Nothing Special   »   [go: up one dir, main page]

WO2021215290A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2021215290A1
WO2021215290A1 PCT/JP2021/015170 JP2021015170W WO2021215290A1 WO 2021215290 A1 WO2021215290 A1 WO 2021215290A1 JP 2021015170 W JP2021015170 W JP 2021015170W WO 2021215290 A1 WO2021215290 A1 WO 2021215290A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
region
pixels
visible light
light
Prior art date
Application number
PCT/JP2021/015170
Other languages
English (en)
French (fr)
Inventor
和芳 山下
佳明 桝田
槙一郎 栗原
章悟 黒木
祐介 上坂
俊起 坂元
広行 河野
政利 岩本
寺田 尚史
慎太郎 中食
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202180027818.0A priority Critical patent/CN115380381A/zh
Priority to US17/996,036 priority patent/US20230215901A1/en
Publication of WO2021215290A1 publication Critical patent/WO2021215290A1/ja

Links

Images

Classifications

    • H01L27/14641
    • H01L27/144
    • H01L27/146
    • H01L27/14603
    • H01L27/14609
    • H01L27/1461
    • H01L27/14612
    • H01L27/14621
    • H01L27/14627
    • H01L27/1463
    • H01L27/1464
    • H01L27/14643
    • H01L27/14645
    • H01L27/14647
    • H01L27/14649
    • H01L27/14652
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/20Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from infrared radiation only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • the present disclosure relates to a solid-state image sensor.
  • a solid-state image sensor capable of miniaturization by sharing a floating diffusion region with a plurality of adjacent light receiving pixels can be used. (See, for example, Patent Document 1).
  • a solid-state image sensor that includes a light receiving pixel that receives visible light and a light receiving pixel that receives infrared light and is capable of miniaturization is proposed.
  • a solid-state image sensor has a semiconductor layer, a floating diffusion region, a penetrating pixel separation region, and a non-penetrating pixel separation region.
  • the semiconductor layer visible light pixels that receive visible light and perform photoelectric conversion and infrared light pixels that receive infrared light and perform photoelectric conversion are arranged two-dimensionally.
  • the floating diffusion region is provided in the semiconductor layer and is shared by the adjacent visible light pixels and infrared light pixels.
  • the penetrating pixel separation region is provided in a region of the inter-pixel region of the visible light pixel and the infrared light pixel other than the region corresponding to the floating diffusion region, and penetrates the semiconductor layer in the depth direction.
  • the non-penetrating pixel separation region is provided in a region corresponding to the floating diffusion region in the inter-pixel region, and reaches an intermediate portion in the depth direction from the light receiving surface of the semiconductor layer.
  • a solid-state image sensor capable of simultaneously acquiring a visible light image and an infrared image.
  • a light receiving pixel that receives visible light and a light receiving pixel that receives infrared light are formed side by side in the same pixel array portion.
  • the visible light receiving pixel and the infrared light receiving pixel are formed in the same pixel array portion, the infrared light incident on the infrared light receiving pixel leaks into the adjacent receiving pixel, and the adjacent receiving pixel There is a risk of color mixing.
  • infrared light has a longer wavelength than visible light and therefore has a longer optical path length, so that infrared light that has passed through a photodiode is reflected by the lower wiring layer and easily leaks to adjacent light receiving pixels. Is.
  • each pixel is provided with an on-chip lens, two adjacent pixels are provided with one on-chip lens, and the pixels are adjacent to each other in the matrix direction. Some are provided with one on-chip lens for each of the four pixels, and some are provided with one color filter for each of the four pixels adjacent to each other in the matrix direction.
  • one pixel is defined as one pixel, and the length of one side of one pixel in a plan view is defined as a cell size.
  • a square-shaped pixel in a plan view is divided into two divided pixels having a rectangular shape in a plan view having the same area and used, one pixel in a square shape in a plan view obtained by combining the two divided pixels is used.
  • the length of one side in the plan view of one pixel is defined as the cell size.
  • the solid-state image sensor 1 there is also a pixel array unit in which two types of pixels having different sizes are alternately arranged in two dimensions.
  • the pixel having the shortest distance between the opposite sides is defined as a fine pixel.
  • the cell size is preferably 2.2 ( ⁇ m) or less. More preferably, the pixel array unit 10 has a cell size of 1.45 ( ⁇ m) or less.
  • FIG. 42 is a diagram showing the relationship between the cell size and the color mixing ratio in the pixel array portion of the reference example.
  • the color mixing ratio increases significantly when the cell size is 2.2 ( ⁇ m) or less, and more rapidly when the cell size is 1.45 ( ⁇ m) or less. Color mixing increases. That is, in the pixel array portion of the reference example, when the cell size is miniaturized to the range of 2.2 ( ⁇ m) and further to 1.45 ( ⁇ m) or less, the color mixing rapidly increases, so that the miniaturization is extremely difficult. Have difficulty.
  • the pixel array unit 10 can suppress the occurrence of color mixing by adopting the configuration described below, so that the cell size is 2.2 ( ⁇ m) or less, and further 1.45 ( ⁇ m) or less. It is possible to acquire an image that does not hinder practical use even if it is miniaturized so as to be.
  • FIG. 1 is a system configuration diagram showing a schematic configuration example of the solid-state image sensor 1 according to the embodiment of the present disclosure.
  • the solid-state image sensor 1 which is a CMOS image sensor includes a pixel array unit 10, a system control unit 12, a vertical drive unit 13, a column readout circuit unit 14, a column signal processing unit 15, and the column signal processing unit 15.
  • a horizontal drive unit 16 and a signal processing unit 17 are provided.
  • the pixel array unit 10, the system control unit 12, the vertical drive unit 13, the column readout circuit unit 14, the column signal processing unit 15, the horizontal drive unit 16, and the signal processing unit 17 are electrically connected on the same semiconductor substrate. It is provided on a plurality of laminated semiconductor substrates.
  • the pixel array unit 10 is an effective unit having a photoelectric conversion element (photodiode PD (see FIG. 4) or the like) capable of photoelectrically converting an amount of electric charge according to the amount of incident light, accumulating it inside, and outputting it as a signal.
  • Pixels (hereinafter, also referred to as “unit pixels”) 11 are two-dimensionally arranged in a matrix.
  • the pixel array unit 10 includes, in addition to the effective unit pixel 11, a dummy unit pixel having a structure that does not have a photodiode PD or the like, a light-shielding unit pixel that blocks light incident from the outside by blocking the light-receiving surface, and the like. May include areas arranged in rows and / or columns.
  • the light-shielding unit pixel may have the same configuration as the effective unit pixel 11 except that the light-receiving surface is shielded from light. Further, in the following, the light charge of the amount of charge corresponding to the amount of incident light may be simply referred to as "charge”, and the unit pixel 11 may be simply referred to as "pixel".
  • pixel drive lines LD are formed for each row along the left-right direction (arrangement direction of pixels in the pixel row) with respect to the matrix-like pixel array, and vertical pixel wiring is performed for each column.
  • the LV is formed along the vertical direction (arrangement direction of pixels in the pixel array) in the drawing.
  • One end of the pixel drive line LD is connected to the output end corresponding to each line of the vertical drive unit 13.
  • the column reading circuit unit 14 includes at least a circuit that supplies a constant current to the unit pixel 11 in the selected row in the pixel array unit 10 for each column, a current mirror circuit, and a changeover switch for the unit pixel 11 to be read.
  • the column readout circuit unit 14 constitutes an amplifier together with the transistors in the selected pixels in the pixel array unit 10, converts the optical charge signal into a voltage signal, and outputs the light charge signal to the vertical pixel wiring LV.
  • the vertical drive unit 13 includes a shift register, an address decoder, and the like, and drives each unit pixel 11 of the pixel array unit 10 at the same time for all pixels or in line units. Although the specific configuration of the vertical drive unit 13 is not shown, it has a read scanning system and a sweep scanning system or a batch sweep and batch transfer system.
  • the read-out scanning system selectively scans the unit pixels 11 of the pixel array unit 10 row by row in order to read the pixel signal from the unit pixels 11.
  • sweep scanning is performed ahead of the read scan performed by the read scan system by the time of the shutter speed.
  • batch sweeping is performed prior to batch transfer by the time of shutter speed.
  • unnecessary charges are swept (reset) from the photodiode PD or the like of the unit pixel 11 of the read line.
  • electronic shutter operation is performed by sweeping out (resetting) unnecessary charges.
  • the electronic shutter operation refers to an operation of discarding unnecessary light charges accumulated in the photodiode PD or the like until just before and starting a new exposure (starting the accumulation of light charges).
  • the signal read by the read operation by the read scanning system corresponds to the amount of light incidented after the read operation or the electronic shutter operation immediately before that.
  • the period from the read timing by the immediately preceding read operation or the sweep timing by the electronic shutter operation to the read timing by the current read operation is the light charge accumulation time (exposure time) in the unit pixel 11.
  • the time from batch sweeping to batch transfer is the accumulated time (exposure time).
  • the pixel signal output from each unit pixel 11 of the pixel row selectively scanned by the vertical drive unit 13 is supplied to the column signal processing unit 15 through each of the vertical pixel wiring LVs.
  • the column signal processing unit 15 performs predetermined signal processing on the pixel signal output from each unit pixel 11 of the selected row through the vertical pixel wiring LV for each pixel column of the pixel array unit 10, and after the signal processing, the column signal processing unit 15 performs predetermined signal processing. Temporarily holds the pixel signal.
  • the column signal processing unit 15 performs at least noise removal processing, for example, CDS (Correlated Double Sampling) processing as signal processing.
  • CDS Correlated Double Sampling
  • the CDS processing by the column signal processing unit 15 removes pixel-specific fixed pattern noise such as reset noise and threshold variation of the amplification transistor AMP.
  • the column signal processing unit 15 may be provided with, for example, an AD conversion function so as to output the pixel signal as a digital signal.
  • the horizontal drive unit 16 includes a shift register, an address decoder, and the like, and sequentially selects unit circuits corresponding to the pixel strings of the column signal processing unit 15. By the selective scanning by the horizontal drive unit 16, the pixel signals signal-processed by the column signal processing unit 15 are sequentially output to the signal processing unit 17.
  • the system control unit 12 includes a timing generator that generates various timing signals, and based on the various timing signals generated by the timing generator, the vertical drive unit 13, the column signal processing unit 15, the horizontal drive unit 16, and the like Drive control is performed.
  • the solid-state image sensor 1 further includes a signal processing unit 17 and a data storage unit (not shown).
  • the signal processing unit 17 has at least an addition processing function, and performs various signal processing such as addition processing on the pixel signal output from the column signal processing unit 15.
  • the data storage unit temporarily stores the data required for the signal processing in the signal processing unit 17.
  • the signal processing unit 17 and the data storage unit may be processed by an external signal processing unit provided on a substrate different from the solid-state image sensor 1, for example, a DSP (Digital Signal Processor) or software, or the solid-state image sensor. It may be mounted on the same substrate as 1.
  • DSP Digital Signal Processor
  • FIG. 2 is a plan view showing an example of the pixel array unit 10 according to the embodiment of the present disclosure.
  • a plurality of unit pixels 11 are arranged side by side in a matrix in the pixel array unit 10 according to the embodiment.
  • the plurality of unit pixels 11 include an R pixel 11R that receives red light, a G pixel 11G that receives green light, a B pixel 11B that receives blue light, and an IR pixel that receives infrared light. 11IR and is included.
  • the R pixel 11R, G pixel 11G, and B pixel 11B are examples of the first light receiving pixel, and are also collectively referred to as “visible light pixels” below.
  • the IR pixel 11IR is also referred to as an "infrared light pixel” or a “visible light pixel”.
  • a pixel separation region 23 is provided between adjacent unit pixels 11.
  • the pixel separation region 23 is arranged in a grid pattern in the pixel array unit 10 in a plan view.
  • visible light pixels of the same type may be arranged in an L shape, and IR pixels 11IR may be arranged in the remaining portions.
  • FIG. 3 is a plan view showing another example of the pixel array unit 10 according to the embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the embodiment of the present disclosure, and is a drawing corresponding to the cross-sectional view taken along the line AA of FIG.
  • the pixel array unit 10 includes a semiconductor layer 20, a wiring layer 30, and an optical layer 40. Then, in the pixel array unit 10, the optical layer 40, the semiconductor layer 20, and the wiring layer 30 are laminated in this order from the side where the light L from the outside is incident (hereinafter, also referred to as the light incident side).
  • the semiconductor layer 20 has a first conductive type (for example, P type) semiconductor region 21 and a second conductive type (for example, N type) semiconductor region 22. Then, the second conductive type semiconductor region 22 is formed in the first conductive type semiconductor region 21 in pixel units, so that the photodiode PD by the PN junction is formed.
  • a photodiode PD is an example of a photoelectric conversion unit.
  • the semiconductor layer 20 is provided with the pixel separation region 23 described above.
  • the pixel separation region 23 separates the photodiode PDs of the unit pixels 11 adjacent to each other. Further, the pixel separation region 23 is provided with a light-shielding wall 24 and a metal oxide film 25.
  • the light-shielding wall 24 is a wall-shaped film provided along the pixel separation region 23 in a plan view and shields light obliquely incident from adjacent unit pixels 11. By providing such a light-shielding wall 24, it is possible to suppress the incident of light transmitted through the adjacent unit pixels 11, so that the occurrence of color mixing can be suppressed.
  • the light-shielding wall 24 is made of a material having a light-shielding property such as various metals (tungsten, aluminum, silver, copper and alloys thereof) and a black organic film. Further, in the embodiment, the light-shielding wall 24 does not penetrate the semiconductor layer 20 and extends from the surface of the semiconductor layer 20 on the light incident side to the middle of the semiconductor layer 20.
  • the metal oxide film 25 is provided so as to cover the light-shielding wall 24 in the pixel separation region 23. Further, the metal oxide film 25 is provided so as to cover the surface of the semiconductor region 21 on the light incident side.
  • the metal oxide film 25 is made of, for example, a material having a fixed charge (for example, hafnium oxide, tantalum oxide, aluminum oxide, etc.).
  • an antireflection film, an insulating film, or the like may be separately provided between the metal oxide film 25 and the light-shielding wall 24.
  • the wiring layer 30 is arranged on the surface of the semiconductor layer 20 opposite to the light incident side.
  • the wiring layer 30 is configured by forming a plurality of layers of wiring 32 and a plurality of pixel transistors 33 in the interlayer insulating film 31.
  • the plurality of pixel transistors 33 read out the electric charge accumulated in the photodiode PD and the like.
  • the wiring layer 30 according to the embodiment further has a metal layer 34 composed of a metal containing tungsten as a main component.
  • the metal layer 34 is provided on the light incident side of the wiring 32 of the plurality of layers in each unit pixel 11.
  • the optical layer 40 is arranged on the surface of the semiconductor layer 20 on the light incident side (hereinafter, also referred to as a light receiving surface).
  • the optical layer 40 includes an IR cut filter 41, a flattening film 42, a color filter 43, and an OCL (On-Chip Lens) 44.
  • the IR cut filter 41 is formed of an organic material to which a near-infrared absorbing dye is added as an organic coloring material.
  • the IR cut filter 41 is arranged on the surface of the semiconductor layer 20 on the light incident side of the visible light pixels (R pixel 11R, G pixel 11G and B pixel 11B), and is arranged on the surface of the infrared light pixel (IR pixel 11IR) on the light incident side. It is not placed on the surface on the light incident side of. Details of the IR cut filter 41 will be described later.
  • the flattening film 42 is provided to flatten the surface on which the color filter 43 and the OCL 44 are formed and to avoid unevenness generated in the rotary coating process when forming the color filter 43 and the OCL 44.
  • the flattening film 42 is formed of, for example, an organic material (for example, acrylic resin).
  • the flattening film 42 is not limited to the case where it is formed of an organic material, and may be formed of silicon oxide, silicon nitride, or the like.
  • the flattening film 42 is in direct contact with the metal oxide film 25 of the semiconductor layer 20 in the IR pixel 11IR.
  • the color filter 43 is an optical filter that transmits light of a predetermined wavelength among the light L focused by the OCL 44.
  • the color filter 43 is arranged on the surface of the flattening film 42 on the light incident side of the visible light pixels (R pixel 11R, G pixel 11G, and B pixel 11B).
  • the color filter 43 includes, for example, a color filter 43R that transmits red light, a color filter 43G that transmits green light, and a color filter 43B that transmits blue light.
  • the color filter 43R is provided on the R pixel 11R
  • the color filter 43G is provided on the G pixel 11G
  • the color filter 43B is provided on the B pixel 11B.
  • the color filter 43 is not arranged on the infrared light pixel (IR pixel 11IR).
  • the OCL 44 is a lens provided for each unit pixel 11 and condensing the light L on the photodiode PD of each unit pixel 11.
  • OCL44 is made of, for example, an acrylic resin or the like. Further, as described above, since the color filter 43 is not provided on the infrared light pixel (IR pixel 11IR), the OCL 44 directly contacts the flattening film 42 on the infrared light pixel (IR pixel 11IR). There is.
  • a light-shielding wall 45 is provided at a position corresponding to the pixel separation region 23.
  • the light-shielding wall 45 is a wall-shaped film that shields light obliquely incident from adjacent unit pixels 11, and is provided so as to be connected to the light-shielding wall 24.
  • the light-shielding wall 45 By providing the light-shielding wall 45, it is possible to suppress the incident of light transmitted through the IR cut filter 41 and the flattening film 42 of the adjacent unit pixel 11, so that the occurrence of color mixing can be suppressed.
  • the light-shielding wall 45 is made of, for example, aluminum or tungsten.
  • the pixel separation region 23 extends from the light receiving surface of the semiconductor layer 20 to the middle portion in the depth direction, but this is an example and can have various configurations.
  • infrared light has a longer wavelength than visible light, so that the optical path length is longer. Therefore, for example, when incident from an oblique direction, infrared light is transmitted to a deep position of the photodiode PD and is adjacent to the photo. It may leak into the diode PD and cause color mixing.
  • the pixel separation region 23 has a configuration that penetrates the front and back surfaces of the semiconductor layer 20.
  • each light receiving pixel is optically separated from the adjacent light receiving pixel, but is also electrically separated, so that it is necessary to provide a pixel transistor 33 and a floating diffusion region, respectively. , It becomes difficult to miniaturize.
  • the pixel transistor 33 and the floating diffusion region can be provided directly below the pixel separation region 23 in the inter-pixel region of the visible light pixel and the infrared light pixel.
  • the adjacent visible light pixels and infrared light pixels can share the pixel transistor 33 and the floating diffusion region, so that miniaturization is possible, but as described above, the problem of color mixing remains.
  • the pixel array unit 10 can be miniaturized while suppressing the occurrence of color mixing by providing the pixel separation regions 23 having different depths in the inter-pixel regions of the visible light pixels and the infrared light pixels. And said.
  • the plan view shows a portion of 4 pixels adjacent to each other in the matrix direction
  • the cross-sectional view shows a portion of 2 pixels adjacent to each other.
  • FIGS. 16 to 22 show a portion of two adjacent pixels.
  • the visible light pixel is referred to as a visible light pixel PDc
  • the infrared light pixel is referred to as an infrared light pixel PDw
  • the gate of the pixel transistor 33 is referred to as a gate G
  • the well contact is referred to as a well contact Wlc
  • the transfer gate is referred to as TG.
  • FIG. 5A is a plan view of the pixel array unit according to the first embodiment of the present disclosure.
  • FIG. 5B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the first embodiment of the present disclosure.
  • FIG. 5C is a cross-sectional view taken along the line (C)-(D) of the pixel array portion according to the first embodiment of the present disclosure.
  • a floating diffusion region FD is provided in the center of four pixels adjacent to each other in the matrix direction.
  • the floating diffusion region is also called a floating diffusion region and is provided by forming an impurity region on the semiconductor substrate.
  • a floating diffusion region contact FDc for reading the transferred charge is connected to the floating diffusion region FD.
  • the floating diffusion contact FDc is further connected to the wiring 32 existing in the wiring layer 30, and the wiring is connected to the amplification transistor.
  • two visible light pixels PDc are diagonally adjacent to each other.
  • the two infrared light pixels PDw are diagonally adjacent to each other.
  • Well contact W1c is provided in each visible light pixel PDc and infrared light pixel PDw.
  • Well contact Wlc is connected to the ground. As a result, the potential of the substrate on which the semiconductor layer 20 is provided is maintained at 0 (V). Further, the well contact Wlc is uniformly arranged in the plane direction of the semiconductor layer 20. As a result, the variation in the characteristics of each pixel is suppressed. Further, a pixel transistor 33 is adjacent to each visible light pixel PDc and infrared light pixel PDw, respectively.
  • the floating diffusion region FD is shared by the four surrounding pixels.
  • a floating diffusion region FD is provided in the center of four pixels in the inter-pixel region of the visible light pixel PDc and the infrared light pixel PDw, so that a pixel separation groove penetrating the front and back surfaces of the semiconductor layer 20 is provided.
  • the pixel separation groove refers to, for example, a trench structure provided by digging a substrate. Twice
  • the deep trench portion 230 is provided in the region excluding the region corresponding to the floating diffusion region FD in the inter-pixel region, and the region corresponding to the floating diffusion region FD is provided.
  • a shallow trench portion 231 is provided.
  • the deep trench portion 230 refers to a trench structure in which the length in the depth direction of the semiconductor layer 20 is longer (deeper) than that of the shallow trench portion 231.
  • the shallow trench portion 231 constitutes a non-penetrating pixel separation region extending from the light receiving surface of the semiconductor layer 20 to an intermediate portion in the depth direction.
  • the pixel array unit can provide the floating diffusion region FD at a position surrounded by four pixels adjacent to each other in the matrix direction.
  • the deep trench portion 230 extends from the light receiving surface of the semiconductor layer 20 toward the surface facing the light receiving surface. Then, the deep trench portion 230 comes into contact with STI (Shallow Trench Isolation) 232 extending from the surface of the semiconductor layer 20 facing the light receiving surface toward the light receiving surface.
  • STI Shallow Trench Isolation
  • These deep trench portions 230 and STI232 form a penetrating pixel separation region that penetrates the semiconductor layer 20 in the depth direction.
  • the STI232 is an element separation structure provided for dividing an active region between elements such as a transistor.
  • the region excluding the region corresponding to the floating diffusion region FD is shielded by the penetrating pixel separation region, so that infrared light is emitted from the semiconductor layer 20. Even if it penetrates deeply, the occurrence of color mixing can be suppressed.
  • the shallow trench portion 231 reaches from the light receiving surface of the semiconductor layer 20 to the floating diffusion region FD, and the floating diffusion region FD is provided directly below.
  • the pixel array unit according to the first embodiment can provide the floating diffusion region FD shared by the four pixels in the center of the four pixels adjacent to each other in the matrix direction in the semiconductor layer 20.
  • the pixels can be miniaturized as compared with the case where the floating diffusion region FD is provided for each pixel.
  • the pixels can be miniaturized as compared with the case where the floating diffusion region FD is provided for each pixel.
  • the pixel array unit according to the first embodiment even if the shortest distance between the opposing sides in the plan view of the visible light pixel PDc and the infrared light pixel PDw is reduced to 2.2 microns or less, the colors are mixed. The incidence can be suppressed.
  • the light receiving area of the visible light pixel PDc and the infrared light pixel PDw can be widened as compared with the case where the floating diffusion region FD is not shared, so that the saturated electron amount and the photoelectric conversion efficiency can be increased. , Sensitivity, and S / N ratio can be improved.
  • the deep trench portion 230 and the shallow trench portion 231 When forming the deep trench portion 230 and the shallow trench portion 231, first, a mask is laminated on the formation position of the shallow trench portion 231 on the light receiving surface of the semiconductor layer 20, and then the deep trench is etched. A shallow trench is formed at the forming position of the portion 230.
  • the mask is removed from the forming position of the shallow trench portion 231, the forming position of the shallow trench portion 231 and the forming position of the deep trench portion 230 are simultaneously etched, and a light-shielding member is embedded in the trench to deepen the depth.
  • the mold trench portion 230 and the shallow trench portion 231 are formed at the same time.
  • the width of the shallow trench portion 231 in the plan view is the width of the deep trench portion 230 in the plan view. Becomes narrower than.
  • the areas of the visible light pixel PDc and the infrared light pixel PDw can be widened, so that the saturated electron amount, the photoelectric conversion efficiency, the sensitivity, and the S / N ratio can be improved. Can be done.
  • FIG. 6A is a plan view of the pixel array portion according to the second embodiment of the present disclosure.
  • FIG. 6B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the second embodiment of the present disclosure.
  • FIG. 6C is a cross-sectional view taken along the line (C)-(D) of the pixel array portion according to the second embodiment of the present disclosure.
  • the arrangement of each component in the plan view of the pixel array portion according to the second embodiment is the same as that of the pixel array portion according to the first embodiment, but the cross-sectional structure is the same as that of the first embodiment. It is different from the pixel array unit.
  • the deep trench portion 230 has a portion that separates pixels between the visible light pixel PDc and the infrared light pixel PDw that share the floating diffusion region FD.
  • the configuration that penetrates the semiconductor layer 20 in the depth direction is different from that of the first embodiment.
  • the pixel array unit according to the second embodiment can be miniaturized while suppressing color mixing, and the areas of the visible light pixel PDc and the infrared light pixel PDw can be widened, so that the amount of saturated electrons can be increased. , Photoelectric conversion efficiency, sensitivity, and S / N ratio can be improved.
  • FIG. 7A is a plan view of the pixel array unit according to the third embodiment of the present disclosure.
  • FIG. 7B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the third embodiment of the present disclosure.
  • the well contact Wlc shares the floating diffusion region FD with the visible light pixel PDc and the visible light pixel PDc (not shown) adjacent to the infrared light pixel PDw. It is provided between the infrared light pixel PDw.
  • the well contact Wlc is provided between the four pixels shown and the four pixels not shown adjacent to each other in the row direction.
  • the shallow trench portion 231 is provided in the region corresponding to the well contact Wlc in the inter-pixel region.
  • Other configurations are the same as those of the pixel array unit according to the second embodiment.
  • the cross section of the pixel array portion shown in FIG. 7A along the lines (C) to (D) has the same configuration as the cross section shown in FIG. 6C.
  • the shallow trench portion 231 reaches from the light receiving surface of the semiconductor layer 20 to the middle portion in the depth direction. Specifically, the shallow trench portion 231 reaches from the light receiving surface of the semiconductor layer 20 to the impurity diffusion region (well region) W1 in the semiconductor layer 20 connected to the well contact Wlc.
  • the well contact Wlc can be shared by the four pixels surrounding the well contact Wlc, so that the well contact Wlc is provided in each visible light pixel PDc and the infrared light pixel PDw. It is possible to make it finer than in the case.
  • the region where the well contact Wlc shown in FIG. 6A is provided can be used as the photoelectric conversion region.
  • the pixel array unit can increase the area of the visible light pixel PDc and the infrared light pixel PDw, so that the saturated electron amount, the photoelectric conversion efficiency, the sensitivity, and the S / N ratio can be improved.
  • a through pixel separation region by the deep trench portion 230 and STI232 is provided in an region other than the region corresponding to the well contact Wlc and the floating diffusion region FD in the inter-pixel region. Therefore, color mixing can be suppressed.
  • the pixel array portion according to the third embodiment has a configuration in which a penetrating pixel separation region by the deep trench portion 230 and STI232 is provided in an region other than the region corresponding to the well contact Wlc in the inter-pixel region. You may.
  • the pixel array unit according to the third embodiment is provided with a floating diffusion region FD for each visible light pixel PDc and infrared light pixel PDw.
  • the well contact Wlc is shared by the four pixels surrounding the well contact Wlc, so that the well contact Wlc can be miniaturized accordingly. Further, in the pixel array portion, the penetrating pixel separation region by the deep trench portion 230 and the STI232 is expanded, so that the function of suppressing color mixing is improved.
  • FIG. 8A is a plan view of the pixel array unit according to the fourth embodiment of the present disclosure.
  • FIG. 8B is a cross-sectional view taken along the line (C)-(D) of the pixel array portion according to the fourth embodiment of the present disclosure.
  • FIG. 8C is a cross-sectional view taken along the line (E)-(F) of the pixel array portion according to the fourth embodiment of the present disclosure.
  • the shallow trench portion 231 is provided in the region corresponding to the pixel transistor 33 in the inter-pixel region.
  • Other configurations are the same as those of the pixel array unit according to the third embodiment.
  • the cross section of the pixel array portion shown in FIG. 8A along the lines (A) to (B) has the same configuration as the cross section shown in FIG. 7B.
  • the pixel transistor 33 can be shared by the visible light pixel PDc and the infrared light pixel PDw.
  • the pixel transistor 33 is shared by two pixels, a visible light pixel PDc and an infrared light pixel PDw, which share the floating diffusion region FD shown in FIG. 8A.
  • the pixel transistor 33 can be shared by the visible light pixel PDc and the infrared light pixel PDw that are adjacent to the four pixels shown in FIG. 8A in the column direction. That is, the pixel transistor 33 can be shared by four pixels provided on both sides in the column direction with the pixel transistor 33 interposed therebetween.
  • the pixel array portion according to the fourth embodiment has a configuration in which a through pixel separation region by the deep trench portion 230 and STI232 is provided in a region other than the region corresponding to the pixel transistor 33 in the inter-pixel region. May be good.
  • the pixel array unit according to the fourth embodiment is provided with a floating diffusion region FD for each visible light pixel PDc and infrared light pixel PDw, and well contact is provided for each visible light pixel PDc and infrared light pixel PDw. Wlc will be provided.
  • the pixel transistor is shared by two adjacent pixels or four adjacent pixels in the matrix direction, miniaturization is possible accordingly. Further, in the pixel array portion, the penetrating pixel separation region by the deep trench portion 230 and the STI232 is expanded, so that the function of suppressing color mixing is improved.
  • the penetrating pixel separation region composed of the deep trench portion 230 and the STI232 of the fourth embodiment includes the visible light pixel PDc and the infrared light pixel PDw sharing the pixel transistor 33. Extends between and adjacent pixels.
  • the penetrating pixel separation region of the fourth embodiment includes the pixel transistor 33 shared by the visible light pixel PDc and the infrared light pixel PDw, and the other adjacent visible light pixel PDc and the infrared light pixel PDw. It extends between the visible light pixel PDc and the pixel transistor 33 shared by the infrared light pixel PDw.
  • the pixel array unit according to the fourth embodiment can suppress the occurrence of color mixing by suppressing the intrusion of leaked light from the pixel transistor 33 into the adjacent pixel transistor 33.
  • the shallow trench portion 231 of the fourth embodiment is provided from the light receiving surface of the semiconductor layer 20 to a depth that does not come into contact with the pixel transistor 33.
  • the pixel array portion according to the fourth embodiment does not require an etching stopper in the step of forming the shallow trench portion 231, so that the manufacturing process can be facilitated.
  • FIG. 9A is a plan view of the pixel array unit according to the fifth embodiment of the present disclosure.
  • FIG. 9B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the fifth embodiment of the present disclosure.
  • the cross section of the pixel array portion shown in FIG. 9A along the lines (C) to (D) has the same configuration as the cross section shown in FIG. 8B.
  • the pixel array unit according to the fifth embodiment is located between the visible light pixel PDc and the infrared light pixel PDw in which the shallow trench portion 231 shares the pixel transistor 33 and the adjacent pixels.
  • the configuration extending to is different from the pixel array portion of the fourth embodiment.
  • Other configurations are the same as those of the pixel array unit according to the fourth embodiment.
  • the shallow trench portion 231 provided in the region corresponding to the pixel transistor 33 of the fifth embodiment is the pixel transistor 33 shared by the visible light pixel PDc and the infrared light pixel PDw, and the visible light pixel PDc. And to the other visible light pixel PDc adjacent to the infrared light pixel PDw and the pixel transistor 33 shared by the infrared light pixel PDw.
  • the area of the deep trench portion 230 is narrower in the pixel array portion according to the fifth embodiment than in the pixel array portion according to the fourth embodiment, so that the surface of the semiconductor layer 20 is formed by forming the deep trench portion 230. It is possible to suppress the dark current caused by the roughness.
  • FIG. 10 is a plan view of the pixel array unit according to the sixth embodiment of the present disclosure.
  • the pixel array portion according to the sixth embodiment is the longitudinal direction of the deep trench portion 230 provided between the visible light pixel PDc sharing the floating diffusion region FD and the infrared light pixel PDw. Is shorter than the length of the deep trench portion 230 of the fifth embodiment in the longitudinal direction.
  • Other configurations are the same as those of the pixel array unit according to the fifth embodiment.
  • the region of the deep trench portion 230 becomes smaller, so that the dark current caused by the surface roughness of the semiconductor layer 20 due to the formation of the deep trench portion 230 can be suppressed. ..
  • the length of the deep trench portion 230 in the longitudinal direction is short, but the deep trench portion 230 and the shallow trench portion 231 are in contact with each other in a plan view. Since it is continuous, it is possible to suppress the incident light from being incident on the adjacent pixels.
  • FIG. 11 is a plan view of the pixel array unit according to the seventh embodiment of the present disclosure.
  • the pixel array portion according to the seventh embodiment has a configuration in which the deep trench portion 230 and the shallow trench portion 231 are not in contact with each other in a plan view, which is different from the pixel array portion of the sixth embodiment. different.
  • Other configurations are the same as those of the pixel array unit according to the sixth embodiment.
  • the pixel array portion of the seventh embodiment has the deep trench portion 230 and the shallow trench even if a slight misalignment occurs in the step of forming the deep trench portion 230 and the shallow trench portion 231.
  • the deviation can be tolerated by the gap between the portion 231 and the portion 231.
  • FIG. 12 is a plan view of the pixel array unit according to the eighth embodiment of the present disclosure.
  • the pixel array portion according to the eighth embodiment has a configuration in which the shallow trench portion 231 is not provided in the region corresponding to the well contact Wlc in the inter-pixel region in the sixth embodiment. It is different from the pixel array unit.
  • Other configurations are the same as those of the pixel array unit according to the sixth embodiment.
  • FIG. 13 is a plan view of the pixel array unit according to the ninth embodiment of the present disclosure.
  • the pixel array according to the ninth embodiment has a configuration in which the shallow trench portion 231 in the row direction is not provided among the shallow trench portions 231 intersecting in the region corresponding to the floating diffusion region FD.
  • Other configurations are the same as those of the pixel array unit according to the eighth embodiment.
  • FIG. 14 is a plan view of the pixel array unit according to the tenth embodiment of the present disclosure.
  • the pixel array portion according to the tenth embodiment has a configuration in which the shallow trench portion 231 that intersects in the region corresponding to the floating diffusion region FD is not provided, which is different from the pixel array portion according to the eighth embodiment. different.
  • Other configurations are the same as those of the pixel array unit according to the eighth embodiment.
  • the region of the shallow trench portion 231 becomes small, so that it is possible to suppress the dark current caused by the surface roughness of the semiconductor layer 20 due to the formation of the shallow trench portion 231. can.
  • FIG. 15 is a plan view of the pixel array unit according to the eleventh embodiment of the present disclosure.
  • the pixel array unit according to the eleventh embodiment has a configuration in which one infrared light pixel PDw has four well contact Wlc pixels, which is different from the pixel array unit according to the eighth embodiment. different.
  • the deep trench portion 230 is provided in the region other than the region corresponding to the floating diffusion region FD and the pixel transistor 33 in the inter-pixel region.
  • the saturated electron amount, the photoelectric conversion efficiency, the sensitivity, and the S / N ratio can be widened. Can be improved.
  • FIG. 16A is a plan view of the pixel array unit according to the twelfth embodiment of the present disclosure.
  • FIG. 16B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the twelfth embodiment of the present disclosure.
  • the pixel array unit according to the twelfth embodiment includes a floating diffusion region FD that is adjacent in the column direction but is shared between the visible light pixel PDc and the infrared light pixel PDw.
  • the pixel array unit according to the twelfth embodiment includes a well contact Wlc between the visible light pixel PDc and the infrared light pixel PDw, which are adjacent to each other in the column direction.
  • the pixel array unit according to the twelfth embodiment is shallow in the inter-pixel region corresponding to the floating diffusion region DF, the well contact Wlc, and the pixel transistor 33.
  • a mold trench portion 231 is provided.
  • a deep trench portion 230 is provided between the image sharing the floating diffusion region FD and between the pixels sharing another adjacent floating diffusion region FD. ..
  • a deep trench portion 230 is also provided between the images sharing the floating diffusion region FD.
  • the pixel array unit according to the twelfth embodiment shares one floating diffusion region FD and one well contact Wlc by two pixels.
  • the pixel array unit according to the twelfth embodiment can be miniaturized and the pixel area can be widened, so that the saturated electron amount, photoelectric conversion efficiency, sensitivity, and S / N ratio can be improved.
  • color mixing can be suppressed by shielding the visible light pixel PDc and the infrared light pixel PDw between the visible light pixel PDc and the infrared light pixel PDw by the deep trench portion 230.
  • FIG. 17 is a plan view of the pixel array unit according to the thirteenth embodiment of the present disclosure.
  • the pixel array unit according to the thirteenth embodiment has a configuration in which visible light pixels PDc and infrared light pixels PDw sharing a floating diffusion region FD are pixel-separated by a shallow trench portion 231. It is different from the pixel array unit according to the twelfth embodiment. Other configurations are the same as those of the pixel array unit according to the twelfth embodiment.
  • the pixel array unit according to the thirteenth embodiment can also be miniaturized while suppressing color mixing, and the areas of the visible light pixel PDc and the infrared light pixel PDw can be widened. And the S / N ratio can be improved.
  • the pixel separation region can be formed by using a mask with a simple pattern. Since it can be formed, the manufacturing process is facilitated.
  • FIG. 18 is a plan view of the pixel array unit according to the 14th embodiment of the present disclosure. As shown in FIG. 18, in the pixel array portion according to the 14th embodiment, the shallow trench portion 231 is provided in the region corresponding to the well contact Wlc shared by the visible light pixel PDc and the infrared light pixel PDw.
  • the deep trench portion 230 is provided in the region other than the region corresponding to the well contact Wlc in the inter-pixel region.
  • a floating diffusion region and a pixel transistor 33 are adjacent to each of the visible light pixel PDc and the infrared light pixel PDw, respectively.
  • FIG. 19 is a plan view of the pixel array unit according to the fifteenth embodiment of the present disclosure.
  • the pixel array unit according to the fifteenth embodiment has a configuration in which the shallow trench portion 231 is not provided in the region corresponding to the well contact Wlc shared by the visible light pixel PDc and the infrared light pixel PDw. It is different from the pixel array unit according to the above.
  • Other configurations are the same as those of the pixel array unit according to the 14th embodiment.
  • the pixel array unit according to the 14th and 15th embodiments penetrates all the inter-pixel regions of the adjacent visible light pixel PDc and infrared light pixel PDw except the region corresponding to the shared well contact Wlc. Pixels are separated by a deep trench portion 230 that serves as a pixel separation region. As a result, the pixel array unit according to the 14th and 15th embodiments can more reliably suppress color mixing.
  • FIG. 20A is a plan view of the pixel array unit according to the 16th embodiment of the present disclosure.
  • FIG. 20B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the 16th embodiment of the present disclosure.
  • FIG. 20C is a plan view of the pixel array unit according to the 16th embodiment of the present disclosure.
  • the pixel array unit according to the sixteenth embodiment has two plan-view rectangular visible light pixels PDc (L), which have square-shaped light-receiving pixels in a plan view and have the same area.
  • a shallow trench portion 231 is provided at a position separated into PDc (R).
  • the pair of light receiving pixels having a rectangular shape in a plan view may be infrared light pixels PDw (L) and PDw (R).
  • a shared floating diffusion region DF and well contact Wlc are provided between the pair of visible light pixels PDc (L) and PDc (R). Further, a shared pixel transistor 33 is adjacent to the pair of visible light pixels PDc (L) and PDc (R).
  • a deep trench portion 230 is provided between a pair of visible light pixels PDc (L) and PDc (R) and adjacent pixels.
  • the pixel array unit according to the 16th embodiment is a plane surrounding the pair of visible light pixels PDc (L) and PDc (R) on the light receiving surface of the pair of visible light pixels PDc (L) and PDc (R).
  • a visual circle-shaped on-chip lens 44 is provided. As shown in FIG. 20C, a plurality of a pair of visible light pixels PDc (L) and PDc (R) are arranged in a matrix.
  • the visible light pixel PDc (L) captures each pixel of the image visually recognized by the left eye of a person, for example.
  • the visible light pixel PDc (R) captures, for example, each pixel of an image visually recognized by the right eye of a person.
  • the pixel array unit according to the 16th embodiment can capture a 3D (three-dimensional) image by utilizing the left-right parallax.
  • a shallow trench portion 231 is provided between the pair of visible light pixels PDc (L) and PDc (R).
  • the pixel array unit according to the 16th embodiment can increase the optical path length of the pair of visible light pixels PDc (L) and PDc (R), so that the sensitivity can be improved.
  • the pixel array unit according to the 16th embodiment can be miniaturized because the floating diffusion region DF and the well contact Wlc can be shared by the pair of visible light pixels PDc (L) and PDc (R). Become.
  • the deep trench portion 230 is provided around the pair of visible light pixels PDc (L) and PDc (R), in the 3D (three-dimensional) image to be captured. Color mixing can be suppressed.
  • FIG. 21A is a plan view of the pixel array unit according to the 17th embodiment of the present disclosure.
  • FIG. 21B is a cross-sectional view taken along the line (A)-(B) of the pixel array portion according to the 17th embodiment of the present disclosure.
  • FIG. 21C is a plan view of the pixel array unit according to the 17th embodiment of the present disclosure.
  • the pixel array unit according to the 17th embodiment has visible light pixels PDc (L) on the light receiving surfaces of the pair of visible light pixels PDc (L) and PDc (R), respectively.
  • a plan-view elliptical on-chip lens 44 surrounding the PDc (R) is provided.
  • Other configurations are the same as those of the pixel array unit according to the 16th embodiment.
  • FIG. 21C a plurality of visible light pixels PDc (L) and PDc (R) are arranged in a matrix.
  • a shallow trench portion 231 is provided between the pair of visible light pixels PDc (L) and PDc (R).
  • the pixel array unit according to the 17th embodiment can increase the optical path length of the pair of visible light pixels PDc (L) and PDc (R), so that the sensitivity can be improved.
  • the pixel array unit according to the 17th embodiment can be miniaturized because the floating diffusion region DF and the well contact Wlc can be shared by the pair of visible light pixels PDc (L) and PDc (R). Become.
  • the deep trench portion 230 is provided around the pair of visible light pixels PDc (L) and PDc (R), in the 3D (three-dimensional) image to be captured. Color mixing can be suppressed.
  • FIG. 22 is an explanatory diagram of a pixel array unit according to the 18th embodiment of the present disclosure.
  • a conductor is embedded inside the deep trench portion 230 and the shallow trench portion 231, and a negative voltage is applied from the outside. , Holes are collected on the surfaces of the deep trench portion 230 and the shallow trench portion 231.
  • the pixel array portion according to the 18th embodiment recombines the electrons and holes generated from the interface order and defects existing at the interface between the deep trench portion 230 and the shallow trench portion 231 and the semiconductor layer 20. By combining, defective pixels called white spots and dark current can be suppressed.
  • FIG. 23 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the first modification of the embodiment of the present disclosure. As shown in FIG. 23, in the pixel array unit 10 of the first modification, the light-shielding wall 24 of the pixel separation region 23 is provided so as to penetrate the semiconductor layer 20.
  • a light-shielding portion 35 that penetrates from the tip of the light-shielding wall 24 to the wiring 32 of the wiring layer 30 in the light incident direction is provided.
  • the light-shielding portion 35 has a light-shielding wall 35a and a metal oxide film 35b.
  • the light-shielding wall 35a is a wall-shaped film provided along the separation region 23 in a plan view and shields light incident from adjacent unit pixels 11.
  • the metal oxide film 35b is provided in the light-shielding portion 35 so as to cover the light-shielding wall 35a.
  • the light-shielding wall 35a is made of the same material as the light-shielding wall 24, and the metal oxide film 35b is made of the same material as the metal oxide film 25.
  • FIG. 24 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the second modification of the embodiment of the present disclosure. As shown in FIG. 24, in the pixel array unit 10 of the second modification, the light-shielding wall 24 of the separation region 23 is provided so as to penetrate the semiconductor layer 20.
  • a pair of light-shielding portions 35 are provided so as to penetrate from a position adjacent to the tip end portion of the light-shielding wall 24 to the wiring 32 of the wiring layer 30 in the light incident direction. That is, the pixel array portion 10 according to the second modification is configured so that the tip end portion of the light-shielding wall 24 is surrounded by a pair of light-shielding parts 35.
  • the light-shielding wall 24 does not necessarily have to be formed so as to penetrate the semiconductor layer 20.
  • FIG. 25 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the third modification of the embodiment of the present disclosure. As shown in FIG. 25, in the pixel array portion 10 of the modification 3, the light-shielding wall 24 of the separation region 23 is provided so as to penetrate the semiconductor layer 20 and reach the metal layer 34 of the wiring layer 30.
  • a pair of light-shielding portions 35 penetrating in the light incident direction from a position different from the light-shielding wall 24 in the metal layer 34 to the wiring 32 of the wiring layer 30 are provided. That is, in the modified example 3, the light-shielding wall 24, the metal layer 34, and the light-shielding portion 35 are configured as a portion having an integrated light-shielding function.
  • FIG. 26 is a diagram showing an example of the spectral characteristics of the IR cut filter 41 according to the embodiment of the present disclosure.
  • the IR cut filter 41 has a spectral characteristic that the transmittance is 30 (%) or less in the wavelength range of 700 (nm) or more, and is particularly absorbed in the wavelength range near 850 (nm). It has a maximum wavelength.
  • the IR cut filter 41 is arranged on the light incident side surface of the semiconductor layer 20 in the visible light pixel, and the semiconductor layer 20 in the IR pixel 11IR It is not placed on the surface on the light incident side.
  • the color filter 43R that transmits red light is arranged in the R pixel 11R
  • the color filter 43G that transmits green light is arranged in the G pixel 11G.
  • a color filter 43B that transmits blue light is arranged in the B pixel 11B.
  • FIG. 27 is a diagram showing an example of the spectral characteristics of each unit pixel according to the embodiment of the present disclosure.
  • the spectral characteristics of the R pixel 11R, the G pixel 11G, and the B pixel 11B are in the infrared light region having a wavelength of about 750 (nm) to 850 (nm). It will take a low transmittance.
  • the IR cut filter 41 in the visible light pixel, the influence of infrared light incident on the visible light pixel can be reduced, so that the signal output from the photodiode PD of the visible light pixel can be reduced. Noise can be reduced.
  • the IR cut filter 41 is not provided on the IR pixel 11IR, as shown in FIG. 27, the spectral characteristics of the IR pixel 11IR are highly transmitted in the infrared light region. Maintain the rate.
  • the intensity of the signal output from the IR pixel 11IR can be increased.
  • the quality of the signal output from the pixel array unit 10 can be improved by providing the IR cut filter 41 only on the visible light pixels.
  • the flattening film 42 directly contacts the metal oxide film 25 of the semiconductor layer 20 in the IR pixel 11IR. doing.
  • the amount of light L transmitted through the surface of the metal oxide film 25 and incident on the photodiode PD of the IR pixel 11IR can be increased, so that the intensity of the signal output from the IR pixel 11IR is further increased. be able to.
  • the IR cut filter 41 is formed of an organic material to which a near-infrared absorbing dye is added as an organic coloring material.
  • a near-infrared absorbing dye for example, a pyrolopyrrole dye, a copper compound, a cyanine-based dye, a phthalocyanine-based compound, an imonium-based compound, a thiol complex-based compound, a transition metal oxide-based compound, and the like are used.
  • the near-infrared absorbing dye used in the IR cut filter 41 for example, a squarylium dye, a naphthalocyanine dye, a quaterylene dye, a dithiol metal complex dye, a croconium compound and the like are also used.
  • FIG. 28 is a diagram showing an example of a color material of the IR cut filter 41 according to the embodiment of the present disclosure.
  • R 1a and R 1b independently represent an alkyl group, an aryl group, or a heteroaryl group, respectively.
  • R 2 and R 3 each independently represent a hydrogen atom or a substituent, and at least one of them is an electron-withdrawing group.
  • R 2 and R 3 may be combined with each other to form a ring.
  • R 4 represents a hydrogen atom, an alkyl group, an aryl group, a heteroaryl group, a substituted boron, or a metal atom, even if it is covalently or coordinated with at least one of R 1a , R 1b , and R 3. good.
  • the spectral characteristics of the IR cut filter 41 are assumed to have an absorption maximum wavelength in a wavelength region near 850 (nm), but the transmittance is high in a wavelength region of 700 (nm) or more. It suffices if it is 30 (%) or less.
  • 29 to 32 are diagrams showing another example of the spectral characteristics of the IR cut filter 41 according to the embodiment of the present disclosure.
  • the spectral characteristics of the IR cut filter 41 may be such that the transmittance is 20 (%) in the wavelength range of 800 (nm) or more.
  • the spectral characteristics of the IR cut filter 41 may have an absorption maximum wavelength in a wavelength region near 950 (nm). Further, as shown in FIG. 31, the spectral characteristics of the IR cut filter 41 may be such that the transmittance is 20 (%) or less in the entire wavelength range of 750 (nm) or more.
  • the spectral characteristics of the IR cut filter 41 may be such that infrared light having a wavelength of 800 (nm) to 900 (nm) is transmitted in addition to visible light.
  • the IR cut filter 41 is an optical filter that selectively absorbs infrared light in a predetermined wavelength range in the visible light pixel. Can be. Further, the maximum absorption wavelength of the IR cut filter 41 can be appropriately determined depending on the application of the solid-state image sensor 1.
  • FIG. 33 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 4 of the embodiment of the present disclosure.
  • the IR cut filter 41 and the color filter 43 are arranged so as to be interchanged. That is, in the fourth modification, the color filter 43 is arranged on the surface of the semiconductor layer 20 on the light incident side of the visible light pixels (R pixel 11R, G pixel 11G, and B pixel 11B).
  • the flattening film 42 is provided to flatten the surface on which the IR cut filter 41 and the OCL 44 are formed and to avoid unevenness generated in the rotary coating process when forming the IR cut filter 41 and the OCL 44.
  • the IR cut filter 41 is arranged on the light incident side surface of the flattening film 42 in the visible light pixels (R pixel 11R, G pixel 11G and B pixel 11B).
  • This also makes it possible to improve the quality of the signal output from the pixel array unit 10 by providing the IR cut filter 41 only on the visible light pixels.
  • FIG. 34 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 5 of the embodiment of the present disclosure. As shown in FIG. 34, in the pixel array portion 10 of the modified example 5, the flattening film 42 that flattens the surface after the IR cut filter 41 is formed is omitted.
  • the color filter 43 is arranged on the surface of the visible light pixel (R pixel 11R, G pixel 11G, and B pixel 11B) on the light incident side of the IR cut filter 41.
  • This also makes it possible to improve the quality of the signal output from the pixel array unit 10 by providing the IR cut filter 41 only on the visible light pixels.
  • FIG. 35 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 6 of the embodiment of the present disclosure. As shown in FIG. 35, in the pixel array portion 10 of the modification 6, the flattening film 42 that flattens the surface after the IR cut filter 41 is formed is omitted as in the modification 5 described above. ..
  • the transparent material 46 is provided between the metal oxide film 25 of the semiconductor layer 20 and the OCL 44 in the IR pixel 11IR.
  • the transparent material 46 has at least an optical property of transmitting infrared light, and is formed in a photolithography step after the IR cut filter 41 is formed.
  • This also makes it possible to improve the quality of the signal output from the pixel array unit 10 by providing the IR cut filter 41 only on the visible light pixels.
  • FIG. 36 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 7 of the embodiment of the present disclosure. As shown in FIG. 36, in the pixel array unit 10 of the modified example 7, the IR cut filter 41 has multiple layers (two layers in the figure).
  • the multilayer IR cut filter 41 can be formed by repeating, for example, a step of forming the one-layer IR cut filter 41 and a step of flattening the surface with the flattening film 42.
  • the flattening film 42 applied when forming the flattening film 42 may be uneven. be.
  • the IR cut filter 41 having a small film thickness is flattened by the flattening film 42, it is possible to suppress the occurrence of unevenness in the flattening film 42. Further, in the modified example 7, the total film thickness of the IR cut filter 41 can be increased by forming the IR cut filter 41 in multiple layers.
  • the pixel array unit 10 can be formed with high accuracy, and the quality of the signal output from the pixel array unit 10 can be further improved.
  • FIG. 37 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 8 of the embodiment of the present disclosure. As shown in FIG. 37, in the pixel array portion 10 of the modified example 8, the light-shielding wall 45 is provided so as to penetrate the IR cut filter 41.
  • the incident of light transmitted through the IR cut filter 41 and the flattening film 42 of the adjacent unit pixels 11 can be further suppressed, so that the occurrence of color mixing can be further suppressed.
  • FIG. 38 is a cross-sectional view schematically showing the structure of the pixel array unit 10 according to the modified example 9 of the embodiment of the present disclosure.
  • the optical wall 47 is provided on the light incident side of the light shielding wall 45.
  • the integrated light-shielding wall 45 and the optical wall 47 are provided so as to penetrate the IR cut filter 41.
  • the optical wall 47 is made of a material having a low refractive index (for example, n ⁇ 1.6), and is made of, for example, silicon oxide or an organic material having a low refractive index.
  • FIG. 39 is a cross-sectional view schematically showing the peripheral structure of the solid-state image sensor 1 according to the embodiment of the present disclosure, and mainly shows the cross-sectional structure of the peripheral portion of the solid-state image sensor 1.
  • the solid-state imaging device 1 has a pixel region R1, a peripheral region R2, and a pad region R3.
  • the pixel area R1 is an area in which the unit pixel 11 is provided.
  • a plurality of unit pixels 11 are arranged in a two-dimensional grid pattern.
  • the peripheral region R2 is an region provided so as to surround all four sides of the pixel region R1.
  • FIG. 40 is a diagram showing a planar configuration of the solid-state image sensor 1 according to the embodiment of the present disclosure.
  • a light-shielding layer 48 is provided in the peripheral region R2.
  • the light-shielding layer 48 is a film that shields light obliquely incident from the peripheral region R2 toward the pixel region R1.
  • the light-shielding layer 48 By providing the light-shielding layer 48, it is possible to suppress the incident light L from the peripheral region R2 to the unit pixel 11 of the pixel region R1, so that the occurrence of color mixing can be suppressed.
  • the light-shielding layer 48 is made of, for example, aluminum or tungsten.
  • the pad area R3 is an area provided around the peripheral area R2. Further, the pad region R3 has a contact hole H as shown in FIG. 39. A bonding pad (not shown) is provided at the bottom of the contact hole H.
  • the pixel array portion 10 and each portion of the solid-state image sensor 1 are electrically connected.
  • the IR cut filter 41 may be formed not only in the pixel region R1 but also in the peripheral region R2 and the pad region R3.
  • the incident of infrared light from the peripheral region R2 and the pad region R3 to the unit pixel 11 of the pixel region R1 can be further suppressed. Therefore, according to the embodiment, the occurrence of color mixing can be further suppressed.
  • the solid-state image sensor 1 can be formed with high accuracy.
  • a light receiving pixel for phase difference detection (hereinafter, also referred to as a phase difference pixel) is added to the pixel array unit 10 according to the embodiment, and the retardation pixel is provided with a metal layer 34 containing tungsten as a main component. You may.
  • the color mixing that occurs in the phase difference pixels due to the IR pixel 11IR can be suppressed, so that the autofocus performance of the solid-state image sensor 1 can be improved.
  • a light receiving pixel for distance measurement using the ToF (Time of Flight) format (hereinafter, also referred to as a distance measuring pixel) is added to the pixel array unit 10 according to the embodiment, and tungsten is mainly used for the distance measuring pixel.
  • a metal layer 34 as a component may be provided.
  • ⁇ Effect> It has a solid-state image sensor 1, a semiconductor layer 20, a floating diffusion region FD, a penetrating pixel separation region (deep trench portion 230, STI232), and a non-penetrating pixel separation region (shallow trench portion 231) according to the present disclosure. ..
  • the semiconductor layer 20 visible light pixels PDc that receive visible light and perform photoelectric conversion and infrared light pixels PDw that receive infrared light and perform photoelectric conversion are arranged two-dimensionally.
  • the floating diffusion region FD is provided in the semiconductor layer 20 and is shared by the adjacent visible light pixel PDc and infrared light pixel PDw.
  • the penetrating pixel separation region (deep trench portion 230, STI232) is provided in an interpixel region of the visible light pixel PDc and the infrared light pixel PDw, excluding the region corresponding to the floating diffusion region FD, and is provided in the semiconductor layer 20. Penetrate in the depth direction.
  • the non-penetrating pixel separation region (shallow trench portion 231) is provided in a region corresponding to the floating diffusion region FD in the inter-pixel region, and reaches an intermediate portion in the depth direction from the light receiving surface of the semiconductor layer 20.
  • the solid-state image sensor 1 can be miniaturized because the floating diffusion region FD is shared by the visible light pixel PDc and the infrared light pixel PDw. Further, in the solid-state image sensor 1, since the visible light pixel PDc and the infrared light pixel PDw are separated by the through pixel separation region, color mixing can be suppressed.
  • the non-penetrating pixel separation region (shallow trench portion 231) reaches from the light receiving surface of the semiconductor layer 20 to the floating diffusion region FD.
  • the solid-state image sensor 1 can suppress color mixing due to leakage light from the floating diffusion region FD portion.
  • the floating diffusion area FD is shared by 4 pixels adjacent to each other in the matrix direction.
  • the solid-state image sensor 1 can be miniaturized as compared with the case where the floating diffusion region FD is provided in each of the four pixels.
  • the solid-state image sensor 1 can be miniaturized as compared with the case where the floating diffusion region FD is provided in each of the two pixels.
  • the solid-state image sensor 1 includes a semiconductor layer 20, a pixel transistor 33, a penetrating pixel separation region (deep trench portion 230, STI232), and a non-penetrating pixel separation region (shallow trench portion 231). ..
  • the semiconductor layer 20 visible light pixels PDc that receive visible light and perform photoelectric conversion and infrared light pixels PDw that receive infrared light and perform photoelectric conversion are arranged two-dimensionally.
  • the pixel transistor 33 is provided in the semiconductor layer 20 and is shared by the adjacent visible light pixel PDc and infrared light pixel PDw.
  • the penetrating pixel separation region (deep trench portion 230, STI232) is provided in an interpixel region of the visible light pixel PDc and the infrared light pixel PDw, excluding the region corresponding to the pixel transistor 33, and provides the semiconductor layer 20. Penetrate in the depth direction.
  • the non-penetrating pixel separation region (shallow trench portion 231) is provided in a region corresponding to the pixel transistor 33 in the inter-pixel region, and reaches an intermediate portion in the depth direction from the light receiving surface of the semiconductor layer 20.
  • the solid-state image sensor 1 can be miniaturized because the pixel transistor 33 is shared by the visible light pixel PDc and the infrared light pixel PDw. Further, in the solid-state image sensor 1, since the visible light pixel PDc and the infrared light pixel PDw are separated by the through pixel separation region, color mixing can be suppressed.
  • the penetrating pixel separation region includes a pixel transistor 33 shared by the visible light pixel PDc and the infrared light pixel PDw, and a visible light pixel adjacent to the visible light pixel PDc and the infrared light pixel PDw. It extends between the PDc and the pixel transistor 33 shared by the infrared light pixel PDw.
  • the solid-state image sensor 1 can suppress the occurrence of color mixing by suppressing the intrusion of leaked light from the pixel transistor 33 into the adjacent pixel transistor 33.
  • the non-penetrating pixel separation region includes a pixel transistor 33 shared by the visible light pixel PDc and the infrared light pixel PDw, and a visible light pixel PDc adjacent to the visible light pixel PDc and the infrared light pixel PDw. And extends to and from the pixel transistor 33 shared by the infrared light pixel PDw.
  • the region of the deep trench portion 230 is narrowed, so that it is possible to suppress a dark current caused by surface roughness of the semiconductor layer 20 due to the formation of the deep trench portion 230.
  • the pixel transistor 33 is shared by four pixels adjacent to each other in the matrix direction. As a result, the solid-state image sensor 1 can be miniaturized as compared with the case where the pixel transistors 33 are provided for each of the four pixels.
  • the pixel transistor 33 is shared by two adjacent pixels. As a result, the solid-state image sensor 1 can be miniaturized as compared with the case where the pixel transistors 33 are provided for each of the two pixels.
  • the solid-state image sensor 1 has a semiconductor layer 20, a well contact Wlc, a penetrating pixel separation region (deep trench portion 230, STI232), and a non-penetrating pixel separation region (shallow trench portion 231). ..
  • the semiconductor layer 20 visible light pixels PDc that receive visible light and perform photoelectric conversion and infrared light pixels PDw that receive infrared light and perform photoelectric conversion are arranged two-dimensionally.
  • the well contact Wlc is provided on the semiconductor layer 20 and is shared by the adjacent visible light pixel PDc and infrared light pixel PDw.
  • the penetrating pixel separation region (deep trench portion 230, STI232) is provided in an interpixel region of the visible light pixel PDc and the infrared light pixel PDw, excluding the region corresponding to the well contact Wlc, and provides the semiconductor layer 20. Penetrate in the depth direction.
  • the non-penetrating pixel separation region (shallow trench portion 231) is provided in a region corresponding to the well contact Wlc in the inter-pixel region, and reaches an intermediate portion in the depth direction from the light receiving surface of the semiconductor layer 20.
  • the solid-state image sensor 1 can be miniaturized because the well contact Wlc is shared by the visible light pixel PDc and the infrared light pixel PDw. Further, in the solid-state image sensor 1, since the visible light pixel PDc and the infrared light pixel PDw are separated by the through pixel separation region, color mixing can be suppressed.
  • the non-penetrating pixel separation region (shallow trench portion 231) reaches from the light receiving surface of the semiconductor layer 20 to the impurity diffusion region Wl in the semiconductor layer 20 connected to the well contact Wlc.
  • the solid-state image sensor 1 can suppress color mixing due to light leakage from the well contact Wlc portion.
  • the well contact Wlc is shared by 4 pixels adjacent to each other in the matrix direction.
  • the solid-state image sensor 1 can be miniaturized as compared with the case where the well contact Wlc is provided for each of the four pixels.
  • the well contact Wlc is shared by two adjacent pixels.
  • the solid-state image sensor 1 can be miniaturized as compared with the case where the well contact Wlc is provided for each of the two pixels.
  • the penetrating pixel separation region includes the trench portion 230 and the element separation structure (STI232).
  • the trench portion extends from the light receiving surface of the semiconductor layer toward the surface facing the light receiving surface.
  • the element separation structure (STI232) extends from the surface facing the light receiving surface toward the light receiving surface and comes into contact with the trench portion (deep trench portion 230).
  • the solid-state image sensor 1 can more reliably block light between the visible light pixel PDc and the infrared light pixel PDw by the through pixel separation region (deep trench portion 230, STI232).
  • the non-penetrating pixel separation region comes into contact with the penetrating pixel separation region (deep trench portion 230, STI232).
  • shallow trench portion 230, STI232 comes into contact with the penetrating pixel separation region
  • the non-penetrating pixel separation region (shallow trench portion 231) is not in contact with the penetrating pixel separation region (deep trench portion 230, STI232).
  • the solid-state image sensor 1 has the deep trench portion 230 and the shallow trench portion 231 even if a slight misalignment occurs in the step of forming the deep trench portion 230 and the shallow trench portion 231. Misalignment can be tolerated by the gap between them.
  • the visible light pixel PDc and the infrared light pixel PDw have a minimum distance of 2.2 microns or less between opposite sides in a plan view. As a result, the solid-state image sensor 1 can be sufficiently miniaturized while suppressing color mixing.
  • a negative voltage is applied to the penetrating pixel separation region (deep trench portion 230, STI232) and the non-penetrating pixel separation region (shallow trench portion 231).
  • the solid-state image sensor 1 has white spots by recombining electrons and holes generated from the interface order and defects existing at the interface between the deep trench portion 230 and the shallow trench portion 231 and the semiconductor layer 20. It is possible to suppress so-called defective pixels and dark current.
  • the non-penetrating pixel separation region is a region (PDc (L), PDw) having two planar viewing rectangular shapes having the same light receiving area of the visible light pixel PDc and the infrared light pixel PDw having a planar square shape. It is provided at a position to be divided into (R)).
  • the solid-state image sensor 1 can increase the optical path length in the pair of visible light pixels PDc (L) and PDc (R), so that the sensitivity can be improved.
  • the present disclosure is not limited to application to a solid-state image sensor. That is, the present disclosure refers to all electronic devices having a solid-state image sensor, such as a camera module, an image pickup device, a portable terminal device having an image pickup function, or a copier using a solid-state image sensor for an image reading unit, in addition to the solid-state image sensor. Is applicable.
  • Examples of such an imaging device include a digital still camera and a video camera. Further, examples of the mobile terminal device having such an imaging function include a smartphone and a tablet type terminal.
  • FIG. 41 is a block diagram showing a configuration example of an image pickup apparatus as an electronic device 100 to which the technique according to the present disclosure is applied.
  • the electronic device 100 of FIG. 41 is, for example, an electronic device such as an imaging device such as a digital still camera or a video camera, or a mobile terminal device such as a smartphone or a tablet terminal.
  • the electronic device 100 includes a lens group 101, a solid-state image sensor 102, a DSP circuit 103, a frame memory 104, a display unit 105, a recording unit 106, an operation unit 107, and a power supply unit 108. It is composed.
  • the DSP circuit 103, the frame memory 104, the display unit 105, the recording unit 106, the operation unit 107, and the power supply unit 108 are connected to each other via the bus line 109.
  • the lens group 101 captures incident light (image light) from the subject and forms an image on the image pickup surface of the solid-state image pickup device 102.
  • the solid-state image sensor 102 corresponds to the solid-state image sensor 1 according to the above-described embodiment, and converts the amount of incident light imaged on the image pickup surface by the lens group 101 into an electric signal in pixel units and outputs it as a pixel signal. do.
  • the DSP circuit 103 is a camera signal processing circuit that processes a signal supplied from the solid-state image sensor 102.
  • the frame memory 104 temporarily holds the image data processed by the DSP circuit 103 in frame units.
  • the display unit 105 is composed of a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the solid-state image sensor 102.
  • the recording unit 106 records image data of a moving image or a still image captured by the solid-state image sensor 102 on a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 107 issues operation commands for various functions of the electronic device 100 according to the operation by the user.
  • the power supply unit 108 appropriately supplies various power sources that serve as operating power sources for the DSP circuit 103, the frame memory 104, the display unit 105, the recording unit 106, and the operation unit 107 to these supply targets.
  • the solid-state image sensor 1 of each of the above-described embodiments as the solid-state image sensor 102, it is possible to suppress the occurrence of color mixing caused by the IR pixel 11IR.
  • the present technology can also have the following configurations.
  • a semiconductor layer in which visible light pixels that receive visible light and perform photoelectric conversion and infrared light pixels that receive infrared light and perform photoelectric conversion are arranged in two dimensions.
  • a floating diffusion region provided in the semiconductor layer and shared by the adjacent visible light pixels and infrared light pixels.
  • a penetrating pixel separation region provided in a region excluding the region corresponding to the floating diffusion region and penetrating the semiconductor layer in the depth direction, and a penetrating pixel separation region.
  • a solid-state image sensor having a non-penetrating pixel separation region provided in a region corresponding to the floating diffusion region in the inter-pixel region and extending from a light receiving surface of the semiconductor layer to an intermediate portion in the depth direction.
  • the non-penetrating pixel separation region is The solid-state image sensor according to (1) above, which reaches from the light receiving surface of the semiconductor layer to the floating diffusion region.
  • the floating diffusion region is The solid-state image sensor according to (1) or (2) above, which is shared by four pixels adjacent to each other in the matrix direction.
  • the floating diffusion region is The solid-state image sensor according to (1) or (2) above, which is shared by two adjacent pixels.
  • a semiconductor layer in which visible light pixels that receive visible light and perform photoelectric conversion and infrared light pixels that receive infrared light and perform photoelectric conversion are arranged in two dimensions.
  • a pixel transistor provided in the semiconductor layer and shared by the adjacent visible light pixel and the infrared light pixel, Among the inter-pixel regions of the visible light pixels and the infrared light pixels, a penetrating pixel separation region provided in a region excluding the region corresponding to the pixel transistor and penetrating the semiconductor layer in the depth direction, and a penetrating pixel separation region.
  • a solid-state image sensor having a non-penetrating pixel separation region provided in a region corresponding to the pixel transistor in the inter-pixel region and reaching a halfway portion in the depth direction from the light receiving surface of the semiconductor layer.
  • the penetrating pixel separation region is The pixel transistor shared by the visible light pixel and the infrared light pixel, and the pixel transistor shared by the visible light pixel and the infrared light pixel adjacent to the visible light pixel and the infrared light pixel.
  • the non-penetrating pixel separation region is The pixel transistor shared by the visible light pixel and the infrared light pixel, and the pixel transistor shared by the visible light pixel and the infrared light pixel adjacent to the visible light pixel and the infrared light pixel.
  • the solid-state imaging device according to (5) above which extends to the interval.
  • the pixel transistor is The solid-state image sensor according to any one of (5) to (7) above, which is shared by four pixels adjacent to each other in the matrix direction.
  • the pixel transistor is The solid-state image sensor according to any one of (5) to (7) above, which is shared by two adjacent pixels.
  • a well contact provided on the semiconductor layer and shared by the adjacent visible light pixels and infrared light pixels, Among the inter-pixel regions of the visible light pixels and the infrared light pixels, a penetrating pixel separation region provided in a region excluding the region corresponding to the well contact and penetrating the semiconductor layer in the depth direction, and a penetrating pixel separation region.
  • a solid-state imaging device having a non-penetrating pixel separation region provided in a region corresponding to the well contact in the inter-pixel region and extending from a light receiving surface of the semiconductor layer to an intermediate portion in the depth direction.
  • the non-penetrating pixel separation region is The solid-state imaging device according to (10), wherein the light receiving surface of the semiconductor layer reaches an impurity diffusion region in the semiconductor layer connected to the well contact.
  • the well contact is The solid-state image sensor according to (10) or (11), which is shared by four pixels adjacent to each other in the matrix direction.
  • the well contact is The solid-state image sensor according to (10) or (11), which is shared by two adjacent pixels.
  • the penetrating pixel separation region is A trench portion extending from the light receiving surface of the semiconductor layer toward the surface facing the light receiving surface, and The solid-state imaging device according to any one of (1) to (13) above, which includes an element separation structure that extends from a surface facing the light receiving surface toward the light receiving surface and comes into contact with the trench portion.
  • the non-penetrating pixel separation region is The solid-state image sensor according to any one of (1) to (14), which comes into contact with the penetrating pixel separation region.
  • the non-penetrating pixel separation region is The solid-state image sensor according to any one of (1) to (14), which is not in contact with the penetrating pixel separation region.
  • the visible light pixel and the infrared light pixel are The solid-state image sensor according to any one of (1) to (16) above, wherein the shortest distance between opposing sides in a plan view is 2.2 microns or less.
  • the penetrating pixel separation area and the non-penetrating pixel separation area are The solid-state image sensor according to any one of (1) to (17) to which a negative voltage is applied.
  • the non-penetrating pixel separation region is One of the above (1) to (18) provided at a position where the visible light pixel having a flat square shape and the infrared light pixel are divided into two rectangular regions in a plan view having the same light receiving area. The solid-state imaging device described.
  • Pixel Array unit 11 Unit pixel 11R R pixel 11G G pixel 11B B pixel 11IR IR pixel PDc Visible light pixel PDw Infrared light pixel 230 Deep trench part 231 Shallow trench part 232 STI FD Floating Diffusion Region Wlc Well Contact 20 Semiconductor Layer 30 Wiring Layer 32 Wiring 33 Pixel Transistor 100 Electronic Equipment PD Photodiode

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本開示に係る固体撮像素子(1)は、半導体層(20)と、フローティングディフュージョン領域(FD)と、貫通画素分離領域(230)と、非貫通画素分離領域(231)とを有する。半導体層(20)は、可視光を受光して光電変換する可視光画素(PDc)と、赤外光を受光して光電変換する赤外光画素(PDw)とが2次元に配列される。フローティングディフュージョン領域(FD)は、半導体層(20)に設けられ、隣接する可視光画素(PDc)および赤外光画素(PDw)によって共有される。貫通画素分離領域(230)は、可視光画素(PDc)および赤外光画素(PDw)の画素間領域のうち、フローティングディフュージョン領域(FD)に対応する領域を除く領域に設けられ、半導体層(20)を深さ方向に貫通する。非貫通画素分離領域(231)は、画素間領域のうち、フローティングディフュージョン領域(FD)に対応する領域に設けられ、半導体層(20)の受光面から深さ方向における中途部まで達する。

Description

固体撮像素子
 本開示は、固体撮像素子に関する。
 可視光を受光して光電変換する複数の受光画素が2次元に配列される半導体層において、隣接する複数の受光画素によってフローティングディフュージョン領域を共有することにより、微細化を可能とした固体撮像素子がある(例えば、特許文献1参照)。
国際公開第2017/187957号
 しかしながら、可視光を受光する受光画素と、赤外光を受光する受光画素とを備える固体撮像素子では、微細化が困難であった。
 そこで、本開示では、可視光を受光する受光画素と、赤外光を受光する受光画素とを備え、微細化が可能な固体撮像素子を提案する。
 本開示によれば、固体撮像素子が提供される。固体撮像素子は、半導体層と、フローティングディフュージョン領域と、貫通画素分離領域と、非貫通画素分離領域とを有する。半導体層は、可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される。フローティングディフュージョン領域は、前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有される。貫通画素分離領域は、前記可視光画素および前記赤外光画素の画素間領域のうち、前記フローティングディフュージョン領域に対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する。非貫通画素分離領域は、前記画素間領域のうち、前記フローティングディフュージョン領域に対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する。
本開示の実施形態に係る固体撮像素子の概略構成例を示すシステム構成図である。 本開示の実施形態に係る画素アレイ部の一例を示す平面図である。 本開示の実施形態に係る画素アレイ部の別の一例を示す平面図である。 本開示の実施形態に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の第1実施例に係る画素アレイ部の平面図である。 本開示の第1実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第1実施例に係る画素アレイ部の(C)-(D)線による断面図である。 本開示の第2実施例に係る画素アレイ部の平面図である。 本開示の第2実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第2実施例に係る画素アレイ部の(C)-(D)線による断面図である。 本開示の第3実施例に係る画素アレイ部の平面図である。 本開示の第3実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第4実施例に係る画素アレイ部の平面図である。 本開示の第4実施例に係る画素アレイ部の(C)-(D)線による断面図である。 本開示の第4実施例に係る画素アレイ部の(E)-(F)線による断面図である。 本開示の第5実施例に係る画素アレイ部の平面図である。 本開示の第5実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第6実施例に係る画素アレイ部の平面図である。 本開示の第7実施例に係る画素アレイ部の平面図である。 本開示の第8実施例に係る画素アレイ部の平面図である。 本開示の第9実施例に係る画素アレイ部の平面図である。 本開示の第10実施例に係る画素アレイ部の平面図である。 本開示の第11実施例に係る画素アレイ部の平面図である。 本開示の第12実施例に係る画素アレイ部の平面図である。 本開示の第12実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第13実施例に係る画素アレイ部の平面図である。 本開示の第14実施例に係る画素アレイ部の平面図である。 本開示の第15実施例に係る画素アレイ部の平面図である。 本開示の第16実施例に係る画素アレイ部の平面図である。 本開示の第16実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第16実施例に係る画素アレイ部の平面図である。 本開示の第17実施例に係る画素アレイ部の平面図である。 本開示の第17実施例に係る画素アレイ部の(A)-(B)線による断面図である。 本開示の第17実施例に係る画素アレイ部の平面図である。 本開示の第18実施例に係る画素アレイ部の説明図である。 本開示の実施形態の変形例1に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例2に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例3に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態に係るIRカットフィルタの分光特性の一例を示す図である。 本開示の実施形態に係る各単位画素の分光特性の一例を示す図である。 本開示の実施形態に係るIRカットフィルタの色材の一例を示す図である。 本開示の実施形態に係るIRカットフィルタの分光特性の別の一例を示す図である。 本開示の実施形態に係るIRカットフィルタの分光特性の別の一例を示す図である。 本開示の実施形態に係るIRカットフィルタの分光特性の別の一例を示す図である。 本開示の実施形態に係るIRカットフィルタの分光特性の別の一例を示す図である。 本開示の実施形態の変形例4に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例5に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例6に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例7に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例8に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態の変形例9に係る画素アレイ部の構造を模式的に示す断面図である。 本開示の実施形態に係る固体撮像素子の周辺構造を模式的に示す断面図である。 本開示の実施形態に係る固体撮像素子の平面構成を示す図である。 本開示に係る技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。 参考例の画素アレイ部におけるセルサイズと混色率との関係を示す図である。
 以下に、本開示の各実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
 近年、可視光画像と赤外画像とを同時に取得可能な固体撮像素子が知られている。かかる固体撮像素子では、可視光を受光する受光画素と赤外光を受光する受光画素とが同じ画素アレイ部に並んで形成されている。
 しかしながら、可視光の受光画素と赤外光の受光画素とを同じ画素アレイ部に形成した場合、赤外光の受光画素に入射した赤外光が隣接する受光画素に漏れ込み、隣接する受光画素で混色が発生する恐れがある。
 なぜなら赤外光は、可視光に比べて波長が長いため光路長が長くなることから、フォトダイオードを通過した赤外光が下層の配線層で反射して、隣接する受光画素に漏れ込みやすいからである。
 ここで、本開示に係る画素の定義について説明する。平面視正方形状の画素が行列状に配列される画素アレイ部の場合、各画素にオンチップレンズが設けられるもの、隣接する2画素に一つのオンチップレンズが設けられるもの、行列方向に隣接する4画素に一つのオンチップレンズが設けられるもの、行列方向に隣接する4画素に一つのカラーフィルタが設けられるものがある。これらの画素アレイ部については、1つの画素を1画素と定義し、1画素の平面視における一辺の長さをセルサイズと定義する。
 また、例えば、平面視正方形状の画素を、面積が同一の平面視矩形状をした2つの分割画素に分離して使用する場合、2つの分割画素を合わせた平面視正方形状の画素を1画素と定義し、1画素の平面視における一辺の長さをセルサイズと定義する。
 また、固体撮像素子1によっては、例えば、大きさが異なる2種類の画素が交互に2次元配置される画素アレイ部もある。この場合、大画素および小画素のそれぞれについて、対向する辺間の距離が最も短い画素を微細画素と定義する。
 ここで、実施形態に係る画素アレイ部10では、セルサイズが2.2(μm)以下であるとよい。さらに好ましくは、画素アレイ部10は、セルサイズが1.45(μm)以下であることが望ましい。図42は、参考例の画素アレイ部におけるセルサイズと混色率との関係を示す図である。
 図42に示すように、参考例の画素アレイ部では、セルサイズが2.2(μm)以下になると大きく混色率が増大し、セルサイズが1.45(μm)以下になると、さらに急激に混色が増大する。すなわち、参考例の画素アレイ部では、セルサイズが2.2(μm)、さらには1.45(μm)以下の範囲まで微細化すると混色が急激に増加するため、微細化することが非常に困難である。
 そこで、実施形態に係る画素アレイ部10は、以下に説明する構成とすることにより、混色の発生を抑制できるため、セルサイズが2.2(μm)以下、さらには1.45(μm)以下となるように微細化しても、実用上支障のない画像を取得することができる。
<固体撮像素子の構成>
 図1は、本開示の実施形態に係る固体撮像素子1の概略構成例を示すシステム構成図である。図1に示すように、CMOSイメージセンサである固体撮像素子1は、画素アレイ部10と、システム制御部12と、垂直駆動部13と、カラム読出し回路部14と、カラム信号処理部15と、水平駆動部16と、信号処理部17とを備える。
 これら画素アレイ部10、システム制御部12、垂直駆動部13、カラム読出し回路部14、カラム信号処理部15、水平駆動部16および信号処理部17は、同一の半導体基板上または電気的に接続された複数の積層半導体基板上に設けられる。
 画素アレイ部10には、入射光量に応じた電荷量を光電変換して内部に蓄積し、信号として出力することが可能な光電変換素子(フォトダイオードPD(図4参照)など)を有する有効単位画素(以下、「単位画素」とも呼称する)11が行列状に2次元配置されている。
 また、画素アレイ部10は、有効単位画素11の他に、フォトダイオードPDなどを持たない構造のダミー単位画素や、受光面を遮光することで外部からの光入射が遮断された遮光単位画素などが、行および/または列状に配置されている領域を含む場合がある。
 なお、遮光単位画素は、受光面が遮光された構造である以外は、有効単位画素11と同様の構成を備えていてもよい。また、以下では、入射光量に応じた電荷量の光電荷を、単に「電荷」とも呼称し、単位画素11を、単に「画素」とも呼称する場合もある。
 画素アレイ部10には、行列状の画素配列に対して、行ごとに画素駆動線LDが図面中の左右方向(画素行の画素の配列方向)に沿って形成され、列ごとに垂直画素配線LVが図面中の上下方向(画素列の画素の配列方向)に沿って形成される。画素駆動線LDの一端は、垂直駆動部13の各行に対応した出力端に接続される。
 カラム読出し回路部14は、少なくとも、画素アレイ部10内の選択行における単位画素11に列ごとに定電流を供給する回路、カレントミラー回路および読出し対象となる単位画素11の切替えスイッチなどを含む。
 そして、カラム読出し回路部14は、画素アレイ部10内の選択画素におけるトランジスタとともに増幅器を構成し、光電荷信号を電圧信号に変換して垂直画素配線LVに出力する。
 垂直駆動部13は、シフトレジスタやアドレスデコーダなどを含み、画素アレイ部10の各単位画素11を、全画素同時や行単位などで駆動する。この垂直駆動部13は、その具体的な構成については図示を省略するが、読出し走査系と、掃出し走査系あるいは一括掃出しおよび一括転送系とを有する構成となっている。
 読出し走査系は、単位画素11から画素信号を読み出すために、画素アレイ部10の単位画素11を行単位で順に選択走査する。行駆動(ローリングシャッタ動作)の場合、掃出しについては、読出し走査系によって読出し走査が行われる読出し行に対して、その読出し走査よりもシャッタスピードの時間分だけ先行して掃出し走査が行なわれる。
 また、グローバル露光(グローバルシャッタ動作)の場合は、一括転送よりもシャッタスピードの時間分先行して一括掃出しが行なわれる。このような掃出しにより、読出し行の単位画素11のフォトダイオードPDなどから不要な電荷が掃出し(リセット)される。そして、不要電荷の掃出し(リセット)により、いわゆる電子シャッタ動作が行われる。
 ここで、電子シャッタ動作とは、直前までフォトダイオードPDなどに溜まっていた不要な光電荷を捨てて、新たに露光を開始する(光電荷の蓄積を開始する)動作のことをいう。
 読出し走査系による読出し動作によって読み出される信号は、その直前の読出し動作または電子シャッタ動作以降に入射した光量に対応するものである。行駆動の場合は、直前の読出し動作による読出しタイミングまたは電子シャッタ動作による掃出しタイミングから、今回の読出し動作による読出しタイミングまでの期間が、単位画素11における光電荷の蓄積時間(露光時間)となる。グローバル露光の場合は、一括掃出しから一括転送までの時間が蓄積時間(露光時間)となる。
 垂直駆動部13によって選択走査された画素行の各単位画素11から出力される画素信号は、垂直画素配線LVの各々を通してカラム信号処理部15に供給される。カラム信号処理部15は、画素アレイ部10の画素列ごとに、選択行の各単位画素11から垂直画素配線LVを通して出力される画素信号に対して所定の信号処理を行うとともに、信号処理後の画素信号を一時的に保持する。
 具体的には、カラム信号処理部15は、信号処理として少なくとも、ノイズ除去処理、たとえばCDS(Correlated Double Sampling:相関二重サンプリング)処理を行う。このカラム信号処理部15によるCDS処理により、リセットノイズや増幅トランジスタAMPの閾値ばらつきなどの画素固有の固定パターンノイズが除去される。
 なお、カラム信号処理部15には、ノイズ除去処理以外に、たとえば、AD変換機能を持たせて、画素信号をデジタル信号として出力するように構成することもできる。
 水平駆動部16は、シフトレジスタやアドレスデコーダなどを含み、カラム信号処理部15の画素列に対応する単位回路を順番に選択する。この水平駆動部16による選択走査により、カラム信号処理部15で信号処理された画素信号が順番に信号処理部17に出力される。
 システム制御部12は、各種のタイミング信号を生成するタイミングジェネレータなどを含み、タイミングジェネレータで生成された各種のタイミング信号を基に、垂直駆動部13、カラム信号処理部15、水平駆動部16などの駆動制御を行う。
 固体撮像素子1は、さらに、信号処理部17と、図示しないデータ格納部とを備える。信号処理部17は、少なくとも加算処理機能を有し、カラム信号処理部15から出力される画素信号に対して加算処理などの種々の信号処理を行う。
 データ格納部は、信号処理部17での信号処理にあたって、その処理に必要なデータを一時的に格納する。これら信号処理部17およびデータ格納部については、固体撮像素子1とは別の基板に設けられる外部信号処理部、たとえばDSP(Digital Signal Processor)やソフトウェアによる処理であってもよいし、固体撮像素子1と同じ基板上に搭載されてもよい。
<画素アレイ部の構成>
 つづいて、画素アレイ部10の詳細な構成について、図2~図4を参照しながら説明する。図2は、本開示の実施形態に係る画素アレイ部10の一例を示す平面図である。
 図2に示すように、実施形態に係る画素アレイ部10には、複数の単位画素11が行列状に並んで配置される。かかる複数の単位画素11には、赤色の光を受光するR画素11Rと、緑色の光を受光するG画素11Gと、青色の光を受光するB画素11Bと、赤外光を受光するIR画素11IRとが含まれる。
 R画素11R、G画素11GおよびB画素11Bは、第1の受光画素の一例であり、以下においては総称して「可視光画素」とも呼称する。また、IR画素11IRは、「赤外光画素」「可視光画素」とも呼称する。
 また、隣接する単位画素11同士の間には、画素分離領域23が設けられる。この画素分離領域23は、画素アレイ部10において平面視で格子状に配置される。
 実施形態に係る画素アレイ部10では、たとえば、図2に示すように、同じ種類の可視光画素がそれぞれL字状に配置され、残りの箇所にIR画素11IRが配置されてもよい。
 なお、画素アレイ部10における可視光画素およびIR画素11IRの配置は、図2の例に限られない。たとえば、図3に示すように、IR画素11IRが市松状に配置され、残りの箇所に3種類の可視光画素がそれぞれ配置されてもよい。図3は、本開示の実施形態に係る画素アレイ部10の別の一例を示す平面図である。
 図4は、本開示の実施形態に係る画素アレイ部10の構造を模式的に示す断面図であり、図2のA-A線断面図に対応する図面である。
 図4に示すように、実施形態に係る画素アレイ部10は、半導体層20と、配線層30と、光学層40とを備える。そして、画素アレイ部10では、外部からの光Lが入射する側(以下、光入射側とも呼称する。)から順に、光学層40、半導体層20および配線層30が積層されている。
 半導体層20は、第1導電型(たとえば、P型)の半導体領域21と、第2導電型(たとえば、N型)の半導体領域22とを有する。そして、第1導電型の半導体領域21内に、第2導電型の半導体領域22が画素単位で形成されることにより、PN接合によるフォトダイオードPDが形成される。かかるフォトダイオードPDは、光電変換部の一例である。
 また、半導体層20には、上述した画素分離領域23が設けられる。かかる画素分離領域23は、互いに隣接する単位画素11のフォトダイオードPD同士を分離する。また、画素分離領域23には、遮光壁24と、金属酸化膜25とが設けられる。
 遮光壁24は、平面視で画素分離領域23に沿って設けられ、隣接する単位画素11から斜めに入射する光を遮蔽する壁状の膜である。かかる遮光壁24を設けることによって、隣接する単位画素11を透過した光の入射を抑制することができることから、混色の発生を抑制することができる。
 遮光壁24は、たとえば、各種金属(タングステン、アルミニウム、銀、銅およびこれらの合金)や黒色系有機膜などの遮光性を有する材料で構成される。また、実施形態において、遮光壁24は半導体層20を貫通せず、半導体層20の光入射側の面から半導体層20の途中まで延びる。
 金属酸化膜25は、画素分離領域23において遮光壁24を覆うように設けられる。また、金属酸化膜25は、半導体領域21における光入射側の面を覆うように設けられる。金属酸化膜25は、たとえば、固定電荷を有する材料(たとえば、酸化ハフニウム、酸化タンタル、酸化アルミニウムなど)で構成される。
 なお、実施形態において、金属酸化膜25と遮光壁24との間には、反射防止膜や絶縁膜などが別途設けられていてもよい。
 半導体層20における光入射側とは反対側の面には、配線層30が配置される。かかる配線層30は、層間絶縁膜31内に複数層の配線32および複数の画素トランジスタ33が形成されることにより構成される。複数の画素トランジスタ33は、フォトダイオードPDに蓄積された電荷の読み出しなどを行う。
 また、実施形態に係る配線層30は、タングステンを主成分とする金属で構成される金属層34をさらに有する。金属層34は、各単位画素11において、複数層の配線32よりも光入射側に設けられる。
 半導体層20における光入射側の面(以下、受光面とも呼称する。)には、光学層40が配置される。光学層40は、IRカットフィルタ41と、平坦化膜42と、カラーフィルタ43と、OCL(On-Chip Lens)44とを有する。
 IRカットフィルタ41は、有機の色材として、近赤外線吸収性色素が添加された有機材料で形成される。このIRカットフィルタ41は、可視光画素(R画素11R、G画素11GおよびB画素11B)における半導体層20の光入射側の面に配置され、赤外光画素(IR画素11IR)における半導体層20の光入射側の面には配置されない。かかるIRカットフィルタ41の詳細については後述する。
 平坦化膜42は、カラーフィルタ43およびOCL44が形成される面を平坦化し、カラーフィルタ43およびOCL44を形成する際の回転塗布の工程で発生するムラを回避するために設けられる。
 平坦化膜42は、たとえば、有機材料(たとえば、アクリル樹脂)で形成される。なお、平坦化膜42は、有機材料で形成される場合に限られず、酸化シリコンや窒化シリコンなどにより形成されてもよい。
 また、上述のように、IR画素11IRにはIRカットフィルタ41が設けられていないことから、IR画素11IRでは平坦化膜42が半導体層20の金属酸化膜25に直接接触している。
 カラーフィルタ43は、OCL44によって集光された光Lのうち、所定の波長の光を透過させる光学的なフィルタである。カラーフィルタ43は、可視光画素(R画素11R、G画素11GおよびB画素11B)における平坦化膜42の光入射側の面に配置される。
 このカラーフィルタ43には、たとえば、赤色の光を透過させるカラーフィルタ43Rと、緑色の光を透過させるカラーフィルタ43Gと、青色の光を透過させるカラーフィルタ43Bとが含まれる。
 実施形態では、カラーフィルタ43RがR画素11Rに設けられ、カラーフィルタ43GがG画素11Gに設けられ、カラーフィルタ43BがB画素11Bに設けられる。また、実施形態では、赤外光画素(IR画素11IR)にカラーフィルタ43は配置されない。
 OCL44は、単位画素11ごとに設けられ、光Lを各単位画素11のフォトダイオードPDに集光するレンズである。OCL44は、たとえば、アクリル系などの樹脂などにより構成される。また、上述のように、赤外光画素(IR画素11IR)にはカラーフィルタ43が設けられていないことから、赤外光画素(IR画素11IR)ではOCL44が平坦化膜42に直接接触している。
 また、IRカットフィルタ41または平坦化膜42と半導体層20との界面において、画素分離領域23に対応する箇所には、遮光壁45が設けられる。遮光壁45は、隣接する単位画素11から斜めに入射する光を遮蔽する壁状の膜であり、遮光壁24に繋がるように設けられる。
 かかる遮光壁45を設けることによって、隣接する単位画素11のIRカットフィルタ41や平坦化膜42を透過した光の入射を抑制することができることから、混色の発生を抑制することができる。遮光壁45は、たとえば、アルミニウムやタングステンなどにより構成される。
 また、図4に示す例では、画素分離領域23は、半導体層20の受光面から深さ方向における中途部まで延在しているが、これは一例であり、種々の構成を取りうる。前述したように、赤外光は、可視光に比べて波長が長いため光路長が長くなることから、例えば、斜め方向から入射する場合、フォトダイオードPDの深い位置まで透過して、隣接するフォトダイオードPDに漏れ込み、混色を発生させることがある。
 このため、画素分離領域23は、混色の発生を防止する観点では、半導体層20の表裏を貫通する構成であることが望ましい。しかし、かかる構成の場合、各受光画素は、隣接する受光画素と光学的に分離されるが、電気的にも分離されるため、それぞれに、画素トランジスタ33およびフローティングディフュージョン領域が設けられる必要があり、微細化が困難となる。
 一方、図4に示す構成の場合、可視光画素および赤外光画素の画素間領域における画素分離領域23の直下に、画素トランジスタ33およびフローティングディフュージョン領域を設けることが可能である。これにより、隣接する可視光画素および赤外光画素は、画素トランジスタ33およびフローティングディフュージョン領域を共有できるため、微細化が可能となるが、前述したように、混色の問題が残る。
 そこで、本開示に係る画素アレイ部10は、可視光画素および赤外光画素の画素間領域に、深さが異なる画素分離領域23を備えることによって、混色の発生を抑制しつつ微細化を可能とした。
 以下、図5A~図22を参照し、本開示に係る画素分離領域23の実施例について説明する。図5A~図15のうち、平面図には、行列方向に隣接する4画素の部分を示しており、断面図には、隣接する2画素の部分を示している。
 また、図16~図22には、隣接する2画素の部分を示している。なお、ここでは、可視光画素を可視光画素PDc、赤外光画素を赤外光画素PDw、画素トランジスタ33のゲートをゲートG、ウェルコンタクトをウェルコンタクトWlc、転送ゲートをTGと称する。
<第1実施例>
 図5Aは、本開示の第1実施例に係る画素アレイ部の平面図である。図5Bは、本開示の第1実施例に係る画素アレイ部の(A)-(B)線による断面図である。図5Cは、本開示の第1実施例に係る画素アレイ部の(C)-(D)線による断面図である。
 図5Aに示すように、第1実施例に係る画素アレイ部は、行列方向に隣接する4画素の中央に、フローティングディフュージョン領域FDが設けられる。フローティングディフュージョン領域は浮遊拡散領域とも呼び、半導体基板に不純物領域を形成することで設けられる。フローティングディフュージョン領域FDには、転送された電荷を読み出すためのフローティングディフュージョン領域コンタクトFDcが接続される。フローティングディフュージョンコンタクトFDcは、更に配線層30に存在する配線32へと繋がり、その配線は増幅トランジスタへと繋がる。
 4画素のうち、2つの可視光画素PDcは、対角線上で隣接する。2つの赤外光画素PDwは、対角線上で隣接する。各可視光画素PDcおよび赤外光画素PDwには、ウェルコンタクトW1cが設けられる。
 ウェルコンタクトWlcは、グランドに接続される。これにより、半導体層20が設けられる基板の電位は、0(V)に維持される。また、ウェルコンタクトWlcは、半導体層20の面方向において均一に配置される。これにより、各画素は、特性のバラツキが抑制される。また、各可視光画素PDcおよび赤外光画素PDwには、それぞれ画素トランジスタ33が隣接される。
 画素アレイ部では、各転送ゲートTGに順次所定の電圧が印加されることによって、可視光画素PDcおよび赤外光画素PDwによって光電変換された電荷が順次フローティングディフュージョン領域FDに転送される。このように、フローティングディフュージョン領域FDは、周囲を囲む4画素によって共有される。
 かかる画素アレイ部では、可視光画素PDcおよび赤外光画素PDwの画素間領域のうち、4画素の中央にはフローティングディフュージョン領域FDが設けられるため、半導体層20の表裏を貫通する画素分離溝を設けることができない。ここで画素分離溝は基板を掘ることで設けられた、例えばトレンチ構造を指す。 
 そこで、第1実施例に係る画素アレイ部では、画素間領域のうち、フローティングディフュージョン領域FDに対応する領域を除く領域に、深型トレンチ部230が設けられ、フローティングディフュージョン領域FDに対応する領域に、浅型トレンチ部231が設けられる。
 深型トレンチ部230は、浅型トレンチ部231よりも、半導体層20における深さ方向の長さが長い(深い)トレンチ構造を指す。浅型トレンチ部231は、半導体層20の受光面から深さ方向における中途部まで達する非貫通画素分離領域を構成する。これにより、画素アレイ部は、行列方向に隣接する4画素によって囲まれる位置にフローティングディフュージョン領域FDを設けることが可能となる。
 図5Bに示すように、深型トレンチ部230は、半導体層20の受光面から受光面と対向する面へ向けて延伸する。そして、深型トレンチ部230は、半導体層20の受光面と対向する面から受光面へ向けて延伸するSTI(Shallow Trench Isolation)232と接触する。これら深型トレンチ部230およびSTI232によって、半導体層20を深さ方向に貫通する貫通画素分離領域が構成される。ここで、STI232は、例えば、トランジスタのような素子同士の活性領域を分断するために設けられる素子分離構造である。
 これにより、第1実施例に係る画素アレイ部は、画素間領域のうち、フローティングディフュージョン領域FDに対応する領域を除く領域が貫通画素分離領域によって遮光されるので、赤外光が半導体層20の深部まで透過しても、混色の発生を抑制することができる。
 一方、図5Cに示すように、浅型トレンチ部231は、半導体層20の受光面からフローティングディフュージョン領域FDまで達し、直下にフローティングディフュージョン領域FDが設けられる。このように、第1実施例に係る画素アレイ部は、半導体層20において行列方向に隣接する4画素の中央に、4画素によって共有されるフローティングディフュージョン領域FDを設けることが可能となる。
 これにより、第1実施例に係る画素アレイ部は、画素毎にフローティングディフュージョン領域FDが設けられる場合に比べて、画素の微細化が可能となる。例えば、第1実施例に係る画素アレイ部によれば、可視光画素PDcおよび赤外光画素PDwの平面視において対向する辺間の最短距離を2.2ミクロン以下まで微細化しても、混色の発生率を抑制することができる。
 また、第1実施例に係る画素アレイ部は、フローティングディフュージョン領域FDが共有されない場合に比べて、可視光画素PDcおよび赤外光画素PDwの受光面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
 また、深型トレンチ部230および浅型トレンチ部231を形成する場合には、まず、半導体層20の受光面における浅型トレンチ部231の形成位置にマスクを積層した状態で、エッチングによって深型トレンチ部230の形成位置に浅いトレンチを形成する。
 その後、浅型トレンチ部231の形成位置上からマスクを除去して、浅型トレンチ部231の形成位置および深型トレンチ部230の形成位置を同時にエッチングし、トレンチに遮光部材を埋め込むことによって、深型トレンチ部230と浅型トレンチ部231とを同時に形成する。
 このとき、浅型トレンチ部231を形成するエッチング時間が深型トレンチ部230を形成するエッチング時間よりも短いため、浅型トレンチ部231の平面視における幅が深型トレンチ部230の平面視における幅よりも狭くなる。これにより、第1実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDwの面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
<第2実施例>
 図6Aは、本開示の第2実施例に係る画素アレイ部の平面図である。図6Bは、本開示の第2実施例に係る画素アレイ部の(A)-(B)線による断面図である。図6Cは、本開示の第2実施例に係る画素アレイ部の(C)-(D)線による断面図である。
 図6Aに示すように、第2実施例に係る画素アレイ部の平面視による各構成要素の配置は、第1実施例に係る画素アレイ部と同様であるが、断面構造が第1実施例に係る画素アレイ部とは異なる。
 図6Bおよび図6Cに示すように、第2実施例に係る深型トレンチ部230は、フローティングディフュージョン領域FDを共有する可視光画素PDcと赤外光画素PDwとの間を画素分離する部分が、半導体層20を深さ方向に貫通する構成が第1実施例とは異なる。
 第2実施例に係る画素アレイ部によっても、第1実施例と同様に、混色を抑制しつつ微細化できるとともに、可視光画素PDcおよび赤外光画素PDwの面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
<第3実施例>
 図7Aは、本開示の第3実施例に係る画素アレイ部の平面図である。図7Bは、本開示の第3実施例に係る画素アレイ部の(A)-(B)線による断面図である。図7Aに示すように、第3実施例に係る画素アレイ部は、ウェルコンタクトWlcが、フローティングディフュージョン領域FDを共有する可視光画素PDcおよび赤外光画素PDwと隣接する図示しない可視光画素PDcおよび赤外光画素PDwとの間に設けられる。図7Aに示す例では、ウェルコンタクトWlcは、図示する4画素と、行方向に隣接する図示しない4画素との間に設けられる。
 そして、第3実施例に係る画素アレイ部は、画素間領域のうち、ウェルコンタクトWlcに対応する領域に、浅型トレンチ部231が設けられる。その他の構成は、第2実施例に係る画素アレイ部と同様の構成である。なお、図7Aに示す画素アレイ部の(C)―(D)線による断面は、図6Cに示す断面と同様の構成である。
 図7Bに示すように、浅型トレンチ部231は、半導体層20の受光面から深さ方向の中途部まで達する。具体的には、浅型トレンチ部231は、半導体層20受光面からウェルコンタクトWlcに接続される半導体層20内の不純物拡散領域(ウェル領域)W1まで達する。
 これにより、第3実施例に係る画素アレイ部では、ウェルコンタクトWlcの周囲を囲む4画素によってウェルコンタクトWlcを共有できるので、各可視光画素PDcおよび赤外光画素PDwにウェルコンタクトWlcが設けられる場合に比べて微細化が可能となる。
 また、第3実施例に係る画素アレイ部は、図6Aに示すウェルコンタクトWlcが設けられていた領域を光電変換領域として使用することができる。これにより、画素アレイ部は、可視光画素PDcおよび赤外光画素PDwの面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
 また、第3実施例に係る画素アレイ部は、画素間領域のうち、ウェルコンタクトWlcとフローティングディフュージョン領域FDに対応する領域以外の領域に深型トレンチ部230、STI232による貫通画素分離領域が設けられるので、混色を抑制することができる。
 なお、第3実施例に係る画素アレイ部は、画素間領域のうち、ウェルコンタクトWlcに対応する領域以外の域領域に、深型トレンチ部230、STI232による貫通画素分離領域が設けられる構成であってもよい。この場合、第3実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDw毎に、フローティングディフュージョン領域FDが設けられることになる。
 かかる画素アレイ部によっても、ウェルコンタクトWlcは、周囲を囲む4画素によってウェルコンタクトWlcが共用されるので、その分、微細化が可能となる。さらに、画素アレイ部は、深型トレンチ部230およびSTI232による貫通画素分離領域が拡張されるので、混色抑制の機能が向上する。
<第4実施例>
 図8Aは、本開示の第4実施例に係る画素アレイ部の平面図である。図8Bは、本開示の第4実施例に係る画素アレイ部の(C)-(D)線による断面図である。図8Cは、本開示の第4実施例に係る画素アレイ部の(E)-(F)線による断面図である。
 図8A、図8B、および図8Cに示すように、第4実施例に係る画素アレイ部は、画素間領域のうち、画素トランジスタ33に対応する領域に、浅型トレンチ部231が設けられる。その他の構成は、第3実施例に係る画素アレイ部と同様の構成である。なお、図8Aに示す画素アレイ部の(A)―(B)線による断面は、図7Bに示す断面と同様の構成である。
 第4実施例に係る画素アレイ部では、可視光画素PDcおよび赤外光画素PDwによって画素トランジスタ33を共有することが可能となる。例えば、画素トランジスタ33は、図8Aに示すフローティングディフュージョン領域FDを共有する可視光画素PDcおよび赤外光画素PDwの2画素によって共有される。
 さらに、画素トランジスタ33は、図8Aに示す4画素と列方向に隣接する可視光画素PDcおよび赤外光画素PDwによって共有されることも可能である。つまり、画素トランジスタ33は、画素トランジスタ33を挟んで列方向の両側に設けられる4画素によって共有されることも可能である。
 なお、第4実施例に係る画素アレイ部は、画素間領域のうち、画素トランジスタ33に対応する領域以外の領域に、深型トレンチ部230、STI232による貫通画素分離領域が設けられる構成であってもよい。
 この場合、第4実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDw毎に、フローティングディフュージョン領域FDが設けられ、可視光画素PDcおよび赤外光画素PDw毎に、ウェルコンタクトWlcが設けられることになる。
 かかる画素アレイ部によっても、画素トランジスタは、隣接する2画素または行列方向に隣接する4画素によって共用されるので、その分、微細化が可能となる。さらに、画素アレイ部は、深型トレンチ部230およびSTI232による貫通画素分離領域が拡張されるので、混色抑制の機能が向上する。
 また、図8Aおよび図8Cに示すように、第4実施例の深型トレンチ部230およびSTI232によって構成される貫通画素分離領域は、画素トランジスタ33を共有する可視光画素PDcおよび赤外光画素PDwと隣接する画素との間まで延在する。
 具体的には、第4実施例の貫通画素分離領域は、可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33と、可視光画素PDcおよび赤外光画素PDwに隣接する他の可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33との間まで延在する。
 これにより、第4実施例に係る画素アレイ部は、画素トランジスタ33から隣接する画素トランジスタ33への漏れ光の侵入を抑制することによって、混色の発生を抑制することができる。
 また、図8Bに示すように、第4実施例の浅型トレンチ部231は、半導体層20の受光面から画素トランジスタ33と接触しない深さまで設けられる。これにより、第4実施例に係る画素アレイ部は、浅型トレンチ部231の形成工程において、エッチングストッパが不要になるため、製造プロセスを容易にすることができる。
<第5実施例>
 図9Aは、本開示の第5実施例に係る画素アレイ部の平面図である。図9Bは、本開示の第5実施例に係る画素アレイ部の(A)-(B)線による断面図である。なお、図9Aに示す画素アレイ部の(C)―(D)線による断面は、図8Bに示す断面と同様の構成である。
 図9Aおよび図9Bに示すように、第5実施例に係る画素アレイ部は、浅型トレンチ部231が画素トランジスタ33を共有する可視光画素PDcおよび赤外光画素PDwと隣接する画素との間まで延在する構成が第4実施例の画素アレイ部と異なる。その他の構成は、第4実施例に係る画素アレイ部と同様の構成である。
 具体的には、第5実施例の画素トランジスタ33に対応する領域に設けられる浅型トレンチ部231は、可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33と、可視光画素PDcおよび赤外光画素PDwに隣接する他の可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33との間まで延在する。
 これにより、第5実施例に係る画素アレイ部は、第4に係る画素アレイ部に比べて、深型トレンチ部230の領域が狭くなるので、深型トレンチ部230の形成による半導体層20の表面荒れに起因した暗電流を抑制することができる。
<第6実施例>
 図10は、本開示の第6実施例に係る画素アレイ部の平面図である。図10に示すように、第6実施例に係る画素アレイ部は、フローティングディフュージョン領域FDを共有する可視光画素PDcと、赤外光画素PDwとの間に設けられる深型トレンチ部230の長手方向の長さが、第5実施例の深型トレンチ部230の長手方向の長さよりも短い。その他の構成は、第5実施例に係る画素アレイ部と同様の構成である。
 これにより、第6実施例の画素アレイ部は、深型トレンチ部230の領域が小さくなるので、深型トレンチ部230の形成による半導体層20の表面荒れに起因した暗電流を抑制することができる。
 なお、第6実施例の画素アレイ部では、上記のように、深型トレンチ部230の長手方向の長さが短いが、平面視において深型トレンチ部230と浅型トレンチ部231とは接触して連続しているので、隣接画素へ漏れ光が入射することを抑制することができる。
<第7実施例>
 図11は、本開示の第7実施例に係る画素アレイ部の平面図である。図11に示すように、第7実施例に係る画素アレイ部は、平面視において深型トレンチ部230と浅型トレンチ部231とが非接触である構成が第6実施例の画素アレイ部とは異なる。その他の構成は、第6実施例に係る画素アレイ部と同様の構成である。
 これにより、第7実施例の画素アレイ部は、深型トレンチ部230および浅型トレンチ部231を形成する工程において、若干の位置合わせズレが発生しても、深型トレンチ部230と浅型トレンチ部231との間の隙間によって、ズレを許容することができる。
<第8実施例>
 図12は、本開示の第8実施例に係る画素アレイ部の平面図である。図12に示すように、第8実施例に係る画素アレイ部は、画素間領域のうち、ウェルコンタクトWlcに対応する領域に、浅型トレンチ部231が設けられない構成が、第6実施例に係る画素アレイ部とは異なる。その他の構成は、第6実施例に係る画素アレイ部と同様の構成である。
<第9実施例>
 図13は、本開示の第9実施例に係る画素アレイ部の平面図である。図13に示すように、第9実施例に係る画素アレイは、フローティングディフュージョン領域FDに対応する領域において交差する浅型トレンチ部231のうち、列方向の浅型トレンチ部231が設けられない構成が、第8実施例に係る画素アレイとは異なる。その他の構成は、第8実施例に係る画素アレイ部と同様の構成である。
<第10実施例>
 図14は、本開示の第10実施例に係る画素アレイ部の平面図である。図14に示すように、第10実施例に係る画素アレイ部は、フローティングディフュージョン領域FDに対応する領域において交差する浅型トレンチ部231が設けられない構成が第8実施例に係る画素アレイとは異なる。その他の構成は、第8実施例に係る画素アレイ部と同様の構成である。
 第8~第10実施例に係る画素アレイ部では、浅型トレンチ部231の領域が小さくなるので、浅型トレンチ部231の形成による半導体層20の表面荒れに起因した暗電流を抑制することができる。
<第11実施例>
 図15は、本開示の第11実施例に係る画素アレイ部の平面図である。 図15に示すように、第11実施例に係る画素アレイ部は、ウェルコンタクトWlcが4画素のうち、1つの赤外光画素PDwに設けられる構成が第8実施例に係る画素アレイ部とは異なる。
 また、第11実施例に係る画素アレイは、画素間領域のうち、フローティングディフュージョン領域FDおよび画素トランジスタ33に対応する領域以外の領域に、深型トレンチ部230が設けられる。
 第11実施例に係る画素アレイ部は、ウェルコンタクトWlcが設けられない可視光画素PDcおよび赤外光画素PDwの面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
<第12実施例>
 図16Aは、本開示の第12実施例に係る画素アレイ部の平面図である。図16Bは、本開示の第12実施例に係る画素アレイ部の(A)-(B)線による断面図である。図16Aに示すように、第12実施例に係る画素アレイ部は、列方向に隣接するが可視光画素PDcと赤外光画素PDwとの間に、共有されるフローティングディフュージョン領域FDを備える。また、第12実施例に係る画素アレイ部は、列方向に隣接するが可視光画素PDcと赤外光画素PDwとの間に、ウェルコンタクトWlcを備える。
 そして、第12実施例に係る画素アレイ部は、図16Aおよび図16Bに示すように、画素間領域のうち、フローティングディフュージョン領域DF、ウェルコンタクトWlc、おおび画素トランジスタ33に対応する領域に、浅型トレンチ部231が設けられる。
 また、第12実施例に係る画素アレイ部は、フローティングディフュージョン領域FDを共有する画間と、隣接する他のフローティングディフュージョン領域FDを共有する画素との間とに、深型トレンチ部230が設けられる。フローティングディフュージョン領域FDを共有する画間にも、深型トレンチ部230が設けられる。
 このように、第12実施例に係る画素アレイ部は、2画素によって一つのフローティングディフュージョン領域FDおよび一つのウェルコンタクトWlcを共有する。これにより、第12実施例に係る画素アレイ部は、微細化できるとともに、画素の面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。また、第12実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDw間を深型トレンチ部230によって遮光することにより、混色を抑制することができる。
<第13実施例>
 図17は、本開示の第13実施例に係る画素アレイ部の平面図である。図17に示すように、第13実施例にかかる画素アレイ部は、フローティングディフュージョン領域FDを共有する可視光画素PDcおよび赤外光画素PDwが、浅型トレンチ部231によって画素分離される構成が、第12実施例に係る画素アレイ部とは異なる。その他の構成は、第12実施例に係る画素アレイ部と同様の構成である。
 かかる第13実施例に係る画素アレイ部によっても、混色を抑制しつつ微細化できるとともに、可視光画素PDcおよび赤外光画素PDwの面積を広くできるので、飽和電子量、光電変換効率、感度、およびS/N比を向上させることができる。
 また、第13実施例に係る画素アレイは、深型トレンチ部230および浅型トレンチ部231の平面視における形状が全て直線状であるため、単純なパターンのマスクを使用して、画素分離領域が形成可能となるので、製造プロセスを容易になる。
<第14実施例>
 図18は、本開示の第14実施例に係る画素アレイ部の平面図である。図18に示すように、第14実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDwによって共有されるウェルコンタクトWlcに対応する領域に、浅型トレンチ部231が設けられる。
 そして、第14実施例に係る画素アレイ部は、画素間領域のうち、ウェルコンタクトWlcに対応する領域以外の領域に、深型トレンチ部230が設けられる。なお、可視光画素PDcおよび赤外光画素PDwには、それぞれ、フローティングディフュージョン領域および画素トランジスタ33が隣設される。
<第15実施例>
 図19は、本開示の第15実施例に係る画素アレイ部の平面図である。第15実施例に係る画素アレイ部は、可視光画素PDcおよび赤外光画素PDwによって共有されるウェルコンタクトWlcに対応する領域に、浅型トレンチ部231が設けられない構成が、第14実施例に係る画素アレイ部と異なる。その他の構成は、第14実施例に係る画素アレイ部と同様の構成である。
 第14および第15実施例に係る画素アレイ部は、隣接する可視光画素PDcおよび赤外光画素PDwの画素間領域のうち、共有するウェルコンタクトWlcに対応する領域を除き、全ての領域が貫通画素分離領域となる深型トレンチ部230によって画素分離される。これにより、第14および第15実施例に係る画素アレイ部は、混色をより確実に抑制することができる。
<第16実施例>
 図20Aは、本開示の第16実施例に係る画素アレイ部の平面図である。図20Bは、本開示の第16実施例に係る画素アレイ部の(A)-(B)線による断面図である。図20Cは、本開示の第16実施例に係る画素アレイ部の平面図である。
 図20Aおよび図20Bに示すように、第16実施例に係る画素アレイ部は、平面視正方形状をした受光画素を、面積が等しい2つの平面視矩形状をした可視光画素PDc(L),PDc(R)に分離する位置に、浅型トレンチ部231が設けられる。なお、平面視矩形状をした一対の受光画素は、赤外光画素PDw(L),PDw(R)であってもよい。
 一対の可視光画素PDc(L),PDc(R)の間には、共有されるフローティングディフュージョン領域DFおよびウェルコンタクトWlcが設けられる。また、一対の可視光画素PDc(L),PDc(R)には、共有される画素トランジスタ33が隣設される。
 また、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)と、隣接する画素との間に、深型トレンチ部230が設けられる。さらに、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)の受光面上に、一対の可視光画素PDc(L),PDc(R)を囲む平面視円形状のオンチップレンズ44を備える。一対の可視光画素PDc(L),PDc(R)は、図20Cに示すように、行列状に複数配置される。
 可視光画素PDc(L)は、例えば、人の左目によって視認される画像の各画素を撮像する。可視光画素PDc(R)は、例えば、人の右目によって視認される画像の各画素を撮像する。これにより、第16実施例に係る画素アレイ部は、左右の視差を利用して3D(3次元)画像を撮像することができる。
 このように、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)間に浅型トレンチ部231が設けられる。これにより、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)における光路長を長くすることができるので、感度を向上させることができる。
 また、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)によって、フローティングディフュージョン領域DFおよびウェルコンタクトWlcを共有することがきるので、微細化が可能となる。
 また、第16実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)の周囲に、深型トレンチ部230が設けられるので、撮像する3D(3次元)画像における混色を抑制することができる。
<第17実施例>
 図21Aは、本開示の第17実施例に係る画素アレイ部の平面図である。図21Bは、本開示の第17実施例に係る画素アレイ部の(A)-(B)線による断面図である。図21Cは、本開示の第17実施例に係る画素アレイ部の平面図である。
 図21Aおよび図21Bに示すように、第17実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)の受光面上に、それぞれ、可視光画素PDc(L),PDc(R)を囲む平面視楕円状のオンチップレンズ44を備える。その他の構成は、第16実施例に係る画素アレイ部と同様の構成である。可視光画素PDc(L),PDc(R)は、図21Cに示すように、行列状に複数配置される。
 かかる第17実施例に係る画素アレイ部も、一対の可視光画素PDc(L),PDc(R)間に浅型トレンチ部231が設けられる。これにより、第17実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)における光路長を長くすることができるので、感度を向上させることができる。
 また、第17実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)によって、フローティングディフュージョン領域DFおよびウェルコンタクトWlcを共有することがきるので、微細化が可能となる。
 また、第17実施例に係る画素アレイ部は、一対の可視光画素PDc(L),PDc(R)の周囲に、深型トレンチ部230が設けられるので、撮像する3D(3次元)画像における混色を抑制することができる。
<第18実施例>
 図22は、本開示の第18実施例に係る画素アレイ部の説明図である。図22に示すように、第18実施例に係る画素アレイ部は、深型トレンチ部230および浅型トレンチ部231の内部に導電体が埋め込まれており、外部から負電圧が印加されることによって、深型トレンチ部230および浅型トレンチ部231の表面に正孔を収集する。
 これにより、第18実施例に係る画素アレイ部は、深型トレンチ部230および浅型トレンチ部231と、半導体層20との界面に存在する界面順位や欠陥から発生した電子と正孔とを再結合させることによって、白点と呼ばれる欠陥画素や暗電流を抑制することができる。
<変形例1>
 図23は、本開示の実施形態の変形例1に係る画素アレイ部10の構造を模式的に示す断面図である。図23に示すように、変形例1の画素アレイ部10では、画素分離領域23の遮光壁24が半導体層20を貫通するように設けられる。
 さらに、変形例1では、遮光壁24の先端部から配線層30の配線32まで光入射方向に貫通する遮光部35が設けられる。かかる遮光部35は、遮光壁35aと、金属酸化膜35bとを有する。
 遮光壁35aは、平面視で分離領域23に沿って設けられ、隣接する単位画素11から入射する光を遮蔽する壁状の膜である。金属酸化膜35bは、遮光部35において遮光壁35aを覆うように設けられる。遮光壁35aは、遮光壁24と同様の材料で構成され、金属酸化膜35bは、金属酸化膜25と同様の材料で構成される。
 図23に示すように、遮光壁24の先端部と繋がるように遮光部35を設けることにより、IR画素11IRから隣接する単位画素11に迷光が漏れ混むことをさらに抑制できる。したがって、変形例1によれば、混色の発生をさらに抑制することができる。
<変形例2>
 図24は、本開示の実施形態の変形例2に係る画素アレイ部10の構造を模式的に示す断面図である。図24に示すように、変形例2の画素アレイ部10では、分離領域23の遮光壁24が半導体層20を貫通するように設けられる。
 さらに、変形例2では、遮光壁24の先端部に隣接する位置から配線層30の配線32まで光入射方向に貫通する一対の遮光部35が設けられる。すなわち、変形例2に係る画素アレイ部10は、遮光壁24の先端部が一対の遮光部35で取り囲まれるように構成される。
 これによっても、IR画素11IRから隣接する単位画素11に迷光が漏れ混むことをさらに抑制できる。したがって、変形例2によれば、混色の発生をさらに抑制することができる。なお、図24の例では、遮光壁24が必ずしも半導体層20を貫通するように形成されなくてもよい。
<変形例3>
 図25は、本開示の実施形態の変形例3に係る画素アレイ部10の構造を模式的に示す断面図である。図25に示すように、変形例3の画素アレイ部10では、分離領域23の遮光壁24が半導体層20を貫通するとともに、配線層30の金属層34まで到達するように設けられる。
 さらに、変形例3では、金属層34における遮光壁24とは別の位置から配線層30の配線32まで光入射方向に貫通する一対の遮光部35が設けられる。すなわち、変形例3では、遮光壁24と、金属層34と、遮光部35とが一体の遮光機能を有する部位として構成される。
 これによっても、IR画素11IRから隣接する単位画素11に迷光が漏れ混むことをさらに抑制することができる。したがって、変形例3によれば、混色の発生をさらに抑制することができる。
<IRカットフィルタの詳細>
 つづいて、可視光画素に設けられるIRカットフィルタ41の詳細について、図26~図32および上述した図4を参照しながら説明する。図26は、本開示の実施形態に係るIRカットフィルタ41の分光特性の一例を示す図である。
 図26に示すように、IRカットフィルタ41は、700(nm)以上の波長域で透過率が30(%)以下となる分光特性を有し、特に、850(nm)近傍の波長域に吸収極大波長を有する。
 そして、図4に示したように、実施形態に係る画素アレイ部10では、IRカットフィルタ41が可視光画素における半導体層20の光入射側の面に配置され、IR画素11IRにおける半導体層20の光入射側の面には配置されない。
 また、実施形態に係る画素アレイ部10では、R画素11Rに赤色の光を透過するカラーフィルタ43Rが配置され、G画素11Gに緑色の光を透過するカラーフィルタ43Gが配置される。さらに、実施形態に係る画素アレイ部10では、B画素11Bに青色の光を透過するカラーフィルタ43Bが配置される。
 これらの各フィルタによって、R画素11R、G画素11G、B画素11BおよびIR画素11IRのフォトダイオードPDに入射する光の分光特性は、図27に示されるグラフのようになる。図27は、本開示の実施形態に係る各単位画素の分光特性の一例を示す図である。
 図27に示すように、実施形態に係る画素アレイ部10では、R画素11R、G画素11G、B画素11Bの分光特性が、波長およそ750(nm)~850(nm)の赤外光領域において低い透過率をとるようになる。
 すなわち、実施形態では、可視光画素にIRカットフィルタ41を設けることにより、可視光画素における赤外光入射の影響を低減させることができることから、可視光画素のフォトダイオードPDから出力される信号のノイズを低減することができる。
 さらに、実施形態に係る画素アレイ部10では、IR画素11IRにIRカットフィルタ41が設けられていないことから、図27に示すように、IR画素11IRの分光特性が、赤外光領域において高い透過率を維持する。
 すなわち、実施形態では、赤外光をIR画素11IRにより多く入射させることができることから、IR画素11IRから出力される信号の強度を増加させることができる。
 ここまで説明したように、実施形態に係る画素アレイ部10では、可視光画素にのみIRカットフィルタ41を設けることにより、画素アレイ部10から出力される信号の品質を向上させることができる。
 また、実施形態では、図4に示したように、IR画素11IRにIRカットフィルタ41が設けられていないことから、IR画素11IRでは平坦化膜42が半導体層20の金属酸化膜25に直接接触している。
 このように、金属酸化膜25と近い屈折率を有する平坦化膜42を金属酸化膜25に直接接触させることにより、金属酸化膜25の表面における反射や回折を抑制することができる。
 したがって、実施形態によれば、金属酸化膜25の表面を透過してIR画素11IRのフォトダイオードPDに入射する光Lの量を増やせることから、IR画素11IRから出力される信号の強度をさらに増やすことができる。
 IRカットフィルタ41は、有機の色材として、近赤外線吸収性色素が添加された有機材料で形成される。かかる近赤外線吸収性色素としては、たとえば、ピロロピロール色素、銅化合物、シアニン系色素、フタロシアニン系化合物、イモニウム系化合物、チオール錯体系化合物、遷移金属酸化物系化合物などが用いられる。
 また、IRカットフィルタ41に用いられる近赤外線吸収性色素としては、たとえば、スクアリリウム系色素、ナフタロシアニン系色素、クオタリレン系色素、ジチオール金属錯体系色素、クロコニウム化合物なども用いられる。
 実施形態に係るIR画素11IRにIRカットフィルタ41の色材は、図28の化学式に示されるピロロピロール色素を用いることが好ましい。図28は、本開示の実施形態に係るIRカットフィルタ41の色材の一例を示す図である。
 図28において、R1a、R1bは、各々独立にアルキル基、アリール基、またはヘテロアリール基を表す。R、Rは、各々独立に水素原子または置換基を表し、少なくとも一方は電子吸引性基である。R、Rは、互いに結合して環を形成してもよい。
 Rは、水素原子、アルキル基、アリール基、ヘテロアリール基、置換ホウ素、または金属原子を表し、R1a、R1b、Rの少なくとも1種と、共有結合または配位結合していてもよい。
 なお、上述した図26の例では、IRカットフィルタ41の分光特性が、850(nm)近傍の波長域に吸収極大波長を有するものとしたが、700(nm)以上の波長域で透過率が30(%)以下となっていればよい。
 図29~図32は、本開示の実施形態に係るIRカットフィルタ41の分光特性の別の一例を示す図である。たとえば、図29に示すように、IRカットフィルタ41の分光特性は、800(nm)以上の波長域で透過率が20(%)となるようにしてもよい。
 また、図30に示すように、IRカットフィルタ41の分光特性は、950(nm)近傍の波長域に吸収極大波長を有するようにしてもよい。また、図31に示すように、IRカットフィルタ41の分光特性は、750(nm)以上の波長域全体で透過率が20(%)以下となるようにしてもよい。
 また、図32に示すように、IRカットフィルタ41の分光特性は、可視光に加え、波長800(nm)~900(nm)の赤外光が透過されるようにしてもよい。
 このように、IRカットフィルタ41に添加される色材によって吸収極大波長を決定することにより、IRカットフィルタ41を、可視光画素において所定の波長域の赤外光を選択的に吸収する光学フィルタとすることができる。また、IRカットフィルタ41の吸収極大波長は、固体撮像素子1の用途によって適宜決定することができる。
<変形例4>
 ここまで説明した実施形態および各種変形例では、半導体層20の光入射側の面にIRカットフィルタ41が設けられる例について示したが、本開示におけるIRカットフィルタ41の配置はかかる例に限られない。図33は、本開示の実施形態の変形例4に係る画素アレイ部10の構造を模式的に示す断面図である。
 図33に示すように、変形例4の画素アレイ部10では、IRカットフィルタ41とカラーフィルタ43とが入れ替わるように配置される。すなわち、変形例4では、カラーフィルタ43が可視光画素(R画素11R、G画素11GおよびB画素11B)における半導体層20の光入射側の面に配置される。
 また、平坦化膜42は、IRカットフィルタ41およびOCL44が形成される面を平坦化し、IRカットフィルタ41およびOCL44を形成する際の回転塗布の工程で発生するムラを回避するために設けられる。
 そして、IRカットフィルタ41は、可視光画素(R画素11R、G画素11GおよびB画素11B)における平坦化膜42の光入射側の面に配置される。
 これによっても、可視光画素にのみIRカットフィルタ41を設けることにより、画素アレイ部10から出力される信号の品質を向上させることができる。
<変形例5>
 図34は、本開示の実施形態の変形例5に係る画素アレイ部10の構造を模式的に示す断面図である。図34に示すように、変形例5の画素アレイ部10では、IRカットフィルタ41が形成された後の表面を平坦化する平坦化膜42が省略されている。
 すなわち、変形例5では、カラーフィルタ43が、可視光画素(R画素11R、G画素11GおよびB画素11B)におけるIRカットフィルタ41の光入射側の面に配置される。
 これによっても、可視光画素にのみIRカットフィルタ41を設けることにより、画素アレイ部10から出力される信号の品質を向上させることができる。
<変形例6>
 図35は、本開示の実施形態の変形例6に係る画素アレイ部10の構造を模式的に示す断面図である。図35に示すように、変形例6の画素アレイ部10では、上述の変形例5と同様に、IRカットフィルタ41が形成された後の表面を平坦化する平坦化膜42が省略されている。
 また、変形例6では、IR画素11IRにおける半導体層20の金属酸化膜25とOCL44との間に、透明材46が設けられる。かかる透明材46は、少なくとも赤外光を透過させる光学特性を有し、IRカットフィルタ41が形成された後にフォトリソグラフィ工程で形成される。
 これによっても、可視光画素にのみIRカットフィルタ41を設けることにより、画素アレイ部10から出力される信号の品質を向上させることができる。
<変形例7>
 図36は、本開示の実施形態の変形例7に係る画素アレイ部10の構造を模式的に示す断面図である。図36に示すように、変形例7の画素アレイ部10では、IRカットフィルタ41が多層(図では2層)である。
 かかる多層のIRカットフィルタ41は、たとえば、1層のIRカットフィルタ41を形成する工程と、平坦化膜42で表面を平坦化する工程とを繰り返すことにより形成することができる。
 ここで、もし仮に、膜厚の大きい1層のIRカットフィルタ41を平坦化膜42で平坦化しようとした場合、平坦化膜42を形成する際にかかる平坦化膜42にムラが生じる恐れがある。
 しかしながら、変形例7では、膜厚の小さいIRカットフィルタ41を平坦化膜42で平坦化するため、平坦化膜42にムラが生じることを抑制することができる。さらに、変形例7では、IRカットフィルタ41を多層にすることにより、IRカットフィルタ41のトータルの膜厚を増やすことができる。
 したがって、変形例7によれば、画素アレイ部10を精度よく形成することができるとともに、画素アレイ部10から出力される信号の品質をさらに向上させることができる。
<変形例8>
 図37は、本開示の実施形態の変形例8に係る画素アレイ部10の構造を模式的に示す断面図である。図37に示すように、変形例8の画素アレイ部10では、遮光壁45がIRカットフィルタ41を貫通するように設けられる。
 これにより、隣接する単位画素11のIRカットフィルタ41や平坦化膜42を透過した光の入射をさらに抑制することができることから、混色の発生をさらに抑制することができる。
<変形例9>
 図38は、本開示の実施形態の変形例9に係る画素アレイ部10の構造を模式的に示す断面図である。図38に示すように、変形例9の画素アレイ部10では、遮光壁45の光入射側に光学壁47が設けられる。そして、変形例9では、一体となった遮光壁45と光学壁47とがIRカットフィルタ41を貫通するように設けられる。
 光学壁47は、屈折率が低い(たとえば、n≦1.6)材料で構成され、たとえば、酸化シリコンや低屈折率の有機材料などで構成される。
 これによっても、隣接する単位画素11のIRカットフィルタ41や平坦化膜42を透過した光の入射をさらに抑制することができることから、混色の発生をさらに抑制することができる。
<固体撮像素子の周辺構造>
 図39は、本開示の実施形態に係る固体撮像素子1の周辺構造を模式的に示す断面図であり、おもに固体撮像素子1の周辺部の断面構造について示している。図39に示すように、固体撮像素子1は、画素領域R1と、周辺領域R2と、パッド領域R3とを有する。
 画素領域R1は、単位画素11が設けられる領域である。画素領域R1には、複数の単位画素11が二次元格子状に配列されている。また、周辺領域R2は、図40に示すように、画素領域R1の四方を囲むように設けられる領域である。図40は、本開示の実施形態に係る固体撮像素子1の平面構成を示す図である。
 また、図39に示すように、周辺領域R2には、遮光層48が設けられる。かかる遮光層48は、周辺領域R2から画素領域R1にむけて斜めに入射する光を遮蔽する膜である。
 かかる遮光層48を設けることによって、周辺領域R2から画素領域R1の単位画素11への光Lの入射を抑制することができることから、混色の発生を抑制することができる。遮光層48は、たとえば、アルミニウムやタングステンなどにより構成される。
 パッド領域R3は、図40に示すように、周辺領域R2の周囲に設けられる領域である。また、パッド領域R3は、図39に示すように、コンタクトホールHを有する。かかるコンタクトホールHの底部には、図示しないボンディングパッドが設けられる。
 そして、コンタクトホールHを介してボンディングパッドにボンディングワイヤなどが接合されることにより、画素アレイ部10と固体撮像素子1の各部とが電気的に接続される。
 ここで、実施形態では、図39に示すように、IRカットフィルタ41が画素領域R1のみならず、周辺領域R2およびパッド領域R3にも形成されるとよい。
 これにより、周辺領域R2およびパッド領域R3から画素領域R1の単位画素11への赤外光の入射をさらに抑制することができる。したがって、実施形態によれば、混色の発生をさらに抑制することができる。
 また、実施形態では、周辺領域R2およびパッド領域R3にもIRカットフィルタ41を形成することにより、平坦化膜42を形成する際に、周辺領域R2およびパッド領域R3で平坦化膜42にムラが生じることを抑制することができる。したがって、実施形態によれば、固体撮像素子1を精度よく形成することができる。
 ここまで説明した実施形態および各種変形例では、画素アレイ部10に可視光画素(R画素11R、G画素11G、B画素11B)およびIR画素11IRを並べて配置した例について示したが、その他の機能を有する受光画素を画素アレイ部10に追加してもよい。
 たとえば、実施形態に係る画素アレイ部10に位相差検出用の受光画素(以下、位相差画素とも呼称する。)が追加され、この位相差画素にタングステンを主成分とする金属層34が設けられてもよい。
 これにより、IR画素11IRに起因して位相差画素で生じる混色を抑制することができることから、固体撮像素子1のオートフォーカス性能を向上させることができる。
 また、実施形態に係る画素アレイ部10にToF(Time of Flight)形式を用いた距離測定用の受光画素(以下、測距画素とも呼称する。)が追加され、この測距画素にタングステンを主成分とする金属層34が設けられてもよい。
 これにより、IR画素11IRに起因して測距画素で生じる混色を抑制することができることから、固体撮像素子1の測距性能を向上させることができる。
<効果>
 本開示に係る固体撮像素子1、半導体層20と、フローティングディフュージョン領域FDと、貫通画素分離領域(深型トレンチ部230,STI232)と、非貫通画素分離領域(浅型トレンチ部231)とを有する。半導体層20は、可視光を受光して光電変換する可視光画素PDcと、赤外光を受光して光電変換する赤外光画素PDwとが2次元に配列される。フローティングディフュージョン領域FDは、半導体層20に設けられ、隣接する可視光画素PDcおよび赤外光画素PDwによって共有される。貫通画素分離領域(深型トレンチ部230,STI232)は、可視光画素PDcおよび赤外光画素PDwの画素間領域のうち、フローティングディフュージョン領域FDに対応する領域を除く領域に設けられ、半導体層20を深さ方向に貫通する。非貫通画素分離領域(浅型トレンチ部231)は、画素間領域のうち、フローティングディフュージョン領域FDに対応する領域に設けられ、半導体層20の受光面から深さ方向における中途部まで達する。
 これにより、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDwによってフローティングディフュージョン領域FDが共有されるので、微細化が可能となる。また、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDw間が貫通画素分離領域によって分離されるので、混色を抑制することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、半導体層20の受光面からフローティングディフュージョン領域FDまで達する。これにより、固体撮像素子1は、フローティングディフュージョン領域FD部分からの漏れ光による混色を抑制することができる。
 フローティングディフュージョン領域FDは、行列方向に隣接する4画素によって共有される。これにより、固体撮像素子1は、4画素のそれぞれにフローティングディフュージョン領域FDが設けられる場合に比べて、微細化が可能となる。
 隣接する2画素によって共有される。これにより、固体撮像素子1は、2画素のそれぞれにフローティングディフュージョン領域FDが設けられる場合に比べて、微細化が可能となる。
 本開示に係る固体撮像素子1は、半導体層20と、画素トランジスタ33と、貫通画素分離領域(深型トレンチ部230,STI232)と、非貫通画素分離領域(浅型トレンチ部231)とを有する。半導体層20は、可視光を受光して光電変換する可視光画素PDcと、赤外光を受光して光電変換する赤外光画素PDwとが2次元に配列される。画素トランジスタ33は、半導体層20に設けられ、隣接する可視光画素PDcおよび赤外光画素PDwによって共有される。貫通画素分離領域(深型トレンチ部230,STI232)は、可視光画素PDcおよび赤外光画素PDwの画素間領域のうち、画素トランジスタ33に対応する領域を除く領域に設けられ、半導体層20を深さ方向に貫通する。非貫通画素分離領域(浅型トレンチ部231)は、画素間領域のうち、画素トランジスタ33に対応する領域に設けられ、半導体層20の受光面から深さ方向における中途部まで達する。
 これにより、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDwによって画素トランジスタ33が共有されるので、微細化が可能となる。また、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDw間が貫通画素分離領域によって分離されるので、混色を抑制することができる。
 貫通画素分離領域(深型トレンチ部230,STI232)は、可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33と、可視光画素PDcおよび赤外光画素PDwに隣接する可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33との間まで延在する。これにより、固体撮像素子1は、画素トランジスタ33から隣接する画素トランジスタ33への漏れ光の侵入を抑制することによって、混色の発生を抑制することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33と、可視光画素PDcおよび赤外光画素PDwに隣接する可視光画素PDcおよび赤外光画素PDwによって共有される画素トランジスタ33との間まで延在する。これにより、固体撮像素子1は、深型トレンチ部230の領域が狭くなるので、深型トレンチ部230の形成による半導体層20の表面荒れに起因した暗電流を抑制することができる。
 画素トランジスタ33は、行列方向に隣接する4画素によって共有される。これにより、固体撮像素子1は、4画素のそれぞれに画素トランジスタ33が設けられる場合に比べて、微細化が可能となる。
 画素トランジスタ33は、隣接する2画素によって共有される。これにより、固体撮像素子1は、2画素のそれぞれに画素トランジスタ33が設けられる場合に比べて、微細化が可能となる。
 本開示に係る固体撮像素子1は、半導体層20と、ウェルコンタクトWlcと、貫通画素分離領域(深型トレンチ部230,STI232)と、非貫通画素分離領域(浅型トレンチ部231)とを有する。半導体層20は、可視光を受光して光電変換する可視光画素PDcと、赤外光を受光して光電変換する赤外光画素PDwとが2次元に配列される。ウェルコンタクトWlcは、半導体層20に設けられ、隣接する可視光画素PDcおよび赤外光画素PDwによって共有される。貫通画素分離領域(深型トレンチ部230,STI232)は、可視光画素PDcおよび赤外光画素PDwの画素間領域のうち、ウェルコンタクトWlcに対応する領域を除く領域に設けられ、半導体層20を深さ方向に貫通する。非貫通画素分離領域(浅型トレンチ部231)は、画素間領域のうち、ウェルコンタクトWlcに対応する領域に設けられ、半導体層20の受光面から深さ方向における中途部まで達する。
 これにより、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDwによってウェルコンタクトWlcが共有されるので、微細化が可能となる。また、固体撮像素子1は、可視光画素PDcおよび赤外光画素PDw間が貫通画素分離領域によって分離されるので、混色を抑制することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、半導体層20の受光面からウェルコンタクトWlcに接続される半導体層20内の不純物拡散領域Wlまで達する。これにより、固体撮像素子1は、ウェルコンタクトWlc部分からの漏れ光による混色を抑制することができる。
 ウェルコンタクトWlcは、行列方向に隣接する4画素によって共有される。これにより、固体撮像素子1は、4画素のそれぞれにウェルコンタクトWlcが設けられる場合に比べて、微細化が可能となる。
 ウェルコンタクトWlcは、隣接する2画素によって共有される。これにより、固体撮像素子1は、2画素のそれぞれにウェルコンタクトWlcが設けられる場合に比べて、微細化が可能となる。
 貫通画素分離領域(深型トレンチ部230,STI232)は、トレンチ部230と、素子分離構造(STI232)とを含む。トレンチ部(深型トレンチ部230)は、半導体層の受光面から当該受光面と対向する面へ向けて延伸する。素子分離構造(STI232)は、受光面と対向する面から受光面へ向けて延伸し、トレンチ部(深型トレンチ部230)と接触する。これにより、固体撮像素子1は、貫通画素分離領域(深型トレンチ部230,STI232)によって、可視光画素PDcおよび赤外光画素PDw間をより確実に遮光することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、貫通画素分離領域(深型トレンチ部230,STI232)と接触する。これにより、固体撮像素子1は、平面視において深型トレンチ部230と浅型トレンチ部231とが接触して連続するので、隣接画素へ漏れ光が入射することを抑制することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、貫通画素分離領域(深型トレンチ部230,STI232)と非接触である。これにより、固体撮像素子1は、深型トレンチ部230および浅型トレンチ部231を形成する工程において、若干の位置合わせズレが発生しても、深型トレンチ部230と浅型トレンチ部231との間の隙間によって、ズレを許容することができる。
 可視光画素PDcおよび赤外光画素PDwは、平面視において対向する辺間の最短距離が2.2ミクロン以下である。これにより、固体撮像素子1は、混色を抑制しつつ、十分な小型化が可能となる。
 貫通画素分離領域(深型トレンチ部230,STI232)および非貫通画素分離領域(浅型トレンチ部231)は、負電圧が印加される。固体撮像素子1は、深型トレンチ部230および浅型トレンチ部231と、半導体層20との界面に存在する界面順位や欠陥から発生した電子と正孔とを再結合させることによって、白点と呼ばれる欠陥画素や暗電流を抑制することができる。
 非貫通画素分離領域(浅型トレンチ部231)は、平面正方形状をした可視光画素PDcおよび赤外光画素PDwを受光面積が等しい2つの平面視矩形状をした領域(PDc(L),PDw(R))に分割する位置に設けられる。これにより、固体撮像素子1は、一対の可視光画素PDc(L),PDc(R)における光路長を長くすることができるので、感度を向上させることができる。
<電子機器>
 なお、本開示は、固体撮像素子への適用に限られるものではない。すなわち、本開示は、固体撮像素子のほかにカメラモジュールや撮像装置、撮像機能を有する携帯端末装置、または画像読取部に固体撮像素子を用いる複写機など、固体撮像素子を有する電子機器全般に対して適用可能である。
 かかる撮像装置としては、たとえば、デジタルスチルカメラやビデオカメラなどが挙げられる。また、かかる撮像機能を有する携帯端末装置としては、たとえば、スマートフォンやタブレット型端末などが挙げられる。
 図41は、本開示に係る技術を適用した電子機器100としての撮像装置の構成例を示すブロック図である。図41の電子機器100は、たとえば、デジタルスチルカメラやビデオカメラなどの撮像装置や、スマートフォンやタブレット型端末などの携帯端末装置などの電子機器である。
 図41において、電子機器100は、レンズ群101と、固体撮像素子102と、DSP回路103と、フレームメモリ104と、表示部105と、記録部106と、操作部107と、電源部108とから構成される。
 また、電子機器100において、DSP回路103、フレームメモリ104、表示部105、記録部106、操作部107、および電源部108は、バスライン109を介して相互に接続されている。
 レンズ群101は、被写体からの入射光(像光)を取り込んで固体撮像素子102の撮像面上に結像する。固体撮像素子102は、上述した実施形態に係る固体撮像素子1に対応し、レンズ群101によって撮像面上に結像された入射光の光量を画素単位で電気信号に変換して画素信号として出力する。
 DSP回路103は、固体撮像素子102から供給される信号を処理するカメラ信号処理回路である。フレームメモリ104は、DSP回路103により処理された画像データを、フレーム単位で一時的に保持する。
 表示部105は、たとえば、液晶パネルや有機EL(Electro Luminescence)パネルなどのパネル型表示装置からなり、固体撮像素子102で撮像された動画または静止画を表示する。記録部106は、固体撮像素子102で撮像された動画または静止画の画像データを、半導体メモリやハードディスクなどの記録媒体に記録する。
 操作部107は、ユーザによる操作にしたがい、電子機器100が有する各種の機能についての操作指令を発する。電源部108は、DSP回路103、フレームメモリ104、表示部105、記録部106、および操作部107の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 このように構成されている電子機器100では、固体撮像素子102として、上述した各実施形態の固体撮像素子1を適用することにより、IR画素11IRに起因する混色の発生を抑制することができる。
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
 前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有されるフローティングディフュージョン領域と、
 前記可視光画素および前記赤外光画素の画素間領域のうち、前記フローティングディフュージョン領域に対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
 前記画素間領域のうち、前記フローティングディフュージョン領域に対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
 を有する固体撮像素子。
(2)
 前記非貫通画素分離領域は、
 前記半導体層の受光面から前記フローティングディフュージョン領域まで達する
 前記(1)に記載の固体撮像素子。
(3)
 前記フローティングディフュージョン領域は、
 行列方向に隣接する4画素によって共有される
 前記(1)または前記(2)に記載の固体撮像素子。
(4)
 前記フローティングディフュージョン領域は、
 隣接する2画素によって共有される
 前記(1)または前記(2)に記載の固体撮像素子。
(5)
 可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
 前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタと、
 前記可視光画素および前記赤外光画素の画素間領域のうち、前記画素トランジスタに対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
 前記画素間領域のうち、前記画素トランジスタに対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
 を有する固体撮像素子。
(6)
 前記貫通画素分離領域は、
 前記可視光画素および前記赤外光画素によって共有される前記画素トランジスタと、前記可視光画素および前記赤外光画素に隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタとの間まで延在する
 前記(5)に記載の固体撮像素子。
(7)
 前記非貫通画素分離領域は、
 前記可視光画素および前記赤外光画素によって共有される前記画素トランジスタと、前記可視光画素および前記赤外光画素に隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタとの間まで延在する
 前記(5)に記載の固体撮像素子。
(8)
 前記画素トランジスタは、
 行列方向に隣接する4画素によって共有される
 前記(5)~(7)のいずれか一つに記載の固体撮像素子。
(9)
 前記画素トランジスタは、
 隣接する2画素によって共有される
 前記(5)~(7)のいずれか一つに記載の固体撮像素子。
(10)
 可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
 前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有されるウェルコンタクトと、
 前記可視光画素および前記赤外光画素の画素間領域のうち、前記ウェルコンタクトに対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
 前記画素間領域のうち、前記ウェルコンタクトに対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
 を有する固体撮像素子。
(11)
 前記非貫通画素分離領域は、
 前記半導体層の受光面から前記ウェルコンタクトに接続される前記半導体層内の不純物拡散領域まで達する
 前記(10)に記載の固体撮像素子。
(12)
 前記ウェルコンタクトは、
 行列方向に隣接する4画素によって共有される
 前記(10)または前記(11)に記載の固体撮像素子。
(13)
 前記ウェルコンタクトは、
 隣接する2画素によって共有される
 前記(10)または前記(11)に記載の固体撮像素子。
(14)
 前記貫通画素分離領域は、
 前記半導体層の受光面から当該受光面と対向する面へ向けて延伸するトレンチ部と、
 前記受光面と対向する面から前記受光面へ向けて延伸し、前記トレンチ部と接触する素子分離構造と
 を含む前記(1)~(13)のいずれか一つに記載の固体撮像素子。
(15)
 前記非貫通画素分離領域は、
 前記貫通画素分離領域と接触する
 前記(1)~(14)のいずれか一つに記載の固体撮像素子。
(16)
 前記非貫通画素分離領域は、
 前記貫通画素分離領域と非接触である
 前記(1)~(14)のいずれか一つに記載の固体撮像素子。
(17)
 前記可視光画素および前記赤外光画素は、
 平面視において対向する辺間の最短距離が2.2ミクロン以下である
 前記(1)~(16)のいずれか一つに記載の固体撮像素子。
(18)
 前記貫通画素分離領域および非貫通画素分離領域は、
 負電圧が印加される
 前記(1)~(17)のいずれか一つに記載の固体撮像素子。
(19)
 前記非貫通画素分離領域は、
 平面正方形状をした前記可視光画素および前記赤外光画素を受光面積が等しい2つの平面視矩形状をした領域に分割する位置に設けられる
 前記(1)~(18)のいずれか一つに記載の固体撮像素子。
1 固体撮像素子
10 画素アレイ部
11 単位画素
11R R画素
11G G画素
11B B画素
11IR IR画素
PDc 可視光画素
PDw 赤外光画素
230 深型トレンチ部
231 浅型トレンチ部
232 STI
FD フローティングディフュージョン領域
Wlc ウェルコンタクト
20 半導体層
30 配線層
32 配線
33 画素トランジスタ
100 電子機器
PD フォトダイオード

Claims (19)

  1.  可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
     前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有されるフローティングディフュージョン領域と、
     前記可視光画素および前記赤外光画素の画素間領域のうち、前記フローティングディフュージョン領域に対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
     前記画素間領域のうち、前記フローティングディフュージョン領域に対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
     を有する固体撮像素子。
  2.  前記非貫通画素分離領域は、
     前記半導体層の受光面から前記フローティングディフュージョン領域まで達する
     請求項1に記載の固体撮像素子。
  3.  前記フローティングディフュージョン領域は、
     行列方向に隣接する4画素によって共有される
     請求項1または請求項2に記載の固体撮像素子。
  4.  前記フローティングディフュージョン領域は、
     隣接する2画素によって共有される
     請求項1または請求項2に記載の固体撮像素子。
  5.  可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
     前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタと、
     前記可視光画素および前記赤外光画素の画素間領域のうち、前記画素トランジスタに対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
     前記画素間領域のうち、前記画素トランジスタに対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
     を有する固体撮像素子。
  6.  前記貫通画素分離領域は、
     前記可視光画素および前記赤外光画素によって共有される前記画素トランジスタと、前記可視光画素および前記赤外光画素に隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタとの間まで延在する
     請求項5に記載の固体撮像素子。
  7.  前記非貫通画素分離領域は、
     前記可視光画素および前記赤外光画素によって共有される前記画素トランジスタと、前記可視光画素および前記赤外光画素に隣接する前記可視光画素および前記赤外光画素によって共有される画素トランジスタとの間まで延在する
     請求項5に記載の固体撮像素子。
  8.  前記画素トランジスタは、
     行列方向に隣接する4画素によって共有される
     請求項5~7のいずれか一つに記載の固体撮像素子。
  9.  前記画素トランジスタは、
     隣接する2画素によって共有される
     請求項5~7のいずれか一つに記載の固体撮像素子。
  10.  可視光を受光して光電変換する可視光画素と、赤外光を受光して光電変換する赤外光画素とが2次元に配列される半導体層と、
     前記半導体層に設けられ、隣接する前記可視光画素および前記赤外光画素によって共有されるウェルコンタクトと、
     前記可視光画素および前記赤外光画素の画素間領域のうち、前記ウェルコンタクトに対応する領域を除く領域に設けられ、前記半導体層を深さ方向に貫通する貫通画素分離領域と、
     前記画素間領域のうち、前記ウェルコンタクトに対応する領域に設けられ、前記半導体層の受光面から深さ方向における中途部まで達する非貫通画素分離領域と
     を有する固体撮像素子。
  11.  前記非貫通画素分離領域は、
     前記半導体層の受光面から前記ウェルコンタクトに接続される前記半導体層内の不純物拡散領域まで達する
     請求項10に記載の固体撮像素子。
  12.  前記ウェルコンタクトは、
     行列方向に隣接する4画素によって共有される
     請求項10または請求項11に記載の固体撮像素子。
  13.  前記ウェルコンタクトは、
     隣接する2画素によって共有される
     請求項10または請求項11に記載の固体撮像素子。
  14.  前記貫通画素分離領域は、
     前記半導体層の受光面から当該受光面と対向する面へ向けて延伸するトレンチ部と、
     前記受光面と対向する面から前記受光面へ向けて延伸し、前記トレンチ部と接触する素子分離構造と
     を含む請求項1~13のいずれか一つに記載の固体撮像素子。
  15.  前記非貫通画素分離領域は、
     前記貫通画素分離領域と接触する
     請求項1~14のいずれか一つに記載の固体撮像素子。
  16.  前記非貫通画素分離領域は、
     前記貫通画素分離領域と非接触である
     請求項1~14のいずれか一つに記載の固体撮像素子。
  17.  前記可視光画素および前記赤外光画素は、
     平面視において対向する辺間の最短距離が2.2ミクロン以下である
     請求項1~16のいずれか一つに記載の固体撮像素子。
  18.  前記貫通画素分離領域および非貫通画素分離領域は、
     負電圧が印加される
     請求項1~17のいずれか一つに記載の固体撮像素子。
  19.  前記非貫通画素分離領域は、
     平面正方形状をした前記可視光画素および前記赤外光画素を受光面積が等しい2つの平面視矩形状をした領域に分割する位置に設けられる
     請求項1~18のいずれか一つに記載の固体撮像素子。
PCT/JP2021/015170 2020-04-20 2021-04-12 固体撮像素子 WO2021215290A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180027818.0A CN115380381A (zh) 2020-04-20 2021-04-12 固态摄像元件
US17/996,036 US20230215901A1 (en) 2020-04-20 2021-04-12 Solid-state imaging element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-075051 2020-04-20
JP2020075051 2020-04-20

Publications (1)

Publication Number Publication Date
WO2021215290A1 true WO2021215290A1 (ja) 2021-10-28

Family

ID=78269354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/015170 WO2021215290A1 (ja) 2020-04-20 2021-04-12 固体撮像素子

Country Status (3)

Country Link
US (1) US20230215901A1 (ja)
CN (1) CN115380381A (ja)
WO (1) WO2021215290A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157818A1 (ja) * 2022-02-15 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置および光検出装置の製造方法
WO2023157819A1 (ja) * 2022-02-15 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器
WO2023188977A1 (ja) * 2022-03-31 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
WO2024111470A1 (ja) * 2022-11-24 2024-05-30 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2024202511A1 (ja) * 2023-03-31 2024-10-03 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020027884A (ja) * 2018-08-13 2020-02-20 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置及び電子機器
CN116417487A (zh) * 2023-06-09 2023-07-11 湖北江城芯片中试服务有限公司 一种半导体结构的形成方法和半导体结构

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175494A (ja) * 2011-03-02 2013-09-05 Sony Corp 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2015029013A (ja) * 2013-07-30 2015-02-12 ソニー株式会社 撮像素子、電子機器、および撮像素子の製造方法
JP2015153772A (ja) * 2014-02-10 2015-08-24 株式会社東芝 固体撮像装置
US20160043119A1 (en) * 2014-08-05 2016-02-11 Kyung Ho Lee Image pixel, image sensor including the same, and image processing system including the same
US20160056200A1 (en) * 2014-08-19 2016-02-25 Samsung Electronics Co., Ltd. Unit Pixels for Image Sensors and Pixel Arrays Comprising the Same
JP2016039315A (ja) * 2014-08-08 2016-03-22 株式会社東芝 固体撮像素子
JP2017108062A (ja) * 2015-12-11 2017-06-15 ソニー株式会社 固体撮像素子、撮像装置、および、固体撮像素子の製造方法
WO2017130723A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 固体撮像素子および電子機器
JP2017199875A (ja) * 2016-04-28 2017-11-02 キヤノン株式会社 光電変換装置およびカメラ
WO2018043654A1 (ja) * 2016-09-02 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器
US10177191B1 (en) * 2017-11-24 2019-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the same
US20190115388A1 (en) * 2017-10-18 2019-04-18 Omnivision Technologies, Inc. Trench Isolation for Image Sensors

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175494A (ja) * 2011-03-02 2013-09-05 Sony Corp 固体撮像装置、固体撮像装置の製造方法及び電子機器
JP2015029013A (ja) * 2013-07-30 2015-02-12 ソニー株式会社 撮像素子、電子機器、および撮像素子の製造方法
JP2015153772A (ja) * 2014-02-10 2015-08-24 株式会社東芝 固体撮像装置
US20160043119A1 (en) * 2014-08-05 2016-02-11 Kyung Ho Lee Image pixel, image sensor including the same, and image processing system including the same
JP2016039315A (ja) * 2014-08-08 2016-03-22 株式会社東芝 固体撮像素子
US20160056200A1 (en) * 2014-08-19 2016-02-25 Samsung Electronics Co., Ltd. Unit Pixels for Image Sensors and Pixel Arrays Comprising the Same
JP2017108062A (ja) * 2015-12-11 2017-06-15 ソニー株式会社 固体撮像素子、撮像装置、および、固体撮像素子の製造方法
WO2017130723A1 (ja) * 2016-01-27 2017-08-03 ソニー株式会社 固体撮像素子および電子機器
JP2017199875A (ja) * 2016-04-28 2017-11-02 キヤノン株式会社 光電変換装置およびカメラ
WO2018043654A1 (ja) * 2016-09-02 2018-03-08 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置およびその製造方法、並びに電子機器
US20190115388A1 (en) * 2017-10-18 2019-04-18 Omnivision Technologies, Inc. Trench Isolation for Image Sensors
US10177191B1 (en) * 2017-11-24 2019-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device and method for forming the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157818A1 (ja) * 2022-02-15 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置および光検出装置の製造方法
WO2023157819A1 (ja) * 2022-02-15 2023-08-24 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器
JP7364826B1 (ja) * 2022-02-15 2023-10-18 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器
WO2023188977A1 (ja) * 2022-03-31 2023-10-05 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
WO2024111470A1 (ja) * 2022-11-24 2024-05-30 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2024202511A1 (ja) * 2023-03-31 2024-10-03 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器

Also Published As

Publication number Publication date
US20230215901A1 (en) 2023-07-06
CN115380381A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2021215290A1 (ja) 固体撮像素子
JP6108172B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
KR102506009B1 (ko) 고체 촬상 장치 및 그 제조 방법, 및 전자 기기
US20200105837A1 (en) Solid state image sensor, method for manufacturing the same, and electronic device
US8237834B2 (en) Solid-state imaging device and imaging apparatus having light-preventing partitions
JP2023118774A (ja) 光検出素子
JP5651976B2 (ja) 固体撮像素子およびその製造方法、並びに電子機器
WO2017130728A1 (ja) 固体撮像装置および電子機器
WO2013108656A1 (ja) 固体撮像素子およびカメラシステム
KR20170117905A (ko) 고체 촬상 장치와 그 제조 방법 및 전자 기기
JP6045250B2 (ja) 固体撮像装置および撮像装置
WO2021215337A1 (ja) 固体撮像素子および電子機器
KR20130054885A (ko) 이중 감지 기능을 가지는 기판 적층형 이미지 센서
US20160269668A1 (en) Solid-state image capturing element, manufacturing method therefor, and electronic device
WO2021215303A1 (ja) 固体撮像素子および電子機器
JP2022108423A (ja) 固体撮像素子、撮像装置
JP2020027937A (ja) 固体撮像装置、固体撮像装置の製造方法、および電子機器
JP7290185B2 (ja) 光検出装置およびその製造方法
JP5693651B2 (ja) 光電変換装置及び撮像システム
WO2023021758A1 (ja) 光検出装置及び電子機器
KR102730554B1 (ko) 고체 촬상 소자, 제조 방법 및 전자 기기
JP2022106333A (ja) 光検出装置および電子機器
JP2006323018A (ja) 光学モジュール
KR20130095701A (ko) 이중 감지 기능을 가지는 기판 적층형 이미지 센서

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791958

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP