Nothing Special   »   [go: up one dir, main page]

WO2021258238A1 - Network search procedures for dual subscription user equipment - Google Patents

Network search procedures for dual subscription user equipment Download PDF

Info

Publication number
WO2021258238A1
WO2021258238A1 PCT/CN2020/097343 CN2020097343W WO2021258238A1 WO 2021258238 A1 WO2021258238 A1 WO 2021258238A1 CN 2020097343 W CN2020097343 W CN 2020097343W WO 2021258238 A1 WO2021258238 A1 WO 2021258238A1
Authority
WO
WIPO (PCT)
Prior art keywords
subscription
cell
access technology
radio access
search
Prior art date
Application number
PCT/CN2020/097343
Other languages
French (fr)
Inventor
Jian Li
Hao Zhang
Fojian ZHANG
Yi Liu
Haibo Liu
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/097343 priority Critical patent/WO2021258238A1/en
Publication of WO2021258238A1 publication Critical patent/WO2021258238A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/04Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration using triggered events
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the following relates generally to wireless communications and more specifically to network search procedures for dual subscription user equipment.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a UE may attempt to switch between networks or radio access technologies.
  • the UE may have two or more subscriptions.
  • Each subscription of the UE may perform a process to locate and switch to network or radio access technology, however, connection of one or both of the subscriptions may be time, processing, and power intensive and may cause the UE to lack some services or capabilities during the searching and connection time period.
  • a UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • a method of wireless communications at a UE is described.
  • the method may include performing, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the apparatus may include means for performing, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • transmitting the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell may include operations, features, means, or instructions for triggering the second subscription of the UE to perform the search procedure for a cell of the first radio access technology before the expiration of the cell search timer associated with the second subscription.
  • the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell includes a flag to trigger the second subscription of the UE to perform the search procedure for a cell of the first radio access technology.
  • the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell includes a cell search synchronization request message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for stopping, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
  • performing the connection procedure to the first cell of the first radio access technology may include operations, features, means, or instructions for transmitting a registration request message to the first cell of the first radio access technology, and receiving a registration accept message from the first cell of the first radio access technology, where the registration accept message indicates the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the UE includes a dual subscriber identification module, dual standby modem.
  • FIG. 1 illustrates an example of a system for wireless communications that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a process flow that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • FIGs. 3 and 4 show block diagrams of devices that support network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • FIG. 5 shows a block diagram of a communications manager that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • FIG. 6 shows a diagram of a system including a device that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • FIGs. 7 through 10 show flowcharts illustrating methods that support network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • Wireless communications systems may support communications between a user equipment (UE) and a base station.
  • the UE and the base station may communicate over one or more networks or radio access technologies (RATs) , such as a Long Term Evolution (LTE) network, a new radio (NR) network, or one or more legacy networks.
  • RATs radio access technologies
  • LTE Long Term Evolution
  • NR new radio
  • legacy networks such as a Long Term Evolution (LTE) network, a new radio (NR) network, or one or more legacy networks.
  • LTE Long Term Evolution
  • NR new radio
  • performing the background cell search includes using an idle discontinuous gap to search for cells of the non-legacy network that will not impact current idle standby status of the UE.
  • performance of the background cell search may be time intensive because the UE may scan all supported radio frequency bands associated with the non-legacy network.
  • the UE may support two subscriptions, each subscription supporting multiple networks or RATs.
  • the first subscription of the UE may successfully reselect a non-legacy network (e.g., a 5G NR network) following a search period.
  • the second subscription of the UE may continue to consume power, processing resources, and signaling resources during an extended period of time while searching for a cell of the non-legacy network.
  • the first subscription may signal to the second subscription details associated with the successful selection of the non-legacy network. Such details may include the now-known band or frequency information associated with the selected cell of the non-legacy network. Additionally, the first subscription may signal an indication to the second subscription that the second subscription may begin a background cell search for the non-legacy network based on the availability of cell coverage at the present location of the UE based on the successful selection of a cell of the non-legacy network by the first subscription.
  • a non-legacy network e.g., a 5G NR cell
  • the second subscription in response to the indication received from the first subscription, may initiate a background cell search prior to expiration of any timers associated with background searching that are intended to reduce frequent background searching by the second subscription. Additionally, the second subscription may accelerate the background search process based on the received indication from the first subscription of the band or frequency information associated with the cell that was selected by the first subscription. In such examples, the second subscription may be able to camp on a cell of the non-legacy network selected by the first subscription and may therefore spend less time search for and connecting to the non-legacy network as compared to the first subscription as a result of the indication received from the first subscription. Accordingly, use of the network search procedures for dual subscription UE as described herein may facilitate efficient search procedures while reducing power consumption, processing power consumption, latency, and service disruption of the dual subscription UE.
  • the described techniques may provide for efficiently obtaining and maintaining a connection between more than one subscriptions of a UE and one or more networks (e.g., 5G NR networks) while reducing a time requirement to connect the more than one subscriptions of the UE to the one or more networks.
  • the dual subscription UE implementing the techniques and methods described herein may improve a user experience for a user of the UE as the user is able to have more efficient connection and continuity of connection between the dual subscriptions of the UE while transitioning through various network areas.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are described in the context of connecting more than one subscription of a UE with one or more networks or RATs and methods for facilitating connecting the more than one subscriptions of a UE with the one or more networks while reducing system power consumption, latency, and discontinuous user service. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to network search procedures for dual subscription user equipment.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a LTE network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a NR network.
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • the UE 115 may attempt to switch between a legacy network (e.g., a 2G or 3G network) to a non-legacy network (e.g., a 5G NR network) .
  • switching from the legacy network may include performance of a background cell search by the UE 115.
  • performing the background cell search includes using an idle discontinuous gap for the legacy network to search for cells of the non-legacy network.
  • performance of the background cell search may be time intensive because the UE 115 may scan all supported radio frequency bands of the non-legacy network as part of the search procedure.
  • the UE 115 may support two subscriptions, each subscription supporting multiple networks or RATs.
  • the first subscription of the UE 115 may successfully reselect from a legacy network (e.g., a 2G or 3G legacy network) to a non-legacy network (e.g., a 5G NR network) following a search period.
  • a legacy network e.g., a 2G or 3G legacy network
  • a non-legacy network e.g., a 5G NR network
  • the first subscription may signal to the second subscription details associated with the cell or network that the first subscription successfully selected. Such details may include band or frequency information associated with the selected cell of the non-legacy network.
  • the first subscription may signal an indication to the second subscription that triggers the second subscription to begin a background cell search for the non-legacy network based on the availability of cell coverage of the non-legacy network at the present location of the UE 115 based on the successful selection of the non-legacy network by the first subscription.
  • the second subscription in response to the indication received from the first subscription, may initiate a background cell search for the non-legacy network prior to expiration of any timers (e.g., a background cell search off timer) associated with background searching that are intended to reduce frequent background searching by the second subscription. Additionally, the second subscription may accelerate the background cell search process based on the received indication from the first subscription of the band or frequency information associated with the non-legacy network that was selected by the first subscription. In such examples, the second subscription may be able to camp on a cell of the non-legacy network selected by the first subscription and may therefore spend less time to search for an select the non-legacy network as compared to the first subscription as a result of the indication received from the first subscription. Accordingly, use of the network search procedures for dual subscription user equipment, such as the UE 115, as described herein may facilitate efficient search procedures for switching between networks or RATs while reducing power consumption, processing power consumption, latency, and service disruption of the dual subscription user equipment.
  • any timers e.g.,
  • FIG. 2 illustrates an example of a process flow 200 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the process flow 200 may implement aspects of wireless communication system 100.
  • the process flow 200 may illustrate communication between a UE 205 and base stations corresponding to one or more cells 220, 225, which may be examples of a corresponding UE 115 and base station 105 as described herein.
  • Alternative examples of the following may be implemented, wherein some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
  • the process flow 200 may include a UE 205 including a first subscription 210 of the UE 205, a second subscription 215 of the UE 205, a first RAT cell 220, and a second RAT cell 225.
  • the UE 205 may include one or more of a dual subscriber identification module (SIM) or a dual standby modem.
  • SIM dual subscriber identification module
  • the UE 205 may be an example of a dual SIM dual access (DSDA) UE 205 or a dual SIM dual standby (DSDS) UE.
  • DSDA dual SIM dual access
  • DSDS dual SIM dual standby
  • each SIM or subscription of the UE 205 may support 5G NR functionality.
  • the first subscription 210 and the second subscription 215 may be camped on the second RAT cell 225.
  • the second RAT cell 225 may be an example of a legacy network such as a 2G or 3G network.
  • the first subscription 210 may remain camped on the second RAT cell 225 until a background cell search timer for the first subscription 210 expires. Following expiration of the background cell search timer, the first subscription 210 may initiate a background cell search, for example to locate a suitable wireless network or RAT cell associated with such network.
  • the first subscription 210 may perform the background cell search for a non-legacy network (e.g., a non-legacy or 5G NR network) or RAT cell associated with the 5G NR network and may successfully locate a suitable RAT cell or network.
  • the search procedure for the first RAT cell 220 may be performed during a discontinuous reception period for the cell of the second RAT cell 225.
  • the first subscription 210 may perform a connection procedure to the first RAT cell 220 based on the background cell search procedure.
  • the first RAT cell 220 may be an example of a non-legacy network such as a 5G NR network.
  • the connection procedure to the first RAT cell 220 may include transmitting a registration request message to the first RAT cell 220 and receiving a registration accept message from the first RAT cell 220.
  • the registration accept message may indicate the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220.
  • the first subscription 210 may transmit, to the second subscription 215, an indication of a radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220.
  • transmitting the indication of the radio frequency band may include triggering the second subscription 215 to perform the search procedure for the first RAT cell 220 before the expiration of the cell search timer associated with the second subscription 215.
  • the cell search timer associated with the second subscription 215 may be for a time period of ten minutes. In other cases, the cell search timer associated with the second subscription 215 may be for any time period that facilitates operation of the process flow 200 as described herein.
  • the indication of the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220 includes a flag to trigger the second subscription 215 to perform the search procedure for the first RAT cell 220.
  • the indication of the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220 includes a cell search synchronization request message.
  • the second subscription 215 may perform, before an expiration of a cell search timer associated with the second subscription 215, a background cell search procedure for the first RAT cell 220 based at least in part on the indication transmitted from the first subscription 210.
  • the background cell search procedure for the second subscription 215 may be enhanced (e.g., performed more quickly) based on the indication of the radio frequency band used by the first subscription 210.
  • the second subscription 215 may stop the cell search timer associated with the second subscription 215 based at least in part on the indication transmitted from the first subscription 210.
  • FIG. 3 shows a block diagram 300 of a device 305 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the device 305 may be an example of aspects of a UE 115 as described herein.
  • the device 305 may include a receiver 310, a communications manager 315, and a transmitter 320.
  • the device 305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to network search procedures for dual subscription user equipment, etc. ) . Information may be passed on to other components of the device 305.
  • the receiver 310 may be an example of aspects of the transceiver 620 described with reference to FIG. 6.
  • the receiver 310 may utilize a single antenna or a set of antennas.
  • the communications manager 315 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the communications manager 315 may be an example of aspects of the communications manager 610 described herein.
  • the communications manager 315 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • code e.g., software or firmware
  • ASIC application-specific integrated circuit
  • the communications manager 315 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 315, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 315, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 320 may transmit signals generated by other components of the device 305.
  • the transmitter 320 may be collocated with a receiver 310 in a transceiver module.
  • the transmitter 320 may be an example of aspects of the transceiver 620 described with reference to FIG. 6.
  • the transmitter 320 may utilize a single antenna or a set of antennas.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a device 305, or a UE 115 as described herein.
  • the device 405 may include a receiver 410, a communications manager 415, and a transmitter 435.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to network search procedures for dual subscription user equipment, etc. ) . Information may be passed on to other components of the device 405.
  • the receiver 410 may be an example of aspects of the transceiver 620 described with reference to FIG. 6.
  • the receiver 410 may utilize a single antenna or a set of antennas.
  • the communications manager 415 may be an example of aspects of the communications manager 315 as described herein.
  • the communications manager 415 may include a connection component 420, a transmission component 425, and a search component 430.
  • the communications manager 415 may be an example of aspects of the communications manager 610 described herein.
  • the connection component 420 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the transmission component 425 may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the search component 430 may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the transmitter 435 may transmit signals generated by other components of the device 405.
  • the transmitter 435 may be collocated with a receiver 410 in a transceiver module.
  • the transmitter 435 may be an example of aspects of the transceiver 620 described with reference to FIG. 6.
  • the transmitter 435 may utilize a single antenna or a set of antennas.
  • FIG. 5 shows a block diagram 500 of a communications manager 505 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the communications manager 505 may be an example of aspects of a communications manager 315, a communications manager 415, or a communications manager 610 described herein.
  • the communications manager 505 may include a connection component 510, a transmission component 515, a search component 520, and a timer component 525. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the connection component 510 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the transmission component 515 may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the search component 520 may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the search component 520 may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
  • the search component 520 may perform the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
  • the timer component 525 may stop, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription.
  • FIG. 6 shows a diagram of a system 600 including a device 605 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the device 605 may be an example of or include the components of device 305, device 405, or a UE 115 as described herein.
  • the device 605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 610, an I/O controller 615, a transceiver 620, an antenna 625, memory 630, and a processor 640. These components may be in electronic communication via one or more buses (e.g., bus 645) .
  • buses e.g., bus 645
  • the communications manager 610 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the I/O controller 615 may manage input and output signals for the device 605.
  • the I/O controller 615 may also manage peripherals not integrated into the device 605.
  • the I/O controller 615 may represent a physical connection or port to an external peripheral.
  • the I/O controller 615 may utilize an operating system such as or another known operating system.
  • the I/O controller 615 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 615 may be implemented as part of a processor.
  • a user may interact with the device 605 via the I/O controller 615 or via hardware components controlled by the I/O controller 615.
  • the transceiver 620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 625. However, in some cases the device may have more than one antenna 625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 630 may include RAM and ROM.
  • the memory 630 may store computer-readable, computer-executable code 635 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 640 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 640.
  • the processor 640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 630) to cause the device 605 to perform various functions (e.g., functions or tasks supporting network search procedures for dual subscription user equipment) .
  • the code 635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 635 may not be directly executable by the processor 640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 7 shows a flowchart illustrating a method 700 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the operations of method 700 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 700 may be performed by a communications manager as described with reference to FIGs. 3 through 6.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the operations of 705 may be performed according to the methods described herein. In some examples, aspects of the operations of 705 may be performed by a connection component as described with reference to FIGs. 3 through 6.
  • the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the operations of 710 may be performed according to the methods described herein. In some examples, aspects of the operations of 710 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the operations of 715 may be performed according to the methods described herein. In some examples, aspects of the operations of 715 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the operations of method 800 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 3 through 6.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a connection component as described with reference to FIGs. 3 through 6.
  • the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • the UE may stop, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription.
  • the operations of 820 may be performed according to the methods described herein. In some examples, aspects of the operations of 820 may be performed by a timer component as described with reference to FIGs. 3 through 6.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 3 through 6.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a connection component as described with reference to FIGs. 3 through 6.
  • the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 3 through 6.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
  • the UE may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • the UE may perform the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a connection component as described with reference to FIGs. 3 through 6.
  • the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
  • the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a search component as described with reference to FIGs. 3 through 6.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer.
  • non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium.
  • RAM random-access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable ROM
  • flash memory compact disk (CD) ROM or other optical disk storage
  • CD compact disk
  • magnetic disk storage or other magnetic storage devices or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer,
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may include a first subscription and a second subscription. The first subscription may perform a connection procedure to a first cell of a first radio access technology. The first subscription may transmit to the second subscription an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The second subscription may perform, before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.

Description

NETWORK SEARCH PROCEDURES FOR DUAL SUBSCRIPTION USER EQUIPMENT
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to network search procedures for dual subscription user equipment.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some wireless communications systems, a UE may attempt to switch between networks or radio access technologies. In some cases, the UE may have two or more subscriptions. Each subscription of the UE may perform a process to locate and switch to network or radio access technology, however, connection of one or both of the subscriptions may be time, processing, and power intensive and may cause the UE to lack some services or capabilities during the searching and connection time period.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support network search procedures for dual subscription user equipment.  Generally, the described techniques provide for efficient search procedures of a dual subscription user equipment (UE) for switching between networks while reducing power consumption, processing power consumption, latency, and service disruption of the dual subscription UE among other benefits. For example, a UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology. The UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
A method of wireless communications at a UE is described. The method may include performing, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for performing, by a first subscription of the UE, a connection  procedure to a first cell of a first radio access technology, transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, transmitting the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell may include operations, features, means, or instructions for triggering the second subscription of the UE to perform the search procedure for a cell of the first radio access technology before the expiration of the cell search timer associated with the second subscription.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell includes a flag to trigger the second subscription of the UE to perform the search procedure for a cell of the first radio access technology.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell includes a cell search synchronization request message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for stopping, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for performing the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, performing the connection procedure to the first cell of the first radio access technology may include operations, features, means, or instructions for transmitting a registration request message to the first cell of the first radio access technology, and receiving a registration accept message from the first cell of the first radio access technology, where the registration accept message indicates the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the UE includes a dual subscriber identification module, dual standby modem.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a system for wireless communications that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a process flow that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
FIGs. 3 and 4 show block diagrams of devices that support network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
FIG. 5 shows a block diagram of a communications manager that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
FIG. 6 shows a diagram of a system including a device that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
FIGs. 7 through 10 show flowcharts illustrating methods that support network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Wireless communications systems may support communications between a user equipment (UE) and a base station. The UE and the base station may communicate over one or more networks or radio access technologies (RATs) , such as a Long Term Evolution (LTE) network, a new radio (NR) network, or one or more legacy networks. In some cases, the UE may attempt to switch from a legacy network (e.g., a 2G or 3G legacy network) to a non-legacy network (e.g., a 5G NR network) . In such examples, switching from the legacy network may include performance of a background cell search by the UE. In such cases, performing the background cell search includes using an idle discontinuous gap to search for cells of the non-legacy network that will not impact current idle standby status of the UE. However, performance of the background cell search may be time intensive because the UE may scan all supported radio frequency bands associated with the non-legacy network. Additionally, in some instances, the UE may support two subscriptions, each subscription supporting multiple networks or RATs. In such examples, the first subscription of the UE may successfully reselect a non-legacy network (e.g., a 5G NR network) following a search period. However, the second subscription of the UE may continue to consume power, processing resources, and signaling resources during an extended period of time while searching for a cell of the non-legacy network.
In the examples described herein, to facilitate efficient selection of one or more networks or RATs by UEs with multiple subscriptions, after a successful selection of a non-legacy network (e.g., a 5G NR cell) by the first subscription, the first subscription may signal to the second subscription details associated with the successful selection of the non-legacy network. Such details may include the now-known band or frequency information associated with the selected cell of the non-legacy network. Additionally, the first subscription may signal an indication to the second subscription that the second subscription may begin a background cell search for the non-legacy network based on the availability of cell coverage at the present location of the UE based on the successful selection of a cell of the non-legacy network by the first subscription.
In such examples, in response to the indication received from the first subscription, the second subscription may initiate a background cell search prior to expiration of any timers associated with background searching that are intended to reduce frequent background searching by the second subscription. Additionally, the second subscription may accelerate the background search process based on the received indication from the first subscription of the band or frequency information associated with the cell that was selected by the first subscription. In such examples, the second subscription may be able to camp on a cell of the non-legacy network selected by the first subscription and may therefore spend less time search for and connecting to the non-legacy network as compared to the first subscription as a result of the indication received from the first subscription. Accordingly, use of the network search procedures for dual subscription UE as described herein may facilitate efficient search procedures while reducing power consumption, processing power consumption, latency, and service disruption of the dual subscription UE.
Particular aspects of the subject matter described herein may be implemented to realize one or more potential advantages. The described techniques may provide for efficiently obtaining and maintaining a connection between more than one subscriptions of a UE and one or more networks (e.g., 5G NR networks) while reducing a time requirement to connect the more than one subscriptions of the UE to the one or more networks. As such, the dual subscription UE implementing the techniques and methods described herein may improve a user experience for a user of the UE as the user is able to have more efficient connection and continuity of connection between the dual subscriptions of the UE while transitioning through various network areas.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are described in the context of connecting more than one subscription of a UE with one or more networks or RATs and methods for facilitating connecting the more than one subscriptions of a UE with the one or more networks while reducing system power consumption, latency, and discontinuous user service. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to network search procedures for dual subscription user equipment.
FIG. 1 illustrates an example of a wireless communications system 100 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a LTE network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a NR network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base  stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical  layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115,  or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio  frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a  control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception  simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include  downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer  an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a  combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the  bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some cases, the UE 115 may attempt to switch between a legacy network (e.g., a 2G or 3G network) to a non-legacy network (e.g., a 5G NR network) . In such examples, switching from the legacy network may include performance of a background cell search by the UE 115. In such cases, performing the background cell search includes using an idle discontinuous gap for the legacy network to search for cells of the non-legacy network. However, performance of the background cell search may be time intensive because the UE 115 may scan all supported radio frequency bands of the non-legacy network as part of the search procedure.
In some examples, the UE 115 may support two subscriptions, each subscription supporting multiple networks or RATs. In such examples, the first subscription of the UE 115  may successfully reselect from a legacy network (e.g., a 2G or 3G legacy network) to a non-legacy network (e.g., a 5G NR network) following a search period. In some examples, after successful selection, or reselection, of a cell of the non-legacy network by the first subscription, the first subscription may signal to the second subscription details associated with the cell or network that the first subscription successfully selected. Such details may include band or frequency information associated with the selected cell of the non-legacy network. Additionally, the first subscription may signal an indication to the second subscription that triggers the second subscription to begin a background cell search for the non-legacy network based on the availability of cell coverage of the non-legacy network at the present location of the UE 115 based on the successful selection of the non-legacy network by the first subscription.
In such examples, in response to the indication received from the first subscription, the second subscription may initiate a background cell search for the non-legacy network prior to expiration of any timers (e.g., a background cell search off timer) associated with background searching that are intended to reduce frequent background searching by the second subscription. Additionally, the second subscription may accelerate the background cell search process based on the received indication from the first subscription of the band or frequency information associated with the non-legacy network that was selected by the first subscription. In such examples, the second subscription may be able to camp on a cell of the non-legacy network selected by the first subscription and may therefore spend less time to search for an select the non-legacy network as compared to the first subscription as a result of the indication received from the first subscription. Accordingly, use of the network search procedures for dual subscription user equipment, such as the UE 115, as described herein may facilitate efficient search procedures for switching between networks or RATs while reducing power consumption, processing power consumption, latency, and service disruption of the dual subscription user equipment.
FIG. 2 illustrates an example of a process flow 200 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. In some examples, the process flow 200 may implement aspects of wireless communication system 100. The process flow 200 may illustrate communication between a UE 205 and base stations corresponding to one or  more cells  220, 225, which may be examples of a corresponding UE 115 and base station 105 as described herein. Alternative  examples of the following may be implemented, wherein some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be added.
The process flow 200 may include a UE 205 including a first subscription 210 of the UE 205, a second subscription 215 of the UE 205, a first RAT cell 220, and a second RAT cell 225. In some cases, the UE 205 may include one or more of a dual subscriber identification module (SIM) or a dual standby modem. The UE 205 may be an example of a dual SIM dual access (DSDA) UE 205 or a dual SIM dual standby (DSDS) UE. In some examples, each SIM or subscription of the UE 205 may support 5G NR functionality.
In some examples, the first subscription 210 and the second subscription 215 may be camped on the second RAT cell 225. The second RAT cell 225 may be an example of a legacy network such as a 2G or 3G network. In such examples, the first subscription 210 may remain camped on the second RAT cell 225 until a background cell search timer for the first subscription 210 expires. Following expiration of the background cell search timer, the first subscription 210 may initiate a background cell search, for example to locate a suitable wireless network or RAT cell associated with such network. In some examples, the first subscription 210 may perform the background cell search for a non-legacy network (e.g., a non-legacy or 5G NR network) or RAT cell associated with the 5G NR network and may successfully locate a suitable RAT cell or network. In such examples, the search procedure for the first RAT cell 220 may be performed during a discontinuous reception period for the cell of the second RAT cell 225.
At 230, the first subscription 210 may perform a connection procedure to the first RAT cell 220 based on the background cell search procedure. The first RAT cell 220 may be an example of a non-legacy network such as a 5G NR network. In some examples, the connection procedure to the first RAT cell 220 may include transmitting a registration request message to the first RAT cell 220 and receiving a registration accept message from the first RAT cell 220. In such examples, the registration accept message may indicate the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220.
At 235, the first subscription 210 may transmit, to the second subscription 215, an indication of a radio frequency band used by the first subscription 210 for the connection  procedure to the first RAT cell 220. In such examples, transmitting the indication of the radio frequency band may include triggering the second subscription 215 to perform the search procedure for the first RAT cell 220 before the expiration of the cell search timer associated with the second subscription 215. In such cases, the cell search timer associated with the second subscription 215 may be for a time period of ten minutes. In other cases, the cell search timer associated with the second subscription 215 may be for any time period that facilitates operation of the process flow 200 as described herein. In some cases, the indication of the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220 includes a flag to trigger the second subscription 215 to perform the search procedure for the first RAT cell 220. In some examples, the indication of the radio frequency band used by the first subscription 210 for the connection procedure to the first RAT cell 220 includes a cell search synchronization request message.
At 240, the second subscription 215 may perform, before an expiration of a cell search timer associated with the second subscription 215, a background cell search procedure for the first RAT cell 220 based at least in part on the indication transmitted from the first subscription 210. As described herein, the background cell search procedure for the second subscription 215 may be enhanced (e.g., performed more quickly) based on the indication of the radio frequency band used by the first subscription 210.
In some examples, the second subscription 215 may stop the cell search timer associated with the second subscription 215 based at least in part on the indication transmitted from the first subscription 210.
FIG. 3 shows a block diagram 300 of a device 305 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The device 305 may be an example of aspects of a UE 115 as described herein. The device 305 may include a receiver 310, a communications manager 315, and a transmitter 320. The device 305 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 310 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to network search procedures for dual subscription user equipment, etc. ) . Information may be passed on to other components of the device 305. The  receiver 310 may be an example of aspects of the transceiver 620 described with reference to FIG. 6. The receiver 310 may utilize a single antenna or a set of antennas.
The communications manager 315 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription. The communications manager 315 may be an example of aspects of the communications manager 610 described herein.
The communications manager 315, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 315, or its sub-components may be executed by a general-purpose processor, a DSP, an application-specific integrated circuit (ASIC) , a FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 315, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 315, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 315, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 320 may transmit signals generated by other components of the device 305. In some examples, the transmitter 320 may be collocated with a receiver 310 in a transceiver module. For example, the transmitter 320 may be an example of aspects of the  transceiver 620 described with reference to FIG. 6. The transmitter 320 may utilize a single antenna or a set of antennas.
FIG. 4 shows a block diagram 400 of a device 405 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a device 305, or a UE 115 as described herein. The device 405 may include a receiver 410, a communications manager 415, and a transmitter 435. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to network search procedures for dual subscription user equipment, etc. ) . Information may be passed on to other components of the device 405. The receiver 410 may be an example of aspects of the transceiver 620 described with reference to FIG. 6. The receiver 410 may utilize a single antenna or a set of antennas.
The communications manager 415 may be an example of aspects of the communications manager 315 as described herein. The communications manager 415 may include a connection component 420, a transmission component 425, and a search component 430. The communications manager 415 may be an example of aspects of the communications manager 610 described herein.
The connection component 420 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
The transmission component 425 may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
The search component 430 may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
The transmitter 435 may transmit signals generated by other components of the device 405. In some examples, the transmitter 435 may be collocated with a receiver 410 in a  transceiver module. For example, the transmitter 435 may be an example of aspects of the transceiver 620 described with reference to FIG. 6. The transmitter 435 may utilize a single antenna or a set of antennas.
FIG. 5 shows a block diagram 500 of a communications manager 505 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The communications manager 505 may be an example of aspects of a communications manager 315, a communications manager 415, or a communications manager 610 described herein. The communications manager 505 may include a connection component 510, a transmission component 515, a search component 520, and a timer component 525. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The connection component 510 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology.
The transmission component 515 may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
The search component 520 may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
In some examples, the search component 520 may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
In some examples, the search component 520 may perform the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
The timer component 525 may stop, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription.
FIG. 6 shows a diagram of a system 600 including a device 605 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The device 605 may be an example of or include the components of device 305, device 405, or a UE 115 as described herein. The device 605 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 610, an I/O controller 615, a transceiver 620, an antenna 625, memory 630, and a processor 640. These components may be in electronic communication via one or more buses (e.g., bus 645) .
The communications manager 610 may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology, transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell, and perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription.
The I/O controller 615 may manage input and output signals for the device 605. The I/O controller 615 may also manage peripherals not integrated into the device 605. In some cases, the I/O controller 615 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 615 may utilize an operating system such as 
Figure PCTCN2020097343-appb-000001
or another known operating system. In other cases, the I/O controller 615 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 615 may be implemented as part of a processor. In some cases, a user may interact with the device 605 via the I/O controller 615 or via hardware components controlled by the I/O controller 615.
The transceiver 620 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 620 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 620 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 625. However, in some cases the device may have more than one antenna 625, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 630 may include RAM and ROM. The memory 630 may store computer-readable, computer-executable code 635 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 630 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 640 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 640 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 640. The processor 640 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 630) to cause the device 605 to perform various functions (e.g., functions or tasks supporting network search procedures for dual subscription user equipment) .
The code 635 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 635 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 635 may not be directly executable by the processor 640 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 7 shows a flowchart illustrating a method 700 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The operations of method 700 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 700 may be performed by a communications manager as described with reference to FIGs. 3 through 6. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 705, the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology. The operations of 705 may be performed according to the methods described herein. In some examples, aspects of the operations of 705 may be performed by a connection component as described with reference to FIGs. 3 through 6.
At 710, the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The operations of 710 may be performed according to the methods described herein. In some examples, aspects of the operations of 710 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
At 715, the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription. The operations of 715 may be performed according to the methods described herein. In some examples, aspects of the operations of 715 may be performed by a search component as described with reference to FIGs. 3 through 6.
FIG. 8 shows a flowchart illustrating a method 800 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The operations of method 800 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 800 may be performed by a communications manager as described with reference to FIGs. 3 through 6. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 805, the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology. The operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a connection component as described with reference to FIGs. 3 through 6.
At 810, the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
At 815, the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription. The operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a search component as described with reference to FIGs. 3 through 6.
At 820, the UE may stop, by the second subscription of the UE, the cell search timer associated with the second subscription based on the indication transmitted from the first subscription. The operations of 820 may be performed according to the methods described herein. In some examples, aspects of the operations of 820 may be performed by a timer component as described with reference to FIGs. 3 through 6.
FIG. 9 shows a flowchart illustrating a method 900 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 3 through 6. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 905, the UE may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a search component as described with reference to FIGs. 3 through 6.
At 910, the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a connection component as described with reference to FIGs. 3 through 6.
At 915, the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
At 920, the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription. The operations of 920 may be performed according to the methods described herein. In some examples, aspects of the operations of 920 may be performed by a search component as described with reference to FIGs. 3 through 6.
FIG. 10 shows a flowchart illustrating a method 1000 that supports network search procedures for dual subscription user equipment in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 3 through 6. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the functions described below. Additionally or alternatively, a UE may perform aspects of the functions described below using special-purpose hardware.
At 1005, the UE may perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a search component as described with reference to FIGs. 3 through 6.
At 1010, the UE may perform the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a search component as described with reference to FIGs. 3 through 6.
At 1015, the UE may perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a connection component as described with reference to FIGs. 3 through 6.
At 1020, the UE may transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a transmission component as described with reference to FIGs. 3 through 6.
At 1025, the UE may perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based on the indication transmitted from the first subscription. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a search component as described with reference to FIGs. 3 through 6.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include random-access memory (RAM) , read-only memory (ROM) , electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic  disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (20)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    performing, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology;
    transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell; and
    performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based at least in part on the indication transmitted from the first subscription.
  2. The method of claim 1, wherein transmitting the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell comprises:
    triggering the second subscription of the UE to perform the search procedure for a cell of the first radio access technology before the expiration of the cell search timer associated with the second subscription.
  3. The method of claim 2, wherein the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell comprises a flag to trigger the second subscription of the UE to perform the search procedure for a cell of the first radio access technology.
  4. The method of claim 2, wherein the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell comprises a cell search synchronization request message.
  5. The method of claim 1, further comprising:
    stopping, by the second subscription of the UE, the cell search timer associated with the second subscription based at least in part on the indication transmitted from the first subscription.
  6. The method of claim 1, further comprising:
    performing, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the first radio access technology while camping on a second cell of a second radio access technology.
  7. The method of claim 6, further comprising:
    performing the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
  8. The method of claim 1, wherein performing the connection procedure to the first cell of the first radio access technology comprises:
    transmitting a registration request message to the first cell of the first radio access technology; and
    receiving a registration accept message from the first cell of the first radio access technology, wherein the registration accept message indicates the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  9. The method of claim 1, wherein the UE comprises a dual subscriber identification module, dual standby modem.
  10. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology;
    transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell; and
    perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based at least in part on the indication transmitted from the first subscription.
  11. The apparatus of claim 10, wherein the instructions to transmit the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell are executable by the processor to cause the apparatus to:
    triggering the second subscription of the UE to perform the search procedure for a cell of the first radio access technology before the expiration of the cell search timer associated with the second subscription.
  12. The apparatus of claim 11, wherein the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell comprises a flag to trigger the second subscription of the UE to perform the search procedure for a cell of the first radio access technology.
  13. The apparatus of claim 11, wherein the indication of the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell comprises a cell search synchronization request message.
  14. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    stop, by the second subscription of the UE, the cell search timer associated with the second subscription based at least in part on the indication transmitted from the first subscription.
  15. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform, by the first subscription of the UE and upon expiration of a cell search timer associated with the first subscription, a search procedure for the first cell of the  first radio access technology while camping on a second cell of a second radio access technology.
  16. The apparatus of claim 15, wherein the instructions are further executable by the processor to cause the apparatus to:
    perform the search procedure for the first cell of the first radio access technology during a discontinuous reception period for the second cell of the second radio access technology.
  17. The apparatus of claim 10, wherein the instructions to perform the connection procedure to the first cell of the first radio access technology are executable by the processor to cause the apparatus to:
    transmit a registration request message to the first cell of the first radio access technology; and
    receive a registration accept message from the first cell of the first radio access technology, wherein the registration accept message indicates the radio frequency band used by the first subscription of the UE for the connection procedure to the first cell.
  18. The apparatus of claim 10, wherein the UE comprises a dual subscriber identification module, dual standby modem.
  19. An apparatus for wireless communications at a user equipment (UE) , comprising:
    means for performing, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology;
    means for transmitting, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell; and
    means for performing, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based at least in part on the indication transmitted from the first subscription.
  20. A non-transitory computer-readable medium storing code for wireless communications at a user equipment (UE) , the code comprising instructions executable by a processor to:
    perform, by a first subscription of the UE, a connection procedure to a first cell of a first radio access technology;
    transmit, from the first subscription of the UE to a second subscription of the UE, an indication of a radio frequency band used by the first subscription of the UE for the connection procedure to the first cell; and
    perform, by the second subscription of the UE and before an expiration of a cell search timer associated with the second subscription, a search procedure for a cell of the first radio access technology based at least in part on the indication transmitted from the first subscription.
PCT/CN2020/097343 2020-06-22 2020-06-22 Network search procedures for dual subscription user equipment WO2021258238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097343 WO2021258238A1 (en) 2020-06-22 2020-06-22 Network search procedures for dual subscription user equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/097343 WO2021258238A1 (en) 2020-06-22 2020-06-22 Network search procedures for dual subscription user equipment

Publications (1)

Publication Number Publication Date
WO2021258238A1 true WO2021258238A1 (en) 2021-12-30

Family

ID=79282630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/097343 WO2021258238A1 (en) 2020-06-22 2020-06-22 Network search procedures for dual subscription user equipment

Country Status (1)

Country Link
WO (1) WO2021258238A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157662A1 (en) * 2011-06-08 2013-06-20 Spreadtrum Communications (Shanghai) Co., Ltd. Multi-sim multi-standby communication terminal, and synchronization device and method thereof
US20190223132A1 (en) * 2014-05-30 2019-07-18 Apple Inc. Methods and apparatus to support parallel communication for multiple subscriber identities in a wireless communication device
CN110249709A (en) * 2017-02-02 2019-09-17 高通股份有限公司 How customized the physical layer of network assistance be shared
US20200068647A1 (en) * 2018-08-27 2020-02-27 Samsung Electronics Co., Ltd. Method and ue for optimizing resources of wireless communication network while providing 5g services

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130157662A1 (en) * 2011-06-08 2013-06-20 Spreadtrum Communications (Shanghai) Co., Ltd. Multi-sim multi-standby communication terminal, and synchronization device and method thereof
US20190223132A1 (en) * 2014-05-30 2019-07-18 Apple Inc. Methods and apparatus to support parallel communication for multiple subscriber identities in a wireless communication device
CN110249709A (en) * 2017-02-02 2019-09-17 高通股份有限公司 How customized the physical layer of network assistance be shared
US20200068647A1 (en) * 2018-08-27 2020-02-27 Samsung Electronics Co., Ltd. Method and ue for optimizing resources of wireless communication network while providing 5g services

Similar Documents

Publication Publication Date Title
WO2021168848A1 (en) Techniques for selecting and reselecting sidelink relay
US20230146103A1 (en) New radio synchronization signal block related idle measurement configuration
US11800441B2 (en) Differentiation between standalone and non-standalone cells in a wireless communications system
US11792771B2 (en) Transport block forwarding over different air interfaces
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
US20240187943A1 (en) Service continuity on preferred cell during connected mode mobility
US20230336985A1 (en) Network slice-specific authentication and authorization
US20240031891A1 (en) Forward handover procedures for l2 relay mobility
US20240056918A1 (en) Vehicle-to-everything cell reselection
US20220046456A1 (en) Early measurements for logged minimization of drive test
US20230247461A1 (en) Measurement reporting timing adjustments
US20210385735A1 (en) Gateway-based voice calls via a base station
US20230319920A1 (en) A method for protocol stack sharing in dual connectivity
US11444720B2 (en) Wireless device transmit and receive capability in sidelink control information
WO2021212400A1 (en) Subscriber identity module (sim) registration in dual-sim device
WO2021258238A1 (en) Network search procedures for dual subscription user equipment
WO2021258281A1 (en) Timer based network switching to support voice services
US12028795B2 (en) Power efficient relay discovery procedure for sidelink
WO2021223135A1 (en) Sharing bar cell information in dual new radio user equipment
US11510209B2 (en) Overheating triggered radio resource management (RRM) relaxation
WO2022056763A1 (en) Optimization for internet protocol multimedia subsystem evolved packet system fallback
US11553425B2 (en) Wakeup signal for new radio multicast communications
US11711761B2 (en) Techniques for delay reduction and power optimization using a set of antenna modules
WO2021237508A1 (en) Dual sim route selection descriptor selection
WO2021248365A1 (en) Route selection policy initiation for a non-default subscription

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942274

Country of ref document: EP

Kind code of ref document: A1