WO2021206068A1 - 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 - Google Patents
水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 Download PDFInfo
- Publication number
- WO2021206068A1 WO2021206068A1 PCT/JP2021/014550 JP2021014550W WO2021206068A1 WO 2021206068 A1 WO2021206068 A1 WO 2021206068A1 JP 2021014550 W JP2021014550 W JP 2021014550W WO 2021206068 A1 WO2021206068 A1 WO 2021206068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conjugated diene
- polymer
- hydrogenated conjugated
- diene polymer
- mass
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 title claims abstract description 598
- 150000001993 dienes Chemical class 0.000 title claims abstract description 432
- 229920001971 elastomer Polymers 0.000 title claims description 196
- 239000005060 rubber Substances 0.000 title claims description 193
- 239000000203 mixture Substances 0.000 title claims description 174
- 238000004519 manufacturing process Methods 0.000 title claims description 31
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 125
- -1 diene compounds Chemical class 0.000 claims abstract description 117
- 238000000149 argon plasma sintering Methods 0.000 claims abstract description 18
- 238000000691 measurement method Methods 0.000 claims abstract description 9
- 239000007822 coupling agent Substances 0.000 claims description 99
- 239000000178 monomer Substances 0.000 claims description 81
- 229920002554 vinyl polymer Polymers 0.000 claims description 81
- 239000006085 branching agent Substances 0.000 claims description 69
- 150000001875 compounds Chemical class 0.000 claims description 65
- 239000000945 filler Substances 0.000 claims description 33
- 125000004432 carbon atom Chemical group C* 0.000 claims description 31
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 31
- 239000004902 Softening Agent Substances 0.000 claims description 30
- 125000005370 alkoxysilyl group Chemical group 0.000 claims description 30
- 230000004048 modification Effects 0.000 claims description 23
- 238000012986 modification Methods 0.000 claims description 23
- 125000003118 aryl group Chemical group 0.000 claims description 20
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 14
- 125000005843 halogen group Chemical group 0.000 claims description 9
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 239000000523 sample Substances 0.000 description 207
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 152
- 230000000052 comparative effect Effects 0.000 description 128
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 115
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 104
- 238000000034 method Methods 0.000 description 84
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 81
- 239000000377 silicon dioxide Substances 0.000 description 77
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 76
- 238000005259 measurement Methods 0.000 description 75
- 229910052757 nitrogen Inorganic materials 0.000 description 64
- 238000006116 polymerization reaction Methods 0.000 description 61
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 57
- 239000000243 solution Substances 0.000 description 57
- 238000006243 chemical reaction Methods 0.000 description 50
- 239000003505 polymerization initiator Substances 0.000 description 49
- 239000003795 chemical substances by application Substances 0.000 description 40
- 238000004898 kneading Methods 0.000 description 36
- 239000001257 hydrogen Substances 0.000 description 35
- 229910052739 hydrogen Inorganic materials 0.000 description 35
- 239000000126 substance Substances 0.000 description 35
- 125000004433 nitrogen atom Chemical group N* 0.000 description 31
- 238000004073 vulcanization Methods 0.000 description 31
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 30
- 239000003921 oil Substances 0.000 description 29
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 28
- 229920005989 resin Polymers 0.000 description 27
- 239000011347 resin Substances 0.000 description 27
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 26
- 238000013329 compounding Methods 0.000 description 26
- FZLHAQMQWDDWFI-UHFFFAOYSA-N 2-[2-(oxolan-2-yl)propan-2-yl]oxolane Chemical compound C1CCOC1C(C)(C)C1CCCO1 FZLHAQMQWDDWFI-UHFFFAOYSA-N 0.000 description 25
- 239000000446 fuel Substances 0.000 description 25
- 238000004458 analytical method Methods 0.000 description 23
- 238000005227 gel permeation chromatography Methods 0.000 description 23
- 239000011256 inorganic filler Substances 0.000 description 23
- 229910003475 inorganic filler Inorganic materials 0.000 description 23
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 21
- 238000005859 coupling reaction Methods 0.000 description 21
- 239000006229 carbon black Substances 0.000 description 20
- 239000003054 catalyst Substances 0.000 description 20
- 239000006087 Silane Coupling Agent Substances 0.000 description 18
- 235000019241 carbon black Nutrition 0.000 description 18
- 229920001577 copolymer Polymers 0.000 description 18
- 125000000524 functional group Chemical group 0.000 description 18
- 239000003999 initiator Substances 0.000 description 18
- LTQBNYCMVZQRSD-UHFFFAOYSA-N (4-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=C(C=C)C=C1 LTQBNYCMVZQRSD-UHFFFAOYSA-N 0.000 description 17
- 238000001179 sorption measurement Methods 0.000 description 17
- 239000004793 Polystyrene Substances 0.000 description 16
- 239000000463 material Substances 0.000 description 16
- 229920002223 polystyrene Polymers 0.000 description 16
- 239000003607 modifier Substances 0.000 description 14
- 230000001976 improved effect Effects 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 13
- 239000002904 solvent Substances 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 229940125898 compound 5 Drugs 0.000 description 12
- 230000000694 effects Effects 0.000 description 12
- 230000003068 static effect Effects 0.000 description 12
- 238000005987 sulfurization reaction Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 11
- 239000000654 additive Substances 0.000 description 11
- LIYUFTTVSMBDTB-UHFFFAOYSA-N dimethoxymethyl-(4-ethenylphenyl)silane Chemical compound COC(OC)[SiH2]C1=CC=C(C=C)C=C1 LIYUFTTVSMBDTB-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 239000003963 antioxidant agent Substances 0.000 description 10
- 229940125904 compound 1 Drugs 0.000 description 10
- 230000008878 coupling Effects 0.000 description 10
- 238000010168 coupling process Methods 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 9
- 125000003277 amino group Chemical group 0.000 description 9
- 230000003078 antioxidant effect Effects 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- 229910000077 silane Inorganic materials 0.000 description 9
- 229910052717 sulfur Inorganic materials 0.000 description 9
- 239000011593 sulfur Substances 0.000 description 9
- YFZQCGQVHDBZAF-UHFFFAOYSA-N 4-[diethoxy(methyl)silyl]oxy-n,n-bis(trimethylsilyl)pentan-1-amine Chemical compound CCO[Si](C)(OCC)OC(C)CCCN([Si](C)(C)C)[Si](C)(C)C YFZQCGQVHDBZAF-UHFFFAOYSA-N 0.000 description 8
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 8
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 8
- 230000003712 anti-aging effect Effects 0.000 description 8
- 229940125782 compound 2 Drugs 0.000 description 8
- 238000009472 formulation Methods 0.000 description 8
- 239000008117 stearic acid Substances 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 238000005299 abrasion Methods 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000003480 eluent Substances 0.000 description 7
- 239000012535 impurity Substances 0.000 description 7
- 239000012488 sample solution Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 235000021355 Stearic acid Nutrition 0.000 description 6
- 229910052799 carbon Inorganic materials 0.000 description 6
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 6
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 5
- ZZMVLMVFYMGSMY-UHFFFAOYSA-N 4-n-(4-methylpentan-2-yl)-1-n-phenylbenzene-1,4-diamine Chemical compound C1=CC(NC(C)CC(C)C)=CC=C1NC1=CC=CC=C1 ZZMVLMVFYMGSMY-UHFFFAOYSA-N 0.000 description 5
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 5
- 241001441571 Hiodontidae Species 0.000 description 5
- 230000007850 degeneration Effects 0.000 description 5
- 150000004678 hydrides Chemical class 0.000 description 5
- 150000002902 organometallic compounds Chemical class 0.000 description 5
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 5
- FBBATURSCRIBHN-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyldisulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSCCC[Si](OCC)(OCC)OCC FBBATURSCRIBHN-UHFFFAOYSA-N 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005160 1H NMR spectroscopy Methods 0.000 description 4
- OVSKIKFHRZPJSS-UHFFFAOYSA-N 2,4-D Chemical compound OC(=O)COC1=CC=C(Cl)C=C1Cl OVSKIKFHRZPJSS-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 244000043261 Hevea brasiliensis Species 0.000 description 4
- YMIBWCPCWZKOFK-UHFFFAOYSA-N N,N,N',N'-tetrakis(3-trimethoxysilylpropyl)propane-1,3-diamine Chemical compound CO[Si](CCCN(CCCN(CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)CCC[Si](OC)(OC)OC)(OC)OC YMIBWCPCWZKOFK-UHFFFAOYSA-N 0.000 description 4
- MPIDAGFPUDGFAG-UHFFFAOYSA-N N1(CCN(CC1)CCCN(CCC[Si](OCC)(OCC)OCC)CCC[Si](OCC)(OCC)OCC)CCCN(CCC[Si](OCC)(OCC)OCC)CCC[Si](OCC)(OCC)OCC Chemical compound N1(CCN(CC1)CCCN(CCC[Si](OCC)(OCC)OCC)CCC[Si](OCC)(OCC)OCC)CCCN(CCC[Si](OCC)(OCC)OCC)CCC[Si](OCC)(OCC)OCC MPIDAGFPUDGFAG-UHFFFAOYSA-N 0.000 description 4
- 239000005062 Polybutadiene Substances 0.000 description 4
- 229920006272 aromatic hydrocarbon resin Polymers 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 150000002430 hydrocarbons Chemical class 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 230000000977 initiatory effect Effects 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- 229920003052 natural elastomer Polymers 0.000 description 4
- 229920001194 natural rubber Polymers 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920002857 polybutadiene Polymers 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- 125000001010 sulfinic acid amide group Chemical group 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- LJSCMFMGPIFSDE-UHFFFAOYSA-N triethoxy-[3-(4-methylpiperazin-1-yl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCN1CCN(C)CC1 LJSCMFMGPIFSDE-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- ORFPMGWJDWEAAQ-UHFFFAOYSA-N (4-ethenylphenyl)-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(C=C)C=C1 ORFPMGWJDWEAAQ-UHFFFAOYSA-N 0.000 description 3
- BLJUISFOVOUKKB-UHFFFAOYSA-N (4-ethenylphenyl)-tripropoxysilane Chemical compound CCCO[Si](OCCC)(OCCC)C1=CC=C(C=C)C=C1 BLJUISFOVOUKKB-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 3
- 229920006164 aromatic vinyl copolymer Polymers 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002779 inactivation Effects 0.000 description 3
- 239000012442 inert solvent Substances 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 229910052744 lithium Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- GGHDAUPFEBTORZ-UHFFFAOYSA-N propane-1,1-diamine Chemical compound CCC(N)N GGHDAUPFEBTORZ-UHFFFAOYSA-N 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- PPDADIYYMSXQJK-UHFFFAOYSA-N trichlorosilicon Chemical group Cl[Si](Cl)Cl PPDADIYYMSXQJK-UHFFFAOYSA-N 0.000 description 3
- USTYJBFGVNIYDH-UHFFFAOYSA-N (3-ethenylphenyl)-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=CC(C=C)=C1 USTYJBFGVNIYDH-UHFFFAOYSA-N 0.000 description 2
- NFIQONWVAQATRV-UHFFFAOYSA-N (3-ethenylphenyl)-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC(C=C)=C1 NFIQONWVAQATRV-UHFFFAOYSA-N 0.000 description 2
- WXUIXCLQMXECCL-UHFFFAOYSA-N (3-ethenylphenyl)-trimethoxysilane Chemical compound CO[Si](OC)(OC)C1=CC=CC(C=C)=C1 WXUIXCLQMXECCL-UHFFFAOYSA-N 0.000 description 2
- XQTHMSWPPRBYPE-UHFFFAOYSA-N (3-ethenylphenyl)-tripropoxysilane Chemical compound CCCO[Si](OCCC)(OCCC)C1=CC=CC(C=C)=C1 XQTHMSWPPRBYPE-UHFFFAOYSA-N 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 2
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 2
- SDJHPPZKZZWAKF-UHFFFAOYSA-N 2,3-dimethylbuta-1,3-diene Chemical compound CC(=C)C(C)=C SDJHPPZKZZWAKF-UHFFFAOYSA-N 0.000 description 2
- SBJIQJIAXGQAJD-UHFFFAOYSA-N 2-methyl-3-(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC=CC(O)=C1C SBJIQJIAXGQAJD-UHFFFAOYSA-N 0.000 description 2
- MXTVXMFFYMHUSG-UHFFFAOYSA-N 4-[diethoxy(methyl)silyl]oxy-4-trimethylsilylpentan-1-amine Chemical compound C[Si](C)(C)C(C)(O[Si](OCC)(OCC)C)CCCN MXTVXMFFYMHUSG-UHFFFAOYSA-N 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- ZRALSGWEFCBTJO-UHFFFAOYSA-N Guanidine Chemical compound NC(N)=N ZRALSGWEFCBTJO-UHFFFAOYSA-N 0.000 description 2
- 239000013032 Hydrocarbon resin Substances 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229920006271 aliphatic hydrocarbon resin Polymers 0.000 description 2
- 150000001341 alkaline earth metal compounds Chemical class 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 125000004429 atom Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 229940126214 compound 3 Drugs 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 239000003398 denaturant Substances 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 229920006270 hydrocarbon resin Polymers 0.000 description 2
- 230000005661 hydrophobic surface Effects 0.000 description 2
- 229920003049 isoprene rubber Polymers 0.000 description 2
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 2
- WGOPGODQLGJZGL-UHFFFAOYSA-N lithium;butane Chemical compound [Li+].CC[CH-]C WGOPGODQLGJZGL-UHFFFAOYSA-N 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 150000002681 magnesium compounds Chemical class 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- GDOPTJXRTPNYNR-UHFFFAOYSA-N methylcyclopentane Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- CLNYHERYALISIR-UHFFFAOYSA-N nona-1,3-diene Chemical compound CCCCCC=CC=C CLNYHERYALISIR-UHFFFAOYSA-N 0.000 description 2
- 150000002900 organolithium compounds Chemical class 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000012763 reinforcing filler Substances 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 239000004551 spreading oil Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 239000003784 tall oil Substances 0.000 description 2
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- ZZKBVCXQLXMJHS-UHFFFAOYSA-N tributoxy-(3-ethenylphenyl)silane Chemical compound C(CCC)O[Si](C1=CC(=CC=C1)C=C)(OCCCC)OCCCC ZZKBVCXQLXMJHS-UHFFFAOYSA-N 0.000 description 2
- FNMZIPMGDMMHAA-UHFFFAOYSA-N tributoxy-(4-ethenylphenyl)silane Chemical compound C(=C)C1=CC=C(C=C1)[Si](OCCCC)(OCCCC)OCCCC FNMZIPMGDMMHAA-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 239000002383 tung oil Substances 0.000 description 2
- 239000004636 vulcanized rubber Substances 0.000 description 2
- NTIDHBFMBCCXIQ-UHFFFAOYSA-N (2-ethenylphenyl)-dimethyl-propan-2-yloxysilane Chemical compound CC(C)O[Si](C)(C)C1=CC=CC=C1C=C NTIDHBFMBCCXIQ-UHFFFAOYSA-N 0.000 description 1
- NGCVUYHZTMQNJY-UHFFFAOYSA-N (2-ethenylphenyl)-dimethyl-propoxysilane Chemical compound C[Si](C1=C(C=CC=C1)C=C)(OCCC)C NGCVUYHZTMQNJY-UHFFFAOYSA-N 0.000 description 1
- CKOTZPRYOXYVOC-UHFFFAOYSA-N (2-ethenylphenyl)-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C1=CC=CC=C1C=C CKOTZPRYOXYVOC-UHFFFAOYSA-N 0.000 description 1
- SNOSMXDFYOPBJI-UHFFFAOYSA-N (2-ethenylphenyl)-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=CC=C1C=C SNOSMXDFYOPBJI-UHFFFAOYSA-N 0.000 description 1
- COMAAAZYCJPDRX-UHFFFAOYSA-N (2-ethenylphenyl)-triethoxysilane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1C=C COMAAAZYCJPDRX-UHFFFAOYSA-N 0.000 description 1
- XQOJOVMCZHWNJV-UHFFFAOYSA-N (2-ethenylphenyl)-tripropoxysilane Chemical compound CCCO[Si](OCCC)(OCCC)C1=CC=CC=C1C=C XQOJOVMCZHWNJV-UHFFFAOYSA-N 0.000 description 1
- UKLGKIPNBHFVHN-UHFFFAOYSA-N (3-ethenylphenyl)-dimethyl-propan-2-yloxysilane Chemical compound C[Si](C1=CC(=CC=C1)C=C)(OC(C)C)C UKLGKIPNBHFVHN-UHFFFAOYSA-N 0.000 description 1
- QKBYJWMWGKQCHF-UHFFFAOYSA-N (3-ethenylphenyl)-dimethyl-propoxysilane Chemical compound C[Si](C1=CC(=CC=C1)C=C)(OCCC)C QKBYJWMWGKQCHF-UHFFFAOYSA-N 0.000 description 1
- OGQVROWWFUXRST-FNORWQNLSA-N (3e)-hepta-1,3-diene Chemical compound CCC\C=C\C=C OGQVROWWFUXRST-FNORWQNLSA-N 0.000 description 1
- AHAREKHAZNPPMI-AATRIKPKSA-N (3e)-hexa-1,3-diene Chemical compound CC\C=C\C=C AHAREKHAZNPPMI-AATRIKPKSA-N 0.000 description 1
- ZVLKUZHLRVKYNX-UHFFFAOYSA-N (4-ethenylphenyl)-dimethyl-propan-2-yloxysilane Chemical compound CC(C)O[Si](C)(C)C1=CC=C(C=C)C=C1 ZVLKUZHLRVKYNX-UHFFFAOYSA-N 0.000 description 1
- SJFNLMFFIPNWQU-UHFFFAOYSA-N (4-ethenylphenyl)-dimethyl-propoxysilane Chemical compound CCCO[Si](C)(C)C1=CC=C(C=C)C=C1 SJFNLMFFIPNWQU-UHFFFAOYSA-N 0.000 description 1
- XDUUWXBMZNMVHM-UHFFFAOYSA-N (4-ethenylphenyl)-ethoxy-dimethylsilane Chemical compound CCO[Si](C)(C)C1=CC=C(C=C)C=C1 XDUUWXBMZNMVHM-UHFFFAOYSA-N 0.000 description 1
- PNBJNKCBTJHXEO-UHFFFAOYSA-N (4-ethenylphenyl)-methoxy-dimethylsilane Chemical compound CO[Si](C)(C)C1=CC=C(C=C)C=C1 PNBJNKCBTJHXEO-UHFFFAOYSA-N 0.000 description 1
- LTZVOIIBZJCWMJ-UHFFFAOYSA-N (4-ethenylphenyl)-tri(propan-2-yloxy)silane Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)C1=CC=C(C=C)C=C1 LTZVOIIBZJCWMJ-UHFFFAOYSA-N 0.000 description 1
- JBWIUQLVXOBHBF-UHFFFAOYSA-N (4-ethenylphenyl)silane Chemical compound [SiH3]C1=CC=C(C=C)C=C1 JBWIUQLVXOBHBF-UHFFFAOYSA-N 0.000 description 1
- FZMGXCXHHCXHJQ-UHFFFAOYSA-N (4-prop-1-en-2-ylphenyl)-tripropoxysilane Chemical compound CCCO[Si](OCCC)(OCCC)C1=CC=C(C(C)=C)C=C1 FZMGXCXHHCXHJQ-UHFFFAOYSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- GDXHBFHOEYVPED-UHFFFAOYSA-N 1-(2-butoxyethoxy)butane Chemical compound CCCCOCCOCCCC GDXHBFHOEYVPED-UHFFFAOYSA-N 0.000 description 1
- UJPKMTDFFUTLGM-UHFFFAOYSA-N 1-aminoethanol Chemical compound CC(N)O UJPKMTDFFUTLGM-UHFFFAOYSA-N 0.000 description 1
- WAEOXIOXMKNFLQ-UHFFFAOYSA-N 1-methyl-4-prop-2-enylbenzene Chemical group CC1=CC=C(CC=C)C=C1 WAEOXIOXMKNFLQ-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical compound C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- WIYLFSVLMOHTCU-UHFFFAOYSA-N 2-methyl-3,4-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC=C(O)C(C)=C1CSCCCCCCCC WIYLFSVLMOHTCU-UHFFFAOYSA-N 0.000 description 1
- GAODDBNJCKQQDY-UHFFFAOYSA-N 2-methyl-4,6-bis(octylsulfanylmethyl)phenol Chemical compound CCCCCCCCSCC1=CC(C)=C(O)C(CSCCCCCCCC)=C1 GAODDBNJCKQQDY-UHFFFAOYSA-N 0.000 description 1
- CRWNQZTZTZWPOF-UHFFFAOYSA-N 2-methyl-4-phenylpyridine Chemical compound C1=NC(C)=CC(C=2C=CC=CC=2)=C1 CRWNQZTZTZWPOF-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- WOAQRZZXGUHRLL-UHFFFAOYSA-N 3-(2,2-dimethoxyazasilolidin-1-yl)propyl-dimethoxysilane Chemical compound C1[Si](N(CC1)CCC[SiH](OC)OC)(OC)OC WOAQRZZXGUHRLL-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- FIEJMSAIVIFSFQ-UHFFFAOYSA-N 6-trimethoxysilylhexane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCCC(N)CCN FIEJMSAIVIFSFQ-UHFFFAOYSA-N 0.000 description 1
- OAOABCKPVCUNKO-UHFFFAOYSA-N 8-methyl Nonanoic acid Chemical compound CC(C)CCCCCCC(O)=O OAOABCKPVCUNKO-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- TZFCFPUCNKHZAI-UHFFFAOYSA-N BrC(Br)[SiH2]C1=C(C=CC=C1)C=C Chemical compound BrC(Br)[SiH2]C1=C(C=CC=C1)C=C TZFCFPUCNKHZAI-UHFFFAOYSA-N 0.000 description 1
- CRHCRHXBBFXXIA-UHFFFAOYSA-N BrC(Br)[SiH2]C1=CC=C(C=C1)C=C Chemical compound BrC(Br)[SiH2]C1=CC=C(C=C1)C=C CRHCRHXBBFXXIA-UHFFFAOYSA-N 0.000 description 1
- NSCQXFWXYGXANB-UHFFFAOYSA-N C(=C)C=1C=C(C=CC=1)[Si](OC)(OC)C Chemical compound C(=C)C=1C=C(C=CC=1)[Si](OC)(OC)C NSCQXFWXYGXANB-UHFFFAOYSA-N 0.000 description 1
- HRLZTDSTBJWJCN-UHFFFAOYSA-N C(C)(C)OC(OC(C)C)[SiH2]C1=C(C=CC=C1)C(=C)C Chemical compound C(C)(C)OC(OC(C)C)[SiH2]C1=C(C=CC=C1)C(=C)C HRLZTDSTBJWJCN-UHFFFAOYSA-N 0.000 description 1
- PWRPGXMVGKKDFE-UHFFFAOYSA-N C(C)(C)OC(OC(C)C)[SiH2]C1=CC(=CC=C1)C(=C)C Chemical compound C(C)(C)OC(OC(C)C)[SiH2]C1=CC(=CC=C1)C(=C)C PWRPGXMVGKKDFE-UHFFFAOYSA-N 0.000 description 1
- QQLNWWBAHCCGLJ-UHFFFAOYSA-N C(C)(C)OC(OC(C)C)[SiH2]C1=CC=C(C=C1)C(=C)C Chemical compound C(C)(C)OC(OC(C)C)[SiH2]C1=CC=C(C=C1)C(=C)C QQLNWWBAHCCGLJ-UHFFFAOYSA-N 0.000 description 1
- XTLUAHMFJTYNCE-UHFFFAOYSA-N C(C)OC(OCC)[SiH2]C1=C(C=CC=C1)C(=C)C Chemical compound C(C)OC(OCC)[SiH2]C1=C(C=CC=C1)C(=C)C XTLUAHMFJTYNCE-UHFFFAOYSA-N 0.000 description 1
- PFCULYFOJZZGOI-UHFFFAOYSA-N C(C)OC(OCC)[SiH2]C1=C(C=CC=C1)C=C Chemical compound C(C)OC(OCC)[SiH2]C1=C(C=CC=C1)C=C PFCULYFOJZZGOI-UHFFFAOYSA-N 0.000 description 1
- UFTXZXQUXCPNJC-UHFFFAOYSA-N C(C)OC(OCC)[SiH2]C1=CC(=CC=C1)C=C Chemical compound C(C)OC(OCC)[SiH2]C1=CC(=CC=C1)C=C UFTXZXQUXCPNJC-UHFFFAOYSA-N 0.000 description 1
- JNQNBBTWCPYTFU-UHFFFAOYSA-N C(C)OC(OCC)[SiH2]C1=CC=C(C=C1)C(=C)C Chemical compound C(C)OC(OCC)[SiH2]C1=CC=C(C=C1)C(=C)C JNQNBBTWCPYTFU-UHFFFAOYSA-N 0.000 description 1
- COSVXZPCXIJZHN-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=C(C=CC=C1)C(=C)C Chemical compound C(CC)OC(OCCC)[SiH2]C1=C(C=CC=C1)C(=C)C COSVXZPCXIJZHN-UHFFFAOYSA-N 0.000 description 1
- LOMFVAYGGWZTJS-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=C(C=CC=C1)C=C Chemical compound C(CC)OC(OCCC)[SiH2]C1=C(C=CC=C1)C=C LOMFVAYGGWZTJS-UHFFFAOYSA-N 0.000 description 1
- XQFHVDWZIWDRCI-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=CC(=CC=C1)C(=C)C Chemical compound C(CC)OC(OCCC)[SiH2]C1=CC(=CC=C1)C(=C)C XQFHVDWZIWDRCI-UHFFFAOYSA-N 0.000 description 1
- JAILKVGXEYJWRT-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=CC(=CC=C1)C=C Chemical compound C(CC)OC(OCCC)[SiH2]C1=CC(=CC=C1)C=C JAILKVGXEYJWRT-UHFFFAOYSA-N 0.000 description 1
- ZUDJHNVXLUSQJZ-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=CC=C(C=C1)C(=C)C Chemical compound C(CC)OC(OCCC)[SiH2]C1=CC=C(C=C1)C(=C)C ZUDJHNVXLUSQJZ-UHFFFAOYSA-N 0.000 description 1
- AZJFQOFNLSAQGN-UHFFFAOYSA-N C(CC)OC(OCCC)[SiH2]C1=CC=C(C=C1)C=C Chemical compound C(CC)OC(OCCC)[SiH2]C1=CC=C(C=C1)C=C AZJFQOFNLSAQGN-UHFFFAOYSA-N 0.000 description 1
- KBGPUCMJAYVYAA-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=C(C=CC=C1)C(=C)C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=C(C=CC=C1)C(=C)C KBGPUCMJAYVYAA-UHFFFAOYSA-N 0.000 description 1
- DXIPLHGSCIGXDQ-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=C(C=CC=C1)C=C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=C(C=CC=C1)C=C DXIPLHGSCIGXDQ-UHFFFAOYSA-N 0.000 description 1
- JRBKYTJHLPGOKP-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=CC(=CC=C1)C(=C)C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=CC(=CC=C1)C(=C)C JRBKYTJHLPGOKP-UHFFFAOYSA-N 0.000 description 1
- XTLMKPKFASTFGU-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=CC(=CC=C1)C=C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=CC(=CC=C1)C=C XTLMKPKFASTFGU-UHFFFAOYSA-N 0.000 description 1
- ZARQQRVOFNHHGA-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=CC=C(C=C1)C(=C)C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=CC=C(C=C1)C(=C)C ZARQQRVOFNHHGA-UHFFFAOYSA-N 0.000 description 1
- AJZZDEOWWCUOFT-UHFFFAOYSA-N C(CCC)OC(OCCCC)[SiH2]C1=CC=C(C=C1)C=C Chemical compound C(CCC)OC(OCCCC)[SiH2]C1=CC=C(C=C1)C=C AJZZDEOWWCUOFT-UHFFFAOYSA-N 0.000 description 1
- NWPYUHOIDZSKFX-UHFFFAOYSA-N C=CC(C=C1)=CC=C1[SiH2]Br Chemical compound C=CC(C=C1)=CC=C1[SiH2]Br NWPYUHOIDZSKFX-UHFFFAOYSA-N 0.000 description 1
- BKSMNGIYMKISBQ-UHFFFAOYSA-N CC(C)O[Si](C)(C1=C(C=C)C=CC=C1)OC(C)C Chemical compound CC(C)O[Si](C)(C1=C(C=C)C=CC=C1)OC(C)C BKSMNGIYMKISBQ-UHFFFAOYSA-N 0.000 description 1
- MVLUVIZQERUPTJ-UHFFFAOYSA-N CCCCO[Si](C)(C)C1=CC=CC=C1C(C)=C Chemical compound CCCCO[Si](C)(C)C1=CC=CC=C1C(C)=C MVLUVIZQERUPTJ-UHFFFAOYSA-N 0.000 description 1
- MVECFARLYQAUNR-UHFFFAOYSA-N CCCC[Mg]CC Chemical compound CCCC[Mg]CC MVECFARLYQAUNR-UHFFFAOYSA-N 0.000 description 1
- SHYRHPZDEHNTKP-UHFFFAOYSA-N CCO[Si](C)(C)C1=CC=CC=C1C(C)=C Chemical compound CCO[Si](C)(C)C1=CC=CC=C1C(C)=C SHYRHPZDEHNTKP-UHFFFAOYSA-N 0.000 description 1
- FKLBMMWLYIDRAW-UHFFFAOYSA-N COC(OC)[SiH2]C1=CC(=CC=C1)C(=C)C Chemical compound COC(OC)[SiH2]C1=CC(=CC=C1)C(=C)C FKLBMMWLYIDRAW-UHFFFAOYSA-N 0.000 description 1
- UAXONPXXCQYJBL-UHFFFAOYSA-N COC(OC)[SiH2]C1=CC=C(C=C1)C(=C)C Chemical compound COC(OC)[SiH2]C1=CC=C(C=C1)C(=C)C UAXONPXXCQYJBL-UHFFFAOYSA-N 0.000 description 1
- RBSWNUKZJKRNSD-UHFFFAOYSA-N COC(OC)[SiH2]c1ccccc1C(C)=C Chemical compound COC(OC)[SiH2]c1ccccc1C(C)=C RBSWNUKZJKRNSD-UHFFFAOYSA-N 0.000 description 1
- MXBMFRIOKOIWSZ-UHFFFAOYSA-N COC(OC)[SiH2]c1ccccc1C=C Chemical compound COC(OC)[SiH2]c1ccccc1C=C MXBMFRIOKOIWSZ-UHFFFAOYSA-N 0.000 description 1
- XDAAPJJCNWNUHR-UHFFFAOYSA-N C[Si](C1=C(C=CC=C1)C=C)(OCC)C Chemical compound C[Si](C1=C(C=CC=C1)C=C)(OCC)C XDAAPJJCNWNUHR-UHFFFAOYSA-N 0.000 description 1
- JSGZJRNLPIIRFN-UHFFFAOYSA-N C[Si](C1=CC(=CC=C1)C=C)(OC)C Chemical compound C[Si](C1=CC(=CC=C1)C=C)(OC)C JSGZJRNLPIIRFN-UHFFFAOYSA-N 0.000 description 1
- RRQVYPWMRIOUGS-UHFFFAOYSA-N C[Si](C1=CC(=CC=C1)C=C)(OCC)C Chemical compound C[Si](C1=CC(=CC=C1)C=C)(OCC)C RRQVYPWMRIOUGS-UHFFFAOYSA-N 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- CYCRHODTXLQPHY-UHFFFAOYSA-N ClC(Cl)[SiH2]C1=C(C=CC=C1)C=C Chemical compound ClC(Cl)[SiH2]C1=C(C=CC=C1)C=C CYCRHODTXLQPHY-UHFFFAOYSA-N 0.000 description 1
- KNOMEZONRICVTB-UHFFFAOYSA-N ClC(Cl)[SiH2]C1=CC(=CC=C1)C=C Chemical compound ClC(Cl)[SiH2]C1=CC(=CC=C1)C=C KNOMEZONRICVTB-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000181 Ethylene propylene rubber Polymers 0.000 description 1
- 101150096839 Fcmr gene Proteins 0.000 description 1
- 239000004606 Fillers/Extenders Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000006237 Intermediate SAF Substances 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229920002633 Kraton (polymer) Polymers 0.000 description 1
- KWYHDKDOAIKMQN-UHFFFAOYSA-N N,N,N',N'-tetramethylethylenediamine Chemical compound CN(C)CCN(C)C KWYHDKDOAIKMQN-UHFFFAOYSA-N 0.000 description 1
- CHJJGSNFBQVOTG-UHFFFAOYSA-N N-methyl-guanidine Natural products CNC(N)=N CHJJGSNFBQVOTG-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 101100364280 Oryza sativa subsp. japonica RSS3 gene Proteins 0.000 description 1
- 101100478972 Oryza sativa subsp. japonica SUS3 gene Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000005662 Paraffin oil Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Natural products NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 229920006311 Urethane elastomer Polymers 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- VUBQYTCIOHLJGQ-UHFFFAOYSA-N acetylene;4-tert-butylphenol Chemical group C#C.CC(C)(C)C1=CC=C(O)C=C1 VUBQYTCIOHLJGQ-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001339 alkali metal compounds Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical compound C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- 150000001361 allenes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000751 azo group Chemical class [*]N=N[*] 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 230000000740 bleeding effect Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KVQLMTHZCQSAEL-UHFFFAOYSA-N bromo-(2-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C1=C(C=CC=C1)C=C)(Br)C KVQLMTHZCQSAEL-UHFFFAOYSA-N 0.000 description 1
- DHXLALSSKVGLBF-UHFFFAOYSA-N bromo-(3-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C1=CC(=CC=C1)C=C)(Br)C DHXLALSSKVGLBF-UHFFFAOYSA-N 0.000 description 1
- 229920005557 bromobutyl Polymers 0.000 description 1
- WXCZUWHSJWOTRV-UHFFFAOYSA-N but-1-ene;ethene Chemical compound C=C.CCC=C WXCZUWHSJWOTRV-UHFFFAOYSA-N 0.000 description 1
- PBGVMIDTGGTBFS-UHFFFAOYSA-N but-3-enylbenzene Chemical compound C=CCCC1=CC=CC=C1 PBGVMIDTGGTBFS-UHFFFAOYSA-N 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CBWVZUYWEPELSN-UHFFFAOYSA-N butoxy-(2-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C1=C(C=CC=C1)C=C)(OCCCC)C CBWVZUYWEPELSN-UHFFFAOYSA-N 0.000 description 1
- YQCQECYJPODJNL-UHFFFAOYSA-N butoxy-(3-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C1=CC(=CC=C1)C=C)(OCCCC)C YQCQECYJPODJNL-UHFFFAOYSA-N 0.000 description 1
- HEJVULZVQRPWIX-UHFFFAOYSA-N butoxy-(4-ethenylphenyl)-dimethylsilane Chemical compound CCCCO[Si](C)(C)C1=CC=C(C=C)C=C1 HEJVULZVQRPWIX-UHFFFAOYSA-N 0.000 description 1
- FEMNFRYJVALASF-UHFFFAOYSA-N butoxy-dimethyl-(3-prop-1-en-2-ylphenyl)silane Chemical compound C[Si](C1=CC(=CC=C1)C(=C)C)(OCCCC)C FEMNFRYJVALASF-UHFFFAOYSA-N 0.000 description 1
- VXSYTGPIEYQXFW-UHFFFAOYSA-N butoxy-dimethyl-(4-prop-1-en-2-ylphenyl)silane Chemical compound C[Si](C1=CC=C(C=C1)C(=C)C)(OCCCC)C VXSYTGPIEYQXFW-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 229940043430 calcium compound Drugs 0.000 description 1
- 150000001674 calcium compounds Chemical class 0.000 description 1
- DKVNPHBNOWQYFE-UHFFFAOYSA-N carbamodithioic acid Chemical compound NC(S)=S DKVNPHBNOWQYFE-UHFFFAOYSA-N 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 229920006235 chlorinated polyethylene elastomer Polymers 0.000 description 1
- DHHBWYHLBPWLKE-UHFFFAOYSA-N chloro-(2-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C)(Cl)C1=CC=CC=C1C=C DHHBWYHLBPWLKE-UHFFFAOYSA-N 0.000 description 1
- RLUOHTUHZTVMRA-UHFFFAOYSA-N chloro-(3-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C)(Cl)C1=CC=CC(C=C)=C1 RLUOHTUHZTVMRA-UHFFFAOYSA-N 0.000 description 1
- ZRZLAQZGAAWEIF-UHFFFAOYSA-N chloro-(4-ethenylphenyl)-dimethylsilane Chemical compound C[Si](C)(Cl)C1=CC=C(C=C)C=C1 ZRZLAQZGAAWEIF-UHFFFAOYSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- PESYEWKSBIWTAK-UHFFFAOYSA-N cyclopenta-1,3-diene;titanium(2+) Chemical compound [Ti+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 PESYEWKSBIWTAK-UHFFFAOYSA-N 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- HRDMWCIEVVHRIU-UHFFFAOYSA-N di(propan-2-yloxy)methyl-(4-ethenylphenyl)silane Chemical compound C(C)(C)OC(OC(C)C)[SiH2]C1=CC=C(C=C)C=C1 HRDMWCIEVVHRIU-UHFFFAOYSA-N 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- JNBAMYKAFZQIHC-UHFFFAOYSA-N dichloromethyl-(4-ethenylphenyl)silane Chemical compound ClC(Cl)[SiH2]C1=CC=C(C=C)C=C1 JNBAMYKAFZQIHC-UHFFFAOYSA-N 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- PAUHSGGIRFHTGM-UHFFFAOYSA-N diethoxymethyl-(4-ethenylphenyl)silane Chemical compound CCOC(OCC)[SiH2]C1=CC=C(C=C)C=C1 PAUHSGGIRFHTGM-UHFFFAOYSA-N 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- YXBHUYURHCMIMF-UHFFFAOYSA-N dimethyl-(2-prop-1-en-2-ylphenyl)-propoxysilane Chemical compound C[Si](C1=C(C=CC=C1)C(=C)C)(OCCC)C YXBHUYURHCMIMF-UHFFFAOYSA-N 0.000 description 1
- YBEJCHKFGKUKHP-UHFFFAOYSA-N dimethyl-(3-prop-1-en-2-ylphenyl)-propoxysilane Chemical compound C[Si](C1=CC(=CC=C1)C(=C)C)(OCCC)C YBEJCHKFGKUKHP-UHFFFAOYSA-N 0.000 description 1
- IXKKLUZINJYGMK-UHFFFAOYSA-N dimethyl-(4-prop-1-en-2-ylphenyl)-propoxysilane Chemical compound C[Si](C1=CC=C(C=C1)C(=C)C)(OCCC)C IXKKLUZINJYGMK-UHFFFAOYSA-N 0.000 description 1
- YMJMNDQYYHOSND-UHFFFAOYSA-N dimethyl-propan-2-yloxy-(3-prop-1-en-2-ylphenyl)silane Chemical compound C[Si](C1=CC(=CC=C1)C(=C)C)(OC(C)C)C YMJMNDQYYHOSND-UHFFFAOYSA-N 0.000 description 1
- GDVBXZJZRLQXGY-UHFFFAOYSA-N dimethyl-propan-2-yloxy-(4-prop-1-en-2-ylphenyl)silane Chemical compound CC(C)O[Si](C)(C)C1=CC=C(C(C)=C)C=C1 GDVBXZJZRLQXGY-UHFFFAOYSA-N 0.000 description 1
- SWSQBOPZIKWTGO-UHFFFAOYSA-N dimethylaminoamidine Natural products CN(C)C(N)=N SWSQBOPZIKWTGO-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- PXJJSXABGXMUSU-UHFFFAOYSA-N disulfur dichloride Chemical compound ClSSCl PXJJSXABGXMUSU-UHFFFAOYSA-N 0.000 description 1
- 239000012990 dithiocarbamate Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 229920005558 epichlorohydrin rubber Polymers 0.000 description 1
- ALSOCDGAZNNNME-UHFFFAOYSA-N ethene;hex-1-ene Chemical compound C=C.CCCCC=C ALSOCDGAZNNNME-UHFFFAOYSA-N 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- KHIJQNIXBZMFLV-UHFFFAOYSA-N ethoxy-dimethyl-(4-prop-1-en-2-ylphenyl)silane Chemical compound C[Si](C1=CC=C(C=C1)C(=C)C)(OCC)C KHIJQNIXBZMFLV-UHFFFAOYSA-N 0.000 description 1
- 125000002534 ethynyl group Chemical class [H]C#C* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- OIAUFEASXQPCFE-UHFFFAOYSA-N formaldehyde;1,3-xylene Chemical compound O=C.CC1=CC=CC(C)=C1 OIAUFEASXQPCFE-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000002466 imines Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- PNYDAXOCFHTABQ-UHFFFAOYSA-N lithium 1,3,3-trimethyl-6-azanidabicyclo[3.2.1]octane Chemical compound [Li]N1C2CC(CC(C1)(C2)C)(C)C PNYDAXOCFHTABQ-UHFFFAOYSA-N 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 1
- JHOWPGVWCUCMCI-UHFFFAOYSA-N lithium;azanidacyclooctane Chemical compound [Li+].C1CCC[N-]CCC1 JHOWPGVWCUCMCI-UHFFFAOYSA-N 0.000 description 1
- NVMMPHVQFFIBOS-UHFFFAOYSA-N lithium;dibutylazanide Chemical compound [Li+].CCCC[N-]CCCC NVMMPHVQFFIBOS-UHFFFAOYSA-N 0.000 description 1
- AHNJTQYTRPXLLG-UHFFFAOYSA-N lithium;diethylazanide Chemical compound [Li+].CC[N-]CC AHNJTQYTRPXLLG-UHFFFAOYSA-N 0.000 description 1
- QLEXLQBDIFPTQE-UHFFFAOYSA-N lithium;diheptylazanide Chemical compound [Li+].CCCCCCC[N-]CCCCCCC QLEXLQBDIFPTQE-UHFFFAOYSA-N 0.000 description 1
- YDGSUPBDGKOGQT-UHFFFAOYSA-N lithium;dimethylazanide Chemical compound [Li+].C[N-]C YDGSUPBDGKOGQT-UHFFFAOYSA-N 0.000 description 1
- VZKVUHUYEOZDIY-UHFFFAOYSA-N lithium;dioctylazanide Chemical compound [Li+].CCCCCCCC[N-]CCCCCCCC VZKVUHUYEOZDIY-UHFFFAOYSA-N 0.000 description 1
- OWYFNXMEEFAXTO-UHFFFAOYSA-N lithium;dipropylazanide Chemical compound [Li+].CCC[N-]CCC OWYFNXMEEFAXTO-UHFFFAOYSA-N 0.000 description 1
- CETVQRFGPOGIQJ-UHFFFAOYSA-N lithium;hexane Chemical compound [Li+].CCCCC[CH2-] CETVQRFGPOGIQJ-UHFFFAOYSA-N 0.000 description 1
- YNXURHRFIMQACJ-UHFFFAOYSA-N lithium;methanidylbenzene Chemical compound [Li+].[CH2-]C1=CC=CC=C1 YNXURHRFIMQACJ-UHFFFAOYSA-N 0.000 description 1
- AXSMTZCJJBPZAA-UHFFFAOYSA-N lithium;morpholin-4-ide Chemical compound [Li]N1CCOCC1 AXSMTZCJJBPZAA-UHFFFAOYSA-N 0.000 description 1
- RRFBKRFYFCJYFK-UHFFFAOYSA-N lithium;n,n-dimethylpropan-1-amine Chemical compound [Li+].CN(C)CC[CH2-] RRFBKRFYFCJYFK-UHFFFAOYSA-N 0.000 description 1
- DWNRISLZVCBTRN-UHFFFAOYSA-N lithium;piperidin-1-ide Chemical compound [Li]N1CCCCC1 DWNRISLZVCBTRN-UHFFFAOYSA-N 0.000 description 1
- FJDQVJUXXNIHNB-UHFFFAOYSA-N lithium;pyrrolidin-1-ide Chemical compound [Li+].C1CC[N-]C1 FJDQVJUXXNIHNB-UHFFFAOYSA-N 0.000 description 1
- 238000010551 living anionic polymerization reaction Methods 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- KJJBSBKRXUVBMX-UHFFFAOYSA-N magnesium;butane Chemical compound [Mg+2].CCC[CH2-].CCC[CH2-] KJJBSBKRXUVBMX-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- RNBVMXVCXCCMEQ-UHFFFAOYSA-N methoxy-[4-[1-[4-[methoxy(dipropyl)silyl]phenyl]ethenyl]phenyl]-dipropylsilane Chemical group CCC[Si](CCC)(C1=CC=C(C=C1)C(=C)C2=CC=C(C=C2)[Si](CCC)(CCC)OC)OC RNBVMXVCXCCMEQ-UHFFFAOYSA-N 0.000 description 1
- FEEVRWTYSUWJBX-UHFFFAOYSA-N methoxy-dimethyl-(2-prop-1-en-2-ylphenyl)silane Chemical compound CO[Si](C)(C)C1=CC=CC=C1C(C)=C FEEVRWTYSUWJBX-UHFFFAOYSA-N 0.000 description 1
- IPKWQMUUORAUAI-UHFFFAOYSA-N methoxy-dimethyl-(4-prop-1-en-2-ylphenyl)silane Chemical compound CO[Si](C)(C)C1=CC=C(C(C)=C)C=C1 IPKWQMUUORAUAI-UHFFFAOYSA-N 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002832 nitroso derivatives Chemical class 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 150000001451 organic peroxides Chemical class 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- NHKJPPKXDNZFBJ-UHFFFAOYSA-N phenyllithium Chemical compound [Li]C1=CC=CC=C1 NHKJPPKXDNZFBJ-UHFFFAOYSA-N 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- PMJHHCWVYXUKFD-UHFFFAOYSA-N piperylene Natural products CC=CC=C PMJHHCWVYXUKFD-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920000768 polyamine Chemical class 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000346 polystyrene-polyisoprene block-polystyrene Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 150000003097 polyterpenes Chemical class 0.000 description 1
- ZRLVQFQTCMUIRM-UHFFFAOYSA-N potassium;2-methylbutan-2-olate Chemical compound [K+].CCC(C)(C)[O-] ZRLVQFQTCMUIRM-UHFFFAOYSA-N 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- SBYHFKPVCBCYGV-UHFFFAOYSA-N quinuclidine Chemical compound C1CC2CCN1CC2 SBYHFKPVCBCYGV-UHFFFAOYSA-N 0.000 description 1
- 229920005604 random copolymer Polymers 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 125000005372 silanol group Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- PDEFQWNXOUGDJR-UHFFFAOYSA-M sodium;2,2-dichloropropanoate Chemical compound [Na+].CC(Cl)(Cl)C([O-])=O PDEFQWNXOUGDJR-UHFFFAOYSA-M 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003438 strontium compounds Chemical class 0.000 description 1
- 239000011115 styrene butadiene Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- QAZLUNIWYYOJPC-UHFFFAOYSA-M sulfenamide Chemical compound [Cl-].COC1=C(C)C=[N+]2C3=NC4=CC=C(OC)C=C4N3SCC2=C1C QAZLUNIWYYOJPC-UHFFFAOYSA-M 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- FWMUJAIKEJWSSY-UHFFFAOYSA-N sulfur dichloride Chemical compound ClSCl FWMUJAIKEJWSSY-UHFFFAOYSA-N 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- QKODALJOVMHMQK-UHFFFAOYSA-N tri(propan-2-yloxy)-(2-prop-1-en-2-ylphenyl)silane Chemical compound C(C)(C)O[Si](C1=C(C=CC=C1)C(=C)C)(OC(C)C)OC(C)C QKODALJOVMHMQK-UHFFFAOYSA-N 0.000 description 1
- MITOWPJLTQNAKR-UHFFFAOYSA-N tri(propan-2-yloxy)-(3-prop-1-en-2-ylphenyl)silane Chemical compound C(C)(C)O[Si](C1=CC(=CC=C1)C(=C)C)(OC(C)C)OC(C)C MITOWPJLTQNAKR-UHFFFAOYSA-N 0.000 description 1
- OHRASUAFDWNHRJ-UHFFFAOYSA-N tri(propan-2-yloxy)-(4-prop-1-en-2-ylphenyl)silane Chemical compound C(C)(C)O[Si](C1=CC=C(C=C1)C(=C)C)(OC(C)C)OC(C)C OHRASUAFDWNHRJ-UHFFFAOYSA-N 0.000 description 1
- UMIWGWRQQYMAQE-UHFFFAOYSA-N tri(propan-2-yloxy)-[4-[1-[4-tri(propan-2-yloxy)silylphenyl]ethenyl]phenyl]silane Chemical group C(C)(C)O[Si](C1=CC=C(C=C1)C(=C)C1=CC=C(C=C1)[Si](OC(C)C)(OC(C)C)OC(C)C)(OC(C)C)OC(C)C UMIWGWRQQYMAQE-UHFFFAOYSA-N 0.000 description 1
- NTYCYPSVBVRDEY-UHFFFAOYSA-N tribromo-(2-ethenylphenyl)silane Chemical compound Br[Si](C1=C(C=CC=C1)C=C)(Br)Br NTYCYPSVBVRDEY-UHFFFAOYSA-N 0.000 description 1
- CGDILAVHWVZOQX-UHFFFAOYSA-N tribromo-(3-ethenylphenyl)silane Chemical compound Br[Si](C1=CC(=CC=C1)C=C)(Br)Br CGDILAVHWVZOQX-UHFFFAOYSA-N 0.000 description 1
- IIHMYTHEZCWAHT-UHFFFAOYSA-N tribromo-(4-ethenylphenyl)silane Chemical compound Br[Si](C1=CC=C(C=C1)C=C)(Br)Br IIHMYTHEZCWAHT-UHFFFAOYSA-N 0.000 description 1
- LMPRRHBLDWYMAE-UHFFFAOYSA-N tributoxy-(2-ethenylphenyl)silane Chemical compound C(CCC)O[Si](C1=C(C=CC=C1)C=C)(OCCCC)OCCCC LMPRRHBLDWYMAE-UHFFFAOYSA-N 0.000 description 1
- WRBKYOVPTRMIAX-UHFFFAOYSA-N tributoxy-(2-prop-1-en-2-ylphenyl)silane Chemical compound C(CCC)O[Si](C1=C(C=CC=C1)C(=C)C)(OCCCC)OCCCC WRBKYOVPTRMIAX-UHFFFAOYSA-N 0.000 description 1
- APKKEUULRSYDPB-UHFFFAOYSA-N tributoxy-(3-prop-1-en-2-ylphenyl)silane Chemical compound C(CCC)O[Si](C1=CC(=CC=C1)C(=C)C)(OCCCC)OCCCC APKKEUULRSYDPB-UHFFFAOYSA-N 0.000 description 1
- JQJCXQLWTIRVMS-UHFFFAOYSA-N tributoxy-(4-prop-1-en-2-ylphenyl)silane Chemical compound C(CCC)O[Si](C1=CC=C(C=C1)C(=C)C)(OCCCC)OCCCC JQJCXQLWTIRVMS-UHFFFAOYSA-N 0.000 description 1
- JEEPFAKTJAOOQX-UHFFFAOYSA-N trichloro-(4-ethenylphenyl)silane Chemical compound Cl[Si](Cl)(Cl)C1=CC=C(C=C)C=C1 JEEPFAKTJAOOQX-UHFFFAOYSA-N 0.000 description 1
- RFHBYTRKHKUVNA-UHFFFAOYSA-N triethoxy-(2-prop-1-en-2-ylphenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=CC=C1C(C)=C RFHBYTRKHKUVNA-UHFFFAOYSA-N 0.000 description 1
- PJCBQDLZLGBGCP-UHFFFAOYSA-N triethoxy-(3-prop-1-en-2-ylphenyl)silane Chemical compound C(C)O[Si](C1=CC(=CC=C1)C(=C)C)(OCC)OCC PJCBQDLZLGBGCP-UHFFFAOYSA-N 0.000 description 1
- JLNYYVWMDWURPP-UHFFFAOYSA-N triethoxy-(4-prop-1-en-2-ylphenyl)silane Chemical compound CCO[Si](OCC)(OCC)C1=CC=C(C(C)=C)C=C1 JLNYYVWMDWURPP-UHFFFAOYSA-N 0.000 description 1
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 1
- XIEGWJGMHQWFCX-UHFFFAOYSA-N trimethoxy-(2-prop-1-en-2-ylphenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC=C1C(C)=C XIEGWJGMHQWFCX-UHFFFAOYSA-N 0.000 description 1
- NDOXWVPHPJYNJN-UHFFFAOYSA-N trimethoxy-(3-prop-1-en-2-ylphenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=CC(C(C)=C)=C1 NDOXWVPHPJYNJN-UHFFFAOYSA-N 0.000 description 1
- YQIZKGWCIRJWKB-UHFFFAOYSA-N trimethoxy-(4-prop-1-en-2-ylphenyl)silane Chemical compound CO[Si](OC)(OC)C1=CC=C(C(C)=C)C=C1 YQIZKGWCIRJWKB-UHFFFAOYSA-N 0.000 description 1
- TUULDLFREHEMIB-UHFFFAOYSA-N trimethoxy-[4-[1-(4-trimethoxysilylphenyl)ethenyl]phenyl]silane Chemical group CO[Si](C1=CC=C(C=C1)C(=C)C1=CC=C(C=C1)[Si](OC)(OC)OC)(OC)OC TUULDLFREHEMIB-UHFFFAOYSA-N 0.000 description 1
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 1
- ABDKAPXRBAPSQN-UHFFFAOYSA-N veratrole Chemical compound COC1=CC=CC=C1OC ABDKAPXRBAPSQN-UHFFFAOYSA-N 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- QSGNKXDSTRDWKA-UHFFFAOYSA-N zirconium dihydride Chemical compound [ZrH2] QSGNKXDSTRDWKA-UHFFFAOYSA-N 0.000 description 1
- 229910000568 zirconium hydride Inorganic materials 0.000 description 1
- JLYXXMFPNIAWKQ-UHFFFAOYSA-N γ Benzene hexachloride Chemical compound ClC1C(Cl)C(Cl)C(Cl)C(Cl)C1Cl JLYXXMFPNIAWKQ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F236/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F236/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F236/04—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F236/10—Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/02—Hydrogenation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/22—Incorporating nitrogen atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/25—Incorporating silicon atoms into the molecule
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08C—TREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
- C08C19/00—Chemical modification of rubber
- C08C19/28—Reaction with compounds containing carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F36/00—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
- C08F36/02—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
- C08F36/04—Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
- C08F36/06—Butadiene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
- C08K3/36—Silica
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L15/00—Compositions of rubber derivatives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/80—Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
- Y02T10/86—Optimisation of rolling resistance, e.g. weight reduction
Definitions
- the present invention relates to a hydrogenated conjugated diene polymer, a hydrogenated conjugated diene polymer composition, a rubber composition, and a method for producing a hydrogenated conjugated diene polymer.
- the rubber material used for the tire tread is required to have a small rolling resistance, that is, a material having a low hysteresis loss property.
- Examples of the rubber material that meets the above-mentioned requirements include a rubber composition containing a rubber-like polymer and a reinforcing filler such as carbon black and silica.
- a rubber composition containing silica By using a rubber composition containing silica, it is possible to improve the balance between low hysteresis loss (an index of fuel efficiency) and wet skid resistance. Further, by introducing a functional group having affinity or reactivity with silica into the molecular terminal portion of the highly motility rubber-like polymer, the dispersibility of silica in the rubber material is improved, and further, silica By binding to the particles, the motility of the molecular end of the rubber-like polymer can be reduced, and the hysteresis loss can be reduced.
- Patent Documents 1 to 3 propose a composition of a modified conjugated diene polymer obtained by reacting alkoxysilanes containing an amino group with the active terminal of the conjugated diene polymer and silica.
- silica has a hydrophilic surface with respect to carbon black having a hydrophobic surface, it has a low affinity with a conjugated diene polymer, so that it is compared with carbon black. It has the disadvantage of poor dispersibility in the composition. Therefore, the composition containing silica needs to separately contain a silane modifier or the like in order to impart a bond between the silica and the conjugated diene polymer and improve the dispersibility in the composition.
- the reaction with silica particles proceeds during the kneading step, which causes the viscosity of the composition to increase.
- the processability tends to be deteriorated, such as difficulty in kneading, rough skin when forming a sheet after kneading, and easy occurrence of sheet breakage.
- composition when such a composition is used as a vulcanized product, particularly when it is used as a vulcanized product containing an inorganic filler such as silica, it has a balance between wear resistance, low hysteresis loss property and wet skid resistance. Is not enough.
- the viscosity of the conjugated diene polymer increases due to hydrogenation, so the viscosity of the composition increases significantly depending on the molecular weight, branched structure, and modification of the hydrogenated conjugated diene polymer.
- the workability to deteriorate, such as rising and becoming difficult to knead, rough skin when forming a sheet after kneading, and easy sheet breakage.
- the rubber veil will flow during storage at room temperature, causing a phenomenon called cold flow in which the shape collapses. The handleability when using it deteriorates.
- the hydrogenation conjugate is extremely excellent in workability when it is made into a vulcanized product while suppressing the cold flow of the rubber bale, and is excellent in breaking strength, breaking elongation and breaking characteristics when it is made into a vulcanized product.
- An object of the present invention is to provide a diene-based polymer, a vulcanized-conjugated diene-based polymer composition, and a rubber composition.
- a vulcanized diene polymer having a specific range of branching degree (Bn) and hydrogenation rate is a cold flow of a rubber veil.
- the present invention has been completed by finding that it is extremely excellent in processability when it is made into a vulcanized product, and is excellent in breaking strength, breaking elongation and breaking characteristics when it is made into a vulcanized product.
- the present invention relates to the following.
- Hydrogenation conjugate in which the degree of branching (Bn) by the GPC-light scattering measurement method with a viscosity detector is 2.5 or more, and the hydrogenation rate of the structural unit derived from the conjugated diene compound is 30% or more and less than 99%.
- Diene-based polymer Diene-based polymer.
- [8] It has a star-shaped polymer structure with three or more branches, and has a star-shaped polymer structure. At least one branched chain having a star-shaped structure has a portion derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group.
- the portion derived from the vinyl-based monomer containing an alkoxysilyl group or a halosilyl group is a monomer unit based on the compound represented by the following formula (5) or (6). It has a branch point of the polymer chain by the monomer unit based on the compound represented by the following formula (5) or (6).
- R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof. When there are a plurality of them, R 1 to R 3 are independent of each other.
- X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
- m represents an integer of 0 to 2
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3. (M + n + l) indicates 3.
- R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
- X 2 to X 3 each independently represent a halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
- m represents an integer of 0 to 2
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3.
- the degree of branching (Bn) by the GPC-light scattering measurement method with a viscosity detector is 2.5 or more, and the structural unit derived from the conjugated diene compound.
- the rubber component is the hydrogenated conjugated diene polymer according to any one of [1] to [15] or the hydrogenated conjugated diene system according to [18] with respect to 100 parts by mass of the total amount of the rubber component.
- the cold flow of the rubber bale can be suppressed, the vulcanized product has extremely excellent processability, and the vulcanized product has particularly excellent breaking strength, breaking elongation, and breaking characteristics.
- a vulcanized conjugated diene-based polymer having a vulcanization is obtained.
- the present embodiment will be described in detail.
- the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.
- the present invention can be appropriately modified and carried out within the scope of the gist thereof.
- the hydrogenated conjugated diene polymer of the present embodiment has a degree of branching (hereinafter, also referred to as “Bn”) of 2.5 or more by GPC (gel permeation chromatography) -light scattering measurement method with a viscosity detector.
- Bn degree of branching
- GPC gel permeation chromatography
- the hydrogenation rate of the structural unit derived from the conjugated diene compound (hereinafter, also simply referred to as “hydrogenation rate”) is 30 to 99%.
- the hydrogenated conjugated diene polymer in which the hydrogenation rate and the degree of branching (Bn) are specified can suppress the cold flow of the rubber veil, is extremely excellent in processability when made into a vulcanized product, and is a vulcanized product.
- Excellent breaking characteristics such as breaking strength and breaking elongation.
- the amount of 1,2-vinyl bond and the amount of aromatic vinyl compound in the conjugated diene bonding unit are arbitrary.
- the processability when making a vulcanized product is extremely excellent, and when the vulcanized product is made into a vulcanized product, the glass transition of the hydrogenated conjugated diene polymer is in a state where the breaking characteristics such as breaking strength and breaking elongation are improved.
- the temperature (hereinafter, also referred to as “Tg”) can be arbitrarily adjusted.
- the amount of 1,2-vinyl bond and the amount of aromatic vinyl compound in the conjugated diene bond unit low, the Tg of the conjugated diene polymer is reduced, and the abrasion resistance when made into a vulcanized product is reduced. There is a tendency to obtain a rubber composition having improved performance and breaking strength and further excellent low hysteresis loss property.
- the Tg of the conjugated diene-based polymer becomes high, and the processing performance when making a vulcanized product is improved. There is a tendency to improve and obtain a rubber composition having further excellent wet skid resistance.
- the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from the conjugated diene compound (hereinafter, also referred to as “conjugated diene monomer”).
- conjugated diene compound are not particularly limited, but for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3- Examples include pentadiene, 1,3-hexadiene, and 1,3-heptadiene.
- 1,3-butadiene and isoprene are preferable, and 1,3 butadiene is particularly preferable, from the viewpoint of easy industrial availability. These may be used alone or in combination of two or more.
- the hydrogenated conjugated diene-based polymer of the present embodiment preferably contains a structural unit derived from an aromatic vinyl compound (hereinafter, also referred to as “aromatic vinyl monomer”). Even when the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from an aromatic vinyl compound, the hydrogenated portion is a portion derived from the conjugated diene compound. It is preferable that the portion derived from the aromatic vinyl compound is not hydrogenated.
- the aromatic vinyl compound include, but are not limited to, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene. Among these, styrene is preferable from the viewpoint of easy industrial availability. These may be used alone or in combination of two or more.
- the hydrogenated conjugated diene-based polymer of the present embodiment is a hydrogenated additive of a copolymer of a conjugated diene compound and an aromatic vinyl compound (hereinafter, also referred to as “conjugated diene-aromatic vinyl copolymer”). Is preferable.
- the content of the aromatic vinyl monomer is It is preferably 0 to 60% by mass, more preferably 3 to 60% by mass, still more preferably 5 to 40% by mass, and the amount of 1,2 vinyl bonds in the conjugated diene bonding unit in the conjugated diene-based polymer.
- the ratio (1,2-vinyl bond amount) is preferably 15 to 70 mol%, more preferably 22 to 65 mol%, and further preferably 24 to 60 mol%.
- the degree of branching includes the amount of the polymerization initiator added, the type (functional number) and amount of the branching agent, the type of coupling agent (functional number) and the amount added. It is controlled by the amount (type) of softener for rubber added, and is less affected by the microstructure. Therefore, it can be appropriately designed within the range of a general microstructure.
- the content of the aromatic vinyl monomer and the amount of 1,2-vinyl bond affect the Tg of the hydrogenated conjugated diene polymer, and therefore, from the viewpoint of fuel saving performance and braking performance, the above range. It is preferable to set to.
- the content of the aromatic vinyl monomer can be measured using 1 1 H-NMR. Specifically, the measurement is performed according to the method described in Examples described later.
- the conjugated diene-based polymer is a copolymer of butadiene and styrene, it is contained in the butadiene bonding unit by the Hampton method (RR Hampton, Analytical Chemistry, 21,923 (1949)).
- the vinyl bond amount (1,2-vinyl bond amount) can be determined.
- the hydrogenated conjugated diene polymer of the present embodiment is a hydrogenated additive of a conjugated diene-aromatic vinyl copolymer
- the number of blocks in which 30 or more aromatic vinyl monomers are linked is small? Or none is preferable.
- the copolymer is a butadiene-styrene copolymer
- the method of Kolthoff method described in IM KOLTHOFF, et al., J. Polym. Sci. 1,429 (1946)
- a known method of decomposing a copolymer by It is 9.0% by mass or less, more preferably 5.0% by mass or less.
- the hydrogenated conjugated diene polymer of the present embodiment is a hydrogenated additive of a conjugated diene-aromatic vinyl copolymer
- the proportion of the aromatic vinyl monomer alone is present from the viewpoint of improving fuel saving performance. The larger the number, the better.
- the copolymer when the copolymer is a butadiene-styrene copolymer, the copolymer is decomposed by a method by ozone decomposition known as the method of Tanaka et al. (Polymer, 22, 1721 (1981)).
- the styrene chain distribution was analyzed by GPC, the amount of isolated styrene was 40% by mass or more and the number of chained styrene structures having 8 or more styrene chains was 5.0% by mass or less with respect to the total amount of bound styrene. Is preferable.
- the obtained vulcanized rubber has a particularly low hysteresis loss, which is preferable.
- the hydrogenated conjugated diene polymer of the present embodiment is obtained by hydrogenating (hydrogenating) the conjugated diene polymer described later.
- the method for hydrogenating the conjugated diene portion of the conjugated diene-based polymer is not particularly limited, and a known method can be used.
- a suitable hydrogenation method for example, a method of hydrogenating by blowing gaseous hydrogen into the polymer solution in the presence of a catalyst can be mentioned.
- the catalyst is not particularly limited, and for example, a heterogeneous catalyst such as a catalyst in which a noble metal is supported on a porous inorganic substance; a catalyst in which salts such as nickel and cobalt are solubilized and reacted with organic aluminum and the like, titanosen and the like.
- a heterogeneous catalyst such as a catalyst using the metallocene of the above can be mentioned.
- the titanocene catalyst is preferable from the viewpoint that mild hydrogenation conditions can be selected.
- the hydrogenation reaction may be either a batch process or a continuous process, or a combination thereof.
- the hydrogenation rate of the hydrogenated conjugated diene polymer of the present embodiment is 30% or more and less than 99%, and 30% or more and less than 96%. Is more preferable, 30% or more and less than 93% is more preferable, 30% or more and less than 90% is further preferable, and 32% or more and less than 90% is particularly preferable.
- the hydrogenated conjugated diene polymer of the present embodiment is excellent in terms of breaking strength and breaking elongation when made into a vulcanized product when the hydrogenation rate of the structural unit derived from the conjugated diene compound is 30% or more.
- the hydrogenation rate of the hydrogenated conjugated diene polymer of the present embodiment is preferably 80% or less, more preferably 75% or less, further preferably less than 75%, and less than 72% from the viewpoint of fuel economy performance. Is particularly preferable. From the viewpoint of strength such as breaking strength and breaking elongation, the hydrogenation rate is preferably 39% or more, preferably 40% or more, more preferably 45% or more, further preferably 50% or more, and particularly preferably 55% or more. ..
- the hydrogenation rate is in the range of 39 to 80%, the butylene chain generated by hydrogenation reduces the loss elastic modulus, and the increase in loss modulus due to the ethylene chain can be suppressed, so that the strength is maintained well.
- the hydrogenated conjugated diene polymer blended in the tire has various required functions in relation to other components blended in the tire, and the molecular weight, hydrogenation rate, and microstructure are designed according to the required performance. do it.
- the hydrogenation rate is preferably 65% or more, more preferably 70% or more, further preferably 75% or more, and even more preferably 80%. The above is particularly preferable.
- the hydrogenation rate when it is higher than 85%, it may be difficult to achieve the desired fuel efficiency performance depending on the composition of other materials constituting the tire. Therefore, from the viewpoint of designing a balance between fuel efficiency and strength, it is preferable to set the hydrogenation rate to 39 to 80%. Further, when the hydrogenation rate is higher than 75%, the viscosity may increase and the workability may deteriorate. Therefore, when it is desired to increase the hydrogenation rate to more than 75%, the weight average molecular weight is preferably 1.2 million or less, more preferably 1 million or less, and 800,000 or less from the viewpoint of viscosity and processability. It is more preferable, and it is particularly preferable that it is 600,000 or less.
- the amount of aromatic vinyl should be 15% by mass or more from the viewpoint of suppressing the increase in viscosity due to the formation of crystal components, or, or the above formula (1).
- the total content of the structures represented by the formula (2) is preferably 35 mol% or more.
- a resin component having a high glass transition temperature may be blended as a composition for improving strength such as breaking strength and breaking elongation.
- a resin component having a high Tg and a hydrogenated conjugated diene polymer having a high hydrogenation rate are a preferable combination from the viewpoint of strength. Preferred examples of the resin component will be described later.
- the hydrogenation rate can be controlled by the amount of hydrogen added to the structural unit derived from the conjugated diene compound, the pressure of hydrogen, the reaction time, the amount of hydrogenation catalyst added, and the viscosity of the solution.
- the temperature of the hydrogenation reaction is not particularly limited, but is preferably 60 to 105 ° C, more preferably 70 to 100 ° C.
- the hydrogenation rate can be measured by 1 1 H-NMR, which will be described later in Examples.
- the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from a conjugated diene compound, and is a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a following formula.
- the constituent ratios (mol%) of the structural unit represented by (3) and the structural unit represented by the following formula (4) are a, b, c, and d, respectively, the following mathematical formula (S) is used. It is preferable to satisfy.
- the structural unit represented by the formula (4) includes a 1,4 trans bond and a 1,4 cis bond.
- the above formula (S) represents the weight ratio of the 1,2-vinyl bond and the hydrogenated 1,2-vinyl bond in the hydrogenated conjugated diene-based polymer.
- the hydrogenated conjugated diene polymer of the present embodiment has an excellent balance of workability, fuel saving performance, and wet grip performance when the above formula (S) is within the above range.
- the ratio of a, b, c, and d can be controlled by the type and amount of polar substance added, the polymerization temperature, and the amount of hydrogen to be reacted when the conjugated diene polymer before hydrogenation is polymerized.
- the hydrogenation rate is controlled to be 40% or more and 80% or less, it is preferable that the content of 1,2 vinyl bonds is small from the viewpoint of heat resistance.
- the composition ratio of a is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
- the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from the conjugated diene compound, and is composed of a structural unit represented by the formula (1) and a structural unit represented by the formula (2).
- a structural unit represented by the formula (1) a structural unit represented by the formula (1)
- a structural unit represented by the formula (2) a structural unit represented by the formula (2).
- the above formula (T) represents the hydrogenation rate of the structure derived from the 1,2-vinyl bond, and the value approaches 100 as the 1,2-vinyl bond is hydrogenated.
- the hydrogenated conjugated diene polymer of the present embodiment tends to have excellent heat resistance when the above formula (T) is 90 or more.
- the ratio of a and b can be controlled by the type of hydrogenation catalyst, the hydrogenation reaction temperature, and the amount of hydrogen to be reacted.
- the ratios of a, b, c, and d can be measured by the method described in Examples described later.
- the hydrogenated conjugated diene polymer of the present embodiment has a degree of branching (Bn) by a GPC-light scattering method with a viscosity detector from the viewpoint of suppressing cold flow of the rubber bale and processability (hereinafter, simply "degree of branching (hereinafter,” branching degree (Bn)).
- Bn) is 2.5 or more, preferably 3.0 or more, more preferably 4.0 or more, further preferably 6.0 or more, and further preferably 6.4 or more. It is preferably 8.0 or more, more preferably 14.0 or more, and particularly preferably 14.0 or more.
- the hydrogenated conjugated diene polymer of the present embodiment preferably has a higher degree of branching (Bn) as the molecular weight increases, and a higher degree of branching as the hydrogenation rate increases. Is preferable.
- Bn branching
- the solution viscosity and melt viscosity decreased due to hydrogenation of 1,2 vinyl bonds at the initial stage of the hydrogenation reaction, but 1,2 vinyl bonds were hydrogenated. After that, when 1,4 bonds are hydrogenated, the solution viscosity and melt viscosity increase.
- a high degree of branching (Bn) is preferable in that the viscosity tends to be suppressed.
- the degree of bifurcation (Bn) is 6 or more, the processability required for preparing the composition tends to be ensured even when the hydrogenation rate exceeds 75%.
- the degree of bifurcation (Bn) is 6 or more, the processability required for preparing the composition tends to be ensured even when the hydrogenation rate exceeds 75%.
- the problem of viscosity increase is unlikely to occur, so it is not necessary to make high branching from the viewpoint of manufacturing.
- the hydrogenated conjugated diene polymer of the present embodiment has a higher side chain than the substantially longest polymer main chain. It means that there are two or more molecular chains.
- a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight.
- the contraction factor (g') is an index of the ratio of the size occupied by the molecule to the linear polymer having the same absolute molecular weight. That is, as the degree of branching of the polymer increases, the contraction factor (g') tends to decrease.
- M is an absolute molecular weight.
- the contraction factor expresses the rate of decrease in the size of the molecule, and does not accurately represent the branched structure of the polymer.
- the degree of branching (Bn) of the hydrogenated conjugated diene polymer is calculated using the value of the shrinkage factor (g') at each absolute molecular weight of the hydrogenated conjugated diene polymer.
- the calculated "branch degree (Bn)" accurately represents the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure.
- the calculated degree of bifurcation (Bn) is an index expressing the bifurcation structure of the hydrogenated conjugated diene polymer.
- the hydrogenated conjugated diene polymer of the present embodiment has a branching degree (Bn) of 2.5 or more, but in such a case, the star-shaped polymer structure is the same as the star-shaped polymer structure branched by an average of 4.5. It means that it is a hydrogenated conjugated diene-based polymer having a branch.
- the "branch” is formed by directly or indirectly bonding one polymer with another polymer.
- the “degree of branching (Bn)” is the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure.
- the hydrogenated conjugated diene polymer of the present embodiment can suppress the cold flow of the rubber veil, and the processability (handleability) when making a vulcanized product can be improved. It is extremely excellent and has excellent breaking strength and breaking elongation when made into a vulcanized product.
- the hydrogenated conjugated diene polymer of the present embodiment preferably has a branching degree (Bn) of 3.0 or more, more preferably 4.0 or more, and 6.0 or more. It is more preferably 6.4 or more, further preferably 8.0 or more, and particularly preferably 14.0 or more.
- the upper limit of the degree of branching (Bn) is not particularly limited and may be at least the detection limit, but is preferably 84 or less, more preferably 80 or less, and further preferably 64 or less. Even more preferably, it is 57 or less.
- the hydrogenated conjugated diene polymer of the present embodiment tends to be excellent in breaking strength and breaking elongation when it is made into a vulcanized product because the degree of branching (Bn) is 84 or less.
- the silica is sufficiently dispersed in the polymer in the kneading step. I can't. As a result, the function of the introduced functional group is not exhibited, and the effect of improving the low hysteresis loss property and the wet skid resistance due to the introduction of the functional group, which should be originally expected, is not exhibited.
- the hydrogenated conjugated diene polymer of the present embodiment is specified to have a branching degree (Bn) of 2.5 or more, so that the viscosity of the vulcanized product increases with the increase in absolute molecular weight. Is significantly suppressed, for example, it is estimated that the mixture is sufficiently mixed with silica or the like in the kneading step, and the silica can be dispersed around the hydrogenated conjugated diene polymer.
- Bn branching degree
- the absolute molecular weight of the hydrogenated conjugated diene polymer of the present embodiment is preferably 25 ⁇ 10 4 or more and 3000 ⁇ 10 4 or less from the viewpoint of breaking strength, breaking elongation, and moldability of the rubber bale during production, and is preferably 26 ⁇ It is more preferably 10 4 or more and 2500 ⁇ 10 4 or less, and further preferably 28 ⁇ 10 4 or more and 2000 ⁇ 10 4 or less.
- the weight average molecular weight of the hydrogenated conjugated diene polymer of the present embodiment is preferably 210,000 or more and less than 3 million, preferably 220,000 or more and less than 2.5 million, from the viewpoint of moldability and processability of the rubber bale during production. Is more preferable, and more preferably 230,000 or more and less than 2.3 million.
- the method of controlling the weight average molecular weight within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of the polymerization initiator used.
- the weight average molecular weight of the hydrogenated conjugated diene polymer of the present embodiment can be measured by the method described in Examples.
- the hydrogenated conjugated diene polymer of the present embodiment contains 20% or more and 80% or less of components having a molecular weight of 300,000 or less (hereinafter, also referred to as “component LM”) from the viewpoint of processability, productivity and breaking strength. It is preferably 20% or more and 75% or less, and more preferably 21% or more and 70% or less.
- component LM components having a molecular weight of 300,000 or less
- the method of controlling the ratio of the component LM within the above range is not particularly limited, and examples thereof include adjusting the amount of the polymerization initiator used and adjusting the amount of the coupling agent used.
- the ratio of the component LM of the hydrogenated conjugated diene polymer of the present embodiment can be measured by the method described in Examples.
- the Mooney viscosity of the hydrogenated conjugated diene polymer of the present embodiment using an L-shaped rotor at 100 ° C. is 120 or less from the viewpoint of suppressing a decrease in yield due to powder formation in the drying step during production. It is preferably 110 or less, more preferably 100 or less, and particularly preferably 90 or less. From the viewpoint of tensile strength, the Mooney viscosity is preferably 30 or more, more preferably 40 or more, and even more preferably 50 or more.
- the method for controlling the Mooney viscosity using the L-shaped rotor at 100 ° C. within the above range is not particularly limited, but for example, the amount of the polymerization initiator used, the type and amount of the branching agent used, and the type of coupling agent. And how to adjust the amount used. Even with the same Mooney viscosity, the higher the degree of bifurcation, the higher the molecular weight, which is preferable.
- the Mooney viscosity of the hydrogenated conjugated diene polymer of the present embodiment using an L-shaped rotor at 100 ° C. can be measured by the method described in Examples.
- the degree of branching (Bn) of the hydrogenated conjugated diene polymer can be controlled to 2.5 or more by combining the amount of the branching agent added and the amount of the terminal coupling agent added, which will be described later.
- the degree of branching is controlled by the number of functional groups of the branching agent, the amount of the branching agent added, the timing of addition of the branching agent, the functional number of the coupling agent or the nitrogen atom-containing denaturing agent, and the coupling. It can be controlled by the amount of the agent or the denaturing agent containing a nitrogen atom. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
- the conjugated diene polymer obtained through the polymerization and branching steps is subjected to a trifunctional or higher reaction with a branching agent with respect to the active terminal of the conjugated diene polymer.
- a conjugated diene-based polymer obtained by performing a coupling reaction using a sex compound (hereinafter, also referred to as “coupling agent”) is preferable.
- one end of the active end of the conjugated diene polymer is subjected to a coupling reaction with a coupling agent or a coupling agent having a nitrogen atom-containing group to obtain a conjugated diene polymer. More specifically, it will be described in the method for producing a conjugated diene polymer described later.
- the coupling agent used in the coupling step may have any structure as long as it is a trifunctional or higher-functional reactive compound, but a trifunctional or higher-functional reactive compound having a silicon atom is preferable. .. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
- the hydrogenated conjugated diene polymer of the present embodiment preferably contains a nitrogen atom.
- the hydrogenated conjugated diene-based polymer containing a nitrogen atom can be obtained, for example, by performing a coupling reaction using the modifier having a nitrogen atom-containing group described below.
- the conjugated diene polymer obtained through the polymerization and branching steps is subjected to a trifunctional or higher functional nitrogen atom-containing group with respect to the active terminal of the conjugated diene polymer.
- a conjugated diene-based polymer obtained by performing a coupling reaction using a reactive compound having hereinafter, also referred to as “modifier having a nitrogen atom-containing group” is more preferable.
- one end of the active end of the conjugated diene polymer is subjected to a coupling reaction with a coupling agent having a nitrogen atom-containing group to obtain a conjugated diene polymer.
- the conjugated diene polymer coupled with a modifier having a nitrogen atom-containing group has good dispersibility of silica when prepared as a composition containing a filler or the like, and is a composition containing the filler or the like.
- the workability is good, and when the composition is a vulcanized product, the abrasion resistance and the fracture strength are good, and the balance between the low hysteresis loss property and the wet skid resistance tends to be dramatically improved. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
- the modifier having a nitrogen atom-containing group is not limited to the following, but is, for example, an isocyanato compound, an isothiocyanate compound, an isocyanuric acid derivative, a nitrogen group-containing carbonyl compound, a nitrogen group-containing vinyl compound, and a nitrogen group-containing modifier.
- examples include epoxy compounds.
- the modifier having a nitrogen atom-containing group is preferably an amine compound having a nitrogen atom-containing functional group, and the nitrogen atom-containing functional group is preferably an amine compound having no active hydrogen, for example, a tertiary amine compound.
- the nitrogen atom-containing functional group is preferably an amine compound having no active hydrogen, for example, a tertiary amine compound.
- the "modification rate” is the mass ratio of the conjugated diene polymer or the hydrogenated conjugated diene polymer having a nitrogen atom-containing functional group to the total amount of the conjugated diene polymer or the hydrogenated conjugated diene polymer. Represents.
- the mass ratio of the conjugated diene polymer having a nitrogen atom-containing functional group by the nitrogen atom-containing modifier to the total amount of the conjugated diene polymer is modified. Expressed as a rate.
- the produced conjugated diene-based polymer has a nitrogen atom-containing functional group, so that the branched polymer also has a modification rate. It will be counted at the time of calculation.
- At least one end is modified with a nitrogen atom-containing group, so that the composition can be processed into a composition containing a filler or the like, and the composition is a vulcanized product.
- the balance between low hysteresis loss and wet skid resistance tends to improve dramatically while maintaining the wear resistance and fracture strength at the time.
- the hydrogenated conjugated diene polymer of the present embodiment has a total amount of hydrogenated conjugated diene polymer from the viewpoint of processability, abrasion resistance, breaking strength, and balance between low hysteresis loss property and wet skid resistance.
- the modification rate measured by the column adsorption GPC method (hereinafter, also simply referred to as “modification rate”) is preferably 40% by mass or more.
- the modification rate is preferably 60% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more.
- the upper limit of the modification rate is not particularly limited, but is, for example, 99% by mass.
- the modification rate can be measured by chromatography capable of separating the functional group-containing modified component and the non-modified component.
- the modification rate is the adsorption of a sample solution containing a sample and a low molecular weight internal standard polystyrene to a silica column from the difference between a chromatogram measured by a polystyrene gel column and a chromatogram measured by a silica column. Obtained by measuring the amount.
- the denaturation rate can be measured by the method described in Examples.
- the modification rate can be controlled by adjusting the addition amount of the modifier and the reaction method, whereby the modification rate can be controlled to 40% by mass or more.
- a method of polymerizing using an organic lithium compound having at least one nitrogen atom in the molecule described later as a polymerization initiator a method of copolymerizing a monomer having at least one nitrogen atom in the molecule, which will be described later.
- the above modification rate can be obtained by combining methods using a modifier having a structural formula and controlling the polymerization conditions.
- star-shaped polymer structure refers to a structure in which a plurality of polymer chains (arms) are bonded from one central branch point.
- one central branching point referred to here has a substituent containing an atom derived from a coupling agent or a nitrogen atom derived from a denaturing agent.
- the "main chain branched structure" referred to in the present specification means that a branched point is formed at a portion where the polymer chain is derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and the polymer chain is further formed from the branched point.
- the hydrogenated conjugated diene polymer of the present embodiment is preferably a main chain composed of a moiety derived from a vinyl monomer containing an alkoxysilyl group or a halosilyl group from the viewpoint of improving the degree of branching (Bn).
- the number of branch points is 3 or more, and the branch structure derived from the star-shaped polymer structure formed by the coupling agent in the reaction step is preferably 3 or more, more preferably 4 or more. It is more preferable that there are 8 branches or more.
- the degree of branching (Bn) increases in both the case of modification with a coupling agent having a star-shaped structure and the case of introducing a branching agent into the polymer, but the entire polymer chain is branched by the coupling agent. The more it is made, the greater the contribution to the degree of branching (Bn).
- the degree of branching (Bn) can be controlled by selecting the coupling agent, selecting the type of the branching agent, and setting the amount, but the degree of branching (Bn) is also taken into consideration in consideration of the contribution rate. ) Is easy to control.
- the main chain branch structure has two or more branch points at a branch point derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, preferably three or more branch points, and preferably four or more branch points. Is more preferable.
- branch point forming the main chain branch structure preferably has at least two or more polymer chains, and more preferably has three or more polymer chains that are not the main chain.
- the range is in the range of -45 ppm to -65 ppm, and more specifically, from -50 ppm.
- a peak derived from the main chain branched structure is detected in the range of -60 ppm.
- the hydrogenated conjugated diene polymer of the present embodiment preferably has a star-shaped polymer structure, preferably has three or more branches derived from the star-shaped polymer structure, and preferably has four or more branches. More preferably, it is more preferably 6 branches or more, and even more preferably 8 branches or more.
- the upper limit of the branching derived from the star-shaped polymer structure is not particularly limited, but is, for example, 32 branches or less.
- the hydrogenated conjugated diene polymer of the present embodiment has a star-shaped polymer structure having three or more branches, and a vinyl-based monomer having an alkoxysilyl group or a halosilyl group in a branched chain having at least one star-shaped structure. It is preferable that the moiety is derived from the above, and the moiety derived from the vinyl-based monomer containing the alkoxysilyl group or the halosilyl group has a further main chain branched structure.
- the "star-shaped polymer structure" can be formed by adjusting the number of functional groups of the coupling agent and the amount of the coupling agent added, and the "main chain” can be formed.
- the "branching structure” can be controlled by adjusting the number of functional groups of the branching agent, the amount of the branching agent added, and the timing of the addition of the branching agent.
- an organic lithium-based compound is polymerized.
- Examples thereof include a method of using as an initiator, performing polymerization, adding a branching agent that gives a specific branching point during or after the polymerization, and modifying with a modifier that gives a specific branching ratio after the polymerization is continued. ..
- the hydrogenated conjugated diene polymer of the present embodiment is based on the compound represented by the following formula (5) or (6) in which the portion derived from the vinyl monomer containing the alkoxysilyl group or the halosilyl group described above is derived. It is preferable that the monomer unit has a branch point of the polymer chain due to the monomer unit based on the compound represented by the following formula (5) or (6), and it is obtained by using a coupling agent. It is more preferable that the hydrogenated conjugated diene polymer is coupled, and it is more preferable that at least one end of the hydrogenated conjugated diene polymer is coupled with a coupling agent. It is even more preferable that at least one end of the polymer is a hydrogenated conjugated diene polymer modified with a nitrogen atom-containing group.
- R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof. When there are a plurality of them, R 1 to R 3 are independent of each other.
- X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
- R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
- X 2 to X 3 each independently represent a halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3.
- M + n + l indicates 3.
- a indicates an integer of 0 to 2
- b indicates an integer of 0 to 3
- c indicates an integer of 0 to 3.
- a + b + c indicates 3.
- R 1 is a hydrogen atom
- the hydrogenated conjugated diene-based polymer has a monomer unit based on the compound represented by (5).
- Branching agent In the hydrogenated conjugated diene polymer of the present embodiment, when constructing the main chain branching structure, a branching agent represented by the following formula (5) or formula (6) may be used as the branching agent. preferable.
- R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 1 to R 3 are independent of each other.
- X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
- m represents an integer of 0 to 2
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3.
- R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
- X 2 to X 3 each independently represent an independent halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
- m represents an integer of 0 to 2
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3.
- M + n + l) indicates 3.
- a indicates an integer of 0 to 2
- b indicates an integer of 0 to 3
- c indicates an integer of 0 to 3.
- a + b + c) indicates 3.
- the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene-based polymer is preferably the formula (5) from the viewpoint of continuity of polymerization and improvement of branching degree.
- the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene polymer is from the viewpoint of continuity of polymerization and improvement of modification rate and degree of branching.
- the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene polymer is in the above formula (6) from the viewpoint of improving the modification rate and the degree of branching.
- the branching agent represented by the formula (5) is not limited to the following, but for example, Trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane, tripropoxy (4-vinylphenyl) silane, tributoxy (4-vinylphenyl) silane, triisopropoxy (4-vinylphenyl) silane, trimethoxy ( 3-Vinylphenyl) silane, triethoxy (3-vinylphenyl) silane, tripropoxy (3-vinylphenyl) silane, tributoxy (3-vinylphenyl) silane, triisopropoxy (3-vinylphenyl) silane, trimethoxy (2-) Vinylphenyl) silane, triethoxy (2-vinylphenyl) silane, tripropoxy (2-vinylphenyl) silane, tributoxy (2-vinylphenyl) silane, triisopropoxy (2-vinyl
- the branching agent represented by the formula (6) is not limited to the following, but for example, 1,1-bis (4-trimethoxysilylphenyl) ethylene, 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxycysilylphenyl) ethylene, 1,1- Bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene, 1,1-bis (3-trimethoxysilylphenyl) ethylene, 1,1-bis (3) -Triethoxysilylphenyl) ethylene, 1,1-bis (3-tripropoxysilylphenyl) ethylene, 1,1-bis (3-tripentoxysilylphenyl) ethylene, 1,1-bis (3-triiso) Propoxysilylphenyl) ethylene, 1,1-bis (2-trimethoxysilylphenyl) ethylene, 1,1-bis (2-triethoxys
- 1,1-bis (4-trimethoxysilylphenyl) ethylene 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxysilylphenyl) ethylene , 1,1-bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene is preferable, and 1,1-bis (4-trimethoxysilylphenyl) ethylene is preferable. More preferable.
- the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes, for example, the following steps (A) and (E), and further includes at least one of the following steps (B) and (D).
- the degree of branching (Bn) by the GPC-light scattering method measurement method with a viscosity detector is 2.5 or more, and the structural unit derived from the conjugated diene compound.
- the hydrogenation rate is 30% or more and less than 99%.
- the method for producing a hydrogenated conjugated diene polymer of the present embodiment preferably includes step (D).
- the method for producing a hydrogenated conjugated diene polymer of the present embodiment further includes the following step (C).
- Each step preferably includes at least one step of steps (B) to (D) after the step (A), and it is preferable that the step (E) is carried out after that.
- the branching agent of step (B) is added during the polymerization step of step (A), that is, before the monomer is completely consumed, no further monomer is added after the branching agent has reacted.
- step (C) because the branched chain should be extended.
- a branching agent is added after the monomer of step (A) has been consumed, and the branching agent is further bound to the polymer chain.
- step (C) After completion, it is a preferable embodiment that a further monomer is added as step (C) to extend the branched chain. Further, it is preferable to add conjugated diene as an additional monomer or to increase the supply ratio of conjugated diene from the viewpoint of improving the reaction rate of the coupling agent in the step (D).
- Steps (B) to (D) may be performed only once, or may be repeated twice or more.
- the steps (A), step (B), step (C), step (D), step (E) are in this order, or step (A), step (A), Step (D), step (E) order, step (A), step (C), step (D), step (E) order, or step (A), step (B), step (E) It is particularly preferable to carry out in order.
- the conjugated diene compound is polymerized using the organolithium compound as a polymerization initiator in the presence of the organolithium compound.
- the hydrogenated conjugated diene-based polymer is either a homopolymer of a single conjugated diene compound, a polymer of different types of conjugated diene compounds, that is, a copolymer, or a copolymer of a conjugated diene compound and an aromatic vinyl compound. It may be a water-added product of.
- At least an organic monolithium compound can be used as the polymerization initiator.
- the organic monolithium compound is not limited to the following, and examples thereof include low molecular weight compounds and solubilized oligomeric organic monolithium compounds.
- examples of the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode of the organic group and the lithium thereof.
- the amount of the organic monolithium compound used as the polymerization initiator is preferably determined by the molecular weight of the target conjugated diene polymer or hydrogenated conjugated diene polymer.
- the amount of monomer used, such as a conjugated diene compound, relative to the amount of polymerization initiator used is related to the degree of polymerization. That is, it tends to be related to the number average molecular weight and / or the weight average molecular weight.
- the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or dialkylaminolithium from the viewpoint that it is used in one method of introducing a nitrogen atom into a conjugated diene polymer.
- a conjugated diene-based polymer having a nitrogen atom consisting of an amino group at the polymerization initiation terminal can be obtained.
- the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
- alkyllithium compounds having an amino group without active hydrogen are not limited to, for example, 3-dimethylaminopropyllithium, 3-diethylaminopropyllithium, 4- (methylpropylamino) butyllithium, and 4 -Hexamethylene iminobutyllithium can be mentioned.
- the alkyllithium compound having an amino group having a structure in which active hydrogen is protected is not limited to the following, and examples thereof include 3-bistrimethylsilylaminopropyllithium and 4-trimethylsilylmethylaminobutyllithium.
- the dialkylaminolithium is not limited to the following, and includes, for example, lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium dibutylamide, lithiumdi-n-hexylamide, lithium diheptylamide, lithium diisopropylamide, and lithium dioctylamide.
- the organic monolithium compound having these substituted amino groups is an oligomer of organic monolithium solubilized by reacting a small amount of a polymerizable monomer such as a monomer such as 1,3-butadiene, isoprene, and styrene. It can also be used as a compound.
- the organic monolithium compound is preferably an alkyllithium compound from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
- a conjugated diene-based polymer having an alkyl group at the polymerization initiation terminal is obtained.
- the alkyllithium compound is not limited to the following, and examples thereof include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, benzyllithium, phenyllithium, and stillbenlithium.
- n-butyllithium and sec-butyllithium are preferable from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
- organic monolithium compounds may be used alone or in combination of two or more. In addition, it may be used in combination with other organometallic compounds.
- Examples of the other organometallic compound include alkaline earth metal compounds, other alkali metal compounds, and other organometallic compounds.
- the alkaline earth metal compound is not limited to the following, and examples thereof include an organic magnesium compound, an organic calcium compound, and an organic strontium compound. Also included are compounds of alkaline earth metals alcoxide, sulfonate, carbonate, and amide.
- organic magnesium compound examples include dibutyl magnesium and ethyl butyl magnesium.
- organometallic compounds examples include organoaluminum compounds.
- the polymerization reaction mode is not limited to the following, and examples thereof include a batch type (also referred to as “batch type”) and a continuous type polymerization reaction mode.
- one or two or more connected reactors can be used.
- a tank type or tube type reactor with a stirrer is used as the continuous reactor.
- the monomer, the inert solvent, and the polymerization initiator are continuously fed to the reactor to obtain a polymer solution containing the polymer in the reactor, which is continuously weighted.
- the coalesced solution is drained.
- the batch reactor for example, a tank-type reactor with a stirrer is used.
- the monomer, inert solvent, and polymerization initiator are fed, and if necessary, the monomer is added continuously or intermittently during the polymerization, and the polymer is added in the reactor. A polymer solution containing the mixture is obtained, and the polymer solution is discharged after the completion of the polymerization.
- the polymer in order to obtain a conjugated diene polymer having an active terminal at a high ratio, the polymer is continuously discharged and subjected to the next reaction in a short time.
- a continuous type is preferable.
- the polymerization step of the conjugated diene polymer is preferably polymerized in an inert solvent.
- the solvent is not particularly limited, and examples thereof include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
- Specific hydrocarbon-based solvents are not limited to the following, but for example, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic groups such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane.
- Hydrocarbons examples include hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene and xylene and mixtures thereof.
- a conjugated diene-based polymer having a high concentration of active terminals tends to be obtained, and modification with a high modification rate. It is preferable because a conjugated diene-based polymer tends to be obtained.
- a polar compound (polar substance) may be added.
- the aromatic vinyl compound can be randomly copolymerized with the conjugated diene compound, and tends to be used as a vinylizing agent for controlling the microstructure of the conjugated diene portion. It also tends to be effective in promoting the polymerization reaction.
- the polar compound is not limited to the following, but is not limited to, for example, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl).
- Ethers such as propane; tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, Alkoxide alkoxide compounds such as sodium amylate; phosphine compounds such as triphenylphosphine can be used. These polar compounds may be used alone or in combination of two or more.
- the amount of the polar compound used is not particularly limited and can be selected depending on the purpose and the like, but it is preferably 0.01 mol or more and 100 mol or less with respect to 1 mol of the polymerization initiator.
- Such a polar compound (vinyl agent) can be used in an appropriate amount as a regulator of the microstructure of the polymer-conjugated diene moiety, depending on the desired amount of 1,2-vinyl bond.
- Many polar compounds have a randomizing effect that is effective in the copolymerization of conjugated diene compounds and aromatic vinyl compounds at the same time, and tend to be used as an agent for adjusting the distribution of aromatic vinyl compounds and adjusting the amount of styrene block. It is in.
- the total amount of styrene and a part of 1,3-butadiene are copolymerized.
- a method of initiating the polymerization reaction and intermittently adding the remaining 1,3-butadiene during the copolymerization reaction may be used.
- the polymerization temperature in the polymerization step is preferably a temperature at which living anionic polymerization proceeds, more preferably 0 ° C. or higher, and even more preferably 120 ° C. or lower, from the viewpoint of productivity. Within such a range, the amount of reaction of the denaturant to the active terminal after the completion of polymerization tends to be sufficiently secured. Even more preferably, it is 50 ° C. or higher and 100 ° C. or lower.
- the step (B) in the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes a step of adding the above-mentioned branching agent.
- the amount of the branching agent added in the branching step is not particularly limited, but can be selected depending on the purpose and the like, but is 0.03 mol or more and 0.5 mol or less with respect to 1 mol of the polymerization initiator. It is more preferable, it is more preferably 0.05 mol or more and 0.4 mol or less, and further preferably 0.01 mol or more and 0.25 mol or less.
- the timing of adding the branching agent is preferably 50% or more, more preferably 80% or more, and 90% or more of the monomer conversion in the reactor from the viewpoint of enhancing the reproducibility of polymerization. More preferred.
- the conjugated diene compound alone may be added, or the conjugated diene compound and the aromatic vinyl compound may be added.
- the ratio of the amount of the monomer component added in the step (A) to the monomer component in the step (C) (step (A): step (C)) is not particularly limited, but may be 99: 1 to 5:95. It is preferably 95: 5 to 30:70, more preferably 95: 5 to 60:40.
- the amount of the monomer to be added is within the above range, the molecular weight between the branching point due to the branching agent and the branching point due to the coupling agent becomes long, and it tends to be easy to obtain a highly linear molecular structure.
- the entanglement of the molecular chains of the hydrogenated conjugated diene polymer increases when it is made into a vulcanized product, and the rubber composition has excellent wear resistance, steering stability and fracture strength. It tends to be easy to obtain things.
- the step (D) in the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes a step of adding a coupling agent containing the above-mentioned modifier.
- the amount of the coupling agent added is not particularly limited, but is preferably selected according to the intended purpose, and is 0.01 mol or more and 0.5 mol or less with respect to 1 mol of the active terminal of the conjugated diene polymer. It is more preferably 0.03 mol or more and 0.4 mol or less, and further preferably 0.05 mol or more and 0.25 mol or less.
- the timing of adding the coupling agent is preferably 50% or more, more preferably 90% or more, and 95% or more of the monomer conversion in the reactor from the viewpoint of enhancing the reproducibility of polymerization. More preferred.
- the hydrogenation reaction is carried out by the method described in the above-mentioned hydrogenation reaction.
- the hydrogenated conjugated diene-based polymer of the present embodiment is not particularly limited, and may be a polymer of a conjugated diene compound (monomer) and a branching agent, a conjugated diene compound, a branching agent, and other than these. It may be a copolymer with a monomer.
- the conjugated diene compound is butadiene or isoprene and this is polymerized with a branching agent containing a vinyl aromatic moiety
- the polymerized chain is so-called polybutadiene or polyisoprene
- the branched portion contains a structure derived from a vinyl aromatic moiety. It becomes a polymer.
- the hydrogenated conjugated diene polymer of the present embodiment is suitable for applications such as tires, resin modifications, automobile interior and exterior parts, anti-vibration rubber, and footwear.
- a deactivating agent, a neutralizing agent, or the like may be added to the polymer solution after the coupling step, if necessary.
- the deactivating agent is not limited to the following, and examples thereof include water; alcohols such as methanol, ethanol, and isopropanol.
- the neutralizing agent is not limited to the following, but for example, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a mixture of carboxylic acids having 9 to 11 carbon atoms and mainly 10 branches).
- Acid An aqueous solution of an inorganic acid, carbonic acid gas, and the like.
- a stabilizer for rubber from the viewpoint of preventing gel formation after polymerization and improving the stability during processing.
- the stabilizer for rubber is not limited to the following, and known ones can be used.
- BHT 2,6-di-tert-butyl-4-hydroxytoluene
- N-Octadecyl-3- (4'-hydroxy-3', 5'-di-tert-butylphenol) propinate, 2-methyl-4,6-bis [(octylthio) methyl] phenol and other antioxidants are preferred. ..
- a softening agent for rubber may be added in order to further improve the productivity of the hydrogenated conjugated diene polymer of the present embodiment and the processability of the composition containing a filler or the like. can.
- the hydrogenated conjugated diene polymer composition of the present embodiment preferably contains 100 parts by mass of the above-mentioned conjugated diene polymer and 1 to 60 parts by mass of a softening agent for rubber.
- the content of the softening agent for rubber is more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the above-mentioned conjugated diene polymer. It is more preferably 10 to 37.5 parts by mass.
- the softening agent for rubber is not particularly limited, and examples thereof include spreading oil, liquid rubber, and resin.
- the method of adding the softening agent for rubber to the hydrogenated conjugated diene polymer is not limited to the following, but the softening agent for rubber is added to the hydrogenated conjugated diene polymer solution and mixed to soften the rubber.
- a method of desolving a polymer solution containing an agent is preferable.
- Preferred spreading oils include, for example, aroma oil, naphthenic oil, paraffin oil and the like.
- an aroma substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less according to the IP346 method is preferable from the viewpoint of environmental safety, prevention of oil bleeding, and wet grip characteristics.
- the aroma substitute oil include TDAE (Treatd Distillate Aromatic Extracts) shown in Kautschuk Kunststoffe 52 (12) 799 (1999), MES (Mild Extraction Plastic), and RA.
- Preferred liquid rubber is not limited to the following, and examples thereof include liquid polybutadiene, liquid styrene-butazine rubber and the like.
- the crow transition temperature of the composition is set to a low temperature side. Being able to shift tends to improve wear resistance, low hysteresis loss, and low temperature characteristics when made into a vulcanized product.
- Preferred resins are not limited to the following, but are, for example, aromatic petroleum resins, kumaron-inden resins, terpenic resins, rosin derivatives (including tung oil resins), tall oils, tall oil derivatives, and rosin ester resins.
- Natural and synthetic terpene resins aliphatic hydrocarbon resins, aromatic hydrocarbon resins, mixed aliphatic-aromatic hydrocarbon resins, coumarin-indene resins, phenolic resins, p-tert-butylphenol-acetylene resins, phenol-formaldehyde Resins, xylene-formaldehyde resins, monoolefin oligomers, diolefin oligomers, aromatic hydrocarbon resins, aromatic petroleum resins, hydride aromatic hydrocarbon resins, cyclic aliphatic hydrocarbon resins, hydride hydrocarbon resins , Hydrocarbon resin, hydride tung oil resin, hydride oil resin, ester of hydride oil resin and monofunctional or polyfunctional alcohol and the like. These resins may be used alone or in combination of two or more. When hydrogenating, all unsaturated groups may be hydrogenated or some may be left.
- the fracture strength when a vulcanized product is improved.
- the crow transition temperature of the composition can be shifted to the high temperature side, so that the wet skid resistance tends to be improved.
- the amount of extendable oil, liquid rubber, resin, or the like added as the softening agent for rubber is not particularly limited, but is preferably 1 part by mass or more and 60 parts by mass with respect to 100 parts by mass of the hydrogenated conjugated diene polymer of the present embodiment. Parts or less, more preferably 5 parts by mass or more and 50 parts by mass or less, still more preferably 10 parts by mass or more and 37.5 parts by mass or less.
- solvent removal step In the method for producing a hydrogenated conjugated diene polymer of the present embodiment, a known method can be used as a method for obtaining the obtained hydrogenated conjugated diene polymer from the polymer solution.
- the method is not particularly limited, but for example, after separating the solvent by steam stripping or the like, the polymer is filtered off, and further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, and then concentrated. Further, a method of devolatile with a vent extruder or the like and a method of directly devolatile with a drum dryer or the like can be mentioned.
- the rubber composition of the present embodiment contains a rubber component and a filler of 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the rubber component is the above-mentioned hydrogenated conjugated diene polymer or the above-mentioned water with respect to the total amount (100 parts by mass) of the rubber component. It contains 10 parts by mass or more of a hydrogenated conjugated diene polymer composition.
- the filler preferably contains a silica-based inorganic filler.
- the rubber composition of the present embodiment tends to be more excellent in processability when it is made into a vulcanized product by dispersing a silica-based inorganic filler, and has abrasion resistance, breaking strength, and breaking strength when it is made into a vulcanized product. It tends to be superior due to the balance between low hysteresis loss and wet skid resistance.
- the rubber composition of the present embodiment is used for automobile parts such as tires and anti-vibration rubbers and vulcanized rubber applications such as shoes, it is preferable to contain a silica-based inorganic filler.
- rubber-like polymer other than the above-mentioned hydrogenated conjugated diene-based polymer (hereinafter, simply referred to as “rubber-like polymer”) is combined with the above-mentioned hydrogenated conjugated diene-based polymer.
- rubber-like polymer is combined with the above-mentioned hydrogenated conjugated diene-based polymer.
- Such rubber-like polymers are not limited to the following, but for example, a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof.
- examples thereof include block copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof, non-diene polymers, and natural rubbers.
- Specific rubber-like polymers are not limited to the following, but for example, butadiene rubber or its hydrogen additive, isoprene rubber or its hydrogen additive, styrene-butadiene rubber or its hydrogen additive, styrene-butadiene block.
- examples thereof include a copolymer or a hydrogenated product thereof, a styrene-based elastomer such as a styrene-isoprene block copolymer or a hydrogenated product thereof, an acrylonitrile-butadiene rubber or a hydrogenated product thereof.
- the non-diene polymer is not limited to the following, but is, for example, an olefin-based polymer such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
- Elastomer, butyl rubber, brominated butyl rubber, acrylic rubber, fluororubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber, and polysulfide rubber Can be mentioned.
- the natural rubber is not limited to the following, and examples thereof include smoked sheets RSS3 to 5, SMR, and epoxidized natural rubber.
- the various rubber-like polymers described above may be modified rubbers to which functional groups having polarities such as hydroxyl groups and amino groups are added.
- functional groups having polarities such as hydroxyl groups and amino groups are added.
- butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
- the weight average molecular weight of the rubber-like polymer is preferably 2000 or more and 20000,000 or less, and more preferably 5000 or more and 1500,000 or less, from the viewpoint of the balance between performance and processing characteristics. Further, a rubber-like polymer having a low molecular weight, so-called liquid rubber, can also be used. These rubber-like polymers may be used alone or in combination of two or more.
- the content ratio of the above-mentioned hydrogenated conjugated diene polymer to the rubber-like polymer is used.
- the (mass ratio) of (the above-mentioned hydrogenated conjugated diene polymer / rubbery polymer) is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 90/10 or less, and 50/50. More than 80/20 or less is more preferable.
- the rubber component preferably contains the above-mentioned hydrogenated conjugated diene polymer in an amount of 10 parts by mass or more and 100 parts by mass or less, and more preferably 20 parts by mass or more, based on the total amount (100 parts by mass) of the rubber component. It contains 90 parts by mass or less, more preferably 50 parts by mass or more and 80 parts by mass or less.
- the content ratio of (the above-mentioned hydrogenated conjugated diene polymer / rubber-like polymer) is within the above range, it is excellent in wear resistance and fracture strength when made into a vulcanized product, and has low hysteresis loss and wet skid resistance. The balance with sex also tends to be satisfied.
- the filler contained in the rubber composition of the present embodiment is not limited to the following, and examples thereof include silica-based inorganic filler, carbon black, metal oxide, and metal hydroxide. Among these, silica-based inorganic fillers are preferable.
- the filler may be used alone or in combination of two or more.
- the content of the filler in the rubber composition of the present embodiment is 5.0 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer described above, which is 20 parts by mass. It is preferably 3 parts or more and 100 parts by mass or less, and more preferably 30 parts by mass or more and 90 parts by mass or less.
- the content of the filler is 5.0 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the effect of adding the filler, and the filler is sufficiently used. From the viewpoint of dispersing and making the workability and mechanical strength of the composition practically sufficient, the amount is 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the silica-based inorganic filler is not particularly limited, but may be a known, solid particles preferably comprise SiO 2 or Si 3 Al as a constituent unit, the main structural units of SiO 2 or Si 3 Al Solid particles contained as a component are more preferable.
- the main component means a component contained in the silica-based inorganic filler in an amount of 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
- silica-based inorganic filler examples include, but are not limited to, inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber. .. Further, a silica-based inorganic filler having a hydrophobic surface, a mixture of a silica-based inorganic filler and a non-silica-based inorganic filler can also be mentioned. Among these, silica and glass fiber are preferable, and silica is more preferable, from the viewpoint of strength, abrasion resistance and the like. Examples of silica include dry silica, wet silica, and synthetic silicate silica. Among these silicas, wet silica is preferable from the viewpoint of improving the breaking strength and the balance of wet skid resistance.
- the nitrogen adsorption specific surface area required by the BET adsorption method of the silica-based inorganic filler shall be 100 m 2 / g or more and 300 m 2 / g or less. Is preferable, and it is more preferably 170 m 2 / g or more and 250 m 2 / g or less. If necessary, a silica-based inorganic filler having a relatively small specific surface area (for example, a specific surface area of 200 m 2 / g or less) and a silica-based filler having a relatively large specific surface area (for example, 200 m 2 / g or more) are used.
- Inorganic filler can be used in combination.
- the composition containing the hydrogenated conjugated diene-based polymer described above disperses silica. It is effective in improving the properties, especially the wear resistance, and tends to be able to highly balance good fracture strength and low hysteresis loss.
- the content of the silica-based inorganic filler in the rubber composition is preferably 5.0 parts by mass or more and 150 parts by mass, and 20 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer. More preferably, it is by mass or less.
- the content of the silica-based inorganic filler is 5.0 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the effect of adding the inorganic filler, and is inorganic. From the viewpoint of sufficiently dispersing the filler and making the workability and mechanical strength of the composition practically sufficient, the content is 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
- the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, preferably 3.0 parts by mass or less, with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer. It is more preferably 5 parts by mass or more and 100 parts by mass or less, and further preferably 5.0 parts by mass or more and 50 parts by mass or less.
- the content of carbon black is 0.5 with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the performance required for applications such as tires such as dry grip performance and conductivity. It is preferably 100 parts by mass or more, and preferably 100 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of dispersibility.
- a metal oxide is a solid particle having a chemical formula M x O y (M represents a metal atom, and x and y each independently represent an integer of 1 to 6) as a main component of the constituent unit.
- the metal oxide is not limited to the following, and examples thereof include alumina, titanium oxide, magnesium oxide, and zinc oxide.
- the metal hydroxide is not limited to the following, and examples thereof include aluminum hydroxide, magnesium hydroxide, and zirconium hydride.
- the rubber composition of the present embodiment may contain a silane coupling agent.
- the silane coupling agent has a function of closely interacting with the rubber component and the inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
- a compound having a sulfur-bonded moiety and an alkoxysilyl group or silanol group moiety in one molecule is preferable.
- Such compounds are not particularly limited, but are, for example, bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [. 2- (Triethoxysilyl) -ethyl] -tetrasulfide can be mentioned.
- the content of the silane coupling agent is preferably 0.1 part by mass or more and 30 parts by mass or less, and 0.5 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the above-mentioned inorganic filler. More preferably, it is 1.0 part by mass or more and 15 parts by mass or less.
- the content of the silane coupling agent is in the above range, the effect of the addition by the silane coupling agent tends to be more remarkable.
- the rubber composition of the present embodiment may contain a softening agent for rubber from the viewpoint of improving its processability.
- the amount of the softening agent for rubber added is previously contained in the above-mentioned hydrogenated conjugated diene polymer or other rubber-like polymer with respect to 100 parts by mass of the rubber component containing the above-mentioned hydrogenated conjugated diene polymer. It is represented by a certain amount of the softening agent for rubber and the total amount of the softening agent for rubber added when the rubber composition is prepared.
- softening agent for rubber As the softening agent for rubber, spreading oil, liquid rubber, and resin are suitable.
- Mineral oil-based rubber softeners called process oils or extender oils used to soften, increase volume, and improve processability of rubbers are mixtures of aromatic rings, naphthenic rings, and paraffin chains.
- the paraffin chain having 50% or more of carbon atoms in the total carbon is called paraffin-based, and the paraffin ring having 30% or more and 45% or less of all carbon atoms is naphthen-based, and the total number of aromatic carbon atoms is all. Those that account for more than 30% of carbon are called aromatic systems.
- the hydrogenated conjugated diene-based polymer of the present embodiment is a copolymer of a conjugated diene compound and a vinyl aromatic compound
- the rubber softener to be used is a copolymer having an appropriate aromatic content. It is preferable because it tends to be familiar to the user.
- the content of the softening agent for rubber is preferably 0 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 30 parts by mass or more and 90 parts by mass or less.
- the content of the softener for rubber is 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleed-out is suppressed and stickiness on the surface of the rubber composition tends to be suppressed.
- the method for mixing the hydrogenated conjugated diene polymer with other rubber-like polymers, silica-based inorganic filler, carbon black and other fillers, silane coupling agent, rubber softener, and other additives is as follows. Not limited to, for example, a melt-kneading method using a general mixer such as an open roll, a rubbery mixer, a kneader, a single-screw screw extruder, a twin-screw screw extruder, or a multi-screw screw extruder, and each component. After the dissolution and mixing of the above, a method of heating and removing the solvent can be mentioned.
- melt-kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferable from the viewpoint of productivity and good kneading.
- any of a method of kneading the rubber component and other fillers, a silane coupling agent, and an additive at once, and a method of mixing them in a plurality of times can be applied.
- the rubber composition of the present embodiment may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
- the sulfide agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
- Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, high molecular weight polysulfur compounds and the like.
- the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferred.
- the vulcanization method a conventionally known method can be applied, and the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
- a vulcanization accelerator may be used if necessary.
- Conventionally known materials can be used as the vulcanization accelerator, and the vulcanization accelerator is not limited to the following, but is, for example, sulfenamide-based, guanidine-based, thiuram-based, aldehyde-amine-based, aldehyde-ammonia-based, and thiazole-based. , Thiourea-based and dithiocarbamate-based vulcanization accelerators.
- the vulcanization aid is not limited to the following, and examples thereof include zinc oxide and stearic acid.
- the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
- the rubber composition of the present embodiment includes other softeners and fillers other than those described above, heat-resistant stabilizers, antistatic agents, weather-resistant stabilizers, anti-aging agents, as long as the object of the present embodiment is not impaired.
- Various additives such as colorants and lubricants may be used.
- As the other softener a known softener can be used.
- Specific examples of other fillers include, but are not limited to, calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
- Known materials can be used as the heat-resistant stabilizer, antistatic agent, weather-resistant stabilizer, anti-aging agent, colorant, and lubricant.
- the rubber composition of this embodiment is suitably used as a rubber composition for tires. That is, the tire of the present embodiment uses a rubber composition.
- the rubber composition for tires is not limited to the following, but for example, various tires such as fuel-saving tires, all-season tires, high-performance tires, and studless tires: tires such as treads, carcass, sidewalls, and beads. It can be used for parts.
- the rubber composition for tires has an excellent balance of wear resistance, breaking strength, low hysteresis loss property and wet skid resistance when made into a vulcanized product, and thus is suitable for fuel-efficient tires and high-performance tires. It is preferably used for treads.
- a Mooney viscometer (trade name "VR1132” manufactured by Ueshima Seisakusho Co., Ltd.) is used to determine the Mooney viscosity using an L-shaped rotor in accordance with ISO 289. It was measured. The measurement temperature was 100 ° C. when a hydrogenated conjugated diene-based polymer was used as a sample.
- the rotor is rotated at 2 rpm, the torque of the sample after 4 minutes is measured, and the measured value is the Mooney viscosity (ML (1 + 4) ). And said.
- the degree of branching (Bn) was measured as follows by the GPC-light scattering method with a viscosity detector using a conjugated diene polymer or a hydrogenated conjugated diene polymer containing no softening agent for rubber as a sample.
- a viscosity detector using a conjugated diene polymer or a hydrogenated conjugated diene polymer containing no softening agent for rubber as a sample.
- a gel permeation chromatography (GPC) measuring device (trade name "GPCmax VE-2001” manufactured by Malvern) in which three columns using a polystyrene gel as a filler are connected, a light scattering detector and a differential refractive index are used.
- Measurement was performed using three detectors connected in the order of (RI) detector and viscosity detector (trade name "TDA305” manufactured by Malvern), and light scattering detector and RI detection were performed based on standard polystyrene.
- the absolute molecular weight of the sample was determined from the results of the instrument, and the intrinsic viscosity of the sample was determined from the results of the RI detector and the viscosity detector.
- M represents an absolute molecular weight.
- Measurement condition 1 A GPC measuring device (trade name "HLC-8320GPC” manufactured by Toso Co., Ltd.) in which three columns using a conjugated diene polymer or a hydrogenated conjugated diene polymer as a sample and a polystyrene gel as a filler are connected. ) Is used to measure the chromatogram using an RI detector (trade name "HLC8020” manufactured by Toso), and the weight average molecular weight (Mw) of the sample is based on the calibration curve obtained using standard polystyrene.
- HLC-8320GPC manufactured by Toso Co., Ltd.
- the number average molecular weight (Mn), the molecular weight distribution (Mw / Mn), and the component (component LM) having a molecular weight of 300,000 or less were determined.
- the eluent used was THF (tetrahydrofuran) containing 5 mmol / L triethylamine.
- THF tetrahydrofuran
- a Tosoh product name "TSKguardcolum SuperMP (HZ) -H” was connected and used as a guard column in front of the column.
- Measurement condition 2 Using a conjugated diene polymer or a hydrogenated conjugated diene polymer as a sample, a chromatogram is measured using a GPC measuring device in which three columns using a polystyrene gel as a filler are connected, and a standard is measured. Based on the calibration curve using polystyrene, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the component (component LM) having a molecular weight of 300,000 or less were determined. The eluent used was THF containing 5 mmol / L triethylamine.
- a guard column a product name "TSKguard color SuperH-H” manufactured by Tosoh Corporation
- a column a product name "TSKgel SuperH5000", “TSKgel SuperH6000”, “TSKgel SuperH7000” manufactured by Tosoh Corporation
- An RI detector (trade name "HLC8020” manufactured by Tosoh Corporation) was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 20 ⁇ L of the measurement solution was injected into a GPC measuring device for measurement.
- the amount of adsorption of the sample and the sample solution containing the low molecular weight internal standard polystyrene to the silica-based column was measured from the difference between the chromatogram measured on the polystyrene-based column and the chromatogram measured on the silica-based column, and the amount of adsorption to the silica-based column was measured.
- the degeneration rate was determined. Specifically, it is as shown below. Further, in the measurement under the above (weight average molecular weight) measurement condition 1, the sample whose molecular weight distribution value is 1.6 or more is measured under the following measurement condition 3 and the value of the molecular weight distribution is measured. For the sample whose value was less than 1.6, the measurement was performed under the following measurement condition 4.
- sample solution 10 mg of sample and 5 mg of standard polystyrene were dissolved in 20 mL of THF to prepare a sample solution.
- Measurement condition 3 GPC measurement condition using polystyrene column: Using the trade name "HLC-8320GPC" manufactured by Tosoh Corporation, using 5 mmol / L THF containing triethylamine as an eluent, 10 ⁇ L of the sample solution was injected into the apparatus, the column oven temperature was 40 ° C., and the THF flow rate was 0.35 mL /. Chromatograms were obtained using an RI detector under the condition of minutes.
- Chromatograms were obtained by measurement using an RI detector (HLC8020 manufactured by Tosoh Corporation) under the conditions of a column oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min.
- GPC measurement conditions using a silica-based column Using the trade name "HLC-8320GPC" manufactured by Tosoh Corporation, using THF as an eluent, injecting 50 ⁇ L of the sample solution into the apparatus, column oven temperature 40 ° C., THF flow rate. Chromatograms were obtained using an RI detector under the condition of 0.5 ml / min.
- the column is used by connecting the product names "Zorbox PSM-1000S”, “PSM-300S”, and “PSM-60S", and the product name "DIOL 4.6 x 12.5 mm 5 micron” is used as a guard column in front of the column. Used by connecting.
- Calculation method of denaturation rate in polymer The total peak area of the chromatogram using the polystyrene column was set to 100, the peak area of the sample was P1, and the peak area of standard polystyrene was P2. Further, the total peak area of the chromatogram using the silica-based column was set to 100, the peak area of the sample was P3, and the peak area of standard polystyrene was P4.
- the eluent used was a mixed solution of tetrahydrofuran and triethylamine (THF in TEA: 5 mL of triethylamine was mixed with 1 L of tetrahydrofuran to prepare the eluate).
- the column was used by connecting a guard column: a product name "TSKguardvolume HHR-H” manufactured by Tosoh Corporation and a column: a product name "TSKgel G6000HHR", “TSKgel G5000HHR” and "TSKgel G4000HHR” manufactured by Tosoh Corporation.
- a GPC-light scattering measuring device (trade name "Viscotek TDAmax” manufactured by Malvern) was used under the conditions of an oven temperature of 40 ° C.
- THF flow rate 1.0 mL / min. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 200 ⁇ L of the measurement solution was injected into a GPC measuring device for measurement.
- a nuclear magnetic resonance apparatus (1 ) for calculating the hydrogenation rate of a double bond of a structural unit (hereinafter, also simply referred to as “hydrogenation rate”), the value of the formula (S), and the value of the formula (T). It was measured under the following conditions using H-NMR). 1 The conditions for 1 H-NMR measurement are described below.
- Measurement condition Measuring equipment: JNM-LA400 (manufactured by JEOL) Solvent: Deuterated chloroform Measurement sample: Sample concentration before and after hydrogenation of polymer Sample concentration: 50 mg / mL Observation frequency: 400MHz Chemical shift criteria: TMS (tetramethylsilane) Pulse delay: 2.904 seconds Number of scans: 64 times Pulse width: 45 ° Measurement temperature: 26 ° C
- Examples 6 to 8 were indexed with the result of Comparative Example 6 as 100.
- Examples 9 to 11 were indexed with the result of Comparative Example 7 as 100.
- the result of Comparative Example 8 was indexed as 100.
- Examples 15 to 17 were indexed with the result of Comparative Example 9 as 100.
- Examples 24 to 26 were indexed with the result of Comparative Example 13 as 100.
- Examples 27 to 29 were indexed with the result of Comparative Example 14 as 100.
- Example 30 was indexed with the result of Comparative Example 15 as 100.
- Examples 32 to 33 the result of Comparative Example 16 was set as 100 and indexed. The smaller the index, the smaller the cold flow of the rubber bale during storage and the better the handleability.
- the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
- a hydrogenation catalyst used for preparing a hydrogenated conjugated diene polymer was prepared by the following method.
- a reaction vessel equipped with a stirrer was replaced with nitrogen, and 1 L of dried and purified cyclohexane was charged therein.
- 100 mmol of bis ( ⁇ 5-cyclopentadienyl) titanium dichloride was added. While sufficiently stirring this, an n-hexane solution containing 200 mmol of trimethylaluminum was added, and the mixture was reacted at room temperature for about 3 days. As a result, a hydrogenation catalyst (T) was obtained.
- trimethoxy (4-vinylphenyl) silane (BS-1) or dimethoxymethyl (4-vinylphenyl) silane (BS-2) is used as a branching agent, both of which have the following formulas. It is a monomer unit based on the compound represented by (5).
- R 1 is hydrogen
- R 2 to R 3 are methyl groups
- m is 0.
- n was 3 and l was 0.
- R 1 is hydrogen
- R 2 to R 3 are methyl groups
- m is 1. Yes
- n was 2, and l was 0.
- R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
- R 1 to R 3 are independent of each other.
- X 1 represents a halogen atom.
- m represents an integer of 0 to 2
- n represents an integer of 0 to 3
- l represents an integer of 0 to 3. (M + n + l) indicates 3. )
- n-butyllithium As a polymerization initiator, 18 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor began to rise due to the heat generated by the polymerization, and the final temperature inside the reactor reached 76 ° C. Two minutes after reaching this reaction temperature peak, 6.0 mmol of N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was added to the reactor as a coupling agent, and the coupling reaction was carried out for 20 minutes. carried out. To this polymer solution, 3.0 mmol of methanol was added as a reaction terminator to obtain a solution of a conjugated diene polymer.
- the hydrogenation catalyst (T) prepared above was added to the obtained solution of the conjugated diene polymer at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogen pressure was 0.8 MPa, average.
- a hydrogenation reaction was carried out at a temperature of 85 ° C. for 1 hour to obtain a solution of a hydrogenated conjugated diene-based polymer.
- the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 60.0%.
- sample B1 12.6 g of n-octadecyl-3- (3,5-di-t-butyl-4-hydrooxyphenyl) -propionate as an antioxidant in the obtained solution of hydrogenated conjugated diene polymer, 4, After adding 3.0 g of 6-bis (octylthiomethyl) -o-cresol, the solvent was removed by steam steam ripping, and the polymer was dried by a drier to obtain a hydrogenated conjugated diene polymer (sample B1). Obtained.
- the results of analysis of sample B1 are shown in Table 1-1. As a result of the measurement, it was found that the structure of the conjugated diene-based polymer in sample B1 before the addition of the coupling agent had a linear polymer structure and no star-shaped polymer.
- Example 2 Conjugated Diene Polymer (Sample B2) 1,887 g of 1,3-butadiene (initial butadiene) and 780 g of styrene, which had an internal volume of 40 L and had a stirrer and a jacket and were equipped with a temperature-controllable autoclave as a reactor and had impurities removed in advance, were used. 21,000 g of cyclohexane, 30 mmol of tetrahydrofuran (THF) and 69 mmol of 2,2-bis (2-oxolanyl) propane (BOP) as polar substances were put into the reactor, and the temperature inside the reactor was maintained at 42 ° C. bottom.
- THF tetrahydrofuran
- BOP 2,2-bis (2-oxolanyl) propane
- n-butyllithium As a polymerization initiator, 92 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor begins to rise due to the heat generated by the polymerization, and when the monomer conversion in the reactor reaches 98%, trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent ) 18 mmol was added, and the mixture was stirred for 5 minutes. Then, 333 g of Additive 1,3-butadiene (Additional Butadiene) was added and reacted. The temperature in the final reactor was 75 ° C. The temperature in the final reactor reached 76 ° C.
- BS-1 trimethoxy (4-vinylphenyl) silane
- the structure of the coupling conjugated diene polymer was identified.
- the structure of each sample was identified in the same manner.
- the conjugated diene-based polymer after the addition of the branching agent has an average 3.9-branched star-shaped polymer structure
- the conjugated diene-based polymer after the addition of the coupling agent has an average of 3.9 branches.
- the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- n-butyllithium As a polymerization initiator, 92 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor begins to rise due to the heat generated by the polymerization, and when the monomer conversion in the reactor reaches 98%, trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent ) 18 mmol was added, and the mixture was stirred for 5 minutes. Then, 333 g of Additive 1,3-butadiene (Additional Butadiene) was added and reacted. The temperature in the final reactor was 75 ° C. The temperature in the final reactor reached 76 ° C.
- BS-1 trimethoxy (4-vinylphenyl) silane
- a hydrogenation reaction was carried out at ° C. for 30 minutes to obtain a solution of the hydrogenated conjugated diene-based polymer.
- the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 20.0%.
- the structure of the conjugated diene polymer after the addition of the branching agent in sample B3 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
- the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- the structure of the conjugated diene polymer after the addition of the branching agent in the samples B4, B5 and B6 has an average 3.9-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
- the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of two star-shaped structures.
- sample B8 The hydrogenation rate of sample B8 was 96%.
- the results of analysis of sample B8 are shown in Table 1-1. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample B8 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Example 4 Hydrogenated conjugated diene polymer (Sample B9)
- a coupling agent 4.0 mmol of 2,2-dimethoxy-1- (3-rimethoxysilylpropyl) -1-aza-2-silacyclopentane (Compound 2) and 4 of silicon tetrachloride (Compound 3) were used.
- a hydrogenated conjugated diene polymer (Sample B9) was obtained by the same operation as in Comparative Example 3 except that the hydrogenation integrated flow rate in the hydrogenation reaction was adjusted by changing to 0.0 mmol.
- the hydrogenation rate of sample B9 was 65%.
- the results of analysis of sample B9 are shown in Table 1-1.
- the structure of the conjugated diene polymer after the addition of the branching agent in sample B9 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
- the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- Example 5 Hydrogenated conjugated diene polymer (Sample B10) Trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent was added at 18 mmol when the monomer conversion in the reactor was 60%, and trimethoxy (4-vinylphenyl) silane (BS-) was further added as a branching agent. 1) was added at 7.4 mmol when the monomer conversion in the reactor was 98%, and 2,2-dimethoxy-1- (3-phenylmethoxysilylpropyl) -1-aza-2-sila was added as a coupling agent.
- the conjugated diene polymer after the second addition of the branching agent has a star-shaped polymer structure having an average of 5.2 branches, and is a vinyl monomer containing an alkoxysilyl group. Had a part derived from.
- sample B11 A hydrogenated conjugated diene-based polymer (Sample B11) was obtained.
- the hydrogenation rate of sample B11 was 60%.
- the results of analysis of sample B11 are shown in Table 1-2. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B11 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Example B12 35 mmol of dimethoxymethyl (4-vinylphenyl) silane (BS-2) as an agent and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediene as a coupling agent
- the hydrogenated conjugated diene polymer (Sample B12, Sample) was operated in the same manner as in Comparative Example 3 except that (Compound 5) was changed to 5.9 mmol and methanol was changed to 8.6 mmol as a reaction initiator and the integrated hydrogen flow rate was adjusted. B13 and sample B14) were obtained.
- the hydrogenation rates of sample B12, sample B13, and sample B14 were 60.0%, 88.0%, and 93.0%, respectively.
- sample B12, sample B13, and sample B14 are shown in Table 1-2.
- the structure of the conjugated diene polymer before the addition of the coupling agent in the samples B12, B13 and B14 has an average 3.0-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
- the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
- sample B15 A hydrogenated conjugated diene-based polymer (Sample B15) was obtained by the above operation.
- the hydrogenation rate of sample B15 was 50%.
- the results of analysis of sample B15 are shown in Table 1-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B15 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- sample B16, sample B17, and sample B18 were 39.0%, 64.0%, and 95.0%, respectively.
- the results of analysis of sample B16, sample B17, and sample B18 are shown in Table 1-3.
- the structures of the conjugated diene-based polymers in the samples B16, B17 and B18 before the addition of the coupling agent had an average 3.9-branched star-shaped polymer structure, and the conjugated diene-based polymer after the addition of the coupling agent.
- the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
- sample B19 A hydrogenated conjugated diene-based polymer (Sample B19) was obtained.
- the hydrogenation rate of sample B19 was 70%.
- the results of analysis of sample B19 are shown in Table 1-4. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B19 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- sample B23 A hydrogenated conjugated diene-based polymer (Sample B23) was obtained by the operation.
- the hydrogenation rate of sample B23 was 60%.
- the results of analysis of sample B23 are shown in Table 1-5. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B23 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Hydrogenated conjugated diene-based polymers (Sample B24, Sample B25, Sample B26) were obtained by the same operation as in Comparative Example 1 except that the above was adjusted.
- the hydrogenation rates of sample B24, sample B25, and sample B26 were 60%, 75%, and 94%, respectively.
- the results of analysis of sample B24, sample B25, and sample B26 are shown in Table 1-5. As a result of the measurement, it was found that the structure of the conjugated diene polymer before the addition of the coupling agent in the samples B24, B25 and B26 had a linear polymer structure and not a star polymer. rice field.
- Example 31 Hydrogenated conjugated diene polymer (Sample B27) Branched with 1,887 g of initial butadiene, 780 g of styrene, 333 g of added butadiene, 72 mmol of 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and 98 mmol of n-butyllithium as a polymerization initiator.
- BOP 2,2-bis (2-oxolanyl) propane
- the structure of the conjugated diene polymer before the addition of the coupling agent in sample B27 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
- the branched chain of the three star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- the branching agents and coupling agents shown in Tables 1-1 to 1-5 are the following compounds.
- each rubber composition (blending) was obtained at a discharge temperature of 155 to 160 ° C.
- the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
- the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and vulcanization accelerators 1 and 2 are added and kneaded by an open roll set at 70 ° C.
- the result of Application Comparative Example 9 was set as 100 and indexed.
- the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100.
- the results of Application Comparative Example 5 were indexed with the results of Application Comparative Example 10 under the compounding condition D described later as 100.
- the smaller the index the better the workability. If the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
- the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100.
- the results of Application Comparative Example 5 were indexed with the results of Application Comparative Example 10 under the compounding condition D described later as 100.
- the larger the index the better the breaking strength, breaking elongation (breaking strength), and breaking characteristics. If the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
- the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100. If the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is slightly worse ( ⁇ in the table), and 94 or less, the fuel efficiency is worse than the standard product, and the grade in the labeling system may be lowered (x in the table). The results are shown in Tables 2-1 to 2-5 and Table 3.
- the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
- the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
- the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes.
- the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, it was evaluated by the following method. The results are shown in Table 3.
- the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
- Hydrogenated conjugated diene-based polymer composition (Sample C1) An internal volume of 10 L, an internal height (L) to diameter (D) ratio (L / D) of 4.0, an inlet at the bottom and an outlet at the top, and a tank reactor with a stirrer. Two tank-type pressure vessels having a stirrer and a jacket for temperature control were connected as a polymerization reactor.
- Preliminarily water-removed 1,3-butadiene (initial butadiene) was mixed under the conditions of 17.7 g / min, styrene at 10.9 g / min, and n-hexane at 175.2 g / min.
- n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor.
- n-butyllithium polymerization initiator n-butyllithium
- N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was continuously added to the polymer solution flowing out from the outlet of the reactor as a coupling agent at a rate of 0.041 mmol / min. It was added, mixed using a static mixer, and subjected to a coupling reaction. At this time, the time until the coupling agent was added to the polymer solution flowing out from the outlet of the reactor was 4.8 minutes and the temperature was 68 ° C., until the temperature in the polymerization step and the addition of the coupling agent. The difference from the temperature of was 2 ° C.
- the obtained conjugated diene polymer solution was transferred to another reactor, and the hydrogenation catalyst (T) prepared above was added at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogenation pressure was 0.
- a hydrogenation reaction was carried out at 8 MPa and an average temperature of 85 ° C. for 30 minutes to obtain a solution of a hydrogenated conjugated diene-based polymer.
- the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 50.0%.
- an antioxidant BHT was continuously added to the obtained solution of the hydrogenated conjugated diene polymer so as to be 0.2 g per 100 g of the polymer.
- SRAE oil JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.
- the solvent was removed by steam stripping to obtain a hydrogenated conjugated diene-based polymer composition (Sample C1).
- the physical characteristics of sample C1 are shown in Table 4-1. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample C1 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Example 11 Conjugated Diene Polymer Composition (Sample C2) An internal volume of 10 L, an internal height (L) to diameter (D) ratio (L / D) of 4.0, an inlet at the bottom and an outlet at the top, and a tank reactor with a stirrer. Two tank-type pressure vessels having a stirrer and a jacket for temperature control were connected as a polymerization reactor. Preliminarily water-removed 1,3-butadiene (initial butadiene) was mixed at 14.2 g / min, styrene at 10.9 g / min, and n-hexane at 175.2 g / min.
- n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor. Further, 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance at a rate of 0.056 mmol / min and n-butyllithium (polymerization initiator n-butyllithium) as a polymerization initiator at 0.215 mmol / min.
- BOP 2,2-bis (2-oxolanyl) propane
- the mixture was supplied to the bottom of the first reactor, which was vigorously mixed with a stirrer, to initiate polymerization, and the temperature inside the reactor was maintained at 67 ° C.
- the polymer solution was continuously withdrawn from the top of the first reactor, continuously supplied to the bottom of the second reactor, continued the reaction at 70 ° C., and further supplied to the static mixer from the top of the second reactor.
- trimethoxy (4-vinylphenyl) silane (BS-1) was added as a branching agent from the bottom of the second reactive group while copolymerizing 1,3-butadiene and styrene.
- the mixture was added at a rate of 0.032 mmol / min, and a polymerization reaction and a branching reaction were carried out to obtain a conjugated diene polymer having a main chain branched structure.
- 1,3-butadiene (additional butadiene) from which water had been removed in advance was additionally added from the middle portion of the second reactor under the condition of 3.5 g / min, and a polymerization reaction was further carried out.
- N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was added to the polymer solution flowing out from the outlet of the reactor as a coupling agent.
- SRAE oil (JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.) was continuously added to 100 g of the polymer as a softening agent for rubber so as to be 25.0 g, and mixed with a static mixer. .. The solvent was removed by steam stripping to obtain a conjugated diene polymer composition (Sample C2).
- the physical characteristics of sample C2 are shown in Table 4-1.
- the molecular weight by GPC measurement and the degree of branching by GPC measurement with a viscometer are By comparison, the structure of the conjugated diene polymer was identified.
- the structure of each sample was identified in the same manner.
- the structure of the conjugated diene polymer after the addition of the branching agent in sample C2 has an average 4.2-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
- the branched chain of the four star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor. Further, 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance at a rate of 0.056 mmol / min and n-butyllithium (polymerization initiator n-butyllithium) as a polymerization initiator at 0.215 mmol / min.
- BOP 2,2-bis (2-oxolanyl) propane
- the mixture was supplied to the bottom of the first reactor, which was vigorously mixed with a stirrer, to initiate polymerization, and the temperature inside the reactor was maintained at 67 ° C.
- the polymer solution was continuously withdrawn from the top of the first reactor, continuously supplied to the bottom of the second reactor, continued the reaction at 70 ° C., and further supplied to the static mixer from the top of the second reactor.
- trimethoxy (4-vinylphenyl) silane (BS-1) was added as a branching agent from the bottom of the second reactive group while copolymerizing 1,3-butadiene and styrene.
- the mixture was added at a rate of 0.032 mmol / min, and a polymerization reaction and a branching reaction were carried out to obtain a conjugated diene polymer having a main chain branched structure.
- 1,3-butadiene (additional butadiene) from which water had been removed in advance was additionally added from the middle portion of the second reactor under the condition of 3.5 g / min, and a polymerization reaction was further carried out.
- N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was added to the polymer solution flowing out from the outlet of the reactor as a coupling agent.
- the obtained solution of the conjugated diene polymer was transferred to another reactor, and the hydrogenation catalyst (T) prepared above was added at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogen pressure was 0.
- a hydrogenation reaction was carried out at 0.8 MPa and an average temperature of 85 ° C. for 20 minutes to obtain a solution of a hydrogenated conjugated diene polymer.
- the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 20.0%.
- an antioxidant (BHT) was continuously added to the obtained solution of the hydrogenated conjugated diene polymer so as to be 0.2 g per 100 g of the polymer.
- SRAE oil (JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.) was continuously added to 100 g of the polymer as a softening agent for rubber so as to be 25.0 g, and mixed with a static mixer. .. The solvent was removed by steam stripping to obtain a hydrogenated conjugated diene polymer composition (Sample C3).
- the physical characteristics of sample C3 are shown in Table 4-1.
- the structure of the conjugated diene polymer after the addition of the branching agent in sample C3 has an average 4.2-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
- the branched chain of the four star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- Example 18 to 20 Hydrogenated conjugated diene polymer compositions (samples C4, C5, C6 in that order)
- a hydrogenated conjugated diene-based polymer composition (sample C4, sample C5, sample C6) was obtained by the same operation as in Comparative Example 12 except that the integrated hydrogen flow rate in the hydrogenation reaction was adjusted.
- the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C4, Sample C5, and Sample C6 were 55.0%, 87.0%, and 93.0%, respectively.
- the results of analyzing Sample C4, Sample C5, and Sample C6 are shown in Table 4-1.
- the structure of the conjugated diene polymer after the addition of the branching agent in the samples C4, C5 and C6 has an average 4.2-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
- the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
- Hydrogenated conjugated diene polymer composition (sample) by the same operation as in Comparative Example 12 except that methanol was changed to 0.016 mmol / min as a reaction initiator and the integrated hydrogen flow rate in the hydrogenation reaction was adjusted.
- C7, sample C8, sample C9) were obtained.
- the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C7, Sample C8, and Sample C9 were 50.0%, 84.0%, and 93.0%, respectively.
- the results of analyzing Sample C7, Sample C8, and Sample C9 are shown in Table 4-1.
- the structure of the conjugated diene polymer after the addition of the branching agent in the samples C7, C8 and C9 has an average 4.2-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
- the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average star-shaped structure.
- Examples 24-26 Hydrogenated conjugated diene-based polymer compositions (samples C11, C12, C13 in that order) 17.2 g / min for initial butadiene, 7.2 g / min for styrene, 0.051 mmol / min for 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and n-butyllithium (n-butyllithium) as a polymerization initiator.
- BOP 2,2-bis (2-oxolanyl) propane
- the hydrogenated conjugated diene polymer composition was prepared by the same operation as in Comparative Example 12, except that 012 mmol / min and methanol was changed to 0.016 mmol / min as a reaction initiator to adjust the integrated hydrogen flow rate in the hydrogenation reaction.
- Sample C11, sample C12, sample C13) were obtained.
- the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C11, Sample C12, and Sample C13 were 50.0%, 82.0%, and 95.0%, respectively.
- the results of analysis of sample C11, sample C12, and sample C13 are shown in Table 4-2.
- the structure of the conjugated diene polymer after the addition of the branching agent in the samples C11, C12 and C13 has an average three-branched star-shaped polymer structure, and the conjugated diene polymer after the addition of the coupling agent.
- the conjugated diene polymer after the addition of the coupling agent Had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of 3.8 star-shaped structures.
- Example C14 Polymerization initiator n-butyllithium was 0.120 mmol / min, N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was 0.041 mmol / min as a coupling agent, and methanol was used as a reaction terminator.
- a hydrogenated conjugated diene-based polymer composition (sample C14) was obtained by the same operation as in Comparative Example 10 except that the hydrogenation integrated flow rate in the hydrogenation reaction was adjusted by changing to 0.018 mmol / min.
- the hydrogenation rate of the hydrogenated conjugated diene polymer of Sample C14 was 60%.
- Table 4-3 The results of analysis of sample C14 are shown in Table 4-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample C14 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Polymerization initiator n-butyllithium was 0.159 mmol / min, and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was used as a coupling agent.
- Hydrogenated conjugated diene polymer composition by the same operation as in Comparative Example 10 except that the integrated hydrogen flow rate in the hydrogenation reaction was adjusted by changing methanol to 0.017 mmol / min and 0.024 mmol / min as a reaction initiator. Substances (sample C15, sample C16, sample C17) were obtained.
- the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C15, Sample C16, and Sample C17 were 60.0%, 82.0%, and 93.0%, respectively.
- the results of analysis of sample C15, sample C16, and sample C17 are shown in Table 4-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer before the addition of the coupling agent in the samples C15, C16 and C17 had a linear polymer structure and not a star polymer. rice field.
- Example C18 A conjugated diene-based polymer composition (Sample C18) was obtained by the same operation as in Comparative Example 10. The results of analysis of sample C18 are shown in Table 4-4. As a result of the measurement, it was found that the structure of the conjugated diene-based polymer in sample C18 before the addition of the coupling agent had a linear polymer structure and not a star-shaped polymer.
- Example 30 Hydrogenated conjugated diene-based polymer composition
- Example C19 Initial butadiene is 17.9 g / min, styrene is 9.8 g / min, cyclohexane is 145.3 g / min, and 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance is 0.098 mmol / min. 0.242 mmol / min of n-butyllithium (polymerization initiator n-butyllithium) as an agent, and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3- as a coupling agent.
- BOP 2,2-bis (2-oxolanyl) propane
- Example C19 Water was produced by the same operation as in Comparative Example 10 except that propanediamine (Compound 5) was changed to 0.030 mmol / min and methanol was changed to 0.044 mmol / min as a reaction initiator to adjust the integrated hydrogen flow rate in the hydrogenation reaction.
- a conjugated diene-based polymer composition (Sample C19) was obtained.
- the hydrogenation rate of the hydrogenated conjugated diene polymer of Sample C19 was 80%.
- the results of analysis of sample C19 are shown in Table 4-4. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample C19 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
- Example 33 14.3 g / min for initial butadiene, 9.8 g / min for styrene, 0.027 mmol / min for 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and n-butyllithium (n-butyllithium) as a polymerization initiator.
- BOP 2,2-bis (2-oxolanyl) propane
- the structure of the conjugated diene polymer after the addition of the branching agent in sample C22 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is 3.6
- the branched chain of the six star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
- the branching agents and coupling agents shown in Tables 4-1 to 4-4 are the following compounds.
- the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
- the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
- the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes. The rubber composition before vulcanization and the rubber composition after vulcanization were evaluated.
- the result of Application Comparative Example 19 was set as 100 and indexed.
- the results of Application Example 31 and Application Comparative Example 16 under the compounding condition E were indexed with the result of the application comparative example 17 under the compounding condition F described later as 100.
- the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
- the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
- sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
- the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes.
- the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, it was evaluated by the following method. The results are shown in Table 6.
- the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
- the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
- -Silica 3 VN3 manufactured by Evonik Degussa (N2SA: 175m 2 / g) -Silica 4: 115GR manufactured by Solvay Japan Co., Ltd. (N2SA: 115m 2 / g) -Silica 5: 9000GR manufactured by Evonik Degussa (N2SA: 235m 2 / g) -Carbon Black 2: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N2SA: 96m 2 / g, DBP absorption amount: 124mL / 100g) -Carbon Black 3: Show Black N330 (N2SA: 75m 2 / g) manufactured by Cabot Japan Co., Ltd.
- SRAE oil (trade name "Process NC140” manufactured by JX Nippon Oil Energy Co., Ltd.)
- Softener 1 Diana Process AH-24 (aroma oil) manufactured by Idemitsu Kosan Co., Ltd.
- -Softening agent 2 SYLVARES SA85 manufactured by Arizona Chemical Co., Ltd.
- Softening agent 3 RICON100 manufactured by Sartmer (liquid SBR, styrene content: 20% by mass, vinyl content: 70% by mass, weight average molecular weight: 4500)
- Softening agent 4 NOVARES C100 (Kumaron indene resin, softening point: 95 to 105 ° C.) manufactured by Rutgers Chemicals.
- -Softening agent 5 DRT's Decolite L120 (polylimonen resin, softening point: 120 ° C.)
- -Softening agent 6 silvatraxx 4150 manufactured by KRATON (polyterpene resin, softening point: 150 ° C.)
- Silane coupling agent 2 Si266 manufactured by Evonik Degussa -Silane coupling agent 3: Si69 manufactured by Evonik Degussa -Silane coupling agent 4: Si363 manufactured by Evonik Degussa -Anti-aging agent: N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine wax: Ozoace 0355 manufactured by Nippon Seiro Co., Ltd.
- -Vulcanization accelerator 1 N-cyclohexyl-2-benzothiazil sulfinamide-Vulcanization accelerator 2: Diphenylguanidine
- the hydrogenated conjugated diene-based polymers or hydrogenated conjugated diene-based polymer compositions of Examples 1 to 30 and Examples 31 to 33 are Comparative Examples 1 to 15. It was also confirmed that, as compared with Comparative Example 16, the cold flow was suppressed, the Mooney viscosity of the compound when prepared as a vulcanized product was low, and good processability was exhibited.
- the hydrogenated conjugated diene polymer of the present invention has industrial applicability as a material for tire treads, automobile interior and exterior parts, anti-vibration rubber, belts, footwear, foams, various industrial products, and the like. ..
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
[1]
粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率が30%以上99%未満である、水添共役ジエン系重合体。
[2]
GPCによる重量平均分子量が21万以上300万未満である、[1]に記載の水添共役ジエン系重合体。
[3]
下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の構成比(mol%)を、それぞれ順にa、b、c、及びdとしたとき、下記数式(S)を満たす、[1]又は[2]に記載の水添共役ジエン系重合体。
[4]
下記式(1)で表される構造単位、及び下記式(2)で表される構造単位の構成比(mol%)を、それぞれ順にa、及びbとしたとき、下記数式(T)を満たす、[1]乃至[3]のいずれかに記載の水添共役ジエン系重合体。
[5]
芳香族ビニル単量体を3質量%以上60質量%未満含む、[1]乃至[4]のいずれかに記載の水添共役ジエン系重合体。
[6]
変性率が60質量%以上である、[1]乃至[5]のいずれかに記載の水添共役ジエン系重合体水添共役ジエン系重合体。
[7]
粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8.0以上である、[1]乃至[6]のいずれかに記載の水添共役ジエン系重合体水添共役ジエン系重合体。
[8]
3分岐以上の星形高分子構造を有し、
少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、
当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、[1]乃至[7]のいずれかに記載の水添共役ジエン系重合体。
[9]
前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であり、
下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされている、[8]に記載の水添共役ジエン系重合体。
R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR1~R3は、各々独立している。
X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
複数存在する場合のR2~R5は、各々独立している。
X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
[10]
前記式(5)中、R1が水素原子であり、m=0である、前記式(5)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[11]
前記式(6)中、m=0であり、b=0である、前記式(6)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[12]
前記式(5)中、R1が水素原子であり、m=0であり、l=0であり、n=3である、前記式(5)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[13]
前記式(6)中、m=0であり、l=0であり、n=3であり、a=0であり、b=0であり、c=3である、前記式(6)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[14]
分子量が30万以下の成分(成分LM)が20%以上80%以下である、[1]乃至[13]のいずれかに記載の水添共役ジエン系重合体。
[15]
水素添加率が50%以上75%以下である、[1]乃至[14]のいずれかに記載の水添共役ジエン系重合体。
[16]
下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、
工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である、水添共役ジエン系重合体の製造方法;
工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して、共役ジエン系重合体を得る工程、
工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程、
工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程、
工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程。
[17]
前記工程(D)を含む、[16]に記載の水添共役ジエン系重合体の製造方法。
[18]
[1]乃至[15]のいずれかに記載の水添共役ジエン系重合体100質量部と、ゴム用軟化剤1~60質量部とを、含有する、水添共役ジエン系重合体組成物。
[19]
ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤と、を含み、
前記ゴム成分は、当該ゴム成分の総量100質量部に対して、[1]乃至[15]のいずれかに記載の水添共役ジエン系重合体、若しくは[18]に記載の水添共役ジエン系重合体組成物を10質量部以上含む、ゴム組成物。
なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施することができる。
本実施形態の水添共役ジエン系重合体は、粘度検出器付きGPC(ゲル浸透クロマトグラフィー)-光散乱法測定法による分岐度(以下「Bn」とも記す。)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率(以下、単に「水素添加率」とも記す)が30~99%である。
本実施形態の水添共役ジエン系重合体において、共役ジエン化合物に由来する構造単位(以下「共役ジエン単量体」とも記す)を含む。共役ジエン化合物の具体例としては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましく、1,3ブタジエンが特に好ましい。
これらは1種単独で用いてもよいし、2種以上を併用してもよい。
これらは1種単独で用いてもよいし、2種以上を併用してもよい。
この場合、得られる加硫ゴムが特に低いヒステリシスロスとなり好ましい。
本実施形態の水添共役ジエン系重合体は、後述の共役ジエン系重合体を水添(水素添加)して得られる。共役ジエン系重合体の共役ジエン部分を水素化する方法は、特に限定されず、公知の方法が利用できる。
一方、本実施形態の水添共役ジエン系重合体の水素添加率は、省燃費性能の観点からは、80%以下が好ましく、75%以下がより好ましく、75%未満がさらに好ましく、72%未満が特に好ましい。また、破断強度や破断伸びといった強度の観点からは、水素添加率は39%以上が好ましく、40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましく、55%以上が特に好ましい。水素添加率が39~80%の範囲であることで、水添により生成するブチレン鎖により損失弾性率が低減され、且つエチレン鎖による損失弾性率の上昇を抑制できるために、強度を良好に維持しつつ、省燃費性能を向上させることができると推定される。
タイヤに配合される水添共役ジエン系重合体はタイヤに配合される他の成分との関係で、求められる機能が様々であり、必要な性能に応じて分子量や水素添加率、ミクロ構造を設計すればよい。例えば、破断強度や破断伸びといった強度を求める場合には、水素添加率が65%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが特に好ましい。一方で、水素添加率が85%を超えて高い場合に、タイヤを構成する他の材料の組成によっては、所期の省燃費性能を発揮しにくい場合がある。そのため、省燃費性と強度とのバランスをとる設計にする観点では、水素添加率を39~80%に設定するのが好ましい。
また水素添加率が75%を超えて高い場合に、高粘度化し、加工性が悪化する場合がある。そのため、水素添加率を75%超に高めたい場合は、粘度や加工性の観点から重量平均分子量が120万以下であることが好ましく、100万以下であることがより好ましく、80万以下であることがさらに好ましく、60万以下であることが特に好ましい。さらに水素添加率を75%超に高めたい場合に、結晶成分の生成による高粘度化抑制の観点から、芳香族ビニル量を15質量%以上とする、及び、又はもしくは、前記式(1)と式(2)で表される構造の含有量の合計が35モル%以上であることが好ましい。
例えば、破断強度や破断伸びといった強度を向上させるための組成として、ガラス転移温度の高い樹脂成分が配合される場合がある。高Tgの樹脂成分と高水素添加率の水添共役ジエン系重合体は強度の観点で好ましい組み合わせである。樹脂成分の好ましい例は後述する。
水素添加率を40%以上80%以下で制御する場合に、1,2ビニル結合の含有量が少ない方が耐熱性の観点で好ましい。より具体的には、aの構成比が10%以下であることが好ましく、8%以下であることがより好ましく、5%以下であることがさらに好ましい。
本実施形態の水添共役ジエン系重合体は、ゴムベールのコールドフロー抑制と加工性の観点から、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)(以下、単に「分岐度(Bn)」とも記す。)が2.5以上であり、3.0以上が好ましく、4.0以上がより好ましく、6.0以上であることがさらに好ましく、6.4以上であることがさらに好ましく、8.0以上であることがよりさらに好ましく、14.0以上であることが特に好ましい。
本実施形態の水添共役ジエン系重合体は、加工性と省燃費性能を両立させる観点から、分子量が高いほど分岐度(Bn)が高い方が好ましく、水素添加率が高いほど分岐度が高い方が好ましい。
また、水素添加触媒としてチタノセン触媒を使用した場合、水素添加反応初期では1,2ビニル結合が水添されることで溶液粘度及び溶融粘度が低下するが、1,2ビニル結合が水添された後、1,4結合が水添されると溶液粘度及び溶融粘度が上昇するため、水素添加率が75%を超える水添共役ジエン系重合体を得る場合は、比較的高分子量にしても、粘度を抑えられる傾向がある点で分岐度(Bn)が高い方が好ましい。分岐度(Bn)が6以上であれば、75%を超える水素添加率の場合にも、組成物を調製する際に必要な加工性を確保できる傾向にある。一方で、水素添加率が30%以上75%以下の領域では、粘度上昇という問題が起こりにくいので、製造上の観点で高分岐にする必要は無く、強度を高く設定したい場合は分岐度(Bn)が2.5以上に設定でき、3.0以上が好ましく、30以下が好ましく、20以下がより好ましく、14以下がさらに好ましい。
同等のムーニー粘度でも分岐度が高いほど、分子量を高めることができ、好ましい。
本実施形態の水添共役ジエン系重合体は、重合及び分岐工程を経て得られた共役ジエン系重合体を、共役ジエン系重合体の活性末端に対して、分岐化剤と3官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を用いるカップリング反応を行って得られる共役ジエン系重合体が好ましい。
本実施形態において、カップリング工程で用いられるカップリング剤は、3官能以上の反応性化合物であればいかなる構造のものでもよいが、好ましくは、珪素原子を有する3官能以上の反応性化合物が好ましい。より具体的には後述に記載の水添共役ジエン系重合体の製造方法に記載する。
本実施形態の水添共役ジエン系重合体は、重合及び分岐工程を経て得られた共役ジエン系重合体を、共役ジエン系重合体の活性末端に対して、3官能以上の窒素原子含有基を有する反応性化合物(以下、「窒素原子含有基を有する変性剤」ともいう。)を用いてカップリング反応を行って得られる共役ジエン系重合体がより好ましい。
本明細書中、「変性率」は、共役ジエン系重合体若しくは水添共役ジエン系重合体の総量に対する窒素原子含有官能基を有する共役ジエン系重合体若しくは水添共役ジエン系重合体の質量比率を表す。
主鎖分岐構造は、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分における分岐点で2分岐点以上であり、3分岐点以上であることが好ましく、4分岐点以上であることがより好ましい。
本実施形態の水添共役ジエン系重合体は、星形高分子構造を有していることが好ましく、星形高分子構造由来の分岐が3分岐以上であることが好ましく、4分岐以上であることがより好ましく、6分岐以上であることがさらに好ましく、8分岐以上であることがさらにより好ましい。星形高分子構造由来の分岐の上限は、特に限定されないが、例えば、32分岐以下である。
本実施形態の水添共役ジエン系重合体は、上述したアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であって、下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有することが好ましく、また、カップリング剤を用いて得られる水添共役ジエン系重合体であることがより好ましく、水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされていることがさらに好ましく、水添共役ジエン系重合体の少なくとも一端が、窒素原子含有基で変性されている水添共役ジエン系重合体であることがよりさらに好ましい。
R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR1~R3は、各々独立している。
X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
mは、0~2の整数を示し整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR2~R5は、各々独立している。
X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
(m+n+l)は、3を示す。
aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
本実施形態の水添共役ジエン系重合体においては、主鎖分岐構造を構築する際に、分岐化剤として、下記式(5)又は式(6)で表される分岐化剤を用いることが好ましい。
R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR1~R3は、各々独立している。
X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
(m+n+l)は、3を示す。)
(式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR2~R5は、各々独立している。
X2~X3は、各々独立して、独立したハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
(m+n+l)は、3を示す。
aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラン、トリイソプロポキシ(4-ビニルフェニル)シラン、トリメトキシ(3-ビニルフェニル)シラン、トリエトキシ(3-ビニルフェニル)シラン、トリプロポキシ(3-ビニルフェニル)シラン、トリブトキシ(3-ビニルフェニル)シラン、トリイソプロポキシ(3-ビニルフェニル)シラン、トリメトキシ(2-ビニルフェニル)シラン、トリエトキシ(2-ビニルフェニル)シラン、トリプロポキシ(2-ビニルフェニル)シラン、トリブトキシ(2-ビニルフェニル)シラン、トリイソプロポキシ(2-ビニルフェニル)シラン、ジメトキシメチル(4-ビニルフェニル)シラン、ジエトキシメチル(4-ビニルフェニル)シラン、ジプロポキシメチル(4-ビニルフェニル)シラン、ジブトキシメチル(4-ビニルフェニル)シラン、ジイソプロポキシメチル(4-ビニルフェニル)シラン、ジメトキシメチル(3-ビニルフェニル)シラン、ジエトキシメチル(3-ビニルフェニル)シラン、ジプロポキシメチル(3-ビニルフェニル)シラン、ジブトキシメチル(3-ビニルフェニル)シラン、ジイソプロポキシメチル(3-ビニルフェニル)シラン、ジメトキシメチル(2-ビニルフェニル)シラン、ジエトキシメチル(2-ビニルフェニル)シラン、ジプロポキシメチル(2-ビニルフェニル)シラン、ジブトキシメチル(2-ビニルフェニル)シラン、ジイソプロポキシメチル(2-ビニルフェニル)シラン、ジメチルメトキシ(4-ビニルフェニル)シラン、ジメチルエトキシ(4-ビニルフェニル)シラン、ジメチルプロポキシ(4-ビニルフェニル)シラン、ジメチルブトキシ(4-ビニルフェニル)シラン、ジメチルイソプロポキシ(4-ビニルフェニル)シラン、ジメチルメトキシ(3-ビニルフェニル)シラン、ジメチルエトキシ(3-ビニルフェニル)シラン、ジメチルプロポキシ(3-ビニルフェニル)シラン、ジメチルブトキシ(3-ビニルフェニル)シラン、ジメチルイソプロポキシ(3-ビニルフェニル)シラン、ジメチルメトキシ(2-ビニルフェニル)シラン、ジメチルエトキシ(2-ビニルフェニル)シラン、ジメチルプロポキシ(2-ビニルフェニル)シラン、ジメチルブトキシ(2-ビニルフェニル)シラン、ジメチルイソプロポキシ(2-ビニルフェニル)シラン、トリメトキシ(4-イソプロぺニルフェニル)シラン、トリエトキシ(4-イソプロぺニルフェニル)シラン、トリプロポキシ(4-イソプロぺニルフェニル)シラン、トリブトキシ(4-イソプロぺニルフェニル)シラン、トリイソプロポキシ(4-イソプロぺニルフェニル)シラン、トリメトキシ(3-イソプロぺニルフェニル)シラン、トリエトキシ(3-イソプロぺニルフェニル)シラン、トリプロポキシ(3-イソプロぺニルフェニル)シラン、トリブトキシ(3-イソプロぺニルフェニル)シラン、トリイソプロポキシ(3-イソプロぺニルフェニル)シラン、トリメトキシ(2-イソプロぺニルフェニル)シラン、トリエトキシ(2-イソプロぺニルフェニル)シラン、トリプロポキシ(2-イソプロぺニルフェニル)シラン、トリブトキシ(2-イソプロぺニルフェニル)シラン、トリイソプロポキシ(2-イソプロぺニルフェニル)シラン、ジメトキシメチル(4-イソプロぺニルフェニル)シラン、ジエトキシメチル(4-イソプロぺニルフェニル)シラン、ジプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジブトキシメチル(4-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジメトキシメチル(3-イソプロぺニルフェニル)シラン、ジエトキシメチル(3-イソプロぺニルフェニル)シラン、ジプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジブトキシメチル(3-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジメトキシメチル(2-イソプロぺニルフェニル)シラン、ジエトキシメチル(2-イソプロぺニルフェニル)シラン、ジプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジブトキシメチル(2-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジメチルメトキシ(4-イソプロぺニルフェニル)シラン、ジメチルエトキシ(4-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルブトキシ(4-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルメトキシ(3-イソプロぺニルフェニル)シラン、ジメチルエトキシ(3-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルブトキシ(3-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルメトキシ(2-イソプロぺニルフェニル)シラン、ジメチルエトキシ(2-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(2-イソプロぺニルフェニル)シラン、ジメチルブトキシ(2-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(2-イソプロぺニルフェニル)シラン、トリクロロ(4-ビニルフェニル)シラン、トリクロロ(3-ビニルフェニル)シラン、トリクロロ(2-ビニルフェニル)シラン、トリブロモ(4-ビニルフェニル)シラン、トリブロモ(3-ビニルフェニル)シラン、トリブロモ(2-ビニルフェニル)シラン、ジクロロメチル(4-ビニルフェニル)シラン、ジクロロメチル(3-ビニルフェニル)シラン、ジクロロメチル(2-ビニルフェニル)シラン、ジブロモメチル(4-ビニルフェニル)シラン、ジブロモメチル(3-ビニルフェニル)シラン、ジブロモメチル(2-ビニルフェニル)シラン、ジメチルクロロ(4-ビニルフェニル)シラン、ジメチルクロロ(3-ビニルフェニル)シラン、ジメチルクロロ(2-ビニルフェニル)シラン、ジメチルブロモ(4-ビニルフェニル)シラン、ジメチルブロモ(3-ビニルフェニル)シラン、ジメチルブロモ(2-ビニルフェニル)シランが挙げられる。
1,1-ビス(4-トリメトキシシリルフェニル)エチレン、1,1-ビス(4-トリエトキシシリルフェニル)エチレン、1,1-ビス(4-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(4-トリペントキシシリルフェニル)エチレン、1,1-ビス(4-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(3-トリメトキシシリルフェニル)エチレン、1,1-ビス(3-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(3-トリペントキシシリルフェニル)エチレン、1,1-ビス(3-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(2-トリメトキシシリルフェニル)エチレン、1,1-ビス(2-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(2-トリペントキシシリルフェニル)エチレン、1,1-ビス(2-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジメチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルエトキシシリル)フェニル)エチレンが挙げられる。
本実施形態の水添共役ジエン系重合体の製造方法は、例えば、下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である。また、本実施形態の水添共役ジエン系重合体の製造方法は、工程(D)を含むことが好ましい。また、本実施形態の水添共役ジエン系重合体の製造方法は、下記工程(C)をさらに含むことが好ましい。
工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して共役ジエン系重合体を得る工程(重合工程)
工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程(分岐化工程)
工程(C):共役ジエン系重合体末端から、さらに共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して共役ジエン系重合体を得る工程(重合工程)
工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程(カップリング工程)
工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程(水添工程)
重合開始剤としては、少なくとも有機モノリチウム化合物を用いることができる。
これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
本実施形態の水添共役ジエン系重合体の製造方法において、得られた水添共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、特に限定されないが、例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
本実施形態のゴム組成物は、ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤とを含む。
充填剤は1種単独で用いてもよいし、2種以上を併用してもよい。
共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、ISO 289に準拠し、L形ローターを用いてムーニー粘度を測定した。
測定温度は、水添共役ジエン系重合体を試料とする場合には100℃とした。
具体的には、まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後の試料のトルクを測定して当該測定値をムーニー粘度(ML(1+4))とした。
ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、粘度検出器付きGPC-光散乱法測定法によって分岐度(Bn)を以下のとおり測定した。ポリスチレン系ゲルを充填剤としたカラムを3本連結したゲル浸透クロマトグラフィー(GPC)測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、示差屈折率(RI)検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器との結果から試料の絶対分子量を、RI検出器と粘度検出器との結果から試料の固有粘度を求めた。
直鎖ポリマーは、固有粘度[η]=-3.883M0.771に従うものとして用い、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出した。なお、当該式中、Mは絶対分子量を表す。
その後、得られた収縮因子(g’)を用いてg’=6Bn/{(Bn+1)(Bn+2)}と定義される分岐度(Bn)を算出した。
溶離液は5mmol/Lのトリエチルアミン入りテトラヒドロフラン(以下「THF」とも記す。)を使用した。
カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。
測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
測定条件1 : 共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、試料の重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と分子量が30万以下の成分(成分LM)とを求めた。
溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用した。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
上記の測定条件1で測定した各種試料の中で、分子量分布(Mw/Mn)の値が1.6未満であった試料は、改めて下記の測定条件2により測定した。測定条件1で測定し、その分子量分布の値が1.6以上であった試料に対しては、測定条件1で測定した。
測定条件2 : 共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて試料の重量平均分子量(Mw)と数平均分子量(Mn)と分子量が30万以下の成分(成分LM)とを求めた。
溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。
オーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製の商品名「HLC8020」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液20μLをGPC測定装置に注入して測定した。
ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、当該重合体における変性率をカラム吸着GPC法で以下のとおり測定した。シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定した。
試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、重合体における変性率を求めた。
具体的には、以下に示すとおりである。また、上記の(重量平均分子量)の測定条件1での測定において、その分子量分布の値が1.6以上であった試料に対しては下記の測定条件3で測定し、その分子量分布の値が1.6未満であった試料に対しては下記の測定条件4で測定した。
試料溶液の調製 : 試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
測定条件3 : ポリスチレン系カラムを用いたGPC測定条件:
東ソー社製の商品名「HLC-8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
測定条件4 : 5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液20μLを装置に注入して測定した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。カラムオーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製 HLC8020)を用いて測定しクロマトグラムを得た。
シリカ系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5ml/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
重合体における変性率の計算方法 : ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2とした。また、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4とした。P1~P4に基づき下記式より重合体における変性率(%)を求めた。
変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC-光散乱測定装置を使用して、クロマトグラムを測定し、溶液粘度及び光散乱法に基づいて重量平均分子量(Mw-i)を求めた(「絶対分子量」ともいう。)。
溶離液はテトラヒドロフランとトリエチルアミンとの混合溶液(THF in TEA:トリエチルアミン5mLをテトラヒドロフラン1Lに混合させ調整した。)を使用した。
カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn HHR-H」と、カラム:東ソー社製の商品名「TSKgel G6000HHR」、「TSKgel G5000HHR」、「TSKgel G4000HHR」とを接続して使用した。
オーブン温度40℃、THF流量1.0mL/分の条件で、GPC-光散乱測定装置(マルバーン社製の商品名「Viscotek TDAmax」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液200μLをGPC測定装置に注入して測定した。
ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、重合体の中の結合スチレン量、前記式(1)で表される構造単位、前記式(2)で表される構造単位、前記式(3)で表される構造単位、及び前記式(4)で表される構造単位の構成比(mol%)を測定し、1,3-ブタジエンに由来する構造単位の二重結合の水素添加率(以下単に「水素添加率」とも記す)、前記数式(S)の値、及び前記数式(T)の値を算出するために、核磁気共鳴装置(1H-NMR)を用いて、下記の条件で測定した。1H-NMR測定の条件を以下に記す。
(測定条件)
測定機器 :JNM-LA400(JEOL製)
溶媒 :重水素化クロロホルム
測定サンプル :ポリマーを水素添加する前後の抜き取り品
サンプル濃度 :50mg/mL
観測周波数 :400MHz
化学シフト基準:TMS(テトラメチルシラン)
パルスディレイ:2.904秒
スキャン回数 :64回
パルス幅 :45°
測定温度 :26℃
共役ジエン系重合体(組成物)若しくは水添共役ジエン系重合体(組成物)を測定用試料とした。コールドフローは、25℃で40mm×40mm×厚み(H0)50mmの試料に、25℃で1kgの荷重を掛けて60分間放置後の厚み(H60)から、前記厚みの変化率(%)を下式で計算した。
厚みの変化率(%)=(H0-H60)×100/H0
さらに比較例2~5及び実施例1~2、4~5及び実施例31については、比較例1の結果を100として指数化した。実施例6~8については、比較例6の結果を100として指数化した。実施例9~11については、比較例7の結果を100として指数化した。比較例8の結果を100として指数化した。実施例15~17については、比較例9の結果を100として指数化した。
比較例11~12及び実施例18~23については、比較例10の結果を100として指数化した。実施例24~26については、比較例13の結果を100として指数化した。実施例27~29については、比較例14の結果を100として指数化した。実施例30については、比較例15の結果を100として指数化した。実施例32~33については、比較例16の結果を100として指数化した。
指数が小さいほど保管中のゴムベールのコールドフローが小さくハンドリング性に優れることを示す。
指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
後述する実施例及び比較例において、水添共役ジエン系重合体を調製する際に用いる水素添加触媒を、下記の方法により調製した。
攪拌装置を具備する反応容器を窒素置換しておき、これに、乾燥及び精製したシクロヘキサンを1L仕込んだ。次に、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100mmolを添加した。これを十分に攪拌しながら、トリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させた。これにより水素添加触媒(T)が得られた。
後述する実施例及び比較例において、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)若しくはジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を用いており、いずれも下記式(5)で表される化合物に基づく単量体単位である。
トリメトキシ(4-ビニルフェニル)シラン(BS-1)の構造は、下記式(5)中、R1が水素であり、R2~R3が、メチル基であり、mが、0であり、nが、3であり、lが、0であった。
また、ジメトキシメチル(4-ビニルフェニル)シラン(BS-2)の構造は、式(5)中、R1が水素であり、R2~R3が、メチル基であり、mが、1であり、nが、2であり、lが、0であった。
R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR1~R3は、各々独立している。
X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを2,220g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を15mmolとを、反応器へ入れ、反応器内温を40℃に保持した。
重合開始剤として、n-ブチルリチウムを18mmol、前記反応器に供給して重合を開始した。
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを3.0mmolを添加して共役ジエン系重合体の溶液を得た。
さらに、得られた共役ジエン系重合体の溶液に、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を1時間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は60.0%であった。
得られた水添共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、水添共役ジエン系重合体(試料B1)を得た。
試料B1を分析した結果を表1-1に示す。
測定の結果、試料B1におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有さないことがわかった。
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエン(初期ブタジエン)を1,887g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を69mmolとを、反応器へ入れ、反応器内温を42℃に保持した。
重合開始剤として、n-ブチルリチウムを92mmol、前記反応器に供給して重合を開始した。
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した際に、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)18mmol添加し、5分間攪拌した。その後、追添1,3-ブタジエン(追添ブタジエン)を333gを添加し、反応させた。最終的な反応器内の温度は75℃であった。
最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を8.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを5.7mmolを添加し共役ジエン系重合体の溶液を得た。
得られた共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、共役ジエン系重合体(試料B2)を得た。
試料B2を分析した結果を表1-1に示す。
なお、分岐化剤添加前の重合体、分岐化剤添加後の重合体、及びカップリング剤添加後の各工程における重合体について、GPC測定による分子量と、粘度計付きGPC測定による分岐度との比較により、カップリング共役ジエン系重合体の構造を同定した。以下、同様に各試料の構造を同定した。測定の結果、試料B2の構造は、分岐化剤添加後の共役ジエン系重合体は平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエン(初期ブタジエン)を1,887g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を69mmolとを、反応器へ入れ、反応器内温を42℃に保持した。
重合開始剤として、n-ブチルリチウムを92mmol、前記反応器に供給して重合を開始した。
重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した際に、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)18mmol添加し、5分間攪拌した。その後、追添1,3-ブタジエン(追添ブタジエン)を333gを添加し、反応させた。最終的な反応器内の温度は75℃であった。
最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を8.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを5.7mmolを添加し共役ジエン系重合体の溶液を得た。
得られた共役ジエン系重合体の溶液に、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を30分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は20.0%であった。
得られた水添共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、水添共役ジエン系重合体(試料B3)を得た。試料B3の水素添加率は20%であった。
試料B3を分析した結果を表1-1に示す。
測定の結果、試料B3における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
水素添加反応(水添反応)における水素積算流量を調整した点以外は、比較例3と同じ操作により、水添共役ジエン系重合体(試料B4、試料B5、試料B6)を得た。試料B4、試料B5、試料B6の水素添加率は順に63.0%、92.0%、99.5%であった。
試料B4、試料B5、試料B6を分析した結果を表1-1に示す。
測定の結果、試料B4、B5及びB6における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を19mmol、重合開始剤としてn-ブチルリチウムを24mmol、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.3mmol、反応停止剤としてメタノールを5.3mmolに変えた点以外は比較例1と同様にして、水添共役ジエン系重合体(試料B8)を得た。試料B8の水素添加率は96%であった。
試料B8を分析した結果を表1-1に示す。
測定の結果、試料B8におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.0mmol、及び四塩化ケイ素(化合物3)を4.0mmol、に変え、水添反応における水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B9)を得た。試料B9の水素添加率は65%であった。
試料B9を分析した結果を表1-1に示す。
測定の結果、試料B9における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を反応器中のモノマーコンバージョンが60%の際に18mmol添加し、さらに分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を反応器中のモノマーコンバージョンが98%の際に7.4mmol添加し、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)の代わりに変性剤として1,3-ジメチル-2-イミダゾリジノン(化合物4)を9.8mmol、反応停止剤としてメタノールを5.3mmolに変え、水添反応における水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B10)を得た。試料B10の水素添加率は65%であった。
試料B10を分析した結果を表1-1に示す。
測定の結果、試料B10の構造について、2回目の分岐化剤添加後の共役ジエン系重合体は平均5.2分岐の星形高分子構造を有し、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
初期ブタジエンを2,700g、スチレンを300g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を4.8mmol、重合開始剤として、n-ブチルリチウムを22mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を7.3mmol、反応停止剤としてメタノールを3.3mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B11)を得た。試料B11の水素添加率は60%であった。
試料B11を分析した結果を表1-2に示す。
測定の結果、試料B11におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを2,295g、スチレンを300g、追添ブタジエンを405g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を21mmol、重合開始剤として、n-ブチルリチウムを110mmol、分岐化剤としてジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を35mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を5.9mmol、反応停止剤としてメタノールを8.6mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B12、試料B13、試料B14)を得た。試料B12、試料B13、試料B14の水素添加率は順に60.0%、88.0%、93.0%であった。
試料B12、試料B13、試料B14を分析した結果を表1-2に示す。
測定の結果、試料B12、B13及びB14におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.0分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
初期ブタジエンを1,950g、スチレンを1,050g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を2.1mmol、重合開始剤として、n-ブチルリチウムを19mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.3mmol、反応停止剤としてメタノールを2.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B15)を得た。試料B15の水素添加率は50%であった。
試料B15を分析した結果を表1-3に示す。
測定の結果、試料B15におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを1,560g、スチレンを1,050g、追添ブタジエンを390g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を12mmol、重合開始剤として、n-ブチルリチウムを146mmol、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を30mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を7.2mmol、反応停止剤としてメタノールを0mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B16、試料B17、試料B18)を得た。試料B16、試料B17、試料B18の水素添加率は順に39.0%、64.0%、95.0%であった。
試料B16、試料B17、試料B18を分析した結果を表1-3に示す。
測定の結果、試料B16、B17及びB18におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
初期ブタジエンを2,220g、スチレンを780g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を5.5mmol、重合開始剤として、n-ブチルリチウムを19mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.3mmol、反応停止剤としてメタノールを2.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B19)を得た。試料B19の水素添加率は70%であった。
試料B19を分析した結果を表1-4に示す。
測定の結果、試料B19におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを3,000g、スチレンを0g、極性物質として、2,2-ビス(2-オキソラニル)プロパン(BOP)を4.3mmol、重合開始剤として、n-ブチルリチウムを21mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.9mmol、反応停止剤としてメタノールを3.2mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B23)を得た。試料B23の水素添加率は60%であった。
試料B23を分析した結果を表1-5に示す。
測定の結果、試料B23におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを3,000g、スチレンを0g、極性物質として、2,2-ビス(2-オキソラニル)プロパン(BOP)を6.8mmol、重合開始剤として、n-ブチルリチウムを45mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を4.5mmol、反応停止剤としてメタノールを6.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B24、試料B25、試料B26)を得た。試料B24、試料B25、試料B26の水素添加率は、それぞれ、順に60%、75%、94%であった。
試料B24、試料B25、試料B26を分析した結果を表1-5に示す。
測定の結果、試料B24、B25、B26におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを1,887g、スチレンを780g、追添ブタジエンを333g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を72mmol、重合開始剤として、n-ブチルリチウムを98mmol、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を22.6mmol、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.9mmol、反応停止剤としてメタノールを3.7mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B27)を得た。試料B27の水素添加率は71.0%であった。
試料B27を分析した結果を表1-5に示す。
測定の結果、試料B27におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
BS-1:トリメトキシ(4-ビニルフェニル)シラン
BS-2:ジメトキシメチル(4-ビニルフェニル)シラン
化合物1:N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン
化合物2:2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン
化合物3:四塩化ケイ素
化合物4:1,3-ジメチル-2-イミダゾリジノン
化合物5:N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン
表1-1~1-5に示す、試料B1~B6、B8~B19、B23~B26、B27を原料ゴム成分として、以下に示す配合条件Cに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
・共役ジエン系重合体若しくは水添共役ジエン系重合体(試料B1~B6、B8~B19、B23~B26、B27):100質量部
各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):25.0質量部
・亜鉛華:2.5質量部
・ステアリン酸:1.0質量部
・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
・硫黄:2.2質量部
・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:222.4質量部
上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料B1~B6、B8~B19、B23~B26、B27)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物(共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物)を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。
応用比較例1~4、応用比較例6~9、応用実施例1~2、応用実施例4~11、応用実施例15~17、応用実施例33の結果については表2-1~2-5に示す。
応用比較例5の結果については表3に示す。
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。応用比較例5の結果については、後述する配合条件Dの応用比較例10の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。応用比較例5の結果については、後述する配合条件Dの応用比較例10の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では基準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表2-1~2-5及び表3に示す。
表1-1に示す、試料B8を原料ゴム成分として、以下に示す配合条件Dに従い、原料ゴム成分を含有するゴム組成物を得た。
・共役ジエン系重合体若しくは水添共役ジエン系重合体(試料B8):100質量部
各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):15.0質量部
・亜鉛華:2.5質量部
・ステアリン酸:1.0質量部
・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
・硫黄:2.2質量部
・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:212.4質量部
上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料B8)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。その結果を表3に示す。
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
配合条件Dにおける応用比較例10の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(破断強度及び破断伸び、破壊特性)
JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
配合条件Dにおける応用比較例10の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
(比較例10)水添共役ジエン系重合体組成物(試料C1)
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
予め水分除去した、1,3-ブタジエン(初期ブタジエン)を17.7g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.034mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.122mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。
次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.041mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.019mmol/分の速度で添加した。
得られた共役ジエン系重合体溶液を別の反応器に移し、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を30分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は50.0%であった。
次に、得られた水添共役ジエン系重合体の溶液に酸化防止剤(BHT)を重合体100gあたり0.2gとなるように連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、水添共役ジエン系重合体組成物(試料C1)を得た。
試料C1の物性を表4-1に示す。
測定の結果、試料C1におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
予め水分除去した、1,3-ブタジエン(初期ブタジエン)を14.2g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.215mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。重合が十分に安定したところで、1,3-ブタジエンとスチレンとを共重合しながら、2基目の反応基の底部より、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.032mmol/分の速度で添加し、主鎖分岐構造を有する共役ジエン系重合体を得る重合反応及び分岐化反応を行った。
次に、2基目反応器の中間部より、予め水分除去した1,3-ブタジエン(追添ブタジエン)を3.5g/分の条件で追加添加し、さらに重合反応を行った。
次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.013mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.018mmol/分の速度で添加した後、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、共役ジエン系重合体組成物(試料C2)を得た。
試料C2の物性を表4-1に示す。
なお、分岐化剤添加前の重合体、分岐化剤添加後の重合体、及びカップリング剤添加後の各工程における重合体について、GPC測定による分子量と、粘度計付きGPC測定による分岐度との比較により、共役ジエン系重合体の構造を同定した。以下、同様に各試料の構造を同定した。測定の結果、試料C2における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
予め水分除去した、1,3-ブタジエン(初期ブタジエン)を14.2g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.215mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。重合が十分に安定したところで、1,3-ブタジエンとスチレンとを共重合しながら、2基目の反応基の底部より、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.032mmol/分の速度で添加し、主鎖分岐構造を有する共役ジエン系重合体を得る重合反応及び分岐化反応を行った。
次に、2基目反応器の中間部より、予め水分除去した1,3-ブタジエン(追添ブタジエン)を3.5g/分の条件で追加添加し、さらに重合反応を行った。
次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.013mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.018mmol/分の速度で添加して共役ジエン系重合体の溶液を得た。
得られた共役ジエン系重合体の溶液を別の反応器に移し、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を20分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は20.0%であった。
次に、得られた水添共役ジエン系重合体の溶液に酸化防止剤(BHT)を重合体100gあたり0.2gとなるように連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、水添共役ジエン系重合体組成物(試料C3)を得た。
試料C3の物性を表4-1に示す。
測定の結果、試料C3における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C4、試料C5、試料C6)を得た。(試料C4、試料C5、試料C6の水添共役ジエン系重合体における水素添加率は順に55.0%、87.0%、93.0%であった。
試料C4、試料C5、試料C6を分析した結果を表4-1に示す。
測定の結果、試料C4、C5及びC6における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.163mmol/分、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.033mmol/分、カップリング剤として、3-(4-メチルピペラジン-1-イル)プロピルトリエトキシシラン(化合物6)を0.011mmol/分、反応停止剤としてメタノールを0.016mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C7、試料C8、試料C9)を得た。試料C7、試料C8、試料C9の水添共役ジエン系重合体における水素添加率は順に50.0%、84.0%、93.0%であった。
試料C7、試料C8、試料C9を分析した結果を表4-1に示す。
測定の結果、試料C7、C8及びC9における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均1つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
初期ブタジエンを21.5g/分、スチレンを7.2g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.036mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.130mmol/分、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.044mmol/分、反応停止剤としてメタノールを0.02mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C10)を得た。試料C10の水添共役ジエン系重合体における水素添加率は50.0%であった。
試料C10を分析した結果を表4-2に示す。
測定の結果、試料C10におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.2g/分、スチレンを7.2g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.051mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.170mmol/分、分岐化剤としてジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を0.041mmol/分、追添ブタジエンを4.3g/分、カップリング剤として、3,3'-(ピペラジン-1,4-ジ-イル)ビス(N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミン)(化合物7)を0.012mmol/分、反応停止剤としてメタノールを0.016mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C11、試料C12、試料C13)を得た。試料C11、試料C12、試料C13の水添共役ジエン系重合体における水素添加率は順に50.0%、82.0%、95.0%であった。
試料C11、試料C12、試料C13を分析した結果を表4-2に示す。
測定の結果、試料C11、C12及びC13における分岐化剤添加後の共役ジエン系重合体の構造は、平均3分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3.8つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
初期ブタジエンを17.2g/分、スチレンを11.5g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.054mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.120mmol/分、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.041mmol/分、反応停止剤としてメタノールを0.018mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C14)を得た。試料C14の水添共役ジエン系重合体における水素添加率は60%であった。
試料C14を分析した結果を表4-3に示す。
測定の結果、試料C14におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.2g/分、スチレンを11.5g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.067mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.159mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.017mmol/分、反応停止剤としてメタノールを0.024mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C15、試料C16、試料C17)を得た。試料C15、試料C16、試料C17の水添共役ジエン系重合体における水素添加率は順に60.0%、82.0%、93.0%であった。
試料C15、試料C16、試料C17を分析した結果を表4-3に示す。
測定の結果、試料C15、C16及びC17におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.098mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.242mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.030mmol/分、反応停止剤としてメタノールを0.044mmol/分に変え、水素添加触媒(T)を添加せず、水添反応を実施しなかった点以外は、比較例10と同じ操作により、共役ジエン系重合体組成物(試料C18)を得た。
試料C18を分析した結果を表4-4に示す。
測定の結果、試料C18におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.098mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.242mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.030mmol/分、反応停止剤としてメタノールを0.044mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C19)を得た。試料C19の水添共役ジエン系重合体における水素添加率は80%であった。
試料C19を分析した結果を表4-4に示す。
測定の結果、試料C19におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.018mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.121mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.012mmol/分、反応停止剤としてメタノールを0.025mmol/分に変え、水素添加触媒(T)を共役ジエン系重合体100質量部当たり、Ti基準で100ppm添加した点以外は、比較例10と同じ操作を実施した。水素添加反応途中で粘度が非常に高くなったために、水素添加反応が進行せず、途中で反応停止させ、共役ジエン系重合体組成物(試料C20)を得た。
試料C20を分析した結果を表4-4に示す。
測定の結果、試料C20におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.018mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.121mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.012mmol/分、反応停止剤としてメタノールを0.025mmol/分に変え、水素添加触媒(T)を共役ジエン系重合体100質量部当たり、Ti基準で200ppm添加し、さらにシクロヘキサン中の共重合体濃度が12質量%になるようシクロヘキサンを添加した点以外は、比較例10と同じ操作を実施した。水素添加反応途中で粘度が非常に高くなったために、水素添加反応が進行せず、途中で反応停止させ、共役ジエン系重合体組成物(試料C21)を得た。
試料C21を分析した結果を表4-4に示す。
測定の結果、試料C21におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
初期ブタジエンを14.3g/分、スチレンを9.8g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.027mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.194mmol/分、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.048mmol/分、追添ブタジエンを4.3g/分、カップリング剤として、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を0.010mmol/分、反応停止剤としてメタノールを0.010mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添反応は問題なく進行し、水添共役ジエン系重合体組成物(試料C22)を得た。試料C22の水添共役ジエン系重合体における水素添加率は50%であった。
試料C22を分析した結果を表4-4に示す。
測定の結果、試料C22における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3.6つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
BS-1:トリメトキシ(4-ビニルフェニル)シラン
BS-2:ジメトキシメチル(4-ビニルフェニル)シラン
化合物1:N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン
化合物5:N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン
化合物6:3-(4-メチルピペラジン-1-イル)プロピルトリエトキシシラン
化合物7:3,3'-(ピペラジン-1,4-ジ-イル)ビス(N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミン)
表4-1~4-4に示す、試料C1~C19、C20~C22を原料ゴム成分として、以下に示す配合条件Eに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
・共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物(試料C1~C19、C20~C22):100質量部(ゴム用軟化剤抜きの質量部)
各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」
窒素吸着比表面積170m2/g):50.0質量部
・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」
窒素吸着比表面積220m2/g):25.0質量部
・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」)
:5.0質量部
・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部(予め、試料C1~C19中に含まれるゴム用軟化剤として添加した量を含む)
・亜鉛華:2.5質量部
・ステアリン酸:1.0質量部
・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
・硫黄:2.2質量部
・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:234.9質量部
上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料C1~C19、C20~C22)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。
応用比較例11~15、応用実施例19~30、応用比較例19及び応用実施例34、35については、結果を表5-1~5-3に示す。
応用比較例16及び応用実施例31については、その結果を表6に示す。
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
応用比較例12、13及び応用実施例19~24については、比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
応用比較例12、13及び応用実施例19~24については、応用比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び、並びに破壊特性が良好であることを示す。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
応用比較例12、13及び応用実施例19~24については、応用比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表5-1~5-3及び表6に示す。
表4-3に示す、試料C18、C19を原料ゴム成分として、以下に示す配合条件Fに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
・共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物(試料C18、C19):100質量部(ゴム用軟化剤抜きの質量部)
各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):27.5質量部(予め、試料C18、C19中に含まれるゴム用軟化剤として添加した量を含む)
・亜鉛華:2.5質量部
・ステアリン酸:1.0質量部
・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
・硫黄:2.2質量部
・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:224.9質量部
上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料C18、C19)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。その結果を表6に示す。
上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びの測定値の積を破壊特性とした。
配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。
指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表5-1~5-3及び表6に示す。
表7-1及び表7-2に示す原料ゴム成分及び配合条件G-1~G13に従い、前述の配合条件Cと同様の混練り方法でそれぞれの原料ゴム成分を含有するゴム組成物を得た。
さらには、前述の加硫前後のゴム組成物の評価方法と同様の方法で、配合物ムーニー粘度、破断強度、破断伸び、破壊特性、及び省燃費性能を測定した。
応用実施例36~46の結果については、応用比較例20の結果を100として指数化した。応用実施例47の結果については、応用比較例21の結果を100として指数化した。応用実施例48の結果については、応用比較例22の結果を100として指数化した。応用実施例49~52の結果については、応用比較例23の結果を100として指数化した。応用実施例53、54の結果については、応用比較例24の結果を100として指数化した。
評価結果を表8-1及び表8-2に示す。
・シリカ4:ソルベイジャパン(株)製の115GR(N2SA:115m2/g)
・シリカ5:エボニックデグッサ社製の9000GR(N2SA:235m2/g)
・カーボンブラック2:三菱化学(株)製のダイアブラックN339(N2SA:96m2/g、DBP吸収量:124mL/100g)
・カーボンブラック3:キャボットジャパン(株)製のショウブラックN330(N2SA:75m2/g)
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
・軟化剤1:出光興産(株)製のダイアナプロセスAH-24(アロマオイル)
・軟化剤2:アリゾナケミカル社製のSYLVARES SA85(αメチルスチレン系樹脂(α-メチルスチレンとスチレンとの共重合体)、軟化点:85℃)
・軟化剤3:サートマー社製のRICON100(液状SBR、スチレン含量:20質量%、ビニル含量:70質量%、重量平均分子量:4500)
・軟化剤4:Rutgers Chemicals社製のNOVARES C100(クマロンインデン樹脂、軟化点:95~105℃)
・軟化剤5:DRT社製のDercolyte L120(ポリリモネン樹脂、軟化点:120℃)
・軟化剤6:KRATON 社製のsylvatraxx 4150(ポリテルペン樹脂、軟化点:150℃)
・シランカップリング剤2:エボニックデグッサ社製のSi266
・シランカップリング剤3:エボニックデグッサ社製のSi69
・シランカップリング剤4:エボニックデグッサ社製のSi363
・老化防止剤:N-(1,3-ジメチルブチル)-N‘-フェニル-p-フェニレンジアミン
・ワックス:日本精蝋(株)製のオゾエース0355
・加硫促進剤1:N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド
・加硫促進剤2:ジフェニルグアニジン
Claims (19)
- 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率が30%以上99%未満である、水添共役ジエン系重合体。
- GPCによる重量平均分子量が21万以上300万未満である、請求項1に記載の水添共役ジエン系重合体。
- 芳香族ビニル単量体を3質量%以上60質量%未満含む、請求項1乃至4のいずれか一項に記載の水添共役ジエン系重合体。
- 変性率が60質量%以上である、請求項1乃至5のいずれか一項に記載の水添共役ジエン系重合体水添共役ジエン系重合体。
- 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8.0以上である、請求項1乃至6のいずれか一項に記載の水添共役ジエン系重合体水添共役ジエン系重合体。
- 3分岐以上の星形高分子構造を有し、
少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、
当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、請求項1乃至7のいずれか一項に記載の水添共役ジエン系重合体。 - 前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であり、
下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされている、請求項8に記載の水添共役ジエン系重合体。
R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
複数存在する場合のR1~R3は、各々独立している。
X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
複数存在する場合のR2~R5は、各々独立している。
X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。) - 前記式(5)中、R1が水素原子であり、m=0である、前記式(5)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
- 前記式(6)中、m=0であり、b=0である、前記式(6)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
- 前記式(5)中、R1が水素原子であり、m=0であり、l=0であり、n=3である、前記式(5)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
- 前記式(6)中、m=0であり、l=0であり、n=3であり、a=0であり、b=0であり、c=3である、前記式(6)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
- 分子量が30万以下の成分(成分LM)が20%以上80%以下である、請求項1乃至13のいずれか一項に記載の水添共役ジエン系重合体。
- 水素添加率が50%以上75%以下である、請求項1乃至14のいずれか一項に記載の水添共役ジエン系重合体。
- 下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、
工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である、水添共役ジエン系重合体の製造方法;
工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して、共役ジエン系重合体を得る工程、
工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程、
工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程、
工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程。 - 前記工程(D)を含む、請求項16に記載の水添共役ジエン系重合体の製造方法。
- 請求項1乃至15のいずれか一項に記載の水添共役ジエン系重合体100質量部と、ゴム用軟化剤1~60質量部とを、含有する、水添共役ジエン系重合体組成物。
- ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤と、を含み、
前記ゴム成分は、当該ゴム成分の総量100質量部に対して、請求項1乃至15のいずれか一項に記載の水添共役ジエン系重合体、若しくは請求項18に記載の水添共役ジエン系重合体組成物を10質量部以上含む、ゴム組成物。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022514072A JP7381725B2 (ja) | 2020-04-06 | 2021-04-05 | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 |
KR1020227029598A KR20220134596A (ko) | 2020-04-06 | 2021-04-05 | 수소 첨가 공액 디엔계 중합체, 수소 첨가 공액 디엔계 중합체 조성물, 및 고무 조성물 그리고 수소 첨가 공액 디엔계 중합체의 제조 방법 |
EP21785487.6A EP4134382A4 (en) | 2020-04-06 | 2021-04-05 | HYDROGENATED CONJUGATED DIENE POLYMER, HYDROGENATED CONJUGATED DIENE POLYMER COMPOSITION, RUBBER COMPOSITION, AND METHOD FOR PRODUCING HYDROGENATED CONJUGATED DIENE POLYMER |
US17/913,414 US20230138073A1 (en) | 2020-04-06 | 2021-04-05 | Hydrogenated Conjugated Diene-Based Polymer, Hydrogenated Conjugated Diene-Based Polymer Composition, Rubber Composition, and Method for Producing Hydrogenated Conjugated Diene-Based Polymer |
CN202180022272.XA CN115298225A (zh) | 2020-04-06 | 2021-04-05 | 氢化共轭二烯系聚合物、氢化共轭二烯系聚合物组合物和橡胶组合物以及氢化共轭二烯系聚合物的制造方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-068489 | 2020-04-06 | ||
JP2020-068479 | 2020-04-06 | ||
JP2020068479 | 2020-04-06 | ||
JP2020068489 | 2020-04-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021206068A1 true WO2021206068A1 (ja) | 2021-10-14 |
Family
ID=78023487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/014550 WO2021206068A1 (ja) | 2020-04-06 | 2021-04-05 | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20230138073A1 (ja) |
EP (1) | EP4134382A4 (ja) |
JP (1) | JP7381725B2 (ja) |
KR (1) | KR20220134596A (ja) |
CN (1) | CN115298225A (ja) |
WO (1) | WO2021206068A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065509A1 (ja) * | 2020-09-28 | 2022-03-31 | 旭化成株式会社 | ベール成形体 |
WO2022163152A1 (ja) * | 2021-01-28 | 2022-08-04 | 旭化成株式会社 | ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド |
WO2024034673A1 (ja) * | 2022-08-12 | 2024-02-15 | 旭化成株式会社 | 共役ジエン系重合体、成形体、共役ジエン系重合体の製造方法、ゴム組成物、及びタイヤ |
WO2024090556A1 (ja) * | 2022-10-28 | 2024-05-02 | 株式会社Eneosマテリアル | 重合体組成物及びタイヤ |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114669294A (zh) * | 2022-04-13 | 2022-06-28 | 宏业生物科技股份有限公司 | 2,2-二(2-呋喃基)丙烷加氢制2,2-二(2-四氢呋喃基)丙烷的复合催化剂 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPH11189616A (ja) | 1997-12-26 | 1999-07-13 | Bridgestone Corp | 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物 |
JP2003171418A (ja) | 2001-09-27 | 2003-06-20 | Jsr Corp | 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
JP2011089086A (ja) * | 2009-10-26 | 2011-05-06 | Sumitomo Rubber Ind Ltd | 変性共重合体およびそれを用いたゴム組成物 |
JP2013100449A (ja) * | 2011-10-17 | 2013-05-23 | Sumitomo Rubber Ind Ltd | タイヤ用ゴム組成物及び空気入りタイヤ |
WO2018034194A1 (ja) * | 2016-08-19 | 2018-02-22 | 旭化成株式会社 | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ |
JP2019183101A (ja) * | 2018-10-04 | 2019-10-24 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及びタイヤ |
JP2020068489A (ja) | 2018-10-25 | 2020-04-30 | 住友電気工業株式会社 | 伝送路構造 |
JP2020068479A (ja) | 2018-10-25 | 2020-04-30 | 株式会社デンソー | 半導体スイッチング素子駆動回路 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI20070626A1 (it) * | 2007-03-29 | 2008-09-30 | Polimeri Europa Spa | Mescola vulcanizzabile comprendente copolineri ramificati vinilarene-diene coniugato parzialmente idrogenati |
WO2009060931A1 (ja) * | 2007-11-08 | 2009-05-14 | Jsr Corporation | 水添共役ジエン系(共)重合ゴム及びその製造方法 |
SG11201901330XA (en) * | 2016-08-19 | 2019-03-28 | Asahi Chemical Ind | Modified conjugated diene-based polymer, production method thereof, rubber composition and tire |
CN112979876B (zh) * | 2019-12-12 | 2023-09-08 | 旭化成株式会社 | 支化共轭二烯系聚合物及其制造方法、橡胶组合物的制造方法以及轮胎的制造方法 |
-
2021
- 2021-04-05 WO PCT/JP2021/014550 patent/WO2021206068A1/ja active Application Filing
- 2021-04-05 CN CN202180022272.XA patent/CN115298225A/zh active Pending
- 2021-04-05 EP EP21785487.6A patent/EP4134382A4/en active Pending
- 2021-04-05 JP JP2022514072A patent/JP7381725B2/ja active Active
- 2021-04-05 US US17/913,414 patent/US20230138073A1/en active Pending
- 2021-04-05 KR KR1020227029598A patent/KR20220134596A/ko not_active Application Discontinuation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59140211A (ja) | 1983-02-01 | 1984-08-11 | Nippon Erasutomaa Kk | スチレン−ブタジエン共重合体の製造方法 |
JPH11189616A (ja) | 1997-12-26 | 1999-07-13 | Bridgestone Corp | 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物 |
JP2003171418A (ja) | 2001-09-27 | 2003-06-20 | Jsr Corp | 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ |
JP2005290355A (ja) | 2004-03-11 | 2005-10-20 | Sumitomo Chemical Co Ltd | 変性ジエン系重合体ゴム及びその製造方法 |
JP2011089086A (ja) * | 2009-10-26 | 2011-05-06 | Sumitomo Rubber Ind Ltd | 変性共重合体およびそれを用いたゴム組成物 |
JP2013100449A (ja) * | 2011-10-17 | 2013-05-23 | Sumitomo Rubber Ind Ltd | タイヤ用ゴム組成物及び空気入りタイヤ |
WO2018034194A1 (ja) * | 2016-08-19 | 2018-02-22 | 旭化成株式会社 | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ |
JP2019183101A (ja) * | 2018-10-04 | 2019-10-24 | 住友ゴム工業株式会社 | タイヤ用ゴム組成物及びタイヤ |
JP2020068489A (ja) | 2018-10-25 | 2020-04-30 | 住友電気工業株式会社 | 伝送路構造 |
JP2020068479A (ja) | 2018-10-25 | 2020-04-30 | 株式会社デンソー | 半導体スイッチング素子駆動回路 |
Non-Patent Citations (3)
Title |
---|
I. M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429 |
R. R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923 |
TANAKA ET AL., POLYMER, vol. 22, 1981, pages 1721 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022065509A1 (ja) * | 2020-09-28 | 2022-03-31 | 旭化成株式会社 | ベール成形体 |
WO2022163152A1 (ja) * | 2021-01-28 | 2022-08-04 | 旭化成株式会社 | ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド |
JP7525666B2 (ja) | 2021-01-28 | 2024-07-30 | 旭化成株式会社 | ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド |
WO2024034673A1 (ja) * | 2022-08-12 | 2024-02-15 | 旭化成株式会社 | 共役ジエン系重合体、成形体、共役ジエン系重合体の製造方法、ゴム組成物、及びタイヤ |
WO2024090556A1 (ja) * | 2022-10-28 | 2024-05-02 | 株式会社Eneosマテリアル | 重合体組成物及びタイヤ |
Also Published As
Publication number | Publication date |
---|---|
JP7381725B2 (ja) | 2023-11-15 |
US20230138073A1 (en) | 2023-05-04 |
CN115298225A (zh) | 2022-11-04 |
EP4134382A4 (en) | 2023-09-27 |
EP4134382A1 (en) | 2023-02-15 |
JPWO2021206068A1 (ja) | 2021-10-14 |
KR20220134596A (ko) | 2022-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6796903B2 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ | |
JP6830103B2 (ja) | 変性共役ジエン系重合体、ゴム組成物、及びタイヤ | |
JP5911524B2 (ja) | 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP6777454B2 (ja) | 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ | |
JP5127521B2 (ja) | 変性共役ジエン系重合体及びその製造方法、並びに重合体組成物 | |
JP7381725B2 (ja) | 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 | |
JP6769780B2 (ja) | 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ | |
JP6836851B2 (ja) | 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ | |
JP6516462B2 (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP6864160B2 (ja) | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ | |
JP2016079217A (ja) | 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物 | |
JP7315686B2 (ja) | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。 | |
WO2021024811A1 (ja) | 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ | |
JP7539250B2 (ja) | 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ。 | |
WO2021201289A1 (ja) | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物 | |
CN113372630A (zh) | 共轭二烯系聚合物组合物以及轮胎 | |
JP2019131723A (ja) | 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ | |
KR102527631B1 (ko) | 공액 디엔계 중합체 및 그의 제조 방법, 그리고 고무 조성물 | |
JP2021165370A (ja) | 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物 | |
JP2015214619A (ja) | ゴム組成物 | |
JP7356881B2 (ja) | 共役ジエン系重合体組成物、及びタイヤ | |
JP2022083763A (ja) | 共重合体、共重合体組成物、及びゴム組成物 | |
WO2022163152A1 (ja) | ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21785487 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227029598 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022514072 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202217050761 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021785487 Country of ref document: EP Effective date: 20221107 |