Nothing Special   »   [go: up one dir, main page]

WO2022080416A1 - Performance evaluation system, performance evaluation method, program, and learned model - Google Patents

Performance evaluation system, performance evaluation method, program, and learned model Download PDF

Info

Publication number
WO2022080416A1
WO2022080416A1 PCT/JP2021/037909 JP2021037909W WO2022080416A1 WO 2022080416 A1 WO2022080416 A1 WO 2022080416A1 JP 2021037909 W JP2021037909 W JP 2021037909W WO 2022080416 A1 WO2022080416 A1 WO 2022080416A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange resin
image
inspection
appearance
Prior art date
Application number
PCT/JP2021/037909
Other languages
French (fr)
Japanese (ja)
Inventor
敦 島崎
Original Assignee
三菱ケミカルアクア・ソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカルアクア・ソリューションズ株式会社 filed Critical 三菱ケミカルアクア・ソリューションズ株式会社
Priority to JP2022557047A priority Critical patent/JPWO2022080416A1/ja
Priority to KR1020237008053A priority patent/KR20230086659A/en
Publication of WO2022080416A1 publication Critical patent/WO2022080416A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • B01J47/02Column or bed processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a performance evaluation system, a performance evaluation method, a program, and a trained model.
  • This application claims priority under Japanese Patent Application No. 2020-172521 filed in Japan on October 13, 2020 and Japanese Patent Application No. 2021-159660 filed in Japan on September 29, 2021. Incorporate the content here.
  • Ultrapure water is used in various applications such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by condensing desalination equipment at power plants, and water for manufacturing pharmaceuticals. .. Ultrapure water includes MF (microfiltration) membrane, UF (ultrafiltration) membrane, RO (reverse osmosis filtration) membrane, ion exchange resin, EDI (continuous electric regeneration type pure water system), ultraviolet water sterilizer, and degassing. A wide variety of devices, such as devices, are used and manufactured in combination. Ion exchange resins are used as the main member among these.
  • Such ultrapure water production processes include a system in which an ion exchange resin tower is mainly used in a single bed, a system in which an ion exchange resin tower is used in a mixed bed, and a system in which these are combined. (See, for example, Patent Document 1).
  • the appearance index is one of the performance evaluations of ion exchange resins.
  • a new ion exchange resin is a perfect sphere, but when it deteriorates, it cracks or cracks.
  • the appearance index is calculated by observing 300 or more ion exchange resins one by one with a magnifying glass for one sample and dividing them into appearance types (categories) such as complete spheres, cracked spheres, and crushed spheres. ..
  • the appearance index is an index of the degree of deterioration of the ion exchange resin, and serves as a guide for replacing the ion exchange resin used in the customer's ion exchange resin tower.
  • the analyst visually inspects the ion exchange resin one by one using a magnifying glass to calculate the appearance index, and even a skilled person spends a lot of time. I needed it.
  • a magnifying glass a microscope, a camera with a magnifying function, or the like can be used.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a performance evaluation system, a performance evaluation method, a program, and a trained model capable of accurately evaluating the performance of an ion exchange resin in a short time. ..
  • the present invention has been made to solve the above problems, and one aspect of the present invention is based on a learning image of an ion exchange resin taken for learning and an evaluation result of the appearance of the ion exchange resin. It is a performance evaluation system including an evaluation unit for evaluating the performance of the ion exchange resin for inspection from an inspection image in which the ion exchange resin for inspection is photographed by using the trained model trained by the machine.
  • classification according to the type of appearance of the ion exchange resin is preset, and the evaluation unit has a plurality of ions photographed for each type of appearance.
  • the performance of the ion exchange resin for inspection may be evaluated using a trained model machine-learned based on the learning image of the exchange resin.
  • the type of appearance is classified based on at least one of the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin, and the evaluation unit is the ion exchange resin for inspection.
  • an appearance index indicating the appearance state of the ion exchange resin may be calculated.
  • the evaluation unit inputs the inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, and the evaluation unit uses the trained model for the inspection. It is analyzed which type of the appearance is classified into each of the ion exchange resins of the above, and based on the number of the ion exchange resins for each type of the classified appearance, the inspection image included in the inspection image is included.
  • the appearance index indicating the appearance state of the ion exchange resin may be calculated.
  • the inspection image is an image taken by magnifying a plurality of ion exchange resins for inspection contained in a container with a magnifying mirror camera, and is taken by the magnifying mirror camera.
  • the image may be taken by selecting a portion where there is little overlap between the ion exchange resins to be photographed when the image is taken.
  • the inspection image is stirred by adding a surfactant to a container containing a plurality of ion exchange resins for inspection before being photographed by a magnifying glass camera. It may be an image taken by a magnifying glass camera.
  • the performance evaluation system may include a learning unit for machine learning based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin.
  • the learning image is an image taken a plurality of times with the appearance of the ion exchange resin for learning changed at least one of size, angle and color tone, or an ion exchange resin.
  • the image obtained by capturing the appearance may include a plurality of images generated by changing at least one of size, angle, and color tone.
  • one aspect of the present invention is a method for evaluating the performance of an ion exchange resin, in which a step of acquiring an inspection image in which the ion exchange resin for inspection is photographed and a learning of the ion exchange resin photographed for learning are performed. Performance having a step of evaluating the performance of the ion exchange resin for inspection from the inspection image using a trained model machine-learned based on the image and the evaluation result of the appearance of the ion exchange resin. It is an evaluation method.
  • one aspect of the present invention includes a step of acquiring an inspection image in which an ion exchange resin for inspection is photographed on a computer, a learning image of the ion exchange resin photographed for learning, and the ion exchange resin. It is a program for executing a step of evaluating the performance of the ion exchange resin for inspection from the inspection image using a trained model machine-learned based on the evaluation result of appearance.
  • one aspect of the present invention is a trained model for evaluating the performance of the inspection ion exchange resin from the inspection image in which the inspection ion exchange resin is photographed, and is photographed for learning.
  • Machine learning is performed based on the learning image of the ion exchange resin and the evaluation result of the appearance of the ion exchange resin, and the computer is made to function so as to evaluate the performance of the ion exchange resin for inspection from the inspection image. It is a trained model.
  • one aspect of the present invention is a performance evaluation system including a water treatment facility and a performance evaluation device, wherein the water treatment facility comprises an ion exchange resin tower and an ion exchange resin in the ion exchange resin tower.
  • the performance evaluation device includes a communication unit for taking an image and a communication unit for transmitting an image taken by the image pickup unit as an inspection image, and the performance evaluation device is photographed for learning with the communication unit for receiving the inspection image.
  • the performance of the ion exchange resin for inspection is evaluated from the inspection image using a trained model machine-learned based on the learning image of the ion exchange resin and the evaluation result of the appearance of the ion exchange resin. It is a performance evaluation system equipped with an evaluation unit.
  • the performance evaluation device may transmit information based on the evaluation result by the evaluation unit to the water treatment equipment.
  • the water treatment equipment generates order information of an ion exchange resin for replacement when the ion exchange resin needs to be replaced based on the information acquired from the performance evaluation device. May be good.
  • the performance of the ion exchange resin can be evaluated accurately in a short time.
  • the system diagram which shows an example of the structure of the performance evaluation system 1 which concerns on embodiment.
  • the block diagram which shows an example of the structure of the camera 10b which concerns on embodiment.
  • the block diagram which shows an example of the structure of the performance evaluation apparatus 30 which concerns on embodiment.
  • the flowchart which shows an example of the ion exchange resin evaluation process which concerns on embodiment.
  • the block diagram which shows an example of the structure of the machine learning apparatus 50 which concerns on embodiment.
  • the system diagram which shows another example of the configuration of the performance evaluation system which concerns on embodiment.
  • the ion exchange resin adsorbs cations such as sodium, calcium, and magnesium contained in water and anions such as chlorine and carbon dioxide, and releases the ions that it originally has to exchange ions, resulting in impurities from the water. Get rid of.
  • ultrapure water used for various purposes such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by a power plant condensate desalination device, and water for manufacturing pharmaceuticals. Used in manufacturing.
  • the ultrapure water production process includes a system in which the ion exchange resin tower is mainly used in a single bed, a system in which the ion exchange resin tower is used in a mixed bed, and a system in which these are combined.
  • Ion exchange resins are roughly classified into “gel type” and "porous type” according to their structure, and there are cation exchange resin and anion exchange resin, respectively. Since the gel type resin has a larger ion exchange capacity per volume than the porous type, it is considered to be advantageous for producing ultrapure water, but on the other hand, it has a drawback that the cycle strength is lower than that of the porous type. In addition, since gel-type resins generally have a smaller specific surface area than porous-type resins, there is no problem in adsorbing ordinary inorganic ions (chloride ions, etc.), but in order to adsorb high-molecular-weight substances. It is disadvantageous.
  • the new ion exchange resin is a perfect sphere, but when it deteriorates, it cracks or cracks. When the ion exchange resin deteriorates, the ion exchange performance deteriorates, so it is necessary to replace it.
  • As an index of the degree of deterioration of the ion exchange resin there is an appearance index indicating the state of appearance.
  • the appearance index is a value calculated according to the appearance state of the ion exchange resin.
  • FIG. 1 is a diagram showing an example of the type of appearance of an ion exchange resin.
  • the illustrated example shows an example of each appearance photograph when the difference in appearance due to deterioration of the "gel type" ion exchange resin is classified into three types of appearance: perfect sphere, cracked sphere, and crushed sphere. ..
  • an analyst visually observes 300 ion exchange resins one by one using a magnifying glass (microscope, etc.) and classifies them into complete spheres, cracked spheres, and crushed spheres.
  • the appearance index which is an index of the deterioration of the ion exchange resin, was calculated by Equation 1 and the performance was evaluated.
  • Appearance index (%) (300-total number of crushed balls) / 300 ⁇ 100 ... (Equation 1)
  • the appearance index can be automatically calculated from the photographed image of the appearance of the ion exchange resin by using AI (Artificial Integrity).
  • AI Artificial Integrity
  • FIG. 2 is a diagram showing an outline of a performance evaluation method for an ion exchange resin according to the present embodiment.
  • a large number of sets (learning data sets) of a photographed image of the appearance of the ion exchange resin and the appearance evaluation result of the ion exchange resin are prepared as learning data, and a large number of ion exchanges for learning are prepared.
  • Machine learning is performed based on the photographed image of the resin and the appearance evaluation result.
  • the appearance evaluation result is a result of classifying the appearance type such as a perfect sphere, a cracked sphere, and a crushed sphere by visually observing the ion exchange resin with a microscope in the past by an analyst.
  • the photographed data of about 2000 complete spheres, about 200 cracked spheres, and about 200 crushed spheres photographed in the past are used for learning. It was prepared as the data of the above, and machine learning was performed.
  • each of the ion exchange resins shown in the photographed image of the ion exchange resin for inspection is classified into one of a complete sphere, a cracked sphere, and a crushed sphere, and an appearance index is calculated.
  • FIG. 3 is a system diagram showing an example of the configuration of the performance evaluation system 1 according to the present embodiment.
  • the performance evaluation system 1 includes a microscope camera 10 and a performance evaluation device 30.
  • the camera 10b is attached to the microscope 10a.
  • the camera 10b is, for example, a digital camera.
  • the camera 10b captures an optical image magnified by the microscope 10a, converts it into electronic data, and transmits the converted electronic data (photographed image) to the performance evaluation device 30.
  • the microscope camera 10 and the performance evaluation device 30 are connected by USB (Universal Serial Bus).
  • the microscope camera 10 and the performance evaluation device 30 are not limited to USB, and may be connected by other wired or wireless connection methods.
  • the microscope camera 10 may have a structure in which the microscope 10a and the camera 10b are integrated (a structure that cannot be removed), or may be an electron microscope.
  • the microscope camera 10 photographs a sample of the ion exchange resin for inspection contained in the petri dish 20, and transmits the captured image to the performance evaluation device 30. At this time, the operator photographs different parts of the sample while shifting the dish 20 in order to photograph a large number (for example, 300 or more) of ion exchange resins with respect to one sample contained in the dish 20. Take 10 images as in. If the ion exchange resins next to each other overlap with each other, the operator may determine that they are scratches (for example, crack spheres), so the operator selects and shoots a portion with less overlap. In the following, the photographed image of the ion exchange resin for inspection will be referred to as an “inspection image”.
  • the performance evaluation device 30 is a so-called desktop computer used by connecting a monitor 30a and a keyboard 30b as an external device (peripheral device).
  • a monitor 30a and a keyboard 30b may be built in the performance evaluation device 30.
  • the performance evaluation device 30 is not limited to a desktop computer, but may be a tablet computer, a notebook computer, or the like.
  • the performance evaluation device 30 acquires and stores an inspection image transmitted from the microscope camera 10. Then, the performance evaluation device 30 inspects from the inspection image using the trained model machine-learned based on the photographed image of the ion exchange resin photographed for learning and the evaluation result of the appearance of the ion exchange resin. Evaluate the performance of ion exchange resins for use.
  • the photographed image of the ion exchange resin for learning will be referred to as a “learning image”.
  • This trained model is machine-learned based on learning images of multiple ion exchange resins taken for each type of appearance of the ion exchange resin (eg, complete spheres, cracked spheres, crushed spheres). ..
  • the performance evaluation device 30 evaluates the performance of the ion exchange resin for inspection, and calculates the appearance index from the inspection image using the trained model.
  • the operator analyzes and evaluates the performance of the ion exchange resin shown in the inspection image by operating the keyboard 30b while looking at the GUI screen displayed on the monitor 30a of the performance evaluation device 30.
  • FIG. 4 is a diagram showing an example of a GUI screen according to the present embodiment.
  • the illustrated GUI screen G10 is an image displayed when an inspection image captured in the performance evaluation device 30 is analyzed using AI.
  • the screen area 101 displays a sample option of the ion exchange resin for inspection.
  • the inspection image (original image) of the selected sample is displayed in the screen area 103.
  • the inspection image displayed in the screen area 103 is analyzed using AI, and the analysis image is displayed in the screen area 105.
  • This analysis image is an image showing the results of classifying each of the ion exchange resins shown in the inspection image into either a complete sphere, a cracked sphere, or a crushed sphere using a trained model.
  • the sample 1 No The inspection image of 1 is displayed in the screen area 103, and the analysis image obtained by analyzing the inspection image by AI is displayed in the screen area 105.
  • a solid sphere is shown with a solid line frame
  • a cracked sphere is shown with a broken line frame
  • a crushed sphere is shown with a double line frame.
  • each type of appearance of the ion exchange resin may be displayed in a distinguishable manner, and the display mode thereof can be arbitrarily determined.
  • each type of appearance of the ion exchange resin may be distinguished by changing the color of the frame, or by changing the shape of the frame.
  • the number (43 pieces, 1 piece, 2 pieces) and the ratio (93.5%, 2.2%, 4. 3%), the total number of each (46), the value of the appearance index (95.7%), etc. are displayed.
  • the value of the appearance index is a value calculated by the following equation 2.
  • the number of evaluations (total number of pieces) is not particularly limited.
  • Appearance index (%) (total-total number of crushed balls) / total x 100 ... (Equation 2)
  • the “total” is the total number of perfect spheres, cracked spheres, and crushed spheres.
  • this formula 2 is just a generalization of "300" to "total” with respect to the above-mentioned formula 1, and the basic calculation method is the same.
  • FIG. 5 is a block diagram showing an example of the configuration of the camera 10b according to the present embodiment.
  • the camera 10b can be attached to the microscope 10a via an adapter.
  • the camera 10b includes, for example, a communication unit 11, an image pickup unit 12, a storage unit 13, and a control unit 15.
  • the communication unit 11 is configured to include a digital input / output port such as USB (Universal Serial Bus).
  • the communication unit 11 communicates with the performance evaluation device 30 and transmits the captured image captured by the camera 10b to the performance evaluation device 30.
  • the communication unit 11 may transmit the captured image to the performance evaluation device 30 by a method other than USB.
  • the communication unit 11 is configured to include or in addition to USB, a video output terminal such as HDMI (registered trademark), and a communication device corresponding to a communication standard such as wireless LAN, wired LAN, and Bluetooth (registered trademark). May be done.
  • the image pickup unit 12 includes an image pickup element and an optical lens provided in front of the image pickup surface of the image pickup element.
  • the image pickup unit 12 captures an optical image magnified by the microscope 10a obtained through the optical lens under the control of the control unit 15. Further, the image pickup unit 12 performs image processing on the captured image under the control of the control unit 15 and stores it in the storage unit 13 as a captured image.
  • the captured image is, for example, an inspection image.
  • the storage unit 13 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programle Memory), a ROM (Read-Only Memory), a ROM (Read-Only Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), and a ROM (Read-One Memory).
  • the camera 10b stores various information, images, programs, and the like used for processing.
  • the operation unit 14 receives the user's operation on the camera 10b.
  • the operation unit 14 is an operation button such as a shutter button.
  • the operation unit 14 may include an operation button, an operation dial, an operation switch, and the like for receiving an operation for setting a shooting mode and shooting conditions. Further, by accepting a part or all of the user's operation on the camera 10b by the performance evaluation device 30 communicated with the camera 10b, the performance evaluation device 30 controls the shooting of the camera 10b or the like according to the user's operation. You may go.
  • the control unit 15 is configured to include a CPU (Central Processing Unit) and the like, executes various programs stored in the storage unit 13, and controls each unit of the camera 10b. For example, the control unit 15 gives an image pickup instruction to the image pickup unit 12 based on the user's operation on the operation unit 14. Further, the control unit 15 stores the captured image based on the image captured by the image pickup unit 12 in the storage unit 13 according to the image pickup instruction. Further, the control unit 15 transmits a captured image based on the image captured by the image pickup unit 12 to the performance evaluation device 30 via the communication unit 11.
  • the captured image is, for example, an inspection image as described above. Further, the captured image is stored (saved) in the storage unit 13 as an image file associated with a file name and shooting date / time information (time stamp) determined according to a preset rule, and is transmitted to the performance evaluation device 30.
  • a CPU Central Processing Unit
  • FIG. 6 is a block diagram showing an example of the configuration of the performance evaluation device 30 according to the present embodiment.
  • the illustrated performance evaluation device 30 includes a communication unit 31, a video output unit 32, USB connectors 33 and 34, a storage unit 35, and a control unit 36.
  • the communication unit 31 is configured to include, for example, a plurality of Ethernet (registered trademark) ports and wireless communication ports such as Wi-Fi (registered trademark) and mobile phone lines, and communicates based on the control by the control unit 36. Communicate (send or receive) with an external device via a network (Internet, etc.).
  • Ethernet registered trademark
  • Wi-Fi registered trademark
  • mobile phone lines wireless communication ports
  • the video output unit 32 includes an external monitor output terminal for outputting a video signal to an external display device (monitor, projector, etc.).
  • the external monitor output terminal is an HDMI (registered trademark) terminal, a DVI terminal, a D-SUB terminal, a DisplayPort terminal, or the like.
  • the video output unit 32 connects to the monitor 30a and outputs a video signal to the monitor 30a.
  • the monitor 30a is a display device having a display for displaying information such as images and texts.
  • the monitor 30a includes a liquid crystal display panel, an organic EL (Electroluminescence) display panel, and the like.
  • the USB connectors 33 and 34 are connection terminals for connecting to an external device compatible with USB.
  • the USB connector 33 is connected to the keyboard 30b and acquires an output signal in response to an operation on the keyboard 30b.
  • the USB connector 34 is connected to the camera 10b of the microscope camera 10 and acquires an inspection image (image file) transmitted from the camera 10b.
  • the storage unit 35 includes, for example, an HDD, SSD, EEPROM, ROM, RAM, etc., and stores various information, images, programs, etc. used for processing by the performance evaluation device 30.
  • the storage unit 35 is not limited to the one built in the performance evaluation device 30, and may be an external storage device connected by a digital input / output port such as USB.
  • the storage unit 35 includes an inspection image storage unit 351, a learning model storage unit 352, and an evaluation data storage unit 353.
  • the inspection image storage unit 351 stores an inspection image (image file) transmitted from the camera 10b.
  • a sample number for example, samples 1, 2, ...)
  • an imaging number for example, No. 1 to No. 1
  • the sample number and the photographing number may be associated in the performance evaluation device 30 based on the user's operation, or may be automatically associated in the performance evaluation device 30 according to a predetermined rule.
  • the learning model storage unit 352 stores a trained model for evaluating the ion exchange resin shown in the inspection image.
  • This trained model is machine-learned based on multiple ion exchange resin training images taken for each type of appearance of the ion exchange resin (eg, complete sphere, cracked sphere, crushed sphere) as described above. It is a thing.
  • each of the ion exchange resins shown in the inspection image is classified into a complete sphere, a cracked sphere, or a crushed sphere. The details of the configuration and processing for generating a trained model by machine learning will be described later.
  • the evaluation data storage unit 353 stores the evaluation result of evaluating the inspection image using the above-mentioned trained model.
  • the evaluation results include the number and ratio of each of the complete spheres, cracked spheres, and crushed spheres contained in the ion exchange resin contained in the inspection image, the total number of each number, and the calculated appearance index. This evaluation result is stored in association with the file name of the inspection image.
  • the control unit 36 is configured to include a CPU and the like, executes various programs stored in the storage unit 35, and controls each unit of the performance evaluation device 30.
  • the control unit 36 includes an inspection image acquisition unit 361, an evaluation unit 362, and an output control unit 363 as a functional configuration realized by executing various programs stored in the storage unit 35.
  • the inspection image acquisition unit 361 acquires the inspection image (image file) transmitted from the camera 10b via the communication unit 31 and stores it in the inspection image storage unit 351. For example, the inspection image acquisition unit 361 inspects the image file of the inspection image in association with the sample number (for example, samples 1, 2, ...) And the photographing number (for example, No. 1 to No. 10). It is stored in the image storage unit 351. As described above, the inspection image acquisition unit 361 may associate the sample number and the photographing number based on the user's operation (for example, the operation on the keyboard 30b), or may automatically associate the sample number and the photographing number according to a predetermined rule. good.
  • the inspection image acquisition unit 361 may associate the sample number and the photographing number based on the user's operation (for example, the operation on the keyboard 30b), or may automatically associate the sample number and the photographing number according to a predetermined rule. good.
  • the evaluation unit 362 uses a trained model machine-learned based on a learning image of the ion exchange resin taken for learning and an evaluation result of the appearance of the ion exchange resin to obtain an ion exchange resin for inspection.
  • the performance of the ion exchange resin for inspection is evaluated from the photographed inspection image.
  • the appearance evaluation result is a result of evaluating whether the ion exchange resin is a complete sphere, a cracked sphere, or a crushed sphere classified based on the presence or absence of cracks and the presence or absence of crushing.
  • the trained model is machine-learned based on learning images of a plurality of ion exchange resins taken for each type of appearance of the ion exchange resin (for example, complete sphere, cracked sphere, crushed sphere). Is.
  • the evaluation unit 362 inputs an inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, and each of the ion exchange resins for inspection using the trained model has a type of appearance. Analyze whether it is classified as (complete sphere, crack sphere, crushed sphere). Then, the evaluation unit 362 calculates the appearance index based on the number of ion exchange resins for each classified type of appearance. Specifically, the evaluation unit 362 calculates the appearance index using the above-mentioned equation 2.
  • the output control unit 363 controls the display of the GUI screen G10 displayed on the monitor 30a when analyzing the performance of the ion exchange resin. For example, the output control unit 363 displays the GUI screen G10 on the monitor 30a, an inspection image selected according to the user's operation, an evaluation result by the evaluation unit 362 (an analysis image obtained by analyzing the inspection image, and an analysis). The result, etc.) is displayed on the monitor 30a. Further, the output control unit 363 stores the evaluation result (analysis result) by the evaluation unit 362 in the evaluation data storage unit 353.
  • FIG. 7 is a diagram showing an example of a criterion for determining the performance (deterioration degree) of the ion exchange resin according to the present embodiment.
  • the performance (deterioration degree) of the ion exchange resin is classified into five evaluation categories. When the appearance index is 95 to 100%, it is classified into "evaluation category 1" which is judged as "almost no crushed balls”. When the appearance index is 80 to 94%, it is classified into "evaluation category 2" which is judged as "there is a small amount of crushed balls”.
  • the ion exchange resin may be exchanged when the evaluation category is 4 or 5, or the ion exchange resin may be exchanged when the evaluation category is 3 to 5. It can be arbitrarily determined in which evaluation category the ion exchange resin is exchanged. Further, the criteria for determining the performance (deterioration degree) of the ion exchange resin shown in FIG. 7 is an example, and the range of the appearance index of each evaluation category can be arbitrarily determined. Further, the number of evaluation categories is not limited to five, and may be classified into any number of evaluation categories.
  • FIG. 8 is a flowchart showing an example of the ion exchange resin evaluation process according to the present embodiment.
  • Step S101 The operator uses the microscope camera 10 to take an image (inspection image) of the ion exchange resin for inspection. Specifically, the operator takes 10 images for one sample so that different parts of the sample are taken while shifting the petri dish 20. The microscope camera 10 transmits the captured inspection image to the performance evaluation device 30. Then, the process proceeds to step S103.
  • Step S103 When the control unit 36 acquires an inspection image (image file) from the microscope camera 10, the control unit 36 saves the acquired inspection image (image file) in the inspection image storage unit 351. Then, the process proceeds to step S105.
  • Step S105 The control unit 36 analyzes the type of appearance of the ion exchange resin shown in the inspection image by using the trained model stored in the learning model storage unit 352. Specifically, the control unit 36 reads the inspection image from the inspection image storage unit 351 in response to the operator's operation on the GUI screen G10 (see FIG. 4), and the learning is stored in the learning model storage unit 352. Enter in the finished model. The control unit 36 classifies the ion exchange resin for inspection according to the type of appearance (complete sphere, cracked sphere, crushed sphere) based on the analysis result output from the trained model, and outputs the number of each type of appearance. .. Then, the process proceeds to step S107.
  • Step S107 The control unit 36 calculates the appearance index using the above-mentioned equation 2 based on the analysis result (the number of each appearance type) of the ion exchange resin for inspection. Then, the process proceeds to step S109.
  • Step S109 The control unit 36 outputs an analysis result (evaluation result).
  • the control unit 36 uses the analysis image obtained by analyzing the inspection image and the analysis result (the number of perfect spheres, cracked spheres, and crushed spheres, calculated appearance index, etc.) as the analysis result (evaluation result) of the monitor 30a. (Display on GUI screen G10 (see FIG. 4)). Further, the control unit 36 stores the analysis result (evaluation result) in the evaluation data storage unit 353.
  • the performance evaluation system 1 can accurately evaluate the performance of the ion exchange resin in a short time by photographing the ion exchange resin for inspection and inputting it to the performance evaluation device 30.
  • FIG. 9 is a block diagram showing an example of the configuration of the machine learning device 50 according to the present embodiment.
  • the machine learning device 50 includes a communication unit 510, a learning data setting unit 520, a learning data storage unit 530, a learning unit 540, and an output unit 550.
  • the configuration of the machine learning device 50 may be included in the performance evaluation device 30.
  • the communication unit 510 includes, for example, a plurality of Ethernet (registered trademark) ports, a plurality of digital input / output ports such as USB, and a wireless communication port such as Wi-Fi (registered trademark) and a mobile phone line, and communicates with the communication unit 510. Communicate with other devices and terminals via the network.
  • Ethernet registered trademark
  • digital input / output ports such as USB
  • wireless communication port such as Wi-Fi (registered trademark) and a mobile phone line
  • the training data setting unit 520 acquires the information necessary for generating the trained model.
  • the learning data setting unit 520 may acquire a learning image for each ion exchange resin for each type of appearance taken in the past from the camera 10b, a performance evaluation device 30, another device, or the like. Alternatively, it may be acquired via a storage medium such as an optical disk or a memory card.
  • the learning data setting unit 520 associates the acquired learning image with the evaluation result (type of appearance) of the appearance of the ion exchange resin reflected in the learning image as a learning data set and stores it in the learning data storage unit 530. ..
  • the evaluation result (type of appearance) of the appearance is referred to as an “evaluation value”.
  • the learning unit 540 performs machine learning using a learning data set in which a learning image of an ion exchange resin and an evaluation value are associated with each other. Specifically, the learning unit 540 reads the learning data set from the learning data storage unit 530. The learning unit 540 performs machine learning using the read learning data set, and generates a trained model. The output unit 550 transmits the trained model to the performance evaluation device 30 via the communication unit 510. As a result, the trained model is stored and can be used in the learning model storage unit 352 of the performance evaluation device 30. The trained model may be input to the performance evaluation device 30 via a storage medium such as an optical disk or a memory card instead of the communication unit 510. Further, the trained model stored in the performance evaluation device 30 may be updated at any time as a new learning data set is input by the machine learning device 50 and machine learning progresses.
  • the learning unit 540 uses the pixel value of the learning image as an input variable for inputting the pixel value of the learning image to the CNN (convolutional neural network) for learning, and the evaluation value of the learning image is an output variable output from the output layer.
  • the learning unit 540 performs machine learning using a learning image and a learning data set of evaluation values.
  • the evaluation unit 362 of the performance evaluation device 30 inputs the pixel value of the image of the ion exchange resin for inspection (inspection image) to the input layer for the trained CNN, and acquires the evaluation value from the output layer. do.
  • FIG. 10 is an explanatory diagram illustrating an execution procedure in machine learning according to the present embodiment.
  • the CNN is composed of I + 1 layers L0 to LI.
  • the layer L0 is also called an input layer
  • the layers L1 to L (I-1) are also called an intermediate layer or a hidden layer
  • the layer LI is also called an output layer.
  • the input image is input to the input layer L0.
  • the input image is represented by a pixel matrix D11 whose matrix positions are the vertical position and the horizontal position of the input image.
  • a pixel matrix D11 For each element of the pixel matrix D11, an R (red) sub-pixel value, a G (green) sub-pixel value, and a B (blue) sub-pixel value are input as pixel sub-pixel values corresponding to the positions of the matrix.
  • the first intermediate layer L1 is a layer on which a convolution process (also referred to as a filter process) and a pooling process are performed.
  • the convolution process is a process of filtering the original image and outputting a feature map.
  • the input pixel value is divided into a sub-pixel matrix D121 of R, a sub-pixel matrix D122 of B, and a sub-pixel matrix D123 of G, respectively.
  • Each sub-pixel matrix D121, D122, D123 (each is also referred to as "sub-pixel matrix D12") is a convolution matrix of each element of the submatrix and s-row-t-column for each sub-matrix of s-row-t-column.
  • the first pixel value is calculated by multiplying and adding the elements of CM1 (also called the kernel).
  • the first pixel value calculated by each sub-pixel matrix D12 is multiplied by a weighting coefficient and added to calculate the second pixel value.
  • the second pixel value is set in each element of the convoluted image matrix D131 as a matrix element corresponding to the position of the submatrix.
  • FIG. 10 is an example of the case of the convolution matrix CM1 having 3 rows and 3 columns, and the convolution pixel value D1311 is the 2nd to 4th rows and the 2nd to 4th columns of each sub pixel matrix D12.
  • the first pixel value is calculated for the submatrix of 3 rows and 3 columns up to the eye.
  • the second pixel value is used as the matrix element of the second row and second column of the convoluted image matrix D131. It is calculated.
  • the second pixel value of the matrix element in the third row and the second column of the convoluted image matrix D131 is calculated from the submatrix in the third to fifth rows and the second to fourth columns.
  • the convolution image matrix D132, ... Is calculated using another weighting factor or another convolution matrix.
  • the pooling process is a process of reducing an image while retaining the characteristics of the image.
  • the representative value of the matrix element in the region is calculated for each region PM of u rows and v columns.
  • the representative value is, for example, the maximum value.
  • the representative value is set in each element of the CNN image matrix D141 as a matrix element corresponding to the position of the region. By shifting the region in the convolutional image matrix D131 for each region PM, the representative value at each position is calculated, and all the matrix elements of the convolutional image matrix D131 are calculated.
  • FIG. 10 is an example of the case of the area PM of 2 rows and 2 columns, and is the area of 2 rows and 2 columns from the 3rd row to the 4th row and the 3rd column to the 4th column of the convolution image matrix D131.
  • the maximum value of the second pixel values in the region is calculated as a representative value.
  • This representative value is set in the matrix element of the second row and the second column of the CNN image matrix D141.
  • the representative value of the matrix element of the 3rd row and the 2nd column of the CNN image matrix D141 is calculated.
  • Vector x is generated by arranging each matrix element (N) of the CNN image matrix D141, D142, ... In a predetermined order.
  • the vector z (i) is output as the value of the vector u (i) input to the function f (u (i)).
  • the vector u (i) is obtained by multiplying the vector z (i-1) output from the node of the intermediate layer of the i-1st th layer by the weight matrix W (i) from the left and adding the vector b (i). It is a vector.
  • the function f (u (i)) is an activation function
  • the vector b (i) is a bias.
  • the vector u (0) is a vector x.
  • the vector y represents an evaluation value.
  • FIG. 11 is an explanatory diagram illustrating a learning procedure in machine learning according to the present embodiment. This figure is an explanatory diagram when the CNN of FIG. 10 performs machine learning.
  • Initial values are set in the weight matrix W (i).
  • the vector y (X) corresponding to the vector X is output from the output layer.
  • the error E between the vector y (X) and the vector Y is calculated using the loss function.
  • the gradient ⁇ Ei of the i-th layer is calculated using the output zi from each layer and the error signal ⁇ i.
  • the error signal ⁇ i is calculated using the error signal ⁇ i-1.
  • transmitting the error signal from the output layer side to the input layer side in this way is also called back propagation.
  • the weight matrix W (i) is updated based on the gradient ⁇ Ei.
  • the convolution matrix CM or the weighting coefficient is updated.
  • the learning unit 540 determines the number of layers, the number of nodes in each layer, the connection method of the nodes in each layer, the activation function, the error function, and the gradient descent algorithm, the pooling area, the kernel, the weight coefficient, and the weight matrix for the CNN. Set.
  • Set 10 in the output layer (i 3).
  • the present invention is not limited to this, and the total number may be four or more layers, or another value may be set for the number of nodes.
  • the learning unit 540 sets 20 convolution matrix CMs having 5 rows and 5 columns and a region PM having 2 rows and 2 columns.
  • the present invention is not limited to this, and a different number of matrices or a different number of convolution matrix CMs may be set. Further, a region PM having a different number of matrices may be set.
  • the learning unit 540 may perform more convolution processing or pooling processing.
  • the learning unit 540 sets a full connection as a connection of each layer of the neural network.
  • the bonding of some or all layers may be set to non-total bonding.
  • the learning unit 540 sets a sigmoid function in the activation function of all layers as the activation function.
  • the activation function of each layer is a step function, a linear connection, a soft sign, a soft plus, a ramp function, a truncated power function, a polymorphic value, an absolute value, a radial basis function, a wavelet, a maxout, etc. , May be another activation function.
  • the activation function of one layer may be of a different type from that of other layers.
  • the learning unit 540 sets a square loss (mean square error) as an error function.
  • the error function may be cross entropy, ⁇ -division loss, Huber loss, and ⁇ sensitivity loss ( ⁇ tolerance function).
  • the learning unit 540 sets SGD (stochastic gradient descent) as an algorithm for calculating the gradient (gradient descent algorithm).
  • SDG stochastic gradient descent
  • Momentum inertia term
  • SDG AdaGrad
  • RMSprop AdaDelta
  • Adam Adaptive momentation
  • the learning unit 540 is not limited to the convolutional neural network (CNN), and may set other neural networks such as a perceptron neural network, a recurrent neural network (RNN), and a residual network (ResNet).
  • CNN convolutional neural network
  • RNN recurrent neural network
  • ResNet residual network
  • the learning unit 540 partially or completely includes trained models of supervised learning such as decision tree, regression tree, random forest, gradient boosting tree, linear regression, logistic regression, or SVM (support vector machine). It may be set.
  • the machine learning may be supervised learning other than the neural network.
  • the learning unit 540 performs machine learning of supervised learning not only by a neural network but also by a decision tree, a regression tree, a random forest, a gradient boosting tree, a linear regression, a logistic regression, an SVM (support vector machine), or the like. You may.
  • the machine learning may be machine learning using unsupervised learning.
  • the learning unit 540 may perform machine learning of unsupervised learning by performing regression or classification by inputting a large number of learning images of an ion exchange resin.
  • the machine learning may be machine learning using reinforcement learning.
  • the learning unit 540 may perform reinforcement learning (Q learning) using the Q value as reinforcement learning, or may perform reinforcement learning using Sarsa or the Monte Carlo method.
  • the analyst intends an individual whose evaluation category (see FIG. 7) is difficult to divide into, a very average individual, and an individual having a different appearance index. Twelve samples of ion exchange resins were prepared, and 10 photographs were taken with a microscope camera 10 so that the total number of ion exchange resins (total count number) was 300 or more for one sample. .. Individuals that are difficult to categorize are, for example, individuals whose appearance is wrinkled, whether or not an individual with few cracks is judged to be a crack, and whether a half-moon sphere looks round but is a complete sphere. It is an individual that is easy for beginners to make a mistake.
  • the performance evaluation device 30 analyzed the inspection image for verification taken by the microscope camera 10 using the trained model subjected to the above deep learning, and calculated the appearance index using the above equation 2. Then, the analysis result by AI was compared with the analysis result visually by the analyst, and the accuracy of the evaluation result of the ion exchange resin using AI was verified.
  • the analysis result visually by the analyst is not an inspection image for verification, but a complete sphere, a cracked sphere, or a crushed sphere by visually confirming 300 optical images of the ion exchange resin magnified by a microscope.
  • the appearance index was calculated using the above-mentioned formula 1.
  • FIG. 12 is a diagram showing the analysis result by AI and the analysis result visually by the analyst.
  • the analysis results by the analyst's visual inspection and the analysis results by AI are shown side by side.
  • the appearance indexes of Samples 2 to 6 and 8 to 10 have the same values as the analysis results by the analyst's visual inspection and the analysis results by AI.
  • the appearance indexes of Samples 1, 7, 11 and 12 are judged to be the same evaluation category in the evaluation categories shown in FIG. 7, although there is a difference in the values between the analysis result by the analyst's visual inspection and the analysis result by AI. Since it is within the range that is satisfied, it can be judged that the difference is at a level that does not cause any problem. That is, it can be said that there is no problem in the accuracy of the evaluation result by the ion exchange resin evaluation process using AI.
  • samples 7 and 12 have more crack spheres than other samples.
  • Rhagades are not included in the calculation of the appearance index because even if there are cracks, they do not cause any defects in the performance and equipment of the resin (problems of pressure loss, etc.).
  • the cracked sphere is at all stages of crushing, and it can be said that it is a sign that the appearance index will deteriorate in the future. Therefore, in the illustrated analysis result, when the crack sphere exceeds 3%, it is described as a warning.
  • FIG. 13 is a diagram summarizing the comparison between the analysis result by AI and the analysis result visually by the analyst.
  • the accuracy of the analysis result visually by the analyst is naturally good, but it is a condition that the analyst is an expert. In addition, since humans make judgments, there are some variations even if they are experts. Further, in the visual analysis, the calculation time of the appearance index per sample took about 13 minutes even for a skilled person and about 25 minutes for a beginner. On the other hand, the accuracy of the analysis result by AI is similarly good regardless of who operates it because it is analyzed by AI, and there is no variation. Further, in the analysis by AI, the calculation time of the appearance index per sample is about 6 minutes, which is only half the time of the visual analysis result. Of these 6 minutes, the analysis time by AI takes only about 1 minute, and the remaining time is almost the time required for shooting (time for shooting 10 images).
  • the evaluation unit 362 is based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin. Using a machine-learned trained model, the performance of the inspection ion exchange resin is evaluated from the inspection image taken by the inspection ion exchange resin.
  • the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin from the photographed image of the ion exchange resin. Further, since the performance evaluation system 1 evaluates the performance of the ion exchange resin by AI, it is possible to obtain good evaluation results without variation regardless of who operates it without the need for an expert in analysis.
  • the classification according to the type of the appearance of the ion exchange resin is preset. Then, the evaluation unit 362 evaluates the performance of the ion exchange resin for inspection by using the trained model machine-learned based on the learning images of the plurality of ion exchange resins taken for each type of appearance.
  • the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin based on the appearance of the ion exchange resin in a short time.
  • the types of appearance are classified based on the presence or absence of cracks and the presence or absence of crushing in the appearance of the ion exchange resin (for example, classified into complete spheres, cracked spheres, and crushed spheres).
  • the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin in a short time based on the appearance state such as the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin.
  • the evaluation unit 362 inputs an inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, so that each of the ion exchange resins for inspection using the trained model is eventually used. Analyze whether it is classified into the type of appearance of. Then, the evaluation unit 362 determines the appearance of the inspection ion exchange resin included in the inspection image based on the number of ion exchange resins for each classified type of appearance (for example, perfect sphere, cracked sphere, crushed sphere). The appearance index indicating the state of is calculated.
  • the performance evaluation system 1 calculates the appearance index based on the number of ion exchange resins for each type of appearance classified by AI (for example, perfect sphere, cracked sphere, crushed sphere), so that the analyst can use a microscope.
  • the performance (deterioration degree) of the ion exchange resin can be judged based on the same judgment criteria as when visually observing and analyzing the ion exchange resin.
  • the inspection image is an image taken by magnifying the plurality of inspection ion exchange resins placed in a petri dish (an example of a container) with a microscope camera 10.
  • a portion where there is little overlap between the ion exchange resins to be imaged is selected and photographed.
  • the performance evaluation system 1 can accurately classify the types of appearance of the ion exchange resin for inspection.
  • the learning unit 540 performs machine learning based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin.
  • the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin from the photographed image of the ion exchange resin using AI.
  • the appearance of the ion exchange resin for learning may be a plurality of images taken a plurality of times by changing at least one of the size, the angle and the color tone, or an image obtained by taking the appearance of the ion exchange resin. , Includes multiple images generated with at least one of different sizes, angles and tones. That is, for example, when the appearance of the ion exchange resin is photographed, the image for learning is the size to be photographed, the angle to be photographed (for example, the angle in the pan, tilt, or roll direction), the color tone correction at the time of photographing, and the like. It was taken multiple times with at least one of the changes.
  • the learning image is an image obtained by photographing the appearance of the ion exchange resin, and the size or angle (for example, the angle in the rotation direction) of the ion exchange resin shown in the image is changed, or the image is inverted.
  • a plurality of images are generated by performing at least one image processing such as color tone correction of an image and partial extraction (cutting) of an image.
  • the learning image may be an image taken a plurality of times by changing the shooting conditions at the time of shooting, or a plurality of shot images are generated by changing the conditions later by image processing. It may be one or a mixture of them.
  • the performance evaluation system 1 has improved robustness and can accurately classify the types of appearances of the ion exchange resin for inspection shown in the inspection image.
  • the overlapped portion is erroneously determined to be a scratch (for example, a crack ball).
  • a scratch for example, a crack ball.
  • the floating ion exchange resin and the settled ion exchange resin may overlap each other and be photographed.
  • the ion exchange resin When air, oil, or hydrophobic solid adheres to the ion exchange resin, the ion exchange resin floats in water or receives the repulsion of water and sticks to the adjacent ion exchange resin, resulting in the ion exchange resin. It is thought that they will overlap each other. For example, when an organic substance is trapped in a functional group of an ion exchange resin, adsorption or aggregation of the ion exchange resins occurs, and the resins tend to overlap each other. In particular, the anionic ion exchange resin tends to capture organic substances having a carboxyl group, which are abundant in nature, and its influence becomes large.
  • Surfactants have the effect of solubilizing water, oil, or hydrophobic solids by adsorbing them on the interface. Therefore, by using a surfactant, the floating ion exchange resin is likely to settle in water, and the repulsion from water is also reduced, so that the overlap between the ion exchange resins can be reduced. As a result, erroneous judgment at the overlapping portion of the ion exchange resins can be reduced, and the accuracy of the performance evaluation of the ion exchange resins can be improved.
  • anionic surfactants are preferable from the viewpoint of improving the accuracy of performance evaluation of ion exchange resins.
  • 14 to 17 are analysis images showing the results of photographing the ion exchange resin contained in the petri dish 20 and classifying them into one of a complete sphere, a cracked sphere, and a crushed sphere, and are displayed in the screen area 105 of FIG. Corresponds to the analyzed image to be performed.
  • FIG. 14 is a diagram showing an example in which a crack ball is erroneously determined before the addition of an anionic surfactant.
  • the example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the ion exchange resin is determined to be a crack ball at the three locations indicated by the symbols R1, R2, and R3. There is.
  • the ion exchange resin at the location indicated by the reference numeral R1 is correctly determined to be a crack sphere, but at the two locations indicated by the reference numerals R2 and R3, it is erroneously determined to be a crack sphere due to the overlap of the ion exchange resins.
  • FIG. 15 is a diagram showing an example in which a crushed ball is erroneously determined before the addition of an anionic surfactant.
  • the example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the ion exchange resin is determined to be a crushed ball at the three locations indicated by the symbols R4, R5, and R6. There is.
  • the ion exchange resin at the location indicated by the reference numeral R4 is correctly determined to be a crushed sphere and a cracked sphere, but at the two locations indicated by the reference numerals R5 and R6, it is erroneously determined to be a crushed sphere due to the overlap of the ion exchange resins.
  • FIG. 16 is a diagram showing an example in which it is not possible to determine the portion where the resins overlap before the addition of the anionic surfactant.
  • the example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the range indicated by the reference numeral R7 (the range indicated by the solid circle) includes a plurality of ion exchange resins. There are some resins whose appearance cannot be judged due to the overlap.
  • FIG. 17 is a diagram showing an example of the analysis result of the inspection image after the addition of the anionic surfactant.
  • the addition of the anionic surfactant reduces the overlapping portion of the ion exchange resins, so that the appearance can be accurately determined.
  • the ion exchange resin is correctly determined to be a crack sphere at the three locations indicated by the reference numerals R8, R9, and R10.
  • the ion exchange resin without cracks or crushing is correctly judged as a perfect sphere.
  • the portion is a cracked sphere or a crushed sphere because there is an overlapping portion between the resins. Or, in some cases, it was not judged at all. Therefore, the number of cracked spheres or crushed spheres calculated may increase, or the number of ion exchange resins may not be calculated accurately, and the appearance index may not be calculated accurately.
  • the overlap between the resins is reduced, so the number of perfect spheres, cracked spheres, and crushed spheres is calculated accurately, so the appearance index is calculated accurately, and the ion exchange resin The accuracy of performance evaluation has improved.
  • a surfactant for example, an example of a container
  • a medium 20 an example of a container
  • Anionic surfactant is added and stirred, and then the image is taken by the microscope camera 10, so that the accuracy of the performance evaluation of the ion exchange resin can be improved.
  • an anionic surfactant was used in the above experiment, a surfactant other than the anionic surfactant may be used.
  • an anionic surfactant is preferable in terms of the effect of reducing the overlap between the ion exchange resins and the fact that it is easily available.
  • an anionic surfactant may be used. However, it is preferable to use an anionic surfactant in terms of reducing the overlap between the ion exchange resins and in terms of availability.
  • the number of perfect spheres and the number of crushed spheres in the sample are used when calculating the appearance index of the sample, and the ratio of the number of perfect spheres to the total number of perfect spheres and crushed spheres is used as the appearance index. Calculated, but not limited to this. For example, the ratio of the number of perfect spheres to the total number of perfect spheres, crushed spheres, and cracked spheres may be calculated as an appearance index.
  • the ion exchange resin is classified into three types of appearance, a complete sphere, a cracked sphere, and a crushed sphere, based on the appearance state of the ion exchange resin, but the present invention is not limited to the three types.
  • the classification according to the type of appearance may be two types (for example, a complete sphere and a crushed sphere).
  • the types of appearance may be classified based on the presence or absence of crushing in the appearance of the ion exchange resin (for example, classified into complete spheres and crushed spheres). In this case, the ratio of the number of perfect spheres to the total number of perfect spheres and crushed spheres may be calculated as an appearance index.
  • the types of appearance may be classified based on the presence or absence of cracks in the appearance of the ion exchange resin (for example, classified into perfect spheres and cracked spheres).
  • the ratio of the number of perfect spheres to the total number of perfect spheres and cracked spheres may be calculated as an appearance index. That is, the type of appearance may be classified based on at least one of the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin.
  • the classification according to the type of appearance may be four or more types. For example, when the gel-type ion exchange resin deteriorates, the appearance is rarely wrinkled. This wrinkled state may be machine-learned in addition to the type of appearance. Further, an appearance type indicating a state of appearance other than the above may be added.
  • the camera 10b is not limited to a dedicated camera device such as a digital camera, but may be an electronic device having a camera function as a part of the function such as a smartphone. Further, the camera 10b and the performance evaluation device 30 do not have to be connected by communication, and the image (inspection image or the like) taken by the camera 10b is delivered to the performance evaluation device 30 via a storage medium such as an optical disk or a memory card. You may.
  • the camera 10b and the performance evaluation device 30 may be integrally configured as one device. Further, the microscope camera 10 and the performance evaluation device 30 may be integrally configured as one device.
  • the sample of the ion exchange resin put in the petri dish is photographed or observed with the microscope camera 10, but a container other than the petri dish may be used.
  • the container has a shape in which the ion exchange resins are unlikely to overlap (for example, a shape having a wide planar region as much as possible).
  • an example of performing an ion exchange resin evaluation process using a trained model generated as learning data of an ion exchange resin learning image and an appearance evaluation result (evaluation value) has been described.
  • the evaluation process of the ion exchange resin may be performed using a data table in which the learning image of the ion exchange resin and the evaluation result (evaluation value) of the appearance are associated with each other, or the image for learning the ion exchange resin may be used.
  • the ion exchange resin may be evaluated using a program that embodies an algorithm regarding the relationship with the appearance evaluation result (evaluation value).
  • the camera 10b, the performance evaluation device 30, or the machine learning device 50 included in the performance evaluation system 1 described above has a computer system inside. Then, a program for realizing the functions of each configuration included in the camera 10b, the performance evaluation device 30, or the machine learning device 50 described above is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded.
  • the processing in each configuration included in the above-mentioned camera 10b, the performance evaluation device 30, or the machine learning device 50 may be performed by loading and executing it in a computer system.
  • "loading and executing a program recorded on a recording medium into a computer system” includes installing the program in the computer system.
  • computer system as used herein includes hardware such as an OS and peripheral devices.
  • the "computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • the recording medium in which the program is stored may be a non-transient recording medium such as a CD-ROM.
  • the recording medium also includes an internal or external recording medium accessible from the distribution server for distributing the program.
  • the program is divided into a plurality of parts, downloaded at different timings, and then combined with each configuration of the camera 10b, the performance evaluation device 30, or the machine learning device 50, or the divided programs are distributed.
  • the servers may be different.
  • a "computer-readable recording medium” is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network, and holds the program for a certain period of time. It shall include things.
  • the above program may be for realizing a part of the above-mentioned functions.
  • a so-called difference file (difference program) may be used, which can realize the above-mentioned function in combination with a program already recorded in the computer system.
  • a part or all of the camera 10b, the performance evaluation device 30, or the machine learning device 50 may be realized as an integrated circuit such as an LSI (Large Scale Integration). Further, each component in the camera 10b, the performance evaluation device 30, or the machine learning device 50 of the present embodiment may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of making an integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
  • FIG. 18 is a system diagram showing an example of the configuration of the performance evaluation system 1A according to the present embodiment.
  • the performance evaluation system 1A includes a performance evaluation device 30 and a water treatment facility 100.
  • the basic configuration of the performance evaluation device 30 is the same as the configuration shown in FIG.
  • the water treatment equipment 100 is used for various purposes such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by a power plant condensate desalination device, water for manufacturing pharmaceuticals, and the like. This is a facility that manufactures ultrapure water.
  • the water treatment equipment 100 includes an ion exchange resin tower 101, a communication unit 110, an image pickup unit 120, a storage unit 130, and a control unit 140.
  • the communication unit 110 is configured to include communication devices compatible with communication standards such as wireless LAN and mobile communication, and communicates (transmits or receives) with the performance evaluation device 30 and other devices via the communication network NW. ..
  • the image pickup unit 120 includes an image pickup element and an optical lens provided in front of the image pickup surface of the image pickup element. A magnifying glass for magnifying and photographing the ion exchange resin is used for the optical lens. The imaging unit 120 photographs the ion exchange resin in the ion exchange resin tower 101 as a sample for inspection.
  • a transparent window is provided on a part of the bottom surface or the side surface of the ion exchange resin tower 101, and the image pickup unit 120 uses a large number of ion exchange resins existing in a place corresponding to the window as a sample for inspection. Take a picture. At this time, a plurality of captured images may be acquired while the angle of view of the imaging unit 120 is automatically or manually moved.
  • the storage unit 130 includes, for example, an HDD, SSD, EEPROM, ROM, RAM, etc., and stores various information, images, programs, and the like.
  • the control unit 140 transmits a photographed image (inspection image) of the ion exchange resin for inspection in the ion exchange resin tower 101 photographed by the image pickup unit 120 to the performance evaluation device 30 via the communication unit 110.
  • the communication unit 31 of the performance evaluation device 30 receives a photographed image (inspection image) of the ion exchange resin for inspection transmitted from the water treatment equipment 100.
  • the evaluation unit 362 of the performance evaluation device 30 evaluates the performance of the ion exchange resin for inspection from the received inspection image. Specifically, as described above, for inspection using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin. Evaluate the performance of the ion exchange resin for inspection from the image.
  • the performance evaluation device 30 may transmit information indicating the evaluation result and the analysis result of the inspection image evaluated by the evaluation unit 362 to the water treatment equipment 100.
  • the control unit 140 acquires information indicating the evaluation result and the analysis result of the inspection image evaluated by the evaluation unit 362 of the performance evaluation device 30 from the performance evaluation device 30.
  • the control unit 140 displays information based on the evaluation results and analysis results acquired from the performance evaluation device 30 (for example, information such as the value of the appearance index, the evaluation category, and the necessity of replacement) in the water treatment equipment 100. It may be displayed in a unit (not shown), or may be transmitted to a terminal used by the equipment manager of the water treatment equipment 100 or the like.
  • the control unit 140 orders the replacement ion exchange resin from the provider of the ion exchange resin. You may go to the vendor. For example, the control unit 140 may generate order information such as the type, quantity, and delivery destination of the replacement ion exchange resin, and transmit it to the service department of the vendor via the communication unit 110. At this time, the control unit 140 may transmit the order information after confirming that the ordering department has been approved.
  • the performance evaluation system 1A can determine the performance (deterioration degree) of the ion exchange resin in the ion exchange resin tower 101 based on the inspection image taken by the ion exchange resin tower 101 of the water treatment facility 100. It is convenient because it is not necessary to send a sample for inspection and the time can be shortened.
  • the machine learning device 50 acquires an inspection image taken by the water treatment facility 100 and an evaluation result in which the performance evaluation device 30 evaluates the inspection image, and the acquired inspection image is used as a learning image.
  • the trained model used by the evaluation unit 362 for evaluation based on the training image and the evaluation result may be further machine-learned.
  • the ion exchange resin used in the ion exchange resin tower 101 can be continuously evaluated and the evaluation results and the evaluation results can be updated at any time, so that the ion exchange resin can be evaluated more accurately. become.
  • 1, 1A performance evaluation system 10 microscope camera, 10a microscope, 10b camera, 11 communication unit, 12 imaging unit, 13 storage unit, 14 operation unit, 15 control unit, 20 mast, 30 performance evaluation device, 30a monitor, 30b keyboard , 31 communication unit, 32 video output unit, 33, 34 USB connector, 35 storage unit, 36 control unit, 351 inspection image storage unit, 352 learning model storage unit, 353 evaluation data storage unit, 361 inspection image acquisition unit, 362 evaluation unit, 363 output control unit, 100 water treatment equipment, 101 ion exchange resin tower, 110 communication unit, 120 imaging unit, 130 storage unit, 140 control unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Software Systems (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

This performance evaluation system comprises an evaluation unit which, using a learned model machine-learned on the basis of a learning image of an ion-exchange resin captured for learning and an evaluation result of the appearance of the ion-exchange resin, evaluates the performance of an ion-exchange resin to be inspected from an inspection image in which the ion-exchange resin to be inspected is captured.

Description

性能評価システム、性能評価方法、プログラム、及び学習済みモデルPerformance evaluation system, performance evaluation method, program, and trained model
 本発明は、性能評価システム、性能評価方法、プログラム、及び学習済みモデルに関する。
 本願は、2020年10月13日に日本に出願された特願2020-172521号、及び2021年9月29日に日本に出願された特願2021-159660号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a performance evaluation system, a performance evaluation method, a program, and a trained model.
This application claims priority under Japanese Patent Application No. 2020-172521 filed in Japan on October 13, 2020 and Japanese Patent Application No. 2021-159660 filed in Japan on September 29, 2021. Incorporate the content here.
 半導体、液晶、ウェハ、精密部品などの製造工程に用いられる洗浄水、発電所復水脱塩装置にて製造される脱塩水、医薬製造用水など種々の用途において、超純水が使用されている。超純水は、MF(精密濾過)膜、UF(限外濾過)膜、RO(逆浸透濾過)膜、イオン交換樹脂、EDI(連続電気再生式純水システム)、紫外線水殺菌装置、脱ガス装置など、多種多様の装置が組み合わされて使用され、製造されている。イオン交換樹脂は、これらの中で主要部材として使用される。このような超純水の製造プロセスは、イオン交換樹脂塔を主に単床で使用する系、イオン交換樹脂塔を混床で使用する系、これらを組み合わせた系などがある。(例えば、特許文献1参照)。 Ultrapure water is used in various applications such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by condensing desalination equipment at power plants, and water for manufacturing pharmaceuticals. .. Ultrapure water includes MF (microfiltration) membrane, UF (ultrafiltration) membrane, RO (reverse osmosis filtration) membrane, ion exchange resin, EDI (continuous electric regeneration type pure water system), ultraviolet water sterilizer, and degassing. A wide variety of devices, such as devices, are used and manufactured in combination. Ion exchange resins are used as the main member among these. Such ultrapure water production processes include a system in which an ion exchange resin tower is mainly used in a single bed, a system in which an ion exchange resin tower is used in a mixed bed, and a system in which these are combined. (See, for example, Patent Document 1).
特開2014-104413号公報Japanese Unexamined Patent Publication No. 2014-104413
 例えば、イオン交換樹脂を製造し客先へ提供しているベンダーは、客先からイオン交換樹脂塔で使用されているイオン交換樹脂のサンプルを定期的に送ってもらい、性能評価を行っている。イオン交換樹脂の性能評価の1つに外観指数がある。新品のイオン交換樹脂は完全球であるが、劣化してくるとヒビが入ったり、割れたりする。外観指数は、例えば1つのサンプルについて、300個以上のイオン交換樹脂を1個ずつ拡大鏡で観察して完全球、亀裂球、破砕球などの外観の種類(カテゴリ)に分けて数え算出される。外観指数は、イオン交換樹脂の劣化具合の指標となり、客先のイオン交換樹脂塔で使用されているイオン交換樹脂を交換する目安となる。 For example, a vendor who manufactures an ion exchange resin and provides it to a customer regularly receives a sample of the ion exchange resin used in the ion exchange resin tower from the customer and evaluates the performance. The appearance index is one of the performance evaluations of ion exchange resins. A new ion exchange resin is a perfect sphere, but when it deteriorates, it cracks or cracks. The appearance index is calculated by observing 300 or more ion exchange resins one by one with a magnifying glass for one sample and dividing them into appearance types (categories) such as complete spheres, cracked spheres, and crushed spheres. .. The appearance index is an index of the degree of deterioration of the ion exchange resin, and serves as a guide for replacing the ion exchange resin used in the customer's ion exchange resin tower.
 しかしながら、上述したイオン交換樹脂の性能評価は、分析員が拡大鏡を用いてイオン交換樹脂を1個ずつ目視で検査して外観指数を算出しており、熟練者であっても多くの時間を要していた。尚、拡大鏡には、顕微鏡、拡大機能付きカメラ等を用いることができる。 However, in the above-mentioned performance evaluation of the ion exchange resin, the analyst visually inspects the ion exchange resin one by one using a magnifying glass to calculate the appearance index, and even a skilled person spends a lot of time. I needed it. As the magnifying glass, a microscope, a camera with a magnifying function, or the like can be used.
 本発明は上記の点に鑑みてなされたものであり、イオン交換樹脂の性能を短時間で精度よく評価できる性能評価システム、性能評価方法、プログラム、及び学習済みモデルを提供することを課題とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a performance evaluation system, a performance evaluation method, a program, and a trained model capable of accurately evaluating the performance of an ion exchange resin in a short time. ..
 本発明は上記の課題を解決するためになされたものであり、本発明の一態様は、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用のイオン交換樹脂が撮影された検査用画像から前記検査用のイオン交換樹脂の性能を評価する評価部、を備える性能評価システムである。 The present invention has been made to solve the above problems, and one aspect of the present invention is based on a learning image of an ion exchange resin taken for learning and an evaluation result of the appearance of the ion exchange resin. It is a performance evaluation system including an evaluation unit for evaluating the performance of the ion exchange resin for inspection from an inspection image in which the ion exchange resin for inspection is photographed by using the trained model trained by the machine.
 また、上記性能評価システムにおいて、前記外観の評価結果として、イオン交換樹脂の外観の種類に応じた分類が予め設定されており、前記評価部は、前記外観の種類ごとに撮影された複数のイオン交換樹脂の前記学習用画像に基づいて機械学習された学習済みモデルを用いて、前記検査用のイオン交換樹脂の性能を評価してもよい。 Further, in the performance evaluation system, as the evaluation result of the appearance, classification according to the type of appearance of the ion exchange resin is preset, and the evaluation unit has a plurality of ions photographed for each type of appearance. The performance of the ion exchange resin for inspection may be evaluated using a trained model machine-learned based on the learning image of the exchange resin.
 また、上記性能評価システムにおいて、前記外観の種類は、イオン交換樹脂の外観における亀裂の有無及び破砕の有無の少なくとも一つに基づいて分類され、前記評価部は、前記検査用のイオン交換樹脂の性能を評価として、イオン交換樹脂の外観の状態を示す外観指数を算出してもよい。 Further, in the performance evaluation system, the type of appearance is classified based on at least one of the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin, and the evaluation unit is the ion exchange resin for inspection. With the performance as an evaluation, an appearance index indicating the appearance state of the ion exchange resin may be calculated.
 また、上記性能評価システムにおいて、前記評価部は、前記検査用のイオン交換樹脂が複数撮影された前記検査用画像を前記学習済みモデルに入力することにより、前記学習済みモデルを用いて前記検査用のイオン交換樹脂のそれぞれがいずれの前記外観の種類に分類されるかを解析し、分類された前記外観の種類ごとのイオン交換樹脂の数に基づいて、前記検査用画像に含まれる前記検査用のイオン交換樹脂の外観の状態を示す外観指数を算出してもよい。 Further, in the performance evaluation system, the evaluation unit inputs the inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, and the evaluation unit uses the trained model for the inspection. It is analyzed which type of the appearance is classified into each of the ion exchange resins of the above, and based on the number of the ion exchange resins for each type of the classified appearance, the inspection image included in the inspection image is included. The appearance index indicating the appearance state of the ion exchange resin may be calculated.
 また、上記性能評価システムにおいて、前記検査用画像は、容器に入れられた複数の前記検査用のイオン交換樹脂に対して、拡大鏡カメラで拡大して撮影された画像であり、前記拡大鏡カメラで撮影される際に、撮影対象となるイオン交換樹脂同士に重なりが少ない部分が選択されて撮影された画像であってもよい。 Further, in the performance evaluation system, the inspection image is an image taken by magnifying a plurality of ion exchange resins for inspection contained in a container with a magnifying mirror camera, and is taken by the magnifying mirror camera. The image may be taken by selecting a portion where there is little overlap between the ion exchange resins to be photographed when the image is taken.
 また、上記性能評価システムにおいて、前記検査用画像は、拡大鏡カメラで撮影される前に、複数の前記検査用のイオン交換樹脂が入った容器に界面活性剤を加えて攪拌されてから、前記拡大鏡カメラで撮影された画像であってもよい。 Further, in the performance evaluation system, the inspection image is stirred by adding a surfactant to a container containing a plurality of ion exchange resins for inspection before being photographed by a magnifying glass camera. It may be an image taken by a magnifying glass camera.
 また、上記性能評価システムにおいて、前記学習用に撮影されたイオン交換樹脂の前記学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習させる学習部、を備えてもよい。 Further, the performance evaluation system may include a learning unit for machine learning based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin.
 また、上記性能評価システムにおいて、前記学習用画像には、前記学習用のイオン交換樹脂の外観を、サイズ、角度及び色調の少なくとも一つを変えて複数回撮影された画像、又はイオン交換樹脂の外観を撮影した画像を、サイズ、角度及び色調の少なくとも一つを変えて生成された複数の画像が含まれてもよい。 Further, in the performance evaluation system, the learning image is an image taken a plurality of times with the appearance of the ion exchange resin for learning changed at least one of size, angle and color tone, or an ion exchange resin. The image obtained by capturing the appearance may include a plurality of images generated by changing at least one of size, angle, and color tone.
 また、本発明の一態様は、イオン交換樹脂の性能評価方法であって、検査用のイオン交換樹脂が撮影された検査用画像を取得するステップと、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するステップと、を有する性能評価方法である。 Further, one aspect of the present invention is a method for evaluating the performance of an ion exchange resin, in which a step of acquiring an inspection image in which the ion exchange resin for inspection is photographed and a learning of the ion exchange resin photographed for learning are performed. Performance having a step of evaluating the performance of the ion exchange resin for inspection from the inspection image using a trained model machine-learned based on the image and the evaluation result of the appearance of the ion exchange resin. It is an evaluation method.
 また、本発明の一態様は、コンピュータに、検査用のイオン交換樹脂が撮影された検査用画像を取得するステップと、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するステップと、を実行させるためのプログラムである。 Further, one aspect of the present invention includes a step of acquiring an inspection image in which an ion exchange resin for inspection is photographed on a computer, a learning image of the ion exchange resin photographed for learning, and the ion exchange resin. It is a program for executing a step of evaluating the performance of the ion exchange resin for inspection from the inspection image using a trained model machine-learned based on the evaluation result of appearance.
 また、本発明の一態様は、検査用のイオン交換樹脂が撮影された検査用画像から前記検査用のイオン交換樹脂の性能を評価するための学習済みモデルであって、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習され、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するよう、コンピュータを機能させるための学習済みモデルである。 Further, one aspect of the present invention is a trained model for evaluating the performance of the inspection ion exchange resin from the inspection image in which the inspection ion exchange resin is photographed, and is photographed for learning. Machine learning is performed based on the learning image of the ion exchange resin and the evaluation result of the appearance of the ion exchange resin, and the computer is made to function so as to evaluate the performance of the ion exchange resin for inspection from the inspection image. It is a trained model.
 また、本発明の一態様は、水処理設備と性能評価装置とを備えた性能評価システムであって、前記水処理設備は、イオン交換樹脂塔と、前記イオン交換樹脂塔内のイオン交換樹脂を撮影する撮像部と、前記撮像部により撮影された画像を検査用画像として送信する通信部と、を備え、前記性能評価装置は、前記検査用画像を受信する通信部と、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価する評価部と、を備える性能評価システムである。 Further, one aspect of the present invention is a performance evaluation system including a water treatment facility and a performance evaluation device, wherein the water treatment facility comprises an ion exchange resin tower and an ion exchange resin in the ion exchange resin tower. The performance evaluation device includes a communication unit for taking an image and a communication unit for transmitting an image taken by the image pickup unit as an inspection image, and the performance evaluation device is photographed for learning with the communication unit for receiving the inspection image. The performance of the ion exchange resin for inspection is evaluated from the inspection image using a trained model machine-learned based on the learning image of the ion exchange resin and the evaluation result of the appearance of the ion exchange resin. It is a performance evaluation system equipped with an evaluation unit.
 また、本発明の一態様は、上記性能評価システムにおいて、前記性能評価装置は、前記評価部による評価結果に基づく情報を前記水処理設備へ送信してもよい。 Further, in one aspect of the present invention, in the performance evaluation system, the performance evaluation device may transmit information based on the evaluation result by the evaluation unit to the water treatment equipment.
 また、本発明の一態様は、前記水処理設備は、前記性能評価装置から取得した情報に基づいて、イオン交換樹脂の交換が必要な場合、交換用のイオン交換樹脂の注文情報を生成してもよい。 Further, in one aspect of the present invention, the water treatment equipment generates order information of an ion exchange resin for replacement when the ion exchange resin needs to be replaced based on the information acquired from the performance evaluation device. May be good.
 本発明によれば、イオン交換樹脂の性能を短時間で精度よく評価することができる。 According to the present invention, the performance of the ion exchange resin can be evaluated accurately in a short time.
実施形態に係るイオン交換樹脂の外観の種類の一例を示す図。The figure which shows an example of the type of appearance of the ion exchange resin which concerns on embodiment. 実施形態に係るイオン交換樹脂の性能評価方法についての概要を示す図。The figure which shows the outline about the performance evaluation method of the ion exchange resin which concerns on embodiment. 実施形態に係る性能評価システム1の構成の一例を示すシステム図。The system diagram which shows an example of the structure of the performance evaluation system 1 which concerns on embodiment. 実施形態に係るGUI画面の一例を示す図。The figure which shows an example of the GUI screen which concerns on embodiment. 実施形態に係るカメラ10bの構成の一例を示すブロック図。The block diagram which shows an example of the structure of the camera 10b which concerns on embodiment. 実施形態に係る性能評価装置30の構成の一例を示すブロック図。The block diagram which shows an example of the structure of the performance evaluation apparatus 30 which concerns on embodiment. 実施形態に係るイオン交換樹脂の性能の判断基準の一例を示す図。The figure which shows an example of the judgment criteria of the performance of the ion exchange resin which concerns on embodiment. 実施形態に係るイオン交換樹脂評価処理の一例を示すフローチャート。The flowchart which shows an example of the ion exchange resin evaluation process which concerns on embodiment. 実施形態に係る機械学習装置50の構成の一例を示すブロック図。The block diagram which shows an example of the structure of the machine learning apparatus 50 which concerns on embodiment. 実施形態に係る機械学習における実行手順を説明する説明図。An explanatory diagram illustrating an execution procedure in machine learning according to an embodiment. 実施形態に係る機械学習における学習手順を説明する説明図。An explanatory diagram illustrating a learning procedure in machine learning according to an embodiment. 実施形態に係るAIによる解析結果と目視による解析結果とを示す図。The figure which shows the analysis result by AI which concerns on embodiment and the analysis result by visual observation. 実施形態に係るAIによる解析結果と目視による解析結果との比較図。The figure which compared the analysis result by AI which concerns on embodiment and the analysis result by visual observation. 実施形態に係るアニオン系界面活性剤添加前で亀裂球と誤判断されている例を示す図。The figure which shows the example which is misjudged as a crack ball before the addition of the anionic surfactant which concerns on embodiment. 実施形態に係るアニオン系界面活性剤添加前で破砕球と誤判断されている例を示す図。The figure which shows the example which is erroneously judged as a crushed ball before the addition of the anionic surfactant which concerns on embodiment. 実施形態に係るアニオン系界面活性剤添加前で樹脂が重なっている部分の判断ができない例を示す図。The figure which shows the example which cannot determine the part where the resin overlaps before the addition of the anionic surfactant which concerns on embodiment. 実施形態に係るアニオン系界面活性剤添加後の検査用画像の解析結果の一例を示す図。The figure which shows an example of the analysis result of the inspection image after the addition of the anionic surfactant which concerns on embodiment. 実施形態に係る性能評価システムの構成の別の例を示すシステム図。The system diagram which shows another example of the configuration of the performance evaluation system which concerns on embodiment.
 以下、図面を参照しながら本発明の一実施形態について説明する。
 イオン交換樹脂は、水に含まれているナトリウムやカルシウム、マグネシウムなどの陽イオンや、塩素、炭酸などの陰イオンを吸着し、元々自身が持つイオンを離すことでイオン交換を行い、水から不純物を取り除く。例えば、半導体、液晶、ウェハ、精密部品などの製造工程に用いられる洗浄水、発電所復水脱塩装置にて製造される脱塩水、医薬製造用水などとして種々の用途で使用される超純水を製造する際に使用される。超純水の製造プロセスは、イオン交換樹脂塔を主に単床で使用する系、イオン交換樹脂塔を混床で使用する系、これらを組み合わせた系などがある。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The ion exchange resin adsorbs cations such as sodium, calcium, and magnesium contained in water and anions such as chlorine and carbon dioxide, and releases the ions that it originally has to exchange ions, resulting in impurities from the water. Get rid of. For example, ultrapure water used for various purposes such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by a power plant condensate desalination device, and water for manufacturing pharmaceuticals. Used in manufacturing. The ultrapure water production process includes a system in which the ion exchange resin tower is mainly used in a single bed, a system in which the ion exchange resin tower is used in a mixed bed, and a system in which these are combined.
 イオン交換樹脂は、その構造で大別すると、「ゲル型」と「ポーラス(多孔性)型」とに分けられ、それぞれに陽イオン交換樹脂、陰イオン交換樹脂がある。ゲル型樹脂は、ポーラス型と比べ、体積当たりのイオン交換容量が大きいため、超純水の製造に有利であると考えられるが、反面、ポーラス型に比べてサイクル強度が低いという欠点がある。また、ゲル型樹脂は一般に比表面積がポーラス型樹脂と比べて小さいので、通常の無機イオン(塩化物イオン等)を吸着するのには何ら問題がないが、高分子量の物質を吸着するには不利である。 Ion exchange resins are roughly classified into "gel type" and "porous type" according to their structure, and there are cation exchange resin and anion exchange resin, respectively. Since the gel type resin has a larger ion exchange capacity per volume than the porous type, it is considered to be advantageous for producing ultrapure water, but on the other hand, it has a drawback that the cycle strength is lower than that of the porous type. In addition, since gel-type resins generally have a smaller specific surface area than porous-type resins, there is no problem in adsorbing ordinary inorganic ions (chloride ions, etc.), but in order to adsorb high-molecular-weight substances. It is disadvantageous.
 新品のイオン交換樹脂は完全球であるが、劣化してくるとヒビが入ったり、割れたりする。イオン交換樹脂が劣化してくると、イオン交換性能が低下するため、交換する必要がある。イオン交換樹脂の劣化具合の指標として、外観の状態を示す外観指数がある。外観指数は、イオン交換樹脂の外観の状態に応じて算出される値である。 The new ion exchange resin is a perfect sphere, but when it deteriorates, it cracks or cracks. When the ion exchange resin deteriorates, the ion exchange performance deteriorates, so it is necessary to replace it. As an index of the degree of deterioration of the ion exchange resin, there is an appearance index indicating the state of appearance. The appearance index is a value calculated according to the appearance state of the ion exchange resin.
 例えば、イオン交換樹脂が劣化によってヒビや割れが生じた外観の状態に基づいて、亀裂のある状態である亀裂球、破砕のある状態である破砕球、亀裂や破砕の無い状態である完全球などの外観の種類(カテゴリ)で分類する。図1は、イオン交換樹脂の外観の種類の一例を示す図である。図示する例は、「ゲル型」のイオン交換樹脂の劣化に伴う外観の違いを完全球、亀裂球、破砕球3つの外観の種類に分類したときの、それぞれの外観写真の例を示している。 For example, based on the appearance of cracks and cracks caused by deterioration of the ion exchange resin, cracked spheres with cracks, crushed spheres with crushing, complete spheres without cracks or crushing, etc. Classify by the type (category) of the appearance of. FIG. 1 is a diagram showing an example of the type of appearance of an ion exchange resin. The illustrated example shows an example of each appearance photograph when the difference in appearance due to deterioration of the "gel type" ion exchange resin is classified into three types of appearance: perfect sphere, cracked sphere, and crushed sphere. ..
 例えば、従来は1つのサンプルについて、分析員が300個のイオン交換樹脂を1個ずつ拡大鏡(顕微鏡など)用いて目視で観察し、完全球、亀裂球、破砕球に分類することにより、以下の式1によりイオン交換樹脂の劣化具合の指標となる外観指数を算出し性能を評価していた。 For example, conventionally, for one sample, an analyst visually observes 300 ion exchange resins one by one using a magnifying glass (microscope, etc.) and classifies them into complete spheres, cracked spheres, and crushed spheres. The appearance index, which is an index of the deterioration of the ion exchange resin, was calculated by Equation 1 and the performance was evaluated.
 外観指数(%)=(300-破砕球総数)/300×100・・・(式1) Appearance index (%) = (300-total number of crushed balls) / 300 × 100 ... (Equation 1)
 しかしながら、分析員が300個のイオン交換樹脂を1個ずつ拡大鏡を用いて目視で観察し、外観で完全球、亀裂球、破砕球などの外観の種類に分けて数え算出するには多くの時間を要するため、より短時間で精度よくイオン交換樹脂の性能を評価する方法が望まれている。そこで、本実施形態に係るイオン交換樹脂の性能評価システムでは、AI(Artificial Intelligence)を用いて、イオン交換樹脂の外観の撮影画像から自動で外観指数の算出が可能な構成とした。以下、本実施形態に係るイオン交換樹脂の性能評価システムについて詳しく説明する。 However, it is often difficult for an analyst to visually observe 300 ion exchange resins one by one using a magnifying glass and count and calculate the appearance by classifying them into appearance types such as perfect spheres, cracked spheres, and crushed spheres. Since it takes time, a method for accurately evaluating the performance of the ion exchange resin in a shorter time is desired. Therefore, in the performance evaluation system of the ion exchange resin according to the present embodiment, the appearance index can be automatically calculated from the photographed image of the appearance of the ion exchange resin by using AI (Artificial Integrity). Hereinafter, the performance evaluation system for the ion exchange resin according to this embodiment will be described in detail.
[性能評価システムの概要]
 図2は、本実施形態に係るイオン交換樹脂の性能評価方法についての概要を示す図である。本実施形態では、イオン交換樹脂の外観を撮影した撮影画像と当該イオン交換樹脂の外観評価結果との組(学習データセット)を学習用のデータとして多数用意し、この多数の学習用のイオン交換樹脂の撮影画像及び外観評価結果に基づいて機械学習を行う。外観評価結果とは、過去に分析員が顕微鏡を用いて目視でイオン交換樹脂を観察することにより、完全球、亀裂球、破砕球などの外観の種類に分類した結果である。例えば、後述するAIと分析員(目視)とを比較した例では、過去に撮影された約2000個の完全球、約200個の亀裂球、及び約200個の破砕球の撮影データを学習用のデータとして用意し、機械学習を行わせた。
[Overview of performance evaluation system]
FIG. 2 is a diagram showing an outline of a performance evaluation method for an ion exchange resin according to the present embodiment. In the present embodiment, a large number of sets (learning data sets) of a photographed image of the appearance of the ion exchange resin and the appearance evaluation result of the ion exchange resin are prepared as learning data, and a large number of ion exchanges for learning are prepared. Machine learning is performed based on the photographed image of the resin and the appearance evaluation result. The appearance evaluation result is a result of classifying the appearance type such as a perfect sphere, a cracked sphere, and a crushed sphere by visually observing the ion exchange resin with a microscope in the past by an analyst. For example, in an example comparing AI and an analyst (visually), which will be described later, the photographed data of about 2000 complete spheres, about 200 cracked spheres, and about 200 crushed spheres photographed in the past are used for learning. It was prepared as the data of the above, and machine learning was performed.
 この機械学習された学習済みモデル(AI:Artificial Intelligence)に、検査用のイオン交換樹脂の外観の撮影画像を入力することにより、その撮影画像に写っているイオン交換樹脂の性能を評価することができる。具体的には、検査用のイオン交換樹脂の撮影画像に写っているイオン交換樹脂のそれぞれを完全球、亀裂球、及び破砕球のいずれかに分類し、外観指数を算出する。 By inputting a photographed image of the appearance of the ion exchange resin for inspection into this machine-learned trained model (AI: Artificial Intelligence), the performance of the ion exchange resin reflected in the photographed image can be evaluated. can. Specifically, each of the ion exchange resins shown in the photographed image of the ion exchange resin for inspection is classified into one of a complete sphere, a cracked sphere, and a crushed sphere, and an appearance index is calculated.
[性能評価システム1の構成]
 図3は、本実施形態に係る性能評価システム1の構成の一例を示すシステム図である。性能評価システム1は、顕微鏡カメラ10と、性能評価装置30とを備えている。
[Configuration of performance evaluation system 1]
FIG. 3 is a system diagram showing an example of the configuration of the performance evaluation system 1 according to the present embodiment. The performance evaluation system 1 includes a microscope camera 10 and a performance evaluation device 30.
 顕微鏡カメラ10は、顕微鏡10aにカメラ10bが取り付けられている。カメラ10bは、例えばデジタルカメラである。カメラ10bは、顕微鏡10aにより拡大された光学像を撮影して電子データに変換し、変換した電子データ(撮影画像)を性能評価装置30へ送信する。例えば、顕微鏡カメラ10と性能評価装置30とは、USB(Universal Serial Bus)で接続されている。なお、顕微鏡カメラ10と性能評価装置30とUSBに限らず、他の有線または無線による接続方法で接続されてもよい。なお、顕微鏡カメラ10は、顕微鏡10aとカメラ10bとが一体となった構成(取り外しができない構成)であってもよいし、電子顕微鏡であってもよい。 In the microscope camera 10, the camera 10b is attached to the microscope 10a. The camera 10b is, for example, a digital camera. The camera 10b captures an optical image magnified by the microscope 10a, converts it into electronic data, and transmits the converted electronic data (photographed image) to the performance evaluation device 30. For example, the microscope camera 10 and the performance evaluation device 30 are connected by USB (Universal Serial Bus). The microscope camera 10 and the performance evaluation device 30 are not limited to USB, and may be connected by other wired or wireless connection methods. The microscope camera 10 may have a structure in which the microscope 10a and the camera 10b are integrated (a structure that cannot be removed), or may be an electron microscope.
 顕微鏡カメラ10は、シャーレ20に入っている検査用のイオン交換樹脂のサンプルを撮影し、撮影した撮影画像を性能評価装置30へ送信する。このとき、オペレータは、シャーレ20に入っている1つのサンプルに対して、多数(例えば、300個以上)のイオン交換樹脂を撮影するために、シャーレ20をずらしながらサンプルの異なる部分が撮影されるように10枚の画像を撮影する。なお、オペレータは、隣同士のイオン交換樹脂に重なりがあるとキズ(例えば、亀裂球)と判断されてしまう可能性があるため、重なりの少ない部分を選んで撮影する。なお、以下では、検査用のイオン交換樹脂の撮影画像のことを、「検査用画像」と称する。 The microscope camera 10 photographs a sample of the ion exchange resin for inspection contained in the petri dish 20, and transmits the captured image to the performance evaluation device 30. At this time, the operator photographs different parts of the sample while shifting the dish 20 in order to photograph a large number (for example, 300 or more) of ion exchange resins with respect to one sample contained in the dish 20. Take 10 images as in. If the ion exchange resins next to each other overlap with each other, the operator may determine that they are scratches (for example, crack spheres), so the operator selects and shoots a portion with less overlap. In the following, the photographed image of the ion exchange resin for inspection will be referred to as an “inspection image”.
 性能評価装置30は、モニタ30aとキーボード30bとを外部装置(周辺機器)として接続して使用する所謂デスクトップ型のコンピュータである。なお、モニタ30aとキーボード30bとの一方又は両方は、性能評価装置30に内蔵されてもよい。例えば、性能評価装置30は、デスクトップ型のコンピュータに限定されず、タブレット型、ノート型などのコンピュータであってもよい。 The performance evaluation device 30 is a so-called desktop computer used by connecting a monitor 30a and a keyboard 30b as an external device (peripheral device). One or both of the monitor 30a and the keyboard 30b may be built in the performance evaluation device 30. For example, the performance evaluation device 30 is not limited to a desktop computer, but may be a tablet computer, a notebook computer, or the like.
 性能評価装置30は、顕微鏡カメラ10から送信された検査用画像を取得して保存する。そして、性能評価装置30は、学習用に撮影されたイオン交換樹脂の撮影画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用画像から検査用のイオン交換樹脂の性能を評価する。なお、以下では、学習用のイオン交換樹脂の撮影画像のことを、「学習用画像」と称する。この学習済みモデルは、イオン交換樹脂の外観の種類(例えば、完全球、亀裂球、破砕球)ごとにそれぞれ撮影された複数のイオン交換樹脂の学習用画像に基づいて機械学習されたものである。例えば、性能評価装置30は、検査用のイオン交換樹脂の性能を評価として、上記学習済みモデルを用いて、検査用画像から外観指数を算出する。 The performance evaluation device 30 acquires and stores an inspection image transmitted from the microscope camera 10. Then, the performance evaluation device 30 inspects from the inspection image using the trained model machine-learned based on the photographed image of the ion exchange resin photographed for learning and the evaluation result of the appearance of the ion exchange resin. Evaluate the performance of ion exchange resins for use. In the following, the photographed image of the ion exchange resin for learning will be referred to as a “learning image”. This trained model is machine-learned based on learning images of multiple ion exchange resins taken for each type of appearance of the ion exchange resin (eg, complete spheres, cracked spheres, crushed spheres). .. For example, the performance evaluation device 30 evaluates the performance of the ion exchange resin for inspection, and calculates the appearance index from the inspection image using the trained model.
 オペレータは、性能評価装置30のモニタ30aに表示されるGUI画面を見ながらキーボード30bを操作することで、検査用画像に写っているイオン交換樹脂の性能を解析して評価する。 The operator analyzes and evaluates the performance of the ion exchange resin shown in the inspection image by operating the keyboard 30b while looking at the GUI screen displayed on the monitor 30a of the performance evaluation device 30.
 図4は、本実施形態に係るGUI画面の一例を示す図である。図示するGUI画面G10は、性能評価装置30に取り込んだ検査用画像をAIを用いて解析する際に表示される画像である。画面領域101には、検査用のイオン交換樹脂のサンプルの選択肢が表示される。サンプル選択ボタン102に対して操作がされると、選択されているサンプルの検査用画像(元の画像)が画面領域103に表示される。1つのサンプルについて撮影された10枚の検査用画像がある。画面領域103において、No.1~No.10のそれぞれを選択する操作を行うことにより、画面領域103に表示される検査用画像を選択された検査用画像に切替えることができる。 FIG. 4 is a diagram showing an example of a GUI screen according to the present embodiment. The illustrated GUI screen G10 is an image displayed when an inspection image captured in the performance evaluation device 30 is analyzed using AI. The screen area 101 displays a sample option of the ion exchange resin for inspection. When the sample selection button 102 is operated, the inspection image (original image) of the selected sample is displayed in the screen area 103. There are 10 inspection images taken for one sample. By performing the operation of selecting each of No. 1 to No. 10 in the screen area 103, the inspection image displayed in the screen area 103 can be switched to the selected inspection image.
 解析開始ボタン104に対して操作がされると、画面領域103に表示されている検査用画像に対してAIを用いて解析が行われ、画面領域105に解析画像が表示される。この解析画像は、検査用画像に写っているイオン交換樹脂のそれぞれを、学習済みモデルを用いて完全球、亀裂球、及び破砕球のいずれかに分類した結果を表示した画像である。図示する例では、サンプル1のNo.1の検査用画像が画面領域103に表示され、その検査用画像をAIで解析した解析画像が画面領域105に表示されている。ここでは、完全球には実線の枠、亀裂球には破線の枠、破砕球には二重線の枠を付して示している。なお、解析画像では、イオン交換樹脂のそれぞれの外観の種類が区別可能に表示されればよく、その表示態様は任意に決めることができる。例えば、イオン交換樹脂のそれぞれの外観の種類を枠の色を変えて区別してもよいし、枠の形状を変えて区別してもよい。 When the analysis start button 104 is operated, the inspection image displayed in the screen area 103 is analyzed using AI, and the analysis image is displayed in the screen area 105. This analysis image is an image showing the results of classifying each of the ion exchange resins shown in the inspection image into either a complete sphere, a cracked sphere, or a crushed sphere using a trained model. In the illustrated example, the sample 1 No. The inspection image of 1 is displayed in the screen area 103, and the analysis image obtained by analyzing the inspection image by AI is displayed in the screen area 105. Here, a solid sphere is shown with a solid line frame, a cracked sphere is shown with a broken line frame, and a crushed sphere is shown with a double line frame. In the analysis image, each type of appearance of the ion exchange resin may be displayed in a distinguishable manner, and the display mode thereof can be arbitrarily determined. For example, each type of appearance of the ion exchange resin may be distinguished by changing the color of the frame, or by changing the shape of the frame.
 また、画面領域106には、解析結果として、完全球、亀裂球、及び破砕球のそれぞれの個数(43個、1個、2個)と割合(93.5%、2.2%、4.3%)、及びそれぞれの個数の合計(46個)と外観指数の値(95.7%)等が表示される。外観指数の値は、以下の式2により算出された値である。尚、この評価数(個数の合計)は、特に限定されない。 Further, in the screen area 106, as an analysis result, the number (43 pieces, 1 piece, 2 pieces) and the ratio (93.5%, 2.2%, 4. 3%), the total number of each (46), the value of the appearance index (95.7%), etc. are displayed. The value of the appearance index is a value calculated by the following equation 2. The number of evaluations (total number of pieces) is not particularly limited.
 外観指数(%)=(合計-破砕球総数)/合計×100・・・(式2)
 ここで、「合計」は、完全球、亀裂球、及び破砕球の個数の合計である。また、この式2は、前述の式1に対して「300」を「合計」に一般化しただけの式であり、基本的な算出方法は同様である。
Appearance index (%) = (total-total number of crushed balls) / total x 100 ... (Equation 2)
Here, the "total" is the total number of perfect spheres, cracked spheres, and crushed spheres. Further, this formula 2 is just a generalization of "300" to "total" with respect to the above-mentioned formula 1, and the basic calculation method is the same.
[カメラ10bの構成]
 次に、本実施形態に係るカメラ10bの構成について詳しく説明する。
 図5は、本実施形態に係るカメラ10bの構成の一例を示すブロック図である。本図において、図3の各構成に対応する構成には同一の符号を付している。カメラ10bは、アダプタを介して顕微鏡10aに取り付け可能である。カメラ10bは、例えば、通信部11と、撮像部12と、記憶部13と、制御部15とを含んで構成されている。
[Camera 10b configuration]
Next, the configuration of the camera 10b according to the present embodiment will be described in detail.
FIG. 5 is a block diagram showing an example of the configuration of the camera 10b according to the present embodiment. In this figure, the same reference numerals are given to the configurations corresponding to the respective configurations of FIG. The camera 10b can be attached to the microscope 10a via an adapter. The camera 10b includes, for example, a communication unit 11, an image pickup unit 12, a storage unit 13, and a control unit 15.
 通信部11は、USB(Universal Serial Bus)などのデジタル入出力ポートを含んで構成されている。例えば、通信部11は、性能評価装置30と通信接続して、カメラ10bで撮影された撮影画像を性能評価装置30へ送信する。なお、通信部11は、USB以外の方式で撮影画像を性能評価装置30へ送信してもよい。例えば、通信部11は、USBに代えて又は加えて、HDMI(登録商標)などの映像出力端子、無線LAN、有線LAN、Bluetooth(登録商標)などの通信規格に対応した通信デバイスを含んで構成されてもよい。 The communication unit 11 is configured to include a digital input / output port such as USB (Universal Serial Bus). For example, the communication unit 11 communicates with the performance evaluation device 30 and transmits the captured image captured by the camera 10b to the performance evaluation device 30. The communication unit 11 may transmit the captured image to the performance evaluation device 30 by a method other than USB. For example, the communication unit 11 is configured to include or in addition to USB, a video output terminal such as HDMI (registered trademark), and a communication device corresponding to a communication standard such as wireless LAN, wired LAN, and Bluetooth (registered trademark). May be done.
 撮像部12は、撮像素子と撮像素子の撮像面の前方に設けられた光学レンズなどを含んで構成されている。撮像部12は、制御部15の制御により、光学レンズを介して得られる顕微鏡10aにより拡大された光学像を撮像する。また、撮像部12は、制御部15の制御により、撮像した画像に対して画像処理を行ない撮影画像として記憶部13に保存する。ここで、撮影画像とは、例えば検査用画像である。 The image pickup unit 12 includes an image pickup element and an optical lens provided in front of the image pickup surface of the image pickup element. The image pickup unit 12 captures an optical image magnified by the microscope 10a obtained through the optical lens under the control of the control unit 15. Further, the image pickup unit 12 performs image processing on the captured image under the control of the control unit 15 and stores it in the storage unit 13 as a captured image. Here, the captured image is, for example, an inspection image.
 記憶部13は、例えば、HDD(Hard Disk Drive)やSSD(Solid State Drive)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、ROM(Read-Only Memory)、RAM(Random Access Memory)などを含み、カメラ10bが処理に用いる各種情報や画像、プログラム等を記憶する。 The storage unit 13 includes, for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), an EEPROM (Electrically Erasable Programle Memory), a ROM (Read-Only Memory), a ROM (Read-Only Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), a ROM (Read-One Memory), and a ROM (Read-One Memory). The camera 10b stores various information, images, programs, and the like used for processing.
 操作部14は、カメラ10bに対するユーザの操作を受取る。例えば、操作部14には、シャッターボタンなどの操作ボタンである。なお、操作部14は、撮影モードや撮影条件を設定するための操作を受け付ける操作ボタン、操作ダイヤル、操作スイッチなどが含まれてもよい。また、カメラ10bに対するユーザの操作の一部又は全部を、カメラ10bと通信接続された性能評価装置30が受け付けることにより、性能評価装置30がユーザの操作に応じてカメラ10bの撮影などの制御を行ってもよい。 The operation unit 14 receives the user's operation on the camera 10b. For example, the operation unit 14 is an operation button such as a shutter button. The operation unit 14 may include an operation button, an operation dial, an operation switch, and the like for receiving an operation for setting a shooting mode and shooting conditions. Further, by accepting a part or all of the user's operation on the camera 10b by the performance evaluation device 30 communicated with the camera 10b, the performance evaluation device 30 controls the shooting of the camera 10b or the like according to the user's operation. You may go.
 制御部15は、CPU(Central Processing Unit)などを含んで構成され、記憶部13に記憶された各種プログラムを実行し、カメラ10bの各部を制御する。例えば、制御部15は、操作部14に対するユーザの操作に基づいて、撮像部12へ撮像指示を行う。また、制御部15は、撮像指示により撮像部12により撮像された画像に基づく撮影画像を記憶部13に記憶させる。また、制御部15は、撮像部12により撮像された画像に基づく撮影画像を、通信部11を介して性能評価装置30へ送信する。ここで、撮影画像とは、上述したように、例えば検査用画像である。また、撮影画像は、予め設定されたルールに従って決まるファイル名や撮影日時情報(タイムスタンプ)などが関連付けられた画像ファイルとして記憶部13に記憶(保存)されるとともに、性能評価装置30へ送信される。 The control unit 15 is configured to include a CPU (Central Processing Unit) and the like, executes various programs stored in the storage unit 13, and controls each unit of the camera 10b. For example, the control unit 15 gives an image pickup instruction to the image pickup unit 12 based on the user's operation on the operation unit 14. Further, the control unit 15 stores the captured image based on the image captured by the image pickup unit 12 in the storage unit 13 according to the image pickup instruction. Further, the control unit 15 transmits a captured image based on the image captured by the image pickup unit 12 to the performance evaluation device 30 via the communication unit 11. Here, the captured image is, for example, an inspection image as described above. Further, the captured image is stored (saved) in the storage unit 13 as an image file associated with a file name and shooting date / time information (time stamp) determined according to a preset rule, and is transmitted to the performance evaluation device 30. To.
[性能評価装置30の構成]
 次に、本実施形態に係る性能評価装置30の構成について詳しく説明する。
 図6は、本実施形態に係る性能評価装置30の構成の一例を示すブロック図である。本図において、図3の各構成に対応する構成には同一の符号を付している。図示する性能評価装置30は、通信部31と、映像出力部32と、USBコネクタ33,34と、記憶部35と、制御部36とを含んで構成されている。
[Configuration of performance evaluation device 30]
Next, the configuration of the performance evaluation device 30 according to the present embodiment will be described in detail.
FIG. 6 is a block diagram showing an example of the configuration of the performance evaluation device 30 according to the present embodiment. In this figure, the same reference numerals are given to the configurations corresponding to the respective configurations of FIG. The illustrated performance evaluation device 30 includes a communication unit 31, a video output unit 32, USB connectors 33 and 34, a storage unit 35, and a control unit 36.
 通信部31は、例えば、複数のイーサネット(登録商標)ポートや、Wi-Fi(登録商標)や携帯電話回線などの無線通信ポート等を含んで構成され、制御部36による制御に基づいて、通信ネットワーク(インターネットなど)を介して、外部装置と通信(送信又は受信)を行う。 The communication unit 31 is configured to include, for example, a plurality of Ethernet (registered trademark) ports and wireless communication ports such as Wi-Fi (registered trademark) and mobile phone lines, and communicates based on the control by the control unit 36. Communicate (send or receive) with an external device via a network (Internet, etc.).
 映像出力部32は、外付けの表示装置(モニタ、プロジェクタ等)へ映像信号を出力するための外部モニタ出力端子を含んで構成されている。外部モニタ出力端子は、HDMI(登録商標)端子、DVI端子、D-SUB端子、Display Port端子などである。例えば、映像出力部32は、モニタ30aと接続して映像信号をモニタ30aへ出力する。 The video output unit 32 includes an external monitor output terminal for outputting a video signal to an external display device (monitor, projector, etc.). The external monitor output terminal is an HDMI (registered trademark) terminal, a DVI terminal, a D-SUB terminal, a DisplayPort terminal, or the like. For example, the video output unit 32 connects to the monitor 30a and outputs a video signal to the monitor 30a.
 モニタ30aは、画像やテキスト等の情報を表示するディスプレイを有する表示装置である。例えば、モニタ30aは、液晶ディスプレイパネル、有機EL(ElectroLuminescence)ディスプレイパネルなどを含んで構成される。 The monitor 30a is a display device having a display for displaying information such as images and texts. For example, the monitor 30a includes a liquid crystal display panel, an organic EL (Electroluminescence) display panel, and the like.
 USBコネクタ33,34は、USB対応の外部デバイスと接続するための接続端子である。例えば、USBコネクタ33は、キーボード30bと接続され、キーボード30bに対する操作に応じて出力信号を取得する。また、USBコネクタ34は、顕微鏡カメラ10のカメラ10bと接続され、カメラ10bから送信された検査用画像(画像ファイル)などを取得する。 The USB connectors 33 and 34 are connection terminals for connecting to an external device compatible with USB. For example, the USB connector 33 is connected to the keyboard 30b and acquires an output signal in response to an operation on the keyboard 30b. Further, the USB connector 34 is connected to the camera 10b of the microscope camera 10 and acquires an inspection image (image file) transmitted from the camera 10b.
 記憶部35は、例えば、HDDやSSD、EEPROM、ROM、RAMなどを含み、性能評価装置30が処理に用いる各種情報や画像、プログラム等を記憶する。なお、記憶部35は、性能評価装置30に内蔵されるものに限らず、USB等のデジタル入出力ポート等によって接続された外付け型の記憶装置でもよい。例えば、記憶部35は、検査用画像記憶部351と、学習モデル記憶部352と、評価データ記憶部353とを備えている。 The storage unit 35 includes, for example, an HDD, SSD, EEPROM, ROM, RAM, etc., and stores various information, images, programs, etc. used for processing by the performance evaluation device 30. The storage unit 35 is not limited to the one built in the performance evaluation device 30, and may be an external storage device connected by a digital input / output port such as USB. For example, the storage unit 35 includes an inspection image storage unit 351, a learning model storage unit 352, and an evaluation data storage unit 353.
 検査用画像記憶部351は、カメラ10bから送信された検査用画像(画像ファイル)が記憶される。例えば、検査用画像記憶部351には、カメラ10bから送信された検査用画像の画像ファイルに、サンプル番号(例えば、サンプル1、2、・・・)と撮影番号(例えば、No.1~No.10)など関連付けられて記憶される。サンプル番号及び撮影番号は、性能評価装置30においてユーザの操作に基づいて関連付けられてもよいし、所定のルールに従って性能評価装置30において自動で関連付けられてもよい。 The inspection image storage unit 351 stores an inspection image (image file) transmitted from the camera 10b. For example, in the inspection image storage unit 351, a sample number (for example, samples 1, 2, ...) And an imaging number (for example, No. 1 to No. 1) are stored in the image file of the inspection image transmitted from the camera 10b. .10) etc. are associated and stored. The sample number and the photographing number may be associated in the performance evaluation device 30 based on the user's operation, or may be automatically associated in the performance evaluation device 30 according to a predetermined rule.
 学習モデル記憶部352は、検査用画像に写っているイオン交換樹脂を評価するための学習済みモデルが記憶されている。この学習済みモデルは、前述したようにイオン交換樹脂の外観の種類(例えば、完全球、亀裂球、破砕球)ごとにそれぞれ撮影された複数のイオン交換樹脂の学習用画像に基づいて機械学習されたものである。学習済みモデルに検査用画像を入力することにより、その検査用画像に写っているイオン交換樹脂のそれぞれが完全球、亀裂球、及び破砕球のいずれかに分類する。なお、機械学習により学習済みモデルを生成する構成及び処理の詳細については後述する。 The learning model storage unit 352 stores a trained model for evaluating the ion exchange resin shown in the inspection image. This trained model is machine-learned based on multiple ion exchange resin training images taken for each type of appearance of the ion exchange resin (eg, complete sphere, cracked sphere, crushed sphere) as described above. It is a thing. By inputting an inspection image into the trained model, each of the ion exchange resins shown in the inspection image is classified into a complete sphere, a cracked sphere, or a crushed sphere. The details of the configuration and processing for generating a trained model by machine learning will be described later.
 評価データ記憶部353は、検査用画像を上記の学習済みモデルを用いて評価した評価結果が記憶される。評価結果とは、検査用画像に含まれるイオン交換樹脂に含まれる完全球、亀裂球、及び破砕球のそれぞれの個数と割合、それぞれの個数の合計数、及び算出した外観指数などである。この評価結果は、検査用画像のファイル名と関連付けられて記憶される。 The evaluation data storage unit 353 stores the evaluation result of evaluating the inspection image using the above-mentioned trained model. The evaluation results include the number and ratio of each of the complete spheres, cracked spheres, and crushed spheres contained in the ion exchange resin contained in the inspection image, the total number of each number, and the calculated appearance index. This evaluation result is stored in association with the file name of the inspection image.
 制御部36は、CPUなどを含んで構成され記憶部35に記憶された各種プログラムを実行し、性能評価装置30の各部を制御する。例えば、制御部36は、記憶部35に記憶された各種プログラムを実行することにより実現する機能構成として、検査用画像取得部361と、評価部362と、出力制御部363とを備えている。 The control unit 36 is configured to include a CPU and the like, executes various programs stored in the storage unit 35, and controls each unit of the performance evaluation device 30. For example, the control unit 36 includes an inspection image acquisition unit 361, an evaluation unit 362, and an output control unit 363 as a functional configuration realized by executing various programs stored in the storage unit 35.
 検査用画像取得部361は、カメラ10bから送信された検査用画像(画像ファイル)を通信部31を介して取得し、検査用画像記憶部351に保存する。例えば、検査用画像取得部361は、検査用画像の画像ファイルに、サンプル番号(例えば、サンプル1、2、・・・)と撮影番号(例えば、No.1~No.10)など関連付けて検査用画像記憶部351に保存する。なお、上述したように、検査用画像取得部361は、サンプル番号及び撮影番号をユーザの操作(例えば、キーボード30bに対する操作)に基づいて関連付けてもよいし、所定のルールに従って自動で関連付けてもよい。 The inspection image acquisition unit 361 acquires the inspection image (image file) transmitted from the camera 10b via the communication unit 31 and stores it in the inspection image storage unit 351. For example, the inspection image acquisition unit 361 inspects the image file of the inspection image in association with the sample number (for example, samples 1, 2, ...) And the photographing number (for example, No. 1 to No. 10). It is stored in the image storage unit 351. As described above, the inspection image acquisition unit 361 may associate the sample number and the photographing number based on the user's operation (for example, the operation on the keyboard 30b), or may automatically associate the sample number and the photographing number according to a predetermined rule. good.
 評価部362は、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用のイオン交換樹脂が撮影された検査用画像から検査用のイオン交換樹脂の性能を評価する。外観の評価結果とは、イオン交換樹脂の外観における亀裂の有無及び破砕の有無に基づいて分類される完全球、亀裂球、及び破砕球のいずれであるかを評価した結果である。例えば、上記学習済みモデルは、イオン交換樹脂の外観の種類(例えば、完全球、亀裂球、破砕球)ごとにそれぞれ撮影された複数のイオン交換樹脂の学習用画像に基づいて機械学習されたものである。 The evaluation unit 362 uses a trained model machine-learned based on a learning image of the ion exchange resin taken for learning and an evaluation result of the appearance of the ion exchange resin to obtain an ion exchange resin for inspection. The performance of the ion exchange resin for inspection is evaluated from the photographed inspection image. The appearance evaluation result is a result of evaluating whether the ion exchange resin is a complete sphere, a cracked sphere, or a crushed sphere classified based on the presence or absence of cracks and the presence or absence of crushing. For example, the trained model is machine-learned based on learning images of a plurality of ion exchange resins taken for each type of appearance of the ion exchange resin (for example, complete sphere, cracked sphere, crushed sphere). Is.
 評価部362は、検査用のイオン交換樹脂が複数撮影された検査用画像を学習済みモデルに入力することにより、当該学習済みモデルを用いて検査用のイオン交換樹脂のそれぞれがいずれの外観の種類(完全球、亀裂球、破砕球)に分類されるかを解析する。そして、評価部362は、分類された外観の種類ごとのイオン交換樹脂の数に基づいて、外観指数を算出する。具体的には、評価部362は、前述した式2を用いて、外観指数を算出する。 The evaluation unit 362 inputs an inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, and each of the ion exchange resins for inspection using the trained model has a type of appearance. Analyze whether it is classified as (complete sphere, crack sphere, crushed sphere). Then, the evaluation unit 362 calculates the appearance index based on the number of ion exchange resins for each classified type of appearance. Specifically, the evaluation unit 362 calculates the appearance index using the above-mentioned equation 2.
 出力制御部363は、イオン交換樹脂の性能を解析する際にモニタ30aに表示するGUI画面G10の表示を制御する。例えば、出力制御部363は、GUI画面G10をモニタ30aに表示するとともに、ユーザの操作に応じて選択された検査用画像、評価部362による評価結果(検査用画像を解析した解析画像、及び解析結果など)をモニタ30aに表示する。また、出力制御部363は、評価部362による評価結果(解析結果)を評価データ記憶部353に保存する。 The output control unit 363 controls the display of the GUI screen G10 displayed on the monitor 30a when analyzing the performance of the ion exchange resin. For example, the output control unit 363 displays the GUI screen G10 on the monitor 30a, an inspection image selected according to the user's operation, an evaluation result by the evaluation unit 362 (an analysis image obtained by analyzing the inspection image, and an analysis). The result, etc.) is displayed on the monitor 30a. Further, the output control unit 363 stores the evaluation result (analysis result) by the evaluation unit 362 in the evaluation data storage unit 353.
 なお、評価部362により算出された外観指数により、図7に示す評価カテゴリを用いて、イオン交換樹脂の性能(劣化具合)を判断してもよい。図7は、本実施形態に係るイオン交換樹脂の性能(劣化具合)の判断基準の一例を示す図である。図示する判断基準の例では、イオン交換樹脂の性能(劣化具合)として5つの評価カテゴリに分類される。外観指数が95~100%の場合、「破砕球ほぼ無し」と判断される「評価カテゴリ1」に分類される。外観指数が80~94%の場合、「破砕球わずかに有り」と判断される「評価カテゴリ2」に分類される。外観指数が60~79%の場合、「破砕球有り」と判断される「評価カテゴリ3」に分類される。外観指数が40~59%の場合、「破砕球多い」と判断される「評価カテゴリ4」に分類される。外観指数が40%未満の場合、「破砕球かなり多い」と判断される「評価カテゴリ5」に分類される。 Note that the performance (deterioration degree) of the ion exchange resin may be determined using the evaluation category shown in FIG. 7 based on the appearance index calculated by the evaluation unit 362. FIG. 7 is a diagram showing an example of a criterion for determining the performance (deterioration degree) of the ion exchange resin according to the present embodiment. In the example of the judgment criteria shown in the figure, the performance (deterioration degree) of the ion exchange resin is classified into five evaluation categories. When the appearance index is 95 to 100%, it is classified into "evaluation category 1" which is judged as "almost no crushed balls". When the appearance index is 80 to 94%, it is classified into "evaluation category 2" which is judged as "there is a small amount of crushed balls". When the appearance index is 60 to 79%, it is classified into "evaluation category 3" which is judged to have "crushed balls". When the appearance index is 40 to 59%, it is classified into "evaluation category 4" which is judged to have "many crushed balls". If the appearance index is less than 40%, it is classified into "evaluation category 5" which is judged to be "quite many crushed balls".
 例えば、評価カテゴリが4又は5の場合にイオン交換樹脂の交換を行うようにしてもよいし、評価カテゴリが3~5の場合にイオン交換樹脂の交換を行うようにしてもよい。いずれの評価カテゴリの場合にイオン交換樹脂の交換を行うかは、任意に定めることができる。また、図7に示すイオン交換樹脂の性能(劣化具合)の判断基準は一例であって、各評価カテゴリの外観指数の範囲は任意に定めることができる。また、評価カテゴリの数も5つに限定されるものではなく、任意の数の評価カテゴリに分類してもよい。 For example, the ion exchange resin may be exchanged when the evaluation category is 4 or 5, or the ion exchange resin may be exchanged when the evaluation category is 3 to 5. It can be arbitrarily determined in which evaluation category the ion exchange resin is exchanged. Further, the criteria for determining the performance (deterioration degree) of the ion exchange resin shown in FIG. 7 is an example, and the range of the appearance index of each evaluation category can be arbitrarily determined. Further, the number of evaluation categories is not limited to five, and may be classified into any number of evaluation categories.
[イオン交換樹脂の評価処理の動作]
 次に、性能評価装置30の制御部36が検査用画像からイオン交換樹脂の評価を行うイオン交換樹脂評価処理の動作について説明する。
 図8は、本実施形態に係るイオン交換樹脂評価処理の一例を示すフローチャートである。
[Operation of evaluation process of ion exchange resin]
Next, the operation of the ion exchange resin evaluation process in which the control unit 36 of the performance evaluation device 30 evaluates the ion exchange resin from the inspection image will be described.
FIG. 8 is a flowchart showing an example of the ion exchange resin evaluation process according to the present embodiment.
(ステップS101)オペレータは、顕微鏡カメラ10を使用して、検査用のイオン交換樹脂の画像(検査用画像)を撮影する。具体的には、オペレータは、1つのサンプルに対して、シャーレ20をずらしながらサンプルの異なる部分が撮影されるように10枚の画像を撮影する。顕微鏡カメラ10は、撮影された検査用画像を性能評価装置30へ送信する。そして、ステップS103の処理に進む。 (Step S101) The operator uses the microscope camera 10 to take an image (inspection image) of the ion exchange resin for inspection. Specifically, the operator takes 10 images for one sample so that different parts of the sample are taken while shifting the petri dish 20. The microscope camera 10 transmits the captured inspection image to the performance evaluation device 30. Then, the process proceeds to step S103.
(ステップS103)制御部36は、顕微鏡カメラ10から検査用画像(画像ファイル)を取得すると、取得した検査用画像(画像ファイル)を検査用画像記憶部351に保存する。そして、ステップS105の処理に進む。 (Step S103) When the control unit 36 acquires an inspection image (image file) from the microscope camera 10, the control unit 36 saves the acquired inspection image (image file) in the inspection image storage unit 351. Then, the process proceeds to step S105.
(ステップS105)制御部36は、学習モデル記憶部352に記憶されている学習済みモデルを用いて、検査用画像に写っているイオン交換樹脂の外観の種類を解析する。具体的には、制御部36は、GUI画面G10(図4参照)に対するオペレータの操作に応じて、検査用画像記憶部351から検査用画像を読み出し、学習モデル記憶部352に記憶されている学習済みモデルに入力する。制御部36は、学習済みモデルから出力される解析結果により、検査用のイオン交換樹脂を外観の種類(完全球、亀裂球、破砕球)ごとに分類し、外観の種類ごとの個数を出力する。そして、ステップS107の処理に進む。 (Step S105) The control unit 36 analyzes the type of appearance of the ion exchange resin shown in the inspection image by using the trained model stored in the learning model storage unit 352. Specifically, the control unit 36 reads the inspection image from the inspection image storage unit 351 in response to the operator's operation on the GUI screen G10 (see FIG. 4), and the learning is stored in the learning model storage unit 352. Enter in the finished model. The control unit 36 classifies the ion exchange resin for inspection according to the type of appearance (complete sphere, cracked sphere, crushed sphere) based on the analysis result output from the trained model, and outputs the number of each type of appearance. .. Then, the process proceeds to step S107.
(ステップS107)制御部36は、検査用のイオン交換樹脂の解析結果(外観の種類ごとの個数)に基づいて、前述した式2を用いて外観指数を算出する。そして、ステップS109の処理に進む。 (Step S107) The control unit 36 calculates the appearance index using the above-mentioned equation 2 based on the analysis result (the number of each appearance type) of the ion exchange resin for inspection. Then, the process proceeds to step S109.
(ステップS109)制御部36は、解析結果(評価結果)を出力する。例えば、制御部36は、検査用画像を解析した解析画像、及び解析結果(完全球、亀裂球、及び破砕球の個数や、算出して外観指数など)を解析結果(評価結果)としてモニタ30a(GUI画面G10(図4参照))に表示する。また、制御部36は、解析結果(評価結果)を評価データ記憶部353に保存する。 (Step S109) The control unit 36 outputs an analysis result (evaluation result). For example, the control unit 36 uses the analysis image obtained by analyzing the inspection image and the analysis result (the number of perfect spheres, cracked spheres, and crushed spheres, calculated appearance index, etc.) as the analysis result (evaluation result) of the monitor 30a. (Display on GUI screen G10 (see FIG. 4)). Further, the control unit 36 stores the analysis result (evaluation result) in the evaluation data storage unit 353.
 これにより、性能評価システム1は、検査用のイオン交換樹脂を撮影して、性能評価装置30へ入力することにより、当該イオン交換樹脂の性能を短時間で精度よく評価することができる。 As a result, the performance evaluation system 1 can accurately evaluate the performance of the ion exchange resin in a short time by photographing the ion exchange resin for inspection and inputting it to the performance evaluation device 30.
[機械学習装置の構成]
 次に、性能評価システム1でイオン交換樹脂評価処理に用いる学習済みモデルを生成する機械学習装置50の構成について説明する。
 図9は、本実施形態に係る機械学習装置50の構成の一例を示すブロック図である。機械学習装置50は、通信部510と、学習データ設定部520と、学習データ記憶部530と、学習部540と、出力部550とを備えている。なお、この機械学習装置50の構成は、性能評価装置30に含まれてもよい。
[Configuration of machine learning device]
Next, the configuration of the machine learning device 50 that generates the trained model used for the ion exchange resin evaluation process in the performance evaluation system 1 will be described.
FIG. 9 is a block diagram showing an example of the configuration of the machine learning device 50 according to the present embodiment. The machine learning device 50 includes a communication unit 510, a learning data setting unit 520, a learning data storage unit 530, a learning unit 540, and an output unit 550. The configuration of the machine learning device 50 may be included in the performance evaluation device 30.
 通信部510は、例えば、複数のイーサネット(登録商標)ポートや複数のUSB等のデジタル入出力ポート、Wi-Fi(登録商標)や携帯電話回線などの無線通信ポート等を含んで構成され、通信ネットワークを介して他の装置や端末などと通信を行う。 The communication unit 510 includes, for example, a plurality of Ethernet (registered trademark) ports, a plurality of digital input / output ports such as USB, and a wireless communication port such as Wi-Fi (registered trademark) and a mobile phone line, and communicates with the communication unit 510. Communicate with other devices and terminals via the network.
 学習データ設定部520は、学習済みモデルを生成するために必要な情報を取得する。例えば、学習データ設定部520は、過去に撮影された外観の種類ごとのイオン交換樹脂のごとの学習用画像を、カメラ10bから取得してもよいし、性能評価装置30や、他の装置、または光ディスクやメモリカードなどの記憶媒体を介して取得してもよい。学習データ設定部520は、取得した学習用画像とその学習用画像に写っているイオン交換樹脂の外観の評価結果(外観の種類)とを学習データセットとして関連付けて学習データ記憶部530に記憶させる。以下では、外観の評価結果(外観の種類)のことを「評価値」と称する。 The training data setting unit 520 acquires the information necessary for generating the trained model. For example, the learning data setting unit 520 may acquire a learning image for each ion exchange resin for each type of appearance taken in the past from the camera 10b, a performance evaluation device 30, another device, or the like. Alternatively, it may be acquired via a storage medium such as an optical disk or a memory card. The learning data setting unit 520 associates the acquired learning image with the evaluation result (type of appearance) of the appearance of the ion exchange resin reflected in the learning image as a learning data set and stores it in the learning data storage unit 530. .. Hereinafter, the evaluation result (type of appearance) of the appearance is referred to as an “evaluation value”.
 学習部540は、イオン交換樹脂の学習用画像と評価値とが関連付けられた学習データセットを用いて、機械学習を行う。具体的には、学習部540は、学習データセットを学習データ記憶部530から読み込む。学習部540は、読み込んだ学習データセットを用いて機械学習を行い、学習済みモデルを生成する。出力部550は、学習済みモデルを、通信部510を介して性能評価装置30へ送信する。これにより、性能評価装置30の学習モデル記憶部352に学習済みモデルが保存されて利用可能となる。なお、学習済みモデルは、通信部510に代えて、光ディスクやメモリカードなどの記憶媒体を介して性能評価装置30へ入力されてもよい。また、性能評価装置30に保存された学習済みモデルは、機械学習装置50でさらに新たな学習データセットが入力されて機械学習が進むにつれて随時更新されてもよい。 The learning unit 540 performs machine learning using a learning data set in which a learning image of an ion exchange resin and an evaluation value are associated with each other. Specifically, the learning unit 540 reads the learning data set from the learning data storage unit 530. The learning unit 540 performs machine learning using the read learning data set, and generates a trained model. The output unit 550 transmits the trained model to the performance evaluation device 30 via the communication unit 510. As a result, the trained model is stored and can be used in the learning model storage unit 352 of the performance evaluation device 30. The trained model may be input to the performance evaluation device 30 via a storage medium such as an optical disk or a memory card instead of the communication unit 510. Further, the trained model stored in the performance evaluation device 30 may be updated at any time as a new learning data set is input by the machine learning device 50 and machine learning progresses.
[イオン交換樹脂評価処理の詳細]
 以下、学習済みモデルを使用したイオン交換樹脂評価処理について、詳細を説明する。
 学習部540は、学習用のCNN(畳み込みニューラルネットワーク)に対して、学習用画像の画素値を入力層に入力する入力変数とし、その学習用画像の評価値を出力層から出力される出力変数として設定する。学習部540は、学習用画像と評価値の学習データセットを用いて、機械学習を行う。
 また、性能評価装置30の評価部362は、学習済みのCNNに対して、検査用のイオン交換樹脂の画像(検査用画像)の画素値を入力層へ入力し、出力層から評価値を取得する。
[Details of ion exchange resin evaluation process]
Hereinafter, the ion exchange resin evaluation process using the trained model will be described in detail.
The learning unit 540 uses the pixel value of the learning image as an input variable for inputting the pixel value of the learning image to the CNN (convolutional neural network) for learning, and the evaluation value of the learning image is an output variable output from the output layer. Set as. The learning unit 540 performs machine learning using a learning image and a learning data set of evaluation values.
Further, the evaluation unit 362 of the performance evaluation device 30 inputs the pixel value of the image of the ion exchange resin for inspection (inspection image) to the input layer for the trained CNN, and acquires the evaluation value from the output layer. do.
 (CNNについて)
 図10は、本実施形態に係る機械学習における実行手順を説明する説明図である。
 この図において、CNNは、I+1個の層L0~LIから構成される。層L0は入力層、層L1~層L(I-1)は中間層或いは隠れ層、層LIは出力層とも呼ばれる。IはCNNの構造によって定まり、例えばI=3または4などである。
(About CNN)
FIG. 10 is an explanatory diagram illustrating an execution procedure in machine learning according to the present embodiment.
In this figure, the CNN is composed of I + 1 layers L0 to LI. The layer L0 is also called an input layer, the layers L1 to L (I-1) are also called an intermediate layer or a hidden layer, and the layer LI is also called an output layer. I is determined by the structure of the CNN, for example I = 3 or 4.
 CNNは、入力層L0に、入力画像が入力される。入力画像は、入力画像の垂直方向の位置と水平方向の位置を、行列の位置とする画素行列D11で表される。画素行列D11の各要素は、行列の位置に対応する画素のサブ画素値として、R(赤)のサブ画素値、G(緑)のサブ画素値、B(青)サブ画素値が入力されている。
 1番目の中間層L1は、畳み込み処理(フィルター処理とも呼ばれる)とプーリング処理が行われる層である。
For CNN, an input image is input to the input layer L0. The input image is represented by a pixel matrix D11 whose matrix positions are the vertical position and the horizontal position of the input image. For each element of the pixel matrix D11, an R (red) sub-pixel value, a G (green) sub-pixel value, and a B (blue) sub-pixel value are input as pixel sub-pixel values corresponding to the positions of the matrix. There is.
The first intermediate layer L1 is a layer on which a convolution process (also referred to as a filter process) and a pooling process are performed.
  (畳み込み処理)
 中間層L1の畳み込み処理の一例について説明する。畳み込み処理は、元の画像にフィルタをかけて特徴マップを出力する処理である。
 具体的には、入力された画素値は、それぞれ、Rのサブ画素行列D121、Bのサブ画素行列D122、Gのサブ画素行列D123に分けられる。各サブ画素行列D121、D122、D123(各々を「サブ画素行列D12」とも称する)は、それぞれ、s行t列の部分行列ごとに、その部分行列の各要素とs行t列のコンボリューション行列CM1(カーネルとも呼ばれる)の要素が乗算されて加算されることで、第1画素値が算出される。各サブ画素行列D12で算出された第1画素値は、それぞれ、重み係数を乗算されて加算されることで、第2画素値が算出される。第2画素値は、部分行列の位置に対応する行列要素として、畳込画像行列D131の各要素に設定される。各サブ画素行列D12において部分行列の位置が要素(サブ画素)ごとにずらされることで、各位置での第2画素値が算出され、畳込画像行列D131の全ての行列要素が算出される。
(Convolution processing)
An example of the convolution process of the intermediate layer L1 will be described. The convolution process is a process of filtering the original image and outputting a feature map.
Specifically, the input pixel value is divided into a sub-pixel matrix D121 of R, a sub-pixel matrix D122 of B, and a sub-pixel matrix D123 of G, respectively. Each sub-pixel matrix D121, D122, D123 (each is also referred to as "sub-pixel matrix D12") is a convolution matrix of each element of the submatrix and s-row-t-column for each sub-matrix of s-row-t-column. The first pixel value is calculated by multiplying and adding the elements of CM1 (also called the kernel). The first pixel value calculated by each sub-pixel matrix D12 is multiplied by a weighting coefficient and added to calculate the second pixel value. The second pixel value is set in each element of the convoluted image matrix D131 as a matrix element corresponding to the position of the submatrix. By shifting the position of the submatrix for each element (sub-pixel) in each sub-pixel matrix D12, the second pixel value at each position is calculated, and all the matrix elements of the convoluted image matrix D131 are calculated.
 例えば、図10は3行3列のコンボリューション行列CM1の場合の一例であり、畳込画素値D1311は、各サブ画素行列D12の2行目から4行目、かつ、2列目から4列目までの3行3列の部分行列について第1画素値が算出される。各サブ画素行列D121、D122、D123の第1画素値に、重み係数が算出されて加算されることで、畳込画像行列D131の2行目2列目の行列要素として、第2画素値が算出される。同様に、3行目から5行目、かつ、2列目から4列目の部分行列から、畳込画像行列D131の3行目2列目の行列要素の第2画素値が算出される。
 また同様に、他の重み付け係数又は他のコンボリューション行列を用いて、畳込画像行列D132、・・・が算出される。
For example, FIG. 10 is an example of the case of the convolution matrix CM1 having 3 rows and 3 columns, and the convolution pixel value D1311 is the 2nd to 4th rows and the 2nd to 4th columns of each sub pixel matrix D12. The first pixel value is calculated for the submatrix of 3 rows and 3 columns up to the eye. By calculating and adding a weighting coefficient to the first pixel value of each sub-pixel matrix D121, D122, D123, the second pixel value is used as the matrix element of the second row and second column of the convoluted image matrix D131. It is calculated. Similarly, the second pixel value of the matrix element in the third row and the second column of the convoluted image matrix D131 is calculated from the submatrix in the third to fifth rows and the second to fourth columns.
Similarly, the convolution image matrix D132, ... Is calculated using another weighting factor or another convolution matrix.
  (プーリング処理)
 中間層L1のプーリング処理の一例について説明する。プーリング処理は、画像の特徴を残しながら画像を縮小する処理である。
 具体的には、畳込画像行列D131は、u行v列の領域PMごとに、領域内の行列要素の代表値が算出される。代表値は、例えば、最大値である。その代表値は、領域の位置に対応する行列要素として、CNN画像行列D141の各要素に設定される。畳込画像行列D131において領域が、領域PMごとにずらされることで、各位置での代表値が算出され、畳込画像行列D131の全ての行列要素が算出される。
(Pooling process)
An example of the pooling process of the intermediate layer L1 will be described. The pooling process is a process of reducing an image while retaining the characteristics of the image.
Specifically, in the convoluted image matrix D131, the representative value of the matrix element in the region is calculated for each region PM of u rows and v columns. The representative value is, for example, the maximum value. The representative value is set in each element of the CNN image matrix D141 as a matrix element corresponding to the position of the region. By shifting the region in the convolutional image matrix D131 for each region PM, the representative value at each position is calculated, and all the matrix elements of the convolutional image matrix D131 are calculated.
 例えば、図10は2行2列の領域PMの場合の一例であり、畳込画像行列D131の3行目から4行目、かつ、3列目から4列目までの2行2列の領域について、領域内の第2画素値のうち最大値が、代表値として算出される。この代表値は、CNN画像行列D141の2行目2列目の行列要素に設定される。同様に、5行目から6行目、かつ、2列目から4列目の部分行列から、CNN画像行列D141の3行目2列目の行列要素の代表値が算出される。また同様に、畳込画像行列D132、・・・から、CNN画像行列D142、・・・が算出される。 For example, FIG. 10 is an example of the case of the area PM of 2 rows and 2 columns, and is the area of 2 rows and 2 columns from the 3rd row to the 4th row and the 3rd column to the 4th column of the convolution image matrix D131. The maximum value of the second pixel values in the region is calculated as a representative value. This representative value is set in the matrix element of the second row and the second column of the CNN image matrix D141. Similarly, from the submatrix of the 5th to 6th rows and the 2nd to 4th columns, the representative value of the matrix element of the 3rd row and the 2nd column of the CNN image matrix D141 is calculated. Similarly, the CNN image matrix D142, ... Is calculated from the convolutional image matrix D132, ....
 CNN画像行列D141、D142、・・・の各行列要素(N個)は、予め定められた順序で並べられることで、ベクトルxが生成される。図10では、ベクトルxの要素xn(n=1、2、3、・・・N)は、N個のノードで表されている。 Vector x is generated by arranging each matrix element (N) of the CNN image matrix D141, D142, ... In a predetermined order. In FIG. 10, the element xn (n = 1, 2, 3, ... N) of the vector x is represented by N nodes.
 中間層Liは、第i番目の中間層(i=2~I-1)の中間層を表している。第i目の中間層のノードからは、ベクトルu(i)が関数f(u(i))に入力された値として、ベクトルz(i)が出力される。ベクトルu(i)は、第i-1目の中間層のノードから出力されるベクトルz(i-1)に、重み行列W(i)を左から乗算し、ベクトルb(i)を加算したベクトルである。関数f(u(i))は、活性化関数であり、ベクトルb(i)は、バイアスである。またベクトルu(0)は、ベクトルxである。 Intermediate layer Li represents the intermediate layer of the i-th intermediate layer (i = 2 to I-1). From the node of the third intermediate layer, the vector z (i) is output as the value of the vector u (i) input to the function f (u (i)). The vector u (i) is obtained by multiplying the vector z (i-1) output from the node of the intermediate layer of the i-1st th layer by the weight matrix W (i) from the left and adding the vector b (i). It is a vector. The function f (u (i)) is an activation function, and the vector b (i) is a bias. Further, the vector u (0) is a vector x.
 出力層L4のノードはz(I-1)であり、その出力は、M個のym(m=1、2、・・・M)である。つまり、CNNの出力層LIからは、ymを要素とするベクトルy(=(y1、y2、y3、・・・yM))が出力される。
 以上により、CNNは、入力変数として入力画像の画素値が入力された場合に、出力変数としてベクトルyを出力する。ベクトルyは、評価値を表す。
The node of the output layer L4 is z (I-1), and its output is M ym (m = 1, 2, ... M). That is, a vector y (= (y1, y2, y3, ... yM)) having ym as an element is output from the output layer LI of the CNN.
As described above, the CNN outputs the vector y as an output variable when the pixel value of the input image is input as the input variable. The vector y represents an evaluation value.
 図11は、本実施形態に係る機械学習における学習手順を説明する説明図である。
 この図は、図10のCNNが機械学習を行う場合の説明図である。
 学習データセットの画像の画素値に対して、第1番目の中間層から出力されたベクトルxをベクトルXとする。学習データセットの確定クラスを表すベクトルをベクトルYとする。
FIG. 11 is an explanatory diagram illustrating a learning procedure in machine learning according to the present embodiment.
This figure is an explanatory diagram when the CNN of FIG. 10 performs machine learning.
Let the vector x output from the first intermediate layer be the vector X with respect to the pixel value of the image of the training data set. Let the vector representing the definite class of the training data set be the vector Y.
 重み行列W(i)には、初期値が設定される。入力画像が入力層に入力され、その結果、第2番目の中間層にベクトルXが入力された場合、出力層からベクトルXに応じたベクトルy(X)が出力される。ベクトルy(X)とベクトルYの誤差Eは、損失関数を用いて計算される。第i層の勾配ΔEiは、各層からの出力ziと誤差信号δiを用いて計算される。誤差信号δiは、誤差信号δi-1を用いて計算される。なお、このように、出力層側から入力層側へ誤差信号を伝えていくことは、逆伝搬とも呼ばれる。
 重み行列W(i)は、勾配ΔEiに基づいて更新される。同様に、第1番目の中間層においても、コンボリューション行列CM又は重み係数が更新される。
Initial values are set in the weight matrix W (i). When the input image is input to the input layer and, as a result, the vector X is input to the second intermediate layer, the vector y (X) corresponding to the vector X is output from the output layer. The error E between the vector y (X) and the vector Y is calculated using the loss function. The gradient ΔEi of the i-th layer is calculated using the output zi from each layer and the error signal δi. The error signal δi is calculated using the error signal δi-1. In addition, transmitting the error signal from the output layer side to the input layer side in this way is also called back propagation.
The weight matrix W (i) is updated based on the gradient ΔEi. Similarly, in the first intermediate layer, the convolution matrix CM or the weighting coefficient is updated.
 (学習済モデルの設定)
 学習部540は、CNNについて、層数、各層のノード数、各層間のノードの結合方式、活性化関数、誤差関数、及び勾配降下アルゴリズム、プーリングの領域、カーネル、重み係数、及び、重み行列を設定する。
 学習部540は、例えば、層数として、3層(I=3)を設定する。学習部540は、各層のノードの数(「ノード数」とも称する)として、ベクトルxの要素数(ノード数N)に800、第2番目の中間層(i=2)のノード数に500、出力層(i=3)に10を設定する。ただし、本発明はこれに限らず、総数は4層以上であってもよいし、ノード数には別の値が設定されてもよい。
(Trained model settings)
The learning unit 540 determines the number of layers, the number of nodes in each layer, the connection method of the nodes in each layer, the activation function, the error function, and the gradient descent algorithm, the pooling area, the kernel, the weight coefficient, and the weight matrix for the CNN. Set.
The learning unit 540 sets, for example, three layers (I = 3) as the number of layers. The learning unit 540 sets the number of nodes in each layer (also referred to as “the number of nodes”) to 800 for the number of elements (number of nodes N) of the vector x and 500 for the number of nodes in the second intermediate layer (i = 2). Set 10 in the output layer (i = 3). However, the present invention is not limited to this, and the total number may be four or more layers, or another value may be set for the number of nodes.
 学習部540は、20個の5行5列のコンボリューション行列CMと、2行2列の領域PMを設定する。ただし、本発明はこれに限らず、別の行列数又は別の個数のコンボリューション行列CMが設定されてもよい。また、別の行列数の領域PMが設定されてもよい。
 学習部540は、より多くの畳み込み処理又はプーリング処理を行ってもよい。
The learning unit 540 sets 20 convolution matrix CMs having 5 rows and 5 columns and a region PM having 2 rows and 2 columns. However, the present invention is not limited to this, and a different number of matrices or a different number of convolution matrix CMs may be set. Further, a region PM having a different number of matrices may be set.
The learning unit 540 may perform more convolution processing or pooling processing.
 学習部540は、ニューラルネットワークの各層の結合として、全結合を設定する。ただし、本発明はこれに限らず、一部或いは全ての層の結合は、非全結合に設定であってもよい。学習部540は、活性化関数として、全ての層の活性化関数にシグモイド関数を設定する。ただし、本発明はこれに限らず、各層の活性化関数は、ステップ関数、線形結合、ソフトサイン、ソフトプラス、ランプ関数、切断冪関数、多項式、絶対値、動径基底関数、ウェーブレット、maxout等、他の活性化関数であってもよい。また、ある層の活性化関数は、他の層とは異なる種類であってもよい。 The learning unit 540 sets a full connection as a connection of each layer of the neural network. However, the present invention is not limited to this, and the bonding of some or all layers may be set to non-total bonding. The learning unit 540 sets a sigmoid function in the activation function of all layers as the activation function. However, the present invention is not limited to this, and the activation function of each layer is a step function, a linear connection, a soft sign, a soft plus, a ramp function, a truncated power function, a polymorphic value, an absolute value, a radial basis function, a wavelet, a maxout, etc. , May be another activation function. Also, the activation function of one layer may be of a different type from that of other layers.
 学習部540は、誤差関数として、二乗損失(平均二乗誤差)を設定する。ただし、本発明はこれに限らず、誤差関数は、交差エントロピー、τ-分位損失、Huber損失、ε感度損失(ε許容誤差関数)であってもよい。また、学習部540は、勾配を計算するアルゴリズム(勾配降下アルゴリズム)として、SGD(確率的勾配降下)を設定する。ただし、本発明はこれに限らず、勾配降下アルゴリズムには、Momentum(慣性項) SDG、AdaGrad、RMSprop、AdaDelta、Adam(Adaptive moment estimation)等が用いられても良い。 The learning unit 540 sets a square loss (mean square error) as an error function. However, the present invention is not limited to this, and the error function may be cross entropy, τ-division loss, Huber loss, and ε sensitivity loss (ε tolerance function). Further, the learning unit 540 sets SGD (stochastic gradient descent) as an algorithm for calculating the gradient (gradient descent algorithm). However, the present invention is not limited to this, and Momentum (inertia term) SDG, AdaGrad, RMSprop, AdaDelta, Adam (Adaptive momentation) and the like may be used for the gradient descent algorithm.
 学習部540は、畳み込みニューラルネットワーク(CNN)に限らず、パーセプトロンのニューラルネットワーク、再起型ニューラルネットワーク(RNN)、残差ネットワーク(ResNet)等の他のニューラルネットワークを設定してもよい。また、学習部540は、決定木、回帰木、ランダムフォレスト、勾配ブースティング木、線形回帰、ロジスティック回帰、又は、SVM(サポートベクターマシン)等の教師あり学習の学習済モデルを一部或いは全部に設定してもよい。 The learning unit 540 is not limited to the convolutional neural network (CNN), and may set other neural networks such as a perceptron neural network, a recurrent neural network (RNN), and a residual network (ResNet). In addition, the learning unit 540 partially or completely includes trained models of supervised learning such as decision tree, regression tree, random forest, gradient boosting tree, linear regression, logistic regression, or SVM (support vector machine). It may be set.
 (学習の変形例)
 なお、上記実施形態において、機械学習は、ニューラルネットワーク以外の教師あり学習であってもよい。例えば、学習部540は、ニューラルネットワークに限らず、決定木、回帰木、ランダムフォレスト、勾配ブースティング木、線形回帰、ロジスティック回帰、SVM(サポートベクターマシン)等によって、教師あり学習の機械学習を行ってもよい。
(Varied example of learning)
In the above embodiment, the machine learning may be supervised learning other than the neural network. For example, the learning unit 540 performs machine learning of supervised learning not only by a neural network but also by a decision tree, a regression tree, a random forest, a gradient boosting tree, a linear regression, a logistic regression, an SVM (support vector machine), or the like. You may.
 また、上記実施形態において、機械学習は、教師なし学習を用いた機械学習であってもよい。例えば、学習部540は、イオン交換樹脂の学習用画像を多数入力することにより、回帰又は分類を行うことで、教師なし学習の機械学習を行ってもよい。 Further, in the above embodiment, the machine learning may be machine learning using unsupervised learning. For example, the learning unit 540 may perform machine learning of unsupervised learning by performing regression or classification by inputting a large number of learning images of an ion exchange resin.
 また、上記実施形態において、機械学習は、強化学習を用いた機械学習であってもよい。例えば、学習部540は、強化学習として、Q値を用いた強化学習(Q学習)を行ってもよいし、Sarsa、又は、モンテカルロ法を用いた強化学習を行ってもよい。 Further, in the above embodiment, the machine learning may be machine learning using reinforcement learning. For example, the learning unit 540 may perform reinforcement learning (Q learning) using the Q value as reinforcement learning, or may perform reinforcement learning using Sarsa or the Monte Carlo method.
[AIによる評価結果の検証]
 次に、本実施形態に係るAIを用いたイオン交換樹脂評価処理による評価結果の精度について検証した結果を説明する。本検証におけるAIでは、プログラミング言語としてPythonを使用し、機械学習ライブラリとしてPytorchを用いて、機械学習装置50でディープラーニングを行った。また、画像処理ライブラリとしては、一般的なコンピュータビジョン向けのライブラリのOpenCV(Open Source Computer Vision Library)を使用した。機械学習に使用した学習用画像としては、分析員によって過去に撮影されたイオン交換樹脂の外観写真(完全球:約2000個、亀裂球:約200個、破砕球:約200個)を使用した。
[Verification of evaluation results by AI]
Next, the result of verifying the accuracy of the evaluation result by the ion exchange resin evaluation process using AI according to this embodiment will be described. In AI in this verification, Python was used as a programming language, Pytorch was used as a machine learning library, and deep learning was performed by the machine learning device 50. As the image processing library, OpenCV (Open Source Computer Vision Library), which is a library for general computer vision, was used. As the learning images used for machine learning, external photographs of ion exchange resins taken in the past by analysts (complete spheres: about 2000, cracked spheres: about 200, crushed spheres: about 200) were used. ..
 また、検証用の検査用画像としては、評価カテゴリ(図7参照)のどのカテゴリに分けるかが難しそうな個体、ごく平均的な個体、及び外観指数が異なるような個体などを分析員が意図的に選択したイオン交換樹脂のサンプルを12用意し、1つのサンプルに対してイオン交換樹脂の個数の合計(総カウント数)が300個以上になるように顕微鏡カメラ10で写真を10枚撮影した。カテゴリ分けが難しい個体とは、例えば、外観の状態がシワシワな状態の個体、亀裂が少ししかない個体で亀裂と判定するのか否か、半月球は見た目が円いが完全球であるのか等、初心者が間違えやすい個体である。 In addition, as the inspection image for verification, the analyst intends an individual whose evaluation category (see FIG. 7) is difficult to divide into, a very average individual, and an individual having a different appearance index. Twelve samples of ion exchange resins were prepared, and 10 photographs were taken with a microscope camera 10 so that the total number of ion exchange resins (total count number) was 300 or more for one sample. .. Individuals that are difficult to categorize are, for example, individuals whose appearance is wrinkled, whether or not an individual with few cracks is judged to be a crack, and whether a half-moon sphere looks round but is a complete sphere. It is an individual that is easy for beginners to make a mistake.
 性能評価装置30は、顕微鏡カメラ10で撮影した検証用の検査用画像を上記のディープラーニングを行った学習済みモデルを用いて解析を行ない、前述の式2を用いて外観指数を算出した。そして、このAIによる解析結果を分析員の目視による解析結果と比較し、AIを用いたイオン交換樹脂の評価結果の精度の検証を行った。なお、分析員の目視による解析結果は、検証用の検査用画像ではなく、顕微鏡により拡大されたイオン交換樹脂の光学像を目視で300個確認して完全球、亀裂球、及び破砕球のいずれかに分類し、前述の式1を用いて外観指数を算出したものである。 The performance evaluation device 30 analyzed the inspection image for verification taken by the microscope camera 10 using the trained model subjected to the above deep learning, and calculated the appearance index using the above equation 2. Then, the analysis result by AI was compared with the analysis result visually by the analyst, and the accuracy of the evaluation result of the ion exchange resin using AI was verified. The analysis result visually by the analyst is not an inspection image for verification, but a complete sphere, a cracked sphere, or a crushed sphere by visually confirming 300 optical images of the ion exchange resin magnified by a microscope. The appearance index was calculated using the above-mentioned formula 1.
 図12は、AIによる解析結果と分析員の目視による解析結果とを示す図である。この図では、サンプル1~12のそれぞれについて、分析員の目視による解析結果とAIによる解析結果とを横に並べて記載している。解析結果としては、イオン交換樹脂の合計(Total樹脂数)、外観指数、及び亀裂球の割合を記載している。サンプル2~6、8~10の外観指数は、分析員の目視による解析結果とAIによる解析結果とが同一の値となっている。また、サンプル1、7、11、12の外観指数は、分析員の目視による解析結果とAIによる解析結果との値に差がみられるが、図7に示す評価カテゴリで同一の評価カテゴリと判断される範囲であるため、その差は問題ないレベルと判断できる。即ち、AIを用いたイオン交換樹脂評価処理による評価結果の精度は、問題が無いといえる。 FIG. 12 is a diagram showing the analysis result by AI and the analysis result visually by the analyst. In this figure, for each of Samples 1 to 12, the analysis results by the analyst's visual inspection and the analysis results by AI are shown side by side. As the analysis result, the total number of ion exchange resins (number of total resins), the appearance index, and the ratio of cracked spheres are described. The appearance indexes of Samples 2 to 6 and 8 to 10 have the same values as the analysis results by the analyst's visual inspection and the analysis results by AI. Further, the appearance indexes of Samples 1, 7, 11 and 12 are judged to be the same evaluation category in the evaluation categories shown in FIG. 7, although there is a difference in the values between the analysis result by the analyst's visual inspection and the analysis result by AI. Since it is within the range that is satisfied, it can be judged that the difference is at a level that does not cause any problem. That is, it can be said that there is no problem in the accuracy of the evaluation result by the ion exchange resin evaluation process using AI.
 なお、サンプル7、12は、他のサンプルと比較して亀裂球が多くなっている。亀裂球は、亀裂があっても樹脂の性能および装置的に不具合(圧損の問題等)を及ぼすことがないため、外観指数の算出には含まれていない。ただし、亀裂球は破砕する全段階であり、外観指数がこれから悪化する前兆といえる。そのため、図示する解析結果では、亀裂球が3%を超える場合には警告として記載している。 In addition, samples 7 and 12 have more crack spheres than other samples. Rhagades are not included in the calculation of the appearance index because even if there are cracks, they do not cause any defects in the performance and equipment of the resin (problems of pressure loss, etc.). However, the cracked sphere is at all stages of crushing, and it can be said that it is a sign that the appearance index will deteriorate in the future. Therefore, in the illustrated analysis result, when the crack sphere exceeds 3%, it is described as a warning.
 図13は、AIによる解析結果と分析員の目視による解析結果との比較をまとめた図である。分析員の目視による解析結果の精度は、当然良好であるが、熟練者であることが条件となる。また、人間が判断するため、熟練者といっても多少のバラツキは有る。また、目視による解析では1サンプル当たりの外観指数の算出時間は、熟練者であっても13分程度かかり、初心者では25分程度かかった。一方、AIによる解析結果の精度は、AIが解析するため、誰が操作しても同様に良好であり、バラツキも無い。また、AIによる解析では1サンプル当たりの外観指数の算出時間は6分程度であり、目視による解析結果の半分の時間しかからない。なお、この6分のうち、AIによる解析時間は1分程度しかかからず、残りの時間はほぼ撮影に要する時間(10枚撮影する時間)である。 FIG. 13 is a diagram summarizing the comparison between the analysis result by AI and the analysis result visually by the analyst. The accuracy of the analysis result visually by the analyst is naturally good, but it is a condition that the analyst is an expert. In addition, since humans make judgments, there are some variations even if they are experts. Further, in the visual analysis, the calculation time of the appearance index per sample took about 13 minutes even for a skilled person and about 25 minutes for a beginner. On the other hand, the accuracy of the analysis result by AI is similarly good regardless of who operates it because it is analyzed by AI, and there is no variation. Further, in the analysis by AI, the calculation time of the appearance index per sample is about 6 minutes, which is only half the time of the visual analysis result. Of these 6 minutes, the analysis time by AI takes only about 1 minute, and the remaining time is almost the time required for shooting (time for shooting 10 images).
 以上説明してきたように、本実施形態に係る性能評価システム1において、評価部362は、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用のイオン交換樹脂が撮影された検査用画像から検査用のイオン交換樹脂の性能を評価する。 As described above, in the performance evaluation system 1 according to the present embodiment, the evaluation unit 362 is based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin. Using a machine-learned trained model, the performance of the inspection ion exchange resin is evaluated from the inspection image taken by the inspection ion exchange resin.
 これにより、性能評価システム1は、イオン交換樹脂の撮影画像からイオン交換樹脂の性能(劣化具合)を短時間で精度よく評価できる。また、性能評価システム1は、AIでイオン交換樹脂の性能を評価するため、分析の熟練者を必要とせずに、誰が操作を行ってもバラツキの無い良好な評価結果を得ることができる。 As a result, the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin from the photographed image of the ion exchange resin. Further, since the performance evaluation system 1 evaluates the performance of the ion exchange resin by AI, it is possible to obtain good evaluation results without variation regardless of who operates it without the need for an expert in analysis.
 例えば、外観の評価結果として、イオン交換樹脂の外観の種類に応じた分類が予め設定されている。そして、評価部362は、外観の種類ごとに撮影された複数のイオン交換樹脂の学習用画像に基づいて機械学習された学習済みモデルを用いて、検査用のイオン交換樹脂の性能を評価する。 For example, as an evaluation result of the appearance, the classification according to the type of the appearance of the ion exchange resin is preset. Then, the evaluation unit 362 evaluates the performance of the ion exchange resin for inspection by using the trained model machine-learned based on the learning images of the plurality of ion exchange resins taken for each type of appearance.
 これにより、性能評価システム1は、イオン交換樹脂の外観に基づいてイオン交換樹脂の性能(劣化具合)を短時間で精度よく評価できる。 Thereby, the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin based on the appearance of the ion exchange resin in a short time.
 ここで、外観の種類は、イオン交換樹脂の外観における亀裂の有無及び破砕の有無に基づいて分類(例えば、完全球、亀裂球、破砕球に分類)される。 Here, the types of appearance are classified based on the presence or absence of cracks and the presence or absence of crushing in the appearance of the ion exchange resin (for example, classified into complete spheres, cracked spheres, and crushed spheres).
 これにより、性能評価システム1は、イオン交換樹脂の外観における亀裂の有無及び破砕の有無などの外観の状態に基づいて、イオン交換樹脂の性能(劣化具合)を短時間で精度よく評価できる。 Thereby, the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin in a short time based on the appearance state such as the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin.
 具体的には、評価部362は、検査用のイオン交換樹脂が複数撮影された検査用画像を学習済みモデルに入力することにより、学習済みモデルを用いて検査用のイオン交換樹脂のそれぞれがいずれの外観の種類に分類されるかを解析する。そして、評価部362は、分類された外観の種類(例えば、完全球、亀裂球、破砕球)ごとのイオン交換樹脂の数に基づいて、検査用画像に含まれる検査用のイオン交換樹脂の外観の状態を示す外観指数を算出する。 Specifically, the evaluation unit 362 inputs an inspection image in which a plurality of ion exchange resins for inspection are taken into the trained model, so that each of the ion exchange resins for inspection using the trained model is eventually used. Analyze whether it is classified into the type of appearance of. Then, the evaluation unit 362 determines the appearance of the inspection ion exchange resin included in the inspection image based on the number of ion exchange resins for each classified type of appearance (for example, perfect sphere, cracked sphere, crushed sphere). The appearance index indicating the state of is calculated.
 これにより、性能評価システム1は、AIで分類した外観の種類(例えば、完全球、亀裂球、破砕球)ごとのイオン交換樹脂の数に基づいて外観指数を算出するため、分析員が顕微鏡を用いて目視で観察して解析したときと同様の判断基準で、イオン交換樹脂の性能(劣化具合)を判断することができる。 As a result, the performance evaluation system 1 calculates the appearance index based on the number of ion exchange resins for each type of appearance classified by AI (for example, perfect sphere, cracked sphere, crushed sphere), so that the analyst can use a microscope. The performance (deterioration degree) of the ion exchange resin can be judged based on the same judgment criteria as when visually observing and analyzing the ion exchange resin.
 また、検査用画像は、シャーレ(容器の一例)に入れられた複数の検査用のイオン交換樹脂に対して、顕微鏡カメラ10で拡大して撮影された画像である。この検査用画像が顕微鏡カメラ10で撮影される際には、撮影対象となるイオン交換樹脂同士に重なりが少ない部分が選択されて撮影される。 The inspection image is an image taken by magnifying the plurality of inspection ion exchange resins placed in a petri dish (an example of a container) with a microscope camera 10. When this inspection image is photographed by the microscope camera 10, a portion where there is little overlap between the ion exchange resins to be imaged is selected and photographed.
 これにより、性能評価システム1は、検査用のイオン交換樹脂の外観の種類を精度よく分類することができる。 As a result, the performance evaluation system 1 can accurately classify the types of appearance of the ion exchange resin for inspection.
 また、本実施形態に係る性能評価システム1において、学習部540は、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習させる。 Further, in the performance evaluation system 1 according to the present embodiment, the learning unit 540 performs machine learning based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin.
 これにより、性能評価システム1は、AIを用いてイオン交換樹脂の撮影画像からイオン交換樹脂の性能(劣化具合)を短時間で精度よく評価できる。 As a result, the performance evaluation system 1 can accurately evaluate the performance (deterioration degree) of the ion exchange resin from the photographed image of the ion exchange resin using AI.
 また、学習用画像には、学習用のイオン交換樹脂の外観を、サイズ、角度及び色調の少なくとも一つを変えて複数回撮影された複数の画像、又はイオン交換樹脂の外観を撮影した画像を、サイズ、角度及び色調の少なくとも一つを変えて生成された複数の画像が含まれる。つまり、学習用画像は、一例として、イオン交換樹脂の外観を撮影する際に、撮影するサイズ、撮影する角度(例えば、パン、チルト、またはロール方向の角度など)、及び撮影時の色調補正などの少なくとも一つを変えて複数回撮影されたものである。また、学習用画像は、他の例として、イオン交換樹脂の外観を撮影した画像を、画像に写っているイオン交換樹脂のサイズ又は角度(例えば、回転方向の角度など)の変更、画像の反転、画像の色調補正、画像の一部抜き取り(切り取り)などの少なくとも一つの画像処理を行うことにより複数枚生成されたものである。このように学習用画像としては、撮影時に撮影条件を変更して複数回撮影されたものであってもよいし、撮影画像に対して後から画像処理により条件を変更して複数枚生成されたものでもよいし、それらが混在してもよい。 Further, as the learning image, the appearance of the ion exchange resin for learning may be a plurality of images taken a plurality of times by changing at least one of the size, the angle and the color tone, or an image obtained by taking the appearance of the ion exchange resin. , Includes multiple images generated with at least one of different sizes, angles and tones. That is, for example, when the appearance of the ion exchange resin is photographed, the image for learning is the size to be photographed, the angle to be photographed (for example, the angle in the pan, tilt, or roll direction), the color tone correction at the time of photographing, and the like. It was taken multiple times with at least one of the changes. Further, as another example, the learning image is an image obtained by photographing the appearance of the ion exchange resin, and the size or angle (for example, the angle in the rotation direction) of the ion exchange resin shown in the image is changed, or the image is inverted. , A plurality of images are generated by performing at least one image processing such as color tone correction of an image and partial extraction (cutting) of an image. As described above, the learning image may be an image taken a plurality of times by changing the shooting conditions at the time of shooting, or a plurality of shot images are generated by changing the conditions later by image processing. It may be one or a mixture of them.
 これにより、性能評価システム1は、ロバスト性が上がり、検査用画像に写っている検査用のイオン交換樹脂の外観の種類を精度よく分類することができる。 As a result, the performance evaluation system 1 has improved robustness and can accurately classify the types of appearances of the ion exchange resin for inspection shown in the inspection image.
 なお、前述したように、検査用画像を撮影する際にシャーレ20に入っている検査用のイオン交換樹脂同士に重なりがあると、重なり部分がキズ(例えば、亀裂球)などと誤判断されてしまう可能性がある。例えば、イオン交換樹脂が水層に浮遊していると、浮遊しているイオン交換樹脂と沈降しているイオン交換樹脂同士が重なって撮影される場合がある。 As described above, if the inspection ion exchange resins contained in the petri dish 20 overlap each other when the inspection image is taken, the overlapped portion is erroneously determined to be a scratch (for example, a crack ball). There is a possibility that it will end up. For example, when the ion exchange resin is suspended in the aqueous layer, the floating ion exchange resin and the settled ion exchange resin may overlap each other and be photographed.
 空気、油、または疎水性固体などがイオン交換樹脂に付着していると、イオン交換樹脂が水中で浮遊したり、水の反発を受けて隣のイオン交換樹脂とくっついたりして、イオン交換樹脂同士が重なった状態になると考えられる。例えば、イオン交換樹脂の官能基に有機物が捕捉されることで、イオン交換樹脂同士の吸着又は凝集が生じ、当該樹脂同士が重なりやすくなる。特に、アニオン系イオン交換樹脂は、自然界に多く存在するカルボキシル基を有する有機物が捕捉されやすく、その影響が大きくなる。 When air, oil, or hydrophobic solid adheres to the ion exchange resin, the ion exchange resin floats in water or receives the repulsion of water and sticks to the adjacent ion exchange resin, resulting in the ion exchange resin. It is thought that they will overlap each other. For example, when an organic substance is trapped in a functional group of an ion exchange resin, adsorption or aggregation of the ion exchange resins occurs, and the resins tend to overlap each other. In particular, the anionic ion exchange resin tends to capture organic substances having a carboxyl group, which are abundant in nature, and its influence becomes large.
 界面活性剤は、空気、油、または疎水性固体などの界面に吸着することで、それらを水に可溶化させる効果ある。そこで、界面活性剤を用いることにより、浮遊しているイオン交換樹脂が水中で沈降しやすくなり、また水からの反発も低減されるため、イオン交換樹脂同士の重なりを減少させることができる。これにより、イオン交換樹脂同士に重なり部分での誤判断が減少し、イオン交換樹脂の性能評価の精度を向上させることができる。界面活性剤の中でも、イオン交換樹脂の性能評価の精度向上の観点から、アニオン系界面活性剤が好ましい。 Surfactants have the effect of solubilizing water, oil, or hydrophobic solids by adsorbing them on the interface. Therefore, by using a surfactant, the floating ion exchange resin is likely to settle in water, and the repulsion from water is also reduced, so that the overlap between the ion exchange resins can be reduced. As a result, erroneous judgment at the overlapping portion of the ion exchange resins can be reduced, and the accuracy of the performance evaluation of the ion exchange resins can be improved. Among the surfactants, anionic surfactants are preferable from the viewpoint of improving the accuracy of performance evaluation of ion exchange resins.
 以下に、界面活性剤を加えることによる効果を確認した実験結果について説明する。
 この実験では、アニオン系界面活性剤を用いて実験を行った。アニオン系界面活性剤としては、アルキルエーテル硫酸エステル塩(AES)であるポリオキシエチレン(3)ラウリルエーテル硫酸ナトリウム、及びポリオキシエチレン(2)ラウリルエーテル硫酸ナトリウムを用いて確認した。なお、アニオン系界面活性剤を含む市販の合成洗剤を用いても効果がある。
The experimental results confirming the effect of adding the surfactant will be described below.
In this experiment, an anionic surfactant was used. As the anionic surfactant, polyoxyethylene (3) sodium lauryl ether sulfate and polyoxyethylene (2) sodium lauryl ether sulfate, which are alkyl ether sulfate ester salts (AES), were used for confirmation. It is also effective to use a commercially available synthetic detergent containing an anionic surfactant.
 (実験方法)
 1.シャーレ20にイオン交換樹脂を適量入れる。
 2.顕微鏡カメラ10でシャーレ20に入っているイオン交換樹脂を撮影し、撮影された検査用画像を性能評価システム1で解析し、イオン交換樹脂の外観を評価する。
 3.イオン交換樹脂が入っている同じシャーレ20にアニオン系界面活性剤を滴下し、よく攪拌する。
 4.上記「2.」と同様に、顕微鏡カメラ10でシャーレ20に入っているイオン交換樹脂を撮影し、撮影された検査用画像を性能評価システム1で解析し、イオン交換樹脂の外観を評価する。
 5.上記「2.」と上記「4.」の評価結果を比較する。
(experimental method)
1. 1. Add an appropriate amount of ion exchange resin to the petri dish 20.
2. 2. The ion exchange resin contained in the petri dish 20 is photographed by the microscope camera 10, and the photographed inspection image is analyzed by the performance evaluation system 1 to evaluate the appearance of the ion exchange resin.
3. 3. Anionic surfactant is added dropwise to the same petri dish 20 containing the ion exchange resin, and the mixture is well stirred.
4. Similar to the above "2.", the ion exchange resin contained in the petri dish 20 is photographed by the microscope camera 10, the photographed inspection image is analyzed by the performance evaluation system 1, and the appearance of the ion exchange resin is evaluated.
5. The evaluation results of the above "2." and the above "4." are compared.
 (評価結果)
 図14~17を参照して、アニオン系界面活性剤を加える前と加えた後の外観評価結果について説明する。図14~17は、シャーレ20に入っているイオン交換樹脂を撮影し、完全球、亀裂球、及び破砕球のいずれかに分類した結果を示す解析画像であり、図4の画面領域105に表示される解析画像に対応する。
(Evaluation results)
The appearance evaluation results before and after the addition of the anionic surfactant will be described with reference to FIGS. 14 to 17. 14 to 17 are analysis images showing the results of photographing the ion exchange resin contained in the petri dish 20 and classifying them into one of a complete sphere, a cracked sphere, and a crushed sphere, and are displayed in the screen area 105 of FIG. Corresponds to the analyzed image to be performed.
 まず、上記実験方法の「2.」のアニオン系界面活性剤を加える前の外観の評価結果について説明する。アニオン系界面活性剤を加える前の外観の評価結果では、イオン交換樹脂同士に重なりがある箇所のいくつかで誤判断が発生している。 First, the evaluation result of the appearance before adding the anionic surfactant of "2." of the above experimental method will be described. In the evaluation results of the appearance before the addition of the anionic surfactant, erroneous judgments have occurred in some of the places where the ion exchange resins overlap each other.
 図14は、アニオン系界面活性剤添加前で亀裂球と誤判断されている例を示す図である。この図に示す例は、アニオン系界面活性剤添加前の検査用画像の解析結果の一例を示しており、符号R1、R2、及びR3が示す3箇所でイオン交換樹脂が亀裂球と判断されている。符号R1が示す箇所のイオン交換樹脂は亀裂球と正しく判断されているが、符号R2及びR3が示す2箇所では、イオン交換樹脂同士の重なりにより亀裂球と誤判断されている。 FIG. 14 is a diagram showing an example in which a crack ball is erroneously determined before the addition of an anionic surfactant. The example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the ion exchange resin is determined to be a crack ball at the three locations indicated by the symbols R1, R2, and R3. There is. The ion exchange resin at the location indicated by the reference numeral R1 is correctly determined to be a crack sphere, but at the two locations indicated by the reference numerals R2 and R3, it is erroneously determined to be a crack sphere due to the overlap of the ion exchange resins.
 図15は、アニオン系界面活性剤添加前で破砕球と誤判断されている例を示す図である。この図に示す例は、アニオン系界面活性剤添加前の検査用画像の解析結果の一例を示しており、符号R4、R5、及びR6が示す3箇所でイオン交換樹脂が破砕球と判断されている。符号R4が示す箇所のイオン交換樹脂は破砕球及び亀裂球と正しく判断されているが、符号R5及びR6が示す2箇所では、イオン交換樹脂同士の重なりにより破砕球と誤判断されている。 FIG. 15 is a diagram showing an example in which a crushed ball is erroneously determined before the addition of an anionic surfactant. The example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the ion exchange resin is determined to be a crushed ball at the three locations indicated by the symbols R4, R5, and R6. There is. The ion exchange resin at the location indicated by the reference numeral R4 is correctly determined to be a crushed sphere and a cracked sphere, but at the two locations indicated by the reference numerals R5 and R6, it is erroneously determined to be a crushed sphere due to the overlap of the ion exchange resins.
 図16は、アニオン系界面活性剤添加前で樹脂が重なっている部分の判断ができない例を示す図である。この図に示す例は、アニオン系界面活性剤添加前の検査用画像の解析結果の一例を示しており、符号R7が示す範囲(実線の円で示す範囲)には、複数のイオン交換樹脂に重なりが生じていることにより外観の判断自体ができていない樹脂が存在する。 FIG. 16 is a diagram showing an example in which it is not possible to determine the portion where the resins overlap before the addition of the anionic surfactant. The example shown in this figure shows an example of the analysis result of the inspection image before the addition of the anionic surfactant, and the range indicated by the reference numeral R7 (the range indicated by the solid circle) includes a plurality of ion exchange resins. There are some resins whose appearance cannot be judged due to the overlap.
 次に、上記「4.」のアニオン系界面活性剤を加えた後の外観の評価結果について説明する。
 図17は、アニオン系界面活性剤添加後の検査用画像の解析結果の一例を示す図である。この図に示す例では、アニオン系界面活性剤を加えたことにより、イオン交換樹脂同士が重なっている部分が減少したため、正確に外観を判断できている。この例では、符号R8、R9、及びR10が示す3箇所でイオン交換樹脂が亀裂球と正しく判断されている。また、亀裂や破砕の無いイオン交換樹脂が完全球と正しく判断されている。
Next, the evaluation result of the appearance after adding the anionic surfactant of the above "4." will be described.
FIG. 17 is a diagram showing an example of the analysis result of the inspection image after the addition of the anionic surfactant. In the example shown in this figure, the addition of the anionic surfactant reduces the overlapping portion of the ion exchange resins, so that the appearance can be accurately determined. In this example, the ion exchange resin is correctly determined to be a crack sphere at the three locations indicated by the reference numerals R8, R9, and R10. In addition, the ion exchange resin without cracks or crushing is correctly judged as a perfect sphere.
 これらの評価結果によれば、アニオン系界面活性剤を添加する前のイオン交換樹脂の外観の解析結果では、樹脂同士の重なり部分があるためにその部分が亀裂球もしくは破砕球と誤判断される、もしくは全く判断されない場合があった。そのため算出される亀裂球もしくは破砕球の数が多くなる、もしくは正確なイオン交換樹脂数が算出されないことがあり、外観指数が正確に算出されない場合があった。一方、アニオン系界面活性剤を添加後は樹脂同士の重なりが減少するため、完全球、亀裂球、破砕球の数が正確に算出されることから外観指数が正確に算出され、イオン交換樹脂の性能評価の精度が向上した。 According to these evaluation results, in the analysis result of the appearance of the ion exchange resin before the addition of the anionic surfactant, it is erroneously determined that the portion is a cracked sphere or a crushed sphere because there is an overlapping portion between the resins. Or, in some cases, it was not judged at all. Therefore, the number of cracked spheres or crushed spheres calculated may increase, or the number of ion exchange resins may not be calculated accurately, and the appearance index may not be calculated accurately. On the other hand, after the addition of the anionic surfactant, the overlap between the resins is reduced, so the number of perfect spheres, cracked spheres, and crushed spheres is calculated accurately, so the appearance index is calculated accurately, and the ion exchange resin The accuracy of performance evaluation has improved.
 このように、検査用画像は、顕微鏡カメラ10(拡大鏡カメラの一例)で撮影される前に、複数の検査用のイオン交換樹脂が入ったシャーレ20(容器の一例)に界面活性剤(例えば、アニオン系界面活性剤)を加えて攪拌されてから、顕微鏡カメラ10で撮影された画像とすることにより、イオン交換樹脂の性能評価の精度を向上させることができる。 As described above, before the inspection image is taken by the microscope camera 10 (an example of a magnifying mirror camera), a surfactant (for example, an example of a container) is placed in a chalet 20 (an example of a container) containing a plurality of inspection ion exchange resins. , Anionic surfactant) is added and stirred, and then the image is taken by the microscope camera 10, so that the accuracy of the performance evaluation of the ion exchange resin can be improved.
 なお、上記の実験ではアニオン系界面活性剤を使用したが、アニオン系界面活性剤以外の界面活性剤を使用してもよい。但し、イオン交換樹脂同士の重なりを減少させる効果の面でも入手が容易である点でも、アニオン系界面活性剤が好適である。 Although an anionic surfactant was used in the above experiment, a surfactant other than the anionic surfactant may be used. However, an anionic surfactant is preferable in terms of the effect of reducing the overlap between the ion exchange resins and the fact that it is easily available.
 なお、ここでは、アニオン系界面活性剤を加える例を説明したが、他の界面活性剤を用いてもよい。但し、アニオン系界面活性剤を用いるのが、イオン交換樹脂同士の重なりを減少させる点においても入手のし易さの点においても好ましい。 Although an example of adding an anionic surfactant has been described here, other surfactants may be used. However, it is preferable to use an anionic surfactant in terms of reducing the overlap between the ion exchange resins and in terms of availability.
 以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although one embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like are made without departing from the gist of the present invention. It is possible to do.
 また、上記実施形態では、サンプルの外観指数を算出する際にサンプル内の完全球の数と破砕球の数を用いて、完全球と破砕球の総数に対する完全球の数の割合を外観指数として算出したが、これに限定されるものではない。例えば、完全球と破砕球と亀裂球の総数に対する完全球の数の割合を外観指数として算出してもよい。 Further, in the above embodiment, the number of perfect spheres and the number of crushed spheres in the sample are used when calculating the appearance index of the sample, and the ratio of the number of perfect spheres to the total number of perfect spheres and crushed spheres is used as the appearance index. Calculated, but not limited to this. For example, the ratio of the number of perfect spheres to the total number of perfect spheres, crushed spheres, and cracked spheres may be calculated as an appearance index.
 なお、上記実施形態では、イオン交換樹脂の外観の状態に基づいて、完全球、亀裂球、及び破砕球の3種類の外観の種類に分類したが、3種類に限定されるものではない。外観の種類による分類は、2種類(例えば、完全球と破砕球)としてもよい。例えば、外観の種類は、イオン交換樹脂の外観における破砕の有無に基づいて分類(例えば、完全球と破砕球に分類)されてもよい。この場合、完全球と破砕球の総数に対する完全球の数の割合を外観指数として算出してもよい。また、外観の種類は、イオン交換樹脂の外観における亀裂の有無に基づいて分類(例えば、完全球と亀裂球に分類)されてもよい。この場合、完全球と亀裂球の総数に対する完全球の数の割合を外観指数として算出してもよい。すなわち、外観の種類は、イオン交換樹脂の外観における亀裂の有無及び破砕の有無の少なくとも一つに基づいて分類されてもよい。また、外観の種類による分類は、4種類以上としてもよい。例えば、ゲル型のイオン交換樹脂が劣化してきたときに、外観の状態がシワシワな状態になるものが稀にある。このシワシワな状態を外観の種類に加えて機械学習させてもよい。また、上記以外の外観の状態を示す外観の種類を加えてもよい。 In the above embodiment, the ion exchange resin is classified into three types of appearance, a complete sphere, a cracked sphere, and a crushed sphere, based on the appearance state of the ion exchange resin, but the present invention is not limited to the three types. The classification according to the type of appearance may be two types (for example, a complete sphere and a crushed sphere). For example, the types of appearance may be classified based on the presence or absence of crushing in the appearance of the ion exchange resin (for example, classified into complete spheres and crushed spheres). In this case, the ratio of the number of perfect spheres to the total number of perfect spheres and crushed spheres may be calculated as an appearance index. Further, the types of appearance may be classified based on the presence or absence of cracks in the appearance of the ion exchange resin (for example, classified into perfect spheres and cracked spheres). In this case, the ratio of the number of perfect spheres to the total number of perfect spheres and cracked spheres may be calculated as an appearance index. That is, the type of appearance may be classified based on at least one of the presence / absence of cracks and the presence / absence of crushing in the appearance of the ion exchange resin. Further, the classification according to the type of appearance may be four or more types. For example, when the gel-type ion exchange resin deteriorates, the appearance is rarely wrinkled. This wrinkled state may be machine-learned in addition to the type of appearance. Further, an appearance type indicating a state of appearance other than the above may be added.
 また、上記実施形態では、カメラ10bは、デジタルカメラのようなカメラ専用機に限られるものではく、スマートフォンなどのようにカメラ機能を一部の機能として備えている電子機器であってもよい。また、カメラ10bと性能評価装置30とは通信接続されなくてもよく、カメラ10bで撮影された画像(検査用画像など)を光ディスクやメモリカードなどの記憶媒体を介して性能評価装置30へ受け渡してもよい。 Further, in the above embodiment, the camera 10b is not limited to a dedicated camera device such as a digital camera, but may be an electronic device having a camera function as a part of the function such as a smartphone. Further, the camera 10b and the performance evaluation device 30 do not have to be connected by communication, and the image (inspection image or the like) taken by the camera 10b is delivered to the performance evaluation device 30 via a storage medium such as an optical disk or a memory card. You may.
 また、カメラ10bと性能評価装置30とは、一体となって一つの装置として構成されてもよい。さらに、顕微鏡カメラ10と性能評価装置30とは、一体となって一つの装置として構成されてもよい。 Further, the camera 10b and the performance evaluation device 30 may be integrally configured as one device. Further, the microscope camera 10 and the performance evaluation device 30 may be integrally configured as one device.
 また、上記実施形態では、シャーレに入れたイオン交換樹脂のサンプルを顕微鏡カメラ10で撮影又は観察したが、シャーレ以外の容器を用いてもよい。但し、容器は、イオン交換樹脂の重なりが生じにくいような形状(例えば、なるべく平面領域が広い形状)が望ましい。 Further, in the above embodiment, the sample of the ion exchange resin put in the petri dish is photographed or observed with the microscope camera 10, but a container other than the petri dish may be used. However, it is desirable that the container has a shape in which the ion exchange resins are unlikely to overlap (for example, a shape having a wide planar region as much as possible).
 また、上記実施形態では、イオン交換樹脂の学習用画像と外観の評価結果(評価値)とを学習データとして生成した学習済みモデルを用いて、イオン交換樹脂の評価処理を行なう例を説明したが、これに限られるものではない。例えば、イオン交換樹脂の学習用画像と外観の評価結果(評価値)とが関連付けられたデータテーブルを用いてイオン交換樹脂の評価処理が行なわれてもよいし、イオン交換樹脂の学習用画像と外観の評価結果(評価値)との関係についてのアルゴリズムを具現化したプログラムを用いてイオン交換樹脂の評価処理が行なわれてもよい。 Further, in the above embodiment, an example of performing an ion exchange resin evaluation process using a trained model generated as learning data of an ion exchange resin learning image and an appearance evaluation result (evaluation value) has been described. , Not limited to this. For example, the evaluation process of the ion exchange resin may be performed using a data table in which the learning image of the ion exchange resin and the evaluation result (evaluation value) of the appearance are associated with each other, or the image for learning the ion exchange resin may be used. The ion exchange resin may be evaluated using a program that embodies an algorithm regarding the relationship with the appearance evaluation result (evaluation value).
 なお、上述した性能評価システム1が備えるカメラ10b、性能評価装置30、または機械学習装置50は、内部にコンピュータシステムを有している。そして、上述したカメラ10b、性能評価装置30、または機械学習装置50が備える各構成の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述したカメラ10b、性能評価装置30、または機械学習装置50が備える各構成における処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。 The camera 10b, the performance evaluation device 30, or the machine learning device 50 included in the performance evaluation system 1 described above has a computer system inside. Then, a program for realizing the functions of each configuration included in the camera 10b, the performance evaluation device 30, or the machine learning device 50 described above is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded. The processing in each configuration included in the above-mentioned camera 10b, the performance evaluation device 30, or the machine learning device 50 may be performed by loading and executing it in a computer system. Here, "loading and executing a program recorded on a recording medium into a computer system" includes installing the program in the computer system. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer system" may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and a dedicated line. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. As described above, the recording medium in which the program is stored may be a non-transient recording medium such as a CD-ROM.
 また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部又は外部に設けられた記録媒体も含まれる。なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後にカメラ10b、性能評価装置30、または機械学習装置50が備える各構成で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムに既に記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 The recording medium also includes an internal or external recording medium accessible from the distribution server for distributing the program. It should be noted that the program is divided into a plurality of parts, downloaded at different timings, and then combined with each configuration of the camera 10b, the performance evaluation device 30, or the machine learning device 50, or the divided programs are distributed. The servers may be different. Furthermore, a "computer-readable recording medium" is a volatile memory (RAM) inside a computer system that serves as a server or client when a program is transmitted via a network, and holds the program for a certain period of time. It shall include things. Further, the above program may be for realizing a part of the above-mentioned functions. Further, a so-called difference file (difference program) may be used, which can realize the above-mentioned function in combination with a program already recorded in the computer system.
 また、カメラ10b、性能評価装置30、または機械学習装置50の一部又は全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。また、本実施形態のカメラ10b、性能評価装置30、または機械学習装置50内の各構成要素は個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, a part or all of the camera 10b, the performance evaluation device 30, or the machine learning device 50 may be realized as an integrated circuit such as an LSI (Large Scale Integration). Further, each component in the camera 10b, the performance evaluation device 30, or the machine learning device 50 of the present embodiment may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of making an integrated circuit is not limited to the LSI, and may be realized by a dedicated circuit or a general-purpose processor. Further, when an integrated circuit technology that replaces an LSI appears due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
<他の実施例>
 上記実施形態では、例えばイオン交換樹脂塔を備える施設から送られてきた検査用のイオン交換樹脂のサンプルをシャーレ20に入れて顕微鏡カメラ10で撮影してイオン交換樹脂の性能を行う例を説明したが、イオン交換樹脂塔内のイオン交換樹脂を拡大して撮影した撮影画像を性能評価装置30へ送信するようにしてもよい。このとき、性能評価装置30は、イオン交換樹脂塔を備える施設内にあってもよいし、イオン交換樹脂を製造し客先へ提供しているベンダーの施設内にあってもよい。本実施形態では、イオン交換樹脂塔内のイオン交換樹脂を拡大して撮影した撮影画像を性能評価装置30へ送信するシステムについて説明する。
<Other Examples>
In the above embodiment, for example, an example in which a sample of an ion exchange resin for inspection sent from a facility equipped with an ion exchange resin tower is placed in a chalet 20 and photographed with a microscope camera 10 to perform the performance of the ion exchange resin has been described. However, the photographed image taken by enlarging the ion exchange resin in the ion exchange resin tower may be transmitted to the performance evaluation device 30. At this time, the performance evaluation device 30 may be in a facility provided with an ion exchange resin tower, or may be in a facility of a vendor who manufactures the ion exchange resin and provides it to the customer. In this embodiment, a system for transmitting an image taken by enlarging the ion exchange resin in the ion exchange resin tower to the performance evaluation device 30 will be described.
 図18は、本実施形態に係る性能評価システム1Aの構成の一例を示すシステム図である。性能評価システム1Aは、性能評価装置30と、水処理設備100とを備えている。性能評価装置30の基本的な構成は、図6に示す構成と同様である。水処理設備100は、半導体、液晶、ウェハ、精密部品などの製造工程に用いられる洗浄水、発電所復水脱塩装置にて製造される脱塩水、医薬製造用水などとして種々の用途で使用される超純水を製造する設備である。水処理設備100は、イオン交換樹脂塔101と、通信部110と、撮像部120と、記憶部130と、制御部140とを備えている。 FIG. 18 is a system diagram showing an example of the configuration of the performance evaluation system 1A according to the present embodiment. The performance evaluation system 1A includes a performance evaluation device 30 and a water treatment facility 100. The basic configuration of the performance evaluation device 30 is the same as the configuration shown in FIG. The water treatment equipment 100 is used for various purposes such as washing water used in the manufacturing process of semiconductors, liquid crystals, wafers, precision parts, desalted water manufactured by a power plant condensate desalination device, water for manufacturing pharmaceuticals, and the like. This is a facility that manufactures ultrapure water. The water treatment equipment 100 includes an ion exchange resin tower 101, a communication unit 110, an image pickup unit 120, a storage unit 130, and a control unit 140.
 通信部110は、無線LAN、移動体通信などの通信規格に対応した通信デバイスを含んで構成され、通信ネットワークNWを介して、性能評価装置30や他の装置と通信(送信又は受信)を行う。撮像部120は、撮像素子と撮像素子の撮像面の前方に設けられた光学レンズなどを含んで構成されている。光学レンズには、イオン交換樹脂を拡大して撮影するための拡大鏡が用いられている。撮像部120は、イオン交換樹脂塔101内のイオン交換樹脂を検査用のサンプルとして撮影する。例えば、イオン交換樹脂塔101の底面又は側面などの一部に透明な窓が設けられており、撮像部120は、当該窓に対応する場所に存在する多数のイオン交換樹脂を検査用のサンプルとして撮影する。この時、撮像部120の画角を自動又は手動で移動させながら複数枚の撮影画像を取得してもよい。記憶部130は、例えば、HDDやSSD、EEPROM、ROM、RAMなどを含み、各種情報や画像、プログラム等を記憶する。 The communication unit 110 is configured to include communication devices compatible with communication standards such as wireless LAN and mobile communication, and communicates (transmits or receives) with the performance evaluation device 30 and other devices via the communication network NW. .. The image pickup unit 120 includes an image pickup element and an optical lens provided in front of the image pickup surface of the image pickup element. A magnifying glass for magnifying and photographing the ion exchange resin is used for the optical lens. The imaging unit 120 photographs the ion exchange resin in the ion exchange resin tower 101 as a sample for inspection. For example, a transparent window is provided on a part of the bottom surface or the side surface of the ion exchange resin tower 101, and the image pickup unit 120 uses a large number of ion exchange resins existing in a place corresponding to the window as a sample for inspection. Take a picture. At this time, a plurality of captured images may be acquired while the angle of view of the imaging unit 120 is automatically or manually moved. The storage unit 130 includes, for example, an HDD, SSD, EEPROM, ROM, RAM, etc., and stores various information, images, programs, and the like.
 制御部140は、撮像部120により撮影されたイオン交換樹脂塔101内の検査用のイオン交換樹脂の撮影画像(検査用画像)を、通信部110を介して性能評価装置30へ送信する。性能評価装置30の通信部31は、水処理設備100から送信された検査用のイオン交換樹脂の撮影画像(検査用画像)を受信する。性能評価装置30の評価部362は、受信した検査用画像から前記検査用のイオン交換樹脂の性能を評価する。具体的には、前述したように、学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用画像から検査用のイオン交換樹脂の性能を評価する。 The control unit 140 transmits a photographed image (inspection image) of the ion exchange resin for inspection in the ion exchange resin tower 101 photographed by the image pickup unit 120 to the performance evaluation device 30 via the communication unit 110. The communication unit 31 of the performance evaluation device 30 receives a photographed image (inspection image) of the ion exchange resin for inspection transmitted from the water treatment equipment 100. The evaluation unit 362 of the performance evaluation device 30 evaluates the performance of the ion exchange resin for inspection from the received inspection image. Specifically, as described above, for inspection using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin. Evaluate the performance of the ion exchange resin for inspection from the image.
 また、性能評価装置30は、評価部362が評価した検査用画像の評価結果や解析結果を示す情報を水処理設備100へ送信してもよい。これにより、制御部140は、性能評価装置30の評価部362が評価した検査用画像の評価結果や解析結果を示す情報を性能評価装置30から取得する。例えば、制御部140は、性能評価装置30から取得した評価結果や解析結果に基づく情報(例えば、外観指数の値、評価カテゴリ、交換の必要性などの情報)を、水処理設備100内の表示部(不図示)に表示してもよいし、水処理設備100の設備管理者などが使用する端末に送信してもよい。 Further, the performance evaluation device 30 may transmit information indicating the evaluation result and the analysis result of the inspection image evaluated by the evaluation unit 362 to the water treatment equipment 100. As a result, the control unit 140 acquires information indicating the evaluation result and the analysis result of the inspection image evaluated by the evaluation unit 362 of the performance evaluation device 30 from the performance evaluation device 30. For example, the control unit 140 displays information based on the evaluation results and analysis results acquired from the performance evaluation device 30 (for example, information such as the value of the appearance index, the evaluation category, and the necessity of replacement) in the water treatment equipment 100. It may be displayed in a unit (not shown), or may be transmitted to a terminal used by the equipment manager of the water treatment equipment 100 or the like.
 また、制御部140は、性能評価装置30から取得した検査用画像の評価結果に基づいてイオン交換樹脂の交換が必要な場合、交換用のイオン交換樹脂の注文を、イオン交換樹脂の提供元のベンダーに対して行ってもよい。例えば、制御部140は、交換用のイオン交換樹脂の種類、量、配送先などの注文情報を生成し、通信部110を介してベンダーのサービス部門へ送信してもよい。このとき、制御部140は、発注部門の承認がされたことを確認した上で注文情報を送信してもよい。 Further, when the ion exchange resin needs to be replaced based on the evaluation result of the inspection image acquired from the performance evaluation device 30, the control unit 140 orders the replacement ion exchange resin from the provider of the ion exchange resin. You may go to the vendor. For example, the control unit 140 may generate order information such as the type, quantity, and delivery destination of the replacement ion exchange resin, and transmit it to the service department of the vendor via the communication unit 110. At this time, the control unit 140 may transmit the order information after confirming that the ordering department has been approved.
 このように、性能評価システム1Aは、水処理設備100のイオン交換樹脂塔101で撮影された検査用画像に基づいてイオン交換樹脂塔101内のイオン交換樹脂の性能(劣化具合)を判断できるため、検査用のサンプルを送る必要がなく時間も短縮できるため、利便性がよい。 As described above, the performance evaluation system 1A can determine the performance (deterioration degree) of the ion exchange resin in the ion exchange resin tower 101 based on the inspection image taken by the ion exchange resin tower 101 of the water treatment facility 100. It is convenient because it is not necessary to send a sample for inspection and the time can be shortened.
 なお、機械学習装置50は、水処理設備100で撮影された検査用画像と性能評価装置30が当該検査用画像を評価した評価結果を取得し、取得した検査用画像を学習用画像として、当該学習用画像と評価結果に基づいて評価部362が評価に用いる学習済みモデルに対してさらに機械学習させてもよい。 The machine learning device 50 acquires an inspection image taken by the water treatment facility 100 and an evaluation result in which the performance evaluation device 30 evaluates the inspection image, and the acquired inspection image is used as a learning image. The trained model used by the evaluation unit 362 for evaluation based on the training image and the evaluation result may be further machine-learned.
 これにより、イオン交換樹脂塔101で使用しているイオン交換樹脂を継続的に評価して、評価結果及びを随時更新することができるため、より精度よくイオン交換樹脂の評価を行うことができるようになる。 As a result, the ion exchange resin used in the ion exchange resin tower 101 can be continuously evaluated and the evaluation results and the evaluation results can be updated at any time, so that the ion exchange resin can be evaluated more accurately. become.
 1、1A 性能評価システム、10 顕微鏡カメラ、10a 顕微鏡、10b カメラ、11 通信部、12 撮像部、13 記憶部、14 操作部、15 制御部、20 シャーレ、30 性能評価装置、30a モニタ、30b キーボード、31 通信部、32 映像出力部、33,34 USBコネクタ、35 記憶部、36 制御部、351 検査用画像記憶部、352 学習モデル記憶部、353 評価データ記憶部、361 検査用画像取得部、362 評価部、363 出力制御部、100 水処理設備、101 イオン交換樹脂塔、110 通信部、120 撮像部、130 記憶部、140 制御部 1, 1A performance evaluation system, 10 microscope camera, 10a microscope, 10b camera, 11 communication unit, 12 imaging unit, 13 storage unit, 14 operation unit, 15 control unit, 20 chalet, 30 performance evaluation device, 30a monitor, 30b keyboard , 31 communication unit, 32 video output unit, 33, 34 USB connector, 35 storage unit, 36 control unit, 351 inspection image storage unit, 352 learning model storage unit, 353 evaluation data storage unit, 361 inspection image acquisition unit, 362 evaluation unit, 363 output control unit, 100 water treatment equipment, 101 ion exchange resin tower, 110 communication unit, 120 imaging unit, 130 storage unit, 140 control unit

Claims (14)

  1.  学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、検査用のイオン交換樹脂が撮影された検査用画像から前記検査用のイオン交換樹脂の性能を評価する評価部、
     を備える性能評価システム。
    For inspection, the ion exchange resin for inspection was photographed using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin. Evaluation unit that evaluates the performance of the ion exchange resin for inspection from the image,
    Performance evaluation system equipped with.
  2.  前記外観の評価結果として、イオン交換樹脂の外観の種類に応じた分類が予め設定されており、
     前記評価部は、
     前記外観の種類ごとに撮影された複数のイオン交換樹脂の前記学習用画像に基づいて機械学習された学習済みモデルを用いて、前記検査用のイオン交換樹脂の性能を評価する、
     請求項1に記載の性能評価システム。
    As the evaluation result of the appearance, the classification according to the type of appearance of the ion exchange resin is preset.
    The evaluation unit
    The performance of the ion exchange resin for inspection is evaluated using a trained model machine-learned based on the learning images of a plurality of ion exchange resins taken for each type of appearance.
    The performance evaluation system according to claim 1.
  3.  前記外観の種類は、イオン交換樹脂の外観における亀裂の有無及び破砕の有無の少なくとも一つに基づいて分類され、
     前記評価部は、
     前記検査用のイオン交換樹脂の性能を評価として、イオン交換樹脂の外観の状態を示す外観指数を算出する、
     請求項2に記載の性能評価システム。
    The types of appearance are classified based on at least one of the presence or absence of cracks and the presence or absence of crushing in the appearance of the ion exchange resin.
    The evaluation unit
    Using the performance of the ion exchange resin for inspection as an evaluation, an appearance index indicating the appearance state of the ion exchange resin is calculated.
    The performance evaluation system according to claim 2.
  4.  前記評価部は、
     前記検査用のイオン交換樹脂が複数撮影された前記検査用画像を前記学習済みモデルに入力することにより、前記学習済みモデルを用いて前記検査用のイオン交換樹脂のそれぞれがいずれの前記外観の種類に分類されるかを解析し、分類された前記外観の種類ごとのイオン交換樹脂の数に基づいて、前記検査用画像に含まれる前記検査用のイオン交換樹脂の外観の状態を示す外観指数を算出する、
     請求項3に記載の性能評価システム。
    The evaluation unit
    By inputting the inspection image in which a plurality of the ion exchange resins for inspection are taken into the trained model, each of the ion exchange resins for inspection using the trained model has any of the appearance types. Based on the number of ion exchange resins classified for each type of appearance, an appearance index indicating the appearance state of the inspection ion exchange resin contained in the inspection image is obtained. calculate,
    The performance evaluation system according to claim 3.
  5.  前記検査用画像は、容器に入れられた複数の前記検査用のイオン交換樹脂に対して、拡大鏡カメラで拡大して撮影された画像であり、前記拡大鏡カメラで撮影される際に、撮影対象となるイオン交換樹脂同士に重なりが少ない部分が選択されて撮影された画像である、
     請求項1から請求項4のいずれか一項に記載の性能評価システム。
    The inspection image is an image taken by magnifying a plurality of ion exchange resins for inspection contained in a container with a magnifying glass camera, and is taken when the image is taken with the magnifying glass camera. This is an image taken by selecting a part where there is little overlap between the target ion exchange resins.
    The performance evaluation system according to any one of claims 1 to 4.
  6.  前記検査用画像は、拡大鏡カメラで撮影される前に、複数の前記検査用のイオン交換樹脂が入った容器に界面活性剤を加えて攪拌されてから、前記拡大鏡カメラで撮影された画像である、
     請求項1から請求項5のいずれか一項に記載の性能評価システム。
    The inspection image is an image taken by the magnifying camera after adding a surfactant to a container containing a plurality of the ion exchange resins for inspection and stirring the image before being taken by the magnifying camera. Is,
    The performance evaluation system according to any one of claims 1 to 5.
  7.  前記学習用に撮影されたイオン交換樹脂の前記学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習させる学習部、
     を備える請求項1から請求項6のいずれか一項に記載の性能評価システム。
    A learning unit that performs machine learning based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin.
    The performance evaluation system according to any one of claims 1 to 6.
  8.  前記学習用画像には、前記学習用のイオン交換樹脂の外観を、サイズ、角度及び色調の少なくとも一つを変えて複数回撮影された画像、又はイオン交換樹脂の外観を撮影した画像を、サイズ、角度及び色調の少なくとも一つを変えて生成された複数の画像が含まれる、
     請求項1から請求項7のいずれか一項に記載の性能評価システム。
    The size of the learning image is an image of the appearance of the learning ion exchange resin taken a plurality of times by changing at least one of the size, angle and color tone, or an image of the appearance of the ion exchange resin. Includes multiple images generated with at least one of different angles and tones.
    The performance evaluation system according to any one of claims 1 to 7.
  9.  イオン交換樹脂の性能評価方法であって、
     検査用のイオン交換樹脂が撮影された検査用画像を取得するステップと、
     学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するステップと、
     を有する性能評価方法。
    It is a performance evaluation method for ion exchange resins.
    The step of acquiring an inspection image in which the ion exchange resin for inspection was taken, and
    Using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin, the ion exchange resin for inspection is used from the inspection image. Steps to evaluate the performance of
    Performance evaluation method with.
  10.  コンピュータに、
     検査用のイオン交換樹脂が撮影された検査用画像を取得するステップと、
     学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するステップと、
     を実行させるためのプログラム。
    On the computer
    The step of acquiring an inspection image in which the ion exchange resin for inspection was taken, and
    Using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin, the ion exchange resin for inspection is used from the inspection image. Steps to evaluate the performance of
    A program to execute.
  11.  検査用のイオン交換樹脂が撮影された検査用画像から前記検査用のイオン交換樹脂の性能を評価するための学習済みモデルであって、
     学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習され、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価するよう、
     コンピュータを機能させるための学習済みモデル。
    It is a trained model for evaluating the performance of the ion exchange resin for inspection from the inspection image taken by the ion exchange resin for inspection.
    Machine learning is performed based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin, and the performance of the ion exchange resin for inspection is evaluated from the inspection image.
    A trained model for making your computer work.
  12.  水処理設備と性能評価装置とを備えた性能評価システムであって、
     前記水処理設備は、
     イオン交換樹脂塔と、
     前記イオン交換樹脂塔内のイオン交換樹脂を撮影する撮像部と、
     前記撮像部により撮影された画像を検査用画像として送信する送信部と、
     を備え、
     前記性能評価装置は、
     前記検査用画像を受信する受信部と、
     学習用に撮影されたイオン交換樹脂の学習用画像と当該イオン交換樹脂の外観の評価結果とに基づいて機械学習された学習済みモデルを用いて、前記検査用画像から前記検査用のイオン交換樹脂の性能を評価する評価部と、
     を備える性能評価システム。
    It is a performance evaluation system equipped with water treatment equipment and performance evaluation equipment.
    The water treatment facility
    Ion exchange resin tower and
    An image pickup unit that photographs the ion exchange resin in the ion exchange resin tower,
    A transmission unit that transmits an image captured by the image pickup unit as an inspection image, and a transmission unit.
    Equipped with
    The performance evaluation device is
    A receiving unit that receives the inspection image and
    Using a trained model machine-learned based on the learning image of the ion exchange resin taken for learning and the evaluation result of the appearance of the ion exchange resin, the ion exchange resin for inspection is used from the inspection image. Evaluation department that evaluates the performance of
    Performance evaluation system equipped with.
  13.  前記性能評価装置は、
     前記評価部による評価結果に基づく情報を前記水処理設備へ送信する、
     請求項12に記載の性能評価システム。
    The performance evaluation device is
    Information based on the evaluation result by the evaluation unit is transmitted to the water treatment facility.
    The performance evaluation system according to claim 12.
  14.  前記水処理設備は、
     前記性能評価装置から取得した情報に基づいて、イオン交換樹脂の交換が必要な場合、交換用のイオン交換樹脂の注文情報を生成する、
     請求項13に記載の性能評価システム。
    The water treatment facility
    When it is necessary to replace the ion exchange resin based on the information acquired from the performance evaluation device, the order information of the replacement ion exchange resin is generated.
    The performance evaluation system according to claim 13.
PCT/JP2021/037909 2020-10-13 2021-10-13 Performance evaluation system, performance evaluation method, program, and learned model WO2022080416A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022557047A JPWO2022080416A1 (en) 2020-10-13 2021-10-13
KR1020237008053A KR20230086659A (en) 2020-10-13 2021-10-13 Performance evaluation system, performance evaluation method, program and learning completion model

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-172521 2020-10-13
JP2020172521 2020-10-13
JP2021159660 2021-09-29
JP2021-159660 2021-09-29

Publications (1)

Publication Number Publication Date
WO2022080416A1 true WO2022080416A1 (en) 2022-04-21

Family

ID=81209159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037909 WO2022080416A1 (en) 2020-10-13 2021-10-13 Performance evaluation system, performance evaluation method, program, and learned model

Country Status (3)

Country Link
JP (1) JPWO2022080416A1 (en)
KR (1) KR20230086659A (en)
WO (1) WO2022080416A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576959B2 (en) 2020-11-02 2024-11-01 オルガノ株式会社 Information processing device, information processing system, information processing method, and program

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775151A (en) * 1980-10-30 1982-05-11 Hitachi Ltd Separation of component stuck on ion exchange resin
JPH0366023B2 (en) * 1983-07-20 1991-10-15
JP2937431B2 (en) * 1990-07-26 1999-08-23 オルガノ株式会社 Method and apparatus for detecting interface of ion exchange resin layer
JP2000288411A (en) * 1999-04-06 2000-10-17 Japan Organo Co Ltd Detection of boundary of ion exchange resin layer
JP2001031712A (en) * 1999-07-23 2001-02-06 Mitsubishi Chemicals Corp Production of ion exchanger
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
WO2020066209A1 (en) * 2018-09-27 2020-04-02 株式会社堀場製作所 Method for generating data for particle analysis, program for generating data for particle analysis, and device for generating data for particle analysis
WO2020111048A1 (en) * 2018-11-26 2020-06-04 大日本印刷株式会社 Computer program, learning model generation device, display device, particle discrimination device, learning model generation method, display method, and particle discrimination method
JP2020139945A (en) * 2019-02-27 2020-09-03 エフ イー アイ カンパニFei Company Use of convolution neural network for reconstituting on-the-fly single particle

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775151A (en) * 1980-10-30 1982-05-11 Hitachi Ltd Separation of component stuck on ion exchange resin
JPH0366023B2 (en) * 1983-07-20 1991-10-15
JP2937431B2 (en) * 1990-07-26 1999-08-23 オルガノ株式会社 Method and apparatus for detecting interface of ion exchange resin layer
JP2000288411A (en) * 1999-04-06 2000-10-17 Japan Organo Co Ltd Detection of boundary of ion exchange resin layer
JP2001031712A (en) * 1999-07-23 2001-02-06 Mitsubishi Chemicals Corp Production of ion exchanger
JP2014104413A (en) * 2012-11-27 2014-06-09 Mitsubishi Chemicals Corp Ultrapure water producing method and ultrapure water producing apparatus
WO2020066209A1 (en) * 2018-09-27 2020-04-02 株式会社堀場製作所 Method for generating data for particle analysis, program for generating data for particle analysis, and device for generating data for particle analysis
WO2020111048A1 (en) * 2018-11-26 2020-06-04 大日本印刷株式会社 Computer program, learning model generation device, display device, particle discrimination device, learning model generation method, display method, and particle discrimination method
JP2020139945A (en) * 2019-02-27 2020-09-03 エフ イー アイ カンパニFei Company Use of convolution neural network for reconstituting on-the-fly single particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7576959B2 (en) 2020-11-02 2024-11-01 オルガノ株式会社 Information processing device, information processing system, information processing method, and program

Also Published As

Publication number Publication date
KR20230086659A (en) 2023-06-15
JPWO2022080416A1 (en) 2022-04-21

Similar Documents

Publication Publication Date Title
CN106127714B (en) A kind of measurement method of virtual reality head-mounted display equipment distortion parameter
JP7059883B2 (en) Learning device, image generator, learning method, and learning program
JP2023065352A (en) Image analysis method, image analysis device, program, method for manufacturing learned deep learning algorithm, and learned deep learning algorithm
JP7054436B2 (en) Detection system, information processing device, evaluation method and program
WO2016194210A1 (en) Defect image classification device and defect image classification method
CN112489037B (en) Defect detection and related model training method, electronic equipment and storage device
WO2010146802A1 (en) State determination method for cell cluster, image processing program and imaging processing device using said method, and method for producing cell cluster
CN111753707B (en) Method and system for detecting imperfect grains of granular crops
CN111768398A (en) Defect detection method and device for photovoltaic module, storage medium and computing equipment
CN110402443A (en) Optical sensor, facility for study and image processing system
CN115656189B (en) Defect detection method and device based on luminosity stereo and deep learning algorithm
CN107333123A (en) Detecting system of focusing and focusing detection method
CN113439227A (en) Capturing and storing magnified images
CN116978834B (en) Intelligent monitoring and early warning system for wafer production
CN113177939A (en) Lamp panel detection method and device, electronic equipment and storage medium
CN115239672A (en) Defect detection method and device, equipment and storage medium
CN116092019A (en) Ship periphery abnormal object monitoring system, storage medium thereof and electronic equipment
WO2022080416A1 (en) Performance evaluation system, performance evaluation method, program, and learned model
CN104184936B (en) Image focusing processing method and system based on light field camera
Yang et al. Doing more with Moiré pattern detection in digital photos
CN114612418A (en) Method, device and system for detecting surface defects of mouse shell and electronic equipment
CN112733845A (en) Interest area problem identification method, interest area inspection method and device
CN111968039B (en) Day and night general image processing method, device and equipment based on silicon sensor camera
TW202226828A (en) Computation apparatus and method of detecting defects for near-eye display
US20200074628A1 (en) Image processing apparatus, imaging system, image processing method and computer readable recoding medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022557047

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880153

Country of ref document: EP

Kind code of ref document: A1