WO2022071179A1 - Medical device and shunt forming method - Google Patents
Medical device and shunt forming method Download PDFInfo
- Publication number
- WO2022071179A1 WO2022071179A1 PCT/JP2021/035257 JP2021035257W WO2022071179A1 WO 2022071179 A1 WO2022071179 A1 WO 2022071179A1 JP 2021035257 W JP2021035257 W JP 2021035257W WO 2022071179 A1 WO2022071179 A1 WO 2022071179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- end side
- proximal end
- expansion body
- current
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 20
- 210000003157 atrial septum Anatomy 0.000 claims description 12
- 210000004971 interatrial septum Anatomy 0.000 claims description 4
- 238000012986 modification Methods 0.000 description 15
- 230000004048 modification Effects 0.000 description 15
- 230000001746 atrial effect Effects 0.000 description 10
- 208000007536 Thrombosis Diseases 0.000 description 9
- 238000011282 treatment Methods 0.000 description 8
- 239000008280 blood Substances 0.000 description 7
- 210000004369 blood Anatomy 0.000 description 7
- -1 for example Substances 0.000 description 7
- 230000000004 hemodynamic effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 210000005245 right atrium Anatomy 0.000 description 6
- 206010019280 Heart failures Diseases 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 210000005246 left atrium Anatomy 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 206010007558 Cardiac failure chronic Diseases 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 230000036772 blood pressure Effects 0.000 description 3
- 238000012790 confirmation Methods 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 239000000806 elastomer Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 208000019622 heart disease Diseases 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 238000011418 maintenance treatment Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 210000004165 myocardium Anatomy 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000001631 vena cava inferior Anatomy 0.000 description 2
- 229910001040 Beta-titanium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 206010052337 Diastolic dysfunction Diseases 0.000 description 1
- 229920012753 Ethylene Ionomers Polymers 0.000 description 1
- 206010024119 Left ventricular failure Diseases 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 206010037423 Pulmonary oedema Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910004337 Ti-Ni Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910011209 Ti—Ni Inorganic materials 0.000 description 1
- 229910010977 Ti—Pd Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- JUPQTSLXMOCDHR-UHFFFAOYSA-N benzene-1,4-diol;bis(4-fluorophenyl)methanone Chemical compound OC1=CC=C(O)C=C1.C1=CC(F)=CC=C1C(=O)C1=CC=C(F)C=C1 JUPQTSLXMOCDHR-UHFFFAOYSA-N 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000003205 diastolic effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 210000002837 heart atrium Anatomy 0.000 description 1
- 230000004217 heart function Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- KHYBPSFKEHXSLX-UHFFFAOYSA-N iminotitanium Chemical compound [Ti]=N KHYBPSFKEHXSLX-UHFFFAOYSA-N 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 210000005240 left ventricle Anatomy 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920003225 polyurethane elastomer Polymers 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 208000005333 pulmonary edema Diseases 0.000 description 1
- 208000002815 pulmonary hypertension Diseases 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
Definitions
- the present invention relates to a medical device and a shunt forming method for imparting energy to a living tissue.
- Chronic heart failure is known as one of the heart diseases. Chronic heart failure is roughly classified into systolic failure and diastolic failure based on the index of cardiac function. In patients suffering from diastolic dysfunction, the myocardium becomes hypertrophied and stiffness increases, resulting in an increase in blood pressure in the left atrium and a decrease in the pumping function of the heart. As a result, the patient presents with heart failure symptoms such as pulmonary edema. In addition, there is also a heart disease in which the blood pressure on the right atrium side increases due to pulmonary hypertension or the like, and the pump function of the heart decreases, resulting in heart failure symptoms.
- Shunt treatment that forms a shunt (puncture hole) in the atrial septum, which is an escape route for increased atrial pressure, and enables alleviation of heart failure symptoms has been attracting attention for these patients with heart failure.
- Shunt treatment uses a transvenous approach to access the atrial septum and form a puncture hole of the desired size.
- a medical device for performing shunt treatment for such an atrial septum for example, there is one listed in Patent Document 1.
- a plurality of electrodes are fixed in the recesses of the extended body.
- the positions of the electrodes in the recess are the same in the axial direction of the expansion body.
- the electrode portion may not sufficiently contact the tissue to be treated. If the electrode portion is not sufficiently in contact with the tissue to be treated, sufficient energy cannot be applied to the living tissue, which may reduce the therapeutic effect. Further, if energy is applied while the electrode portion is exposed to blood, there is a risk that a thrombus is formed.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a medical device and a shunt forming method capable of suppressing the formation of thrombus and effectively cauterizing. do.
- the medical device that achieves the above object includes an expansion body that can be expanded and contracted in the radial direction, a long shaft portion having a tip portion including a proximal end fixing portion in which the proximal end of the extended body is fixed, and a long shaft portion.
- an expansion body that can be expanded and contracted in the radial direction
- a long shaft portion having a tip portion including a proximal end fixing portion in which the proximal end of the extended body is fixed
- a long shaft portion along with the expansion body, a plurality of electrode groups provided at intervals in the circumferential direction of the expansion body and a current supply unit for supplying a current to the plurality of electrode groups are provided, and the expansion body has a diameter.
- the shunt forming method according to the present invention that achieves the above object is a tip including an expansion body that can be expanded and contracted in the radial direction including a recess recessed inward in the radial direction, and a base end fixing portion in which the base end of the expansion body is fixed.
- a long shaft portion having a portion, a plurality of electrode groups provided along the expansion body at intervals in the circumferential direction of the expansion body, and a current supply unit for supplying current to the plurality of electrode groups.
- the current is applied to an electrode in which at least one of the proximal end electrode or the distal electrode is brought into contact with the biological tissue of the atrioventricular septum and is in contact with the biological tissue of the atrioventricular septum.
- a current is supplied from the supply unit to cauterize the biological tissue, and no current is supplied to the electrodes that are not in contact with the biological tissue during the cauterization.
- the medical device configured as described above does not supply current to the electrodes that are not in contact with the living tissue of each electrode group, but supplies current only to the electrodes that are in contact with the living tissue, so that a thrombus is formed. This can be suppressed and effectively cauterized.
- At least one of the base end side electrode or the tip end side electrode may have at least two single electrodes configured to supply current independently of the current supply unit.
- the medical device may have a determination unit for determining whether or not the electrode is in contact with the contact target. As a result, the electrode to which the current is supplied and the electrode to which the current is not supplied can be automatically determined, so that the operability is improved.
- the determination unit may determine whether or not the electrode is in contact with the contact target based on the impedance detected by the electrode. As a result, it can be easily determined whether or not the electrode is in contact with the contact target, so that the operability is improved.
- the expansion body has a plurality of wire rod portions defining the recesses so that the recesses have a plurality of recesses arranged at least three at equal intervals in the circumferential direction of the expansion body.
- Each of the recesses has the bottom portion, the proximal end side upright portion, and the distal end side upright portion, and the plurality of electrode groups may be arranged one by one in each of the plurality of recesses.
- the recesses are arranged at equal intervals in the circumferential direction of the dilated body, so that when the tissue around the puncture hole formed in the living body is cauterized, the shape can be made close to a regular polygon. Can form a shunt of the desired size.
- the current is not supplied to the electrodes that are not in contact with the living tissue of each electrode group, but the current is supplied only by the electrodes that are in contact with the living tissue, so that a thrombus is formed. It can be suppressed and effectively cauterized.
- the medical device is a front view which showed the whole structure of the medical device which concerns on embodiment. It is an enlarged perspective view near the extended body. It is an enlarged front view near the extended body.
- the medical device is a front view and the living tissue is a cross-sectional view, respectively, schematically showing the state in which the dilated body is arranged in the interatrial septum. It is a figure showing the extended body housed in the storage sheath.
- the medical device is a front view and the biological tissue is a cross-sectional view showing the state in which the dilated body is arranged in the right atrium. It is explanatory drawing which shows the state which expanded the diameter of the dilated body in the interatrial septum from the state of FIG.
- the medical device is a front view and the living tissue is a cross-sectional view, respectively, schematically showing the state in which the dilated body is arranged in the interatrial septum. It is a flowchart for demonstrating the shunt formation method. It is a front view of the vicinity of the extended body of the 1st modification. It is an enlarged cross-sectional view around the electrode group of the 1st modification. It is a front view of the vicinity of the extended body of the 2nd modification. It is a front view of the vicinity of the extended body of the 3rd modification. It is a front view of the vicinity of the extended body of the 4th modification. It is a front view of the vicinity of the extended body of the 5th modification. It is a front view of the vicinity of the extended body of the 6th modification.
- the medical device can perform maintenance measures for expanding the puncture hole Hh formed in the atrial septal HA of the patient's heart H and maintaining the further expanded puncture hole Hh at its size. It is configured as follows.
- the medical device 10 of the present embodiment includes a long shaft portion 20, an expansion body 21 provided at the tip portion of the shaft portion 20, and an energy transfer element for performing maintenance measures. It has a plurality of electrode groups 22, a hand operation unit 23 provided at the base end portion of the shaft portion 20, and an energy supply device 100.
- the shaft portion 20 has a tip portion 30 including a base end fixing portion 31 to which the base end of the expansion body 21 is fixed and a tip fixing portion 33 to which the tip end of the expansion body 21 is fixed.
- the tip portion 30 of the shaft portion 20 has a shaft extension portion 32 extending in the extension body 21 from the base end fixing portion 31.
- the shaft portion 20 has a storage sheath 25 provided on the outermost peripheral portion.
- the expansion body 21 can move forward and backward in the axial direction with respect to the storage sheath 25.
- the storage sheath 25 can store the expansion body 21 inside the storage sheath 25 in a state of being moved to the tip end side of the shaft portion 20. By moving the storage sheath 25 from the state in which the expansion body 21 is stored to the base end side, the expansion body 21 can be exposed.
- the shaft portion 20 has a tow shaft 26.
- the tow shaft 26 is provided from the base end of the shaft portion 20 to the shaft extension portion 32, and the tip portion thereof is fixed to the tip member 35.
- the tip member 35 to which the tip of the tow shaft 26 is fixed does not have to be fixed to the expansion body 21. As a result, the tip member 35 can pull the expansion body 21 in the compression direction. Further, when the expansion body 21 is stored in the storage sheath 25, the tip member 35 is separated from the expansion body 21 toward the tip side, so that the expansion body 21 can be easily moved in the extending direction and the storage property can be improved. can.
- the hand operation unit 23 has a housing 40 held by the operator, an operation dial 41 that can be rotated by the operator, and a conversion mechanism 42 that operates in conjunction with the rotation of the operation dial 41.
- the tow shaft 26 is held by the conversion mechanism 42 inside the hand operation unit 23.
- the conversion mechanism 42 can move the tow shaft 26 to be held forward and backward along the axial direction as the operation dial 41 rotates.
- a rack and pinion mechanism can be used as the conversion mechanism 42.
- the expansion body 21 has a plurality of wire rod portions 50 in the circumferential direction.
- four wire rod portions 50 are provided in the circumferential direction.
- Each of the wire rod portions 50 can be expanded and contracted in the radial direction.
- the base end portion of the wire rod portion 50 extends from the base end fixing portion 31 toward the tip end side.
- the tip portion of the wire rod portion 50 extends from the base end portion of the tip fixing portion 33 toward the base end side.
- the wire rod portion 50 is inclined so as to increase in the radial direction from both end portions in the axial direction toward the center portion.
- the wire rod portion 50 has a recess 51 recessed inward in the radial direction of the expansion body 21 in the central portion in the axial direction.
- the innermost portion in the radial direction of the recess 51 is the bottom portion 51a.
- the recess 51 defines a receiving space 51b capable of receiving a living tissue when the expanded body 21 is expanded.
- Each recess 51 has a base end side upright portion 52 extending radially outward from the base end of the bottom portion 51a, and a tip end side upright portion 53 extending radially outward from the tip end of the bottom portion 51a.
- the electrode group 22 is arranged in the recess 51 so as to face the receiving space 51b.
- the tip-side upright portion 53 has a slit-shaped central portion in the width direction, and has outer edge portions 55 on both sides and a back support portion 56 at the central portion.
- the wire rod portion 50 forming the expansion body 21 has, for example, a flat plate shape cut out from a cylinder.
- the wire rod forming the expansion body 21 can have a thickness of 50 to 500 ⁇ m and a width of 0.3 to 2.0 mm. However, it may have dimensions outside this range.
- the wire rod portion 50 may have a circular cross-sectional shape or a cross-sectional shape other than that.
- Each of the electrode groups 22 arranged in the wire rod portion 50 has a proximal end side electrode 61 arranged in the proximal end side upright portion 52 so as to face the receiving space 51b and an distal end side upright so as to face the receiving space 51b. It has a tip side electrode 62 arranged in the portion 53.
- the base end side electrode 61 and the tip end side electrode 62 are configured to receive an electric current independently.
- the base end side electrode 61 and the tip end side electrode 62 are composed of, for example, bipolar electrodes that receive electrical energy from the energy supply device 100. In this case, energization is performed between the electrode groups 22 arranged in each wire rod portion 50.
- the electrode group 22 and the energy supply device 100 are connected by a conducting wire (not shown) coated with an insulating coating material.
- the conducting wire is led out to the outside via the shaft portion 20 and the hand operation portion 23, and is connected to the energy supply device 100.
- the energy supply device 100 may be arranged in the hand operation unit 23.
- the electrode group 22 may also be configured as a monopolar electrode. In this case, electricity is supplied to the counter electrode plate prepared outside the body. Further, instead of the electrode group 22, a heat generating element (electrode chip) that receives high frequency electric energy from the energy supply device 100 to generate heat may be used. In this case, energization is performed between the heat generating elements arranged in each wire rod portion 50. Further, the electrode group 22 includes microwave energy, ultrasonic energy, coherent light such as a laser, a heated fluid, a cooled fluid, one that exerts heating and cooling action by a chemical medium, and one that generates frictional heat. It can be configured by an energy transfer element capable of applying energy to the puncture hole Hh, such as a heater provided with an electric wire or the like, and the specific form is not particularly limited.
- an energy transfer element capable of applying energy to the puncture hole Hh, such as a heater provided with an electric wire or the like, and the specific form is not particularly limited.
- the wire rod portion 50 can be formed of a metal material.
- the metal material for example, titanium-based (Ti—Ni, Ti—Pd, Ti—Nb—Sn, etc.) alloys, copper-based alloys, stainless steels, ⁇ -titanium steels, and Co—Cr alloys can be used. .. It is better to use an alloy having a spring property such as a nickel-titanium alloy.
- the material of the wire rod portion 50 is not limited to these, and may be formed of other materials.
- the shaft portion 20 is preferably formed of a material having a certain degree of flexibility.
- a material having a certain degree of flexibility examples include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin.
- fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane and polytetrafluoroethylene, polyimide, PEEK, silicone rubber and latex rubber.
- the traction shaft 26 includes, for example, a superelastic alloy such as a nickel-titanium alloy or a copper-zinc alloy, a metal material such as stainless steel, a long wire such as a resin material having a relatively high rigidity, and a polyvinyl chloride or polyethylene. , Polyethylene, or a resin material such as an ethylene-propylene copolymer.
- the tip member 35 is, for example, a polymer material such as polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or a multilayer tube of two or more kinds of polymer materials. Can be formed.
- a polymer material such as polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or a multilayer tube of two or more kinds of polymer materials. Can be formed.
- the expansion body 21 housed in the storage sheath 25 is in a state of being contracted in the radial direction.
- the expansion body 21 and the storage sheath 25 move in the axial direction with each other, the expansion body 21 is exposed to the outside of the storage sheath 25 and expands in the radial direction.
- the shaft portion 20 has a bent portion 20a that is previously bent in one direction at a portion on the proximal end side of the extended body 21. This allows the surgeon to easily direct the tip of the shaft 20 to the site where the atrial septum HA is punctured.
- the hand operation unit 23 is provided with a display means so that the operator can grasp the direction of the bent portion 20a inserted into the living body.
- the hand operation unit 23 is provided with an orientation display unit 80 as a display means. A mark indicating the bending direction of the bending portion 20a is displayed on the orientation display portion 80, and the orientation of the shaft portion 20 inserted in the living body can be recognized.
- the hand operation unit 23 has a port 81 for priming the medical device 10.
- the direction in which the port 81 extends from the hand operating portion 23 is set to be the same as the direction in which the bent portion 20a bends. Also with this, since the operator can recognize the direction of the bent portion 20a, the port 81 may be used as the display means.
- the energy supply device 100 has a current supply unit 101 that supplies a current to a plurality of electrode groups 22, and a determination unit 102 that determines whether or not the electrodes are in contact with the contact target.
- the determination unit 102 is composed of, for example, a CPU (Central Processing Unit), a storage circuit, an operation program, and the like.
- the determination unit 102 controls the current supply unit 101 to adjust the output of the high frequency current from the current supply unit 101.
- the determination unit 102 can output a high-frequency current from the current supply unit 101 at an arbitrary voltage.
- the determination unit 102 acquires the value of the output voltage from the current supply unit 101, and also acquires the value of the current detected by the current sensor (not shown) of the current supply unit 101.
- the determination unit 102 can calculate the bioimpedance value of the contacted portion by dividing the voltage value by the current value.
- the current supply unit 101 can independently supply current to the proximal end side electrode 61 and the distal end side electrode 62 of each electrode group 22. Since the medical device 10 according to the present embodiment has eight electrodes including four base end side electrodes 61 and four tip end side electrodes 62, the current supply unit 101 is controlled by the determination unit 102 and has eight electrodes. Can supply current independently to. The determination unit 102 can also independently adjust the value of the voltage supplied to each electrode.
- the determination unit 102 determines whether or not the electrodes are in contact with the contact target based on the impedance detected by each electrode. For example, when the impedance is equal to or less than or equal to a preset threshold value, the determination unit 102 can determine that the electrode is exposed to blood without contacting the atrial septal HA to be contacted.
- the treatment method using the medical device 10 will be described with reference to the flowchart shown in FIG.
- the treatment method of this embodiment is performed on a patient suffering from heart failure (left heart failure). More specifically, as shown in FIG. 4, for a patient suffering from chronic heart failure in which the blood pressure of the left atrium HLa increases due to the enlargement of the myocardium of the left ventricle of the heart H and the increase in stiffness (hardness). This is the method of treatment performed.
- the treatment method of the present embodiment includes a step of forming a puncture hole Hh in the atrial septal HA, a step of arranging the dilator 21 in the puncture hole Hh (S2), and receiving a living tissue in the receiving space 51b.
- a step (S3) a step of expanding the diameter of the puncture hole Hh by the dilator 21 (S4), a step of confirming the hemodynamics in the vicinity of the puncture hole Hh (S5), and a step of maintaining the size of the puncture hole Hh. It has a step (S6) for performing the maintenance treatment and a step (S7) for confirming the hemodynamics in the vicinity of the puncture hole Hh after the maintenance treatment is performed.
- the surgeon delivers the introducer, which is a combination of a guiding sheath and a dilator, to the vicinity of the atrial septal HA when forming the puncture hole Hh.
- the introducer can be delivered to the right atrium HRa, for example, via the inferior vena cava Iv. Further, the delivery of the introducer can be performed by using the guide wire 11.
- the surgeon can insert the guide wire 11 through the dilator and deliver the introducer along the guide wire 11. It should be noted that the insertion of the introducer into the living body, the insertion of the guide wire 11 and the like can be performed by a known method such as using an introducer for introducing a blood vessel.
- the surgeon penetrates a puncture device (not shown) from the right atrium HRa side toward the left atrium HLa side to form a puncture hole Hh.
- a puncture device for example, a device such as a wire having a sharp tip can be used.
- the puncture device is inserted through a dilator and delivered to the atrial septal HA.
- the puncture device can be delivered to the atrial septal HA in place of the guide wire 11 after removing the guide wire 11 from the dilator.
- the medical device 10 is delivered to the vicinity of the atrial septal HA along the guide wire 11 inserted in advance. At this time, the tip of the medical device 10 penetrates the atrial septum HA and reaches the left atrium HLa, as shown in FIG. Further, when the medical device 10 is inserted, the expansion body 21 is in a state of being housed in the storage sheath 25.
- the expansion body 21 is exposed by moving the storage sheath 25 to the base end side.
- the dilated body 21 is expanded in diameter, the recess 51 is arranged in the puncture hole Hh of the atrial septum HA, and the receiving space 51b receives the biological tissue surrounding the puncture hole Hh.
- the puncture hole Hh is maintained in the expanded state by the dilator 21.
- the shaft portion 20 of the medical device 10 is appropriately operated by the operator while confirming the orientation of the flexion portion 20a by the display means of the hand operation unit 23, so that the tip side thereof becomes the atrial septum HA in the right atrium HRa. Arranged to face. As shown in FIG. 6, in a state where the expansion body 21 is arranged in the puncture hole Hh, the central axis direction of the shaft portion 20 is inclined with respect to the central axis direction of the through hole Hh.
- the operator operates the hand operation unit 23 with the atrial septum HA gripped by the recess 51, moves the traction shaft 26 toward the proximal end side, and as shown in FIG. 7, the dilator 21
- the living tissue is sandwiched between the recesses 51 of the above. Since the central axial direction of the shaft portion 20 is inclined with respect to the central axial direction of the through hole Hh, one of the distal end side electrode 62 and the proximal end side electrode 61 in each electrode group 22 comes into contact with the biological tissue. It may not be. It should be noted that "not in contact with the living tissue" may include contacting the living tissue to some extent but hardly contacting the living tissue.
- the operator operates the energy supply device 100 to detect impedance by each electrode.
- the determination unit 102 detects the impedance and determines whether or not each electrode is in contact with the living tissue from the detected impedance.
- the operator delivers the hemodynamic confirmation device 110 to the right atrium HRa via the inferior vena cava Iv.
- the hemodynamic confirmation device 110 for example, a known echo catheter can be used.
- the surgeon can display the echo image acquired by the hemodynamic confirmation device 110 on a display device such as a display, and confirm the blood volume passing through the puncture hole Hh based on the display result.
- the operator performs a maintenance procedure to maintain the size of the puncture hole Hh.
- high-frequency energy is applied to the edge of the puncture hole Hh through the electrode group 22, so that the edge of the puncture hole Hh is cauterized (heated and cauterized) by the high-frequency energy.
- the operator operates the energy supply device 100 to start cauterization by each electrode.
- the current supply unit 101 supplies the current only to the electrodes determined by the determination unit 102 to be in contact with the living tissue, and does not supply the current to the electrodes determined not to be in contact with the living tissue. Therefore, in each electrode group 22, when the current is supplied to both the distal end side electrode 62 and the proximal end side electrode 61, and when the current is supplied to only one of the distal end side electrode 62 or the proximal end side electrode 61. There is. If neither the distal end side electrode 62 nor the proximal end side electrode 61 of the electrode group 22 comes into contact with the living tissue, the electrode group 22 may not be used and may be cauterized by another electrode group 22.
- the current supplied to each of the distal end side electrode 62 and the proximal end side electrode 61 is the distal end side electrode 62.
- the current supply unit 101 may be controlled so as to be smaller than the current when the current is supplied to only one of the base end side electrodes 61. This makes it possible to prevent excessive heat generation of the biological tissue in which a current is passed from both the distal end electrode 62 and the proximal end electrode 61.
- the temperature of the living tissue that comes into contact with the electrode to which the current is supplied rises and is cauterized. At this time, since the electrode exposed to blood without contacting the living tissue is not supplied with an electric current, the generation of thrombus can be suppressed.
- the puncture hole Hh When the biological tissue near the edge of the puncture hole Hh is cauterized through the electrode group 22, a degenerated portion in which the biological tissue is denatured is formed near the edge. Since the living tissue in the degenerated portion loses its elasticity, the puncture hole Hh can maintain its shape when expanded by the dilator 21.
- the hemodynamics are confirmed again in the step of S7, and when the blood volume passing through the puncture hole Hh is the desired amount, the operator reduces the diameter of the dilated body 21. It is stored in the storage sheath 25, and then removed from the puncture hole Hh. Further, the entire medical device 10 is removed from the living body, and the treatment is completed.
- the surgeon may perform cauterization in the state shown in FIG. 6 without sandwiching the living tissue in the recess 51 of the expansion body 21.
- the medical device 10 has a long tip portion 30 including an expansion body 21 that can be expanded and contracted in the radial direction and a base end fixing portion 31 to which the base end of the expansion body 21 is fixed.
- a shaft portion 20 a plurality of electrode groups 22 provided along the expansion body 21 at intervals in the circumferential direction of the expansion body 21, and a current supply unit 101 for supplying a current to the plurality of electrode groups 22.
- the extended body 21 is provided with a recess 51 that is radially inward and defines a receiving space 51b that can receive living tissue when the expanded body 21 is expanded, and the recess 51 is located on the innermost side in the radial direction.
- the base end side electrode 61 arranged in the base end side upright portion 52 so as to face the receiving space 51b, and the base end side electrode 61 in the circumferential direction of the extension 21 so as to face the receiving space 51b.
- the tip side electrode 62 is located at substantially the same position as the tip end side upright portion 53, and the current supply unit 101 can independently supply current to the proximal end side electrode 61 and the tip end side electrode 62. Is.
- the medical device 10 configured as described above does not supply a current to the electrodes of each electrode group 22 that are not in contact with the living tissue, but supplies a current only to the electrodes that are in contact with the living tissue, and thus comes into contact with blood. It is possible to suppress the formation of blood clots due to the flow of an electric current through the electrodes, and it is possible to effectively cauterize.
- the medical device 10 has a determination unit 102 for determining whether or not the electrode is in contact with the contact target.
- the electrode to which the current is supplied and the electrode to which the current is not supplied can be automatically determined, so that the operability of the medical device 10 is improved.
- the surgeon may be able to determine whether or not the electrode is in contact with the contact target by the surgeon's eyes under X-ray imaging. In this case, the medical device 10 does not have to have the determination unit 102.
- the determination unit 102 determines whether or not the electrode is in contact with the contact target based on the impedance detected by the electrode. As a result, it can be easily determined whether or not the electrode is in contact with the contact target, so that the operability of the medical device 10 is improved.
- the expansion body 21 has a plurality of wire rod portions 50 that define the recesses 51 so that the recesses 51 have a plurality of recesses 51 arranged at least three at equal intervals in the circumferential direction of the expansion body 21.
- the plurality of recesses 51 each have a bottom portion 51a, a proximal end side upright portion 52, and a tip end side upright portion 53, and the plurality of electrode groups 22 may be arranged one by one in each of the plurality of recesses 51.
- the recesses 51 are arranged at equal intervals in the circumferential direction of the expansion body 21, so that when the tissue around the puncture hole Hh formed in the living body is cauterized, the shape can be made close to a regular polygon. , Can form a shunt of the size targeted by the surgeon.
- the tip including the expansion body 21 that can be expanded and contracted in the radial direction including the recess 51 recessed inward in the radial direction and the base end fixing portion 31 to which the base end of the expansion body 21 is fixed is included.
- the base end side electrode 61 arranged on the base end side upright portion 52 extending outward in the direction and the base end side electrode 61 at substantially the same position as the base end side electrode 61 in the circumferential direction of the expansion body 21 so as to face the receiving space 51b and the bottom portion 51a. It has a tip side electrode 62 arranged in a tip side upright portion 53 extending radially outward from the tip of the above, and a recess 51 is arranged in a puncture hole Hh formed in the atrial septum HA, and a receiving space 51b is provided.
- each of the plurality of electrode groups 22 at least one of the proximal end side electrode 61 or the distal end side electrode 62 is brought into contact with the biological tissue of the atrial septal HA, and in the atrium.
- a current is supplied from the current supply unit 101 to the electrode in contact with the living tissue of the remote HA to cauterize the living tissue, and no current is supplied to the electrode not in contact with the living tissue during the cauterization. ..
- a thrombus is formed because the current is not supplied to the electrodes that are not in contact with the living tissue of each electrode group 22 but is supplied only to the electrodes that are in contact with the living tissue. It can be suppressed and effectively cauterized.
- the wire rod portion 50 is provided with four in the circumferential direction and the electrode group 22 is also provided with four, but the wire rod portion 50 having the recess 51 and the electrode group 22 are provided with three or five or more. You may.
- the wire rod portions 50 are preferably arranged at equal intervals in the circumferential direction of the expansion body 21.
- the wire rod portion 50 has a structure having a cantilever-shaped back support portion 56 between the two outer edge portions 55, but the structure of the wire rod portion 50 is not particularly limited, and the outer edge portion 55 and the back support portion 56 are not particularly limited. It may be a structure that does not have.
- each of the proximal end side electrode 61 and the distal end side electrode 62 of the electrode group 22 can be independently supplied with a plurality of single electrodes. You may have 63.
- the determination unit 102 can determine whether or not each single electrode 63 is in contact with the contact target.
- the current supply unit 101 can independently supply a current to each single electrode 63.
- the single electrode 63 may be provided only on one of the proximal end side electrode 61 and the distal end side electrode 62.
- the determination unit 102 supplies a current to the single electrode 63a determined to be in contact with the living tissue, and supplies a current to the single electrode 63b determined to be in contact with or hardly in contact with the living tissue.
- the current supply unit 101 is controlled so as not to be used.
- the single electrode 63a that supplies an electric current for contacting the living tissue can be finely set, so that the surface area of the electrode that comes into contact with the living tissue can be easily increased, and the shape of the shunt formed by cauterization is effectively maintained. can.
- the single electrode 63b that does not supply an electric current because it does not come into contact with the living tissue can be finely set, it is possible to effectively suppress the formation of a thrombus due to the contact of the electrode through which the electric current flows with the blood.
- the expansion body 21 may have a structure in which a portion on the tip end side of the recess 51 is not provided.
- the adjacent wire rod portions 50 are not connected in the example of FIG. 11, they may be connected to each other.
- the expansion body 21 may be a balloon that can be expanded by supplying a fluid to the inside.
- the balloon is shaped to form a recess 51 when expanded.
- the expansion body 21 may be formed of a mesh in which a large number of thin wires are knitted.
- the mesh is shaped to form a recess 51 when expanded.
- the expansion body 21 may be formed by a link structure connected by a joint 57.
- the expansion body 21 may be formed in a mesh shape in which the wire rods are branched and merged.
- the expansion body 21 has a plurality of recesses 51, and the distal end side electrode 62 and the proximal end side electrode 61 are arranged in each recess 51.
- the distal end side electrode 62 is arranged on the distal end side of the proximal end side electrode 61.
- the plurality of proximal end side electrodes 61 arranged in the circumferential direction and the plurality of distal end side electrodes 62 arranged in the circumferential direction are not arranged alternately in the circumferential direction, but are arranged at substantially the same position in the circumferential direction.
- the traction shaft is not provided. Therefore, the expansion body 21 released from the storage sheath 25 expands the puncture hole Hh only by its own expansion force.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Otolaryngology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Plasma & Fusion (AREA)
- Physics & Mathematics (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
This medical device (10) comprises: an expansion body (21); a shaft part (20) to which a base end of the expansion body (21) is fixed; a plurality of electrode groups (22) provided at intervals in a circumferential direction of the expansion body (21); and a current supply unit (101) that supplies a current to the plurality of electrode groups (22). The expansion body (21) has a recess (51) recessed inward in a radial direction. The recess (51) has a bottom portion (51a), a base end side standing portion (52) extending radially outward from a base end of the bottom portion (51a), and a tip side standing portion (53) extending radially outward from a tip of the bottom portion (51a). Each of the plurality of electrode groups (22) has a base end side electrode (61) disposed in the base end side standing portion (52) and a tip side electrode (62) disposed in the tip side standing portion (53). The current supply unit (101) can independently supply the current to the base end side electrode (61) and the tip side electrode (62).
Description
本発明は、生体組織にエネルギーを付与する医療デバイスおよびシャント形成方法に関する。
The present invention relates to a medical device and a shunt forming method for imparting energy to a living tissue.
心臓疾患の一つとして、慢性心不全が知られている。慢性心不全は、心機能の指標に基づいて収縮不全と拡張不全に大別される。拡張不全に罹患した患者は、心筋が肥大化してスティッフネス(硬さ)が増すことで、左心房の血圧が高まり、心臓のポンプ機能が低下する。これにより、患者は、肺水腫などの心不全症状を呈することとなる。また、肺高血圧症等により右心房側の血圧が高まり、心臓のポンプ機能が低下することで心不全症状を呈するような心臓疾患もある。
Chronic heart failure is known as one of the heart diseases. Chronic heart failure is roughly classified into systolic failure and diastolic failure based on the index of cardiac function. In patients suffering from diastolic dysfunction, the myocardium becomes hypertrophied and stiffness increases, resulting in an increase in blood pressure in the left atrium and a decrease in the pumping function of the heart. As a result, the patient presents with heart failure symptoms such as pulmonary edema. In addition, there is also a heart disease in which the blood pressure on the right atrium side increases due to pulmonary hypertension or the like, and the pump function of the heart decreases, resulting in heart failure symptoms.
近年、これらの心不全患者に対し、上昇した心房圧の逃げ道となるシャント(穿刺孔)を心房中隔に形成し、心不全症状の緩和を可能にするシャント治療が注目されている。シャント治療は、経静脈アプローチで心房中隔にアクセスし、所望のサイズの穿刺孔を形成する。このような心房中隔に対するシャント治療を行うための医療デバイスとして、例えば特許文献1に挙げるようなものがある。
In recent years, shunt treatment that forms a shunt (puncture hole) in the atrial septum, which is an escape route for increased atrial pressure, and enables alleviation of heart failure symptoms has been attracting attention for these patients with heart failure. Shunt treatment uses a transvenous approach to access the atrial septum and form a puncture hole of the desired size. As a medical device for performing shunt treatment for such an atrial septum, for example, there is one listed in Patent Document 1.
特許文献1の医療デバイスは、拡張体の凹部に複数の電極が固定されている。凹部内での電極の位置は、拡張体の軸方向において同じ位置である。この場合、拡張体を治療対象組織に対して接触させた際に、凹部と治療対象組織との角度が大きく異なると、電極部が治療対象組織に対して十分に当接しない可能性がある。電極部が治療対象組織に十分に当接していないと、生体組織に対して十分なエネルギー付与ができないことで、治療効果が低下する可能性がある。また、電極部が血液に露出した状態でエネルギーが付与されると、血栓が形成されるリスクが生じる。
In the medical device of Patent Document 1, a plurality of electrodes are fixed in the recesses of the extended body. The positions of the electrodes in the recess are the same in the axial direction of the expansion body. In this case, when the dilated body is brought into contact with the tissue to be treated, if the angle between the recess and the tissue to be treated is significantly different, the electrode portion may not sufficiently contact the tissue to be treated. If the electrode portion is not sufficiently in contact with the tissue to be treated, sufficient energy cannot be applied to the living tissue, which may reduce the therapeutic effect. Further, if energy is applied while the electrode portion is exposed to blood, there is a risk that a thrombus is formed.
本発明は、上述した課題を解決するためになされたものであり、血栓が形成されることを抑制できるとともに、効果的に焼灼することができる医療デバイスおよびシャント形成方法を提供することを目的とする。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a medical device and a shunt forming method capable of suppressing the formation of thrombus and effectively cauterizing. do.
上記目的を達成する本発明に係る医療デバイスは、径方向に拡縮可能な拡張体と、前記拡張体の基端が固定された基端固定部を含む先端部を有する長尺なシャフト部と、前記拡張体に沿うとともに、前記拡張体の周方向に間隔を開けて設けられる複数の電極群と、前記複数の電極群へ電流を供給する電流供給部と、を備え、前記拡張体は、径方向内側に窪み、前記拡張体の拡張時に生体組織を受容可能な受容空間を画成する凹部を有し、前記凹部は、径方向の最も内側に位置する底部と、底部の基端から径方向外側に延びる基端側起立部と、底部の先端から径方向外側に延びる先端側起立部と、有し、前記複数の電極群は、それぞれ、前記受容空間に面するように、前記基端側起立部に配置される基端側電極と、前記受容空間に面するように、前記拡張体の前記周方向において前記基端側電極と略同一の位置かつ前記先端側起立部に配置される先端側電極と、を有し、前記電流供給部は、前記基端側電極および前記先端側電極に、独立して電流を供給可能である。
The medical device according to the present invention that achieves the above object includes an expansion body that can be expanded and contracted in the radial direction, a long shaft portion having a tip portion including a proximal end fixing portion in which the proximal end of the extended body is fixed, and a long shaft portion. Along with the expansion body, a plurality of electrode groups provided at intervals in the circumferential direction of the expansion body and a current supply unit for supplying a current to the plurality of electrode groups are provided, and the expansion body has a diameter. It has a recess inward in the direction and defines a receiving space that can receive living tissue when the expanded body is expanded, and the recess has a bottom located at the innermost side in the radial direction and a radial direction from the base end of the bottom. It has a proximal end-side upright portion extending outward and a distal end-side upright portion extending radially outward from the tip of the bottom, and the plurality of electrode groups are respectively located on the proximal end side so as to face the receiving space. The proximal end side electrode arranged in the upright portion and the tip arranged in the distal end side upright portion at substantially the same position as the proximal end side electrode in the circumferential direction of the extended body so as to face the receiving space. It has a side electrode, and the current supply unit can independently supply a current to the base end side electrode and the tip end side electrode.
上記目的を達成する本発明に係るシャント形成方法は、径方向内側に窪んだ凹部を含む径方向に拡縮可能な拡張体と、前記拡張体の基端が固定された基端固定部を含む先端部を有する長尺なシャフト部と、前記拡張体に沿うとともに、前記拡張体の周方向に間隔を開けて設けられる複数の電極群と、前記複数の電極群へ電流を供給する電流供給部と、を備えた医療デバイスを用いて心房中隔にシャントを形成する方法であって、前記拡張体は、径方向内側に窪み、前記拡張体の拡張時に生体組織を受容可能な受容空間を画成する凹部を有し、前記複数の電極群が、それぞれ、前記受容空間に面するように、前記凹部の径方向の最も内側に位置する底部の基端から径方向外側に延びる基端側起立部に配置される基端側電極と、前記受容空間に面するように、前記拡張体の前記周方向において前記基端側電極と略同一の位置かつ前記底部の先端から径方向外側に延びる先端側起立部に配置される基端側電極と、を有し、心房中隔に形成された穿刺孔内に前記凹部を配置して、前記受容空間に前記穿刺孔を取り囲む生体組織を受容し、前記複数の電極群のそれぞれにおいて、前記基端側電極または前記先端側電極の少なくとも一方を、心房中隔の生体組織に接触させるとともに、心房中隔の生体組織に接触させた電極に対して前記電流供給部から電流を供給して前記生体組織を焼灼し、当該焼灼の際に、前記生体組織に接触していない電極へは、電流を供給しない。
The shunt forming method according to the present invention that achieves the above object is a tip including an expansion body that can be expanded and contracted in the radial direction including a recess recessed inward in the radial direction, and a base end fixing portion in which the base end of the expansion body is fixed. A long shaft portion having a portion, a plurality of electrode groups provided along the expansion body at intervals in the circumferential direction of the expansion body, and a current supply unit for supplying current to the plurality of electrode groups. A method of forming a shunt in the atrioventricular septum using a medical device equipped with the The base end side erecting portion extending radially outward from the base end of the bottom portion located on the innermost side in the radial direction of the concave portion so that the plurality of electrode groups each face the receiving space. At a position substantially the same as the proximal end side electrode in the circumferential direction of the extended body so as to face the receiving space and the proximal end side electrode arranged in the It has a proximal end side electrode arranged in an upright portion, and the recess is arranged in a puncture hole formed in the atrioventricular septum to receive the biological tissue surrounding the puncture hole in the receiving space. In each of the plurality of electrode groups, the current is applied to an electrode in which at least one of the proximal end electrode or the distal electrode is brought into contact with the biological tissue of the atrioventricular septum and is in contact with the biological tissue of the atrioventricular septum. A current is supplied from the supply unit to cauterize the biological tissue, and no current is supplied to the electrodes that are not in contact with the biological tissue during the cauterization.
上記のように構成した医療デバイスは、各電極群の生体組織に接触してない電極へは電流を供給せずに、生体組織に接触する電極のみへ電流を供給するため、血栓が形成されることを抑制できるとともに、効果的に焼灼することができる。
The medical device configured as described above does not supply current to the electrodes that are not in contact with the living tissue of each electrode group, but supplies current only to the electrodes that are in contact with the living tissue, so that a thrombus is formed. This can be suppressed and effectively cauterized.
前記基端側電極または前記先端側電極の少なくとも一方は、前記電流供給部から独立して電流を供給されるように構成された少なくとも2つの単電極を有してもよい。これにより、生体組織に接触する基端側電極および/または先端側電極の表面積を増加させやすくなり、焼灼して形成するシャントの形状を効果的に維持できる。また、生体組織に接触しない電極へ電流を供給しないことで、血栓が形成されることを効果的に抑制できる。
At least one of the base end side electrode or the tip end side electrode may have at least two single electrodes configured to supply current independently of the current supply unit. As a result, the surface area of the proximal end electrode and / or the distal electrode in contact with the living tissue can be easily increased, and the shape of the shunt formed by cauterization can be effectively maintained. Further, by not supplying an electric current to an electrode that does not come into contact with a living tissue, it is possible to effectively suppress the formation of a thrombus.
前記医療デバイスは、前記電極が前記接触対象に接触しているか否かを判断する判断部を有してもよい。これにより、電流を供給する電極と供給しない電極を自動的に決定できるため、操作性が向上する。
The medical device may have a determination unit for determining whether or not the electrode is in contact with the contact target. As a result, the electrode to which the current is supplied and the electrode to which the current is not supplied can be automatically determined, so that the operability is improved.
前記判断部は、前記電極により検出されるインピーダンスにより当該電極が前記接触対象に接触しているか否かを判断してもよい。これにより、電極が前記接触対象に接触しているか否かを容易に判断できるため、操作性が向上する。
The determination unit may determine whether or not the electrode is in contact with the contact target based on the impedance detected by the electrode. As a result, it can be easily determined whether or not the electrode is in contact with the contact target, so that the operability is improved.
前記拡張体は、前記凹部が前記拡張体の前記周方向において等間隔に少なくとも3つ配置される複数の凹部を有するように、前記凹部を画成する複数の線材部を有し、前記複数の凹部は、それぞれ前記底部、前記基端側起立部、および前記先端側起立部を有し、前記複数の電極群は、前記複数の凹部のそれぞれに1つずつ配置されてもよい。これにより、拡張体の周方向において等間隔に凹部が配置されるので、生体に形成された穿刺孔の周囲の組織を焼灼する際に、正多角形に近い形状とすることができ、術者が狙ったサイズのシャントを形成することができる。
The expansion body has a plurality of wire rod portions defining the recesses so that the recesses have a plurality of recesses arranged at least three at equal intervals in the circumferential direction of the expansion body. Each of the recesses has the bottom portion, the proximal end side upright portion, and the distal end side upright portion, and the plurality of electrode groups may be arranged one by one in each of the plurality of recesses. As a result, the recesses are arranged at equal intervals in the circumferential direction of the dilated body, so that when the tissue around the puncture hole formed in the living body is cauterized, the shape can be made close to a regular polygon. Can form a shunt of the desired size.
上記のように構成したシャント形成方法は、各電極群の生体組織に接触してない電極へは電流を供給せずに、生体組織に接触する電極のみで電流を供給するため、血栓が形成されることを抑制できるとともに、効果的に焼灼することができる。
In the shunt forming method configured as described above, the current is not supplied to the electrodes that are not in contact with the living tissue of each electrode group, but the current is supplied only by the electrodes that are in contact with the living tissue, so that a thrombus is formed. It can be suppressed and effectively cauterized.
以下、図面を参照して、本発明の実施の形態を説明する。なお、図面の寸法比率は、説明の都合上、誇張されて実際の比率とは異なる場合がある。また、本明細書では、医療デバイス10の生体内腔に挿入する側を「先端」若しくは「先端側」、操作する手元側を「基端」若しくは「基端側」と称することとする。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The dimensional ratios in the drawings may be exaggerated and differ from the actual ratios for convenience of explanation. Further, in the present specification, the side of the medical device 10 to be inserted into the living body cavity is referred to as "tip" or "tip side", and the hand side to be operated is referred to as "base end" or "base end side".
以下の実施形態に係る医療デバイスは、患者の心臓Hの心房中隔HAに形成された穿刺孔Hhを拡張し、さらに拡張した穿刺孔Hhをその大きさに維持する維持処置を行うことができるように構成されている。
The medical device according to the following embodiment can perform maintenance measures for expanding the puncture hole Hh formed in the atrial septal HA of the patient's heart H and maintaining the further expanded puncture hole Hh at its size. It is configured as follows.
図1~3に示すように、本実施形態の医療デバイス10は、長尺なシャフト部20と、シャフト部20の先端部に設けられる拡張体21と、維持処置を行うためのエネルギー伝達要素である複数の電極群22と、シャフト部20の基端部に設けられる手元操作部23と、エネルギー供給装置100とを有している。
As shown in FIGS. 1 to 3, the medical device 10 of the present embodiment includes a long shaft portion 20, an expansion body 21 provided at the tip portion of the shaft portion 20, and an energy transfer element for performing maintenance measures. It has a plurality of electrode groups 22, a hand operation unit 23 provided at the base end portion of the shaft portion 20, and an energy supply device 100.
シャフト部20は、拡張体21の基端が固定される基端固定部31と、拡張体21の先端が固定される先端固定部33とを含む先端部30を有している。シャフト部20の先端部30は、基端固定部31から拡張体21内を延びるシャフト延長部32を有している。シャフト部20は、最外周部に設けられる収納シース25を有している。拡張体21は、収納シース25に対して軸方向に進退移動可能である。収納シース25は、シャフト部20の先端側に移動した状態で、その内部に拡張体21を収納することができる。拡張体21を収納した状態から、収納シース25を基端側に移動させることで、拡張体21を露出させることができる。
The shaft portion 20 has a tip portion 30 including a base end fixing portion 31 to which the base end of the expansion body 21 is fixed and a tip fixing portion 33 to which the tip end of the expansion body 21 is fixed. The tip portion 30 of the shaft portion 20 has a shaft extension portion 32 extending in the extension body 21 from the base end fixing portion 31. The shaft portion 20 has a storage sheath 25 provided on the outermost peripheral portion. The expansion body 21 can move forward and backward in the axial direction with respect to the storage sheath 25. The storage sheath 25 can store the expansion body 21 inside the storage sheath 25 in a state of being moved to the tip end side of the shaft portion 20. By moving the storage sheath 25 from the state in which the expansion body 21 is stored to the base end side, the expansion body 21 can be exposed.
シャフト部20は、牽引シャフト26を有している。牽引シャフト26は、シャフト部20の基端からシャフト延長部32に渡って設けられており、先端部が先端部材35に固定されている。
The shaft portion 20 has a tow shaft 26. The tow shaft 26 is provided from the base end of the shaft portion 20 to the shaft extension portion 32, and the tip portion thereof is fixed to the tip member 35.
牽引シャフト26の先端部が固定されている先端部材35は、拡張体21には固定されていなくてよい。これにより、先端部材35は、拡張体21を圧縮方向に牽引することが可能である。また、拡張体21を収納シース25に収納する際、先端部材35を拡張体21から先端側に離すことによって、拡張体21の延伸方向への移動が容易になり、収納性を向上させることができる。
The tip member 35 to which the tip of the tow shaft 26 is fixed does not have to be fixed to the expansion body 21. As a result, the tip member 35 can pull the expansion body 21 in the compression direction. Further, when the expansion body 21 is stored in the storage sheath 25, the tip member 35 is separated from the expansion body 21 toward the tip side, so that the expansion body 21 can be easily moved in the extending direction and the storage property can be improved. can.
手元操作部23は、術者が把持する筐体40と、術者が回転操作可能な操作ダイヤル41と、操作ダイヤル41の回転に連動して動作する変換機構42とを有している。牽引シャフト26は、手元操作部23の内部において、変換機構42に保持されている。変換機構42は、操作ダイヤル41の回転に伴い、保持する牽引シャフト26を軸方向に沿って進退移動させることができる。変換機構42としては、例えばラックピニオン機構を用いることができる。
The hand operation unit 23 has a housing 40 held by the operator, an operation dial 41 that can be rotated by the operator, and a conversion mechanism 42 that operates in conjunction with the rotation of the operation dial 41. The tow shaft 26 is held by the conversion mechanism 42 inside the hand operation unit 23. The conversion mechanism 42 can move the tow shaft 26 to be held forward and backward along the axial direction as the operation dial 41 rotates. As the conversion mechanism 42, for example, a rack and pinion mechanism can be used.
拡張体21は、周方向に複数の線材部50を有している。本実施形態において線材部50は、周方向に4本が設けられている。線材部50は、それぞれ径方向に拡縮可能である。線材部50の基端部は、基端固定部31から先端側に延出している。線材部50の先端部は、先端固定部33の基端部から基端側に延出している。線材部50は、軸方向の両端部から中央部に向かって、径方向に大きくなるように傾斜している。また、線材部50は、軸方向中央部に、拡張体21の径方向内側に窪んだ凹部51を有する。凹部51の径方向において最も内側の部分は底部51aである。凹部51により、拡張体21の拡張時に生体組織を受容可能な受容空間51bが画成される。
The expansion body 21 has a plurality of wire rod portions 50 in the circumferential direction. In this embodiment, four wire rod portions 50 are provided in the circumferential direction. Each of the wire rod portions 50 can be expanded and contracted in the radial direction. The base end portion of the wire rod portion 50 extends from the base end fixing portion 31 toward the tip end side. The tip portion of the wire rod portion 50 extends from the base end portion of the tip fixing portion 33 toward the base end side. The wire rod portion 50 is inclined so as to increase in the radial direction from both end portions in the axial direction toward the center portion. Further, the wire rod portion 50 has a recess 51 recessed inward in the radial direction of the expansion body 21 in the central portion in the axial direction. The innermost portion in the radial direction of the recess 51 is the bottom portion 51a. The recess 51 defines a receiving space 51b capable of receiving a living tissue when the expanded body 21 is expanded.
各々の凹部51は、底部51aの基端から径方向外側に延びる基端側起立部52と、底部51aの先端から径方向外側に延びる先端側起立部53とを有している。凹部51には、受容空間51bに面するように電極群22が配置される。先端側起立部53は、幅方向中央部がスリット状となっており、両側の外縁部55と中央部の背当て部56とを有している。
Each recess 51 has a base end side upright portion 52 extending radially outward from the base end of the bottom portion 51a, and a tip end side upright portion 53 extending radially outward from the tip end of the bottom portion 51a. The electrode group 22 is arranged in the recess 51 so as to face the receiving space 51b. The tip-side upright portion 53 has a slit-shaped central portion in the width direction, and has outer edge portions 55 on both sides and a back support portion 56 at the central portion.
拡張体21を形成する線材部50は、例えば、円筒から切り出した平板形状を有する。拡張体21を形成する線材は、厚み50~500μm、幅0.3~2.0mmとすることができる。ただし、この範囲外の寸法を有していてもよい。また、線材部50はその他にも円形の断面形状や、それ以外の断面形状を有していてもよい。
The wire rod portion 50 forming the expansion body 21 has, for example, a flat plate shape cut out from a cylinder. The wire rod forming the expansion body 21 can have a thickness of 50 to 500 μm and a width of 0.3 to 2.0 mm. However, it may have dimensions outside this range. In addition, the wire rod portion 50 may have a circular cross-sectional shape or a cross-sectional shape other than that.
線材部50に配置される各々の電極群22は、受容空間51bに面するように基端側起立部52に配置される基端側電極61と、受容空間51bに面するように先端側起立部53に配置される先端側電極62とを有している。基端側電極61および先端側電極62は、独立して電流を受けられるように構成されている。
Each of the electrode groups 22 arranged in the wire rod portion 50 has a proximal end side electrode 61 arranged in the proximal end side upright portion 52 so as to face the receiving space 51b and an distal end side upright so as to face the receiving space 51b. It has a tip side electrode 62 arranged in the portion 53. The base end side electrode 61 and the tip end side electrode 62 are configured to receive an electric current independently.
基端側電極61および先端側電極62は、例えば、エネルギー供給装置100から電気エネルギーを受けるバイポーラ電極で構成される。この場合、各線材部50に配置された電極群22間で通電がなされる。電極群22とエネルギー供給装置100とは、絶縁性被覆材で被覆された導線(図示しない)により接続される。導線は、シャフト部20及び手元操作部23を介して外部に導出され、エネルギー供給装置100に接続される。なお、エネルギー供給装置100は、手元操作部23に配置されてもよい。
The base end side electrode 61 and the tip end side electrode 62 are composed of, for example, bipolar electrodes that receive electrical energy from the energy supply device 100. In this case, energization is performed between the electrode groups 22 arranged in each wire rod portion 50. The electrode group 22 and the energy supply device 100 are connected by a conducting wire (not shown) coated with an insulating coating material. The conducting wire is led out to the outside via the shaft portion 20 and the hand operation portion 23, and is connected to the energy supply device 100. The energy supply device 100 may be arranged in the hand operation unit 23.
電極群22は、他にも、モノポーラ電極として構成されていてもよい。この場合、体外に用意される対極板との間で通電がなされる。また、電極群22に代えて、エネルギー供給装置100から高周波の電気エネルギーを受給して発熱する発熱素子(電極チップ)を用いてもよい。この場合、各線材部50に配置された発熱素子間で通電がなされる。さらに、電極群22は、マイクロ波エネルギー、超音波エネルギー、レーザー等のコヒーレント光、加熱した流体、冷却された流体、化学的な媒体により加熱や冷却作用を及ぼすもの、摩擦熱を生じさせるもの、電線等を備えるヒーター等のように、穿刺孔Hhに対してエネルギーを付与可能なエネルギー伝達要素により構成することができ、具体的な形態は特に限定されない。
The electrode group 22 may also be configured as a monopolar electrode. In this case, electricity is supplied to the counter electrode plate prepared outside the body. Further, instead of the electrode group 22, a heat generating element (electrode chip) that receives high frequency electric energy from the energy supply device 100 to generate heat may be used. In this case, energization is performed between the heat generating elements arranged in each wire rod portion 50. Further, the electrode group 22 includes microwave energy, ultrasonic energy, coherent light such as a laser, a heated fluid, a cooled fluid, one that exerts heating and cooling action by a chemical medium, and one that generates frictional heat. It can be configured by an energy transfer element capable of applying energy to the puncture hole Hh, such as a heater provided with an electric wire or the like, and the specific form is not particularly limited.
線材部50は、金属材料で形成することができる。この金属材料としては、例えば、チタン系(Ti-Ni、Ti-Pd、Ti-Nb-Sn等)の合金、銅系の合金、ステンレス鋼、βチタン鋼、Co-Cr合金を用いることができる。なお、ニッケルチタン合金等のバネ性を有する合金等を用いるとよりよい。ただし、線材部50の材料はこれらに限られず、その他の材料で形成してもよい。
The wire rod portion 50 can be formed of a metal material. As the metal material, for example, titanium-based (Ti—Ni, Ti—Pd, Ti—Nb—Sn, etc.) alloys, copper-based alloys, stainless steels, β-titanium steels, and Co—Cr alloys can be used. .. It is better to use an alloy having a spring property such as a nickel-titanium alloy. However, the material of the wire rod portion 50 is not limited to these, and may be formed of other materials.
シャフト部20は、ある程度の可撓性を有する材料により形成されるのが好ましい。そのような材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、アイオノマー、あるいはこれら二種以上の混合物等のポリオレフィンや、軟質ポリ塩化ビニル樹脂、ポリアミド、ポリアミドエラストマー、ポリエステル、ポリエステルエラストマー、ポリウレタン、ポリテトラフルオロエチレン等のフッ素樹脂、ポリイミド、PEEK、シリコーンゴム、ラテックスゴム等が挙げられる。
The shaft portion 20 is preferably formed of a material having a certain degree of flexibility. Examples of such a material include polyolefins such as polyethylene, polypropylene, polybutene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ionomer, or a mixture of two or more thereof, and a soft polyvinyl chloride resin. Examples thereof include fluororesins such as polyamide, polyamide elastomer, polyester, polyester elastomer, polyurethane and polytetrafluoroethylene, polyimide, PEEK, silicone rubber and latex rubber.
牽引シャフト26は、例えば、ニッケル-チタン合金、銅-亜鉛合金等の超弾性合金、ステンレス鋼等の金属材料、比較的剛性の高い樹脂材料などの長尺状の線材に、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体などの樹脂材料を被覆したもので形成することができる。
The traction shaft 26 includes, for example, a superelastic alloy such as a nickel-titanium alloy or a copper-zinc alloy, a metal material such as stainless steel, a long wire such as a resin material having a relatively high rigidity, and a polyvinyl chloride or polyethylene. , Polyethylene, or a resin material such as an ethylene-propylene copolymer.
先端部材35は、例えば、ポリオレフィン、ポリ塩化ビニル、ポリアミド、ポリアミドエラストマー、ポリウレタン、ポリウレタンエラストマー、ポリイミド、フッ素樹脂等の高分子材料またはこれらの混合物、あるいは2種以上の高分子材料の多層チューブ等で形成することができる。
The tip member 35 is, for example, a polymer material such as polyolefin, polyvinyl chloride, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyimide, fluororesin, or a mixture thereof, or a multilayer tube of two or more kinds of polymer materials. Can be formed.
収納シース25に納められた拡張体21は、図5に示すように、径方向に収縮した状態となっている。拡張体21と収納シース25とが互いに軸方向に移動することで、拡張体21は収納シース25の外部に露出し、径方向に拡張する。
As shown in FIG. 5, the expansion body 21 housed in the storage sheath 25 is in a state of being contracted in the radial direction. When the expansion body 21 and the storage sheath 25 move in the axial direction with each other, the expansion body 21 is exposed to the outside of the storage sheath 25 and expands in the radial direction.
図1に示すように、シャフト部20は、拡張体21より基端側の部分に、予め一方向に屈曲した屈曲部20aを有している。これにより、術者は、シャフト20の先端を、心房中隔HAの穿刺する部位へ容易に向けることができる。
As shown in FIG. 1, the shaft portion 20 has a bent portion 20a that is previously bent in one direction at a portion on the proximal end side of the extended body 21. This allows the surgeon to easily direct the tip of the shaft 20 to the site where the atrial septum HA is punctured.
生体内に挿入された屈曲部20aの向きを術者が把握できるように、手元操作部23には表示手段が設けられる。手元操作部23には、表示手段として、向き表示部80が設けられる。向き表示部80には、屈曲部20aの屈曲方向を表すマークが表示されており、生体内に挿入されているシャフト部20の向きを認識することができる。
The hand operation unit 23 is provided with a display means so that the operator can grasp the direction of the bent portion 20a inserted into the living body. The hand operation unit 23 is provided with an orientation display unit 80 as a display means. A mark indicating the bending direction of the bending portion 20a is displayed on the orientation display portion 80, and the orientation of the shaft portion 20 inserted in the living body can be recognized.
手元操作部23には、医療デバイス10をプライミングするためのポート81を有している。ポート81が手元操作部23から延びる方向は、屈曲部20aが屈曲する方向と同じとなるようにされている。これによっても、術者が屈曲部20aの方向を認識できることから、ポート81を表示手段としてもよい。
The hand operation unit 23 has a port 81 for priming the medical device 10. The direction in which the port 81 extends from the hand operating portion 23 is set to be the same as the direction in which the bent portion 20a bends. Also with this, since the operator can recognize the direction of the bent portion 20a, the port 81 may be used as the display means.
エネルギー供給装置100は、複数の電極群22へ電流を供給する電流供給部101と、電極が前記接触対象に接触しているか否かを判断する判断部102とを有している。判断部102は、例えば、CPU(Central Processing Unit)、記憶回路および動作プログラム等により構成される。
The energy supply device 100 has a current supply unit 101 that supplies a current to a plurality of electrode groups 22, and a determination unit 102 that determines whether or not the electrodes are in contact with the contact target. The determination unit 102 is composed of, for example, a CPU (Central Processing Unit), a storage circuit, an operation program, and the like.
判断部102は、電流供給部101を制御して、電流供給部101からの高周波電流の出力を調節する。判断部102は、電流供給部101から高周波電流を任意の電圧で出力させることができる。
The determination unit 102 controls the current supply unit 101 to adjust the output of the high frequency current from the current supply unit 101. The determination unit 102 can output a high-frequency current from the current supply unit 101 at an arbitrary voltage.
判断部102は、電流供給部101から、出力した電圧の値を取得するとともに、電流供給部101の電流センサ(図示せず)で検出された電流の値を取得する。判断部102は、電圧の値を電流の値で除算することで、接触している部位の生体インピーダンスの値を算出することができる。
The determination unit 102 acquires the value of the output voltage from the current supply unit 101, and also acquires the value of the current detected by the current sensor (not shown) of the current supply unit 101. The determination unit 102 can calculate the bioimpedance value of the contacted portion by dividing the voltage value by the current value.
電流供給部101は、各々の電極群22の基端側電極61および先端側電極62へ、独立して電流を供給可能である。本実施形態に係る医療デバイス10は、4つの基端側電極61および4つの先端側電極62を含む8つの電極を有するため、電流供給部101は、判断部102により制御されて、8つの電極へ独立して電流を供給できる。判断部102は、各々の電極へ供給する電圧の値を独立して調節することもできる。
The current supply unit 101 can independently supply current to the proximal end side electrode 61 and the distal end side electrode 62 of each electrode group 22. Since the medical device 10 according to the present embodiment has eight electrodes including four base end side electrodes 61 and four tip end side electrodes 62, the current supply unit 101 is controlled by the determination unit 102 and has eight electrodes. Can supply current independently to. The determination unit 102 can also independently adjust the value of the voltage supplied to each electrode.
判断部102は、各々の電極により検出されるインピーダンスにより、電極が接触対象に接触しているか否かを判断する。判断部102は、例えば、インピーダンスが、予め設定された閾値以下または未満である場合に、電極が接触対象である心房中隔HAに接触せずに血液に露出していると判断できる。
The determination unit 102 determines whether or not the electrodes are in contact with the contact target based on the impedance detected by each electrode. For example, when the impedance is equal to or less than or equal to a preset threshold value, the determination unit 102 can determine that the electrode is exposed to blood without contacting the atrial septal HA to be contacted.
医療デバイス10を使用した処置方法について、図9に示すフローチャートを参照しつつ説明する。本実施形態の処置方法は、心不全(左心不全)に罹患した患者に対して行われる。より具体的には、図4に示すように、心臓Hの左心室の心筋が肥大化してスティッフネス(硬さ)が増すことで、左心房HLaの血圧が高まる慢性心不全に罹患した患者に対して行われる処置の方法である。
The treatment method using the medical device 10 will be described with reference to the flowchart shown in FIG. The treatment method of this embodiment is performed on a patient suffering from heart failure (left heart failure). More specifically, as shown in FIG. 4, for a patient suffering from chronic heart failure in which the blood pressure of the left atrium HLa increases due to the enlargement of the myocardium of the left ventricle of the heart H and the increase in stiffness (hardness). This is the method of treatment performed.
本実施形態の処置方法は、心房中隔HAに穿刺孔Hhを形成するステップ(S1)と、穿刺孔Hhに拡張体21を配置するステップ(S2)と、受容空間51bに生体組織を受容するステップ(S3)と、拡張体21によって穿刺孔Hhの径を拡張させるステップ(S4)と、穿刺孔Hh付近における血行動態を確認するステップ(S5)と、穿刺孔Hhの大きさを維持するための維持処置を行うステップ(S6)と、維持処置が施された後の穿刺孔Hh付近における血行動態を確認するステップ(S7)と、を有している。
The treatment method of the present embodiment includes a step of forming a puncture hole Hh in the atrial septal HA, a step of arranging the dilator 21 in the puncture hole Hh (S2), and receiving a living tissue in the receiving space 51b. A step (S3), a step of expanding the diameter of the puncture hole Hh by the dilator 21 (S4), a step of confirming the hemodynamics in the vicinity of the puncture hole Hh (S5), and a step of maintaining the size of the puncture hole Hh. It has a step (S6) for performing the maintenance treatment and a step (S7) for confirming the hemodynamics in the vicinity of the puncture hole Hh after the maintenance treatment is performed.
術者は、穿刺孔Hhの形成に際し、ガイディングシース及びダイレータが組み合わされたイントロデューサを心房中隔HA付近まで送達する。イントロデューサは、例えば、下大静脈Ivを介して右心房HRaに送達することができる。また、イントロデューサの送達は、ガイドワイヤ11を使用して行うことができる。術者は、ダイレータにガイドワイヤ11を挿通し、ガイドワイヤ11に沿わせて、イントロデューサを送達させることができる。なお、生体に対するイントロデューサの挿入、ガイドワイヤ11の挿入等は、血管導入用のイントロデューサを用いるなど、公知の方法で行うことができる。
The surgeon delivers the introducer, which is a combination of a guiding sheath and a dilator, to the vicinity of the atrial septal HA when forming the puncture hole Hh. The introducer can be delivered to the right atrium HRa, for example, via the inferior vena cava Iv. Further, the delivery of the introducer can be performed by using the guide wire 11. The surgeon can insert the guide wire 11 through the dilator and deliver the introducer along the guide wire 11. It should be noted that the insertion of the introducer into the living body, the insertion of the guide wire 11 and the like can be performed by a known method such as using an introducer for introducing a blood vessel.
S1のステップにおいて、術者は、右心房HRa側から左心房HLa側に向かって、穿刺デバイス(図示しない)を貫通させ、穿刺孔Hhを形成する。穿刺デバイスとしては、例えば、先端が尖ったワイヤ等のデバイスを使用することができる。穿刺デバイスは、ダイレータに挿通させて心房中隔HAまで送達する。穿刺デバイスは、ダイレータからガイドワイヤ11を抜去した後、ガイドワイヤ11に代えて心房中隔HAまで送達することができる。
In the step of S1, the surgeon penetrates a puncture device (not shown) from the right atrium HRa side toward the left atrium HLa side to form a puncture hole Hh. As the puncture device, for example, a device such as a wire having a sharp tip can be used. The puncture device is inserted through a dilator and delivered to the atrial septal HA. The puncture device can be delivered to the atrial septal HA in place of the guide wire 11 after removing the guide wire 11 from the dilator.
S2のステップにおいては、まず、図4に示すように、予め挿入されたガイドワイヤ11に沿って、医療デバイス10を心房中隔HA付近に送達する。このとき、医療デバイス10の先端部は、図5に示すように、心房中隔HAを貫通して、左心房HLaに達するようにする。また、医療デバイス10の挿入の際、拡張体21は、収納シース25に収納された状態となっている。
In the step of S2, first, as shown in FIG. 4, the medical device 10 is delivered to the vicinity of the atrial septal HA along the guide wire 11 inserted in advance. At this time, the tip of the medical device 10 penetrates the atrial septum HA and reaches the left atrium HLa, as shown in FIG. Further, when the medical device 10 is inserted, the expansion body 21 is in a state of being housed in the storage sheath 25.
次に、S3のステップにおいて、収納シース25を基端側に移動させることにより、拡張体21を露出させる。これにより、図6に示すように、拡張体21は拡径し、凹部51は心房中隔HAの穿刺孔Hhに配置されて、受容空間51bに穿刺孔Hhを取り囲む生体組織を受容する。穿刺孔Hhは、拡張体21によって拡張された状態を維持される。
Next, in the step of S3, the expansion body 21 is exposed by moving the storage sheath 25 to the base end side. As a result, as shown in FIG. 6, the dilated body 21 is expanded in diameter, the recess 51 is arranged in the puncture hole Hh of the atrial septum HA, and the receiving space 51b receives the biological tissue surrounding the puncture hole Hh. The puncture hole Hh is maintained in the expanded state by the dilator 21.
医療デバイス10のシャフト部20は、術者が、屈曲部20aの向きを手元操作部23の表示手段によって確認しつつ適切に操作することにより、右心房HRa内において、先端側が心房中隔HAに向かうように配置される。図6に示すように、拡張体21が穿刺孔Hhに配置された状態において、シャフト部20の中心軸方向は、貫通孔Hhの中心軸方向に対して傾斜している。
The shaft portion 20 of the medical device 10 is appropriately operated by the operator while confirming the orientation of the flexion portion 20a by the display means of the hand operation unit 23, so that the tip side thereof becomes the atrial septum HA in the right atrium HRa. Arranged to face. As shown in FIG. 6, in a state where the expansion body 21 is arranged in the puncture hole Hh, the central axis direction of the shaft portion 20 is inclined with respect to the central axis direction of the through hole Hh.
S4のステップにおいて、術者は、凹部51によって心房中隔HAが把持された状態で手元操作部23を操作し、牽引シャフト26を基端側に移動させ、図7に示すように拡張体21の凹部51で生体組織を挟む。シャフト部20の中心軸方向は、貫通孔Hhの中心軸方向に対して傾斜しているため、各々の電極群22において、先端側電極62または基端側電極61の一方が、生体組織に接触しない場合がある。なお、生体組織に接触しないとは、多少生体組織に接触するが、ほとんど接触しないことも含み得る。術者は、エネルギー供給装置100を操作して、各々の電極によりインピーダンスを検出する。判断部102は、インピーダンスを検出し、検出されたインピーダンスから、各々の電極が生体組織に接触しているか否かを判断する。
In the step of S4, the operator operates the hand operation unit 23 with the atrial septum HA gripped by the recess 51, moves the traction shaft 26 toward the proximal end side, and as shown in FIG. 7, the dilator 21 The living tissue is sandwiched between the recesses 51 of the above. Since the central axial direction of the shaft portion 20 is inclined with respect to the central axial direction of the through hole Hh, one of the distal end side electrode 62 and the proximal end side electrode 61 in each electrode group 22 comes into contact with the biological tissue. It may not be. It should be noted that "not in contact with the living tissue" may include contacting the living tissue to some extent but hardly contacting the living tissue. The operator operates the energy supply device 100 to detect impedance by each electrode. The determination unit 102 detects the impedance and determines whether or not each electrode is in contact with the living tissue from the detected impedance.
穿刺孔Hhに拡張体21を配置したら、S5のステップにおいて血行動態の確認を行う。術者は、図8に示すように、下大静脈Iv経由で右心房HRaに対し、血行動態確認用デバイス110を送達する。血行動態確認用デバイス110としては、例えば、公知のエコーカテーテルを使用することができる。術者は、血行動態確認用デバイス110で取得されたエコー画像を、ディスプレイ等の表示装置に表示させ、その表示結果に基づいて穿刺孔Hhを通る血液量を確認することができる。
After placing the dilator 21 in the puncture hole Hh, check the hemodynamics in the step of S5. As shown in FIG. 8, the operator delivers the hemodynamic confirmation device 110 to the right atrium HRa via the inferior vena cava Iv. As the hemodynamic confirmation device 110, for example, a known echo catheter can be used. The surgeon can display the echo image acquired by the hemodynamic confirmation device 110 on a display device such as a display, and confirm the blood volume passing through the puncture hole Hh based on the display result.
次に、S6のステップにおいて、術者は、穿刺孔Hhの大きさを維持するために維持処置を行う。維持処置では、電極群22を通じて穿刺孔Hhの縁部に高周波エネルギーを付与することにより、穿刺孔Hhの縁部を高周波エネルギーによって焼灼(加熱焼灼)する。
Next, in the step of S6, the operator performs a maintenance procedure to maintain the size of the puncture hole Hh. In the maintenance procedure, high-frequency energy is applied to the edge of the puncture hole Hh through the electrode group 22, so that the edge of the puncture hole Hh is cauterized (heated and cauterized) by the high-frequency energy.
術者は、エネルギー供給装置100を操作して、各々の電極による焼灼を開始させる。電流供給部101は、判断部102によって生体組織に接触していると判断された電極のみへ電流を供給し、生体組織に接触していないと判断された電極へは、電流を供給しない。したがって、各々の電極群22において、先端側電極62および基端側電極61の両方に電流が供給される場合と、先端側電極62または基端側電極61の一方のみに電流が供給される場合がある。なお、電極群22の先端側電極62および基端側電極61のどちらも生体組織に接触しない場合は、その電極群22は使用せずに他の電極群22によって焼灼することもあり得る。判断部102は、先端側電極62および基端側電極61の両方に電流を供給すると判断した場合には、先端側電極62および基端側電極61の各々へ供給する電流が、先端側電極62または基端側電極61の一方のみに電流を供給する場合の電流よりも小さくなるように、電流供給部101を制御してもよい。これにより、先端側電極62および基端側電極61の両方から電流が流される生体組織の過度な発熱を防止できる。
The operator operates the energy supply device 100 to start cauterization by each electrode. The current supply unit 101 supplies the current only to the electrodes determined by the determination unit 102 to be in contact with the living tissue, and does not supply the current to the electrodes determined not to be in contact with the living tissue. Therefore, in each electrode group 22, when the current is supplied to both the distal end side electrode 62 and the proximal end side electrode 61, and when the current is supplied to only one of the distal end side electrode 62 or the proximal end side electrode 61. There is. If neither the distal end side electrode 62 nor the proximal end side electrode 61 of the electrode group 22 comes into contact with the living tissue, the electrode group 22 may not be used and may be cauterized by another electrode group 22. When the determination unit 102 determines that the current is supplied to both the distal end side electrode 62 and the proximal end side electrode 61, the current supplied to each of the distal end side electrode 62 and the proximal end side electrode 61 is the distal end side electrode 62. Alternatively, the current supply unit 101 may be controlled so as to be smaller than the current when the current is supplied to only one of the base end side electrodes 61. This makes it possible to prevent excessive heat generation of the biological tissue in which a current is passed from both the distal end electrode 62 and the proximal end electrode 61.
電流を供給された電極に接触する生体組織は、温度が上昇して焼灼される。このとき、生体組織に接触せずに血液に露出している電極は、電流を供給されないため、血栓の発生を抑制できる。
The temperature of the living tissue that comes into contact with the electrode to which the current is supplied rises and is cauterized. At this time, since the electrode exposed to blood without contacting the living tissue is not supplied with an electric current, the generation of thrombus can be suppressed.
電極群22を通して穿刺孔Hhの縁部付近の生体組織が焼灼されると、縁部付近には生体組織が変性した変性部が形成される。変性部における生体組織は弾性を失った状態となるため、穿刺孔Hhは拡張体21により押し広げられた際の形状を維持できる。
When the biological tissue near the edge of the puncture hole Hh is cauterized through the electrode group 22, a degenerated portion in which the biological tissue is denatured is formed near the edge. Since the living tissue in the degenerated portion loses its elasticity, the puncture hole Hh can maintain its shape when expanded by the dilator 21.
維持処置後には、図8に示すように、S7のステップにおいて再度血行動態を確認し、穿刺孔Hhを通る血液量が所望の量となっている場合、術者は、拡張体21を縮径させ、収納シース25に収納した上で、穿刺孔Hhから抜去する。さらに、医療デバイス10全体を生体外に抜去し、処置を終了する。
After the maintenance procedure, as shown in FIG. 8, the hemodynamics are confirmed again in the step of S7, and when the blood volume passing through the puncture hole Hh is the desired amount, the operator reduces the diameter of the dilated body 21. It is stored in the storage sheath 25, and then removed from the puncture hole Hh. Further, the entire medical device 10 is removed from the living body, and the treatment is completed.
なお、S4のステップにおいて、術者は、拡張体21の凹部51で生体組織を挟まずに、図6に示す状態で焼灼を行ってもよい。
In the step of S4, the surgeon may perform cauterization in the state shown in FIG. 6 without sandwiching the living tissue in the recess 51 of the expansion body 21.
以上のように、本実施形態に係る医療デバイス10は、径方向に拡縮可能な拡張体21と、拡張体21の基端が固定された基端固定部31を含む先端部30を有する長尺なシャフト部20と、拡張体21に沿うとともに、拡張体21の周方向に間隔を開けて設けられる複数の電極群22と、複数の電極群22へ電流を供給する電流供給部101と、を備え、拡張体21は、径方向内側に窪み、拡張体21の拡張時に生体組織を受容可能な受容空間51bを画成する凹部51を有し、凹部51は、径方向の最も内側に位置する底部51aと、底部51aの基端から径方向外側に延びる基端側起立部52と、底部51aの先端から径方向外側に延びる先端側起立部53と、を有し、複数の電極群22は、それぞれ、受容空間51bに面するように、基端側起立部52に配置される基端側電極61と、受容空間51bに面するように、拡張体21の周方向において基端側電極61と略同一の位置かつ先端側起立部53に配置される先端側電極62と、を有し、電流供給部101は、基端側電極61および先端側電極62に、独立して電流を供給可能である。
As described above, the medical device 10 according to the present embodiment has a long tip portion 30 including an expansion body 21 that can be expanded and contracted in the radial direction and a base end fixing portion 31 to which the base end of the expansion body 21 is fixed. A shaft portion 20, a plurality of electrode groups 22 provided along the expansion body 21 at intervals in the circumferential direction of the expansion body 21, and a current supply unit 101 for supplying a current to the plurality of electrode groups 22. The extended body 21 is provided with a recess 51 that is radially inward and defines a receiving space 51b that can receive living tissue when the expanded body 21 is expanded, and the recess 51 is located on the innermost side in the radial direction. It has a bottom portion 51a, a proximal end side upright portion 52 extending radially outward from the proximal end of the bottom portion 51a, and a distal end side upright portion 53 extending radially outward from the tip end of the bottom portion 51a, and the plurality of electrode groups 22 have a plurality of electrode groups 22. The base end side electrode 61 arranged in the base end side upright portion 52 so as to face the receiving space 51b, and the base end side electrode 61 in the circumferential direction of the extension 21 so as to face the receiving space 51b. The tip side electrode 62 is located at substantially the same position as the tip end side upright portion 53, and the current supply unit 101 can independently supply current to the proximal end side electrode 61 and the tip end side electrode 62. Is.
上記のように構成した医療デバイス10は、各電極群22の生体組織に接触してない電極へは電流を供給せずに、生体組織に接触する電極のみへ電流を供給するため、血液に接触する電極に電流が流れることで血栓が形成されることを抑制できるとともに、効果的に焼灼することができる。
The medical device 10 configured as described above does not supply a current to the electrodes of each electrode group 22 that are not in contact with the living tissue, but supplies a current only to the electrodes that are in contact with the living tissue, and thus comes into contact with blood. It is possible to suppress the formation of blood clots due to the flow of an electric current through the electrodes, and it is possible to effectively cauterize.
また、医療デバイス10は、電極が接触対象に接触しているか否かを判断する判断部102を有する。これにより、電流を供給する電極と供給しない電極を自動的に決定できるため、医療デバイス10の操作性が向上する。なお、術者は、X線撮影下で術者の目によって電極が接触対象に接触しているか否かを判断可能であってもよい。この場合、医療デバイス10は、判断部102を有さなくてもよい。
Further, the medical device 10 has a determination unit 102 for determining whether or not the electrode is in contact with the contact target. As a result, the electrode to which the current is supplied and the electrode to which the current is not supplied can be automatically determined, so that the operability of the medical device 10 is improved. The surgeon may be able to determine whether or not the electrode is in contact with the contact target by the surgeon's eyes under X-ray imaging. In this case, the medical device 10 does not have to have the determination unit 102.
また、判断部102は、電極により検出されるインピーダンスにより当該電極が接触対象に接触しているか否かを判断する。これにより、電極が接触対象に接触しているか否かを容易に判断できるため、医療デバイス10の操作性が向上する。
Further, the determination unit 102 determines whether or not the electrode is in contact with the contact target based on the impedance detected by the electrode. As a result, it can be easily determined whether or not the electrode is in contact with the contact target, so that the operability of the medical device 10 is improved.
また、拡張体21は、凹部51が拡張体21の周方向において等間隔に少なくとも3つ配置される複数の凹部51を有するように、凹部51を画成する複数の線材部50を有し、複数の凹部51は、それぞれ底部51a、基端側起立部52、および先端側起立部53を有し、複数の電極群22は、複数の凹部51のそれぞれに1つずつ配置されてもよい。これにより、拡張体21の周方向において等間隔に凹部51が配置されるので、生体に形成された穿刺孔Hhの周囲の組織を焼灼する際に、正多角形に近い形状とすることができ、術者が狙ったサイズのシャントを形成することができる。
Further, the expansion body 21 has a plurality of wire rod portions 50 that define the recesses 51 so that the recesses 51 have a plurality of recesses 51 arranged at least three at equal intervals in the circumferential direction of the expansion body 21. The plurality of recesses 51 each have a bottom portion 51a, a proximal end side upright portion 52, and a tip end side upright portion 53, and the plurality of electrode groups 22 may be arranged one by one in each of the plurality of recesses 51. As a result, the recesses 51 are arranged at equal intervals in the circumferential direction of the expansion body 21, so that when the tissue around the puncture hole Hh formed in the living body is cauterized, the shape can be made close to a regular polygon. , Can form a shunt of the size targeted by the surgeon.
また、本実施形態におけるシャント形成方法は、径方向内側に窪んだ凹部51を含む径方向に拡縮可能な拡張体21と、拡張体21の基端が固定された基端固定部31を含む先端部30を有する長尺なシャフト部20と、拡張体21に沿うとともに、拡張体21の周方向に間隔を開けて設けられる複数の電極群22と、複数の電極群22へ電流を供給する電流供給部101と、を備えた医療デバイス10を用いて心房中隔HAにシャントを形成する方法であって、拡張体21は、径方向内側に窪み、拡張体21の拡張時に生体組織を受容可能な受容空間51bを画成する凹部51を有し、複数の電極群22が、それぞれ、受容空間51bに面するように、凹部51の径方向の最も内側に位置する底部51aの基端から径方向外側に延びる基端側起立部52に配置される基端側電極61と、受容空間51bに面するように、拡張体21の周方向において基端側電極61と略同一の位置かつ底部51aの先端から径方向外側に延びる先端側起立部53に配置される先端側電極62と、を有し、心房中隔HAに形成された穿刺孔Hh内に凹部51を配置して、受容空間51bに穿刺孔Hhを取り囲む生体組織を受容し、複数の電極群22のそれぞれにおいて、基端側電極61または先端側電極62の少なくとも一方を、心房中隔HAの生体組織に接触させるとともに、心房中隔HAの生体組織に接触させた電極に対して電流供給部101から電流を供給して生体組織を焼灼し、当該焼灼の際に、生体組織に接触していない電極へは、電流を供給しない。このように構成したシャント形成方法は、各電極群22の生体組織に接触してない電極へは電流を供給せずに、生体組織に接触する電極のみへ電流を供給するため、血栓が形成されることを抑制できるとともに、効果的に焼灼することができる。
Further, in the shunt forming method in the present embodiment, the tip including the expansion body 21 that can be expanded and contracted in the radial direction including the recess 51 recessed inward in the radial direction and the base end fixing portion 31 to which the base end of the expansion body 21 is fixed is included. A long shaft portion 20 having a portion 30, a plurality of electrode groups 22 provided along the expansion body 21 at intervals in the circumferential direction of the expansion body 21, and a current for supplying a current to the plurality of electrode groups 22. A method of forming a shunt in the atrial septal HA using a medical device 10 provided with a supply unit 101, wherein the dilated body 21 is radially inwardly recessed and can receive biological tissue when the dilated body 21 is expanded. It has a recess 51 that defines a reception space 51b, and each of the plurality of electrode groups 22 has a diameter from the base end of the bottom portion 51a located on the innermost side in the radial direction of the recess 51 so as to face the reception space 51b. The base end side electrode 61 arranged on the base end side upright portion 52 extending outward in the direction and the base end side electrode 61 at substantially the same position as the base end side electrode 61 in the circumferential direction of the expansion body 21 so as to face the receiving space 51b and the bottom portion 51a. It has a tip side electrode 62 arranged in a tip side upright portion 53 extending radially outward from the tip of the above, and a recess 51 is arranged in a puncture hole Hh formed in the atrial septum HA, and a receiving space 51b is provided. In each of the plurality of electrode groups 22, at least one of the proximal end side electrode 61 or the distal end side electrode 62 is brought into contact with the biological tissue of the atrial septal HA, and in the atrium. A current is supplied from the current supply unit 101 to the electrode in contact with the living tissue of the remote HA to cauterize the living tissue, and no current is supplied to the electrode not in contact with the living tissue during the cauterization. .. In the shunt forming method configured in this way, a thrombus is formed because the current is not supplied to the electrodes that are not in contact with the living tissue of each electrode group 22 but is supplied only to the electrodes that are in contact with the living tissue. It can be suppressed and effectively cauterized.
なお、本発明は、上述した実施形態のみに限定されるものではなく、本発明の技術的思想内において当業者により種々変更が可能である。上述の実施形態では、線材部50は周方向に4本設けられ、電極群22も4つが設けられるが、凹部51を有する線材部50および電極群22は、3つまたは5つ以上設けられていてもよい。この場合に、線材部50は、拡張体21の周方向において等間隔に配置されることが好ましい。また、線材部50は、2つの外縁部55の間に片持ち梁状の背当て部56を有する構造であるが、線材部50の構造は特に限定されず、外縁部55および背当て部56を有さない構造であってもよい。
The present invention is not limited to the above-described embodiment, and various modifications can be made by those skilled in the art within the technical idea of the present invention. In the above-described embodiment, the wire rod portion 50 is provided with four in the circumferential direction and the electrode group 22 is also provided with four, but the wire rod portion 50 having the recess 51 and the electrode group 22 are provided with three or five or more. You may. In this case, the wire rod portions 50 are preferably arranged at equal intervals in the circumferential direction of the expansion body 21. Further, the wire rod portion 50 has a structure having a cantilever-shaped back support portion 56 between the two outer edge portions 55, but the structure of the wire rod portion 50 is not particularly limited, and the outer edge portion 55 and the back support portion 56 are not particularly limited. It may be a structure that does not have.
また、図10および11に示す第1変形例のように、電極群22の基端側電極61および先端側電極62の各々は、独立して電流を供給されることが可能な複数の単電極63を有してもよい。判断部102は、各々の単電極63が接触対象に接触しているか否かを判断できる。電流供給部101は、各々の単電極63へ、独立して電流を供給可能である。なお、単電極63は、基端側電極61または先端側電極62の一方のみに設けられてもよい。判断部102は、生体組織に接触していると判断される単電極63aへ電流を供給し、生体組織に接触していない、若しくはほとんど接触していないと判断される単電極63bへ電流を供給しないように、電流供給部101を制御する。これにより、生体組織に接触するために電流を供給する単電極63aを細かく設定できるため、生体組織に接触する電極の表面積を増加させやすくなり、焼灼して形成するシャントの形状を効果的に維持できる。また、生体組織に接触しないために電流を供給しない単電極63bを細かく設定できるため、電流を流す電極が血液に接触することにより血栓が形成されることを効果的に抑制できる。
Further, as in the first modification shown in FIGS. 10 and 11, each of the proximal end side electrode 61 and the distal end side electrode 62 of the electrode group 22 can be independently supplied with a plurality of single electrodes. You may have 63. The determination unit 102 can determine whether or not each single electrode 63 is in contact with the contact target. The current supply unit 101 can independently supply a current to each single electrode 63. The single electrode 63 may be provided only on one of the proximal end side electrode 61 and the distal end side electrode 62. The determination unit 102 supplies a current to the single electrode 63a determined to be in contact with the living tissue, and supplies a current to the single electrode 63b determined to be in contact with or hardly in contact with the living tissue. The current supply unit 101 is controlled so as not to be used. As a result, the single electrode 63a that supplies an electric current for contacting the living tissue can be finely set, so that the surface area of the electrode that comes into contact with the living tissue can be easily increased, and the shape of the shunt formed by cauterization is effectively maintained. can. Further, since the single electrode 63b that does not supply an electric current because it does not come into contact with the living tissue can be finely set, it is possible to effectively suppress the formation of a thrombus due to the contact of the electrode through which the electric current flows with the blood.
また、図12に示す第2変形例のように、拡張体21は、凹部51よりも先端側の部位が設けられない構造であってもよい。隣接する線材部50同士は、図11の例では連結されていないが、連結されてもよい。
Further, as in the second modification shown in FIG. 12, the expansion body 21 may have a structure in which a portion on the tip end side of the recess 51 is not provided. Although the adjacent wire rod portions 50 are not connected in the example of FIG. 11, they may be connected to each other.
また、図13に示す第3変形例のように、拡張体21は、内部に流体を供給されることで拡張可能なバルーンであってもよい。バルーンは、拡張した際に凹部51を形成するように形状付けられている。
Further, as in the third modification shown in FIG. 13, the expansion body 21 may be a balloon that can be expanded by supplying a fluid to the inside. The balloon is shaped to form a recess 51 when expanded.
また、図14に示す第4変形例のように、拡張体21は、多数の細い線材を編んだメッシュで形成されてもよい。メッシュは、拡張した際に凹部51を形成するように形状付けられている。
Further, as in the fourth modification shown in FIG. 14, the expansion body 21 may be formed of a mesh in which a large number of thin wires are knitted. The mesh is shaped to form a recess 51 when expanded.
また、図15に示す第5変形例のように、拡張体21は、ジョイント57で連結されたリンク構造で形成されてもよい。
Further, as in the fifth modification shown in FIG. 15, the expansion body 21 may be formed by a link structure connected by a joint 57.
また、図16に示す第6変形例のように、拡張体21は、線材が分岐、合流した網目状に形成されてもよい。拡張体21は複数の凹部51を有し、各々の凹部51には先端側電極62および基端側電極61が配置される。各々の凹部51において、先端側電極62は、基端側電極61の先端側に配置される。すなわち、周方向に並ぶ複数の基端側電極61と、周方向に並ぶ複数の先端側電極62は、周方向にずれて交互に配置されるのではなく、周方向の略同じ位置に配置される。第6変形例では、牽引シャフトが設けられない。したがって、収納シース25から放出された拡張体21は、自己の拡張力のみで穿刺孔Hhを拡張させる。
Further, as in the sixth modification shown in FIG. 16, the expansion body 21 may be formed in a mesh shape in which the wire rods are branched and merged. The expansion body 21 has a plurality of recesses 51, and the distal end side electrode 62 and the proximal end side electrode 61 are arranged in each recess 51. In each recess 51, the distal end side electrode 62 is arranged on the distal end side of the proximal end side electrode 61. That is, the plurality of proximal end side electrodes 61 arranged in the circumferential direction and the plurality of distal end side electrodes 62 arranged in the circumferential direction are not arranged alternately in the circumferential direction, but are arranged at substantially the same position in the circumferential direction. To. In the sixth modification, the traction shaft is not provided. Therefore, the expansion body 21 released from the storage sheath 25 expands the puncture hole Hh only by its own expansion force.
なお、本出願は、2020年9月29日に出願された日本特許出願2020-163591号に基づいており、それらの開示内容は、参照され、全体として、組み入れられている。
It should be noted that this application is based on Japanese Patent Application No. 2020-163591 filed on September 29, 2020, and the disclosure contents thereof are referred to and incorporated as a whole.
10 医療デバイス
20 シャフト部
21 拡張体
22 電極群
30 先端部
31 基端固定部
50 線材部
51 凹部
51a 底部
51b 受容空間
52 基端側起立部
53 先端側起立部
61 基端側電極
62 先端側電極
63、63a、63b 単電極
100 エネルギー供給装置
101 電流供給部
102 判断部 10Medical device 20 Shaft part 21 Expansion body 22 Electrode group 30 Tip part 31 Base end fixing part 50 Wire rod part 51 Recessed part 51a Bottom part 51b Receiving space 52 Base end side standing part 53 Tip side standing part 61 Base end side electrode 62 Tip side electrode 63, 63a, 63b Single electrode 100 Energy supply device 101 Current supply unit 102 Judgment unit
20 シャフト部
21 拡張体
22 電極群
30 先端部
31 基端固定部
50 線材部
51 凹部
51a 底部
51b 受容空間
52 基端側起立部
53 先端側起立部
61 基端側電極
62 先端側電極
63、63a、63b 単電極
100 エネルギー供給装置
101 電流供給部
102 判断部 10
Claims (6)
- 径方向に拡縮可能な拡張体と、
前記拡張体の基端が固定された基端固定部を含む先端部を有する長尺なシャフト部と、
前記拡張体に沿うとともに、前記拡張体の周方向に間隔を開けて設けられる複数の電極群と、
前記複数の電極群へ電流を供給する電流供給部と、を備え、
前記拡張体は、径方向内側に窪み、前記拡張体の拡張時に生体組織を受容可能な受容空間を画成する凹部を有し、
前記凹部は、径方向の最も内側に位置する底部と、底部の基端から径方向外側に延びる基端側起立部と、底部の先端から径方向外側に延びる先端側起立部と、有し、
前記複数の電極群は、それぞれ、前記受容空間に面するように、前記基端側起立部に配置される基端側電極と、前記受容空間に面するように、前記拡張体の前記周方向において前記基端側電極と略同一の位置かつ前記先端側起立部に配置される先端側電極と、を有し、
前記電流供給部は、前記基端側電極および前記先端側電極に、独立して電流を供給可能である医療デバイス。 An expansion body that can be expanded and contracted in the radial direction,
A long shaft portion having a tip portion including a proximal end fixing portion to which the proximal end of the extended body is fixed, and a long shaft portion.
A plurality of electrode groups provided along the expansion body and at intervals in the circumferential direction of the expansion body, and
A current supply unit that supplies a current to the plurality of electrode groups is provided.
The dilated body has a concave portion that is radially inward and defines a receiving space that can receive a living tissue when the dilated body is expanded.
The recess has a bottom portion located on the innermost side in the radial direction, a proximal end side erecting portion extending radially outward from the proximal end of the bottom portion, and a distal end side erecting portion extending radially outward from the tip end of the bottom portion.
The plurality of electrode groups are the base end side electrode arranged in the base end side upright portion so as to face the receiving space, and the circumferential direction of the extended body so as to face the receiving space. The tip side electrode is located at substantially the same position as the base end side electrode and is arranged in the tip end side upright portion.
The current supply unit is a medical device capable of independently supplying a current to the proximal end side electrode and the distal end side electrode. - 前記基端側電極または前記先端側電極の少なくとも一方は、前記電流供給部から独立して電流を供給されるように構成された少なくとも2つの単電極を有する請求項1に記載の医療デバイス。 The medical device according to claim 1, wherein at least one of the proximal end side electrode and the distal end side electrode has at least two single electrodes configured to supply current independently of the current supply unit.
- 前記電極が前記接触対象に接触しているか否かを判断する判断部を有する請求項1または2に記載の医療デバイス。 The medical device according to claim 1 or 2, which has a determination unit for determining whether or not the electrode is in contact with the contact target.
- 前記判断部は、前記電極により検出されるインピーダンスにより当該電極が前記接触対象に接触しているか否かを判断する請求項3に記載の医療デバイス。 The medical device according to claim 3, wherein the determination unit determines whether or not the electrode is in contact with the contact target based on the impedance detected by the electrode.
- 前記拡張体は、前記凹部が前記拡張体の前記周方向において等間隔に少なくとも3つ配置される複数の凹部を有するように、前記凹部を画成する複数の線材部を有し、
前記複数の凹部は、それぞれ前記底部、前記基端側起立部、および前記先端側起立部を有し、
前記複数の電極群は、前記複数の凹部のそれぞれに1つずつ配置される請求項1~4のいずれか1項に記載の医療デバイス。 The expansion body has a plurality of wire rod portions that define the recesses so that the recesses have a plurality of recesses arranged at least three at equal intervals in the circumferential direction of the expansion body.
The plurality of recesses each have the bottom portion, the proximal end side upright portion, and the distal end side upright portion.
The medical device according to any one of claims 1 to 4, wherein the plurality of electrode groups are arranged one by one in each of the plurality of recesses. - 径方向内側に窪んだ凹部を含む径方向に拡縮可能な拡張体と、前記拡張体の基端が固定された基端固定部を含む先端部を有する長尺なシャフト部と、前記拡張体に沿うとともに、前記拡張体の周方向に間隔を開けて設けられる複数の電極群と、前記複数の電極群へ電流を供給する電流供給部と、を備えた医療デバイスを用いて心房中隔にシャントを形成する方法であって、
前記拡張体は、径方向内側に窪み、前記拡張体の拡張時に生体組織を受容可能な受容空間を画成する凹部を有し、
前記複数の電極群が、それぞれ、前記受容空間に面するように、前記凹部の径方向の最も内側に位置する底部の基端から径方向外側に延びる基端側起立部に配置される基端側電極と、前記受容空間に面するように、前記拡張体の前記周方向において前記基端側電極と略同一の位置かつ前記底部の先端から径方向外側に延びる先端側起立部に配置される先端側電極と、を有し、
心房中隔に形成された穿刺孔内に前記凹部を配置して、前記受容空間に前記穿刺孔を取り囲む生体組織を受容し、
前記複数の電極群のそれぞれにおいて、前記基端側電極または前記先端側電極の少なくとも一方を、心房中隔の生体組織に接触させるとともに、心房中隔の生体組織に接触させた電極に対して前記電流供給部から電流を供給して前記生体組織を焼灼し、
当該焼灼の際に、前記生体組織に接触していない電極へは、電流を供給しない方法。 An expansion body that can be expanded and contracted in the radial direction including a recess that is recessed inward in the radial direction, a long shaft portion that has a tip portion including a proximal end fixing portion to which the proximal end of the expansion body is fixed, and an expansion body. A shunt to the interatrial septum using a medical device provided with a plurality of electrode groups provided at intervals in the circumferential direction of the expansion body and a current supply unit for supplying a current to the plurality of electrode groups. Is a method of forming
The dilated body has a concave portion that is radially inward and defines a receiving space that can receive a living tissue when the dilated body is expanded.
Each of the plurality of electrode groups is arranged at a proximal end side erecting portion extending radially outward from the proximal end of the bottom portion located on the innermost side in the radial direction of the concave portion so as to face the receiving space. The side electrode is arranged so as to face the receiving space at a position substantially the same as the proximal end side electrode in the circumferential direction of the extended body and at the distal end side upright portion extending radially outward from the distal end of the bottom portion. With the tip side electrode,
The recess is placed in the puncture hole formed in the atrial septum to receive the biological tissue surrounding the puncture hole in the receiving space.
In each of the plurality of electrode groups, the proximal end side electrode or at least one of the distal end side electrodes is brought into contact with the biological tissue of the atrial septum, and the electrode is brought into contact with the biological tissue of the atrial septum. The living tissue is cauterized by supplying an electric current from the electric current supply unit.
A method in which an electric current is not supplied to an electrode that is not in contact with the living tissue during the cauterization.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-163591 | 2020-09-29 | ||
JP2020163591A JP2023175056A (en) | 2020-09-29 | 2020-09-29 | Medical device and shunt formation method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022071179A1 true WO2022071179A1 (en) | 2022-04-07 |
Family
ID=80951595
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/035257 WO2022071179A1 (en) | 2020-09-29 | 2021-09-27 | Medical device and shunt forming method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023175056A (en) |
WO (1) | WO2022071179A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019009254A1 (en) * | 2017-07-04 | 2019-01-10 | テルモ株式会社 | Medical device and treatment method |
WO2019188916A1 (en) * | 2018-03-29 | 2019-10-03 | テルモ株式会社 | Medical device and treatment method |
WO2019189079A1 (en) * | 2018-03-29 | 2019-10-03 | テルモ株式会社 | Medical device |
JP2020517355A (en) * | 2017-04-28 | 2020-06-18 | ファラパルス,インコーポレイテッド | Systems, devices, and methods for delivering pulsed field ablation energy to endocardial tissue |
-
2020
- 2020-09-29 JP JP2020163591A patent/JP2023175056A/en active Pending
-
2021
- 2021-09-27 WO PCT/JP2021/035257 patent/WO2022071179A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020517355A (en) * | 2017-04-28 | 2020-06-18 | ファラパルス,インコーポレイテッド | Systems, devices, and methods for delivering pulsed field ablation energy to endocardial tissue |
WO2019009254A1 (en) * | 2017-07-04 | 2019-01-10 | テルモ株式会社 | Medical device and treatment method |
WO2019188916A1 (en) * | 2018-03-29 | 2019-10-03 | テルモ株式会社 | Medical device and treatment method |
WO2019189079A1 (en) * | 2018-03-29 | 2019-10-03 | テルモ株式会社 | Medical device |
Also Published As
Publication number | Publication date |
---|---|
JP2023175056A (en) | 2023-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7021211B2 (en) | Medical device | |
JP7538283B2 (en) | Medical Devices | |
JP7357604B2 (en) | Medical devices and treatment methods | |
JP7270605B2 (en) | medical device | |
WO2021065873A1 (en) | Medical device | |
WO2021065874A1 (en) | Medical device | |
JP6855209B2 (en) | Self-centering multi-ray ablation catheter | |
JP7513624B2 (en) | Medical Devices | |
US20230233255A1 (en) | Medical device and shunt forming method | |
WO2022071169A1 (en) | Medical device system and electrode contact detection method | |
WO2022071179A1 (en) | Medical device and shunt forming method | |
WO2021065876A1 (en) | Energy generating device and cauterization system | |
WO2022071180A1 (en) | Medical device and method of controlling same | |
JP2022038122A (en) | Medical device and shunt forming method | |
WO2022191075A1 (en) | Medical device | |
US20240366231A1 (en) | Medical device and treatment method | |
WO2022045180A1 (en) | Medical device | |
WO2022071170A1 (en) | Medical device and shunt formation method | |
JP2022136661A (en) | medical device | |
JP2023112882A (en) | Medical device and shunt formation method | |
JP2022042115A (en) | Medical device and method | |
JP2022038121A (en) | Medical device and shunt forming method | |
JP2022042116A (en) | Medical device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21875481 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |