kgfずつ荷重をかけた状態で複屈折を測定し、得られた結果から、単位応力による複屈折の変化量を算出した。
 (MITの評価)
 実施例および比較例で得られた延伸フィルムの耐折り曲げ性は、各延伸フィルムから幅15mm、長さ120mmで切り出したサンプルについて、(株)東洋精機製作所 MIT耐折疲労試験機を用い、JIS C5016の方法に従って行った。測定条件は、測定角度=135°、速度=175回/分、R=0.38、荷重200gとした。
 (ゴム粒子((B-1)と(B-2)の重合物)の平均粒子径))
 ゴム粒子の平均粒子径は、ゴム粒子のラテックスの状態で測定した。測定装置として、株式会社 日立ハイテクノロジーズのU-5100形レシオビーム分光光度計を用いて、546nmの波長の光散乱を用いて求めた。
 (重合転化率)
 まず、得られたスラリーの一部を採取・精秤し、それを熱風乾燥器中で120℃、1時間乾燥し、その乾燥後の重量を固形分量として精秤した。次に、乾燥前後の精秤結果の比率をスラリー中の固形成分比率として求めた。最後に、この固形成分比率を用いて、以下の計算式により重合転化率を算出した。なお、この計算式において、連鎖移動剤は仕込み単量体として取り扱った。
  重合転化率(%)
  =〔(仕込み原料総重量×固形成分比率-水・単量体以外の原料総重量)/仕込み単量体重量〕×100
 (製造例1)
 <グルタルイミドアクリル系樹脂(A1)の製造>
 原料としてポリメタクリル酸メチル、イミド化剤としてモノメチルアミンを用いて、グルタルイミドアクリル系樹脂(A1)を製造した。
 この製造においては、押出反応機を2台直列に並べたタンデム型反応押出機を用いた。タンデム型反応押出機に関しては、第1押出機、第2押出機共に直径が75mm、L/D(押出機の長さLと直径Dの比)が74の噛合い型同方向二軸押出機を使用し、低重量フィーダー(クボタ(株)製)を用いて、第一押出機の原料供給口に原料を供給した。第一押出機、第二押出機における各ベントの減圧度は-0.095MPaとした。更に、直径38mm、長さ2mの配管で第一押出機と第二押出機を接続し、第一押出機の樹脂吐出口と第二押出機の原料供給口を接続する部品内圧力制御機構には定流圧力弁を用いた。第二押出機から吐出された樹脂は、冷却コンベアで冷却した後、ペレタイザでカッティングペレットとした。ここで、第一押出機の樹脂吐出口と第二押出機の原料供給口を接続する部品内圧力調整、又は押出変動を見極める為に、第一押出機の吐出口、第一押出機と第二押出機間の接続部品の中央部、および、第二押出機の吐出口に樹脂圧計を設けた。
 第一押出機において、原料樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。この際、押出機の最高温部の温度は280℃、スクリュ回転数は55rpm、原料樹脂供給量は150kg/時間、モノメチルアミンの添加量は原料樹脂100部に対して2.0部とした。定流圧力弁は第二押出機の原料供給口直前に設置し、第一押出機のモノメチルアミン圧入部圧力を8MPaになるように調整した。
 第二押出機において、リアベント及び真空ベントで残存しているイミド化剤及び副生成物を脱気したのち、エステル化剤として炭酸ジメチルを添加しイミド樹脂中間体2を製造した。この際、押出機の各バレル温度は260℃、スクリュ回転数は55rpm、炭酸ジメチルの添加量は原料樹脂100部に対して3.2部とした。更に、ベントでエステル化剤を除去した後、ストランドダイから押出し、水槽で冷却した後、ペレタイザでペレット化する事で、グルタルイミドアクリル系樹脂(A1)を得た。
 グルタルイミドアクリル系樹脂(A1)について、上記の方法に従って、イミド化率、グルタルイミド単位の含有量、酸価、ガラス転移温度を測定した。その結果、イミド化率は13%、グルタルイミド単位の含有量は7重量%、酸価は0.4mmol/g、ガラス転移温度は124℃であった。
 (製造例2)
 <ゴム含有グラフト共重合体(B1)の製造>
 最内層重合体の作成:
以下の組成の混合物をガラス製反応器に仕込み、窒素気流中で撹拌しながら80℃に昇温したのち、メタクリル酸メチル25部、メタクリル酸アリル1部からなる単量体混合物(表1中の製造例1の(B-1))とt-ブチルハイドロパーオキサイド0.1部との混合液のうち25%を一括して仕込み、45分間の重合を行なった。
脱イオン水                     220部 
ホウ酸                       0.3部 
炭酸ナトリウム                  0.03部
N-ラウロイルサルコシン酸ナトリウム       0.09部
ソディウムホルムアルデヒドスルフォキシレート   0.09部
エチレンジアミン四酢酸-2-ナトリウム     0.006部
硫酸第1鉄                   0.002部
続いてこの混合液の残り75%を1時間にわたって連続添加した。添加終了後、同温度で2時間保持し重合を完結させて最内層重合体ラテックスを得た。また、この間に0.2部のN-ラウロイルサルコシン酸ナトリウムを追加した。得られた最内層重合体の重合転化率(重合生成量/モノマー仕込量)は98%であった。
 ゴム粒子の作製:
得られた最内層重合体ラテックスを窒素気流中で80℃に保ち、過硫酸カリウム0.1部を添加したのち、アクリル酸n-ブチル41部、スチレン9部、メタクリル酸アリル1部からなる単量体混合物(表1中の製造例1の(B-2))を5時間にわたって連続添加した。この間にオレイン酸カリウム0.1部を3回に分けて添加した。モノマー混合液の添加終了後、重合を完結させるためにさらに過硫酸カリウムを0.05部添加し2時間保持してゴム粒子ラテックスを得た。得られたゴム粒子の重合転化率は99%であった。
 グラフト共重合体の作製:
得られたゴム粒子ラテックスを80℃に保ち、過硫酸カリウム0.02部を添加したのちメタクリル酸メチル14部、アクリル酸n-ブチル1部の単量体混合物(表1中の製造例1の(B-3))を1時間にわたって連続添加した。モノマー混合液の追加終了後1時間保持しグラフト共重合体ラテックスを得た。重合転化率は99%であった。
 ゴム含有グラフト共重合体の作製:
得られたグラフト共重合体ラテックスを80℃に保ち、メタクリル酸メチル5部、アクリル酸n-ブチル5部の単量体混合物(表1中の製造例B1の(B-4))を0.5時間にわたって連続添加した。モノマー混合液の追加終了後1時間保持しゴム含有グラフト共重合体ラテックスを得た。重合転化率は99%であった。得られたゴム含有グラフト共重合体ラテックスを塩化カルシウムで塩析凝固、熱処理、乾燥を行ない、白色粉末状のゴム含有グラフト共重合体(B1)を得た。
Figure JPOXMLDOC01-appb-T000001
 (実施例1)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部を二軸押出機により樹脂温度約255℃でペレット化した。得られたペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、予熱132℃、5分をかけ、延伸速度120mm/min、132℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (実施例2)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、予熱136℃、5分をかけ、延伸速度120mm/min、136℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (実施例3)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、予熱140℃、5分をかけ、延伸速度120mm/min、140℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (実施例4)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)90重量部とゴム含有グラフト共重合体(B1)10重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、予熱132℃、5分をかけ、延伸速度120mm/min、132℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (実施例5)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、予熱136℃、5分行い、先ず、縦1.8倍で延伸し、縦延伸後そのまま横1.8倍延伸を行なった。縦延伸および横延伸ともに、136℃の延伸温度条件下、縦1.8倍、横1.8倍に逐次二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (実施例6)
 (延伸アクリル系樹脂フィルムの製造)
 パラペットHR-S{共重合モノマー重量比=メタクリル酸メチル/アクリル酸メチル=99/1}95重量部とゴム含有グラフト共重合体(B1)5重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、130℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 (比較例1)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、115℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸したが、延伸中にフィルムが破断した。
 (比較例2)
 (延伸アクリル系樹脂フィルムの製造)
 グルタルイミドアクリル系樹脂(A1)80重量部とゴム含有グラフト共重合体(B1)20重量部とのペレットを二軸押し出し機に供給し、約260℃でシート状に溶融押し出しして、厚さ125μmの未延伸フィルムを得た。この未延伸フィルムを、122℃の延伸温度条件下、縦1.8倍、横1.8倍に同時二軸延伸して、延伸アクリル系樹脂フィルム(40μm厚)を作製した。
 実施例および比較例で得られた延伸アクリル系樹脂フィルムについて、各種物性を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002

Claims (10)

  1.  アクリル系樹脂(A)99~50重量%と、ゴム含有グラフト共重合体(B)1~50重量%と(アクリル系樹脂およびゴム含有グラフト共重合体の合計量100重量%)を含む組成物からなる延伸アクリル系樹脂フィルムの製造方法であって、
    前記ゴム含有グラフト共重合体(B)が、メタクリル酸エステルを主要モノマーとする重合体からなる最内層、アルキル基の炭素数が4~12のアクリル酸アルキルエステルを主要モノマーとする重合体からなる中間層、及び、メタクリル酸エステルをモノマーとする重合体からなる1層以上の最外層を含み、
    前記最内層および前記中間層が架橋弾性体を構成し、当該架橋弾性体の平均粒子径が150~400nmであり、
    延伸温度がTg+5~Tg+50℃(ここで、Tgは前記組成物からなるアクリル系樹脂フィルムのガラス転移温度を表す。)の条件下、前記組成物からなるアクリル系樹脂フィルムを、横延伸または同時二軸延伸する工程を含む、延伸アクリル系樹脂フィルムの製造方法。
  2.  前記ゴム含有グラフト共重合体(B)が、以下の単量体混合物(B-1)~(B-4)を順に重合して得られる多段重合体である、請求項1に記載の延伸アクリル系樹脂フィルムの製造方法。
    (B-1)メタクリル酸エステル(b-1-1)60~100重量%、これと共重合可能な単量体(b-1-2)40~0重量%、および多官能性単量体(b-1-3)0.05~20重量部((b-1-1)+(b-1-2)100重量部に対して)からなる単量体混合物。
    (B-2)アクリル酸エステル(b-2-1)50~100重量%、これと共重合可能な単量体(b-2-2)50~0重量%、および多官能性単量体(b-2-3)0.05~20重量部((b-2-1)+(b-2-2)100重量部に対して)からなる単量体混合物。
    (B-3)メタクリル酸エステル(b-3-1)50~100重量%、これと共重合可能な単量体(b-3-2)50~0重量%からなる単量体混合物
    (B-4)メタクリル酸エステル(b-4-1)0~70重量%、これと共重合可能な単量体(b-4-2)100~30重量%からなる単量体混合物。
  3.  前記アクリル系樹脂のガラス転移温度が110℃以上である、請求項1~2のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  4.  前記延伸アクリル系樹脂フィルム(幅15mm、長さ120mm)を、荷重200gの条件で、JIS P8115に準拠して測定した折り曲げ回数が500回以上である、請求項1~3のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  5.  前記延伸アクリル系樹脂フィルムの位相差値が、面内位相差Reが5.0nm以下、厚み方向位相差Rthが20.0nm以下である、請求項1~4のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  6.  前記延伸アクリル系樹脂フィルムの光弾性係数が、-10×10-12~+10×10-12Pa-1である、請求項1~5のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  7.  前記延伸アクリル系樹脂フィルムの全ヘイズが2%以下である、請求項1~6のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  8.  前記延伸アクリル系樹脂フィルムの内部ヘイズが1%以下である、請求項1~7のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  9.  さらに、接着層を形成する工程を含む、請求項1~8のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
  10.  前記延伸アクリル系樹脂フィルムが光学フィルムである、請求項1~9のいずれか一項に記載の延伸アクリル系樹脂フィルムの製造方法。
PCT/JP2016/001875 2015-03-31 2016-03-31 延伸アクリル系樹脂フィルムの製造方法 WO2016157913A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015074450A JP2018087834A (ja) 2015-03-31 2015-03-31 偏光子保護フィルムおよび偏光板
JP2015-074450 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157913A1 true WO2016157913A1 (ja) 2016-10-06

Family

ID=57006003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001875 WO2016157913A1 (ja) 2015-03-31 2016-03-31 延伸アクリル系樹脂フィルムの製造方法

Country Status (2)

Country Link
JP (1) JP2018087834A (ja)
WO (1) WO2016157913A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018168481A1 (ja) * 2017-03-15 2018-09-20 日東電工株式会社 偏光板および画像表示装置
TWI649367B (zh) * 2016-10-27 2019-02-01 南韓Skc股份有限公司 保護膜、偏光器及包含其之顯示裝置
JP2022010998A (ja) * 2020-06-29 2022-01-17 株式会社クラレ 熱可塑性樹脂フィルム
CN114075362A (zh) * 2020-08-11 2022-02-22 藤森工业株式会社 (甲基)丙烯酸类树脂组合物及(甲基)丙烯酸类树脂膜
WO2022145436A1 (ja) * 2021-01-04 2022-07-07 株式会社カネカ 延伸フィルムの製造方法
JP2023009094A (ja) * 2017-03-15 2023-01-19 株式会社カネカ 延伸フィルムおよび延伸フィルムの製造方法
CN117925136A (zh) * 2023-12-20 2024-04-26 广东桑泰科技有限公司 一种折叠手机保护膜的制备工艺及其产品

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341643B2 (ja) * 2018-08-28 2023-09-11 日東電工株式会社 表面保護フィルム用基材、該基材の製造方法、該基材を用いた表面保護フィルム、および表面保護フィルム付光学フィルム
JP7169137B2 (ja) * 2018-09-18 2022-11-10 株式会社カネカ 延伸フィルムおよび延伸フィルムの製造方法
JP7401271B2 (ja) * 2019-11-25 2023-12-19 株式会社カネカ フィルム製造用ドープ、フィルム及びその製造方法
WO2024181427A1 (ja) * 2023-02-28 2024-09-06 株式会社カネカ アクリル系樹脂フィルム、偏光板、及び、液晶表示パネル
WO2024181428A1 (ja) * 2023-02-28 2024-09-06 株式会社カネカ アクリル系樹脂フィルム、偏光板、及び、液晶表示パネル

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205135A (ja) * 2008-01-31 2009-09-10 Nitto Denko Corp 偏光子保護フィルム、偏光板および画像表示装置
JP2011046186A (ja) * 2009-07-31 2011-03-10 Sumitomo Chemical Co Ltd 多層延伸フィルム
JP2011088946A (ja) * 2009-10-20 2011-05-06 Sumitomo Chemical Co Ltd アクリル樹脂フィルム
WO2014041803A1 (ja) * 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2015143842A (ja) * 2013-12-27 2015-08-06 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
JP2015210474A (ja) * 2014-04-30 2015-11-24 株式会社カネカ 偏光子保護フィルムおよび偏光板
JP2016004242A (ja) * 2014-06-19 2016-01-12 株式会社カネカ 積層体および該積層体を用いた偏光板
JP2016033552A (ja) * 2014-07-31 2016-03-10 株式会社カネカ 偏光子保護フィルムおよび偏光板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205135A (ja) * 2008-01-31 2009-09-10 Nitto Denko Corp 偏光子保護フィルム、偏光板および画像表示装置
JP2011046186A (ja) * 2009-07-31 2011-03-10 Sumitomo Chemical Co Ltd 多層延伸フィルム
JP2011088946A (ja) * 2009-10-20 2011-05-06 Sumitomo Chemical Co Ltd アクリル樹脂フィルム
WO2014041803A1 (ja) * 2012-09-13 2014-03-20 株式会社カネカ アクリル系樹脂フィルム
JP2015143842A (ja) * 2013-12-27 2015-08-06 住友化学株式会社 偏光板用保護フィルム及びそれを用いた偏光板
JP2015210474A (ja) * 2014-04-30 2015-11-24 株式会社カネカ 偏光子保護フィルムおよび偏光板
JP2016004242A (ja) * 2014-06-19 2016-01-12 株式会社カネカ 積層体および該積層体を用いた偏光板
JP2016033552A (ja) * 2014-07-31 2016-03-10 株式会社カネカ 偏光子保護フィルムおよび偏光板

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI649367B (zh) * 2016-10-27 2019-02-01 南韓Skc股份有限公司 保護膜、偏光器及包含其之顯示裝置
JP2023009094A (ja) * 2017-03-15 2023-01-19 株式会社カネカ 延伸フィルムおよび延伸フィルムの製造方法
JP2018155809A (ja) * 2017-03-15 2018-10-04 日東電工株式会社 偏光板および画像表示装置
KR20190121320A (ko) * 2017-03-15 2019-10-25 닛토덴코 가부시키가이샤 편광판 및 화상 표시 장치
CN110446953A (zh) * 2017-03-15 2019-11-12 日东电工株式会社 偏光板及图像显示装置
JP2022009348A (ja) * 2017-03-15 2022-01-14 日東電工株式会社 偏光板の製造方法
WO2018168481A1 (ja) * 2017-03-15 2018-09-20 日東電工株式会社 偏光板および画像表示装置
KR102641140B1 (ko) * 2017-03-15 2024-02-28 닛토덴코 가부시키가이샤 편광판 및 화상 표시 장치
JP2022010998A (ja) * 2020-06-29 2022-01-17 株式会社クラレ 熱可塑性樹脂フィルム
JP7441743B2 (ja) 2020-06-29 2024-03-01 株式会社クラレ 熱可塑性樹脂フィルム
CN114075362A (zh) * 2020-08-11 2022-02-22 藤森工业株式会社 (甲基)丙烯酸类树脂组合物及(甲基)丙烯酸类树脂膜
WO2022145436A1 (ja) * 2021-01-04 2022-07-07 株式会社カネカ 延伸フィルムの製造方法
CN117925136A (zh) * 2023-12-20 2024-04-26 广东桑泰科技有限公司 一种折叠手机保护膜的制备工艺及其产品

Also Published As

Publication number Publication date
JP2018087834A (ja) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016157913A1 (ja) 延伸アクリル系樹脂フィルムの製造方法
KR101883688B1 (ko) 아크릴계 수지 필름
US10597525B2 (en) Resin composition and film thereof
JP5408885B2 (ja) 樹脂組成物、フィルムおよび偏光板
JP7169411B2 (ja) 延伸フィルムおよび延伸フィルムの製造方法
WO2014002491A1 (ja) 非複屈折性樹脂材料、およびフィルム
JP6479362B2 (ja) 偏光子保護フィルムおよび偏光板
TW200817179A (en) Acrylic resin film
WO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
JP5746387B2 (ja) 光学用フィルム
JPWO2014041803A1 (ja) アクリル系樹脂フィルム
JP6670236B2 (ja) 光学用樹脂組成物およびフィルム
US20170031058A1 (en) Optical resin composition and film
JP5260165B2 (ja) 光学フィルム
JP6594207B2 (ja) 光学用樹脂組成物、およびフィルム
KR102524695B1 (ko) 높은 유리 전이 온도를 갖는 수지 성분을 기반으로 한 투명 필름
US10174191B2 (en) Resin material and film thereof
JP5965612B2 (ja) 光学フィルム及びその製造方法
JP7040515B2 (ja) 熱可塑性樹脂積層延伸フィルム
KR20200024714A (ko) 표면 보호 필름용 기재, 그 기재의 제조 방법, 그 기재를 사용한 표면 보호 필름, 및 표면 보호 필름 부착 광학 필름
JP2009227905A (ja) 二軸配向アクリル樹脂フィルム
KR20140023825A (ko) 인성이 우수한 아크릴계 광학 필름 및 이를 포함하는 박형 편광판

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP