Nothing Special   »   [go: up one dir, main page]

WO2022011535A1 - Techniques for radio access technology concurrence for premises equipment - Google Patents

Techniques for radio access technology concurrence for premises equipment Download PDF

Info

Publication number
WO2022011535A1
WO2022011535A1 PCT/CN2020/101796 CN2020101796W WO2022011535A1 WO 2022011535 A1 WO2022011535 A1 WO 2022011535A1 CN 2020101796 W CN2020101796 W CN 2020101796W WO 2022011535 A1 WO2022011535 A1 WO 2022011535A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
channel
ghz
frequency
premises equipment
Prior art date
Application number
PCT/CN2020/101796
Other languages
French (fr)
Inventor
Francis Ngai
Devdutt PATNAIK
Shaofeng Wang
Rohit TRIPATHI
Rongliang YANG
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/101796 priority Critical patent/WO2022011535A1/en
Publication of WO2022011535A1 publication Critical patent/WO2022011535A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0226Traffic management, e.g. flow control or congestion control based on location or mobility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the following relates to wireless communications, including techniques for radio access technology concurrence for premises equipment.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Premises devices configured to provide fixed wireless access to an area or premises and may support backhaul communication links with a base station in addition to communication links with UEs.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for radio access technology (RAT) concurrence for premises equipment.
  • the described techniques provide for interference avoidance between a backhaul communication link and communication links with a user equipment (UE) or multiple UEs in the context of Fixed Wireless Access (FWA) at a premises equipment.
  • a premises equipment e.g., Customer Premise Equipment (CPE)
  • CPE Customer Premise Equipment
  • a backhaul communication link e.g., 5G communication link
  • communication links e.g., Wi-Fi communication links
  • the premises equipment may perform a channel avoidance procedure to select a channel for Wi-Fi communications.
  • the channel avoidance procedure may include applying operation settings to one or more radios to avoid channels which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs.
  • a method of wireless communication may include identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identifying that the backhaul communication link operates using a first frequency band based on identifying the location, identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicating with the UE using the channel within the second frequency band based on selecting the channel.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the
  • the apparatus may include means for identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identifying that the backhaul communication link operates using a first frequency band based on identifying the location, identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicating with the UE using the channel within the second frequency band based on selecting the channel.
  • a non-transitory computer-readable medium storing code for wireless communication is described.
  • the code may include instructions executable by a processor to identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the second frequency subband.
  • applying the channel avoidance parameter further may include operations, features, means, or instructions for reducing a probability that one or more channels in the second frequency subband may be selected for the communication link.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the second frequency subband.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that may be associated with the channel based on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the third frequency subband.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band, identifying a target bandwidth of the channel based on identifying that the premises equipment communicates according the SBS operation, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel may be based on identifying that the frequency distance satisfies the threshold.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for communicating, based on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment may be based on receiving the indication.
  • identifying the location of the premises equipment may include operations, features, means, or instructions for identifying a country where the premises equipment may be located.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment may be based on receiving the indication.
  • the first radio access technology includes 5G
  • the second radio access technology includes Wi-Fi
  • the second frequency band may be separated from the first frequency band by a guard band.
  • the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz
  • the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz
  • the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • the first frequency subband includes a U-NII subband.
  • FIG. 1 illustrates an example of a wireless communications system that supports techniques for radio access technology (RAT) concurrence for premises equipment in accordance with aspects of the present disclosure.
  • RAT radio access technology
  • FIG. 2 illustrates an example of a wireless communications system that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a resource allocation that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIG. 4 illustrates an example of a process flow that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • FIGs. 9 through 11 show flowcharts illustrating methods that support techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • Deploying wireline broadband networks may use high capital expenditure and mid to long term investment. In particular, few hundred meters of last mile deployment can be an obstacle for wireline broadband technologies.
  • a solution to last mile deployment is Fixed Wireless Access (FWA) .
  • FWA e.g., Fifth Generation (5G) FWA
  • 5G FWA Fifth Generation
  • 5G FWA can provide a level of service bandwidth capacity comparable to fiber optics.
  • CPE Customer Premise Equipment
  • a CPE may include a wireless backhaul unit that establishes a backhaul communication link (e.g., 5G communication link) with broadband network (e.g., 5G network) , and a wireless network unit (e.g., a Wi-Fi router) that establishes communication links with UEs within a premises.
  • a wireless backhaul unit that establishes a backhaul communication link (e.g., 5G communication link) with broadband network (e.g., 5G network)
  • a wireless network unit e.g., a Wi-Fi router
  • Two example implementations of CPEs include: (1) an implementation with an external backhaul antenna, and (2) an implementation where both the backhaul antenna and the network antenna are included within a single CPE device.
  • the frequency bands used for the backhaul communication link and the wireless network are close enough together, they may interfere with each other and thereby reduce performance.
  • communications associated with the backhaul communication link may interfere with communications associated with the communication link with the UEs.
  • a premises equipment e.g., CPE
  • CPE CPE
  • a backhaul communication link e.g., 5G communication link
  • base station e.g., Wi-Fi communication links
  • the premises equipment may perform a channel avoidance procedure to select a channel for Wi-Fi communications.
  • the channel avoidance procedure may include applying channel avoidance parameters to one or more channels that are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs.
  • the premises equipment may apply channel avoidance parameters to one or more subbands, channels, or both, where the channel avoidance parameters reduce the likelihood that the respective subbands, channels, or both, are selected for Wi-Fi communications.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are additionally described in the context of an example resource allocation and an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for radio access technology (RAT) concurrence for premises equipment.
  • RAT radio access technology
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given RAT (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • a radio frequency spectrum band e.g., a bandwidth part (BWP)
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different RAT) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular RAT (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the UEs 115, base stations 105, and other wireless communication devices of the wireless communications system 100 may support channel avoidance techniques in the context of FWA.
  • a premises equipment e.g., CPE
  • CPE CPE
  • the premises equipment may be configured to establish communication links with a base station 105 and one or more UEs 115 of the wireless communications system 100 in order to provide FWA.
  • the premises equipment may be configured to establish a backhaul communication link (e.g., 5G communication link) with the base station 105 of the wireless communications system 100, and may be further configured to establish one or more communication links (e.g., Wi-Fi communication links) with one or more UEs 115 of the wireless communications system 100.
  • a backhaul communication link e.g., 5G communication link
  • one or more communication links e.g., Wi-Fi communication links
  • the backhaul communication link may operate using a first frequency band (e.g., N79 frequency band)
  • the communication links with the UEs 115 may operate using a second frequency band (e.g., wireless local area network (WLAN) 5 GHz band) .
  • WLAN wireless local area network
  • the premises device of the wireless communications system 100 may be configured to determine whether there is a possibility of interference between the backhaul communication link with the base station 105 and the communication links with the UEs 115.
  • the premises equipment may determine that the backhaul communion link operating in the first communication band and the communication links operating in the second communication band operate concurrently, and may thereby identify a possibility of interference between the respective communication links.
  • the premises equipment of the wireless communications system 100 may perform a channel avoidance procedure to select a channel for the Wi-Fi communications.
  • the channel avoidance procedure may include applying channel avoidance parameters to one or more subbands and/or channels of the second frequency band associated with the Wi-Fi communications which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs 115.
  • the premises equipment may perform concurrent communications with the base station 105 and the UEs 115 over the backhaul communication link and the communication links, respectively.
  • Techniques described herein may improve the performance and reliability of the premises equipment (e.g., CPE) in the context of FWA.
  • the premises equipment e.g., CPE
  • techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105 and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with UEs 115 supported by the premises equipment.
  • a backhaul communication link e.g., 5G link
  • a communication link e.g., Wi-Fi link, WLAN 5 GHz link
  • techniques described herein may enable the premises equipment of the wireless communications system 100 to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment, thereby providing reliable FWA.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • the wireless communications system 200 may include a base station 105-a, a premises equipment 205-a, a first UE 115-a, and a second UE 115-b.
  • the base station 105-a and the UEs 115-a and 115-b may be examples of base stations 105 and UEs 115, as described with reference to FIG. 1.
  • the premises equipment 205-a of the wireless communications system 200 may be configured to provide FWA to a premises 240.
  • the premises equipment 205-a may communicate with the base station 105-a using a backhaul communication link 210 (e.g., 5G communication link) .
  • the backhaul communication link 210 may include an example of an access link (e.g., a Uu link) .
  • the backhaul communication link 210 may include a bi-directional link that can include both uplink and downlink communication.
  • the premises equipment 205-a may transmit uplink transmissions, such as uplink messages or uplink signals, to the base station 105-a using the backhaul communication link 210 and the base station 105-a may transmit downlink transmissions, such as downlink messages or downlink signals, to the premises equipment 205-a using the backhaul communication link 210.
  • the premises equipment 205-a may establish the backhaul communication link 210 for communications with the base station 105-a using a first RAT (RAT) .
  • the backhaul communication link 210 may include a 5G communication link configured for 5G communications between the premises equipment 205-a and the base station 105-a.
  • the backhaul communication link 210 may operate using a first frequency band.
  • the first frequency band may include a licensed frequency band, such as an N79 frequency band.
  • the first frequency band associated with the backhaul communication link 210 may include a licensed frequency band between 4.4 GHz and 5 GHz.
  • the premises equipment 205-a may additionally communicate with the first UE 115-a, the second UE 115-b, or both, using a communication link 215 (e.g., Wi-Fi communication link) .
  • the communication link 215 may include a bi-directional link that can include both uplink and downlink communication.
  • the premises equipment 205-a may establish the communication link 215 for communications with the UE 115-a and 115-b using a second RAT.
  • the communication link 215 may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-a and the UEs 115.
  • the communication link 215 may operate using a second frequency band that is different from the first frequency band associated with the backhaul communication link 210.
  • the first frequency band and the second frequency band may include adjacent frequency bands, and may be separated via a guard band.
  • the second frequency band may include a WLAN 5 GHz band.
  • the second frequency band associated with the communication link 215 may include an unlicensed frequency band.
  • the premises equipment 205-a may be configured to provide FWA a premises 240.
  • the premises equipment 205-a may be configured to provide FWA to UEs 115 (e.g., first UE 115-a, second UE 115-b) located within the premises 240.
  • the premises 240 may include any premises including, but not limited to, residential premises (e.g., house, apartment, condo) , commercial premises (e.g., building, apartment complex, hotel) , public premises (e.g., parks, malls, schools) , or any combination thereof.
  • the premises equipment 205-a may include a wireless backhaul unit 220, a wireless network unit 225, a backhaul antenna 235-a, and a network antenna 235-b.
  • the various components of the premises equipment 205-a may be communicatively coupled to one another via wireline or wireless communication links.
  • the premises equipment 205-a may be configured to establish and communicate via the backhaul communication link 210 via the wireless backhaul unit 220 and the backhaul antenna 235-a.
  • the wireless backhaul unit 220 may include a modem (e.g., 5G modem) .
  • the premises equipment 205-a may be configured to establish and communicate via the communication link 215 via the wireless network unit 225 and the network antenna 235-b.
  • the wireless network unit 225 may include a Wi-Fi router.
  • the wireless backhaul unit 220, the wireless network unit 225, the backhaul antenna 235-a, and the network antenna 235-b may be disposed within the same housing.
  • the premises equipment 205-a may include a single component (e.g., single unit) that houses the components to provide FWA to a premises.
  • the various components of the premises equipment 205-a may be located within two or more housings.
  • the wireless backhaul unit 220 and/or the backhaul antenna 235-a may be disposed within a first housing
  • the wireless network unit 225 and the network antenna 235-b may be disposed within a second housing.
  • the components of the first housing and the components of the second housing may be communicatively coupled via a wireline connection.
  • the first housing including the wireless backhaul unit 220 and/or the backhaul antenna 235-a may be positioned on an exterior (e.g., outside) of a structure (e.g., building) of the premises 240
  • the second housing including the wireless network unit 225 and the network antenna 235-b may be positioned on an interior (e.g., inside) of the structure of the premises.
  • Splitting the components of the premises equipment 205-a up into two or more housings may provide for increased physical separation between the backhaul antenna 235-aand the network antenna 235-b. Such physical separation may reduce the likelihood of interference between the backhaul communication link 210 and the communication link 215.
  • such an implementation may lead to several drawbacks, including increased installation complexity installing the various components/housings of the premises equipment 205-a and increased manufacturing costs.
  • the single-housing premises equipment 205-a illustrated in FIG. 2 may be desirable in that it may reduce installation complexity and manufacturing costs as compared to a multi-housing premises equipment.
  • the single-housing premises equipment 205-a may lead to a reduced physical separation between the backhaul antenna 235-a and the network antenna 235-a, thereby increasing the likelihood of interference between the backhaul communication link 210 and the communication link 215. Left unmanaged, such interference may lead to unreliable FWA.
  • the premises equipment 205-a of the wireless communications system 200 may support channel avoidance techniques between the backhaul communication link 210 and the communication link 215 in order to provide efficient, reliable FWA. While the channel avoidance techniques described herein are primarily shown and described in the context of a single-housing premises equipment 205-a, such techniques may additionally be applied in the context of multi-housing premises equipment 205-a.
  • the premises equipment 205-a may be configured to determine whether there is a possibility of interference between the backhaul communication link 210 (e.g., 5G communication link) with the base station 105-a and the communication link 215 (e.g., Wi-Fi communication link) with one or more UEs 115 (e.g., first UE 115-a, second UE 115-b) .
  • the premises equipment 205-a may perform a channel avoidance procedure to select a channel for Wi-Fi communications over the communication link 215.
  • the channel avoidance procedure may include applying channel avoidance parameters to one or more channels which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs 115.
  • the premises equipment 205-a may apply channel avoidance parameters to one or more subbands, channels, or both, where the channel avoidance parameters reduce the likelihood that the respective subbands, channels, or both, are selected for Wi-Fi communications.
  • Techniques described herein may improve the performance and reliability of the premises equipment 205-a (e.g., CPE) in the context of FWA.
  • techniques described herein may reduce or eliminate potential interference between the backhaul communication link 210 (e.g., 5G link) with the base station 105-a and the communication link 215 (e.g., Wi-Fi link, WLAN 5 GHz link) with the UEs 115-a and 115-b supported by the premises equipment 205-a.
  • techniques described herein may enable the premises equipment 205-a to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205-a, thereby providing reliable FWA.
  • FIG. 3 illustrates an example of a resource allocation 300 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • resource allocation 300 may implement, or be implemented by, aspects of wireless communications systems 100 and 200.
  • a premises equipment 205 may provide FWA to one or more UEs 115 by establishing a backhaul communication link with a base station 105 and establishing a communication link with the one or more UEs 115.
  • the premises equipment 205 may establish the backhaul communication link for communications with the base station 105 over the first frequency band 305-a using a first RAT.
  • the backhaul communication link may include a 5G communication link configured for 5G communications between the premises equipment 205-b and the base station 105-b.
  • the first frequency band 305-aassociated with the backhaul communication link may include a licensed frequency band, such as an N79 frequency band.
  • the first frequency band 305-a may include a licensed frequency band between 4.4 GHz and 5 GHz.
  • the premises equipment 205 may additionally identify that a communication link between the premises equipment 205 and the UE 115 operates using a second frequency band 305-b. In some aspects, the premises equipment 205 may identify that the communication link associated with the second frequency band 305-b is operate concurrently with the backhaul communication link operated using the first frequency band 305-a. In some aspects, the premises equipment 205 may establish the communication link for communications with the UE 115-c associated with the second frequency band 305-b using a second RAT. For example, the communication link may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-b and the UE 115-c. In some aspects, the second frequency band 305-b may include a WLAN 5 GHz band. In some aspects, the second frequency band 305-b associated with the communication link with the UE 115-c may include an unlicensed frequency band.
  • the second frequency band 305-b (e.g., WLAN 5 GHz band) may be separated from the first frequency band 305-a (e.g., N79 band) by a guard band 310.
  • the second frequency band 305-b may be separated from the first frequency band 305-a by a frequency between 5 GHz and 5.150 GHz.
  • the second frequency band 305-b may include one or more subbands 315.
  • the composition of the second frequency band 305-b may be dependent upon a location of the premises equipment 205.
  • the second frequency band 305-b may include a subband 315-b, a subband 315-c, and a subband 315-d.
  • composition of the second frequency band 305-b of Location 1 illustrated in FIG. 3 may include an example resource allocation of the second frequency band 305-b in Japan.
  • the second frequency band 305-b may include a subband 315-a, a subband 315-b, a subband 315-c, and a subband 315-d.
  • composition of the second frequency band 305-b of Location 2 illustrated in FIG. 3 may include an example resource allocation of the second frequency band 305-b in China.
  • the premises equipment 205 may be configured to determine a location of the premises equipment 205 such that the premises equipment 205 may determine a composition of the second frequency band 305-b dependent upon the location.
  • the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.725 GHz.
  • the second frequency band 30–5b may include a U-NII-1 subband (e.g., subband 315-d) , a U-NII-2A subband (e.g., subband 315-c) , and a U-NII-2C subband (e.g., subband 315-b) .
  • the second frequency band 305-b may include a first frequency subband 315-b between 5.470 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a second frequency subband 315-c between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a third frequency subband 315-d between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
  • a first frequency subband 315-b between 5.470 GHz and 5.725 GHz
  • a second frequency subband 315-c between 5.25 GHz and 5.35 GHz
  • U-NII-2A subband e.g., U-NII-2A subband
  • a third frequency subband 315-d between 5.15 GHz and 5.25 GHz
  • the second frequency band 305-b may include an unlicensed frequency band between 5.150 GHz and 5.850 GHz. Furthermore, in cases where the premises equipment 205 is located in Location 2, the second frequency band 305-b may include a U-NII-1 subband, a U-NII-2A subband, a U-NII-2C subband, and a U-NII-3 subband.
  • the second frequency band 305-b may include a first frequency subband 315-a between 5.725 GHz and 5.85 GHz (e.g., U-NII-3 subband) , a second frequency subband 315-b between 5.47 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a third frequency subband 315-c between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a fourth frequency subband 315-dbetween 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
  • a first frequency subband 315-a between 5.725 GHz and 5.85 GHz e.g., U-NII-3 subband
  • a second frequency subband 315-b between 5.47 GHz and 5.725 GHz
  • a third frequency subband 315-c between 5.25 GHz and 5.35 GHz
  • U-NII-2A subband e.g
  • each subband 315 which is available (e.g., open) in a given location will be selected for Wi-Fi communications.
  • the probability of selecting the subband 315-d for Wi-Fi communications may be equal to the probabilities of selecting the subbands 315-c and 315-d, respectively.
  • the subbands 315-d and 315-c may be more susceptible to interference as compared to the subband 315-b.
  • subband 315-b may be the most desirable for Wi-Fi communications in Location 1.
  • subband 315-a may be most desirable for Wi-Fi communications in Location 2.
  • subband 315-d may be second most desirable for Wi-Fi communications in Location 2 despite the close proximity to the N79 band. This may be due to various communication parameters of subband 315-d.
  • the priority ranking for Wi-Fi communications in Location 2 may be subband 315-a then subband 315-d, followed by subband 315-b and subband 315-b.
  • the premises equipment 205 may be configured to perform channel avoidance procedures.
  • the premises equipment 205 may identify an operational state of the second frequency band 305-b.
  • Operational states of the second frequency band 305-b may include, but are not limited to, full-band operation, single-band simultaneous (SBS) operation, and the like.
  • the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using one channel in the second frequency band 305-b according to a full band operation associated with the second frequency band 305-b.
  • the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using two channels (e.g., a first channel and a second channel) in the second frequency band 305-b according to an SBS operation associated with the second frequency band 305-b.
  • the two channels may be associated with the same subband 315 within the second frequency band 305-b, or in different subbands 315 of the second frequency band 305-b.
  • the first channel may be associated with (e.g., included within) a first frequency subband 315-a
  • the second channel may be associated with (e.g., included within) a second frequency subband 315-b.
  • the premises equipment 205 may additionally identify a target bandwidth of a channel in the respective subbands 315.
  • the premises equipment 205 may identify the target bandwidth of the channel based on identifying that the premises equipment 205 communicates according to an SBS operation at 425.
  • the target bandwidth may include 80 MHz, 40 MHz, or 20 MHz.
  • the premises equipment 205 may identify a frequency distance (e.g., bandwidth of the guard band 310) between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) .
  • the premises equipment 205 may identify a frequency distance between a first limit (e.g., upper frequency limit) of the first frequency band 305-a, and a second limit (e.g., lower frequency limit) of the second frequency band 305-b.
  • a first limit e.g., upper frequency limit
  • a second limit e.g., lower frequency limit
  • the premises equipment 205 may perform a channel avoidance procedure associated with the second frequency band 305-b. In some aspects, the premises equipment 205 may perform the channel access procedure to eliminate or reduce a likelihood of interference or noise associated with communications over the backhaul communication link with the base station 105 and the communication link with the UEs 115. Accordingly, in some aspects, the premises equipment 205 may perform the channel avoidance procedure based on identifying the location of the premises equipment, identifying the backhaul communication link, identifying the communication link with the UEs 115, determining the backhaul communication link and the communication link are operated concurrently, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth, or any combination thereof.
  • the channel performance procedure may include any algorithms, procedures, or techniques which adjust the likelihood (e.g., probability) that given subbands 315, channels within the respective subband 315, or both, associated with the second frequency band 305-b will be selected for communications with the UE 115 over the communication link.
  • the channel avoidance procedure may be used to decrease the probability that subbands 315 and/or channels which are more likely to suffer interference attributable to the backhaul communication link will be selected for communications with the UE 115 over the communication link.
  • the channel avoidance procedure may, in effect, increase a probability that a given subband 315 and/or channel which is less susceptible to interreference will be selected for communications over the communication link with the UE 115.
  • the premises equipment 205 may apply channel avoidance parameters to one or more subbands 315 (e.g., subband 315-d, subband 315-c) of the second frequency band 305-b.
  • the premises equipment 205 may apply the channel avoidance parameters based on identifying that the communication link operates using the second frequency band 305-b concurrently with the backhaul communication link operating using the first frequency band 305-a.
  • the channel avoidance parameters may be configured to reduce the likelihood (e.g., probability) that the frequency subbands 315-d and 315-c will be selected for communications with the UE 115.
  • the premises equipment 205 may identify that the frequency subbands 315-d and 315-c may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameters to the subbands 315-d and 315-c of the second frequency band 305-b to reduce the probability that the subbands 315-d and 315-c will be selected for communications with the UE 115 over the communication link.
  • the channel avoidance procedure may increase a likelihood (e.g., probability) that the subband 315-b will be selected for communications with the UE 115.
  • the premises equipment 205 may apply channel avoidance parameters to one or more subbands 315 (e.g., subband 315-d, subband 315-c, and subband 315-b) of the second frequency band 305-b.
  • the channel avoidance parameters may be configured to reduce the likelihood (e.g., probability) that the frequency subbands 315-d, 315-c, and 315-b will be selected for communications with the UE 115.
  • the premises equipment 205 may identify that the frequency subbands 315-d, 315-c, and 315-b may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameters to the subbands 315-d, 315-c, and 315-b of the second frequency band 305-b to reduce the probability that the subbands 315-d, 315-c, and 315-b will be selected for communications with the UE 115 over the communication link.
  • the channel avoidance procedure may increase a likelihood (e.g., probability) that the subband 315-a will be selected for communications with the UE 115.
  • the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using one channel in the frequency band 305-b according to a full-band operation associated with the second frequency band 305-b.
  • the premises equipment 205 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more frequency subbands 315 (e.g., U-NII-1 subband, U-NII-2A subband, U-NII-2C subband) of the second frequency band 305-b based on identifying that the premises equipment 205 communicates according to the full-band operation.
  • a channel avoidance parameter e.g., U-NII-1 subband, U-NII-2A subband, U-NII-2C subband
  • the premises equipment 205 may reduce a probability that the one or more frequency subbands 315 will be selected for the communication link based on identifying the full-band operation. For instance, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) and determines full-band operation, the premises equipment 205 may apply channel avoidance parameters to the subband 315-d (e.g., U-NII-1 subband) , the subband 315-c (e.g., U-NII-2A subband) , or both, but not to the subband 315-b (e.g., U-NII-2C subband) .
  • the subband 315-d e.g., U-NII-1 subband
  • the subband 315-c e.g., U-NII-2A subband
  • the subband 315-b e.g., U-NII-2C subband
  • the premises equipment 205 may apply channel avoidance parameters to the subband 315-d (e.g., U-NII-1 subband) , the subband 315-c (e.g., U-NII-2A subband) , the subband 315-b (e.g., U-NII-2C subband) , or any combination thereof, but not to the subband 315-a (e.g., U-NII-3 subband) .
  • the subband 315-d e.g., U-NII-1 subband
  • the subband 315-c e.g., U-NII-2A subband
  • the subband 315-b e.g., U-NII-2C subband
  • the subband 315-a e.g., U-NII-3 subband
  • the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using two channels in the second frequency band 305-b according to an SBS operation associated with the second frequency band 305-b, where a first channel is in a first frequency subband 315 of the second frequency band 305-b and a second channel is in a second frequency subband 315 of the second frequency band 305-b.
  • the premises equipment 205 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband 315 of the second frequency band 305-b based on identifying that the premises equipment 205 communicates according to the SBS operation.
  • the premises equipment 205 may apply channel avoidance parameters to the subband 315-d, but not to the subband 315-c.
  • the premises equipment 205 may apply channel avoidance parameters to the subband 315-d, but not to the subband 315-c.
  • the premises equipment 205 may apply channel avoidance parameters to the subband 315-b, but not to the subband 315-a.
  • the premises equipment 205 may apply one or more channel avoidance parameters based on an identified target bandwidth of a channel in the second frequency band 305-b. For example, the premises equipment 205 may identify SBS operation of the second frequency band 305-b, and may identify a target bandwidth of a channel in the second frequency band 305-b based on the SBS operation. In this example, the premises equipment may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of a first frequency band 305-b based on identifying the target bandwidth of the channel.
  • the premises equipment 205 may apply channel avoidance parameters to Channels 118, 126, 116, 120, 124, and 128 (e.g., smaller channels within Channel 122) within the subband 315-c, but not to the Channel 122 within the subband 315-b (e.g., the highest 80 MHz channel in U-NII-2C) .
  • channel avoidance parameters e.g., smaller channels within Channel 122
  • the premises equipment 205 may apply channel avoidance parameters to Channels 132 and 136 (e.g., smaller channels within Channel 134) within the subband 315-c, but not to the Channel 134 within the subband 315-b (e.g., the highest 40 MHz channel in U-NII-2C) .
  • the premises equipment 205 may apply channel avoidance parameters to all channels except Channel 140 within the subband 315-b (e.g., the highest 20 MHz channel in U-NII-2C) .
  • the premises equipment 204 may select a channel in a frequency subband 315 of the second frequency band 305-b for the communication link based on (e.g., using) the channel avoidance procedure.
  • the premises equipment 205 may select the channel in the frequency subband 315 based on identifying the location of the premises equipment 205, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof.
  • the premises equipment 205 may select the channel in the frequency subband 315 based on identifying that the communication link operates using the second frequency band 305-b concurrently with the backhaul communication link operating using the first frequency band 305-a.
  • the premises equipment 205 may select the channel in the frequency subband 315 (e.g., first frequency subband 315) of the second frequency band 305-b based on applying one or more channel avoidance parameters to one or more other frequency subbands 315 (e.g., second frequency subband 315, third frequency subband 315) . of the second frequency band 305-b. Moreover, in additional or alternative aspects, the premises equipment 205 may select the channel in the first frequency subband 315 based on applying one or more channel avoidance parameters to one or more other channels in the first frequency subband 315.
  • the premises equipment 205 may select the channel in the first frequency subband 315 based on applying one or more channel avoidance parameters to one or more other channels in the first frequency subband 315.
  • the premises equipment 205 may select the channel in the frequency subband 315 of the second frequency band 305-b based on determining a frequency distance between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) satisfies a threshold. For example, as noted previously herein, the premises equipment 205 may identify a frequency distance (e.g., bandwidth of a guard band 310) between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) .
  • a frequency distance e.g., bandwidth of a guard band 310
  • the premises equipment 205 may compare the frequency distance to a threshold, and select the channel based on determining that the frequency distance satisfies a threshold. In some cases, the premises equipment 205 may determine that the frequency distance satisfies the threshold when the frequency distance is greater than the threshold.
  • the premises equipment 205 may communicate with the UE 115 using the selected channel of the frequency subband 315 within the second frequency band 305-b. In some aspects, the premises equipment 205 may communicate with the UE 115 using the selected channel within the second frequency band 305-b based on identifying the location of the premises equipment, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof.
  • the premises equipment 205 may communicate with the base station 105 using the backhaul communication link in the first frequency band 305-a. In some aspects, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link based on selecting the channel of the second frequency band 305-b. Moreover, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link based on identifying the location of the premises equipment 205, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof.
  • the premises equipment 205 may communicate with the UE 115 and the base station 105 concurrently.
  • the communications with the UE 115 over the communication link and the communications with the base station 105 over the backhaul communication link may occur concurrently such that the communications at least partially overlap in the time domain.
  • the premises equipment 205 may communicate with the base station 105 using the backhaul communication link in the first frequency band 305-a during a first duration, and may communicate with the UE 115 using the communication link in the second frequency band 305-b during a second duration.
  • the first duration may at least partially overlap with the second duration such that the communications with the UE 115 and the base station 105 take place concurrently during the duration of the overlap between the first duration and the second duration.
  • Techniques described herein may improve the performance and reliability of the premises equipment 205 (e.g., CPE) in the context of FWA.
  • techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105 and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with a UE 115 supported by the premises equipment 205.
  • a backhaul communication link e.g., 5G link
  • a communication link e.g., Wi-Fi link, WLAN 5 GHz link
  • techniques described herein may enable the premises equipment 205 to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205, thereby providing reliable FWA.
  • FIG. 4 illustrates an example of a process flow 400 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • process flow 400 may implement, or be implemented by, aspects of wireless communications systems 100 and 200, or resource allocation 300.
  • the process flow 400 may illustrate determining a location of a premises equipment, identifying a backhaul communication link associated with a base station and a communication link associated with a UE, performing a channel avoidance procedure, and selecting a channel for communications with the UE based on performing the channel avoidance procedure, as described with reference to FIGs. 1–3, among other aspects.
  • process flow 400 may include a premises equipment 205-b, a UE 115-c, and a base station 105-b, which may be examples of corresponding devices as described herein.
  • the premises equipment 205-b illustrated in FIG. 4 may be an example of the premises equipment 205-a illustrated in FIG. 2.
  • the UE 115-b and the base station 105-b illustrated in FIG. 4 may be examples of the UE 115-a and 115-b, and the base station 105-a illustrated in FIG. 2, respectively.
  • process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof.
  • code e.g., software or firmware
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the premises equipment 205-b (e.g., CPE) illustrated in FIG. 4 may be configured to provide FWA to a premises including, but not limited to, residential premises (e.g., house, apartment, condo) , commercial premises (e.g., building, apartment complex, hotel) , public premises (e.g., parks, malls, schools) , or any combination thereof.
  • residential premises e.g., house, apartment, condo
  • commercial premises e.g., building, apartment complex, hotel
  • public premises e.g., parks, malls, schools
  • the premises equipment 205-b may be configured to establish a backhaul communication link (e.g., 5G communication link) for communications with the base station 105-b using a first RAT (e.g., 5G) , and may be configured to establish a communication link (e.g., Wi-Fi communications link) for communications with the UE 115-c using a second RAT (e.g., Wi-Fi) .
  • a backhaul communication link e.g., 5G communication link
  • a first RAT e.g., 5G
  • a communication link e.g., Wi-Fi communications link
  • premises equipment 205-b may receive an indication of a location of the premises equipment 205-b from the base station 105-b.
  • the indication of the location may indicate a city, state, region, territory, or country in which the premises equipment 205-b is located.
  • the premises equipment 205-b may additionally or alternatively receive an indication of the location of the premises equipment 205-b from one or more other communication devices.
  • the premises equipment 205-b may receive an indication of the location of the premises equipment 205-b from a server.
  • the premises equipment 205-b may receive an indication of the location of the premises equipment 205-b from a server of the wireless communications system 100 illustrated in FIG. 1.
  • a parameter a parameter or software property on the CPE itself may be statically set so that it specifies the location of the CPE.
  • ways of reading/retrieving the permitted frequency bands usable in that location could be done statically or via a network/location database query.
  • the premises equipment 205-b may identify a location of the premises equipment 205-b.
  • the premises equipment 205-b may identify a city, state, region, territory, or country in which the premises equipment 205-b is located. For example, in some cases, the premises equipment 205-b may determine that it is located in China. In other cases, the premises equipment 205-b may determine that it is located in Japan. In some aspects, the premises equipment 205-b may determine the location at 410 based on the indication of the location received from the base station 105-b or other wireless communications device at 405.
  • the premises equipment 205-b may identify that a backhaul communication link between the premises equipment 205-b and the base station 105-b operates using a first frequency band.
  • the premises equipment 205-b may identify that the backhaul communication link operates using the first frequency band based on identifying the location of the premises equipment at 410.
  • the premises equipment 205-b may identify that the backhaul communication link (e.g., 5G communication link) operates using an N79 frequency band based on identifying that the premises equipment is located in Japan or China.
  • the premises equipment 205-b may establish the backhaul communication link for communications with the base station 105-b using a first RAT.
  • the backhaul communication link may include a 5G communication link configured for 5G communications between the premises equipment 205-b and the base station 105-b.
  • the first frequency band associated with the backhaul communication link may include a licensed frequency band.
  • the first frequency band may include a licensed frequency band between 4.4 GHz and 5 GHz.
  • the premises equipment 205-b may identify that a communication link between the premises equipment 205-b and the UE 115-c operates using a second frequency band. In some aspects, the premises equipment 205-b may identify that the communication link associated with the second frequency band is operate concurrently with the backhaul communication link. In some aspects, the premises equipment 205-b may identify that the communication link operates using the second frequency band based on identifying that the backhaul communication link operates using the first frequency band at 415, identifying the location of the premises equipment 205-b at 410, or both.
  • the premises equipment 205-b may establish the communication link for communications with the UE 115-c using a second RAT.
  • the communication link may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-b and the UE 115-c.
  • the second frequency band may include a WLAN 5 GHz band.
  • the second frequency band associated with the communication link with the UE 115-c may include an unlicensed frequency band.
  • the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.850 GHz.
  • the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.725 GHz.
  • the second frequency band (e.g., WLAN 5 GHz band) may be separated from the first frequency band (e.g., N79 band) by a guard band.
  • the second frequency band may be separated from the first frequency band by a frequency between 5 GHz and 5.150 GHz.
  • the second frequency band may include one or more subbands.
  • the one or more subbands may include one or more U-NII bands.
  • the second frequency band may include a U-NII-a subband, a U-NII-2A subband, and a U-NII-2C subband.
  • the second frequency band may include a first frequency subband between 5.470 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a second frequency subband between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a third frequency subband between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
  • the second frequency band may include a U-NII-1 subband, a U-NII-2A subband, a U-NII-2C subband, and a U-NII-3 subband.
  • the second frequency band may include a first frequency subband between 5.725 GHz and 5.85 GHz (e.g., U-NII-3 subband) , a second frequency subband between 5.47 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a third frequency subband between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a fourth frequency subband between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
  • the premises equipment 205-b may identify an operational state of the second frequency band.
  • Operational states of the second frequency band may include, but are not limited to, full-band operation, SBS operation, and the like.
  • the premises equipment may identify that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using one channel in the second frequency band according to a full band operation associated with the second frequency band.
  • the premises equipment 205-b may identify that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using two channels (e.g., a first channel and a second channel) in the second frequency band according to an SBS operation associated with the second frequency band.
  • the two channels may be associated with the same subband within the second frequency band, or in different subbands of the second frequency band.
  • the first channel may be associated with (e.g., included within) a first frequency subband
  • the second channel may be associated with (e.g., included within) a second frequency subband.
  • the premises equipment 205-b may identify a target bandwidth of a channel of the second frequency subband.
  • the premises equipment 205-b may identify the target bandwidth of the channel based on identifying that the premises equipment 205-b communicates according to an SBS operation at 425.
  • the target bandwidth may include 80 MHz, 40 MHz, or 20 MHz.
  • the premises equipment 205-b may identify a frequency distance (e.g., guard band) between the first frequency band (e.g., N79 band) and the second frequency band (e.g., WLAN 5 GHz band) .
  • the premises equipment 205-b may identify a frequency distance between a first limit (e.g., upper frequency limit) of the first band, and a second limit (e.g., lower frequency limit) of the second frequency band.
  • the premises equipment 205-b may perform a channel avoidance procedure associated with the second frequency band.
  • the premises equipment 205-b may perform the channel access procedure to eliminate or reduce a likelihood of interference or noise associated with communications over the backhaul communication link with the base station 105-b and the communication link with the UE 115-c.
  • the premises equipment 205-b may perform the channel avoidance procedure based on identifying the location of the premises equipment at 410, identifying the backhaul communication link at 415, identifying the communication link at 420, determining the backhaul communication link and the communication link are operated concurrently, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, or any combination thereof.
  • the channel performance procedure may include any algorithms, procedures, or techniques which adjust the likelihood (e.g., probability) that given subbands, channels, or both, associated with the second frequency band will be selected for communications with the UE 115-c over the communication link.
  • the channel avoidance procedure may be used to decrease the probability that subbands and/or channels which are more likely to suffer interference attributable to the backhaul communication link will be selected for communications with the UE 115-c over the communication link.
  • the channel avoidance procedure may, in effect, increase a probability that a given subband and/or channel which is less susceptible to interreference will be selected for communications over the communication link with the UE 115-c.
  • the premises equipment 205-b may apply a channel avoidance parameter to a second frequency subband of the second frequency band.
  • the premises equipment 205-b may apply the channel avoidance parameter based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the channel avoidance parameter may be configured to reduce the likelihood (e.g., probability) that the second frequency subband will be selected for communications with the UE 115-c.
  • the premises equipment 205-c may identify that the second frequency subband may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameter to the second frequency subband to reduce the probability that the second frequency subband will be selected for communications with the UE 115-c over the communication link.
  • the premises equipment 205-b may identify (at 425) that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using one channel in the second frequency band according to a full-band operation associated with the second frequency band.
  • the premises equipment 205-c may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband (e.g., U-NII-1 subband, U-NII-2A subband, U-NII-2C subband) of the second frequency band based on identifying that the premises equipment 205-b communicates according to the full-band operation.
  • the premises equipment 205-b may reduce a probability that the second frequency subband will be selected for the communication link based on identifying the full-band operation.
  • the premises equipment 205-b may identify (at 425) that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using two channels in the second frequency band according to an SBS operation associated with the second frequency band, where a first channel is in a first frequency subband (e.g., U-NII-2C subband) of the second frequency band and a second channel is in a second frequency subband (e.g., U-NII-2A) of the second frequency band.
  • a first frequency subband e.g., U-NII-2C subband
  • U-NII-2A second frequency subband
  • the premises equipment 205-c may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband (e.g., U-NII-1 subband) of the second frequency band based on identifying that the premises equipment 205-b communicates according to the SBS operation.
  • the premises equipment 205-b may reduce a probability that the third frequency subband will be selected for the communication link based on identifying the SBS operation in the first and second frequency subbands.
  • the premises equipment 205-b may apply one or more channel avoidance parameters based on an identified target bandwidth of a channel in the second frequency band. For example, the premises equipment 205-b may identify SBS operation of the second frequency band at 435, and may identify a target bandwidth of a channel in the second frequency band at 430 based on the SBS operation. In this example, the premises equipment may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of a first frequency band based on identifying the target bandwidth of the channel.
  • a channel avoidance parameter may be an example of one or more operational settings of one or more radios or receive/transmit chains of the premises equipment to avoid channels that may be more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs.
  • the premises equipment 204-b may select a channel in a first frequency subband of the second frequency band for the communication link based on (e.g., using) the channel avoidance procedure.
  • the premises equipment 205-b may select the channel in the first frequency subband based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof.
  • the premises equipment 205-b may select the channel in the first frequency subband based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the premises equipment 205-b may select the channel in the first frequency subband of the second frequency band based on applying one or more channel avoidance parameters to one or more other frequency subbands (e.g., second frequency subband, third frequency subband) at 435. of the second frequency band. Moreover, in additional or alternative aspects, the premises equipment 205-b may select the channel in the first frequency subband based on applying one or more channel avoidance parameters to one or more other channels in the first frequency subband at 435.
  • one or more channel avoidance parameters e.g., second frequency subband, third frequency subband
  • the premises equipment 205-b may select the channel in the first frequency subband at 440 based on determining a frequency distance between the first frequency band (e.g., N79 band) and the second frequency band (e.g., WLAN 5 GHz band) satisfies a threshold. For example, as noted previously herein, the premises equipment 205-b may identify a frequency distance (e.g., bandwidth of a guard band) between the first frequency band (e.g., N79 band) and the second frequency band (e.g., WLAN 5 GHz band) . In this example, the premises equipment 205-b may compare the frequency distance to a threshold, and select the channel based on determining that the frequency distance satisfies a threshold. In some cases, the premises equipment 205-b may determine that the frequency distance satisfies the threshold when the frequency distance is greater than the threshold.
  • a frequency distance e.g., N79 band
  • the second frequency band e.g., WLAN 5 GHz band
  • the premises equipment 205-b may communicate with the UE 115-c using the channel of the first frequency subband within the second frequency band.
  • the premises equipment 205-b may communicate with the UE 115-c using the channel within the second frequency band based on selecting the channel at 440.
  • the premises equipment 205-b may communicate with the UE 115-c using the channel within the second frequency band based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof.
  • the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link in the first frequency band.
  • the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link based on selecting the channel at 440.
  • the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof.
  • the premises equipment 205-b may communicate with the UE 115-c and the base station 105-b concurrently.
  • the communications with the UE 115-c over the communication link illustrated at 445 and the communications with the base station 105-b over the backhaul communication link illustrated at 450 may occur concurrently such that the communications at least partially overlap in the time domain.
  • the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link in the first frequency band during a first duration, and may communicate with the UE 115-b using the communication link in the second frequency band during a second duration.
  • the first duration may at least partially overlap with the second duration such that the communications with the UE 115-b and the base station 105-b take place concurrently during the duration of the overlap between the first duration and the second duration.
  • Techniques described herein may improve the performance and reliability of the premises equipment 205-b (e.g., CPE) in the context of FWA.
  • techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105-b and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with a UE 115-b supported by the premises equipment 205-b.
  • a backhaul communication link e.g., 5G link
  • a communication link e.g., Wi-Fi link, WLAN 5 GHz link
  • techniques described herein may enable the premises equipment 205-b to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205-b, thereby providing reliable FWA.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a wireless device (e.g., premises equipment 205) as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the communications manager 515 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the channel avoidance techniques may reduce interference between a backhaul communication link and other communication links (e.g., Wi-Fi communication links) in the context of FWA, thereby improving the efficiency and reliability of FWA.
  • the channel avoidance techniques may reduce interference between a backhaul communication link and other communication links (e.g., Wi-Fi communication links) in the context of FWA, thereby improving the efficiency and reliability of FWA.
  • power consumption of the premises equipment 205 may be reduced, and consumer experience and satisfaction may be improved.
  • a processor of the premises equipment 205 may reduce processing resources used for FWA. For example, by reducing interference in the communication links (e.g., Wi-Fi communication links) between the premises equipment 205 and a UE 115, the premises equipment 205 may reduce the number of retransmissions used to successfully communicate with the UE 115, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle signal transmission and reception.
  • the communication links e.g., Wi-Fi communication links
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505 or a premises equipment 205 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 645.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a location manager 620, a backhaul communication link manager 625, a communication link manager 630, a channel avoidance procedure manager 635, and a UE manager 640.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the location manager 620 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT.
  • the backhaul communication link manager 625 may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
  • the communication link manager 630 may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
  • the channel avoidance procedure manager 635 may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the UE manager 640 may communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a location manager 710, a backhaul communication link manager 715, a communication link manager 720, a channel avoidance procedure manager 725, a UE manager 730, a target bandwidth manager 735, a guard band manager 740, and a base station manager 745. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the location manager 710 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT. In some examples, the location manager 710 may identify a country where the premises equipment is located. In some examples, the location manager 710 may retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based on receiving the indication.
  • the backhaul communication link manager 715 may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
  • the communication link manager 720 may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
  • the channel avoidance procedure manager 725 may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband.
  • the channel avoidance procedure manager 725 may reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
  • the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband.
  • the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the third frequency subband.
  • the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • the UE manager 730 may communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the second RAT includes Wi-Fi.
  • the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • the first frequency subband includes a U-NII subband.
  • the target bandwidth manager 735 may identify a target bandwidth of the channel based on identifying that the premises equipment communicates according the SBS operation.
  • the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
  • the guard band manager 740 may identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based on identifying that the frequency distance satisfies the threshold.
  • the second frequency band is separated from the first frequency band by a guard band.
  • the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • the base station manager 745 may communicate, based on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • the base station manager 745 may receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based on receiving the indication.
  • the first RAT includes 5G.
  • the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a wireless device as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810. These components may be in electronic communication via one or more buses (e.g., bus) .
  • the communications manager 810 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the I/O controller 815 may manage input and output signals for the device 805.
  • the I/O controller 815 may also manage peripherals not integrated into the device 805.
  • the I/O controller 815 may represent a physical connection or port to an external peripheral.
  • the I/O controller 815 may utilize an operating system such as or another known operating system.
  • the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 815 may be implemented as part of a processor.
  • a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting configurations for a carrier overlapping multiple unlicensed bands) .
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a wireless device or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
  • the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a location manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
  • the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a wireless device or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
  • the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a location manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
  • the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
  • the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a wireless device or its components as described herein.
  • the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
  • the wireless device may receive, from the base station, an indication of the location of the premises equipment.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a base station manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, where identifying the location of the premises equipment is based on receiving the indication.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a location manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
  • the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
  • the operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
  • the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel.
  • the operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
  • Example 1 A method for wireless communication, including: identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  • Example 2 The method of Example 1, further including: applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 3 The method of Example 2, where applying the channel avoidance parameter further includes: reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
  • Example 4 The method of any of Examples 1 through 3, further including: identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 4 The method of any of Examples 1 through 4, further including: identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  • Example 6 The method of any of Examples 1 through 5, further including: identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • Example 7 The method of Example 6, where the target bandwidth comprises
  • Example 8 The method of any of Examples 1 through 7, further including: identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  • Example 9 The method of any of Examples 1 through 8, further including: communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • Example 10 The method of any of Examples 1 through 9, further including: receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 11 The method of any of Examples 1 through 10, where identifying the location of the premises equipment comprises: identifying a country where the premises equipment is located.
  • Example 12 The method of any of Examples 1 through 11, further including: retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 13 The method of any of Examples 1 through 12, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
  • Example 14 The method of any of Examples 1 through 13, where the second frequency band is separated from the first frequency band by a guard band.
  • Example 15 The method of Example 14, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • Example 16 The method of any of Examples 1 through 15, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • Example 17 The method of Example 16, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 18 The method of any of Examples 1 through 15, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • Example 19 The method of Example 18 where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 20 The method of any of Examples 1 through 19, where the first frequency subband includes a U-NII subband.
  • Example 21 An apparatus for wireless communication, including: a processor, memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to: identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicate with the UE using the channel within the
  • Example 23 The apparatus of Example 22, where the instructions to apply the channel avoidance parameter further are executable by the processor to cause the apparatus to:reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
  • Example 24 The apparatus of any of Examples 21 through 23, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 25 The apparatus of any of Examples 21 through 24, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  • Example 26 The apparatus of any of Examples 21 through 25, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • Example 27 The apparatus of any of Example 26, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
  • Example 28 The apparatus of any of Examples 21 through 27, where the instructions are further executable by the processor to cause the apparatus to: identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  • Example 29 The apparatus of any of Examples 21 through 28, where the instructions are further executable by the processor to cause the apparatus to: communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • Example 30 The apparatus of any of Examples 21 through 29, where the instructions are further executable by the processor to cause the apparatus to: receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 31 The apparatus of any of Examples 21 through 29, where the instructions to identify the location of the premises equipment are executable by the processor to cause the apparatus to: identify a country where the premises equipment is located.
  • Example 32 The apparatus of any of Examples 21 through 31, where the instructions are further executable by the processor to cause the apparatus to: retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 33 The apparatus of any of Examples 21 through 32, the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
  • Example 34 The apparatus of any of Examples 21 through 33, where the second frequency band is separated from the first frequency band by a guard band.
  • Example 35 The apparatus of Example 34, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • Example 36 The apparatus of any of Examples 21 through 35, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • Example 37 The apparatus of Example 36, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 28 The apparatus of any of Examples 21 through 35, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • Example 39 The apparatus of Example 38, where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 40 The apparatus of any of Examples 21 through 39, where the first frequency subband includes a U-NII subband.
  • Example 41 An apparatus for wireless communication, including: means for identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; means for identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; means for identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; means for selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and means for communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  • Example 42 The apparatus of Example 41, further including: means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 43 The apparatus of Example 42, where the means for applying the channel avoidance parameter further includes: means for reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
  • Example 43 The apparatus of any of Examples 41 through 42, further including: means for identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 45 The apparatus of any of Examples 41 through 44, further including: means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  • Example 46 The apparatus of any of Examples 41 through 45, further including: means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; means for identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • Example 47 The apparatus of Example 46, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
  • Example 48 The apparatus of any of Examples 41 through 46, further including: means for identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  • Example 49 The apparatus of any of Examples 41 through 48, further including: means for communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • Example 50 The apparatus of any of Examples 41 through 49, further including: means for receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 51 The apparatus of any of Examples 41 through 50, where the means for identifying the location of the premises equipment includes: means for identifying a country where the premises equipment is located.
  • Example 52 The apparatus of any of Examples 41 through 51, further including: means for retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 53 The apparatus of any of Examples 41 through 52, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
  • Example 54 The apparatus of any of Examples 41 through 53, where the second frequency band is separated from the first frequency band by a guard band.
  • Example 55 The apparatus of Example 54, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • Example 56 The apparatus of any of Examples 41 through 55, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • Example 57 The apparatus of Example 56, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 58 The apparatus of any of Examples 41 through 55, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • Example 59 The apparatus of Example 58, where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 60 The apparatus of any of Examples 41 through 59, where the first frequency subband includes a U-NII subband.
  • Example 61 A non-transitory computer-readable medium storing code for wireless communication, the code including instructions executable by a processor to: identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicate with the UE using the channel within the second frequency band based at
  • Example 62 The non-transitory computer-readable medium of Example 61, where the instructions are further executable to: apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 63 The non-transitory computer-readable medium of Example 62, where the instructions to apply the channel avoidance parameter further are executable to: reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
  • Example 64 The non-transitory computer-readable medium of any of Examples 61 through 63, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  • Example 65 The non-transitory computer-readable medium of any of Examples 61 through 64, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  • Example 66 The non-transitory computer-readable medium of any of Examples 61 through 65, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  • Example 67 The non-transitory computer-readable medium of Example 66, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
  • Example 68 The non-transitory computer-readable medium of any of Examples 61 through 67, where the instructions are further executable to: identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  • Example 69 The non-transitory computer-readable medium of any of Examples 61 through 68, where the instructions are further executable to: communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  • Example 70 The non-transitory computer-readable medium of any of Examples 61 through 69, where the instructions are further executable to: receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 71 The non-transitory computer-readable medium of any of Examples 61 through 70, where the instructions to identify the location of the premises equipment are executable to: identify a country where the premises equipment is located.
  • Example 72 The non-transitory computer-readable medium of any of Examples 61 through 71, where the instructions are further executable to: retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
  • Example 73 The non-transitory computer-readable medium of any of Examples 61 through 72, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
  • Example 74 The non-transitory computer-readable medium of any of Examples 61 through 73, where the second frequency band is separated from the first frequency band by a guard band.
  • Example 75 The non-transitory computer-readable medium of Example 74, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
  • Example 76 The non-transitory computer-readable medium of any of Examples 61 through 75, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  • Example 77 The non-transitory computer-readable medium of Example 76, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 78 The non-transitory computer-readable medium of any of Examples 61 through 75, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  • Example 79 The non-transitory computer-readable medium of Example 78, where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  • Example 80 The non-transitory computer-readable medium of any of Examples 61 through 79, where the first frequency subband includes a U-NII subband.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A premises equipment is configured to provide fixed wireless access to a premises. The premises equipment may identify a location of the premises equipment and establish a backhaul communication link with a base station using a first radio access technology (RAT) and establish a communication link with a user equipment (UE) using a second RAT. The premises equipment may identify that the backhaul communication link operates using a first frequency band, and that the communication link operates using a second frequency band concurrently with the backhaul communication link. The premises equipment may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link. The premises equipment may communicate with the UE using the selected channel.

Description

TECHNIQUES FOR RADIO ACCESS TECHNOLOGY CONCURRENCE FOR PREMISES EQUIPMENT
FIELD OF TECHNOLOGY
The following relates to wireless communications, including techniques for radio access technology concurrence for premises equipment.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Premises devices configured to provide fixed wireless access to an area or premises and may support backhaul communication links with a base station in addition to communication links with UEs.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for radio access technology (RAT) concurrence for premises equipment. Generally, the described techniques provide for interference avoidance between a backhaul communication link and communication links with a user equipment (UE) or multiple UEs in the context of Fixed Wireless Access (FWA) at a premises  equipment. In particular, a premises equipment (e.g., Customer Premise Equipment (CPE) ) may be configured to determine whether there is a possibility of interference between a backhaul communication link (e.g., 5G communication link) with a base station and communication links (e.g., Wi-Fi communication links) with one or more UEs. In cases where the premises equipment identifies the possibility of interference, the premises equipment may perform a channel avoidance procedure to select a channel for Wi-Fi communications. In some aspects, the channel avoidance procedure may include applying operation settings to one or more radios to avoid channels which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs.
A method of wireless communication is described. The method may include identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identifying that the backhaul communication link operates using a first frequency band based on identifying the location, identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicating with the UE using the channel within the second frequency band based on selecting the channel.
An apparatus for wireless communication is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identify that the backhaul communication link  operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
Another apparatus for wireless communication is described. The apparatus may include means for identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identifying that the backhaul communication link operates using a first frequency band based on identifying the location, identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicating with the UE using the channel within the second frequency band based on selecting the channel.
A non-transitory computer-readable medium storing code for wireless communication is described. The code may include instructions executable by a processor to identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul  communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the second frequency subband.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, applying the channel avoidance parameter further may include operations, features, means, or instructions for reducing a probability that one or more channels in the second frequency subband may be selected for the communication link.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the second frequency subband.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using two  channels in the second frequency band according a SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that may be associated with the channel based on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the third frequency subband.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band, identifying a target bandwidth of the channel based on identifying that the premises equipment communicates according the SBS operation, and applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, may be based on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel may be based on identifying that the frequency distance satisfies the threshold.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  communicating, based on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment may be based on receiving the indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, identifying the location of the premises equipment may include operations, features, means, or instructions for identifying a country where the premises equipment may be located.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment may be based on receiving the indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first radio access technology includes 5G, and the second radio access technology includes Wi-Fi.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second frequency band may be separated from the first frequency band by a guard band.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the guard band includes a frequency band between 5 GHz and 5.150 GHz.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz, and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz, and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first frequency subband includes a U-NII subband.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports techniques for radio access technology (RAT) concurrence for premises equipment in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a resource allocation that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIG. 4 illustrates an example of a process flow that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
FIGs. 9 through 11 show flowcharts illustrating methods that support techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Deploying wireline broadband networks may use high capital expenditure and mid to long term investment. In particular, few hundred meters of last mile deployment can be an obstacle for wireline broadband technologies. A solution to last mile deployment is Fixed Wireless Access (FWA) . FWA (e.g., Fifth Generation (5G) FWA) in the wireless spectrum can be used to quickly and cheaply deliver an alternative to wired broadband. In the millimeter wavelengths, 5G FWA can provide a level of service bandwidth capacity comparable to fiber optics. A Customer Premise Equipment (CPE) device may be configured to provide FWA to a premises. A CPE may include a wireless backhaul unit that establishes a backhaul communication link (e.g., 5G communication link) with broadband network (e.g., 5G network) , and a wireless network unit (e.g., a Wi-Fi router) that establishes communication links with UEs within a premises. Two example implementations of CPEs include: (1) an implementation with an external backhaul antenna, and (2) an implementation where both the backhaul antenna and the network antenna are included within a single CPE device. In the second implementation, if the frequency bands used for the backhaul communication link and the wireless network are close enough together, they may interfere with each other and thereby reduce performance. In this regard, communications associated with the backhaul communication link may interfere with communications associated with  the communication link with the UEs. Left unmanaged, such interference may lead to unreliable FWA for the premises.
To address interference issues in the context of premises equipment configured for FWA, the described techniques provide for interference avoidance between a backhaul communication link and communication links with user equipments UEs. In particular, a premises equipment (e.g., CPE) may be configured to determine whether there is a possibility of interference between a backhaul communication link (e.g., 5G communication link) with a base station and communication links (e.g., Wi-Fi communication links) with one or more UEs. In cases where the premises equipment identifies the possibility of interference, the premises equipment may perform a channel avoidance procedure to select a channel for Wi-Fi communications. In some aspects, the channel avoidance procedure may include applying channel avoidance parameters to one or more channels that are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs. For example, the premises equipment may apply channel avoidance parameters to one or more subbands, channels, or both, where the channel avoidance parameters reduce the likelihood that the respective subbands, channels, or both, are selected for Wi-Fi communications.
Aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are additionally described in the context of an example resource allocation and an example process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for radio access technology (RAT) concurrence for premises equipment.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency  communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable  terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given RAT (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for  discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different RAT) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular RAT (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may  refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control  channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may  be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) RAT, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105  may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent  transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
The UEs 115, base stations 105, and other wireless communication devices of the wireless communications system 100 may support channel avoidance techniques in the context of FWA. In particular, a premises equipment (e.g., CPE) may be configured to establish communication links with a base station 105 and one or more UEs 115 of the wireless communications system 100 in order to provide FWA. In particular, the premises equipment may be configured to establish a backhaul communication link (e.g., 5G communication link) with the base station 105 of the wireless communications system 100, and may be further configured to establish one or more communication links (e.g., Wi-Fi communication links) with one or more UEs 115 of the wireless communications system 100. In some aspects, the backhaul communication link may operate using a first frequency band (e.g., N79 frequency band) , and the communication links with the UEs 115 may operate using a second frequency band (e.g., wireless local area network (WLAN) 5 GHz band) .
In some aspects, the premises device of the wireless communications system 100 may be configured to determine whether there is a possibility of interference between the backhaul communication link with the base station 105 and the communication links with the UEs 115. For example, the premises equipment may determine that the backhaul communion link operating in the first communication band and the communication links operating in the second communication band operate concurrently, and may thereby identify a possibility of interference between the respective communication links.
In cases where the premises equipment of the wireless communications system 100 identifies the possibility of interference between the backhaul communication link (e.g., 5G communication link) and the communication links (e.g., Wi-Fi communication links) with the UEs 115, the premises equipment may perform a channel avoidance procedure to select a channel for the Wi-Fi communications. In some aspects, the channel avoidance procedure may include applying channel avoidance parameters to one or more subbands and/or channels of the second frequency band associated with the Wi-Fi communications which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs 115. After selecting the channel for communications (e.g., Wi-Fi communications) over the communication links with the UEs 115, the premises equipment may perform concurrent communications with the base station 105 and the UEs 115 over the backhaul communication link and the communication links, respectively.
Techniques described herein may improve the performance and reliability of the premises equipment (e.g., CPE) in the context of FWA. In particular, by performing channel avoidance procedures, techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105 and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with UEs 115 supported by the premises equipment. In this regard, techniques described herein may enable the premises equipment of the wireless communications system 100 to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment, thereby providing reliable FWA.
FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. The wireless communications system 200 may include a base station 105-a, a premises equipment 205-a, a first UE 115-a, and a second UE 115-b. In some aspects, the base station 105-a and the UEs 115-a and 115-b may be examples of base stations 105 and UEs 115, as described with reference to FIG. 1. In some aspects, the premises equipment 205-a of the wireless communications system 200 may be configured to provide FWA to a premises 240.
The premises equipment 205-a may communicate with the base station 105-a using a backhaul communication link 210 (e.g., 5G communication link) . In some cases, the backhaul communication link 210 may include an example of an access link (e.g., a Uu link) . The backhaul communication link 210 may include a bi-directional link that can include both uplink and downlink communication. In one aspect, the premises equipment 205-a may transmit uplink transmissions, such as uplink messages or uplink signals, to the base station 105-a using the backhaul communication link 210 and the base station 105-a may transmit downlink transmissions, such as downlink messages or downlink signals, to the premises equipment 205-a using the backhaul communication link 210.
In some aspects, the premises equipment 205-a may establish the backhaul communication link 210 for communications with the base station 105-a using a first RAT (RAT) . For example, the backhaul communication link 210 may include a 5G communication link configured for 5G communications between the premises equipment 205-a and the base station 105-a. In some aspects, the backhaul communication link 210 may operate using a first frequency band. The first frequency band may include a licensed frequency band, such as an N79 frequency band. For example, the first frequency band associated with the backhaul communication link 210 may include a licensed frequency band between 4.4 GHz and 5 GHz.
The premises equipment 205-a may additionally communicate with the first UE 115-a, the second UE 115-b, or both, using a communication link 215 (e.g., Wi-Fi communication link) . The communication link 215 may include a bi-directional link that can include both uplink and downlink communication. In some aspects, the premises equipment 205-a may establish the communication link 215 for communications with the UE 115-a and 115-b using a second RAT. For example, the communication link 215 may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-a and the UEs 115. In some aspects, the communication link 215 may operate using a second frequency band that is different from the first frequency band associated with the backhaul communication link 210. In some aspects, the first frequency band and the second frequency band may include adjacent frequency bands, and may be separated via a guard band. The second frequency band may include a WLAN 5 GHz band. In some aspects, the second frequency band associated with the communication link 215 may include an unlicensed frequency band.
In some aspects, the premises equipment 205-a may be configured to provide FWA a premises 240. In this regard, the premises equipment 205-a may be configured to provide FWA to UEs 115 (e.g., first UE 115-a, second UE 115-b) located within the premises 240. The premises 240 may include any premises including, but not limited to, residential premises (e.g., house, apartment, condo) , commercial premises (e.g., building, apartment complex, hotel) , public premises (e.g., parks, malls, schools) , or any combination thereof.
In some aspects, the premises equipment 205-a may include a wireless backhaul unit 220, a wireless network unit 225, a backhaul antenna 235-a, and a network antenna 235-b. The various components of the premises equipment 205-a may be communicatively coupled to one another via wireline or wireless communication links. In some aspects, the premises equipment 205-a may be configured to establish and communicate via the backhaul communication link 210 via the wireless backhaul unit 220 and the backhaul antenna 235-a. In this regard, the wireless backhaul unit 220 may include a modem (e.g., 5G modem) . Similarly, the premises equipment 205-a may be configured to establish and communicate via the communication link 215 via the wireless network unit 225 and the network antenna 235-b. In this regard, the wireless network unit 225 may include a Wi-Fi router.
As shown in FIG. 2, the wireless backhaul unit 220, the wireless network unit 225, the backhaul antenna 235-a, and the network antenna 235-b may be disposed within the same housing. In this regard, the premises equipment 205-a may include a single component (e.g., single unit) that houses the components to provide FWA to a premises. In additional or alternative aspects, the various components of the premises equipment 205-a may be located within two or more housings. For example, in some implementations (not shown) , the wireless backhaul unit 220 and/or the backhaul antenna 235-a may be disposed within a first housing, and the wireless network unit 225 and the network antenna 235-b may be disposed within a second housing. In this example, the components of the first housing and the components of the second housing may be communicatively coupled via a wireline connection. Specifically, the first housing including the wireless backhaul unit 220 and/or the backhaul antenna 235-a may be positioned on an exterior (e.g., outside) of a structure (e.g., building) of the premises 240, and the second housing including the wireless network unit 225 and the network antenna 235-b may be positioned on an interior (e.g., inside) of the structure of the premises.
Splitting the components of the premises equipment 205-a up into two or more housings may provide for increased physical separation between the backhaul antenna 235-aand the network antenna 235-b. Such physical separation may reduce the likelihood of interference between the backhaul communication link 210 and the communication link 215. However, such an implementation may lead to several drawbacks, including increased installation complexity installing the various components/housings of the premises equipment 205-a and increased manufacturing costs.
To address the issues associated with a multi-housing premises equipment, the single-housing premises equipment 205-a illustrated in FIG. 2 may be desirable in that it may reduce installation complexity and manufacturing costs as compared to a multi-housing premises equipment. However, the single-housing premises equipment 205-a may lead to a reduced physical separation between the backhaul antenna 235-a and the network antenna 235-a, thereby increasing the likelihood of interference between the backhaul communication link 210 and the communication link 215. Left unmanaged, such interference may lead to unreliable FWA.
Accordingly, the premises equipment 205-a of the wireless communications system 200 may support channel avoidance techniques between the backhaul communication link 210 and the communication link 215 in order to provide efficient, reliable FWA. While the channel avoidance techniques described herein are primarily shown and described in the context of a single-housing premises equipment 205-a, such techniques may additionally be applied in the context of multi-housing premises equipment 205-a.
In some aspects, the premises equipment 205-a (e.g., CPE) may be configured to determine whether there is a possibility of interference between the backhaul communication link 210 (e.g., 5G communication link) with the base station 105-a and the communication link 215 (e.g., Wi-Fi communication link) with one or more UEs 115 (e.g., first UE 115-a, second UE 115-b) . In cases where the premises equipment 205-a identifies the possibility of interference, the premises equipment 205-a may perform a channel avoidance procedure to select a channel for Wi-Fi communications over the communication link 215. In some aspects, the channel avoidance procedure may include applying channel avoidance parameters to one or more channels which are more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the  UEs 115. For example, the premises equipment 205-a may apply channel avoidance parameters to one or more subbands, channels, or both, where the channel avoidance parameters reduce the likelihood that the respective subbands, channels, or both, are selected for Wi-Fi communications.
Techniques described herein may improve the performance and reliability of the premises equipment 205-a (e.g., CPE) in the context of FWA. In particular, by performing channel avoidance procedures, techniques described herein may reduce or eliminate potential interference between the backhaul communication link 210 (e.g., 5G link) with the base station 105-a and the communication link 215 (e.g., Wi-Fi link, WLAN 5 GHz link) with the UEs 115-a and 115-b supported by the premises equipment 205-a. In this regard, techniques described herein may enable the premises equipment 205-a to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205-a, thereby providing reliable FWA.
FIG. 3 illustrates an example of a resource allocation 300 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. In some examples, resource allocation 300 may implement, or be implemented by, aspects of  wireless communications systems  100 and 200.
As noted previously herein, a premises equipment 205 (e.g., premises equipment 205-a illustrated in FIG. 2) may provide FWA to one or more UEs 115 by establishing a backhaul communication link with a base station 105 and establishing a communication link with the one or more UEs 115. In some aspects, the premises equipment 205 may establish the backhaul communication link for communications with the base station 105 over the first frequency band 305-a using a first RAT. For example, the backhaul communication link may include a 5G communication link configured for 5G communications between the premises equipment 205-b and the base station 105-b. In some aspects, the first frequency band 305-aassociated with the backhaul communication link may include a licensed frequency band, such as an N79 frequency band. For example, the first frequency band 305-a may include a licensed frequency band between 4.4 GHz and 5 GHz.
The premises equipment 205 may additionally identify that a communication link between the premises equipment 205 and the UE 115 operates using a second frequency band 305-b. In some aspects, the premises equipment 205 may identify that the communication  link associated with the second frequency band 305-b is operate concurrently with the backhaul communication link operated using the first frequency band 305-a. In some aspects, the premises equipment 205 may establish the communication link for communications with the UE 115-c associated with the second frequency band 305-b using a second RAT. For example, the communication link may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-b and the UE 115-c. In some aspects, the second frequency band 305-b may include a WLAN 5 GHz band. In some aspects, the second frequency band 305-b associated with the communication link with the UE 115-c may include an unlicensed frequency band.
In some aspects, the second frequency band 305-b (e.g., WLAN 5 GHz band) may be separated from the first frequency band 305-a (e.g., N79 band) by a guard band 310. For example, in some cases, the second frequency band 305-b may be separated from the first frequency band 305-a by a frequency between 5 GHz and 5.150 GHz. In some aspects, the second frequency band 305-b may include one or more subbands 315. In some cases, the composition of the second frequency band 305-b may be dependent upon a location of the premises equipment 205. For example, in cases where the premises equipment 205 is located in a first location (e.g., Location 1) , the second frequency band 305-b may include a subband 315-b, a subband 315-c, and a subband 315-d. For instance, composition of the second frequency band 305-b of Location 1 illustrated in FIG. 3 may include an example resource allocation of the second frequency band 305-b in Japan. By way of another example, in cases where the premises equipment 205 is located in a second location (e.g., Location 2) , the second frequency band 305-b may include a subband 315-a, a subband 315-b, a subband 315-c, and a subband 315-d. For instance, composition of the second frequency band 305-b of Location 2 illustrated in FIG. 3 may include an example resource allocation of the second frequency band 305-b in China. Accordingly, in some aspects, the premises equipment 205 may be configured to determine a location of the premises equipment 205 such that the premises equipment 205 may determine a composition of the second frequency band 305-b dependent upon the location.
For example, in cases where the premises equipment 205-b is located in Location 1 (e.g., Japan) , the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.725 GHz. Furthermore, in cases where the premises equipment 205-b is located in Location 1, the second frequency band 30–5b may include a U-NII-1  subband (e.g., subband 315-d) , a U-NII-2A subband (e.g., subband 315-c) , and a U-NII-2C subband (e.g., subband 315-b) . For instance, in cases where the premises equipment 205-b is located in Location 2, the second frequency band 305-b may include a first frequency subband 315-b between 5.470 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a second frequency subband 315-c between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a third frequency subband 315-d between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
By way of another example, in cases where the premises equipment 205 is located in Location 2 (e.g., China) , the second frequency band 305-b may include an unlicensed frequency band between 5.150 GHz and 5.850 GHz. Furthermore, in cases where the premises equipment 205 is located in Location 2, the second frequency band 305-b may include a U-NII-1 subband, a U-NII-2A subband, a U-NII-2C subband, and a U-NII-3 subband. For instance, in cases where the premises equipment 205 is located in Location 2, the second frequency band 305-b may include a first frequency subband 315-a between 5.725 GHz and 5.85 GHz (e.g., U-NII-3 subband) , a second frequency subband 315-b between 5.47 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a third frequency subband 315-c between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a fourth frequency subband 315-dbetween 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
In some wireless communications systems configured for FWA, there may be an equal probability that each subband 315 which is available (e.g., open) in a given location will be selected for Wi-Fi communications. For example, in Location 1, the probability of selecting the subband 315-d for Wi-Fi communications may be equal to the probabilities of selecting the subbands 315-c and 315-d, respectively. However, due to the closer proximity of the subbands 315-d and 315-c to the N79 band used for the backhaul communication link, the subbands 315-d and 315-c may be more susceptible to interference as compared to the subband 315-b. In this regard, subband 315-b may be the most desirable for Wi-Fi communications in Location 1.
Similarly, subband 315-a may be most desirable for Wi-Fi communications in Location 2. In some cases, subband 315-d may be second most desirable for Wi-Fi communications in Location 2 despite the close proximity to the N79 band. This may be due to various communication parameters of subband 315-d. In this regard, the priority ranking  for Wi-Fi communications in Location 2 may be subband 315-a then subband 315-d, followed by subband 315-b and subband 315-b.
In order to reduce potential interference on the communication links (e.g., Wi-Fi communication links) attributable to the backhaul communication link, the premises equipment 205 may be configured to perform channel avoidance procedures.
For example, the premises equipment 205 may identify an operational state of the second frequency band 305-b. Operational states of the second frequency band 305-b may include, but are not limited to, full-band operation, single-band simultaneous (SBS) operation, and the like. For example, in some cases, the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using one channel in the second frequency band 305-b according to a full band operation associated with the second frequency band 305-b. By way of another example, in other cases, the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using two channels (e.g., a first channel and a second channel) in the second frequency band 305-b according to an SBS operation associated with the second frequency band 305-b. In this example, the two channels may be associated with the same subband 315 within the second frequency band 305-b, or in different subbands 315 of the second frequency band 305-b. For instance, the first channel may be associated with (e.g., included within) a first frequency subband 315-a, and the second channel may be associated with (e.g., included within) a second frequency subband 315-b.
The premises equipment 205 may additionally identify a target bandwidth of a channel in the respective subbands 315. In some aspects, the premises equipment 205 may identify the target bandwidth of the channel based on identifying that the premises equipment 205 communicates according to an SBS operation at 425. In some cases, the target bandwidth may include 80 MHz, 40 MHz, or 20 MHz. Additionally or alternatively, the premises equipment 205 may identify a frequency distance (e.g., bandwidth of the guard band 310) between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) . For example, the premises equipment 205 may identify a frequency distance between a first limit (e.g., upper frequency limit) of the first frequency band 305-a, and a second limit (e.g., lower frequency limit) of the second frequency band 305-b.
In some aspects, the premises equipment 205 may perform a channel avoidance procedure associated with the second frequency band 305-b. In some aspects, the premises equipment 205 may perform the channel access procedure to eliminate or reduce a likelihood of interference or noise associated with communications over the backhaul communication link with the base station 105 and the communication link with the UEs 115. Accordingly, in some aspects, the premises equipment 205 may perform the channel avoidance procedure based on identifying the location of the premises equipment, identifying the backhaul communication link, identifying the communication link with the UEs 115, determining the backhaul communication link and the communication link are operated concurrently, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth, or any combination thereof.
In some aspects, the channel performance procedure may include any algorithms, procedures, or techniques which adjust the likelihood (e.g., probability) that given subbands 315, channels within the respective subband 315, or both, associated with the second frequency band 305-b will be selected for communications with the UE 115 over the communication link. In this regard, the channel avoidance procedure may be used to decrease the probability that subbands 315 and/or channels which are more likely to suffer interference attributable to the backhaul communication link will be selected for communications with the UE 115 over the communication link. Accordingly, by reducing a probability that a given subband 315 and/or channel within a given subband 315 which is more susceptible to interference will be selected for communications over the communication link with the UE 115, the channel avoidance procedure may, in effect, increase a probability that a given subband 315 and/or channel which is less susceptible to interreference will be selected for communications over the communication link with the UE 115.
For example, while performing the channel avoidance procedure in Location 1, the premises equipment 205 may apply channel avoidance parameters to one or more subbands 315 (e.g., subband 315-d, subband 315-c) of the second frequency band 305-b. The premises equipment 205 may apply the channel avoidance parameters based on identifying that the communication link operates using the second frequency band 305-b concurrently with the backhaul communication link operating using the first frequency band 305-a. In this example, the channel avoidance parameters may be configured to reduce the likelihood (e.g., probability) that the frequency subbands 315-d and 315-c will be selected for  communications with the UE 115. For instance, the premises equipment 205 may identify that the frequency subbands 315-d and 315-c may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameters to the subbands 315-d and 315-c of the second frequency band 305-b to reduce the probability that the subbands 315-d and 315-c will be selected for communications with the UE 115 over the communication link. In effect, the channel avoidance procedure may increase a likelihood (e.g., probability) that the subband 315-b will be selected for communications with the UE 115.
By way of another example, while performing the channel avoidance procedure in Location 2, the premises equipment 205 may apply channel avoidance parameters to one or more subbands 315 (e.g., subband 315-d, subband 315-c, and subband 315-b) of the second frequency band 305-b. In this example, the channel avoidance parameters may be configured to reduce the likelihood (e.g., probability) that the frequency subbands 315-d, 315-c, and 315-b will be selected for communications with the UE 115. For instance, the premises equipment 205 may identify that the frequency subbands 315-d, 315-c, and 315-b may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameters to the subbands 315-d, 315-c, and 315-b of the second frequency band 305-b to reduce the probability that the subbands 315-d, 315-c, and 315-b will be selected for communications with the UE 115 over the communication link. In effect, the channel avoidance procedure may increase a likelihood (e.g., probability) that the subband 315-a will be selected for communications with the UE 115.
By way of another example, the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using one channel in the frequency band 305-b according to a full-band operation associated with the second frequency band 305-b. In this example, the premises equipment 205 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more frequency subbands 315 (e.g., U-NII-1 subband, U-NII-2A subband, U-NII-2C subband) of the second frequency band 305-b based on identifying that the premises equipment 205 communicates according to the full-band operation. In this regard, the premises equipment 205 may reduce a probability that the one or more frequency subbands 315 will be selected for the communication link based on identifying the full-band operation. For instance, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) and determines full-band  operation, the premises equipment 205 may apply channel avoidance parameters to the subband 315-d (e.g., U-NII-1 subband) , the subband 315-c (e.g., U-NII-2A subband) , or both, but not to the subband 315-b (e.g., U-NII-2C subband) . Similarly, in cases where the premises equipment 205 is located in Location 2 (e.g., China) and determines full-band operation, the premises equipment 205 may apply channel avoidance parameters to the subband 315-d (e.g., U-NII-1 subband) , the subband 315-c (e.g., U-NII-2A subband) , the subband 315-b (e.g., U-NII-2C subband) , or any combination thereof, but not to the subband 315-a (e.g., U-NII-3 subband) .
By way of another example, the premises equipment 205 may identify that the premises equipment 205 communicates with one or more UEs 115 using two channels in the second frequency band 305-b according to an SBS operation associated with the second frequency band 305-b, where a first channel is in a first frequency subband 315 of the second frequency band 305-b and a second channel is in a second frequency subband 315 of the second frequency band 305-b. In this example, the premises equipment 205 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband 315 of the second frequency band 305-b based on identifying that the premises equipment 205 communicates according to the SBS operation.
For example, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) and determines SBS operation in subband 315-d (e.g., U-NII-1 subband) and subband 315-c (e.g., U-NII-2A subband) , the premises equipment 205 may apply channel avoidance parameters to the subband 315-d, but not to the subband 315-c. By way of another example, in cases where the premises equipment 205 is located in Location 2 (e.g., China) and determines SBS operation in subband 315-d (e.g., U-NII-1 subband) and subband 315-c (e.g., U-NII-2A subband) , the premises equipment 205 may apply channel avoidance parameters to the subband 315-d, but not to the subband 315-c. By way of another example, in cases where the premises equipment 205 is located in Location 2 (e.g., China) and determines SBS operation in subband 315-a (e.g., U-NII-3 subband) and subband 315-b (e.g., U-NII-2C subband) , the premises equipment 205 may apply channel avoidance parameters to the subband 315-b, but not to the subband 315-a.
Moreover, the premises equipment 205 may apply one or more channel avoidance parameters based on an identified target bandwidth of a channel in the second frequency band  305-b. For example, the premises equipment 205 may identify SBS operation of the second frequency band 305-b, and may identify a target bandwidth of a channel in the second frequency band 305-b based on the SBS operation. In this example, the premises equipment may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of a first frequency band 305-b based on identifying the target bandwidth of the channel.
For instance, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) , determines SBS operation in subband 315-c (e.g., U-NII-2C subband) , and identifies a target bandwidth of 80 MHz, the premises equipment 205 may apply channel avoidance parameters to Channels 118, 126, 116, 120, 124, and 128 (e.g., smaller channels within Channel 122) within the subband 315-c, but not to the Channel 122 within the subband 315-b (e.g., the highest 80 MHz channel in U-NII-2C) . By way of another example, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) , determines SBS operation in subband 315-c (e.g., U-NII-2C subband) , and identifies a target bandwidth of 40 MHz, the premises equipment 205 may apply channel avoidance parameters to Channels 132 and 136 (e.g., smaller channels within Channel 134) within the subband 315-c, but not to the Channel 134 within the subband 315-b (e.g., the highest 40 MHz channel in U-NII-2C) . By way of another example, in cases where the premises equipment 205 is located in Location 1 (e.g., Japan) , determines SBS operation in subband 315-c (e.g., U-NII-2C subband) , and identifies a target bandwidth of 20 MHz, the premises equipment 205 may apply channel avoidance parameters to all channels except Channel 140 within the subband 315-b (e.g., the highest 20 MHz channel in U-NII-2C) .
In some aspects, the premises equipment 204 may select a channel in a frequency subband 315 of the second frequency band 305-b for the communication link based on (e.g., using) the channel avoidance procedure. In some aspects, the premises equipment 205 may select the channel in the frequency subband 315 based on identifying the location of the premises equipment 205, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof. For example, the premises equipment 205 may select the channel in the frequency subband 315 based on identifying that the communication link operates using the  second frequency band 305-b concurrently with the backhaul communication link operating using the first frequency band 305-a.
In some aspects, the premises equipment 205 may select the channel in the frequency subband 315 (e.g., first frequency subband 315) of the second frequency band 305-b based on applying one or more channel avoidance parameters to one or more other frequency subbands 315 (e.g., second frequency subband 315, third frequency subband 315) . of the second frequency band 305-b. Moreover, in additional or alternative aspects, the premises equipment 205 may select the channel in the first frequency subband 315 based on applying one or more channel avoidance parameters to one or more other channels in the first frequency subband 315.
In some aspects, the premises equipment 205 may select the channel in the frequency subband 315 of the second frequency band 305-b based on determining a frequency distance between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) satisfies a threshold. For example, as noted previously herein, the premises equipment 205 may identify a frequency distance (e.g., bandwidth of a guard band 310) between the first frequency band 305-a (e.g., N79 band) and the second frequency band 305-b (e.g., WLAN 5 GHz band) . In this example, the premises equipment 205 may compare the frequency distance to a threshold, and select the channel based on determining that the frequency distance satisfies a threshold. In some cases, the premises equipment 205 may determine that the frequency distance satisfies the threshold when the frequency distance is greater than the threshold.
The premises equipment 205 may communicate with the UE 115 using the selected channel of the frequency subband 315 within the second frequency band 305-b. In some aspects, the premises equipment 205 may communicate with the UE 115 using the selected channel within the second frequency band 305-b based on identifying the location of the premises equipment, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof.
Additionally, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link in the first frequency band 305-a. In some  aspects, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link based on selecting the channel of the second frequency band 305-b. Moreover, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link based on identifying the location of the premises equipment 205, identifying the backhaul communication link and/or communication link, identifying the operational state of the second frequency band 305-b, identifying the target bandwidth of the channel, performing the channel avoidance procedure, or any combination thereof.
In some aspects, the premises equipment 205 may communicate with the UE 115 and the base station 105 concurrently. In this regard, the communications with the UE 115 over the communication link and the communications with the base station 105 over the backhaul communication link may occur concurrently such that the communications at least partially overlap in the time domain. For example, the premises equipment 205 may communicate with the base station 105 using the backhaul communication link in the first frequency band 305-a during a first duration, and may communicate with the UE 115 using the communication link in the second frequency band 305-b during a second duration. In this example, the first duration may at least partially overlap with the second duration such that the communications with the UE 115 and the base station 105 take place concurrently during the duration of the overlap between the first duration and the second duration.
Techniques described herein may improve the performance and reliability of the premises equipment 205 (e.g., CPE) in the context of FWA. In particular, by performing channel avoidance procedures, techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105 and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with a UE 115 supported by the premises equipment 205. In this regard, techniques described herein may enable the premises equipment 205 to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205, thereby providing reliable FWA.
FIG. 4 illustrates an example of a process flow 400 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement, or be implemented by,  aspects of  wireless communications systems  100 and 200, or resource allocation 300. The process flow 400 may illustrate determining a location of a premises equipment, identifying a backhaul communication link associated with a base station and a communication link associated with a UE, performing a channel avoidance procedure, and selecting a channel for communications with the UE based on performing the channel avoidance procedure, as described with reference to FIGs. 1–3, among other aspects.
In some aspects, process flow 400 may include a premises equipment 205-b, a UE 115-c, and a base station 105-b, which may be examples of corresponding devices as described herein. In particular, the premises equipment 205-b illustrated in FIG. 4 may be an example of the premises equipment 205-a illustrated in FIG. 2. Similarly, the UE 115-b and the base station 105-b illustrated in FIG. 4 may be examples of the UE 115-a and 115-b, and the base station 105-a illustrated in FIG. 2, respectively.
In some aspects, the operations illustrated in process flow 400 may be performed by hardware (e.g., including circuitry, processing blocks, logic components, and other components) , code (e.g., software or firmware) executed by a processor, or any combination thereof. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
In some aspects, the premises equipment 205-b (e.g., CPE) illustrated in FIG. 4 may be configured to provide FWA to a premises including, but not limited to, residential premises (e.g., house, apartment, condo) , commercial premises (e.g., building, apartment complex, hotel) , public premises (e.g., parks, malls, schools) , or any combination thereof. The premises equipment 205-b may be configured to establish a backhaul communication link (e.g., 5G communication link) for communications with the base station 105-b using a first RAT (e.g., 5G) , and may be configured to establish a communication link (e.g., Wi-Fi communications link) for communications with the UE 115-c using a second RAT (e.g., Wi-Fi) .
At 405, premises equipment 205-b may receive an indication of a location of the premises equipment 205-b from the base station 105-b. In some aspects, the indication of the location may indicate a city, state, region, territory, or country in which the premises equipment 205-b is located. The premises equipment 205-b may additionally or alternatively  receive an indication of the location of the premises equipment 205-b from one or more other communication devices. For example, in some cases, the premises equipment 205-b may receive an indication of the location of the premises equipment 205-b from a server. For instance, the premises equipment 205-b may receive an indication of the location of the premises equipment 205-b from a server of the wireless communications system 100 illustrated in FIG. 1. In some examples, a parameter a parameter or software property on the CPE itself may be statically set so that it specifies the location of the CPE. In some examples, ways of reading/retrieving the permitted frequency bands usable in that location could be done statically or via a network/location database query.
At 410, the premises equipment 205-b may identify a location of the premises equipment 205-b. In this regard, the premises equipment 205-b may identify a city, state, region, territory, or country in which the premises equipment 205-b is located. For example, in some cases, the premises equipment 205-b may determine that it is located in China. In other cases, the premises equipment 205-b may determine that it is located in Japan. In some aspects, the premises equipment 205-b may determine the location at 410 based on the indication of the location received from the base station 105-b or other wireless communications device at 405.
At 415, the premises equipment 205-b may identify that a backhaul communication link between the premises equipment 205-b and the base station 105-b operates using a first frequency band. In some aspects, the premises equipment 205-b may identify that the backhaul communication link operates using the first frequency band based on identifying the location of the premises equipment at 410. For example, the premises equipment 205-b may identify that the backhaul communication link (e.g., 5G communication link) operates using an N79 frequency band based on identifying that the premises equipment is located in Japan or China.
In some aspects, the premises equipment 205-b may establish the backhaul communication link for communications with the base station 105-b using a first RAT. For example, the backhaul communication link may include a 5G communication link configured for 5G communications between the premises equipment 205-b and the base station 105-b. In some aspects, the first frequency band associated with the backhaul communication link may  include a licensed frequency band. For example, the first frequency band may include a licensed frequency band between 4.4 GHz and 5 GHz.
At 420, the premises equipment 205-b may identify that a communication link between the premises equipment 205-b and the UE 115-c operates using a second frequency band. In some aspects, the premises equipment 205-b may identify that the communication link associated with the second frequency band is operate concurrently with the backhaul communication link. In some aspects, the premises equipment 205-b may identify that the communication link operates using the second frequency band based on identifying that the backhaul communication link operates using the first frequency band at 415, identifying the location of the premises equipment 205-b at 410, or both.
In some aspects, the premises equipment 205-b may establish the communication link for communications with the UE 115-c using a second RAT. For example, the communication link may include a Wi-Fi communication link configured for Wi-Fi communications between the premises equipment 205-b and the UE 115-c. In some aspects, the second frequency band may include a WLAN 5 GHz band. In some aspects, the second frequency band associated with the communication link with the UE 115-c may include an unlicensed frequency band. For example, in cases where the premises equipment 205-b is located in China, the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.850 GHz. By way of another example, in cases where the premises equipment 205-b is located in Japan, the second frequency band may include an unlicensed frequency band between 5.150 GHz and 5.725 GHz.
In some aspects, the second frequency band (e.g., WLAN 5 GHz band) may be separated from the first frequency band (e.g., N79 band) by a guard band. For example, in some cases, the second frequency band may be separated from the first frequency band by a frequency between 5 GHz and 5.150 GHz. In some aspects, the second frequency band may include one or more subbands. In some cases, the one or more subbands may include one or more U-NII bands. For example, in cases where the premises equipment 205-b is located in Japan, the second frequency band may include a U-NII-a subband, a U-NII-2A subband, and a U-NII-2C subband. For instance, in cases where the premises equipment 205-b is located in Japan, the second frequency band may include a first frequency subband between 5.470 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a second frequency subband between 5.25 GHz  and 5.35 GHz (e.g., U-NII-2A subband) , and a third frequency subband between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
By way of another example, in cases where the premises equipment 205-b is located in China, the second frequency band may include a U-NII-1 subband, a U-NII-2A subband, a U-NII-2C subband, and a U-NII-3 subband. For instance, in cases where the premises equipment 205-b is located in China, the second frequency band may include a first frequency subband between 5.725 GHz and 5.85 GHz (e.g., U-NII-3 subband) , a second frequency subband between 5.47 GHz and 5.725 GHz (e.g., U-NII-2C subband) , a third frequency subband between 5.25 GHz and 5.35 GHz (e.g., U-NII-2A subband) , and a fourth frequency subband between 5.15 GHz and 5.25 GHz (e.g., U-NII-1 subband) .
At 425, the premises equipment 205-b may identify an operational state of the second frequency band. Operational states of the second frequency band may include, but are not limited to, full-band operation, SBS operation, and the like. For example, in some cases, the premises equipment may identify that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using one channel in the second frequency band according to a full band operation associated with the second frequency band. By way of another example, in other cases, the premises equipment 205-b may identify that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using two channels (e.g., a first channel and a second channel) in the second frequency band according to an SBS operation associated with the second frequency band. In this example, the two channels may be associated with the same subband within the second frequency band, or in different subbands of the second frequency band. For instance, the first channel may be associated with (e.g., included within) a first frequency subband, and the second channel may be associated with (e.g., included within) a second frequency subband.
At 430, the premises equipment 205-b may identify a target bandwidth of a channel of the second frequency subband. In some aspects, the premises equipment 205-b may identify the target bandwidth of the channel based on identifying that the premises equipment 205-b communicates according to an SBS operation at 425. In some cases, the target bandwidth may include 80 MHz, 40 MHz, or 20 MHz.
Additionally or alternatively, the premises equipment 205-b may identify a frequency distance (e.g., guard band) between the first frequency band (e.g., N79 band) and  the second frequency band (e.g., WLAN 5 GHz band) . For example, the premises equipment 205-b may identify a frequency distance between a first limit (e.g., upper frequency limit) of the first band, and a second limit (e.g., lower frequency limit) of the second frequency band.
At 435, the premises equipment 205-b may perform a channel avoidance procedure associated with the second frequency band. In some aspects, the premises equipment 205-b may perform the channel access procedure to eliminate or reduce a likelihood of interference or noise associated with communications over the backhaul communication link with the base station 105-b and the communication link with the UE 115-c. Accordingly, in some aspects, the premises equipment 205-b may perform the channel avoidance procedure based on identifying the location of the premises equipment at 410, identifying the backhaul communication link at 415, identifying the communication link at 420, determining the backhaul communication link and the communication link are operated concurrently, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, or any combination thereof.
In some aspects, the channel performance procedure may include any algorithms, procedures, or techniques which adjust the likelihood (e.g., probability) that given subbands, channels, or both, associated with the second frequency band will be selected for communications with the UE 115-c over the communication link. In this regard, the channel avoidance procedure may be used to decrease the probability that subbands and/or channels which are more likely to suffer interference attributable to the backhaul communication link will be selected for communications with the UE 115-c over the communication link. Accordingly, by reducing a probability that a given subband and/or channel which is more susceptible to interference will be selected for communications over the communication link with the UE 115-c, the channel avoidance procedure may, in effect, increase a probability that a given subband and/or channel which is less susceptible to interreference will be selected for communications over the communication link with the UE 115-c.
For example, while performing the channel avoidance procedure, the premises equipment 205-b may apply a channel avoidance parameter to a second frequency subband of the second frequency band. The premises equipment 205-b may apply the channel avoidance parameter based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first  frequency band. In this example, the channel avoidance parameter may be configured to reduce the likelihood (e.g., probability) that the second frequency subband will be selected for communications with the UE 115-c. For instance, the premises equipment 205-c may identify that the second frequency subband may be susceptible to interference attributable to the backhaul communication link, and may therefore apply the channel avoidance parameter to the second frequency subband to reduce the probability that the second frequency subband will be selected for communications with the UE 115-c over the communication link.
By way of another example, the premises equipment 205-b may identify (at 425) that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using one channel in the second frequency band according to a full-band operation associated with the second frequency band. In this example, the premises equipment 205-c may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband (e.g., U-NII-1 subband, U-NII-2A subband, U-NII-2C subband) of the second frequency band based on identifying that the premises equipment 205-b communicates according to the full-band operation. In this regard, the premises equipment 205-b may reduce a probability that the second frequency subband will be selected for the communication link based on identifying the full-band operation.
By way of another example, the premises equipment 205-b may identify (at 425) that the premises equipment 205-b communicates with one or more UEs 115 (e.g., UE 115-c) using two channels in the second frequency band according to an SBS operation associated with the second frequency band, where a first channel is in a first frequency subband (e.g., U-NII-2C subband) of the second frequency band and a second channel is in a second frequency subband (e.g., U-NII-2A) of the second frequency band. In this example, the premises equipment 205-c may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband (e.g., U-NII-1 subband) of the second frequency band based on identifying that the premises equipment 205-b communicates according to the SBS operation. In this regard, the premises equipment 205-b may reduce a probability that the third frequency subband will be selected for the communication link based on identifying the SBS operation in the first and second frequency subbands.
Similarly, the premises equipment 205-b may apply one or more channel avoidance parameters based on an identified target bandwidth of a channel in the second  frequency band. For example, the premises equipment 205-b may identify SBS operation of the second frequency band at 435, and may identify a target bandwidth of a channel in the second frequency band at 430 based on the SBS operation. In this example, the premises equipment may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of a first frequency band based on identifying the target bandwidth of the channel. In some examples, a channel avoidance parameter may be an example of one or more operational settings of one or more radios or receive/transmit chains of the premises equipment to avoid channels that may be more susceptible to interference in order to decrease a probability that the channels will be selected for Wi-Fi communications with the UEs.
At 440, the premises equipment 204-b may select a channel in a first frequency subband of the second frequency band for the communication link based on (e.g., using) the channel avoidance procedure. In some aspects, the premises equipment 205-b may select the channel in the first frequency subband based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof. For example, the premises equipment 205-b may select the channel in the first frequency subband based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
In some aspects, the premises equipment 205-b may select the channel in the first frequency subband of the second frequency band based on applying one or more channel avoidance parameters to one or more other frequency subbands (e.g., second frequency subband, third frequency subband) at 435. of the second frequency band. Moreover, in additional or alternative aspects, the premises equipment 205-b may select the channel in the first frequency subband based on applying one or more channel avoidance parameters to one or more other channels in the first frequency subband at 435.
In some aspects, the premises equipment 205-b may select the channel in the first frequency subband at 440 based on determining a frequency distance between the first frequency band (e.g., N79 band) and the second frequency band (e.g., WLAN 5 GHz band)  satisfies a threshold. For example, as noted previously herein, the premises equipment 205-b may identify a frequency distance (e.g., bandwidth of a guard band) between the first frequency band (e.g., N79 band) and the second frequency band (e.g., WLAN 5 GHz band) . In this example, the premises equipment 205-b may compare the frequency distance to a threshold, and select the channel based on determining that the frequency distance satisfies a threshold. In some cases, the premises equipment 205-b may determine that the frequency distance satisfies the threshold when the frequency distance is greater than the threshold.
At 445, the premises equipment 205-b may communicate with the UE 115-c using the channel of the first frequency subband within the second frequency band. In some aspects, the premises equipment 205-b may communicate with the UE 115-c using the channel within the second frequency band based on selecting the channel at 440. Moreover, the premises equipment 205-b may communicate with the UE 115-c using the channel within the second frequency band based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof.
At 450, the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link in the first frequency band. In some aspects, the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link based on selecting the channel at 440. Moreover, the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link based on identifying the location of the premises equipment 205-b at 410, identifying the backhaul communication link and/or communication link at 415 and 420, identifying the operational state of the second frequency band at 425, identifying the target bandwidth at 430, performing the channel avoidance procedure at 435, or any combination thereof.
In some aspects, the premises equipment 205-b may communicate with the UE 115-c and the base station 105-b concurrently. In this regard, the communications with the UE 115-c over the communication link illustrated at 445 and the communications with the base station 105-b over the backhaul communication link illustrated at 450 may occur  concurrently such that the communications at least partially overlap in the time domain. For example, the premises equipment 205-b may communicate with the base station 105-b using the backhaul communication link in the first frequency band during a first duration, and may communicate with the UE 115-b using the communication link in the second frequency band during a second duration. In this example, the first duration may at least partially overlap with the second duration such that the communications with the UE 115-b and the base station 105-b take place concurrently during the duration of the overlap between the first duration and the second duration.
Techniques described herein may improve the performance and reliability of the premises equipment 205-b (e.g., CPE) in the context of FWA. In particular, by performing channel avoidance procedures, techniques described herein may reduce or eliminate potential interference between a backhaul communication link (e.g., 5G link) with the base station 105-b and a communication link (e.g., Wi-Fi link, WLAN 5 GHz link) with a UE 115-b supported by the premises equipment 205-b. In this regard, techniques described herein may enable the premises equipment 205-b to select efficient channels for Wi-Fi communication which reduce potential interference attributable to 5G communications supported by the premises equipment 205-b, thereby providing reliable FWA.
FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a wireless device (e.g., premises equipment 205) as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The communications manager 515 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on  identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The actions performed by the communications manager 515 as described herein may be implemented to realize one or more potential advantages. For example, the channel avoidance techniques may reduce interference between a backhaul communication link and other communication links (e.g., Wi-Fi communication links) in the context of FWA, thereby improving the efficiency and reliability of FWA. By reducing interference and improving reliability of wireless communications, power consumption of the premises equipment 205 may be reduced, and consumer experience and satisfaction may be improved.
Based on reducing interference in the context of FWA, a processor of the premises equipment 205 (e.g., a processor controlling the receiver 510, the communications manager 515, the transmitter 520, etc. ) may reduce processing resources used for FWA. For example, by reducing interference in the communication links (e.g., Wi-Fi communication links) between the premises equipment 205 and a UE 115, the premises equipment 205 may reduce the number of retransmissions used to successfully communicate with the UE 115, correspondingly reducing a number of times the processor ramps up processing power and turns on processing units to handle signal transmission and reception.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505 or a premises equipment 205 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 645. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a location manager 620, a backhaul communication link manager 625, a communication link manager 630, a channel avoidance procedure manager 635, and a UE manager 640. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The location manager 620 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT.
The backhaul communication link manager 625 may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
The communication link manager 630 may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link  operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
The channel avoidance procedure manager 635 may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band.
The UE manager 640 may communicate with the UE using the channel within the second frequency band based on selecting the channel.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a location manager 710, a backhaul communication link manager 715, a communication link manager 720, a channel avoidance procedure manager 725, a UE manager 730, a target bandwidth manager 735, a guard band manager 740, and a base station manager 745. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The location manager 710 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT. In some examples, the location manager 710 may identify a country where the premises equipment is located. In some examples, the location manager 710 may retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based on receiving the indication.
The backhaul communication link manager 715 may identify that the backhaul communication link operates using a first frequency band based on identifying the location.
The communication link manager 720 may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band.
The channel avoidance procedure manager 725 may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband. In some examples, the channel avoidance procedure manager 725 may reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
In some examples, the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband.
In some examples, the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band. In some examples, the  channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the third frequency subband.
In some examples, the channel avoidance procedure manager 725 may identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band. In some examples, the channel avoidance procedure manager 725 may apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
The UE manager 730 may communicate with the UE using the channel within the second frequency band based on selecting the channel. In some cases, the second RAT includes Wi-Fi. In some cases, the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz. In some cases, the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz. In some cases, the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz. In some cases, the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz. In some cases, the first frequency subband includes a U-NII subband.
The target bandwidth manager 735 may identify a target bandwidth of the channel based on identifying that the premises equipment communicates according the SBS operation. In some cases, the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
The guard band manager 740 may identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based on identifying that the frequency distance satisfies the threshold. In some cases, the second frequency band is separated from the first frequency band by a guard band. In some cases, the guard band includes a frequency band between 5 GHz and 5.150 GHz.
The base station manager 745 may communicate, based on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band. In some examples, the base station manager 745 may receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based on receiving the indication. In some cases, the first RAT includes 5G. In some cases, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a wireless device as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810. These components may be in electronic communication via one or more buses (e.g., bus) .
The communications manager 810 may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, identify that the backhaul communication link operates using a first frequency band based on identifying the location, identify that the communication link operates using a second frequency band concurrently  with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band, select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, and communicate with the UE using the channel within the second frequency band based on selecting the channel.
The I/O controller 815 may manage input and output signals for the device 805. The I/O controller 815 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 815 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 815 may utilize an operating system such as 
Figure PCTCN2020101796-appb-000001
or another known operating system. In other cases, the I/O controller 815 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 815 may be implemented as part of a processor. In some cases, a user may interact with the device 805 via the I/O controller 815 or via hardware components controlled by the I/O controller 815.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 830 may contain, among other things,  a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a central processing unit (CPU) , a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting configurations for a carrier overlapping multiple unlicensed bands) .
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a wireless device or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
At 905, the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the  operations of 905 may be performed by a location manager as described with reference to FIGs. 5 through 8.
At 910, the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
At 915, the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
At 920, the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
At 925, the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel. The operations of 925 may be performed according to the methods described herein. In some examples, aspects of the operations of 925 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a wireless device or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In  some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
At 1005, the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a location manager as described with reference to FIGs. 5 through 8.
At 1010, the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
At 1015, the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
At 1020, the wireless device may apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
At 1025, the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based on applying the channel avoidance parameter to the second frequency subband. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
At 1030, the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel. The operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for RAT concurrence for premises equipment in accordance with aspects of the present disclosure. The operations of method 1100 may be implemented by a wireless device or its components as described herein. For example, the operations of method 1100 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a wireless device may execute a set of instructions to control the functional elements of the wireless device to perform the functions described below. Additionally or alternatively, a wireless device may perform aspects of the functions described below using special-purpose hardware.
At 1105, the wireless device may receive, from the base station, an indication of the location of the premises equipment. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by a base station manager as described with reference to FIGs. 5 through 8.
At 1110, the wireless device may identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first RAT and establish a communication link with a UE using a second RAT, where identifying the  location of the premises equipment is based on receiving the indication. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a location manager as described with reference to FIGs. 5 through 8.
At 1115, the wireless device may identify that the backhaul communication link operates using a first frequency band based on identifying the location. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a backhaul communication link manager as described with reference to FIGs. 5 through 8.
At 1120, the wireless device may identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based on identifying that the backhaul communication link operates using the first frequency band. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a communication link manager as described with reference to FIGs. 5 through 8.
At 1125, the wireless device may select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band. The operations of 1125 may be performed according to the methods described herein. In some examples, aspects of the operations of 1125 may be performed by a channel avoidance procedure manager as described with reference to FIGs. 5 through 8.
At 1130, the wireless device may communicate with the UE using the channel within the second frequency band based on selecting the channel. The operations of 1130 may be performed according to the methods described herein. In some examples, aspects of the operations of 1130 may be performed by a UE manager as described with reference to FIGs. 5 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise  modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
The following provides an overview of examples of the present disclosure.
Example 1: A method for wireless communication, including: identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
Example 2: The method of Example 1, further including: applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 3: The method of Example 2, where applying the channel avoidance parameter further includes: reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
Example 4: The method of any of Examples 1 through 3, further including: identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the  second frequency band; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 4: The method of any of Examples 1 through 4, further including: identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
Example 6: The method of any of Examples 1 through 5, further including: identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
Example 7: The method of Example 6, where the target bandwidth comprises
80 MHz, 40 MHz, or 20 MHz.
Example 8: The method of any of Examples 1 through 7, further including: identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
Example 9: The method of any of Examples 1 through 8, further including: communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
Example 10: The method of any of Examples 1 through 9, further including: receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 11: The method of any of Examples 1 through 10, where identifying the location of the premises equipment comprises: identifying a country where the premises equipment is located.
Example 12: The method of any of Examples 1 through 11, further including: retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 13: The method of any of Examples 1 through 12, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
Example 14: The method of any of Examples 1 through 13, where the second frequency band is separated from the first frequency band by a guard band.
Example 15: The method of Example 14, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
Example 16: The method of any of Examples 1 through 15, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
Example 17: The method of Example 16, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
Example 18: The method of any of Examples 1 through 15, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
Example 19: The method of Example 18 where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
Example 20: The method of any of Examples 1 through 19, where the first frequency subband includes a U-NII subband.
Example 21: An apparatus for wireless communication, including: a processor, memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to: identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicate with the UE using the channel within the second frequency band based at least in part on selecting the channel.
Example 22: The apparatus of Example 21, where the instructions are further executable by the processor to cause the apparatus to: apply, as part of the channel avoidance  procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 23: The apparatus of Example 22, where the instructions to apply the channel avoidance parameter further are executable by the processor to cause the apparatus to:reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
Example 24: The apparatus of any of Examples 21 through 23, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 25: The apparatus of any of Examples 21 through 24, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
Example 26: The apparatus of any of Examples 21 through 25, where the instructions are further executable by the processor to cause the apparatus to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
Example 27: The apparatus of any of Example 26, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
Example 28: The apparatus of any of Examples 21 through 27, where the instructions are further executable by the processor to cause the apparatus to: identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
Example 29: The apparatus of any of Examples 21 through 28, where the instructions are further executable by the processor to cause the apparatus to: communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
Example 30: The apparatus of any of Examples 21 through 29, where the instructions are further executable by the processor to cause the apparatus to: receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 31: The apparatus of any of Examples 21 through 29, where the instructions to identify the location of the premises equipment are executable by the processor to cause the apparatus to: identify a country where the premises equipment is located.
Example 32: The apparatus of any of Examples 21 through 31, where the instructions are further executable by the processor to cause the apparatus to: retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 33: The apparatus of any of Examples 21 through 32, the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
Example 34: The apparatus of any of Examples 21 through 33, where the second frequency band is separated from the first frequency band by a guard band.
Example 35: The apparatus of Example 34, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
Example 36: The apparatus of any of Examples 21 through 35, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
Example 37: The apparatus of Example 36, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
Example 28: The apparatus of any of Examples 21 through 35, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
Example 39: The apparatus of Example 38, where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
Example 40: The apparatus of any of Examples 21 through 39, where the first frequency subband includes a U-NII subband.
Example 41: An apparatus for wireless communication, including: means for identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; means for identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; means for identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; means for selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and means for communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
Example 42: The apparatus of Example 41, further including: means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 43: The apparatus of Example 42, where the means for applying the channel avoidance parameter further includes: means for reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
Example 43: The apparatus of any of Examples 41 through 42, further including: means for identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and means for applying, as part of the channel avoidance  procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 45: The apparatus of any of Examples 41 through 44, further including: means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
Example 46: The apparatus of any of Examples 41 through 45, further including: means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; means for identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
Example 47: The apparatus of Example 46, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
Example 48: The apparatus of any of Examples 41 through 46, further including: means for identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
Example 49: The apparatus of any of Examples 41 through 48, further including: means for communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
Example 50: The apparatus of any of Examples 41 through 49, further including: means for receiving, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 51: The apparatus of any of Examples 41 through 50, where the means for identifying the location of the premises equipment includes: means for identifying a country where the premises equipment is located.
Example 52: The apparatus of any of Examples 41 through 51, further including: means for retrieving, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 53: The apparatus of any of Examples 41 through 52, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
Example 54: The apparatus of any of Examples 41 through 53, where the second frequency band is separated from the first frequency band by a guard band.
Example 55: The apparatus of Example 54, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
Example 56: The apparatus of any of Examples 41 through 55, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
Example 57: The apparatus of Example 56, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
Example 58: The apparatus of any of Examples 41 through 55, the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
Example 59: The apparatus of Example 58, where the second frequency band includes the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
Example 60: The apparatus of any of Examples 41 through 59, where the first frequency subband includes a U-NII subband.
Example 61: A non-transitory computer-readable medium storing code for wireless communication, the code including instructions executable by a processor to: identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a UE using a second radio access technology; identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location; identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band; select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and communicate with the UE using the channel within the second frequency band based at least in part on selecting the channel.
Example 62: The non-transitory computer-readable medium of Example 61, where the instructions are further executable to: apply, as part of the channel avoidance  procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 63: The non-transitory computer-readable medium of Example 62, where the instructions to apply the channel avoidance parameter further are executable to: reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
Example 64: The non-transitory computer-readable medium of any of Examples 61 through 63, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
Example 65: The non-transitory computer-readable medium of any of Examples 61 through 64, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
Example 66: The non-transitory computer-readable medium of any of Examples 61 through 65, where the instructions are further executable to: identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according an SBS operation associated with the second frequency band, the two channels including the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, where selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
Example 67: The non-transitory computer-readable medium of Example 66, where the target bandwidth includes 80 MHz, 40 MHz, or 20 MHz.
Example 68: The non-transitory computer-readable medium of any of Examples 61 through 67, where the instructions are further executable to: identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, where selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
Example 69: The non-transitory computer-readable medium of any of Examples 61 through 68, where the instructions are further executable to: communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
Example 70: The non-transitory computer-readable medium of any of Examples 61 through 69, where the instructions are further executable to: receive, from the base station, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 71: The non-transitory computer-readable medium of any of Examples 61 through 70, where the instructions to identify the location of the premises equipment are executable to: identify a country where the premises equipment is located.
Example 72: The non-transitory computer-readable medium of any of Examples 61 through 71, where the instructions are further executable to: retrieve, from a server, an indication of the location of the premises equipment, where identifying the location of the premises equipment is based at least in part on receiving the indication.
Example 73 The non-transitory computer-readable medium of any of Examples 61 through 72, where the first radio access technology includes 5G; and the second radio access technology includes Wi-Fi.
Example 74: The non-transitory computer-readable medium of any of Examples 61 through 73, where the second frequency band is separated from the first frequency band by a guard band.
Example 75: The non-transitory computer-readable medium of Example 74, where the guard band includes a frequency band between 5 GHz and 5.150 GHz.
Example 76: The non-transitory computer-readable medium of any of Examples 61 through 75, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.85 GHz.
Example 77: The non-transitory computer-readable medium of Example 76, where the second frequency band includes the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
Example 78: The non-transitory computer-readable medium of any of Examples 61 through 75, where the first frequency band includes a licensed frequency band between 4.4 GHz and 5 GHz; and the second frequency band includes an unlicensed frequency between 5.150 GHz and 5.725 GHz.
Example 79: The non-transitory computer-readable medium of Example 78, where the second frequency band includes the first frequency subband between 5.47 GHz and  5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
Example 80: The non-transitory computer-readable medium of any of Examples 61 through 79, where the first frequency subband includes a U-NII subband.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations  are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as  used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (80)

  1. A method for wireless communication, comprising:
    identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a user equipment (UE) using a second radio access technology;
    identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location;
    identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band;
    selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and
    communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  2. The method of claim 1, further comprising:
    applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  3. The method of claim 2, wherein applying the channel avoidance parameter further comprises:
    reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
  4. The method of claim 1, further comprising:
    identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and
    applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  5. The method of claim 1, further comprising:
    identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and
    applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  6. The method of claim 1, further comprising:
    identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the  channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band;
    identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and
    applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  7. The method of claim 6, wherein the target bandwidth comprises 80 MHz, 40 MHz, or 20 MHz.
  8. The method of claim 1, further comprising:
    identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, wherein selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  9. The method of claim 1, further comprising:
    communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  10. The method of claim 1, further comprising:
    receiving, from the base station, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  11. The method of claim 1, wherein identifying the location of the premises equipment comprises:
    identifying a country where the premises equipment is located.
  12. The method of claim 1, further comprising:
    retrieving, from a server, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  13. The method of claim 1, wherein:
    the first radio access technology comprises 5G; and
    the second radio access technology comprises Wi-Fi.
  14. The method of claim 1, wherein the second frequency band is separated from the first frequency band by a guard band.
  15. The method of claim 14, wherein the guard band comprises a frequency band between 5 GHz and 5.150 GHz.
  16. The method of claim 1, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  17. The method of claim 16, wherein the second frequency band comprises the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  18. The method of claim 1, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  19. The method of claim 18, wherein the second frequency band comprises the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband  between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  20. The method of claim 1, wherein the first frequency subband comprises an unlicensed national information infrastructure (U-NII) subband.
  21. An apparatus for wireless communication, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a user equipment (UE) using a second radio access technology;
    identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location;
    identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band;
    select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band; and
    communicate with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  22. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part  on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  23. The apparatus of claim 22, wherein the instructions to apply the channel avoidance parameter further are executable by the processor to cause the apparatus to:
    reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
  24. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  25. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, wherein selecting the channel, using the channel avoidance  procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  26. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band;
    identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  27. The apparatus of claim 26, wherein the target bandwidth comprises 80 MHz, 40 MHz, or 20 MHz.
  28. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, wherein selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  29. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first  duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  30. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the base station, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  31. The apparatus of claim 21, wherein the instructions to identify the location of the premises equipment are executable by the processor to cause the apparatus to:
    identify a country where the premises equipment is located.
  32. The apparatus of claim 21, wherein the instructions are further executable by the processor to cause the apparatus to:
    retrieve, from a server, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  33. The apparatus of claim 21, wherein:
    the first radio access technology comprises 5G; and
    the second radio access technology comprises Wi-Fi.
  34. The apparatus of claim 21, wherein the second frequency band is separated from the first frequency band by a guard band.
  35. The apparatus of claim 34, wherein the guard band comprises a frequency band between 5 GHz and 5.150 GHz.
  36. The apparatus of claim 21, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  37. The apparatus of claim 36, wherein the second frequency band comprises the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  38. The apparatus of claim 21, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  39. The apparatus of claim 38, wherein the second frequency band comprises the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  40. The apparatus of claim 21, wherein the first frequency subband comprises an unlicensed national information infrastructure (U-NII) subband.
  41. An apparatus for wireless communication, comprising:
    means for identifying a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a user equipment (UE) using a second radio access technology;
    means for identifying that the backhaul communication link operates using a first frequency band based at least in part on identifying the location;
    means for identifying that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band;
    means for selecting, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band  concurrently with the backhaul communication link operating using the first frequency band; and
    means for communicating with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  42. The apparatus of claim 41, further comprising:
    means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  43. The apparatus of claim 42, wherein the means for applying the channel avoidance parameter further comprises:
    means for reducing a probability that one or more channels in the second frequency subband are selected for the communication link.
  44. The apparatus of claim 41, further comprising:
    means for identifying that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and
    means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  45. The apparatus of claim 41, further comprising:
    means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels  comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and
    means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  46. The apparatus of claim 41, further comprising:
    means for identifying that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band;
    means for identifying a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and
    means for applying, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  47. The apparatus of claim 46, wherein the target bandwidth comprises 80 MHz, 40 MHz, or 20 MHz.
  48. The apparatus of claim 41, further comprising:
    means for identifying that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, wherein selecting the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  49. The apparatus of claim 41, further comprising:
    means for communicating, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  50. The apparatus of claim 41, further comprising:
    means for receiving, from the base station, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  51. The apparatus of claim 41, wherein the means for identifying the location of the premises equipment comprises:
    means for identifying a country where the premises equipment is located.
  52. The apparatus of claim 41, further comprising:
    means for retrieving, from a server, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  53. The apparatus of claim 41, wherein:
    the first radio access technology comprises 5G; and
    the second radio access technology comprises Wi-Fi.
  54. The apparatus of claim 41, wherein the second frequency band is separated from the first frequency band by a guard band.
  55. The apparatus of claim 54, wherein the guard band comprises a frequency band between 5 GHz and 5.150 GHz.
  56. The apparatus of claim 41, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  57. The apparatus of claim 56, wherein the second frequency band comprises the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  58. The apparatus of claim 41, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  59. The apparatus of claim 58, wherein the second frequency band comprises the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  60. The apparatus of claim 41, wherein the first frequency subband comprises an unlicensed national information infrastructure (U-NII) subband.
  61. A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to:
    identify a location of a premises equipment configured to provide fixed wireless access to a premises, the premises equipment configured to establish a backhaul communication link with a base station using a first radio access technology and establish a communication link with a user equipment (UE) using a second radio access technology;
    identify that the backhaul communication link operates using a first frequency band based at least in part on identifying the location;
    identify that the communication link operates using a second frequency band concurrently with the backhaul communication link operating using the first frequency band based at least in part on identifying that the backhaul communication link operates using the first frequency band;
    select, using a channel avoidance procedure, a channel in a first frequency subband of the second frequency band for the communication link based at least in part on identifying that the communication link operates using the second frequency band  concurrently with the backhaul communication link operating using the first frequency band; and
    communicate with the UE using the channel within the second frequency band based at least in part on selecting the channel.
  62. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the communication link operates using the second frequency band concurrently with the backhaul communication link operating using the first frequency band, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  63. The non-transitory computer-readable medium of claim 62, wherein the instructions to apply the channel avoidance parameter further are executable to:
    reduce a probability that one or more channels in the second frequency subband are selected for the communication link.
  64. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    identify that the premises equipment communicates with one or more UEs using one channel in the second frequency band according a full-band operation associated with the second frequency band; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a second frequency subband of the second frequency band based at least in part on identifying that the premises equipment communicates according the full-band operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the second frequency subband.
  65. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS)  operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to a third frequency subband of the second frequency band that is associated with the channel based at least in part on identifying that the premises equipment communicates according the SBS operation, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the third frequency subband.
  66. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    identify that the premises equipment communicates with one or more UEs using two channels in the second frequency band according a single band simultaneous (SBS) operation associated with the second frequency band, the two channels comprising the channel in the first frequency subband and a second channel in a second frequency subband of the second frequency band;
    identify a target bandwidth of the channel based at least in part on identifying that the premises equipment communicates according the SBS operation; and
    apply, as part of the channel avoidance procedure, a channel avoidance parameter to one or more channels of the first frequency subband of the second frequency band based at least in part on identifying the target bandwidth of the channel, wherein selecting the channel, using the channel avoidance procedure, is based at least in part on applying the channel avoidance parameter to the one or more channels of the first frequency subband.
  67. The non-transitory computer-readable medium of claim 66, wherein the target bandwidth comprises 80 MHz, 40 MHz, or 20 MHz.
  68. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    identify that a frequency distance between a first limit of the first frequency band and a second limit of the second frequency band satisfies a threshold, wherein selecting  the channel is based at least in part on identifying that the frequency distance satisfies the threshold.
  69. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    communicate, based at least in part on selecting the channel, with the base station using the backhaul communication link in the first frequency band during a first duration that at least partially overlaps with a second duration used for communicating with the UE using the channel within the second frequency band.
  70. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    receive, from the base station, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  71. The non-transitory computer-readable medium of claim 61, wherein the instructions to identify the location of the premises equipment are executable to:
    identify a country where the premises equipment is located.
  72. The non-transitory computer-readable medium of claim 61, wherein the instructions are further executable to:
    retrieve, from a server, an indication of the location of the premises equipment, wherein identifying the location of the premises equipment is based at least in part on receiving the indication.
  73. The non-transitory computer-readable medium of claim 61, wherein:
    the first radio access technology comprises 5G; and
    the second radio access technology comprises Wi-Fi.
  74. The non-transitory computer-readable medium of claim 61, wherein the second frequency band is separated from the first frequency band by a guard band.
  75. The non-transitory computer-readable medium of claim 74, wherein the guard band comprises a frequency band between 5 GHz and 5.150 GHz.
  76. The non-transitory computer-readable medium of claim 61, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.85 GHz.
  77. The non-transitory computer-readable medium of claim 76, wherein the second frequency band comprises the first frequency subband between 5.725 GHz and 5.85 GHz, a second frequency subband between 5.47 GHz and 5.725 GHz, a third frequency subband between 5.25 GHz and 5.35 GHz, and a fourth frequency subband between 5.15 GHz and 5.25 GHz.
  78. The non-transitory computer-readable medium of claim 61, wherein:
    the first frequency band comprises a licensed frequency band between 4.4 GHz and 5 GHz; and
    the second frequency band comprises an unlicensed frequency between 5.150 GHz and 5.725 GHz.
  79. The non-transitory computer-readable medium of claim 78, wherein the second frequency band comprises the first frequency subband between 5.47 GHz and 5.725 GHz, a second frequency subband between 5.25 GHz and 5.35 GHz, and a third frequency subband between 5.15 GHz and 5.25 GHz.
  80. The non-transitory computer-readable medium of claim 61, wherein the first frequency subband comprises an unlicensed national information infrastructure (U-NII) subband.
PCT/CN2020/101796 2020-07-14 2020-07-14 Techniques for radio access technology concurrence for premises equipment WO2022011535A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101796 WO2022011535A1 (en) 2020-07-14 2020-07-14 Techniques for radio access technology concurrence for premises equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101796 WO2022011535A1 (en) 2020-07-14 2020-07-14 Techniques for radio access technology concurrence for premises equipment

Publications (1)

Publication Number Publication Date
WO2022011535A1 true WO2022011535A1 (en) 2022-01-20

Family

ID=79554378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101796 WO2022011535A1 (en) 2020-07-14 2020-07-14 Techniques for radio access technology concurrence for premises equipment

Country Status (1)

Country Link
WO (1) WO2022011535A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587882A1 (en) * 2010-09-20 2013-05-01 Huawei Device Co., Ltd. Method and device for antenna communications
US20140187287A1 (en) * 2012-12-27 2014-07-03 Broadcom Corporation Lte and wlan/bluetooth coexistence
CN105493541A (en) * 2013-09-04 2016-04-13 高通股份有限公司 Reducing interference from LTE in unlicensed bands
US20180109974A1 (en) * 2015-03-30 2018-04-19 British Telecommunications Public Limited Company Communications network
US20200119776A1 (en) * 2018-10-10 2020-04-16 Telefonica, S.A. Method and a system for dynamic association of spatial layers to beams in millimeter-wave fixed wireless access networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587882A1 (en) * 2010-09-20 2013-05-01 Huawei Device Co., Ltd. Method and device for antenna communications
US20140187287A1 (en) * 2012-12-27 2014-07-03 Broadcom Corporation Lte and wlan/bluetooth coexistence
CN105493541A (en) * 2013-09-04 2016-04-13 高通股份有限公司 Reducing interference from LTE in unlicensed bands
US20180109974A1 (en) * 2015-03-30 2018-04-19 British Telecommunications Public Limited Company Communications network
US20200119776A1 (en) * 2018-10-10 2020-04-16 Telefonica, S.A. Method and a system for dynamic association of spatial layers to beams in millimeter-wave fixed wireless access networks

Similar Documents

Publication Publication Date Title
US11792771B2 (en) Transport block forwarding over different air interfaces
WO2022000376A1 (en) Interference measurement of sensing signals
US20220038249A1 (en) Techniques for declaring default operating frequencies
US11800389B2 (en) Techniques for beamforming enhancement and feedback
US20230269010A1 (en) Techniques for self-awareness based interference measurement of sensing signals
WO2021046666A1 (en) Uplink transmission timing patterns
US11917467B2 (en) Techniques for exchanging ultra-wide bandwidth beamforming information
US11937213B2 (en) Optimizations for sidelink user equipment for integrated access and backhaul network
US11153000B1 (en) Multi-factor beam selection for channel shaping
US20210306961A1 (en) Techniques for determining sidelink resources for multiple transmission and reception points enabled user equipments
WO2022011535A1 (en) Techniques for radio access technology concurrence for premises equipment
US11595959B2 (en) Techniques for array specific beam refinement
WO2022047743A1 (en) Techniques for directional sidelink transmissions with multi-transmission-reception point (trp) user equipments (ues)
WO2023102719A1 (en) Techniques for detecting blockage conditions
WO2022126306A1 (en) Techniques for transmission configuration indicator state switching for handover procedures
WO2022056763A1 (en) Optimization for internet protocol multimedia subsystem evolved packet system fallback
US20230269760A1 (en) Techniques to allocate receive resources
WO2022227001A1 (en) Techniques for radio resource control reconfiguration alignment
US20230073398A1 (en) Dynamic quasi co-location mapping for multiple links with assistive communication nodes
WO2021258281A1 (en) Timer based network switching to support voice services
WO2021258238A1 (en) Network search procedures for dual subscription user equipment
WO2021258400A1 (en) Port to antenna mapping for uplink communications
WO2023044219A1 (en) Techniques for sidelink full-duplex semi-static transmissions
EP4430765A1 (en) Methods for switching between repeater and intelligent reflective surface operations in an assistive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20945337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20945337

Country of ref document: EP

Kind code of ref document: A1