Nothing Special   »   [go: up one dir, main page]

WO2021206068A1 - 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 - Google Patents

水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 Download PDF

Info

Publication number
WO2021206068A1
WO2021206068A1 PCT/JP2021/014550 JP2021014550W WO2021206068A1 WO 2021206068 A1 WO2021206068 A1 WO 2021206068A1 JP 2021014550 W JP2021014550 W JP 2021014550W WO 2021206068 A1 WO2021206068 A1 WO 2021206068A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugated diene
polymer
hydrogenated conjugated
diene polymer
mass
Prior art date
Application number
PCT/JP2021/014550
Other languages
English (en)
French (fr)
Inventor
敦 安本
謙太 久村
章友 菊地
知宏 近藤
荒木 祥文
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2022514072A priority Critical patent/JP7381725B2/ja
Priority to KR1020227029598A priority patent/KR20220134596A/ko
Priority to EP21785487.6A priority patent/EP4134382A4/en
Priority to US17/913,414 priority patent/US20230138073A1/en
Priority to CN202180022272.XA priority patent/CN115298225A/zh
Publication of WO2021206068A1 publication Critical patent/WO2021206068A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/02Hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/28Reaction with compounds containing carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a hydrogenated conjugated diene polymer, a hydrogenated conjugated diene polymer composition, a rubber composition, and a method for producing a hydrogenated conjugated diene polymer.
  • the rubber material used for the tire tread is required to have a small rolling resistance, that is, a material having a low hysteresis loss property.
  • Examples of the rubber material that meets the above-mentioned requirements include a rubber composition containing a rubber-like polymer and a reinforcing filler such as carbon black and silica.
  • a rubber composition containing silica By using a rubber composition containing silica, it is possible to improve the balance between low hysteresis loss (an index of fuel efficiency) and wet skid resistance. Further, by introducing a functional group having affinity or reactivity with silica into the molecular terminal portion of the highly motility rubber-like polymer, the dispersibility of silica in the rubber material is improved, and further, silica By binding to the particles, the motility of the molecular end of the rubber-like polymer can be reduced, and the hysteresis loss can be reduced.
  • Patent Documents 1 to 3 propose a composition of a modified conjugated diene polymer obtained by reacting alkoxysilanes containing an amino group with the active terminal of the conjugated diene polymer and silica.
  • silica has a hydrophilic surface with respect to carbon black having a hydrophobic surface, it has a low affinity with a conjugated diene polymer, so that it is compared with carbon black. It has the disadvantage of poor dispersibility in the composition. Therefore, the composition containing silica needs to separately contain a silane modifier or the like in order to impart a bond between the silica and the conjugated diene polymer and improve the dispersibility in the composition.
  • the reaction with silica particles proceeds during the kneading step, which causes the viscosity of the composition to increase.
  • the processability tends to be deteriorated, such as difficulty in kneading, rough skin when forming a sheet after kneading, and easy occurrence of sheet breakage.
  • composition when such a composition is used as a vulcanized product, particularly when it is used as a vulcanized product containing an inorganic filler such as silica, it has a balance between wear resistance, low hysteresis loss property and wet skid resistance. Is not enough.
  • the viscosity of the conjugated diene polymer increases due to hydrogenation, so the viscosity of the composition increases significantly depending on the molecular weight, branched structure, and modification of the hydrogenated conjugated diene polymer.
  • the workability to deteriorate, such as rising and becoming difficult to knead, rough skin when forming a sheet after kneading, and easy sheet breakage.
  • the rubber veil will flow during storage at room temperature, causing a phenomenon called cold flow in which the shape collapses. The handleability when using it deteriorates.
  • the hydrogenation conjugate is extremely excellent in workability when it is made into a vulcanized product while suppressing the cold flow of the rubber bale, and is excellent in breaking strength, breaking elongation and breaking characteristics when it is made into a vulcanized product.
  • An object of the present invention is to provide a diene-based polymer, a vulcanized-conjugated diene-based polymer composition, and a rubber composition.
  • a vulcanized diene polymer having a specific range of branching degree (Bn) and hydrogenation rate is a cold flow of a rubber veil.
  • the present invention has been completed by finding that it is extremely excellent in processability when it is made into a vulcanized product, and is excellent in breaking strength, breaking elongation and breaking characteristics when it is made into a vulcanized product.
  • the present invention relates to the following.
  • Hydrogenation conjugate in which the degree of branching (Bn) by the GPC-light scattering measurement method with a viscosity detector is 2.5 or more, and the hydrogenation rate of the structural unit derived from the conjugated diene compound is 30% or more and less than 99%.
  • Diene-based polymer Diene-based polymer.
  • [8] It has a star-shaped polymer structure with three or more branches, and has a star-shaped polymer structure. At least one branched chain having a star-shaped structure has a portion derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group.
  • the portion derived from the vinyl-based monomer containing an alkoxysilyl group or a halosilyl group is a monomer unit based on the compound represented by the following formula (5) or (6). It has a branch point of the polymer chain by the monomer unit based on the compound represented by the following formula (5) or (6).
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof. When there are a plurality of them, R 1 to R 3 are independent of each other.
  • X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3. (M + n + l) indicates 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 to X 3 each independently represent a halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • the degree of branching (Bn) by the GPC-light scattering measurement method with a viscosity detector is 2.5 or more, and the structural unit derived from the conjugated diene compound.
  • the rubber component is the hydrogenated conjugated diene polymer according to any one of [1] to [15] or the hydrogenated conjugated diene system according to [18] with respect to 100 parts by mass of the total amount of the rubber component.
  • the cold flow of the rubber bale can be suppressed, the vulcanized product has extremely excellent processability, and the vulcanized product has particularly excellent breaking strength, breaking elongation, and breaking characteristics.
  • a vulcanized conjugated diene-based polymer having a vulcanization is obtained.
  • the present embodiment will be described in detail.
  • the following embodiments are examples for explaining the present invention, and the present invention is not limited to the following embodiments.
  • the present invention can be appropriately modified and carried out within the scope of the gist thereof.
  • the hydrogenated conjugated diene polymer of the present embodiment has a degree of branching (hereinafter, also referred to as “Bn”) of 2.5 or more by GPC (gel permeation chromatography) -light scattering measurement method with a viscosity detector.
  • Bn degree of branching
  • GPC gel permeation chromatography
  • the hydrogenation rate of the structural unit derived from the conjugated diene compound (hereinafter, also simply referred to as “hydrogenation rate”) is 30 to 99%.
  • the hydrogenated conjugated diene polymer in which the hydrogenation rate and the degree of branching (Bn) are specified can suppress the cold flow of the rubber veil, is extremely excellent in processability when made into a vulcanized product, and is a vulcanized product.
  • Excellent breaking characteristics such as breaking strength and breaking elongation.
  • the amount of 1,2-vinyl bond and the amount of aromatic vinyl compound in the conjugated diene bonding unit are arbitrary.
  • the processability when making a vulcanized product is extremely excellent, and when the vulcanized product is made into a vulcanized product, the glass transition of the hydrogenated conjugated diene polymer is in a state where the breaking characteristics such as breaking strength and breaking elongation are improved.
  • the temperature (hereinafter, also referred to as “Tg”) can be arbitrarily adjusted.
  • the amount of 1,2-vinyl bond and the amount of aromatic vinyl compound in the conjugated diene bond unit low, the Tg of the conjugated diene polymer is reduced, and the abrasion resistance when made into a vulcanized product is reduced. There is a tendency to obtain a rubber composition having improved performance and breaking strength and further excellent low hysteresis loss property.
  • the Tg of the conjugated diene-based polymer becomes high, and the processing performance when making a vulcanized product is improved. There is a tendency to improve and obtain a rubber composition having further excellent wet skid resistance.
  • the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from the conjugated diene compound (hereinafter, also referred to as “conjugated diene monomer”).
  • conjugated diene compound are not particularly limited, but for example, 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3- Examples include pentadiene, 1,3-hexadiene, and 1,3-heptadiene.
  • 1,3-butadiene and isoprene are preferable, and 1,3 butadiene is particularly preferable, from the viewpoint of easy industrial availability. These may be used alone or in combination of two or more.
  • the hydrogenated conjugated diene-based polymer of the present embodiment preferably contains a structural unit derived from an aromatic vinyl compound (hereinafter, also referred to as “aromatic vinyl monomer”). Even when the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from an aromatic vinyl compound, the hydrogenated portion is a portion derived from the conjugated diene compound. It is preferable that the portion derived from the aromatic vinyl compound is not hydrogenated.
  • the aromatic vinyl compound include, but are not limited to, styrene, p-methylstyrene, ⁇ -methylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, and diphenylethylene. Among these, styrene is preferable from the viewpoint of easy industrial availability. These may be used alone or in combination of two or more.
  • the hydrogenated conjugated diene-based polymer of the present embodiment is a hydrogenated additive of a copolymer of a conjugated diene compound and an aromatic vinyl compound (hereinafter, also referred to as “conjugated diene-aromatic vinyl copolymer”). Is preferable.
  • the content of the aromatic vinyl monomer is It is preferably 0 to 60% by mass, more preferably 3 to 60% by mass, still more preferably 5 to 40% by mass, and the amount of 1,2 vinyl bonds in the conjugated diene bonding unit in the conjugated diene-based polymer.
  • the ratio (1,2-vinyl bond amount) is preferably 15 to 70 mol%, more preferably 22 to 65 mol%, and further preferably 24 to 60 mol%.
  • the degree of branching includes the amount of the polymerization initiator added, the type (functional number) and amount of the branching agent, the type of coupling agent (functional number) and the amount added. It is controlled by the amount (type) of softener for rubber added, and is less affected by the microstructure. Therefore, it can be appropriately designed within the range of a general microstructure.
  • the content of the aromatic vinyl monomer and the amount of 1,2-vinyl bond affect the Tg of the hydrogenated conjugated diene polymer, and therefore, from the viewpoint of fuel saving performance and braking performance, the above range. It is preferable to set to.
  • the content of the aromatic vinyl monomer can be measured using 1 1 H-NMR. Specifically, the measurement is performed according to the method described in Examples described later.
  • the conjugated diene-based polymer is a copolymer of butadiene and styrene, it is contained in the butadiene bonding unit by the Hampton method (RR Hampton, Analytical Chemistry, 21,923 (1949)).
  • the vinyl bond amount (1,2-vinyl bond amount) can be determined.
  • the hydrogenated conjugated diene polymer of the present embodiment is a hydrogenated additive of a conjugated diene-aromatic vinyl copolymer
  • the number of blocks in which 30 or more aromatic vinyl monomers are linked is small? Or none is preferable.
  • the copolymer is a butadiene-styrene copolymer
  • the method of Kolthoff method described in IM KOLTHOFF, et al., J. Polym. Sci. 1,429 (1946)
  • a known method of decomposing a copolymer by It is 9.0% by mass or less, more preferably 5.0% by mass or less.
  • the hydrogenated conjugated diene polymer of the present embodiment is a hydrogenated additive of a conjugated diene-aromatic vinyl copolymer
  • the proportion of the aromatic vinyl monomer alone is present from the viewpoint of improving fuel saving performance. The larger the number, the better.
  • the copolymer when the copolymer is a butadiene-styrene copolymer, the copolymer is decomposed by a method by ozone decomposition known as the method of Tanaka et al. (Polymer, 22, 1721 (1981)).
  • the styrene chain distribution was analyzed by GPC, the amount of isolated styrene was 40% by mass or more and the number of chained styrene structures having 8 or more styrene chains was 5.0% by mass or less with respect to the total amount of bound styrene. Is preferable.
  • the obtained vulcanized rubber has a particularly low hysteresis loss, which is preferable.
  • the hydrogenated conjugated diene polymer of the present embodiment is obtained by hydrogenating (hydrogenating) the conjugated diene polymer described later.
  • the method for hydrogenating the conjugated diene portion of the conjugated diene-based polymer is not particularly limited, and a known method can be used.
  • a suitable hydrogenation method for example, a method of hydrogenating by blowing gaseous hydrogen into the polymer solution in the presence of a catalyst can be mentioned.
  • the catalyst is not particularly limited, and for example, a heterogeneous catalyst such as a catalyst in which a noble metal is supported on a porous inorganic substance; a catalyst in which salts such as nickel and cobalt are solubilized and reacted with organic aluminum and the like, titanosen and the like.
  • a heterogeneous catalyst such as a catalyst using the metallocene of the above can be mentioned.
  • the titanocene catalyst is preferable from the viewpoint that mild hydrogenation conditions can be selected.
  • the hydrogenation reaction may be either a batch process or a continuous process, or a combination thereof.
  • the hydrogenation rate of the hydrogenated conjugated diene polymer of the present embodiment is 30% or more and less than 99%, and 30% or more and less than 96%. Is more preferable, 30% or more and less than 93% is more preferable, 30% or more and less than 90% is further preferable, and 32% or more and less than 90% is particularly preferable.
  • the hydrogenated conjugated diene polymer of the present embodiment is excellent in terms of breaking strength and breaking elongation when made into a vulcanized product when the hydrogenation rate of the structural unit derived from the conjugated diene compound is 30% or more.
  • the hydrogenation rate of the hydrogenated conjugated diene polymer of the present embodiment is preferably 80% or less, more preferably 75% or less, further preferably less than 75%, and less than 72% from the viewpoint of fuel economy performance. Is particularly preferable. From the viewpoint of strength such as breaking strength and breaking elongation, the hydrogenation rate is preferably 39% or more, preferably 40% or more, more preferably 45% or more, further preferably 50% or more, and particularly preferably 55% or more. ..
  • the hydrogenation rate is in the range of 39 to 80%, the butylene chain generated by hydrogenation reduces the loss elastic modulus, and the increase in loss modulus due to the ethylene chain can be suppressed, so that the strength is maintained well.
  • the hydrogenated conjugated diene polymer blended in the tire has various required functions in relation to other components blended in the tire, and the molecular weight, hydrogenation rate, and microstructure are designed according to the required performance. do it.
  • the hydrogenation rate is preferably 65% or more, more preferably 70% or more, further preferably 75% or more, and even more preferably 80%. The above is particularly preferable.
  • the hydrogenation rate when it is higher than 85%, it may be difficult to achieve the desired fuel efficiency performance depending on the composition of other materials constituting the tire. Therefore, from the viewpoint of designing a balance between fuel efficiency and strength, it is preferable to set the hydrogenation rate to 39 to 80%. Further, when the hydrogenation rate is higher than 75%, the viscosity may increase and the workability may deteriorate. Therefore, when it is desired to increase the hydrogenation rate to more than 75%, the weight average molecular weight is preferably 1.2 million or less, more preferably 1 million or less, and 800,000 or less from the viewpoint of viscosity and processability. It is more preferable, and it is particularly preferable that it is 600,000 or less.
  • the amount of aromatic vinyl should be 15% by mass or more from the viewpoint of suppressing the increase in viscosity due to the formation of crystal components, or, or the above formula (1).
  • the total content of the structures represented by the formula (2) is preferably 35 mol% or more.
  • a resin component having a high glass transition temperature may be blended as a composition for improving strength such as breaking strength and breaking elongation.
  • a resin component having a high Tg and a hydrogenated conjugated diene polymer having a high hydrogenation rate are a preferable combination from the viewpoint of strength. Preferred examples of the resin component will be described later.
  • the hydrogenation rate can be controlled by the amount of hydrogen added to the structural unit derived from the conjugated diene compound, the pressure of hydrogen, the reaction time, the amount of hydrogenation catalyst added, and the viscosity of the solution.
  • the temperature of the hydrogenation reaction is not particularly limited, but is preferably 60 to 105 ° C, more preferably 70 to 100 ° C.
  • the hydrogenation rate can be measured by 1 1 H-NMR, which will be described later in Examples.
  • the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from a conjugated diene compound, and is a structural unit represented by the following formula (1), a structural unit represented by the following formula (2), and a following formula.
  • the constituent ratios (mol%) of the structural unit represented by (3) and the structural unit represented by the following formula (4) are a, b, c, and d, respectively, the following mathematical formula (S) is used. It is preferable to satisfy.
  • the structural unit represented by the formula (4) includes a 1,4 trans bond and a 1,4 cis bond.
  • the above formula (S) represents the weight ratio of the 1,2-vinyl bond and the hydrogenated 1,2-vinyl bond in the hydrogenated conjugated diene-based polymer.
  • the hydrogenated conjugated diene polymer of the present embodiment has an excellent balance of workability, fuel saving performance, and wet grip performance when the above formula (S) is within the above range.
  • the ratio of a, b, c, and d can be controlled by the type and amount of polar substance added, the polymerization temperature, and the amount of hydrogen to be reacted when the conjugated diene polymer before hydrogenation is polymerized.
  • the hydrogenation rate is controlled to be 40% or more and 80% or less, it is preferable that the content of 1,2 vinyl bonds is small from the viewpoint of heat resistance.
  • the composition ratio of a is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
  • the hydrogenated conjugated diene polymer of the present embodiment contains a structural unit derived from the conjugated diene compound, and is composed of a structural unit represented by the formula (1) and a structural unit represented by the formula (2).
  • a structural unit represented by the formula (1) a structural unit represented by the formula (1)
  • a structural unit represented by the formula (2) a structural unit represented by the formula (2).
  • the above formula (T) represents the hydrogenation rate of the structure derived from the 1,2-vinyl bond, and the value approaches 100 as the 1,2-vinyl bond is hydrogenated.
  • the hydrogenated conjugated diene polymer of the present embodiment tends to have excellent heat resistance when the above formula (T) is 90 or more.
  • the ratio of a and b can be controlled by the type of hydrogenation catalyst, the hydrogenation reaction temperature, and the amount of hydrogen to be reacted.
  • the ratios of a, b, c, and d can be measured by the method described in Examples described later.
  • the hydrogenated conjugated diene polymer of the present embodiment has a degree of branching (Bn) by a GPC-light scattering method with a viscosity detector from the viewpoint of suppressing cold flow of the rubber bale and processability (hereinafter, simply "degree of branching (hereinafter,” branching degree (Bn)).
  • Bn) is 2.5 or more, preferably 3.0 or more, more preferably 4.0 or more, further preferably 6.0 or more, and further preferably 6.4 or more. It is preferably 8.0 or more, more preferably 14.0 or more, and particularly preferably 14.0 or more.
  • the hydrogenated conjugated diene polymer of the present embodiment preferably has a higher degree of branching (Bn) as the molecular weight increases, and a higher degree of branching as the hydrogenation rate increases. Is preferable.
  • Bn branching
  • the solution viscosity and melt viscosity decreased due to hydrogenation of 1,2 vinyl bonds at the initial stage of the hydrogenation reaction, but 1,2 vinyl bonds were hydrogenated. After that, when 1,4 bonds are hydrogenated, the solution viscosity and melt viscosity increase.
  • a high degree of branching (Bn) is preferable in that the viscosity tends to be suppressed.
  • the degree of bifurcation (Bn) is 6 or more, the processability required for preparing the composition tends to be ensured even when the hydrogenation rate exceeds 75%.
  • the degree of bifurcation (Bn) is 6 or more, the processability required for preparing the composition tends to be ensured even when the hydrogenation rate exceeds 75%.
  • the problem of viscosity increase is unlikely to occur, so it is not necessary to make high branching from the viewpoint of manufacturing.
  • the hydrogenated conjugated diene polymer of the present embodiment has a higher side chain than the substantially longest polymer main chain. It means that there are two or more molecular chains.
  • a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight.
  • the contraction factor (g') is an index of the ratio of the size occupied by the molecule to the linear polymer having the same absolute molecular weight. That is, as the degree of branching of the polymer increases, the contraction factor (g') tends to decrease.
  • M is an absolute molecular weight.
  • the contraction factor expresses the rate of decrease in the size of the molecule, and does not accurately represent the branched structure of the polymer.
  • the degree of branching (Bn) of the hydrogenated conjugated diene polymer is calculated using the value of the shrinkage factor (g') at each absolute molecular weight of the hydrogenated conjugated diene polymer.
  • the calculated "branch degree (Bn)" accurately represents the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure.
  • the calculated degree of bifurcation (Bn) is an index expressing the bifurcation structure of the hydrogenated conjugated diene polymer.
  • the hydrogenated conjugated diene polymer of the present embodiment has a branching degree (Bn) of 2.5 or more, but in such a case, the star-shaped polymer structure is the same as the star-shaped polymer structure branched by an average of 4.5. It means that it is a hydrogenated conjugated diene-based polymer having a branch.
  • the "branch” is formed by directly or indirectly bonding one polymer with another polymer.
  • the “degree of branching (Bn)” is the number of polymers directly or indirectly bonded to each other with respect to the longest main chain structure.
  • the hydrogenated conjugated diene polymer of the present embodiment can suppress the cold flow of the rubber veil, and the processability (handleability) when making a vulcanized product can be improved. It is extremely excellent and has excellent breaking strength and breaking elongation when made into a vulcanized product.
  • the hydrogenated conjugated diene polymer of the present embodiment preferably has a branching degree (Bn) of 3.0 or more, more preferably 4.0 or more, and 6.0 or more. It is more preferably 6.4 or more, further preferably 8.0 or more, and particularly preferably 14.0 or more.
  • the upper limit of the degree of branching (Bn) is not particularly limited and may be at least the detection limit, but is preferably 84 or less, more preferably 80 or less, and further preferably 64 or less. Even more preferably, it is 57 or less.
  • the hydrogenated conjugated diene polymer of the present embodiment tends to be excellent in breaking strength and breaking elongation when it is made into a vulcanized product because the degree of branching (Bn) is 84 or less.
  • the silica is sufficiently dispersed in the polymer in the kneading step. I can't. As a result, the function of the introduced functional group is not exhibited, and the effect of improving the low hysteresis loss property and the wet skid resistance due to the introduction of the functional group, which should be originally expected, is not exhibited.
  • the hydrogenated conjugated diene polymer of the present embodiment is specified to have a branching degree (Bn) of 2.5 or more, so that the viscosity of the vulcanized product increases with the increase in absolute molecular weight. Is significantly suppressed, for example, it is estimated that the mixture is sufficiently mixed with silica or the like in the kneading step, and the silica can be dispersed around the hydrogenated conjugated diene polymer.
  • Bn branching degree
  • the absolute molecular weight of the hydrogenated conjugated diene polymer of the present embodiment is preferably 25 ⁇ 10 4 or more and 3000 ⁇ 10 4 or less from the viewpoint of breaking strength, breaking elongation, and moldability of the rubber bale during production, and is preferably 26 ⁇ It is more preferably 10 4 or more and 2500 ⁇ 10 4 or less, and further preferably 28 ⁇ 10 4 or more and 2000 ⁇ 10 4 or less.
  • the weight average molecular weight of the hydrogenated conjugated diene polymer of the present embodiment is preferably 210,000 or more and less than 3 million, preferably 220,000 or more and less than 2.5 million, from the viewpoint of moldability and processability of the rubber bale during production. Is more preferable, and more preferably 230,000 or more and less than 2.3 million.
  • the method of controlling the weight average molecular weight within the above range is not particularly limited, and examples thereof include a method of adjusting the amount of the polymerization initiator used.
  • the weight average molecular weight of the hydrogenated conjugated diene polymer of the present embodiment can be measured by the method described in Examples.
  • the hydrogenated conjugated diene polymer of the present embodiment contains 20% or more and 80% or less of components having a molecular weight of 300,000 or less (hereinafter, also referred to as “component LM”) from the viewpoint of processability, productivity and breaking strength. It is preferably 20% or more and 75% or less, and more preferably 21% or more and 70% or less.
  • component LM components having a molecular weight of 300,000 or less
  • the method of controlling the ratio of the component LM within the above range is not particularly limited, and examples thereof include adjusting the amount of the polymerization initiator used and adjusting the amount of the coupling agent used.
  • the ratio of the component LM of the hydrogenated conjugated diene polymer of the present embodiment can be measured by the method described in Examples.
  • the Mooney viscosity of the hydrogenated conjugated diene polymer of the present embodiment using an L-shaped rotor at 100 ° C. is 120 or less from the viewpoint of suppressing a decrease in yield due to powder formation in the drying step during production. It is preferably 110 or less, more preferably 100 or less, and particularly preferably 90 or less. From the viewpoint of tensile strength, the Mooney viscosity is preferably 30 or more, more preferably 40 or more, and even more preferably 50 or more.
  • the method for controlling the Mooney viscosity using the L-shaped rotor at 100 ° C. within the above range is not particularly limited, but for example, the amount of the polymerization initiator used, the type and amount of the branching agent used, and the type of coupling agent. And how to adjust the amount used. Even with the same Mooney viscosity, the higher the degree of bifurcation, the higher the molecular weight, which is preferable.
  • the Mooney viscosity of the hydrogenated conjugated diene polymer of the present embodiment using an L-shaped rotor at 100 ° C. can be measured by the method described in Examples.
  • the degree of branching (Bn) of the hydrogenated conjugated diene polymer can be controlled to 2.5 or more by combining the amount of the branching agent added and the amount of the terminal coupling agent added, which will be described later.
  • the degree of branching is controlled by the number of functional groups of the branching agent, the amount of the branching agent added, the timing of addition of the branching agent, the functional number of the coupling agent or the nitrogen atom-containing denaturing agent, and the coupling. It can be controlled by the amount of the agent or the denaturing agent containing a nitrogen atom. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
  • the conjugated diene polymer obtained through the polymerization and branching steps is subjected to a trifunctional or higher reaction with a branching agent with respect to the active terminal of the conjugated diene polymer.
  • a conjugated diene-based polymer obtained by performing a coupling reaction using a sex compound (hereinafter, also referred to as “coupling agent”) is preferable.
  • one end of the active end of the conjugated diene polymer is subjected to a coupling reaction with a coupling agent or a coupling agent having a nitrogen atom-containing group to obtain a conjugated diene polymer. More specifically, it will be described in the method for producing a conjugated diene polymer described later.
  • the coupling agent used in the coupling step may have any structure as long as it is a trifunctional or higher-functional reactive compound, but a trifunctional or higher-functional reactive compound having a silicon atom is preferable. .. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
  • the hydrogenated conjugated diene polymer of the present embodiment preferably contains a nitrogen atom.
  • the hydrogenated conjugated diene-based polymer containing a nitrogen atom can be obtained, for example, by performing a coupling reaction using the modifier having a nitrogen atom-containing group described below.
  • the conjugated diene polymer obtained through the polymerization and branching steps is subjected to a trifunctional or higher functional nitrogen atom-containing group with respect to the active terminal of the conjugated diene polymer.
  • a conjugated diene-based polymer obtained by performing a coupling reaction using a reactive compound having hereinafter, also referred to as “modifier having a nitrogen atom-containing group” is more preferable.
  • one end of the active end of the conjugated diene polymer is subjected to a coupling reaction with a coupling agent having a nitrogen atom-containing group to obtain a conjugated diene polymer.
  • the conjugated diene polymer coupled with a modifier having a nitrogen atom-containing group has good dispersibility of silica when prepared as a composition containing a filler or the like, and is a composition containing the filler or the like.
  • the workability is good, and when the composition is a vulcanized product, the abrasion resistance and the fracture strength are good, and the balance between the low hysteresis loss property and the wet skid resistance tends to be dramatically improved. More specifically, it will be described in the method for producing a hydrogenated conjugated diene polymer described later.
  • the modifier having a nitrogen atom-containing group is not limited to the following, but is, for example, an isocyanato compound, an isothiocyanate compound, an isocyanuric acid derivative, a nitrogen group-containing carbonyl compound, a nitrogen group-containing vinyl compound, and a nitrogen group-containing modifier.
  • examples include epoxy compounds.
  • the modifier having a nitrogen atom-containing group is preferably an amine compound having a nitrogen atom-containing functional group, and the nitrogen atom-containing functional group is preferably an amine compound having no active hydrogen, for example, a tertiary amine compound.
  • the nitrogen atom-containing functional group is preferably an amine compound having no active hydrogen, for example, a tertiary amine compound.
  • the "modification rate” is the mass ratio of the conjugated diene polymer or the hydrogenated conjugated diene polymer having a nitrogen atom-containing functional group to the total amount of the conjugated diene polymer or the hydrogenated conjugated diene polymer. Represents.
  • the mass ratio of the conjugated diene polymer having a nitrogen atom-containing functional group by the nitrogen atom-containing modifier to the total amount of the conjugated diene polymer is modified. Expressed as a rate.
  • the produced conjugated diene-based polymer has a nitrogen atom-containing functional group, so that the branched polymer also has a modification rate. It will be counted at the time of calculation.
  • At least one end is modified with a nitrogen atom-containing group, so that the composition can be processed into a composition containing a filler or the like, and the composition is a vulcanized product.
  • the balance between low hysteresis loss and wet skid resistance tends to improve dramatically while maintaining the wear resistance and fracture strength at the time.
  • the hydrogenated conjugated diene polymer of the present embodiment has a total amount of hydrogenated conjugated diene polymer from the viewpoint of processability, abrasion resistance, breaking strength, and balance between low hysteresis loss property and wet skid resistance.
  • the modification rate measured by the column adsorption GPC method (hereinafter, also simply referred to as “modification rate”) is preferably 40% by mass or more.
  • the modification rate is preferably 60% by mass or more, more preferably 65% by mass or more, still more preferably 70% by mass or more, still more preferably 80% by mass or more.
  • the upper limit of the modification rate is not particularly limited, but is, for example, 99% by mass.
  • the modification rate can be measured by chromatography capable of separating the functional group-containing modified component and the non-modified component.
  • the modification rate is the adsorption of a sample solution containing a sample and a low molecular weight internal standard polystyrene to a silica column from the difference between a chromatogram measured by a polystyrene gel column and a chromatogram measured by a silica column. Obtained by measuring the amount.
  • the denaturation rate can be measured by the method described in Examples.
  • the modification rate can be controlled by adjusting the addition amount of the modifier and the reaction method, whereby the modification rate can be controlled to 40% by mass or more.
  • a method of polymerizing using an organic lithium compound having at least one nitrogen atom in the molecule described later as a polymerization initiator a method of copolymerizing a monomer having at least one nitrogen atom in the molecule, which will be described later.
  • the above modification rate can be obtained by combining methods using a modifier having a structural formula and controlling the polymerization conditions.
  • star-shaped polymer structure refers to a structure in which a plurality of polymer chains (arms) are bonded from one central branch point.
  • one central branching point referred to here has a substituent containing an atom derived from a coupling agent or a nitrogen atom derived from a denaturing agent.
  • the "main chain branched structure" referred to in the present specification means that a branched point is formed at a portion where the polymer chain is derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, and the polymer chain is further formed from the branched point.
  • the hydrogenated conjugated diene polymer of the present embodiment is preferably a main chain composed of a moiety derived from a vinyl monomer containing an alkoxysilyl group or a halosilyl group from the viewpoint of improving the degree of branching (Bn).
  • the number of branch points is 3 or more, and the branch structure derived from the star-shaped polymer structure formed by the coupling agent in the reaction step is preferably 3 or more, more preferably 4 or more. It is more preferable that there are 8 branches or more.
  • the degree of branching (Bn) increases in both the case of modification with a coupling agent having a star-shaped structure and the case of introducing a branching agent into the polymer, but the entire polymer chain is branched by the coupling agent. The more it is made, the greater the contribution to the degree of branching (Bn).
  • the degree of branching (Bn) can be controlled by selecting the coupling agent, selecting the type of the branching agent, and setting the amount, but the degree of branching (Bn) is also taken into consideration in consideration of the contribution rate. ) Is easy to control.
  • the main chain branch structure has two or more branch points at a branch point derived from a vinyl-based monomer containing an alkoxysilyl group or a halosilyl group, preferably three or more branch points, and preferably four or more branch points. Is more preferable.
  • branch point forming the main chain branch structure preferably has at least two or more polymer chains, and more preferably has three or more polymer chains that are not the main chain.
  • the range is in the range of -45 ppm to -65 ppm, and more specifically, from -50 ppm.
  • a peak derived from the main chain branched structure is detected in the range of -60 ppm.
  • the hydrogenated conjugated diene polymer of the present embodiment preferably has a star-shaped polymer structure, preferably has three or more branches derived from the star-shaped polymer structure, and preferably has four or more branches. More preferably, it is more preferably 6 branches or more, and even more preferably 8 branches or more.
  • the upper limit of the branching derived from the star-shaped polymer structure is not particularly limited, but is, for example, 32 branches or less.
  • the hydrogenated conjugated diene polymer of the present embodiment has a star-shaped polymer structure having three or more branches, and a vinyl-based monomer having an alkoxysilyl group or a halosilyl group in a branched chain having at least one star-shaped structure. It is preferable that the moiety is derived from the above, and the moiety derived from the vinyl-based monomer containing the alkoxysilyl group or the halosilyl group has a further main chain branched structure.
  • the "star-shaped polymer structure" can be formed by adjusting the number of functional groups of the coupling agent and the amount of the coupling agent added, and the "main chain” can be formed.
  • the "branching structure” can be controlled by adjusting the number of functional groups of the branching agent, the amount of the branching agent added, and the timing of the addition of the branching agent.
  • an organic lithium-based compound is polymerized.
  • Examples thereof include a method of using as an initiator, performing polymerization, adding a branching agent that gives a specific branching point during or after the polymerization, and modifying with a modifier that gives a specific branching ratio after the polymerization is continued. ..
  • the hydrogenated conjugated diene polymer of the present embodiment is based on the compound represented by the following formula (5) or (6) in which the portion derived from the vinyl monomer containing the alkoxysilyl group or the halosilyl group described above is derived. It is preferable that the monomer unit has a branch point of the polymer chain due to the monomer unit based on the compound represented by the following formula (5) or (6), and it is obtained by using a coupling agent. It is more preferable that the hydrogenated conjugated diene polymer is coupled, and it is more preferable that at least one end of the hydrogenated conjugated diene polymer is coupled with a coupling agent. It is even more preferable that at least one end of the polymer is a hydrogenated conjugated diene polymer modified with a nitrogen atom-containing group.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof. When there are a plurality of them, R 1 to R 3 are independent of each other.
  • X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 to X 3 each independently represent a halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • a + b + c indicates 3.
  • R 1 is a hydrogen atom
  • the hydrogenated conjugated diene-based polymer has a monomer unit based on the compound represented by (5).
  • Branching agent In the hydrogenated conjugated diene polymer of the present embodiment, when constructing the main chain branching structure, a branching agent represented by the following formula (5) or formula (6) may be used as the branching agent. preferable.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents a halogen atom. When there are a plurality of X 1 , each is independent.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • R 2 to R 5 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, even if a part thereof has a branched structure. good. When there are a plurality of them, R 2 to R 5 are independent of each other.
  • X 2 to X 3 each independently represent an independent halogen atom. When there are a plurality of X 2 to X 3 , they are independent of each other.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3.
  • M + n + l) indicates 3.
  • a indicates an integer of 0 to 2
  • b indicates an integer of 0 to 3
  • c indicates an integer of 0 to 3.
  • a + b + c) indicates 3.
  • the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene-based polymer is preferably the formula (5) from the viewpoint of continuity of polymerization and improvement of branching degree.
  • the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene polymer is from the viewpoint of continuity of polymerization and improvement of modification rate and degree of branching.
  • the branching agent used when constructing the main chain branching structure of the hydrogenated conjugated diene polymer is in the above formula (6) from the viewpoint of improving the modification rate and the degree of branching.
  • the branching agent represented by the formula (5) is not limited to the following, but for example, Trimethoxy (4-vinylphenyl) silane, triethoxy (4-vinylphenyl) silane, tripropoxy (4-vinylphenyl) silane, tributoxy (4-vinylphenyl) silane, triisopropoxy (4-vinylphenyl) silane, trimethoxy ( 3-Vinylphenyl) silane, triethoxy (3-vinylphenyl) silane, tripropoxy (3-vinylphenyl) silane, tributoxy (3-vinylphenyl) silane, triisopropoxy (3-vinylphenyl) silane, trimethoxy (2-) Vinylphenyl) silane, triethoxy (2-vinylphenyl) silane, tripropoxy (2-vinylphenyl) silane, tributoxy (2-vinylphenyl) silane, triisopropoxy (2-vinyl
  • the branching agent represented by the formula (6) is not limited to the following, but for example, 1,1-bis (4-trimethoxysilylphenyl) ethylene, 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxycysilylphenyl) ethylene, 1,1- Bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene, 1,1-bis (3-trimethoxysilylphenyl) ethylene, 1,1-bis (3) -Triethoxysilylphenyl) ethylene, 1,1-bis (3-tripropoxysilylphenyl) ethylene, 1,1-bis (3-tripentoxysilylphenyl) ethylene, 1,1-bis (3-triiso) Propoxysilylphenyl) ethylene, 1,1-bis (2-trimethoxysilylphenyl) ethylene, 1,1-bis (2-triethoxys
  • 1,1-bis (4-trimethoxysilylphenyl) ethylene 1,1-bis (4-triethoxysilylphenyl) ethylene, 1,1-bis (4-tripropoxysilylphenyl) ethylene , 1,1-bis (4-tripentoxysilylphenyl) ethylene, 1,1-bis (4-triisopropoxysilylphenyl) ethylene is preferable, and 1,1-bis (4-trimethoxysilylphenyl) ethylene is preferable. More preferable.
  • the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes, for example, the following steps (A) and (E), and further includes at least one of the following steps (B) and (D).
  • the degree of branching (Bn) by the GPC-light scattering method measurement method with a viscosity detector is 2.5 or more, and the structural unit derived from the conjugated diene compound.
  • the hydrogenation rate is 30% or more and less than 99%.
  • the method for producing a hydrogenated conjugated diene polymer of the present embodiment preferably includes step (D).
  • the method for producing a hydrogenated conjugated diene polymer of the present embodiment further includes the following step (C).
  • Each step preferably includes at least one step of steps (B) to (D) after the step (A), and it is preferable that the step (E) is carried out after that.
  • the branching agent of step (B) is added during the polymerization step of step (A), that is, before the monomer is completely consumed, no further monomer is added after the branching agent has reacted.
  • step (C) because the branched chain should be extended.
  • a branching agent is added after the monomer of step (A) has been consumed, and the branching agent is further bound to the polymer chain.
  • step (C) After completion, it is a preferable embodiment that a further monomer is added as step (C) to extend the branched chain. Further, it is preferable to add conjugated diene as an additional monomer or to increase the supply ratio of conjugated diene from the viewpoint of improving the reaction rate of the coupling agent in the step (D).
  • Steps (B) to (D) may be performed only once, or may be repeated twice or more.
  • the steps (A), step (B), step (C), step (D), step (E) are in this order, or step (A), step (A), Step (D), step (E) order, step (A), step (C), step (D), step (E) order, or step (A), step (B), step (E) It is particularly preferable to carry out in order.
  • the conjugated diene compound is polymerized using the organolithium compound as a polymerization initiator in the presence of the organolithium compound.
  • the hydrogenated conjugated diene-based polymer is either a homopolymer of a single conjugated diene compound, a polymer of different types of conjugated diene compounds, that is, a copolymer, or a copolymer of a conjugated diene compound and an aromatic vinyl compound. It may be a water-added product of.
  • At least an organic monolithium compound can be used as the polymerization initiator.
  • the organic monolithium compound is not limited to the following, and examples thereof include low molecular weight compounds and solubilized oligomeric organic monolithium compounds.
  • examples of the organic monolithium compound include a compound having a carbon-lithium bond, a compound having a nitrogen-lithium bond, and a compound having a tin-lithium bond in the bonding mode of the organic group and the lithium thereof.
  • the amount of the organic monolithium compound used as the polymerization initiator is preferably determined by the molecular weight of the target conjugated diene polymer or hydrogenated conjugated diene polymer.
  • the amount of monomer used, such as a conjugated diene compound, relative to the amount of polymerization initiator used is related to the degree of polymerization. That is, it tends to be related to the number average molecular weight and / or the weight average molecular weight.
  • the organic monolithium compound is preferably an alkyllithium compound having a substituted amino group or dialkylaminolithium from the viewpoint that it is used in one method of introducing a nitrogen atom into a conjugated diene polymer.
  • a conjugated diene-based polymer having a nitrogen atom consisting of an amino group at the polymerization initiation terminal can be obtained.
  • the substituted amino group is an amino group having no active hydrogen or having a structure in which active hydrogen is protected.
  • alkyllithium compounds having an amino group without active hydrogen are not limited to, for example, 3-dimethylaminopropyllithium, 3-diethylaminopropyllithium, 4- (methylpropylamino) butyllithium, and 4 -Hexamethylene iminobutyllithium can be mentioned.
  • the alkyllithium compound having an amino group having a structure in which active hydrogen is protected is not limited to the following, and examples thereof include 3-bistrimethylsilylaminopropyllithium and 4-trimethylsilylmethylaminobutyllithium.
  • the dialkylaminolithium is not limited to the following, and includes, for example, lithium dimethylamide, lithium diethylamide, lithium dipropylamide, lithium dibutylamide, lithiumdi-n-hexylamide, lithium diheptylamide, lithium diisopropylamide, and lithium dioctylamide.
  • the organic monolithium compound having these substituted amino groups is an oligomer of organic monolithium solubilized by reacting a small amount of a polymerizable monomer such as a monomer such as 1,3-butadiene, isoprene, and styrene. It can also be used as a compound.
  • the organic monolithium compound is preferably an alkyllithium compound from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • a conjugated diene-based polymer having an alkyl group at the polymerization initiation terminal is obtained.
  • the alkyllithium compound is not limited to the following, and examples thereof include n-butyllithium, sec-butyllithium, tert-butyllithium, n-hexyllithium, benzyllithium, phenyllithium, and stillbenlithium.
  • n-butyllithium and sec-butyllithium are preferable from the viewpoint of easy industrial availability and easy control of the polymerization reaction.
  • organic monolithium compounds may be used alone or in combination of two or more. In addition, it may be used in combination with other organometallic compounds.
  • Examples of the other organometallic compound include alkaline earth metal compounds, other alkali metal compounds, and other organometallic compounds.
  • the alkaline earth metal compound is not limited to the following, and examples thereof include an organic magnesium compound, an organic calcium compound, and an organic strontium compound. Also included are compounds of alkaline earth metals alcoxide, sulfonate, carbonate, and amide.
  • organic magnesium compound examples include dibutyl magnesium and ethyl butyl magnesium.
  • organometallic compounds examples include organoaluminum compounds.
  • the polymerization reaction mode is not limited to the following, and examples thereof include a batch type (also referred to as “batch type”) and a continuous type polymerization reaction mode.
  • one or two or more connected reactors can be used.
  • a tank type or tube type reactor with a stirrer is used as the continuous reactor.
  • the monomer, the inert solvent, and the polymerization initiator are continuously fed to the reactor to obtain a polymer solution containing the polymer in the reactor, which is continuously weighted.
  • the coalesced solution is drained.
  • the batch reactor for example, a tank-type reactor with a stirrer is used.
  • the monomer, inert solvent, and polymerization initiator are fed, and if necessary, the monomer is added continuously or intermittently during the polymerization, and the polymer is added in the reactor. A polymer solution containing the mixture is obtained, and the polymer solution is discharged after the completion of the polymerization.
  • the polymer in order to obtain a conjugated diene polymer having an active terminal at a high ratio, the polymer is continuously discharged and subjected to the next reaction in a short time.
  • a continuous type is preferable.
  • the polymerization step of the conjugated diene polymer is preferably polymerized in an inert solvent.
  • the solvent is not particularly limited, and examples thereof include hydrocarbon solvents such as saturated hydrocarbons and aromatic hydrocarbons.
  • Specific hydrocarbon-based solvents are not limited to the following, but for example, aliphatic hydrocarbons such as butane, pentane, hexane, and heptane; alicyclic groups such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane.
  • Hydrocarbons examples include hydrocarbons composed of aromatic hydrocarbons such as benzene, toluene and xylene and mixtures thereof.
  • a conjugated diene-based polymer having a high concentration of active terminals tends to be obtained, and modification with a high modification rate. It is preferable because a conjugated diene-based polymer tends to be obtained.
  • a polar compound (polar substance) may be added.
  • the aromatic vinyl compound can be randomly copolymerized with the conjugated diene compound, and tends to be used as a vinylizing agent for controlling the microstructure of the conjugated diene portion. It also tends to be effective in promoting the polymerization reaction.
  • the polar compound is not limited to the following, but is not limited to, for example, tetrahydrofuran, diethyl ether, dioxane, ethylene glycol dimethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol dibutyl ether, dimethoxybenzene, 2,2-bis (2-oxolanyl).
  • Ethers such as propane; tertiary amine compounds such as tetramethylethylenediamine, dipiperidinoethane, trimethylamine, triethylamine, pyridine, quinuclidine; potassium-tert-amylate, potassium-tert-butyrate, sodium-tert-butyrate, Alkoxide alkoxide compounds such as sodium amylate; phosphine compounds such as triphenylphosphine can be used. These polar compounds may be used alone or in combination of two or more.
  • the amount of the polar compound used is not particularly limited and can be selected depending on the purpose and the like, but it is preferably 0.01 mol or more and 100 mol or less with respect to 1 mol of the polymerization initiator.
  • Such a polar compound (vinyl agent) can be used in an appropriate amount as a regulator of the microstructure of the polymer-conjugated diene moiety, depending on the desired amount of 1,2-vinyl bond.
  • Many polar compounds have a randomizing effect that is effective in the copolymerization of conjugated diene compounds and aromatic vinyl compounds at the same time, and tend to be used as an agent for adjusting the distribution of aromatic vinyl compounds and adjusting the amount of styrene block. It is in.
  • the total amount of styrene and a part of 1,3-butadiene are copolymerized.
  • a method of initiating the polymerization reaction and intermittently adding the remaining 1,3-butadiene during the copolymerization reaction may be used.
  • the polymerization temperature in the polymerization step is preferably a temperature at which living anionic polymerization proceeds, more preferably 0 ° C. or higher, and even more preferably 120 ° C. or lower, from the viewpoint of productivity. Within such a range, the amount of reaction of the denaturant to the active terminal after the completion of polymerization tends to be sufficiently secured. Even more preferably, it is 50 ° C. or higher and 100 ° C. or lower.
  • the step (B) in the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes a step of adding the above-mentioned branching agent.
  • the amount of the branching agent added in the branching step is not particularly limited, but can be selected depending on the purpose and the like, but is 0.03 mol or more and 0.5 mol or less with respect to 1 mol of the polymerization initiator. It is more preferable, it is more preferably 0.05 mol or more and 0.4 mol or less, and further preferably 0.01 mol or more and 0.25 mol or less.
  • the timing of adding the branching agent is preferably 50% or more, more preferably 80% or more, and 90% or more of the monomer conversion in the reactor from the viewpoint of enhancing the reproducibility of polymerization. More preferred.
  • the conjugated diene compound alone may be added, or the conjugated diene compound and the aromatic vinyl compound may be added.
  • the ratio of the amount of the monomer component added in the step (A) to the monomer component in the step (C) (step (A): step (C)) is not particularly limited, but may be 99: 1 to 5:95. It is preferably 95: 5 to 30:70, more preferably 95: 5 to 60:40.
  • the amount of the monomer to be added is within the above range, the molecular weight between the branching point due to the branching agent and the branching point due to the coupling agent becomes long, and it tends to be easy to obtain a highly linear molecular structure.
  • the entanglement of the molecular chains of the hydrogenated conjugated diene polymer increases when it is made into a vulcanized product, and the rubber composition has excellent wear resistance, steering stability and fracture strength. It tends to be easy to obtain things.
  • the step (D) in the method for producing a hydrogenated conjugated diene polymer of the present embodiment includes a step of adding a coupling agent containing the above-mentioned modifier.
  • the amount of the coupling agent added is not particularly limited, but is preferably selected according to the intended purpose, and is 0.01 mol or more and 0.5 mol or less with respect to 1 mol of the active terminal of the conjugated diene polymer. It is more preferably 0.03 mol or more and 0.4 mol or less, and further preferably 0.05 mol or more and 0.25 mol or less.
  • the timing of adding the coupling agent is preferably 50% or more, more preferably 90% or more, and 95% or more of the monomer conversion in the reactor from the viewpoint of enhancing the reproducibility of polymerization. More preferred.
  • the hydrogenation reaction is carried out by the method described in the above-mentioned hydrogenation reaction.
  • the hydrogenated conjugated diene-based polymer of the present embodiment is not particularly limited, and may be a polymer of a conjugated diene compound (monomer) and a branching agent, a conjugated diene compound, a branching agent, and other than these. It may be a copolymer with a monomer.
  • the conjugated diene compound is butadiene or isoprene and this is polymerized with a branching agent containing a vinyl aromatic moiety
  • the polymerized chain is so-called polybutadiene or polyisoprene
  • the branched portion contains a structure derived from a vinyl aromatic moiety. It becomes a polymer.
  • the hydrogenated conjugated diene polymer of the present embodiment is suitable for applications such as tires, resin modifications, automobile interior and exterior parts, anti-vibration rubber, and footwear.
  • a deactivating agent, a neutralizing agent, or the like may be added to the polymer solution after the coupling step, if necessary.
  • the deactivating agent is not limited to the following, and examples thereof include water; alcohols such as methanol, ethanol, and isopropanol.
  • the neutralizing agent is not limited to the following, but for example, carboxylic acids such as stearic acid, oleic acid, and versatic acid (a mixture of carboxylic acids having 9 to 11 carbon atoms and mainly 10 branches).
  • Acid An aqueous solution of an inorganic acid, carbonic acid gas, and the like.
  • a stabilizer for rubber from the viewpoint of preventing gel formation after polymerization and improving the stability during processing.
  • the stabilizer for rubber is not limited to the following, and known ones can be used.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • N-Octadecyl-3- (4'-hydroxy-3', 5'-di-tert-butylphenol) propinate, 2-methyl-4,6-bis [(octylthio) methyl] phenol and other antioxidants are preferred. ..
  • a softening agent for rubber may be added in order to further improve the productivity of the hydrogenated conjugated diene polymer of the present embodiment and the processability of the composition containing a filler or the like. can.
  • the hydrogenated conjugated diene polymer composition of the present embodiment preferably contains 100 parts by mass of the above-mentioned conjugated diene polymer and 1 to 60 parts by mass of a softening agent for rubber.
  • the content of the softening agent for rubber is more preferably 5 to 50 parts by mass with respect to 100 parts by mass of the above-mentioned conjugated diene polymer. It is more preferably 10 to 37.5 parts by mass.
  • the softening agent for rubber is not particularly limited, and examples thereof include spreading oil, liquid rubber, and resin.
  • the method of adding the softening agent for rubber to the hydrogenated conjugated diene polymer is not limited to the following, but the softening agent for rubber is added to the hydrogenated conjugated diene polymer solution and mixed to soften the rubber.
  • a method of desolving a polymer solution containing an agent is preferable.
  • Preferred spreading oils include, for example, aroma oil, naphthenic oil, paraffin oil and the like.
  • an aroma substitute oil having a polycyclic aromatic (PCA) component of 3% by mass or less according to the IP346 method is preferable from the viewpoint of environmental safety, prevention of oil bleeding, and wet grip characteristics.
  • the aroma substitute oil include TDAE (Treatd Distillate Aromatic Extracts) shown in Kautschuk Kunststoffe 52 (12) 799 (1999), MES (Mild Extraction Plastic), and RA.
  • Preferred liquid rubber is not limited to the following, and examples thereof include liquid polybutadiene, liquid styrene-butazine rubber and the like.
  • the crow transition temperature of the composition is set to a low temperature side. Being able to shift tends to improve wear resistance, low hysteresis loss, and low temperature characteristics when made into a vulcanized product.
  • Preferred resins are not limited to the following, but are, for example, aromatic petroleum resins, kumaron-inden resins, terpenic resins, rosin derivatives (including tung oil resins), tall oils, tall oil derivatives, and rosin ester resins.
  • Natural and synthetic terpene resins aliphatic hydrocarbon resins, aromatic hydrocarbon resins, mixed aliphatic-aromatic hydrocarbon resins, coumarin-indene resins, phenolic resins, p-tert-butylphenol-acetylene resins, phenol-formaldehyde Resins, xylene-formaldehyde resins, monoolefin oligomers, diolefin oligomers, aromatic hydrocarbon resins, aromatic petroleum resins, hydride aromatic hydrocarbon resins, cyclic aliphatic hydrocarbon resins, hydride hydrocarbon resins , Hydrocarbon resin, hydride tung oil resin, hydride oil resin, ester of hydride oil resin and monofunctional or polyfunctional alcohol and the like. These resins may be used alone or in combination of two or more. When hydrogenating, all unsaturated groups may be hydrogenated or some may be left.
  • the fracture strength when a vulcanized product is improved.
  • the crow transition temperature of the composition can be shifted to the high temperature side, so that the wet skid resistance tends to be improved.
  • the amount of extendable oil, liquid rubber, resin, or the like added as the softening agent for rubber is not particularly limited, but is preferably 1 part by mass or more and 60 parts by mass with respect to 100 parts by mass of the hydrogenated conjugated diene polymer of the present embodiment. Parts or less, more preferably 5 parts by mass or more and 50 parts by mass or less, still more preferably 10 parts by mass or more and 37.5 parts by mass or less.
  • solvent removal step In the method for producing a hydrogenated conjugated diene polymer of the present embodiment, a known method can be used as a method for obtaining the obtained hydrogenated conjugated diene polymer from the polymer solution.
  • the method is not particularly limited, but for example, after separating the solvent by steam stripping or the like, the polymer is filtered off, and further dehydrated and dried to obtain the polymer, concentrated in a flushing tank, and then concentrated. Further, a method of devolatile with a vent extruder or the like and a method of directly devolatile with a drum dryer or the like can be mentioned.
  • the rubber composition of the present embodiment contains a rubber component and a filler of 5.0 parts by mass or more and 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber component is the above-mentioned hydrogenated conjugated diene polymer or the above-mentioned water with respect to the total amount (100 parts by mass) of the rubber component. It contains 10 parts by mass or more of a hydrogenated conjugated diene polymer composition.
  • the filler preferably contains a silica-based inorganic filler.
  • the rubber composition of the present embodiment tends to be more excellent in processability when it is made into a vulcanized product by dispersing a silica-based inorganic filler, and has abrasion resistance, breaking strength, and breaking strength when it is made into a vulcanized product. It tends to be superior due to the balance between low hysteresis loss and wet skid resistance.
  • the rubber composition of the present embodiment is used for automobile parts such as tires and anti-vibration rubbers and vulcanized rubber applications such as shoes, it is preferable to contain a silica-based inorganic filler.
  • rubber-like polymer other than the above-mentioned hydrogenated conjugated diene-based polymer (hereinafter, simply referred to as “rubber-like polymer”) is combined with the above-mentioned hydrogenated conjugated diene-based polymer.
  • rubber-like polymer is combined with the above-mentioned hydrogenated conjugated diene-based polymer.
  • Such rubber-like polymers are not limited to the following, but for example, a conjugated diene polymer or a hydrogenated product thereof, a random copolymer of a conjugated diene compound and a vinyl aromatic compound, or a hydrogenated product thereof.
  • examples thereof include block copolymers of conjugated diene compounds and vinyl aromatic compounds or hydrogenated products thereof, non-diene polymers, and natural rubbers.
  • Specific rubber-like polymers are not limited to the following, but for example, butadiene rubber or its hydrogen additive, isoprene rubber or its hydrogen additive, styrene-butadiene rubber or its hydrogen additive, styrene-butadiene block.
  • examples thereof include a copolymer or a hydrogenated product thereof, a styrene-based elastomer such as a styrene-isoprene block copolymer or a hydrogenated product thereof, an acrylonitrile-butadiene rubber or a hydrogenated product thereof.
  • the non-diene polymer is not limited to the following, but is, for example, an olefin-based polymer such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene-butene rubber, ethylene-hexene rubber, and ethylene-octene rubber.
  • Elastomer, butyl rubber, brominated butyl rubber, acrylic rubber, fluororubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber, and polysulfide rubber Can be mentioned.
  • the natural rubber is not limited to the following, and examples thereof include smoked sheets RSS3 to 5, SMR, and epoxidized natural rubber.
  • the various rubber-like polymers described above may be modified rubbers to which functional groups having polarities such as hydroxyl groups and amino groups are added.
  • functional groups having polarities such as hydroxyl groups and amino groups are added.
  • butadiene rubber, isoprene rubber, styrene-butadiene rubber, natural rubber, and butyl rubber are preferably used.
  • the weight average molecular weight of the rubber-like polymer is preferably 2000 or more and 20000,000 or less, and more preferably 5000 or more and 1500,000 or less, from the viewpoint of the balance between performance and processing characteristics. Further, a rubber-like polymer having a low molecular weight, so-called liquid rubber, can also be used. These rubber-like polymers may be used alone or in combination of two or more.
  • the content ratio of the above-mentioned hydrogenated conjugated diene polymer to the rubber-like polymer is used.
  • the (mass ratio) of (the above-mentioned hydrogenated conjugated diene polymer / rubbery polymer) is preferably 10/90 or more and 100/0 or less, more preferably 20/80 or more and 90/10 or less, and 50/50. More than 80/20 or less is more preferable.
  • the rubber component preferably contains the above-mentioned hydrogenated conjugated diene polymer in an amount of 10 parts by mass or more and 100 parts by mass or less, and more preferably 20 parts by mass or more, based on the total amount (100 parts by mass) of the rubber component. It contains 90 parts by mass or less, more preferably 50 parts by mass or more and 80 parts by mass or less.
  • the content ratio of (the above-mentioned hydrogenated conjugated diene polymer / rubber-like polymer) is within the above range, it is excellent in wear resistance and fracture strength when made into a vulcanized product, and has low hysteresis loss and wet skid resistance. The balance with sex also tends to be satisfied.
  • the filler contained in the rubber composition of the present embodiment is not limited to the following, and examples thereof include silica-based inorganic filler, carbon black, metal oxide, and metal hydroxide. Among these, silica-based inorganic fillers are preferable.
  • the filler may be used alone or in combination of two or more.
  • the content of the filler in the rubber composition of the present embodiment is 5.0 parts by mass or more and 150 parts by mass with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer described above, which is 20 parts by mass. It is preferably 3 parts or more and 100 parts by mass or less, and more preferably 30 parts by mass or more and 90 parts by mass or less.
  • the content of the filler is 5.0 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the effect of adding the filler, and the filler is sufficiently used. From the viewpoint of dispersing and making the workability and mechanical strength of the composition practically sufficient, the amount is 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the silica-based inorganic filler is not particularly limited, but may be a known, solid particles preferably comprise SiO 2 or Si 3 Al as a constituent unit, the main structural units of SiO 2 or Si 3 Al Solid particles contained as a component are more preferable.
  • the main component means a component contained in the silica-based inorganic filler in an amount of 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • silica-based inorganic filler examples include, but are not limited to, inorganic fibrous substances such as silica, clay, talc, mica, diatomaceous earth, wollastonite, montmorillonite, zeolite, and glass fiber. .. Further, a silica-based inorganic filler having a hydrophobic surface, a mixture of a silica-based inorganic filler and a non-silica-based inorganic filler can also be mentioned. Among these, silica and glass fiber are preferable, and silica is more preferable, from the viewpoint of strength, abrasion resistance and the like. Examples of silica include dry silica, wet silica, and synthetic silicate silica. Among these silicas, wet silica is preferable from the viewpoint of improving the breaking strength and the balance of wet skid resistance.
  • the nitrogen adsorption specific surface area required by the BET adsorption method of the silica-based inorganic filler shall be 100 m 2 / g or more and 300 m 2 / g or less. Is preferable, and it is more preferably 170 m 2 / g or more and 250 m 2 / g or less. If necessary, a silica-based inorganic filler having a relatively small specific surface area (for example, a specific surface area of 200 m 2 / g or less) and a silica-based filler having a relatively large specific surface area (for example, 200 m 2 / g or more) are used.
  • Inorganic filler can be used in combination.
  • the composition containing the hydrogenated conjugated diene-based polymer described above disperses silica. It is effective in improving the properties, especially the wear resistance, and tends to be able to highly balance good fracture strength and low hysteresis loss.
  • the content of the silica-based inorganic filler in the rubber composition is preferably 5.0 parts by mass or more and 150 parts by mass, and 20 parts by mass or more and 100 parts by mass with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer. More preferably, it is by mass or less.
  • the content of the silica-based inorganic filler is 5.0 parts by mass or more with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the effect of adding the inorganic filler, and is inorganic. From the viewpoint of sufficiently dispersing the filler and making the workability and mechanical strength of the composition practically sufficient, the content is 150 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the carbon black is not limited to the following, and examples thereof include carbon blacks of each class such as SRF, FEF, HAF, ISAF, and SAF. Among these, carbon black having a nitrogen adsorption specific surface area of 50 m 2 / g or more and a dibutyl phthalate (DBP) oil absorption of 80 mL / 100 g or less is preferable.
  • the content of carbon black is preferably 0.5 parts by mass or more and 100 parts by mass or less, preferably 3.0 parts by mass or less, with respect to 100 parts by mass of the rubber component containing the hydrogenated conjugated diene polymer. It is more preferably 5 parts by mass or more and 100 parts by mass or less, and further preferably 5.0 parts by mass or more and 50 parts by mass or less.
  • the content of carbon black is 0.5 with respect to 100 parts by mass of the rubber component from the viewpoint of exhibiting the performance required for applications such as tires such as dry grip performance and conductivity. It is preferably 100 parts by mass or more, and preferably 100 parts by mass or less with respect to 100 parts by mass of the rubber component from the viewpoint of dispersibility.
  • a metal oxide is a solid particle having a chemical formula M x O y (M represents a metal atom, and x and y each independently represent an integer of 1 to 6) as a main component of the constituent unit.
  • the metal oxide is not limited to the following, and examples thereof include alumina, titanium oxide, magnesium oxide, and zinc oxide.
  • the metal hydroxide is not limited to the following, and examples thereof include aluminum hydroxide, magnesium hydroxide, and zirconium hydride.
  • the rubber composition of the present embodiment may contain a silane coupling agent.
  • the silane coupling agent has a function of closely interacting with the rubber component and the inorganic filler, and has an affinity or binding group for each of the rubber component and the silica-based inorganic filler.
  • a compound having a sulfur-bonded moiety and an alkoxysilyl group or silanol group moiety in one molecule is preferable.
  • Such compounds are not particularly limited, but are, for example, bis- [3- (triethoxysilyl) -propyl] -tetrasulfide, bis- [3- (triethoxysilyl) -propyl] -disulfide, bis- [. 2- (Triethoxysilyl) -ethyl] -tetrasulfide can be mentioned.
  • the content of the silane coupling agent is preferably 0.1 part by mass or more and 30 parts by mass or less, and 0.5 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the above-mentioned inorganic filler. More preferably, it is 1.0 part by mass or more and 15 parts by mass or less.
  • the content of the silane coupling agent is in the above range, the effect of the addition by the silane coupling agent tends to be more remarkable.
  • the rubber composition of the present embodiment may contain a softening agent for rubber from the viewpoint of improving its processability.
  • the amount of the softening agent for rubber added is previously contained in the above-mentioned hydrogenated conjugated diene polymer or other rubber-like polymer with respect to 100 parts by mass of the rubber component containing the above-mentioned hydrogenated conjugated diene polymer. It is represented by a certain amount of the softening agent for rubber and the total amount of the softening agent for rubber added when the rubber composition is prepared.
  • softening agent for rubber As the softening agent for rubber, spreading oil, liquid rubber, and resin are suitable.
  • Mineral oil-based rubber softeners called process oils or extender oils used to soften, increase volume, and improve processability of rubbers are mixtures of aromatic rings, naphthenic rings, and paraffin chains.
  • the paraffin chain having 50% or more of carbon atoms in the total carbon is called paraffin-based, and the paraffin ring having 30% or more and 45% or less of all carbon atoms is naphthen-based, and the total number of aromatic carbon atoms is all. Those that account for more than 30% of carbon are called aromatic systems.
  • the hydrogenated conjugated diene-based polymer of the present embodiment is a copolymer of a conjugated diene compound and a vinyl aromatic compound
  • the rubber softener to be used is a copolymer having an appropriate aromatic content. It is preferable because it tends to be familiar to the user.
  • the content of the softening agent for rubber is preferably 0 parts by mass or more and 100 parts by mass or less, and more preferably 10 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferably, it is 30 parts by mass or more and 90 parts by mass or less.
  • the content of the softener for rubber is 100 parts by mass or less with respect to 100 parts by mass of the rubber component, bleed-out is suppressed and stickiness on the surface of the rubber composition tends to be suppressed.
  • the method for mixing the hydrogenated conjugated diene polymer with other rubber-like polymers, silica-based inorganic filler, carbon black and other fillers, silane coupling agent, rubber softener, and other additives is as follows. Not limited to, for example, a melt-kneading method using a general mixer such as an open roll, a rubbery mixer, a kneader, a single-screw screw extruder, a twin-screw screw extruder, or a multi-screw screw extruder, and each component. After the dissolution and mixing of the above, a method of heating and removing the solvent can be mentioned.
  • melt-kneading method using a roll, a Banbury mixer, a kneader, or an extruder is preferable from the viewpoint of productivity and good kneading.
  • any of a method of kneading the rubber component and other fillers, a silane coupling agent, and an additive at once, and a method of mixing them in a plurality of times can be applied.
  • the rubber composition of the present embodiment may be a vulcanized composition that has been vulcanized with a vulcanizing agent.
  • the sulfide agent include, but are not limited to, radical generators such as organic peroxides and azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, and sulfur compounds.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, high molecular weight polysulfur compounds and the like.
  • the content of the vulcanizing agent is preferably 0.01 parts by mass or more and 20 parts by mass or less, and 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component. More preferred.
  • the vulcanization method a conventionally known method can be applied, and the vulcanization temperature is preferably 120 ° C. or higher and 200 ° C. or lower, more preferably 140 ° C. or higher and 180 ° C. or lower.
  • a vulcanization accelerator may be used if necessary.
  • Conventionally known materials can be used as the vulcanization accelerator, and the vulcanization accelerator is not limited to the following, but is, for example, sulfenamide-based, guanidine-based, thiuram-based, aldehyde-amine-based, aldehyde-ammonia-based, and thiazole-based. , Thiourea-based and dithiocarbamate-based vulcanization accelerators.
  • the vulcanization aid is not limited to the following, and examples thereof include zinc oxide and stearic acid.
  • the content of the vulcanization accelerator is preferably 0.01 parts by mass or more and 20 parts by mass or less, and more preferably 0.1 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass of the rubber component.
  • the rubber composition of the present embodiment includes other softeners and fillers other than those described above, heat-resistant stabilizers, antistatic agents, weather-resistant stabilizers, anti-aging agents, as long as the object of the present embodiment is not impaired.
  • Various additives such as colorants and lubricants may be used.
  • As the other softener a known softener can be used.
  • Specific examples of other fillers include, but are not limited to, calcium carbonate, magnesium carbonate, aluminum sulfate, and barium sulfate.
  • Known materials can be used as the heat-resistant stabilizer, antistatic agent, weather-resistant stabilizer, anti-aging agent, colorant, and lubricant.
  • the rubber composition of this embodiment is suitably used as a rubber composition for tires. That is, the tire of the present embodiment uses a rubber composition.
  • the rubber composition for tires is not limited to the following, but for example, various tires such as fuel-saving tires, all-season tires, high-performance tires, and studless tires: tires such as treads, carcass, sidewalls, and beads. It can be used for parts.
  • the rubber composition for tires has an excellent balance of wear resistance, breaking strength, low hysteresis loss property and wet skid resistance when made into a vulcanized product, and thus is suitable for fuel-efficient tires and high-performance tires. It is preferably used for treads.
  • a Mooney viscometer (trade name "VR1132” manufactured by Ueshima Seisakusho Co., Ltd.) is used to determine the Mooney viscosity using an L-shaped rotor in accordance with ISO 289. It was measured. The measurement temperature was 100 ° C. when a hydrogenated conjugated diene-based polymer was used as a sample.
  • the rotor is rotated at 2 rpm, the torque of the sample after 4 minutes is measured, and the measured value is the Mooney viscosity (ML (1 + 4) ). And said.
  • the degree of branching (Bn) was measured as follows by the GPC-light scattering method with a viscosity detector using a conjugated diene polymer or a hydrogenated conjugated diene polymer containing no softening agent for rubber as a sample.
  • a viscosity detector using a conjugated diene polymer or a hydrogenated conjugated diene polymer containing no softening agent for rubber as a sample.
  • a gel permeation chromatography (GPC) measuring device (trade name "GPCmax VE-2001” manufactured by Malvern) in which three columns using a polystyrene gel as a filler are connected, a light scattering detector and a differential refractive index are used.
  • Measurement was performed using three detectors connected in the order of (RI) detector and viscosity detector (trade name "TDA305” manufactured by Malvern), and light scattering detector and RI detection were performed based on standard polystyrene.
  • the absolute molecular weight of the sample was determined from the results of the instrument, and the intrinsic viscosity of the sample was determined from the results of the RI detector and the viscosity detector.
  • M represents an absolute molecular weight.
  • Measurement condition 1 A GPC measuring device (trade name "HLC-8320GPC” manufactured by Toso Co., Ltd.) in which three columns using a conjugated diene polymer or a hydrogenated conjugated diene polymer as a sample and a polystyrene gel as a filler are connected. ) Is used to measure the chromatogram using an RI detector (trade name "HLC8020” manufactured by Toso), and the weight average molecular weight (Mw) of the sample is based on the calibration curve obtained using standard polystyrene.
  • HLC-8320GPC manufactured by Toso Co., Ltd.
  • the number average molecular weight (Mn), the molecular weight distribution (Mw / Mn), and the component (component LM) having a molecular weight of 300,000 or less were determined.
  • the eluent used was THF (tetrahydrofuran) containing 5 mmol / L triethylamine.
  • THF tetrahydrofuran
  • a Tosoh product name "TSKguardcolum SuperMP (HZ) -H” was connected and used as a guard column in front of the column.
  • Measurement condition 2 Using a conjugated diene polymer or a hydrogenated conjugated diene polymer as a sample, a chromatogram is measured using a GPC measuring device in which three columns using a polystyrene gel as a filler are connected, and a standard is measured. Based on the calibration curve using polystyrene, the weight average molecular weight (Mw), the number average molecular weight (Mn), and the component (component LM) having a molecular weight of 300,000 or less were determined. The eluent used was THF containing 5 mmol / L triethylamine.
  • a guard column a product name "TSKguard color SuperH-H” manufactured by Tosoh Corporation
  • a column a product name "TSKgel SuperH5000", “TSKgel SuperH6000”, “TSKgel SuperH7000” manufactured by Tosoh Corporation
  • An RI detector (trade name "HLC8020” manufactured by Tosoh Corporation) was used under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 20 ⁇ L of the measurement solution was injected into a GPC measuring device for measurement.
  • the amount of adsorption of the sample and the sample solution containing the low molecular weight internal standard polystyrene to the silica-based column was measured from the difference between the chromatogram measured on the polystyrene-based column and the chromatogram measured on the silica-based column, and the amount of adsorption to the silica-based column was measured.
  • the degeneration rate was determined. Specifically, it is as shown below. Further, in the measurement under the above (weight average molecular weight) measurement condition 1, the sample whose molecular weight distribution value is 1.6 or more is measured under the following measurement condition 3 and the value of the molecular weight distribution is measured. For the sample whose value was less than 1.6, the measurement was performed under the following measurement condition 4.
  • sample solution 10 mg of sample and 5 mg of standard polystyrene were dissolved in 20 mL of THF to prepare a sample solution.
  • Measurement condition 3 GPC measurement condition using polystyrene column: Using the trade name "HLC-8320GPC" manufactured by Tosoh Corporation, using 5 mmol / L THF containing triethylamine as an eluent, 10 ⁇ L of the sample solution was injected into the apparatus, the column oven temperature was 40 ° C., and the THF flow rate was 0.35 mL /. Chromatograms were obtained using an RI detector under the condition of minutes.
  • Chromatograms were obtained by measurement using an RI detector (HLC8020 manufactured by Tosoh Corporation) under the conditions of a column oven temperature of 40 ° C. and a THF flow rate of 0.6 mL / min.
  • GPC measurement conditions using a silica-based column Using the trade name "HLC-8320GPC" manufactured by Tosoh Corporation, using THF as an eluent, injecting 50 ⁇ L of the sample solution into the apparatus, column oven temperature 40 ° C., THF flow rate. Chromatograms were obtained using an RI detector under the condition of 0.5 ml / min.
  • the column is used by connecting the product names "Zorbox PSM-1000S”, “PSM-300S”, and “PSM-60S", and the product name "DIOL 4.6 x 12.5 mm 5 micron” is used as a guard column in front of the column. Used by connecting.
  • Calculation method of denaturation rate in polymer The total peak area of the chromatogram using the polystyrene column was set to 100, the peak area of the sample was P1, and the peak area of standard polystyrene was P2. Further, the total peak area of the chromatogram using the silica-based column was set to 100, the peak area of the sample was P3, and the peak area of standard polystyrene was P4.
  • the eluent used was a mixed solution of tetrahydrofuran and triethylamine (THF in TEA: 5 mL of triethylamine was mixed with 1 L of tetrahydrofuran to prepare the eluate).
  • the column was used by connecting a guard column: a product name "TSKguardvolume HHR-H” manufactured by Tosoh Corporation and a column: a product name "TSKgel G6000HHR", “TSKgel G5000HHR” and "TSKgel G4000HHR” manufactured by Tosoh Corporation.
  • a GPC-light scattering measuring device (trade name "Viscotek TDAmax” manufactured by Malvern) was used under the conditions of an oven temperature of 40 ° C.
  • THF flow rate 1.0 mL / min. 10 mg of the sample for measurement was dissolved in 20 mL of THF to prepare a measurement solution, and 200 ⁇ L of the measurement solution was injected into a GPC measuring device for measurement.
  • a nuclear magnetic resonance apparatus (1 ) for calculating the hydrogenation rate of a double bond of a structural unit (hereinafter, also simply referred to as “hydrogenation rate”), the value of the formula (S), and the value of the formula (T). It was measured under the following conditions using H-NMR). 1 The conditions for 1 H-NMR measurement are described below.
  • Measurement condition Measuring equipment: JNM-LA400 (manufactured by JEOL) Solvent: Deuterated chloroform Measurement sample: Sample concentration before and after hydrogenation of polymer Sample concentration: 50 mg / mL Observation frequency: 400MHz Chemical shift criteria: TMS (tetramethylsilane) Pulse delay: 2.904 seconds Number of scans: 64 times Pulse width: 45 ° Measurement temperature: 26 ° C
  • Examples 6 to 8 were indexed with the result of Comparative Example 6 as 100.
  • Examples 9 to 11 were indexed with the result of Comparative Example 7 as 100.
  • the result of Comparative Example 8 was indexed as 100.
  • Examples 15 to 17 were indexed with the result of Comparative Example 9 as 100.
  • Examples 24 to 26 were indexed with the result of Comparative Example 13 as 100.
  • Examples 27 to 29 were indexed with the result of Comparative Example 14 as 100.
  • Example 30 was indexed with the result of Comparative Example 15 as 100.
  • Examples 32 to 33 the result of Comparative Example 16 was set as 100 and indexed. The smaller the index, the smaller the cold flow of the rubber bale during storage and the better the handleability.
  • the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
  • a hydrogenation catalyst used for preparing a hydrogenated conjugated diene polymer was prepared by the following method.
  • a reaction vessel equipped with a stirrer was replaced with nitrogen, and 1 L of dried and purified cyclohexane was charged therein.
  • 100 mmol of bis ( ⁇ 5-cyclopentadienyl) titanium dichloride was added. While sufficiently stirring this, an n-hexane solution containing 200 mmol of trimethylaluminum was added, and the mixture was reacted at room temperature for about 3 days. As a result, a hydrogenation catalyst (T) was obtained.
  • trimethoxy (4-vinylphenyl) silane (BS-1) or dimethoxymethyl (4-vinylphenyl) silane (BS-2) is used as a branching agent, both of which have the following formulas. It is a monomer unit based on the compound represented by (5).
  • R 1 is hydrogen
  • R 2 to R 3 are methyl groups
  • m is 0.
  • n was 3 and l was 0.
  • R 1 is hydrogen
  • R 2 to R 3 are methyl groups
  • m is 1. Yes
  • n was 2, and l was 0.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 2 to R 3 each independently represent an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and may have a branched structure in a part thereof.
  • R 1 to R 3 are independent of each other.
  • X 1 represents a halogen atom.
  • m represents an integer of 0 to 2
  • n represents an integer of 0 to 3
  • l represents an integer of 0 to 3. (M + n + l) indicates 3. )
  • n-butyllithium As a polymerization initiator, 18 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor began to rise due to the heat generated by the polymerization, and the final temperature inside the reactor reached 76 ° C. Two minutes after reaching this reaction temperature peak, 6.0 mmol of N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was added to the reactor as a coupling agent, and the coupling reaction was carried out for 20 minutes. carried out. To this polymer solution, 3.0 mmol of methanol was added as a reaction terminator to obtain a solution of a conjugated diene polymer.
  • the hydrogenation catalyst (T) prepared above was added to the obtained solution of the conjugated diene polymer at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogen pressure was 0.8 MPa, average.
  • a hydrogenation reaction was carried out at a temperature of 85 ° C. for 1 hour to obtain a solution of a hydrogenated conjugated diene-based polymer.
  • the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 60.0%.
  • sample B1 12.6 g of n-octadecyl-3- (3,5-di-t-butyl-4-hydrooxyphenyl) -propionate as an antioxidant in the obtained solution of hydrogenated conjugated diene polymer, 4, After adding 3.0 g of 6-bis (octylthiomethyl) -o-cresol, the solvent was removed by steam steam ripping, and the polymer was dried by a drier to obtain a hydrogenated conjugated diene polymer (sample B1). Obtained.
  • the results of analysis of sample B1 are shown in Table 1-1. As a result of the measurement, it was found that the structure of the conjugated diene-based polymer in sample B1 before the addition of the coupling agent had a linear polymer structure and no star-shaped polymer.
  • Example 2 Conjugated Diene Polymer (Sample B2) 1,887 g of 1,3-butadiene (initial butadiene) and 780 g of styrene, which had an internal volume of 40 L and had a stirrer and a jacket and were equipped with a temperature-controllable autoclave as a reactor and had impurities removed in advance, were used. 21,000 g of cyclohexane, 30 mmol of tetrahydrofuran (THF) and 69 mmol of 2,2-bis (2-oxolanyl) propane (BOP) as polar substances were put into the reactor, and the temperature inside the reactor was maintained at 42 ° C. bottom.
  • THF tetrahydrofuran
  • BOP 2,2-bis (2-oxolanyl) propane
  • n-butyllithium As a polymerization initiator, 92 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor begins to rise due to the heat generated by the polymerization, and when the monomer conversion in the reactor reaches 98%, trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent ) 18 mmol was added, and the mixture was stirred for 5 minutes. Then, 333 g of Additive 1,3-butadiene (Additional Butadiene) was added and reacted. The temperature in the final reactor was 75 ° C. The temperature in the final reactor reached 76 ° C.
  • BS-1 trimethoxy (4-vinylphenyl) silane
  • the structure of the coupling conjugated diene polymer was identified.
  • the structure of each sample was identified in the same manner.
  • the conjugated diene-based polymer after the addition of the branching agent has an average 3.9-branched star-shaped polymer structure
  • the conjugated diene-based polymer after the addition of the coupling agent has an average of 3.9 branches.
  • the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • n-butyllithium As a polymerization initiator, 92 mmol of n-butyllithium was supplied to the reactor to initiate polymerization. After the start of the polymerization reaction, the temperature inside the reactor begins to rise due to the heat generated by the polymerization, and when the monomer conversion in the reactor reaches 98%, trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent ) 18 mmol was added, and the mixture was stirred for 5 minutes. Then, 333 g of Additive 1,3-butadiene (Additional Butadiene) was added and reacted. The temperature in the final reactor was 75 ° C. The temperature in the final reactor reached 76 ° C.
  • BS-1 trimethoxy (4-vinylphenyl) silane
  • a hydrogenation reaction was carried out at ° C. for 30 minutes to obtain a solution of the hydrogenated conjugated diene-based polymer.
  • the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 20.0%.
  • the structure of the conjugated diene polymer after the addition of the branching agent in sample B3 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
  • the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • the structure of the conjugated diene polymer after the addition of the branching agent in the samples B4, B5 and B6 has an average 3.9-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
  • the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of two star-shaped structures.
  • sample B8 The hydrogenation rate of sample B8 was 96%.
  • the results of analysis of sample B8 are shown in Table 1-1. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample B8 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Example 4 Hydrogenated conjugated diene polymer (Sample B9)
  • a coupling agent 4.0 mmol of 2,2-dimethoxy-1- (3-rimethoxysilylpropyl) -1-aza-2-silacyclopentane (Compound 2) and 4 of silicon tetrachloride (Compound 3) were used.
  • a hydrogenated conjugated diene polymer (Sample B9) was obtained by the same operation as in Comparative Example 3 except that the hydrogenation integrated flow rate in the hydrogenation reaction was adjusted by changing to 0.0 mmol.
  • the hydrogenation rate of sample B9 was 65%.
  • the results of analysis of sample B9 are shown in Table 1-1.
  • the structure of the conjugated diene polymer after the addition of the branching agent in sample B9 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
  • the branched chain of the two star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • Example 5 Hydrogenated conjugated diene polymer (Sample B10) Trimethoxy (4-vinylphenyl) silane (BS-1) as a branching agent was added at 18 mmol when the monomer conversion in the reactor was 60%, and trimethoxy (4-vinylphenyl) silane (BS-) was further added as a branching agent. 1) was added at 7.4 mmol when the monomer conversion in the reactor was 98%, and 2,2-dimethoxy-1- (3-phenylmethoxysilylpropyl) -1-aza-2-sila was added as a coupling agent.
  • the conjugated diene polymer after the second addition of the branching agent has a star-shaped polymer structure having an average of 5.2 branches, and is a vinyl monomer containing an alkoxysilyl group. Had a part derived from.
  • sample B11 A hydrogenated conjugated diene-based polymer (Sample B11) was obtained.
  • the hydrogenation rate of sample B11 was 60%.
  • the results of analysis of sample B11 are shown in Table 1-2. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B11 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Example B12 35 mmol of dimethoxymethyl (4-vinylphenyl) silane (BS-2) as an agent and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediene as a coupling agent
  • the hydrogenated conjugated diene polymer (Sample B12, Sample) was operated in the same manner as in Comparative Example 3 except that (Compound 5) was changed to 5.9 mmol and methanol was changed to 8.6 mmol as a reaction initiator and the integrated hydrogen flow rate was adjusted. B13 and sample B14) were obtained.
  • the hydrogenation rates of sample B12, sample B13, and sample B14 were 60.0%, 88.0%, and 93.0%, respectively.
  • sample B12, sample B13, and sample B14 are shown in Table 1-2.
  • the structure of the conjugated diene polymer before the addition of the coupling agent in the samples B12, B13 and B14 has an average 3.0-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
  • the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
  • sample B15 A hydrogenated conjugated diene-based polymer (Sample B15) was obtained by the above operation.
  • the hydrogenation rate of sample B15 was 50%.
  • the results of analysis of sample B15 are shown in Table 1-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B15 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • sample B16, sample B17, and sample B18 were 39.0%, 64.0%, and 95.0%, respectively.
  • the results of analysis of sample B16, sample B17, and sample B18 are shown in Table 1-3.
  • the structures of the conjugated diene-based polymers in the samples B16, B17 and B18 before the addition of the coupling agent had an average 3.9-branched star-shaped polymer structure, and the conjugated diene-based polymer after the addition of the coupling agent.
  • the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
  • sample B19 A hydrogenated conjugated diene-based polymer (Sample B19) was obtained.
  • the hydrogenation rate of sample B19 was 70%.
  • the results of analysis of sample B19 are shown in Table 1-4. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B19 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • sample B23 A hydrogenated conjugated diene-based polymer (Sample B23) was obtained by the operation.
  • the hydrogenation rate of sample B23 was 60%.
  • the results of analysis of sample B23 are shown in Table 1-5. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample B23 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Hydrogenated conjugated diene-based polymers (Sample B24, Sample B25, Sample B26) were obtained by the same operation as in Comparative Example 1 except that the above was adjusted.
  • the hydrogenation rates of sample B24, sample B25, and sample B26 were 60%, 75%, and 94%, respectively.
  • the results of analysis of sample B24, sample B25, and sample B26 are shown in Table 1-5. As a result of the measurement, it was found that the structure of the conjugated diene polymer before the addition of the coupling agent in the samples B24, B25 and B26 had a linear polymer structure and not a star polymer. rice field.
  • Example 31 Hydrogenated conjugated diene polymer (Sample B27) Branched with 1,887 g of initial butadiene, 780 g of styrene, 333 g of added butadiene, 72 mmol of 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and 98 mmol of n-butyllithium as a polymerization initiator.
  • BOP 2,2-bis (2-oxolanyl) propane
  • the structure of the conjugated diene polymer before the addition of the coupling agent in sample B27 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
  • the branched chain of the three star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • the branching agents and coupling agents shown in Tables 1-1 to 1-5 are the following compounds.
  • each rubber composition (blending) was obtained at a discharge temperature of 155 to 160 ° C.
  • the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
  • the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 are added and kneaded by an open roll set at 70 ° C.
  • the result of Application Comparative Example 9 was set as 100 and indexed.
  • the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100.
  • the results of Application Comparative Example 5 were indexed with the results of Application Comparative Example 10 under the compounding condition D described later as 100.
  • the smaller the index the better the workability. If the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
  • the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100.
  • the results of Application Comparative Example 5 were indexed with the results of Application Comparative Example 10 under the compounding condition D described later as 100.
  • the larger the index the better the breaking strength, breaking elongation (breaking strength), and breaking characteristics. If the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
  • the results of Application Example 33 were indexed with the results of Application Comparative Example 1 as 100. If the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is slightly worse ( ⁇ in the table), and 94 or less, the fuel efficiency is worse than the standard product, and the grade in the labeling system may be lowered (x in the table). The results are shown in Tables 2-1 to 2-5 and Table 3.
  • the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
  • the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
  • the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes.
  • the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, it was evaluated by the following method. The results are shown in Table 3.
  • the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
  • Hydrogenated conjugated diene-based polymer composition (Sample C1) An internal volume of 10 L, an internal height (L) to diameter (D) ratio (L / D) of 4.0, an inlet at the bottom and an outlet at the top, and a tank reactor with a stirrer. Two tank-type pressure vessels having a stirrer and a jacket for temperature control were connected as a polymerization reactor.
  • Preliminarily water-removed 1,3-butadiene (initial butadiene) was mixed under the conditions of 17.7 g / min, styrene at 10.9 g / min, and n-hexane at 175.2 g / min.
  • n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor.
  • n-butyllithium polymerization initiator n-butyllithium
  • N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was continuously added to the polymer solution flowing out from the outlet of the reactor as a coupling agent at a rate of 0.041 mmol / min. It was added, mixed using a static mixer, and subjected to a coupling reaction. At this time, the time until the coupling agent was added to the polymer solution flowing out from the outlet of the reactor was 4.8 minutes and the temperature was 68 ° C., until the temperature in the polymerization step and the addition of the coupling agent. The difference from the temperature of was 2 ° C.
  • the obtained conjugated diene polymer solution was transferred to another reactor, and the hydrogenation catalyst (T) prepared above was added at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogenation pressure was 0.
  • a hydrogenation reaction was carried out at 8 MPa and an average temperature of 85 ° C. for 30 minutes to obtain a solution of a hydrogenated conjugated diene-based polymer.
  • the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 50.0%.
  • an antioxidant BHT was continuously added to the obtained solution of the hydrogenated conjugated diene polymer so as to be 0.2 g per 100 g of the polymer.
  • SRAE oil JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.
  • the solvent was removed by steam stripping to obtain a hydrogenated conjugated diene-based polymer composition (Sample C1).
  • the physical characteristics of sample C1 are shown in Table 4-1. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample C1 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Example 11 Conjugated Diene Polymer Composition (Sample C2) An internal volume of 10 L, an internal height (L) to diameter (D) ratio (L / D) of 4.0, an inlet at the bottom and an outlet at the top, and a tank reactor with a stirrer. Two tank-type pressure vessels having a stirrer and a jacket for temperature control were connected as a polymerization reactor. Preliminarily water-removed 1,3-butadiene (initial butadiene) was mixed at 14.2 g / min, styrene at 10.9 g / min, and n-hexane at 175.2 g / min.
  • n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor. Further, 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance at a rate of 0.056 mmol / min and n-butyllithium (polymerization initiator n-butyllithium) as a polymerization initiator at 0.215 mmol / min.
  • BOP 2,2-bis (2-oxolanyl) propane
  • the mixture was supplied to the bottom of the first reactor, which was vigorously mixed with a stirrer, to initiate polymerization, and the temperature inside the reactor was maintained at 67 ° C.
  • the polymer solution was continuously withdrawn from the top of the first reactor, continuously supplied to the bottom of the second reactor, continued the reaction at 70 ° C., and further supplied to the static mixer from the top of the second reactor.
  • trimethoxy (4-vinylphenyl) silane (BS-1) was added as a branching agent from the bottom of the second reactive group while copolymerizing 1,3-butadiene and styrene.
  • the mixture was added at a rate of 0.032 mmol / min, and a polymerization reaction and a branching reaction were carried out to obtain a conjugated diene polymer having a main chain branched structure.
  • 1,3-butadiene (additional butadiene) from which water had been removed in advance was additionally added from the middle portion of the second reactor under the condition of 3.5 g / min, and a polymerization reaction was further carried out.
  • N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was added to the polymer solution flowing out from the outlet of the reactor as a coupling agent.
  • SRAE oil (JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.) was continuously added to 100 g of the polymer as a softening agent for rubber so as to be 25.0 g, and mixed with a static mixer. .. The solvent was removed by steam stripping to obtain a conjugated diene polymer composition (Sample C2).
  • the physical characteristics of sample C2 are shown in Table 4-1.
  • the molecular weight by GPC measurement and the degree of branching by GPC measurement with a viscometer are By comparison, the structure of the conjugated diene polymer was identified.
  • the structure of each sample was identified in the same manner.
  • the structure of the conjugated diene polymer after the addition of the branching agent in sample C2 has an average 4.2-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
  • the branched chain of the four star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • n-butyllithium for the residual impurity inactivation treatment (treated n-butyllithium) was added and mixed at 0.105 mmol / min. Later, it was continuously fed to the bottom of the reactor. Further, 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance at a rate of 0.056 mmol / min and n-butyllithium (polymerization initiator n-butyllithium) as a polymerization initiator at 0.215 mmol / min.
  • BOP 2,2-bis (2-oxolanyl) propane
  • the mixture was supplied to the bottom of the first reactor, which was vigorously mixed with a stirrer, to initiate polymerization, and the temperature inside the reactor was maintained at 67 ° C.
  • the polymer solution was continuously withdrawn from the top of the first reactor, continuously supplied to the bottom of the second reactor, continued the reaction at 70 ° C., and further supplied to the static mixer from the top of the second reactor.
  • trimethoxy (4-vinylphenyl) silane (BS-1) was added as a branching agent from the bottom of the second reactive group while copolymerizing 1,3-butadiene and styrene.
  • the mixture was added at a rate of 0.032 mmol / min, and a polymerization reaction and a branching reaction were carried out to obtain a conjugated diene polymer having a main chain branched structure.
  • 1,3-butadiene (additional butadiene) from which water had been removed in advance was additionally added from the middle portion of the second reactor under the condition of 3.5 g / min, and a polymerization reaction was further carried out.
  • N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was added to the polymer solution flowing out from the outlet of the reactor as a coupling agent.
  • the obtained solution of the conjugated diene polymer was transferred to another reactor, and the hydrogenation catalyst (T) prepared above was added at 60 ppm based on Ti per 100 parts by mass of the conjugated diene polymer, and the hydrogen pressure was 0.
  • a hydrogenation reaction was carried out at 0.8 MPa and an average temperature of 85 ° C. for 20 minutes to obtain a solution of a hydrogenated conjugated diene polymer.
  • the hydrogenation rate of the structural unit derived from butadiene in the obtained hydrogenated conjugated diene polymer was 20.0%.
  • an antioxidant (BHT) was continuously added to the obtained solution of the hydrogenated conjugated diene polymer so as to be 0.2 g per 100 g of the polymer.
  • SRAE oil (JOMO process NC140 manufactured by JX Nippon Oil Energy Co., Ltd.) was continuously added to 100 g of the polymer as a softening agent for rubber so as to be 25.0 g, and mixed with a static mixer. .. The solvent was removed by steam stripping to obtain a hydrogenated conjugated diene polymer composition (Sample C3).
  • the physical characteristics of sample C3 are shown in Table 4-1.
  • the structure of the conjugated diene polymer after the addition of the branching agent in sample C3 has an average 4.2-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is
  • the branched chain of the four star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • Example 18 to 20 Hydrogenated conjugated diene polymer compositions (samples C4, C5, C6 in that order)
  • a hydrogenated conjugated diene-based polymer composition (sample C4, sample C5, sample C6) was obtained by the same operation as in Comparative Example 12 except that the integrated hydrogen flow rate in the hydrogenation reaction was adjusted.
  • the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C4, Sample C5, and Sample C6 were 55.0%, 87.0%, and 93.0%, respectively.
  • the results of analyzing Sample C4, Sample C5, and Sample C6 are shown in Table 4-1.
  • the structure of the conjugated diene polymer after the addition of the branching agent in the samples C4, C5 and C6 has an average 4.2-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
  • the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of four star-shaped structures.
  • Hydrogenated conjugated diene polymer composition (sample) by the same operation as in Comparative Example 12 except that methanol was changed to 0.016 mmol / min as a reaction initiator and the integrated hydrogen flow rate in the hydrogenation reaction was adjusted.
  • C7, sample C8, sample C9) were obtained.
  • the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C7, Sample C8, and Sample C9 were 50.0%, 84.0%, and 93.0%, respectively.
  • the results of analyzing Sample C7, Sample C8, and Sample C9 are shown in Table 4-1.
  • the structure of the conjugated diene polymer after the addition of the branching agent in the samples C7, C8 and C9 has an average 4.2-branched star-shaped polymer structure, and the conjugated diene system after the addition of the coupling agent.
  • the polymer had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average star-shaped structure.
  • Examples 24-26 Hydrogenated conjugated diene-based polymer compositions (samples C11, C12, C13 in that order) 17.2 g / min for initial butadiene, 7.2 g / min for styrene, 0.051 mmol / min for 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and n-butyllithium (n-butyllithium) as a polymerization initiator.
  • BOP 2,2-bis (2-oxolanyl) propane
  • the hydrogenated conjugated diene polymer composition was prepared by the same operation as in Comparative Example 12, except that 012 mmol / min and methanol was changed to 0.016 mmol / min as a reaction initiator to adjust the integrated hydrogen flow rate in the hydrogenation reaction.
  • Sample C11, sample C12, sample C13) were obtained.
  • the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C11, Sample C12, and Sample C13 were 50.0%, 82.0%, and 95.0%, respectively.
  • the results of analysis of sample C11, sample C12, and sample C13 are shown in Table 4-2.
  • the structure of the conjugated diene polymer after the addition of the branching agent in the samples C11, C12 and C13 has an average three-branched star-shaped polymer structure, and the conjugated diene polymer after the addition of the coupling agent.
  • the conjugated diene polymer after the addition of the coupling agent Had a portion derived from a vinyl-based monomer containing an alkoxysilyl group in a branched chain having an average of 3.8 star-shaped structures.
  • Example C14 Polymerization initiator n-butyllithium was 0.120 mmol / min, N, N-bis (trimethylsilyl) aminopropylmethyltriethoxysilane (Compound 1) was 0.041 mmol / min as a coupling agent, and methanol was used as a reaction terminator.
  • a hydrogenated conjugated diene-based polymer composition (sample C14) was obtained by the same operation as in Comparative Example 10 except that the hydrogenation integrated flow rate in the hydrogenation reaction was adjusted by changing to 0.018 mmol / min.
  • the hydrogenation rate of the hydrogenated conjugated diene polymer of Sample C14 was 60%.
  • Table 4-3 The results of analysis of sample C14 are shown in Table 4-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer in sample C14 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Polymerization initiator n-butyllithium was 0.159 mmol / min, and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3-propanediamine (Compound 5) was used as a coupling agent.
  • Hydrogenated conjugated diene polymer composition by the same operation as in Comparative Example 10 except that the integrated hydrogen flow rate in the hydrogenation reaction was adjusted by changing methanol to 0.017 mmol / min and 0.024 mmol / min as a reaction initiator. Substances (sample C15, sample C16, sample C17) were obtained.
  • the hydrogenation rates of the hydrogenated conjugated diene-based polymers of Sample C15, Sample C16, and Sample C17 were 60.0%, 82.0%, and 93.0%, respectively.
  • the results of analysis of sample C15, sample C16, and sample C17 are shown in Table 4-3. As a result of the measurement, it was found that the structure of the conjugated diene polymer before the addition of the coupling agent in the samples C15, C16 and C17 had a linear polymer structure and not a star polymer. rice field.
  • Example C18 A conjugated diene-based polymer composition (Sample C18) was obtained by the same operation as in Comparative Example 10. The results of analysis of sample C18 are shown in Table 4-4. As a result of the measurement, it was found that the structure of the conjugated diene-based polymer in sample C18 before the addition of the coupling agent had a linear polymer structure and not a star-shaped polymer.
  • Example 30 Hydrogenated conjugated diene-based polymer composition
  • Example C19 Initial butadiene is 17.9 g / min, styrene is 9.8 g / min, cyclohexane is 145.3 g / min, and 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance is 0.098 mmol / min. 0.242 mmol / min of n-butyllithium (polymerization initiator n-butyllithium) as an agent, and N, N, N', N'-tetrakis (3-trimethoxysilylpropyl) -1,3- as a coupling agent.
  • BOP 2,2-bis (2-oxolanyl) propane
  • Example C19 Water was produced by the same operation as in Comparative Example 10 except that propanediamine (Compound 5) was changed to 0.030 mmol / min and methanol was changed to 0.044 mmol / min as a reaction initiator to adjust the integrated hydrogen flow rate in the hydrogenation reaction.
  • a conjugated diene-based polymer composition (Sample C19) was obtained.
  • the hydrogenation rate of the hydrogenated conjugated diene polymer of Sample C19 was 80%.
  • the results of analysis of sample C19 are shown in Table 4-4. As a result of the measurement, it was found that the structure of the conjugated diene polymer in Sample C19 before the addition of the coupling agent had a linear polymer structure and not a star polymer.
  • Example 33 14.3 g / min for initial butadiene, 9.8 g / min for styrene, 0.027 mmol / min for 2,2-bis (2-oxolanyl) propane (BOP) as a polar substance, and n-butyllithium (n-butyllithium) as a polymerization initiator.
  • BOP 2,2-bis (2-oxolanyl) propane
  • the structure of the conjugated diene polymer after the addition of the branching agent in sample C22 has an average 3.9-branched star-shaped polymer structure, and the average of the conjugated diene polymer after the addition of the coupling agent is 3.6
  • the branched chain of the six star-shaped structures had a portion derived from a vinyl-based monomer containing an alkoxysilyl group.
  • the branching agents and coupling agents shown in Tables 4-1 to 4-4 are the following compounds.
  • the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
  • the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
  • the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes. The rubber composition before vulcanization and the rubber composition after vulcanization were evaluated.
  • the result of Application Comparative Example 19 was set as 100 and indexed.
  • the results of Application Example 31 and Application Comparative Example 16 under the compounding condition E were indexed with the result of the application comparative example 17 under the compounding condition F described later as 100.
  • the formulation obtained above was cooled to room temperature, an antiaging agent was added, and the mixture was kneaded again in order to improve the dispersion of silica.
  • the discharge temperature of the compound was adjusted to 155 to 160 ° C. by controlling the temperature of the mixer.
  • sulfur and vulcanization accelerators 1 and 2 were added and kneaded with an open roll set at 70 ° C. as the third stage kneading to obtain a rubber composition.
  • the obtained rubber composition was molded and vulcanized by a vulcanization press at 160 ° C. for 20 minutes.
  • the rubber composition before vulcanization and the rubber composition after vulcanization were evaluated. Specifically, it was evaluated by the following method. The results are shown in Table 6.
  • the index is 79 or less, it is very good ( ⁇ in the table), if it is 80 to 89, it is good ( ⁇ in the table), and if it is 90 to 99, there is no practical problem ( ⁇ in the table). , 100 to 105 is a little bad ( ⁇ in the table), and 105 or more is practically problematic (x in the table).
  • the index is 121 or more, it is very good ( ⁇ in the table), if it is 111 to 120, it is good ( ⁇ in the table), and if it is 101 to 110, there is no practical problem ( ⁇ in the table). , 95 to 100 is a little bad ( ⁇ in the table), and 94 or less is practically problematic (x in the table).
  • -Silica 3 VN3 manufactured by Evonik Degussa (N2SA: 175m 2 / g) -Silica 4: 115GR manufactured by Solvay Japan Co., Ltd. (N2SA: 115m 2 / g) -Silica 5: 9000GR manufactured by Evonik Degussa (N2SA: 235m 2 / g) -Carbon Black 2: Dia Black N339 manufactured by Mitsubishi Chemical Corporation (N2SA: 96m 2 / g, DBP absorption amount: 124mL / 100g) -Carbon Black 3: Show Black N330 (N2SA: 75m 2 / g) manufactured by Cabot Japan Co., Ltd.
  • SRAE oil (trade name "Process NC140” manufactured by JX Nippon Oil Energy Co., Ltd.)
  • Softener 1 Diana Process AH-24 (aroma oil) manufactured by Idemitsu Kosan Co., Ltd.
  • -Softening agent 2 SYLVARES SA85 manufactured by Arizona Chemical Co., Ltd.
  • Softening agent 3 RICON100 manufactured by Sartmer (liquid SBR, styrene content: 20% by mass, vinyl content: 70% by mass, weight average molecular weight: 4500)
  • Softening agent 4 NOVARES C100 (Kumaron indene resin, softening point: 95 to 105 ° C.) manufactured by Rutgers Chemicals.
  • -Softening agent 5 DRT's Decolite L120 (polylimonen resin, softening point: 120 ° C.)
  • -Softening agent 6 silvatraxx 4150 manufactured by KRATON (polyterpene resin, softening point: 150 ° C.)
  • Silane coupling agent 2 Si266 manufactured by Evonik Degussa -Silane coupling agent 3: Si69 manufactured by Evonik Degussa -Silane coupling agent 4: Si363 manufactured by Evonik Degussa -Anti-aging agent: N- (1,3-dimethylbutyl) -N'-phenyl-p-phenylenediamine wax: Ozoace 0355 manufactured by Nippon Seiro Co., Ltd.
  • -Vulcanization accelerator 1 N-cyclohexyl-2-benzothiazil sulfinamide-Vulcanization accelerator 2: Diphenylguanidine
  • the hydrogenated conjugated diene-based polymers or hydrogenated conjugated diene-based polymer compositions of Examples 1 to 30 and Examples 31 to 33 are Comparative Examples 1 to 15. It was also confirmed that, as compared with Comparative Example 16, the cold flow was suppressed, the Mooney viscosity of the compound when prepared as a vulcanized product was low, and good processability was exhibited.
  • the hydrogenated conjugated diene polymer of the present invention has industrial applicability as a material for tire treads, automobile interior and exterior parts, anti-vibration rubber, belts, footwear, foams, various industrial products, and the like. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明の水添共役ジエン系重合体は、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率が30%以上99%未満である。

Description

水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法
 本発明は、水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法に関する。
 近年、環境負荷への観点から、自動車に対する低燃費化要求が高まっている。特に、自動車用タイヤに対しては、地面と直接接するトレッド部に使用される材料に対し、低燃費性の改良が求められている。
 近年、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料の開発が求められてきている。
 同時に、タイヤ軽量化の流れがあり、タイヤを軽量化するためには、特に材料比率の高い路面と接するトレッド部の厚みを減らす必要があり、従来にも増して破断強度や破断伸び、耐摩耗性に優れたゴム材料が求められている。
 また、走行時のタイヤによるエネルギーロスを低減するために、タイヤトレッドに用いられるゴム材料は、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料が求められている。
 一方で、安全性の観点から、操縦安定性や、ウェットスキッド抵抗性に優れることと、実用上十分な破壊強度を有していることが要求される。
 上述したような要求に応えるゴム材料として、例えば、ゴム状重合体と、カーボンブラック、シリカ等の補強性充填剤とを含むゴム組成物が挙げられる。
 シリカを含むゴム組成物を用いると、低ヒステリシスロス性(低燃費性の指標)とウェットスキッド抵抗性とのバランス向上を図ることができる。また、運動性の高いゴム状重合体の分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、ゴム材料中におけるシリカの分散性を改良し、さらには、シリカ粒子との結合でゴム状重合体の分子末端部の運動性を低減して、ヒステリシスロスを低減化することができる。
 一方、破断強度、破断伸び、耐摩耗性を改良する方法としては、分子量を大きくする方法が挙げられる。しかしながら、分子量を大きくすると、ゴム状重合体と、補強性充填剤とを混練する際の加工性が悪化する傾向にある。
 かかる事情に鑑み、加工性を損なうことなく、破断強度、破断伸び、耐摩耗性を改良するために、分子量を大きくするためにゴム状重合体に分岐構造を導入する試みや水素添加技術を導入する試みがなされている。
 例えば、特許文献1~3には、アミノ基を含有するアルコキシシラン類を共役ジエン系重合体活性末端に反応させて得られる変性共役ジエン系重合体とシリカとの組成物が提案されている。
特開2005-290355号公報 特開平11-189616号公報 特開2003-171418号公報
 しかしながら、シリカは、疎水性の表面を有するカーボンブラックに対して、親水性の表面を有しているため、共役ジエン系重合体との親和性が低いことに起因して、カーボンブラックに比較して組成物中の分散性が悪いという欠点を有している。そのため、シリカを含む組成物は、シリカと共役ジエン系重合体間の結合を付与し、組成物中の分散性を改良するために、別途シラン変性剤等を含有させる必要がある。
 また、共役ジエン系重合体の分子末端にシリカとの反応性の高い官能基を導入した場合は、混練工程中にシリカ粒子との反応が進行して、組成物の粘度が上昇することに起因して、練り難くなったり、又は、混練り後にシートにする際に肌荒れが生じたり、シート切れが生じやすくなったりといった、加工性が悪化する傾向がみられる。
 加えて、このような組成物を加硫物としたとき、特にシリカ等の無機充填剤を含む加硫物としたときに、耐摩耗性、及び低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが十分ではない。
 さらには、水添技術を導入した場合にも、水素添加によって共役ジエン系重合体の粘度が上がるため、水添共役ジエン系重合体の分子量や分岐構造、変性によっては組成物の粘度が大幅に上昇し、練り難くなったり、又は、混練り後にシートにする際に肌荒れが生じたり、シート切れが生じやすくなったりといった、加工性が悪化する傾向がみられる。
 さらには、共役ジエン系重合体及び水添共役ジエン系重合体中の重合体鎖の絡み合いが少ないと、室温で保管している際にゴムベールが流動し、形状が崩れるコールドフローという現象が起こり、使用する際のハンドリング性が悪化してしまう。
 そこで、本発明においては、ゴムベールのコールドフローを抑制しつつ、加硫物とする際の加工性に極めて優れ、加硫物としたときにおける破断強度及び破断伸び並びに破壊特性に優れた水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物を提供することを目的とする。
 本発明者らは、上述した従来技術の課題を解決するために鋭意研究検討した結果、分岐度(Bn)及び水素添加率が特定範囲である水添共役ジエン系重合体が、ゴムベールのコールドフローを抑制しつつ、加硫物とする際の加工性に極めて優れ、加硫物としたときにおける破断強度及び破断伸び並びに破壊特性に優れることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に関する。
[1]
 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率が30%以上99%未満である、水添共役ジエン系重合体。
[2]
 GPCによる重量平均分子量が21万以上300万未満である、[1]に記載の水添共役ジエン系重合体。
[3]
 下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の構成比(mol%)を、それぞれ順にa、b、c、及びdとしたとき、下記数式(S)を満たす、[1]又は[2]に記載の水添共役ジエン系重合体。
Figure JPOXMLDOC01-appb-C000005
 数式(S):20≦(a+b)/(a+b+c+d)×100≦65
[4]
 下記式(1)で表される構造単位、及び下記式(2)で表される構造単位の構成比(mol%)を、それぞれ順にa、及びbとしたとき、下記数式(T)を満たす、[1]乃至[3]のいずれかに記載の水添共役ジエン系重合体。
Figure JPOXMLDOC01-appb-C000006
  数式(T):90≦(a)/(a+b)×100≦100
[5]
 芳香族ビニル単量体を3質量%以上60質量%未満含む、[1]乃至[4]のいずれかに記載の水添共役ジエン系重合体。
[6]
 変性率が60質量%以上である、[1]乃至[5]のいずれかに記載の水添共役ジエン系重合体水添共役ジエン系重合体。
[7]
 粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8.0以上である、[1]乃至[6]のいずれかに記載の水添共役ジエン系重合体水添共役ジエン系重合体。
[8]
 3分岐以上の星形高分子構造を有し、
 少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、
 当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、[1]乃至[7]のいずれかに記載の水添共役ジエン系重合体。
[9]
 前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であり、
 下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
 水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされている、[8]に記載の水添共役ジエン系重合体。
Figure JPOXMLDOC01-appb-C000007
(式(5)中、R1は、水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR1~R3は、各々独立している。
 X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
Figure JPOXMLDOC01-appb-C000008
(式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR2~R5は、各々独立している。
 X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
[10]
 前記式(5)中、R1が水素原子であり、m=0である、前記式(5)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[11]
 前記式(6)中、m=0であり、b=0である、前記式(6)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[12]
 前記式(5)中、R1が水素原子であり、m=0であり、l=0であり、n=3である、前記式(5)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[13]
 前記式(6)中、m=0であり、l=0であり、n=3であり、a=0であり、b=0であり、c=3である、前記式(6)で表される化合物に基づく単量体単位を有する、[9]に記載の水添共役ジエン系重合体。
[14]
 分子量が30万以下の成分(成分LM)が20%以上80%以下である、[1]乃至[13]のいずれかに記載の水添共役ジエン系重合体。
[15]
 水素添加率が50%以上75%以下である、[1]乃至[14]のいずれかに記載の水添共役ジエン系重合体。
[16]
 下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、
 工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である、水添共役ジエン系重合体の製造方法;
 工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して、共役ジエン系重合体を得る工程、
 工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程、
 工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程、
 工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程。
[17]
 前記工程(D)を含む、[16]に記載の水添共役ジエン系重合体の製造方法。
[18]
 [1]乃至[15]のいずれかに記載の水添共役ジエン系重合体100質量部と、ゴム用軟化剤1~60質量部とを、含有する、水添共役ジエン系重合体組成物。
[19]
 ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤と、を含み、
 前記ゴム成分は、当該ゴム成分の総量100質量部に対して、[1]乃至[15]のいずれかに記載の水添共役ジエン系重合体、若しくは[18]に記載の水添共役ジエン系重合体組成物を10質量部以上含む、ゴム組成物。
 本発明によれば、ゴムベールのコールドフローが抑制でき、加硫物とする際、極めて優れた加工性を有し、加硫物としたときに特に優れた破断強度及び破断伸び、並びに破壊特性を有する水添共役ジエン系重合体が得られる。
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。
 なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は以下の実施形態に限定されるものではない。本発明は、その要旨の範囲内で適宜に変形して実施することができる。
〔水添共役ジエン系重合体〕
 本実施形態の水添共役ジエン系重合体は、粘度検出器付きGPC(ゲル浸透クロマトグラフィー)-光散乱法測定法による分岐度(以下「Bn」とも記す。)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率(以下、単に「水素添加率」とも記す)が30~99%である。
 上記のように、水素添加率及び分岐度(Bn)を特定した水添共役ジエン系重合体は、ゴムベールのコールドフローが抑制でき、加硫物とする際の加工性に極めて優れ、加硫物としたときに破断強度、破断伸びといった破壊特性に優れる。
 本実施形態の水添共役ジエン系重合体において、水素添加率及び分岐度(Bn)を特定したうえで、共役ジエン結合単位中の1,2-ビニル結合量及び、芳香族ビニル化合物量を任意に調整することで、加硫物とする際の加工性に極めて優れ、加硫物としたときに破断強度、破断伸びといった破壊特性を改良した状態で、水添共役ジエン系重合体のガラス転移温度(以下、「Tg」とも記す。)を任意に調整することができる。
 例えば、共役ジエン結合単位中の1,2-ビニル結合量及び、芳香族ビニル化合物量を低く設定することで、共役ジエン系重合体のTgが低下して、加硫物にしたときにおける耐摩耗性能、破壊強度が向上して、さらに低ヒステリシスロス性に優れたゴム組成物を得られる傾向にある。
 また、共役ジエン結合単位中の1,2-ビニル結合量及び、芳香族ビニル化合物量を高く設定することで、共役ジエン系重合体のTgが高くなり、加硫物とする際の加工性能が向上して、さらにウェットスキッド抵抗性に優れたゴム組成物を得られる傾向にある。
(共役ジエン化合物)
 本実施形態の水添共役ジエン系重合体において、共役ジエン化合物に由来する構造単位(以下「共役ジエン単量体」とも記す)を含む。共役ジエン化合物の具体例としては、特に限定されないが、例えば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、及び1,3-ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3-ブタジエン、及びイソプレンが好ましく、1,3ブタジエンが特に好ましい。
 これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 また、本実施形態の水添共役ジエン系重合体は、芳香族ビニル化合物に由来する構造単位(以下「芳香族ビニル単量体」とも記す)を含むことが好ましい。なお、本実施形態の水添共役ジエン系重合体において、芳香族ビニル化合物に由来する構造単位を含む場合であっても、水添されている部分は、共役ジエン化合物に由来の部分であり、芳香族ビニル化合物由来の部分については水添されていないことが好ましい。芳香族ビニル化合物の具体例としては、特に限定されないが、例えば、スチレン、p-メチルスチレン、α-メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、及びジフェニルエチレンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。
 これらは1種単独で用いてもよいし、2種以上を併用してもよい。
 また、本実施形態の水添共役ジエン系重合体は、共役ジエン化合物と芳香族ビニル化合物との共重合体(以下「共役ジエン-芳香族ビニル共重合体」とも記す)の水素添加物であることが好ましい。
 共役ジエン化合物と芳香族ビニル化合物との共重合体のいわゆるミクロ構造(芳香族ビニル単量体の含有量及び1,2-ビニル結合量の割合)として、芳香族ビニル単量体の含有量が好ましくは0~60質量%、より好ましくは3~60質量%であり、さらに好ましくは5~40質量%であり、また、共役ジエン系重合体における共役ジエン結合単位中の1,2ビニル結合量の比率(1,2-ビニル結合量)は、好ましくは15~70mol%、より好ましくは22~65mol%であり、さらに好ましくは24~60mol%である。
 本実施形態の水添共役ジエン系重合体において、分岐度は、重合開始剤の添加量、分岐化剤の種類(官能数)及び添加量、カップリング剤の種類(官能数)及び添加量、ゴム用軟化剤の添加量(種類)によって制御され、ミクロ構造による影響は少ない。そのため、一般的なミクロ構造の範囲で適宜設計可能である。ただし、上述のとおり、芳香族ビニル単量体の含有量や1,2-ビニル結合量は、水添共役ジエン系重合体のTgに影響するため、省燃費性能やブレーキ性能の観点で上記範囲に設定することが好ましい。
 ここで、芳香族ビニル単量体の含有量は、1H-NMRを用いて測定することができる。具体的には、後述する実施例に記載の方法に準じて測定する。
 ここで、共役ジエン系重合体がブタジエンとスチレンとの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2-ビニル結合量)を求めることができる。
 本実施形態の水添共役ジエン系重合体が、共役ジエン-芳香族ビニル共重合体の水素添加物である場合、芳香族ビニル単量体が30以上連鎖しているブロックの数が、少ないか又はないものであることが好ましい。より具体的には、共重合体がブタジエン-スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により共重合体を分解し、メタノールに不溶なポリスチレン量を分析する公知の方法において、芳香族ビニル単量体が30以上連鎖しているブロックが、共重合体の総量に対して、好ましくは10.0質量%以下、より好ましくは5.0質量%以下である。
 本実施形態の水添共役ジエン系重合体が、共役ジエン-芳香族ビニル共重合体の水素添加物である場合、省燃費性能向上の観点から芳香族ビニル単量体が単独で存在する割合が多い方が好ましい。
 具体的には、共重合体がブタジエン-スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記共重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5.0質量%以下であることが好ましい。
 この場合、得られる加硫ゴムが特に低いヒステリシスロスとなり好ましい。
(水添(水素添加)反応)
 本実施形態の水添共役ジエン系重合体は、後述の共役ジエン系重合体を水添(水素添加)して得られる。共役ジエン系重合体の共役ジエン部分を水素化する方法は、特に限定されず、公知の方法が利用できる。
 好適な水素化の方法としては、例えば、触媒の存在下、重合体溶液に気体状水素を吹き込む方法で水素化する方法が挙げられる。
 触媒としては、特に限定されず、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これら中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。
 水添反応はバッチプロセス、連続プロセスのどちらでもよく、それらの組み合わせでもよい。
 本実施形態の水添共役ジエン系重合体の水素添加率は、共役ジエン化合物(例えば、ブタジエン)に由来する構造単位の水素添加率が30%以上99%未満であり、30%以上96%未満が好ましく、30%以上93%未満がより好ましく、30%以上90%未満がさらに好ましく、32%以上90%未満が特に好ましい。本実施形態の水添共役ジエン系重合体は、共役ジエン化合物に由来する構造単位の水素添加率が30%以上であると、加硫物としたときに破断強度や破断伸びの点で優れており、共役ジエン化合物に由来する構造単位の水素添加率99%以下であると、加硫後の架橋密度が増加し、加硫物としたときの破断強度や省燃費性能の点で優れる。
 一方、本実施形態の水添共役ジエン系重合体の水素添加率は、省燃費性能の観点からは、80%以下が好ましく、75%以下がより好ましく、75%未満がさらに好ましく、72%未満が特に好ましい。また、破断強度や破断伸びといった強度の観点からは、水素添加率は39%以上が好ましく、40%以上が好ましく、45%以上がより好ましく、50%以上がさらに好ましく、55%以上が特に好ましい。水素添加率が39~80%の範囲であることで、水添により生成するブチレン鎖により損失弾性率が低減され、且つエチレン鎖による損失弾性率の上昇を抑制できるために、強度を良好に維持しつつ、省燃費性能を向上させることができると推定される。
 タイヤに配合される水添共役ジエン系重合体はタイヤに配合される他の成分との関係で、求められる機能が様々であり、必要な性能に応じて分子量や水素添加率、ミクロ構造を設計すればよい。例えば、破断強度や破断伸びといった強度を求める場合には、水素添加率が65%以上であることが好ましく、70%以上であることがより好ましく、75%以上であることがさらに好ましく、80%以上であることが特に好ましい。一方で、水素添加率が85%を超えて高い場合に、タイヤを構成する他の材料の組成によっては、所期の省燃費性能を発揮しにくい場合がある。そのため、省燃費性と強度とのバランスをとる設計にする観点では、水素添加率を39~80%に設定するのが好ましい。
 また水素添加率が75%を超えて高い場合に、高粘度化し、加工性が悪化する場合がある。そのため、水素添加率を75%超に高めたい場合は、粘度や加工性の観点から重量平均分子量が120万以下であることが好ましく、100万以下であることがより好ましく、80万以下であることがさらに好ましく、60万以下であることが特に好ましい。さらに水素添加率を75%超に高めたい場合に、結晶成分の生成による高粘度化抑制の観点から、芳香族ビニル量を15質量%以上とする、及び、又はもしくは、前記式(1)と式(2)で表される構造の含有量の合計が35モル%以上であることが好ましい。
 例えば、破断強度や破断伸びといった強度を向上させるための組成として、ガラス転移温度の高い樹脂成分が配合される場合がある。高Tgの樹脂成分と高水素添加率の水添共役ジエン系重合体は強度の観点で好ましい組み合わせである。樹脂成分の好ましい例は後述する。
 水素添加率は共役ジエン化合物由来の構造単位に対する水素の添加量や水素の圧力、反応時間、水素添加触媒の添加量、溶液粘度によって制御できる。
 水添反応の温度は特に限定されないが、好ましくは60~105℃であり、より好ましくは70~100℃である。
 水素添加率は、実施例にて後述する1H-NMRで測定することができる。
 本実施形態の水添共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を含み、下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の構成比(mol%)をそれぞれ順にa、b、c、及びdとしたとき、下記数式(S)を満たすことが好ましい。なお、式(4)で表される構造単位は1,4トランス結合、及び1,4シス結合が含まれる。
Figure JPOXMLDOC01-appb-C000009
数式(S):20≦(a+b)/(a+b+c+d)×100≦65
 上記数式(S)は、水添共役ジエン系重合体中の1,2-ビニル結合及び水添された1,2-ビニル結合の重量比率を表す。本実施形態の水添共役ジエン系重合体は、上記数式(S)が当該範囲内であることで、加工性、省燃費性能、ウェットグリップ性能のバランスに優れる。
 前記a、b、c、dの比率は水素添加前の共役ジエン系重合体を重合する際の、極性物質の種類や添加量、重合温度、反応させる水素量によって制御することができる。
 水素添加率を40%以上80%以下で制御する場合に、1,2ビニル結合の含有量が少ない方が耐熱性の観点で好ましい。より具体的には、aの構成比が10%以下であることが好ましく、8%以下であることがより好ましく、5%以下であることがさらに好ましい。
 本実施形態の水添共役ジエン系重合体は、共役ジエン化合物に由来する構造単位を含み、前記式(1)で表される構造単位、及び前記式(2)で表される構造単位の構成比(mol%)をそれぞれ順にa、及びbとしたとき、下記数式(T)を満たすことが好ましい。
数式(T):90≦(a)/(a+b)×100≦100
 上記数式(T)は、1,2-ビニル結合由来の構造の水素添加率を表し、1,2-ビニル結合が水添されるほど値が100に近づく。本実施形態の水添共役ジエン系重合体は、上記数式(T)が90以上であると、耐熱性に優れる傾向にある。
 前記a、bの比率は、水添触媒の種類や水添反応温度、反応させる水素量によって制御できる。
 なお、本実施形態において、a、b、c、及びdの比率は後述の実施例に記載の方法により測定することができる。
(分岐度(Bn))
 本実施形態の水添共役ジエン系重合体は、ゴムベールのコールドフロー抑制と加工性の観点から、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)(以下、単に「分岐度(Bn)」とも記す。)が2.5以上であり、3.0以上が好ましく、4.0以上がより好ましく、6.0以上であることがさらに好ましく、6.4以上であることがさらに好ましく、8.0以上であることがよりさらに好ましく、14.0以上であることが特に好ましい。
 本実施形態の水添共役ジエン系重合体は、加工性と省燃費性能を両立させる観点から、分子量が高いほど分岐度(Bn)が高い方が好ましく、水素添加率が高いほど分岐度が高い方が好ましい。
 また、水素添加触媒としてチタノセン触媒を使用した場合、水素添加反応初期では1,2ビニル結合が水添されることで溶液粘度及び溶融粘度が低下するが、1,2ビニル結合が水添された後、1,4結合が水添されると溶液粘度及び溶融粘度が上昇するため、水素添加率が75%を超える水添共役ジエン系重合体を得る場合は、比較的高分子量にしても、粘度を抑えられる傾向がある点で分岐度(Bn)が高い方が好ましい。分岐度(Bn)が6以上であれば、75%を超える水素添加率の場合にも、組成物を調製する際に必要な加工性を確保できる傾向にある。一方で、水素添加率が30%以上75%以下の領域では、粘度上昇という問題が起こりにくいので、製造上の観点で高分岐にする必要は無く、強度を高く設定したい場合は分岐度(Bn)が2.5以上に設定でき、3.0以上が好ましく、30以下が好ましく、20以下がより好ましく、14以下がさらに好ましい。
 本実施形態において、例えば、当該分岐度(Bn)が2以上であるとは、本実施形態の水添共役ジエン系重合体が、実質的に最長の高分子主鎖に対して側鎖の高分子鎖が2本以上であることを意味する。
 水添共役ジエン系重合体の分岐度(Bn)は粘度検出器付きGPC-光散乱法測定法により測定される収縮因子(g’)を用いて、g’=6Bn/{(Bn+1)(Bn+2)}と定義される。
 一般的に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にある。
 収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。すなわち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。
 この収縮因子に対して本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとする。前記式中、Mは絶対分子量である。
 しかしながら、収縮因子は分子の大きさの減少率を表現しているもので、重合体の分岐構造を正確に表現しているものではない。
 そこで当該の水添共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)の値を用いて水添共役ジエン系重合体の分岐度(Bn)を算出する。算出された「分岐度(Bn)」は、最長の主鎖構造に対して、直接的又は間接的に互いに結合している重合体の数を正確に表現するものである。
 算出された分岐度(Bn)は、水添共役ジエン系重合体の分岐構造を表現する指標となる。
 例えば、一般的な4分岐星形高分子(中央部に、4本の重合体鎖が接続)の場合、最長の高分岐主鎖構造に対して高分子鎖の腕が2本結合しており、分岐度(Bn)は2と評価される。
 一般的な8分岐星形高分子の場合、最長の高分岐主鎖構造に対して高分子鎖の腕が6本結合しており、分岐度(Bn)は6と評価される。
 本実施形態の水添共役ジエン系重合体は、分岐度(Bn)が2.5以上であるが、かかる場合、星形高分子構造として平均4.5分岐した星形高分子構造と同様の分岐を有する水添共役ジエン系重合体であることを意味する。
 ここで、「分岐」とは、1つの重合体に対して、他の重合体とが直接的又は間接的に結合することにより形成されるものである。また、「分岐度(Bn)」は、最長の主鎖構造に対して、直接的又は間接的に互いに結合している重合体の数である。
 分岐度(Bn)が2.5以上であることにより、本実施形態の水添共役ジエン系重合体は、ゴムベールのコールドフローを抑制でき、加硫物とする際の加工性(ハンドリング性)に極めて優れ、加硫物としたときに破断強度及び破断伸びに優れる。本実施形態の水添共役ジエン系重合体は、同様の観点から、分岐度(Bn)が、3.0以上であることが好ましく、4.0以上であることがより好ましく、6.0以上であることがさらに好ましく、6.4以上であることがさらに好ましく、8.0以上であることがよりさらに好ましく、14.0以上であることが特に好ましい。
 また、分岐度(Bn)の上限値は特に限定されず、検出限界値以上であってもよいが、好ましくは84以下であり、より好ましくは80以下であり、さらに好ましくは64以下であり、さらにより好ましくは57以下である。
 本実施形態の水添共役ジエン系重合体は、分岐度(Bn)が84以下であることで加硫物とした際に、破断強度や破断伸びに優れる傾向にある。
 一般に絶対分子量が上昇すると加工性が悪化する傾向にあり、直鎖状の高分子構造で絶対分子量を上昇させた場合、加硫物とする際の粘度が大幅に上昇し、加工性が大幅に悪化する。
 そのため、重合体中に多数の官能基を導入し、充填剤として配合されるシリカとの親和性及び/又は反応性向上を図っていても、混練工程でシリカを十分に重合体中に分散させられない。その結果として、導入された官能基の機能が発揮されず、本来期待できるはずの官能基導入による低ヒステリシスロス性とウェットスキッド抵抗性との向上という効果が発揮されないことになってしまう。
 一方、本実施形態の水添共役ジエン系重合体は、分岐度(Bn)を2.5以上であるものに特定したことで、絶対分子量の上昇に伴う加硫物とする際の粘度の上昇が大幅に抑制されるので、例えば、混練工程においてシリカ等と十分に混合するようになり、水添共役ジエン系重合体の周りにシリカを分散させることが可能となると推定している。その結果、例えば、水添共役ジエン系重合体において、分子量を大きく設定することで耐摩耗性及び破壊強度の向上が可能になり、かつ、十分な混練によってシリカを重合体周りに分散させ、官能基が作用及び/又は反応することが可能となることで実用上十分な低ヒステリシスロス性とウェットスキッド抵抗性とを有するものとすることが可能になると推定している。
 本実施形態の水添共役ジエン系重合体の絶対分子量は破断強度、破断伸びや、生産時のゴムベールの成型性の観点から25×104以上3000×104以下であることが好ましく、26×104以上2500×104以下であることがより好ましく、28×104以上2000×104以下であることがさらに好ましい。
 本実施形態の水添共役ジエン系重合体の重量平均分子量は、生産時のゴムベールの成型性の観点や加工性の観点から21万以上300万未満であることが好ましく、22万以上250万未満であることがより好ましく、23万以上230万未満がさらに好ましい。
 重量平均分子量を前記範囲に制御する方法としては、特に限定されないが、例えば、重合開始剤の使用量を調整する方法が挙げられる。
 本実施形態の水添共役ジエン系重合体の重量平均分子量は実施例に記載の方法で測定することができる。
 本実施形態の水添共役ジエン系重合体は、加工性、生産性及び破断強度の観点から、分子量が30万以下の成分(以下「成分LM」とも記す)が20%以上80%以下であることが好ましく、20%以上75%以下であることがより好ましく、21%以上70%以下であることがより好ましい。
 成分LMの割合を前記範囲に制御する方法としては、特に限定されないが、例えば、重合開始剤の使用量を調整することや、カップリング剤の使用量を調整する方法が挙げられる。
 本実施形態の水添共役ジエン系重合体の成分LMの割合は実施例に記載の方法で測定することができる。
 本実施形態の水添共役ジエン系重合体の100℃におけるL形ローターを用いたムーニー粘度は、生産時の乾燥工程における粉体生成による収率低下を抑制する観点から、120以下であることが好ましく、110以下であることがより好ましく、100以下であることがさらに好ましく、90以下であることが特に好ましい。また、引張強度の観点から、当該ムーニー粘度は、30以上であることが好ましく、40以上であることがより好ましく、50以上であることがさらに好ましい。
 100℃におけるL形ローターを用いたムーニー粘度を前記範囲に制御する方法としては、特に限定されないが、例えば、重合開始剤の使用量や、分岐化剤の種類や使用量、カップリング剤の種類や使用量を調整する方法が挙げられる。
 同等のムーニー粘度でも分岐度が高いほど、分子量を高めることができ、好ましい。
 本実施形態の水添共役ジエン系重合体の100℃におけるL形ローターを用いたムーニー粘度は実施例に記載の方法で測定することができる。
 水添共役ジエン系重合体の分岐度(Bn)は、後述する分岐化剤の添加量と末端カップリング剤の添加量との組み合わせにより、2.5以上に制御することができる。具体的には、分岐度の制御は、分岐化剤の官能基数、分岐化剤の添加量、分岐化剤の添加のタイミング及びカップリング剤若しくは、窒素原子含有の変性剤の官能数、カップリング剤若しくは、窒素原子含有の変性剤の添加量により制御することができる。より具体的には後述に記載の水添共役ジエン系重合体の製造方法に記載する。
(カップリング)
 本実施形態の水添共役ジエン系重合体は、重合及び分岐工程を経て得られた共役ジエン系重合体を、共役ジエン系重合体の活性末端に対して、分岐化剤と3官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を用いるカップリング反応を行って得られる共役ジエン系重合体が好ましい。
 カップリング工程においては、共役ジエン系重合体の活性末端の一端に対してカップリング剤又は、窒素原子含有基を有するカップリング剤で、カップリング反応させ、共役ジエン系重合体を得る。より具体的には後述に記載の共役ジエン系重合体の製造方法に記載する。
(カップリング剤)
 本実施形態において、カップリング工程で用いられるカップリング剤は、3官能以上の反応性化合物であればいかなる構造のものでもよいが、好ましくは、珪素原子を有する3官能以上の反応性化合物が好ましい。より具体的には後述に記載の水添共役ジエン系重合体の製造方法に記載する。
 本実施形態の水添共役ジエン系重合体は、窒素原子を含有することが好ましい。窒素原子を含有する水添共役ジエン系重合体は、例えば、以下記載する窒素原子含有基を有する変性剤を用いてカップリング反応を行って得ることができる。
(窒素原子含有基を有する変性剤)
 本実施形態の水添共役ジエン系重合体は、重合及び分岐工程を経て得られた共役ジエン系重合体を、共役ジエン系重合体の活性末端に対して、3官能以上の窒素原子含有基を有する反応性化合物(以下、「窒素原子含有基を有する変性剤」ともいう。)を用いてカップリング反応を行って得られる共役ジエン系重合体がより好ましい。
 カップリング工程においては、共役ジエン系重合体の活性末端の一端に対して、窒素原子含有基を有するカップリング剤で、カップリング反応させ、共役ジエン系重合体を得る。
 窒素原子含有基を有する変性剤を用いてカップリングした共役ジエン系重合体は、充填剤等を配合した組成物としたときに、シリカの分散性が良好となり充填剤等を配合した組成物の加工性が良好で、また組成物を加硫物としたときに耐摩耗性、及び破壊強度が良好で、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが飛躍的に向上する傾向にある。より具体的には後述に記載の水添共役ジエン系重合体の製造方法に記載する。
 窒素原子含有基を有する変性剤としては、以下に限定するものではないが、例えば、イソシアナート化合物、イソチオシアナート化合物、イソシアヌル酸誘導体、窒素基含有カルボニル化合物、窒素基含有ビニル化合物、窒素基含有エポキシ化合物等が挙げられる。
 窒素原子含有基を有する変性剤は、好ましくは窒素原子含有官能基を有し、その窒素原子含有官能基としては、好ましくは活性水素を有さないアミン化合物であり、例えば、3級アミン化合物、上記の活性水素を保護基で置換した保護化アミン化合物、一般式-N=Cで表されるイミン化合物、及び前記、窒素原子含有基と結合したアルコキシシラン化合物が挙げられる。より具体的には後述に記載の水添共役ジエン系重合体の製造方法に記載する。
(変性率)
 本明細書中、「変性率」は、共役ジエン系重合体若しくは水添共役ジエン系重合体の総量に対する窒素原子含有官能基を有する共役ジエン系重合体若しくは水添共役ジエン系重合体の質量比率を表す。
 例えば、窒素原子含有変性剤を終末端に反応させた場合、当該窒素原子含有変性剤による窒素原子含有官能基を有する共役ジエン系重合体の、共役ジエン系重合体の総量に対する質量比率が、変性率として表される。
 他方、窒素原子を含有する分岐化剤によって、重合体を分岐させた場合も、生成する共役ジエン系重合体に窒素原子含有官能基を有することになるので、この分岐した重合体も変性率の算出の際、カウントされることになる。
 すなわち、本明細書中、窒素原子含有官能基を有する変性剤によるカップリング重合体及び/又は窒素原子含有官能基を有する分岐化剤による分岐化重合体であって、これらの合計の質量比率が、「変性率」である。
 本実施形態の水添共役ジエン系重合体は、少なくとも一端が、窒素原子含有基で変性することで、充填剤等を配合した組成物としたときの加工性、組成物を加硫物としたときの耐摩耗性、破壊強度を維持したままで、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが飛躍的に向上する傾向にある。
 本実施形態の水添共役ジエン系重合体は、加工性、耐摩耗性、破壊強度、及び低ヒステリシスロス性とウェットスキッド抵抗性とのバランスの観点から、水添共役ジエン系重合体の総量に対して、カラム吸着GPC法で測定される変性率(以下、単に「変性率」とも記す。)が40質量%以上であるのが好ましい。
 前記変性率は、好ましくは60質量%以上、より好ましくは65質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは80質量%以上である。前記変性率の上限は、特に限定されないが、例えば、99質量%である。
 変性率は、官能基含有の変性成分と非変性成分とを分離できるクロマトグラフィーによって測定することができる。
 このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法(カラム吸着GPC法)が挙げられる。
 より具体的には、変性率は、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの差分から、シリカカラムへの吸着量を測定することにより得られる。
 さらに具体的には、変性率は、実施例に記載の方法により測定することができる。
 本実施形態の水添共役ジエン系重合体において、変性率は、変性剤の添加量及び反応方法を調整するによって制御することができ、これにより40質量%以上に制御することができる。
 例えば、重合開始剤として、後述する分子内に少なくとも1つ窒素原子を有する有機リチウム化合物を用いて重合する方法、分子内に少なくとも1つ窒素原子を有する単量体を共重合する方法、後述する構造式の変性剤を用いる方法を組み合わせ、重合条件を制御することによって、上記変性率とすることができる。
 本明細書でいう「星形高分子構造」とは、1つの中心分岐点から高分子鎖(腕)が複数結合している構造をいう。
 また、ここでいう一つの中心分岐点は、カップリング剤由来の原子又は変性剤由来の窒素原子を含有した置換基を有している。
 本明細書でいう「主鎖分岐構造」とは、高分子鎖がアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分で分岐点を形成し、さらにその分岐点から高分子鎖(腕)が伸長している構造をいう。
 本実施形態の水添共役ジエン系重合体は、分岐度(Bn)の向上の観点から、好ましくは、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分によって構成される主鎖分岐点は3分岐点以上であり、反応工程でカップリング剤によって形成される星形高分子構造由来の分岐構造は、3分岐以上であることが好ましく、4分岐以上であることがより好ましく、8分岐以上であることがさらに好ましい。
 なお、星形構造になるカップリング剤によって変性する場合と、分岐化剤を重合体中に導入する場合のいずれも分岐度(Bn)が大きくなるが、カップリング剤によって高分子鎖全体を分岐させる方が分岐度(Bn)への寄与が大きい。
 重合体の設計において、分岐度(Bn)は、カップリング剤の選択と、分岐化剤の種類の選択や量の設定とによって制御可能であるが、寄与率も勘案することで分岐度(Bn)の制御が容易になりやすい。
(主鎖分岐構造)
 主鎖分岐構造は、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分における分岐点で2分岐点以上であり、3分岐点以上であることが好ましく、4分岐点以上であることがより好ましい。
 また、主鎖分岐構造を形成する分岐点は少なくとも2つ以上の高分子鎖を有していることが好ましく、より好ましくは主鎖ではない高分子鎖を3つ以上有している。
 特にアルコキシシリル基又はハロシリル基を含むビニル系単量体からなる主鎖分岐構造では、29Si-NMRにてシグナル検出を行うと、-45ppmから-65ppmの範囲、さらに限定的には-50ppmから-60ppmの範囲に主鎖分岐構造由来のピークが検出される。
(星形高分子構造)
 本実施形態の水添共役ジエン系重合体は、星形高分子構造を有していることが好ましく、星形高分子構造由来の分岐が3分岐以上であることが好ましく、4分岐以上であることがより好ましく、6分岐以上であることがさらに好ましく、8分岐以上であることがさらにより好ましい。星形高分子構造由来の分岐の上限は、特に限定されないが、例えば、32分岐以下である。
 本実施形態の水添共役ジエン系重合体は、3分岐以上の星形高分子構造を有し、少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において更なる主鎖分岐構造を有することが好ましい。このような水添共役ジエン系重合を得るための方法に関して、前記「星形高分子構造」は、カップリング剤の官能基数、カップリング剤の添加量を調整することによって形成でき、「主鎖分岐構造」は、分岐化剤の官能基数、分岐化剤の添加量、分岐化剤の添加のタイミングを調整することによって制御することができる。
 3分岐以上の星形高分子構造を有する水添共役ジエン系重合体であって、少なくとも一つの星形構造の分岐鎖にアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において更なる主鎖分岐構造を有する水添共役ジエン系重合を得るためには、例えば、有機リチウム系化合物を重合開始剤として用い、重合を行い、重合中又は重合後にさらに特定の分岐点を与える分岐化剤を添加し、重合を継続した後に特定の分岐率を与える変性剤を用いて変性する方法が挙げられる。
 このような重合条件の制御手段は、後述する実施例中の製造方法に記載する。
(主鎖分岐構造の詳細構造)
 本実施形態の水添共役ジエン系重合体は、上述したアルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であって、下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有することが好ましく、また、カップリング剤を用いて得られる水添共役ジエン系重合体であることがより好ましく、水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされていることがさらに好ましく、水添共役ジエン系重合体の少なくとも一端が、窒素原子含有基で変性されている水添共役ジエン系重合体であることがよりさらに好ましい。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(式(5)中、R1は水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。複数存在する場合のR1~R3は、各々独立している。
 X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
 mは、0~2の整数を示し整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR2~R5は、各々独立している。
 X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
 本実施形態の水添共役ジエン系重合体は、上述した式(5)中、R1が水素原子であり、m=0である、前記式(5)で表される化合物に基づく単量体単位を有する水添共役ジエン系重合体であることが好ましい。これにより、分岐数が向上し、耐摩耗性と加工性との向上の効果が得られる。
 また、本実施形態の水添共役ジエン系重合体は、前記式(6)中、m=0であり、b=0である、前記式(6)で表される化合物に基づく単量体単位を有する、共役ジエン系重合体であることが好ましい。これにより、耐摩耗性と加工性との向上効果が得られる。
 また、本実施形態の水添共役ジエン系重合体は、前記式(6)中、m=0、l=0、n=3であり、a=0、b=0であり、c=3である、前記式(6)で表される化合物に基づく単量体単位を有する、水添共役ジエン系重合体であることが好ましい。これにより、耐摩耗性と加工性向上の効果が得られる。
 また、本実施形態の水添共役ジエン系重合体は、前記式(5)中、R1が水素原子であり、m=0であり、l=0であり、n=3である、前記式(5)で表される化合物に基づく単量体単位を有する、水添共役ジエン系重合体であることがさらに好ましい。これにより、変性率と分岐度とが向上し、省燃費性能、耐摩耗性及び加工性の向上の効果が得られる。
(分岐化剤)
 本実施形態の水添共役ジエン系重合体においては、主鎖分岐構造を構築する際に、分岐化剤として、下記式(5)又は式(6)で表される分岐化剤を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
(式(5)中、R1は水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR1~R3は、各々独立している。
 X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。)
(式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR2~R5は、各々独立している。
 X2~X3は、各々独立して、独立したハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。
 (m+n+l)は、3を示す。
 aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
 本実施形態においては、水添共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、重合の継続性と分岐度の向上との観点から、好ましくは式(5)のR1が水素原子であり、m=0の化合物であることが好ましい。
 また、本実施形態においては、水添共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、分岐度向上の観点から、式(6)中、m=0であり、かつb=0の化合物であることが好ましい。
 また、本実施形態においては、水添共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、重合の継続性と、変性率及び分岐度の向上との観点から、式(5)のR1が水素原子であり、m=0であり、l=0であり、n=3である化合物であることがより好ましい。
 また、本実施形態においては、水添共役ジエン系重合体の主鎖分岐構造を構築する際に使用される分岐化剤は、変性率及び分岐度の向上の観点から、前記式(6)中、m=0、l=0、n=3であり、a=0、b=0、c=3である化合物が好ましい。
 前記式(5)で表される分岐化剤としては、以下のものに限定されないが、例えば、
トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラン、トリイソプロポキシ(4-ビニルフェニル)シラン、トリメトキシ(3-ビニルフェニル)シラン、トリエトキシ(3-ビニルフェニル)シラン、トリプロポキシ(3-ビニルフェニル)シラン、トリブトキシ(3-ビニルフェニル)シラン、トリイソプロポキシ(3-ビニルフェニル)シラン、トリメトキシ(2-ビニルフェニル)シラン、トリエトキシ(2-ビニルフェニル)シラン、トリプロポキシ(2-ビニルフェニル)シラン、トリブトキシ(2-ビニルフェニル)シラン、トリイソプロポキシ(2-ビニルフェニル)シラン、ジメトキシメチル(4-ビニルフェニル)シラン、ジエトキシメチル(4-ビニルフェニル)シラン、ジプロポキシメチル(4-ビニルフェニル)シラン、ジブトキシメチル(4-ビニルフェニル)シラン、ジイソプロポキシメチル(4-ビニルフェニル)シラン、ジメトキシメチル(3-ビニルフェニル)シラン、ジエトキシメチル(3-ビニルフェニル)シラン、ジプロポキシメチル(3-ビニルフェニル)シラン、ジブトキシメチル(3-ビニルフェニル)シラン、ジイソプロポキシメチル(3-ビニルフェニル)シラン、ジメトキシメチル(2-ビニルフェニル)シラン、ジエトキシメチル(2-ビニルフェニル)シラン、ジプロポキシメチル(2-ビニルフェニル)シラン、ジブトキシメチル(2-ビニルフェニル)シラン、ジイソプロポキシメチル(2-ビニルフェニル)シラン、ジメチルメトキシ(4-ビニルフェニル)シラン、ジメチルエトキシ(4-ビニルフェニル)シラン、ジメチルプロポキシ(4-ビニルフェニル)シラン、ジメチルブトキシ(4-ビニルフェニル)シラン、ジメチルイソプロポキシ(4-ビニルフェニル)シラン、ジメチルメトキシ(3-ビニルフェニル)シラン、ジメチルエトキシ(3-ビニルフェニル)シラン、ジメチルプロポキシ(3-ビニルフェニル)シラン、ジメチルブトキシ(3-ビニルフェニル)シラン、ジメチルイソプロポキシ(3-ビニルフェニル)シラン、ジメチルメトキシ(2-ビニルフェニル)シラン、ジメチルエトキシ(2-ビニルフェニル)シラン、ジメチルプロポキシ(2-ビニルフェニル)シラン、ジメチルブトキシ(2-ビニルフェニル)シラン、ジメチルイソプロポキシ(2-ビニルフェニル)シラン、トリメトキシ(4-イソプロぺニルフェニル)シラン、トリエトキシ(4-イソプロぺニルフェニル)シラン、トリプロポキシ(4-イソプロぺニルフェニル)シラン、トリブトキシ(4-イソプロぺニルフェニル)シラン、トリイソプロポキシ(4-イソプロぺニルフェニル)シラン、トリメトキシ(3-イソプロぺニルフェニル)シラン、トリエトキシ(3-イソプロぺニルフェニル)シラン、トリプロポキシ(3-イソプロぺニルフェニル)シラン、トリブトキシ(3-イソプロぺニルフェニル)シラン、トリイソプロポキシ(3-イソプロぺニルフェニル)シラン、トリメトキシ(2-イソプロぺニルフェニル)シラン、トリエトキシ(2-イソプロぺニルフェニル)シラン、トリプロポキシ(2-イソプロぺニルフェニル)シラン、トリブトキシ(2-イソプロぺニルフェニル)シラン、トリイソプロポキシ(2-イソプロぺニルフェニル)シラン、ジメトキシメチル(4-イソプロぺニルフェニル)シラン、ジエトキシメチル(4-イソプロぺニルフェニル)シラン、ジプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジブトキシメチル(4-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(4-イソプロぺニルフェニル)シラン、ジメトキシメチル(3-イソプロぺニルフェニル)シラン、ジエトキシメチル(3-イソプロぺニルフェニル)シラン、ジプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジブトキシメチル(3-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(3-イソプロぺニルフェニル)シラン、ジメトキシメチル(2-イソプロぺニルフェニル)シラン、ジエトキシメチル(2-イソプロぺニルフェニル)シラン、ジプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジブトキシメチル(2-イソプロぺニルフェニル)シラン、ジイソプロポキシメチル(2-イソプロぺニルフェニル)シラン、ジメチルメトキシ(4-イソプロぺニルフェニル)シラン、ジメチルエトキシ(4-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルブトキシ(4-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(4-イソプロぺニルフェニル)シラン、ジメチルメトキシ(3-イソプロぺニルフェニル)シラン、ジメチルエトキシ(3-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルブトキシ(3-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(3-イソプロぺニルフェニル)シラン、ジメチルメトキシ(2-イソプロぺニルフェニル)シラン、ジメチルエトキシ(2-イソプロぺニルフェニル)シラン、ジメチルプロポキシ(2-イソプロぺニルフェニル)シラン、ジメチルブトキシ(2-イソプロぺニルフェニル)シラン、ジメチルイソプロポキシ(2-イソプロぺニルフェニル)シラン、トリクロロ(4-ビニルフェニル)シラン、トリクロロ(3-ビニルフェニル)シラン、トリクロロ(2-ビニルフェニル)シラン、トリブロモ(4-ビニルフェニル)シラン、トリブロモ(3-ビニルフェニル)シラン、トリブロモ(2-ビニルフェニル)シラン、ジクロロメチル(4-ビニルフェニル)シラン、ジクロロメチル(3-ビニルフェニル)シラン、ジクロロメチル(2-ビニルフェニル)シラン、ジブロモメチル(4-ビニルフェニル)シラン、ジブロモメチル(3-ビニルフェニル)シラン、ジブロモメチル(2-ビニルフェニル)シラン、ジメチルクロロ(4-ビニルフェニル)シラン、ジメチルクロロ(3-ビニルフェニル)シラン、ジメチルクロロ(2-ビニルフェニル)シラン、ジメチルブロモ(4-ビニルフェニル)シラン、ジメチルブロモ(3-ビニルフェニル)シラン、ジメチルブロモ(2-ビニルフェニル)シランが挙げられる。
 これらの中では、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラントリイソプロポキシ(4-ビニルフェニル)シラン、トリメトキシ(3-ビニルフェニル)シラン、トリエトキシ(3-ビニルフェニル)シラン、トリプロポキシ(3-ビニルフェニル)シラン、トリブトキシ(3-ビニルフェニル)シラン、トリイソプロポキシ(3-ビニルフェニル)シラン、トリクロロ(4-ビニルフェニル)シランが好ましく、トリメトキシ(4-ビニルフェニル)シラン、トリエトキシ(4-ビニルフェニル)シラン、トリプロポキシ(4-ビニルフェニル)シラン、トリブトキシ(4-ビニルフェニル)シラントリイソプロポキシ(4-ビニルフェニル)シランがより好ましい。
 前記式(6)で表される分岐化剤としては、以下のものに限定されないが、例えば、
1,1-ビス(4-トリメトキシシリルフェニル)エチレン、1,1-ビス(4-トリエトキシシリルフェニル)エチレン、1,1-ビス(4-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(4-トリペントキシシリルフェニル)エチレン、1,1-ビス(4-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(3-トリメトキシシリルフェニル)エチレン、1,1-ビス(3-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(3-トリペントキシシリルフェニル)エチレン、1,1-ビス(3-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(2-トリメトキシシリルフェニル)エチレン、1,1-ビス(2-トリエトキシシリルフェニル)エチレン、1,1-ビス(3-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(2-トリペントキシシリルフェニル)エチレン、1,1-ビス(2-トリイソプロポキシシリルフェニル)エチレン、1,1-ビス(4-(ジメチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルメトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジメチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジエチルエトキシシリル)フェニル)エチレン、1,1-ビス(4-(ジプロピルエトキシシリル)フェニル)エチレンが挙げられる。
 これらの中では、1,1-ビス(4-トリメトキシシリルフェニル)エチレン、1,1-ビス(4-トリエトキシシリルフェニル)エチレン、1,1-ビス(4-トリプロポキシシシリルフェニル)エチレン、1,1-ビス(4-トリペントキシシリルフェニル)エチレン、1,1-ビス(4-トリイソプロポキシシリルフェニル)エチレンが好ましく、1,1-ビス(4-トリメトキシシリルフェニル)エチレンがより好ましい。
(水添共役ジエン系重合体の製造方法)
 本実施形態の水添共役ジエン系重合体の製造方法は、例えば、下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である。また、本実施形態の水添共役ジエン系重合体の製造方法は、工程(D)を含むことが好ましい。また、本実施形態の水添共役ジエン系重合体の製造方法は、下記工程(C)をさらに含むことが好ましい。
工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して共役ジエン系重合体を得る工程(重合工程)
工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程(分岐化工程)
工程(C):共役ジエン系重合体末端から、さらに共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して共役ジエン系重合体を得る工程(重合工程)
工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程(カップリング工程)
工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程(水添工程)
 各工程は、工程(A)の後に、工程(B)~(D)の少なくとも1つの工程を含んでいることが好ましく、その後に、工程(E)が実施されることが好ましい。例えば、工程(A)の重合工程の途中、すなわち、モノマーが完全に消費される前に、工程(B)の分岐化剤を添加した場合、分岐化剤が反応した後にさらにモノマーを添加しなくとも分岐鎖が伸びるはずなので、これは工程(C)に相当する。ただし、工程を管理して、狙いどおりの構造のポリマーを製造する観点では、工程(A)のモノマーを消費し終わってから分岐化剤を添加し、さらに、分岐化剤がポリマー鎖に結合し終わってから、工程(C)としてさらにモノマーを追加して分岐鎖を伸長させるのが好ましい態様である。また、追加のモノマーとして共役ジエンを添加、若しくは、共役ジエンの供給比率を高くして添加することは、工程(D)におけるカップリング剤の反応率を向上させる観点で好ましい。
 工程(B)~(D)は1回のみ実施してもよく、2回以上繰り返し行ってもよい。
 本実施形態の水添共役ジエン系重合体の製造方法としては、工程(A)、工程(B)、工程(C)、工程(D)、工程(E)の順、若しくは工程(A)、工程(D)、工程(E)の順、工程(A)、工程(C)、工程(D)、工程(E)の順、若しくは工程(A)、工程(B)、工程(E)の順で実施することが特に好ましい。
 本実施形態の水添共役ジエン系重合体の製造方法における前記工程(A)では、有機リチウム系化合物の存在下、有機リチウム化合物を重合開始剤として用いて、少なくとも共役ジエン化合物を重合する。水添共役ジエン系重合体は、単一の共役ジエン化合物の単独重合体、異なる種類の共役ジエン化合物の重合体すなわち共重合体、共役ジエン化合物と芳香族ビニル化合物との共重合体のいずれかの水添物であってもよい。
(重合開始剤)
 重合開始剤としては、少なくとも有機モノリチウム化合物を用いることができる。
 有機モノリチウム化合物としては、以下のものに限定されないが、例えば、低分子化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。
 また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素-リチウム結合を有する化合物、窒素-リチウム結合を有する化合物、及び錫-リチウム結合を有する化合物が挙げられる。
 重合開始剤としての有機モノリチウム化合物の使用量は、目標とする共役ジエン系重合体又は水添共役ジエン系重合体の分子量によって決めることが好ましい。
 重合開始剤の使用量に対する、共役ジエン化合物等の単量体の使用量が重合度に関係する。すなわち、数平均分子量及び/又は重量平均分子量に関係する傾向にある。
 したがって、分子量を増大させるためには、重合開始剤の使用量を減らす方向に調整するとよく、分子量を低下させるためには、重合開始剤の使用量を増やす方向に調整するとよい。
 有機モノリチウム化合物は、共役ジエン系重合体へ窒素原子を導入する一つの手法で用いられるという観点から、好ましくは、置換アミノ基を有するアルキルリチウム化合物、又はジアルキルアミノリチウムである。
 この場合、重合開始末端にアミノ基からなる窒素原子を有する、共役ジエン系重合体が得られる。
 置換アミノ基とは、活性水素を有しない、又は、活性水素を保護した構造の、アミノ基である。
 活性水素を有しないアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ジメチルアミノプロピルリチウム、3-ジエチルアミノプロピルリチウム、4-(メチルプロピルアミノ)ブチルリチウム、及び4-ヘキサメチレンイミノブチルリチウムが挙げられる。
 活性水素を保護した構造のアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3-ビストリメチルシリルアミノプロピルリチウム、及び4-トリメチルシリルメチルアミノブチルリチウムが挙げられる。
 ジアルキルアミノリチウムとしては、以下のものに限定されないが、例えば、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジ-n-ヘキシルアミド、リチウムジへプチルアミド、リチウムジイソプロピルアミド、リチウムジオクチルアミド、リチウム-ジ-2-エチルへキシルアミド、リチウムジデシルアミド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド、1-リチオアザシクロオクタン、6-リチオ-1,3,3-トリメチル-6-アザビシクロ[3.2.1]オクタン、及び1-リチオ-1,2,3,6-テトラヒドロピリジンが挙げられる。
 これらの置換アミノ基を有する有機モノリチウム化合物は、重合可能な単量体、例えば、1,3-ブタジエン、イソプレン、スチレン等の単量体を少量反応させて、可溶化したオリゴマーの有機モノリチウム化合物として用いることもできる。
 有機モノリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、好ましくは、アルキルリチウム化合物である。この場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。
 前記アルキルリチウム化合物としては、以下のものに限定されないが、例えば、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、及びスチルベンリチウムが挙げられる。
 アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n-ブチルリチウム、及びsec-ブチルリチウムが好ましい。
 これらの有機モノリチウム化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。また、他の有機金属化合物と併用してもよい。
 前記他の有機金属化合物としては、例えば、アルカリ土類金属化合物、他のアルカリ金属化合物、その他有機金属化合物が挙げられる。
 アルカリ土類金属化合物としては、以下のものに限定されないが、例えば、有機マグネシウム化合物、有機カルシウム化合物、及び有機ストロンチウム化合物が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、及びアミドの化合物も挙げられる。
 有機マグネシウム化合物としては、例えば、ジブチルマグネシウム、及びエチルブチルマグネシウムが挙げられる。その他有機金属化合物としては、例えば、有機アルミニウム化合物が挙げられる。
 重合工程において、重合反応様式としては、以下のものに限定されないが、例えば、回分式(「バッチ式」ともいう。)、連続式の重合反応様式が挙げられる。
 連続式においては、1個又は2個以上の連結された反応器を用いることができる。連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。
 回分式の反応器は、例えば、攪拌機付の槽型の反応器が用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、当該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。
 本実施形態の水添共役ジエン系重合体の製造方法において、高い割合で活性末端を有する共役ジエン系重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な、連続式が好ましい。
 共役ジエン系重合体の重合工程は、不活性溶媒中で重合することが好ましい。溶媒としては、特に限定されないが、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。具体的な炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
 重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の変性共役ジエン系重合体が得られる傾向にあるため好ましい。
 重合工程においては、極性化合物(極性物質)を添加してもよい。芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができ、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる傾向にある。また、重合反応の促進等にも効果がある傾向にある。
 極性化合物としては、以下のものに限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2-ビス(2-オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム-tert-アミラート、カリウム-tert-ブチラート、ナトリウム-tert-ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等を用いることができる。
 これらの極性化合物は、1種単独で用いてもよいし、2種以上を併用してもよい。
 極性化合物の使用量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.01モル以上100モル以下であることが好ましい。
 このような極性化合物(ビニル化剤)は重合体共役ジエン部分のミクロ構造の調節剤として、所望の1,2-ビニル結合量に応じて、適量用いることができる。多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる傾向にある。
 共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、例えば、特開昭59-140211号公報に記載されているように、スチレンの全量と1,3-ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中で残りの1,3-ブタジエンを断続的に添加する方法を用いてもよい。
 重合工程における重合温度は、リビングアニオン重合が進行する温度であることが好ましく、生産性の観点から、0℃以上であることがより好ましく、120℃以下であることがさらに好ましい。このような範囲にあることで、重合終了後の活性末端に対する変性剤の反応量を充分に確保することができる傾向にある。よりさらに好ましくは50℃以上100℃以下である。
 本実施形態の水添共役ジエン系重合体の製造方法における前記工程(B)では、前述の分岐化剤を添加する工程を含む。
 分岐化工程における、分岐化剤の添加量は特に限定されないが、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.03モル以上0.5モル以下であることが好ましく、0.05モル以上0.4モル以下であることがより好ましく、0.01モル以上0.25モル以下であることがさらに好ましい。分岐化剤を添加するタイミングは、重合の再現性を高める観点から反応器中のモノマーコンバージョンが50%以上であることが好ましく、80%以上であることがより好ましく、90%以上であることがさらに好ましい。
 本実施形態の水添共役ジエン系重合体の製造方法における工程(C)では、共役ジエン化合物単独を添加してもよく、共役ジエン化合物及び芳香族ビニル化合物を添加してもよい。工程(A)におけるモノマー成分と工程(C)におけるモノマー成分との添加量の比率(工程(A):工程(C))は、特に限定されないが、99:1~5:95であすことが好ましく、95:5~30:70であることがより好ましく、95:5~60:40であることがさらに好ましい。
 追加するモノマー量が、上記の範囲内にあると分岐化剤による分岐点とカップリング剤による分岐点間の分子量が長くなり直線性の高い分子構造を取りやすい傾向となる。直線性の高い分子構造とすることで、加硫物とした際に水添共役ジエン系重合体の分子鎖同士の絡み合いが増して、耐摩耗性、操縦安定性及び破壊強度に優れたゴム組成物を得られ易い傾向にある。
 本実施形態の水添共役ジエン系重合体の製造方法における工程(D)では、前述の変性剤を含むカップリング剤を添加する工程を含む。
 カップリング剤の添加量は特に限定されないが、目的に応じて選択することが好ましく、共役ジエン系重合体の活性末端1モルに対して、0.01モル以上0.5モル以下であることが好ましく、0.03モル以上0.4モル以下であることがより好ましく、0.05モル以上0.25モル以下であることがさらに好ましい。
 カップリング剤を添加するタイミングは、重合の再現性を高める観点から反応器中のモノマーコンバージョンが50%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましい。
 本実施形態の水添共役ジエン系重合体の製造方法における工程(E)では、前述の水添反応に記載された方法で水添反応を実施する。
 本実施形態の水添共役ジエン系重合体は、特に限定されず、共役ジエン化合物(モノマー)と分岐化剤との重合体であってもよいし、共役ジエン化合物、分岐化剤及びこれら以外のモノマーとの共重合体であってもよい。例えば、共役ジエン化合物がブタジエン又はイソプレンで、これとビニル芳香族部分を含む分岐化剤とを重合させた場合、重合鎖はいわゆるポリブタジエン又はポリイソプレンで、分岐部分にビニル芳香族由来の構造を含むポリマーとなる。このような構造を有することで、ポリマー鎖の1本当たりの直線性が向上及び、加硫後の架橋密度の向上が可能など耐摩耗性の向上という効果を奏する傾向にある。そのため、本実施形態の水添共役ジエン系重合体は、タイヤ、樹脂改質、自動車の内装及び外装品、防振ゴム、履物などの用途に好適である。
 本実施形態の水添共役ジエン系重合体の製造方法においては、カップリング工程の後、重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。
 失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
 中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9~11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
 本実施形態の水添共役ジエン系重合体の製造方法においては、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、ゴム用安定剤を添加することが好ましい。
 ゴム用安定剤としては、以下のものに限定されず、公知のものを用いることができるが、例えば、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(以下「BHT」とも記す。)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェノール)プロピネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましい。
 本実施形態の水添共役ジエン系重合体の生産性、充填剤等を配合した組成物としたときの加工性をより改善するために、必要に応じて、ゴム用軟化剤を添加することができる。
 本実施形態の水添共役ジエン系重合体組成物は、上述の共役ジエン系重合体100質量部と、ゴム用軟化剤1~60質量部とを、含有することが好ましい。
 本実施形態の水添共役ジエン系重合体組成物において、ゴム用軟化剤の含有量は、上述の共役ジエン系重合体100質量部に対して、5~50質量部であることがより好ましく、10~37.5質量部であることがさらに好ましい。
 ゴム用軟化剤としては、特に限定されないが、例えば、伸展油、液状ゴム、樹脂等が挙げられる。
 ゴム用軟化剤を水添共役ジエン系重合体に添加する方法としては、以下のものに限定されないが、ゴム用軟化剤を水添共役ジエン系重合体溶液に加え、混合して、ゴム用軟化剤含有の重合体溶液としたものを脱溶媒する方法が好ましい。
 好ましい伸展油としては、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
 好ましい液状ゴムとしては、以下のものに限定されないが、例えば、液状ポリブタジエン、液状スチレン-ブタジンゴム等が挙げられる。
 液状ゴムを添加した際の効果として、水添共役ジエン系重合体と充填剤等とを配合した組成物としたときの加工性を改善することに加え、組成物のカラス転移温度を低温側にシフトできることで、加硫物としたときにおける耐摩耗性、低ヒステリシスロス性、及び低温特性を改良する傾向にある。
 好ましい樹脂としては、以下のものに限定されないが、例えば、芳香族系石油樹脂、クマロン・インデン樹脂、テルペン系樹脂、ロジン誘導体(桐油樹脂を含む)、トール油、トール油の誘導体、ロジンエステル樹脂、天然及び合成のテルペン樹脂、脂肪族炭化水素樹脂、芳香族炭化水素樹脂、混合脂肪族-芳香族炭化水素樹脂、クマリン-インデン樹脂、フェノール樹脂、p-tert-ブチルフェノール-アセチレン樹脂、フェノール-ホルムアルデヒド樹脂、キシレン-ホルムアルデヒド樹脂、モノオレフィンのオリゴマー、ジオレフィンのオリゴマー、芳香族炭化水素樹脂、芳香族系石油樹脂、水素化芳香族炭化水素樹脂、環式脂肪族炭化水素樹脂、水素化炭化水素樹脂、炭化水素樹脂、水素化桐油樹脂、水素化油樹脂、水素化油樹脂と単官能又は多官能アルコールとのエステル等が挙げられる。これら樹脂は、1種類で用いてもよいし、2種以上を併用してもよい。水素化する場合、不飽和基を全て水添してもよいし、一部残してもよい。
 樹脂を添加した際の効果として、水添共役ジエン系重合体と充填剤等とを配合した組成物としたときの加工性を改善することに加え、加硫物としたときにおける破壊強度を改良する傾向にあり、また組成物のカラス転移温度を高温側にシフトできることで、ウェットスキッド抵抗性を改良する傾向にある。
 ゴム用軟化剤としての、伸展油、液状ゴム又は樹脂等の添加量は、特に限定されないが、本実施形態の水添共役ジエン系重合体100質量部に対し、好ましくは1質量部以上60質量部以下、より好ましくは5質量部以上50質量部以下、さらに好ましくは10質量部以上37.5質量部以下である。
 ゴム用軟化剤を前記範囲内で添加すると、水添共役ジエン系重合体と充填剤等とを配合した組成物としたときの加工性が良好となり、加硫物としたときにおける破壊強度及び耐摩耗性が良好となる傾向にある。
(脱溶媒工程)
 本実施形態の水添共役ジエン系重合体の製造方法において、得られた水添共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。その方法として、特に限定されないが、例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
(ゴム組成物)
 本実施形態のゴム組成物は、ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤とを含む。
 また、前記ゴム成分は、省燃費性能、加工性、耐摩耗性向上の観点から、当該ゴム成分の総量(100質量部)に対して、上述した水添共役ジエン系重合体、又は上述した水添共役ジエン系重合体組成物を10質量部以上含む。
 また、当該充填剤は、シリカ系無機充填剤を含むことが好ましい。
 本実施形態のゴム組成物は、シリカ系無機充填剤を分散させることで、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときにおける耐摩耗性、破壊強度、及び低ヒステリシスロス性とウェットスキッド抵抗性とのバランスにより優れる傾向にある。
 本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系無機充填剤を含むことが好ましい。
 本実施形態のゴム組成物は、上述の水添共役ジエン系重合体以外のゴム状重合体(以下、単に「ゴム状重合体」という。)を、上述の水添共役ジエン系重合体と組み合わせて使用できる。
 このようなゴム状重合体としては、以下のものに限定されないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。
 具体的なゴム状重合体としては、以下のものに限定されないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン-ブタジエンゴム又はその水素添加物、スチレン-ブタジエンブロック共重合体又はその水素添加物、スチレン-イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル-ブタジエンゴム又はその水素添加物が挙げられる。
 非ジエン系重合体としては、以下のものに限定されないが、例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-ブテンゴム、エチレン-ヘキセンゴム、エチレン-オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、及び多硫化ゴムが挙げられる。
 天然ゴムとしては、以下のものに限定されないが、例えば、スモークドシートであるRSS3~5号、SMR、エポキシ化天然ゴムが挙げられる。
 上述した各種ゴム状重合体は、水酸基、アミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。タイヤ用に用いる場合、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエンゴム、天然ゴム、及びブチルゴムが好ましく用いられる。
 ゴム状重合体の重量平均分子量は、性能と加工特性とのバランスの観点から、2000以上2000000以下であることが好ましく、5000以上1500000以下であることがより好ましい。また、低分子量のゴム状重合体、いわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態のゴム組成物を上述の水添共役ジエン系重合体とゴム状重合体とを含むゴム組成物とする場合において、ゴム状重合体に対する上述の水添共役ジエン系重合体の含有比率(質量比)は、(上述の水添共役ジエン系重合体/ゴム状重合体)として、10/90以上100/0以下が好ましく、20/80以上90/10以下がより好ましく、50/50以上80/20以下がさらに好ましい。
 したがって、ゴム成分は、該ゴム成分の総量(100質量部)に対して、上述の水添共役ジエン系重合体を、好ましくは10質量部以上100質量部以下含み、より好ましくは20質量部以上90質量部以下含み、さらに好ましくは50質量部以上80質量部以下含む。
 (上述の水添共役ジエン系重合体/ゴム状重合体)の含有比率が上記範囲であると、加硫物としたときにおける耐摩耗性、破壊強度に優れ、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスも満足する傾向にある。
 本実施形態のゴム組成物に含まれる充填剤としては、以下のものに限定されないが、例えば、シリカ系無機充填剤、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。これらの中でも、シリカ系無機充填剤が好ましい。
 充填剤は1種単独で用いてもよいし、2種以上を併用してもよい。
 本実施形態のゴム組成物中の充填剤の含有量は、上述の水添共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部であり、20質量部以上100質量部以下が好ましく、30質量部以上90質量部以下がより好ましい。
 本実施形態のゴム組成物において、充填剤の含有量は、充填剤の添加効果が発現する観点から、ゴム成分100質量部に対して、5.0質量部以上であり、充填剤を十分に分散させ、組成物の加工性及び機械強度を実用的に十分なものとする観点から、ゴム成分100質量部に対して、150質量部以下である。
 シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO2又はSi3Alを構成単位として含む固体粒子が好ましく、SiO2又はSi3Alを構成単位の主成分として含む固体粒子がより好ましい。ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
 具体的なシリカ系無機充填剤としては、以下のものに限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、破壊強度の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
 ゴム組成物の実用上良好な耐摩耗性及び破壊強度を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100m2/g以上300m2/g以下であることが好ましく、170m2/g以上250m2/g以下であることがより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m2/g以下の)シリカ系無機充填剤と、比較的比表面積の大きい(例えば、200m2/g以上の)シリカ系無機充填剤)と、を組み合わせて用いることができる。本実施形態において、特に比較的比表面積の大きい(例えば、200m2/g以上の)シリカ系無機充填剤を用いる場合に、上述の水添共役ジエン系重合体を含む組成物は、シリカの分散性を改善し、特に耐摩耗性の向上に効果があり、良好な破壊強度と低ヒステリシスロス性とを高度にバランスさせることができる傾向にある。
 ゴム組成物中のシリカ系無機充填剤の含有量は、水添共役ジエン系重合体を含むゴム成分100質量部に対して、5.0質量部以上150質量部が好ましく、20質量部以上100質量部以下がより好ましい。本実施形態のゴム組成物において、シリカ系無機充填剤の含有量は、無機充填剤の添加効果が発現する観点から、ゴム成分100質量部に対して、5.0質量部以上であり、無機充填剤を十分に分散させ、組成物の加工性及び機械強度を実用的に十分なものとする観点から、ゴム成分100質量部に対して、150質量部以下である。
 カーボンブラックとしては、以下のものに限定されないが、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが挙げられる。これらの中でも、窒素吸着比表面積が50m2/g以上、かつ、ジブチルフタレート(DBP)吸油量が80mL/100g以下のカーボンブラックが好ましい。
 本実施形態のゴム組成物において、カーボンブラックの含有量は、水添共役ジエン系重合体を含むゴム成分100質量部に対して、0.5質量部以上100質量部以下が好ましく、3.0質量部以上100質量部以下がより好ましく、5.0質量部以上50質量部以下がさらに好ましい。本実施形態のゴム組成物において、カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、ゴム成分100質量部に対して、0.5質量部以上とすることが好ましく、分散性の観点から、ゴム成分100質量部に対して、100質量部以下とすることが好ましい。
 金属酸化物とは、化学式Mxy(Mは、金属原子を示し、x及びyは、各々独立して、1~6の整数を示す。)を構成単位の主成分とする固体粒子のことをいう。
 金属酸化物としては、以下のものに限定されないが、例えば、アルミナ、酸化チタン、酸化マグネシウム、及び酸化亜鉛が挙げられる。
 金属水酸化物としては、以下のものに限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、及び水酸化ジルコニウムが挙げられる。
 本実施形態のゴム組成物は、シランカップリング剤を含んでもよい。シランカップリング剤は、ゴム成分と無機充填剤との相互作用を緊密にする機能を有しており、ゴム成分及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。このような化合物としては、特に限定されないが、例えば、ビス-[3-(トリエトキシシリル)-プロピル]-テトラスルフィド、ビス-[3-(トリエトキシシリル)-プロピル]-ジスルフィド、ビス-[2-(トリエトキシシリル)-エチル]-テトラスルフィドが挙げられる。
 本実施形態のゴム組成物において、シランカップリング剤の含有量は、上述した無機充填剤100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1.0質量部以上15質量部以下がさらに好ましい。シランカップリング剤の含有量が上記範囲であると、シランカップリング剤による上記添加効果を一層顕著なものにできる傾向にある。
 本実施形態のゴム組成物は、その加工性の改良を図る観点から、ゴム用軟化剤を含んでもよい。
 ゴム用軟化剤の添加量は、上述の水添共役ジエン系重合体を含むゴム成分100質量部に対して、予め上述の水添共役ジエン系重合体や他のゴム状重合体に含有してある、ゴム用軟化剤を含んだ量と、ゴム組成物とする際に添加するゴム用軟化剤の総量で表される。
 ゴム用軟化剤としては、伸展油、液状ゴム、樹脂が好適である。
 ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30%以上45%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30%を超えて占めるものが芳香族系と呼ばれている。本実施形態の水添共役ジエン系重合体が共役ジエン化合物とビニル芳香族化合物との共重合体である場合、用いるゴム用軟化剤としては、適度な芳香族含量を有するものが共重合体との馴染みがよい傾向にあるため好ましい。
 本実施形態のゴム組成物において、ゴム用軟化剤の含有量は、ゴム成分100質量部に対して、0質量部以上100質量部以下が好ましく、10質量部以上90質量部以下がより好ましく、30質量部以上90質量部以下がさらに好ましい。ゴム用軟化剤の含有量がゴム成分100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、ゴム組成物表面のベタツキを抑制する傾向にある。
 水添共役ジエン系重合体とその他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。また、ゴム成分とその他の充填剤、シランカップリング剤、及び添加剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
 本実施形態のゴム組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。本実施形態のゴム組成物において、加硫剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
 加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム成分100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
 本実施形態のゴム組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤及び充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、具体的には、特に限定されないが、例えば、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
 本実施形態のゴム組成物は、タイヤ用ゴム組成物として好適に用いられる。すなわち、本実施形態のタイヤは、ゴム組成物を用いてなる。
 タイヤ用ゴム組成物としては、以下のものに限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。特に、タイヤ用ゴム組成物は、加硫物としたときに耐摩耗性能、破壊強度、及び低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れているので、省燃費タイヤ、高性能タイヤのトレッド用として、好適に用いられる。
 以下、具体的な実施例及び比較例を挙げて、本実施形態を更に詳しく説明するが、本実施形態は以下の実施例及び比較例により何ら限定されるものではない。
 実施例及び比較例における各種の物性は下記に示す方法により測定した。
(重合体ムーニー粘度)
 共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、ISO 289に準拠し、L形ローターを用いてムーニー粘度を測定した。
 測定温度は、水添共役ジエン系重合体を試料とする場合には100℃とした。
 具体的には、まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後の試料のトルクを測定して当該測定値をムーニー粘度(ML(1+4))とした。
(分岐度(Bn))
 ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、粘度検出器付きGPC-光散乱法測定法によって分岐度(Bn)を以下のとおり測定した。ポリスチレン系ゲルを充填剤としたカラムを3本連結したゲル浸透クロマトグラフィー(GPC)測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、示差屈折率(RI)検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器との結果から試料の絶対分子量を、RI検出器と粘度検出器との結果から試料の固有粘度を求めた。
 直鎖ポリマーは、固有粘度[η]=-3.883M0.771に従うものとして用い、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出した。なお、当該式中、Mは絶対分子量を表す。
 その後、得られた収縮因子(g’)を用いてg’=6Bn/{(Bn+1)(Bn+2)}と定義される分岐度(Bn)を算出した。
 溶離液は5mmol/Lのトリエチルアミン入りテトラヒドロフラン(以下「THF」とも記す。)を使用した。
 カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用した。
 測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定した。
(重量平均分子量、分子量が30万以下の成分(成分LM))
 測定条件1 : 共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、試料の重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と分子量が30万以下の成分(成分LM)とを求めた。
 溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用した。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
 測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
 上記の測定条件1で測定した各種試料の中で、分子量分布(Mw/Mn)の値が1.6未満であった試料は、改めて下記の測定条件2により測定した。測定条件1で測定し、その分子量分布の値が1.6以上であった試料に対しては、測定条件1で測定した。
 測定条件2 : 共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置を使用して、クロマトグラムを測定し、標準ポリスチレンを使用した検量線に基づいて試料の重量平均分子量(Mw)と数平均分子量(Mn)と分子量が30万以下の成分(成分LM)とを求めた。
 溶離液は5mmol/Lのトリエチルアミン入りTHFを使用した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。
 オーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製の商品名「HLC8020」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液20μLをGPC測定装置に注入して測定した。
(変性率)
 ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、当該重合体における変性率をカラム吸着GPC法で以下のとおり測定した。シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより、測定した。
 試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムと、の差分よりシリカ系カラムへの吸着量を測定し、重合体における変性率を求めた。
 具体的には、以下に示すとおりである。また、上記の(重量平均分子量)の測定条件1での測定において、その分子量分布の値が1.6以上であった試料に対しては下記の測定条件3で測定し、その分子量分布の値が1.6未満であった試料に対しては下記の測定条件4で測定した。
 試料溶液の調製 : 試料10mg及び標準ポリスチレン5mgを20mLのTHFに溶解させて、試料溶液とした。
 測定条件3 : ポリスチレン系カラムを用いたGPC測定条件:
 東ソー社製の商品名「HLC-8320GPC」を使用して、5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用した。
 測定条件4 : 5mmol/Lのトリエチルアミン入りTHFを溶離液として用い、試料溶液20μLを装置に注入して測定した。カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn SuperH-H」、カラム:東ソー社製の商品名「TSKgel SuperH5000」、「TSKgel SuperH6000」、「TSKgel SuperH7000」を使用した。カラムオーブン温度40℃、THF流量0.6mL/分の条件で、RI検出器(東ソー社製 HLC8020)を用いて測定しクロマトグラムを得た。
 シリカ系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC-8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5ml/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM-1000S」、「PSM-300S」、「PSM-60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
 重合体における変性率の計算方法 : ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2とした。また、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4とした。P1~P4に基づき下記式より重合体における変性率(%)を求めた。
 変性率(%)=[1-(P2×P3)/(P1×P4)]×100
(ただし、P1+P2=P3+P4=100)
(GPC-光散乱法測定による分子量(絶対分子量))
 ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC-光散乱測定装置を使用して、クロマトグラムを測定し、溶液粘度及び光散乱法に基づいて重量平均分子量(Mw-i)を求めた(「絶対分子量」ともいう。)。
 溶離液はテトラヒドロフランとトリエチルアミンとの混合溶液(THF in TEA:トリエチルアミン5mLをテトラヒドロフラン1Lに混合させ調整した。)を使用した。
 カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn HHR-H」と、カラム:東ソー社製の商品名「TSKgel G6000HHR」、「TSKgel G5000HHR」、「TSKgel G4000HHR」とを接続して使用した。
 オーブン温度40℃、THF流量1.0mL/分の条件で、GPC-光散乱測定装置(マルバーン社製の商品名「Viscotek TDAmax」)を用いた。測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液200μLをGPC測定装置に注入して測定した。
(結合スチレン量、水素添加率、数式(S)、数式(T))
 ゴム用軟化剤を含まない共役ジエン系重合体若しくは水添共役ジエン系重合体を試料として、重合体の中の結合スチレン量、前記式(1)で表される構造単位、前記式(2)で表される構造単位、前記式(3)で表される構造単位、及び前記式(4)で表される構造単位の構成比(mol%)を測定し、1,3-ブタジエンに由来する構造単位の二重結合の水素添加率(以下単に「水素添加率」とも記す)、前記数式(S)の値、及び前記数式(T)の値を算出するために、核磁気共鳴装置(1H-NMR)を用いて、下記の条件で測定した。1H-NMR測定の条件を以下に記す。
(測定条件)
 測定機器   :JNM-LA400(JEOL製)
 溶媒     :重水素化クロロホルム
 測定サンプル :ポリマーを水素添加する前後の抜き取り品
 サンプル濃度 :50mg/mL
 観測周波数  :400MHz
 化学シフト基準:TMS(テトラメチルシラン)
 パルスディレイ:2.904秒
 スキャン回数 :64回
 パルス幅   :45°
 測定温度   :26℃
(コールドフロー)
 共役ジエン系重合体(組成物)若しくは水添共役ジエン系重合体(組成物)を測定用試料とした。コールドフローは、25℃で40mm×40mm×厚み(H0)50mmの試料に、25℃で1kgの荷重を掛けて60分間放置後の厚み(H60)から、前記厚みの変化率(%)を下式で計算した。
 厚みの変化率(%)=(H0-H60)×100/H0
 さらに比較例2~5及び実施例1~2、4~5及び実施例31については、比較例1の結果を100として指数化した。実施例6~8については、比較例6の結果を100として指数化した。実施例9~11については、比較例7の結果を100として指数化した。比較例8の結果を100として指数化した。実施例15~17については、比較例9の結果を100として指数化した。
 比較例11~12及び実施例18~23については、比較例10の結果を100として指数化した。実施例24~26については、比較例13の結果を100として指数化した。実施例27~29については、比較例14の結果を100として指数化した。実施例30については、比較例15の結果を100として指数化した。実施例32~33については、比較例16の結果を100として指数化した。
 指数が小さいほど保管中のゴムベールのコールドフローが小さくハンドリング性に優れることを示す。
 指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(水素添加触媒の調製)
 後述する実施例及び比較例において、水添共役ジエン系重合体を調製する際に用いる水素添加触媒を、下記の方法により調製した。
 攪拌装置を具備する反応容器を窒素置換しておき、これに、乾燥及び精製したシクロヘキサンを1L仕込んだ。次に、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100mmolを添加した。これを十分に攪拌しながら、トリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させた。これにより水素添加触媒(T)が得られた。
(分岐化剤の構造)
 後述する実施例及び比較例において、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)若しくはジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を用いており、いずれも下記式(5)で表される化合物に基づく単量体単位である。
 トリメトキシ(4-ビニルフェニル)シラン(BS-1)の構造は、下記式(5)中、R1が水素であり、R2~R3が、メチル基であり、mが、0であり、nが、3であり、lが、0であった。
 また、ジメトキシメチル(4-ビニルフェニル)シラン(BS-2)の構造は、式(5)中、R1が水素であり、R2~R3が、メチル基であり、mが、1であり、nが、2であり、lが、0であった。
Figure JPOXMLDOC01-appb-C000014
(式(5)中、R1は水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
 複数存在する場合のR1~R3は、各々独立している。
 X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
 mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
(比較例1)水添共役ジエン系重合体(試料B1)
 内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエンを2,220g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を15mmolとを、反応器へ入れ、反応器内温を40℃に保持した。
 重合開始剤として、n-ブチルリチウムを18mmol、前記反応器に供給して重合を開始した。
 重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを3.0mmolを添加して共役ジエン系重合体の溶液を得た。
 さらに、得られた共役ジエン系重合体の溶液に、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を1時間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は60.0%であった。
 得られた水添共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、水添共役ジエン系重合体(試料B1)を得た。
 試料B1を分析した結果を表1-1に示す。
 測定の結果、試料B1におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有さないことがわかった。
(比較例2)共役ジエン系重合体(試料B2)
 内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエン(初期ブタジエン)を1,887g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を69mmolとを、反応器へ入れ、反応器内温を42℃に保持した。
 重合開始剤として、n-ブチルリチウムを92mmol、前記反応器に供給して重合を開始した。
 重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した際に、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)18mmol添加し、5分間攪拌した。その後、追添1,3-ブタジエン(追添ブタジエン)を333gを添加し、反応させた。最終的な反応器内の温度は75℃であった。
 最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を8.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを5.7mmolを添加し共役ジエン系重合体の溶液を得た。
 得られた共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、共役ジエン系重合体(試料B2)を得た。
 試料B2を分析した結果を表1-1に示す。
 なお、分岐化剤添加前の重合体、分岐化剤添加後の重合体、及びカップリング剤添加後の各工程における重合体について、GPC測定による分子量と、粘度計付きGPC測定による分岐度との比較により、カップリング共役ジエン系重合体の構造を同定した。以下、同様に各試料の構造を同定した。測定の結果、試料B2の構造は、分岐化剤添加後の共役ジエン系重合体は平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例3)水添共役ジエン系重合体(試料B3)
 内容積40Lで、撹持機及びジャケットを具備する温度制御が可能なオートクレーブを反応器として使用し、予め不純物を除去した、1,3-ブタジエン(初期ブタジエン)を1,887g、スチレンを780g、シクロヘキサンを21,000g、極性物質として、テトラヒドロフラン(THF)を30mmolと2,2-ビス(2-オキソラニル)プロパン(BOP)を69mmolとを、反応器へ入れ、反応器内温を42℃に保持した。
 重合開始剤として、n-ブチルリチウムを92mmol、前記反応器に供給して重合を開始した。
 重合反応開始後、重合による発熱で反応器内の温度は上昇を始め、反応器中のモノマーコンバージョンが98%に達した際に、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)18mmol添加し、5分間攪拌した。その後、追添1,3-ブタジエン(追添ブタジエン)を333gを添加し、反応させた。最終的な反応器内の温度は75℃であった。
 最終的な反応器内の温度は、76℃に達した。この反応温度ピーク到達後から2分後に、反応器にカップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を8.0mmol添加し、20分間、カップリング反応を実施した。この重合体溶液に、反応停止剤としてメタノールを5.7mmolを添加し共役ジエン系重合体の溶液を得た。
 得られた共役ジエン系重合体の溶液に、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を30分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は20.0%であった。
 得られた水添共役ジエン系重合体の溶液に酸化防止剤としてn-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロオキシフェニル)-プロピオネートを12.6gと、4,6-ビス(オクチルチオメチル)-o-クレゾールを3.0g添加した後、スチームス卜リッピングにより溶媒を除去し、乾燥機により乾燥処理を施し、水添共役ジエン系重合体(試料B3)を得た。試料B3の水素添加率は20%であった。
 試料B3を分析した結果を表1-1に示す。
 測定の結果、試料B3における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(実施例1、2、比較例4)水添共役ジエン系重合体(順に試料B4、B5、B6)
 水素添加反応(水添反応)における水素積算流量を調整した点以外は、比較例3と同じ操作により、水添共役ジエン系重合体(試料B4、試料B5、試料B6)を得た。試料B4、試料B5、試料B6の水素添加率は順に63.0%、92.0%、99.5%であった。
 試料B4、試料B5、試料B6を分析した結果を表1-1に示す。
 測定の結果、試料B4、B5及びB6における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例5)水添共役ジエン系重合体(試料B8)
 極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を19mmol、重合開始剤としてn-ブチルリチウムを24mmol、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.3mmol、反応停止剤としてメタノールを5.3mmolに変えた点以外は比較例1と同様にして、水添共役ジエン系重合体(試料B8)を得た。試料B8の水素添加率は96%であった。
 試料B8を分析した結果を表1-1に示す。
 測定の結果、試料B8におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例4)水添共役ジエン系重合体(試料B9)
 カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.0mmol、及び四塩化ケイ素(化合物3)を4.0mmol、に変え、水添反応における水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B9)を得た。試料B9の水素添加率は65%であった。
 試料B9を分析した結果を表1-1に示す。
 測定の結果、試料B9における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均2つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(実施例5)水添共役ジエン系重合体(試料B10)
 分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を反応器中のモノマーコンバージョンが60%の際に18mmol添加し、さらに分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を反応器中のモノマーコンバージョンが98%の際に7.4mmol添加し、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)の代わりに変性剤として1,3-ジメチル-2-イミダゾリジノン(化合物4)を9.8mmol、反応停止剤としてメタノールを5.3mmolに変え、水添反応における水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B10)を得た。試料B10の水素添加率は65%であった。
 試料B10を分析した結果を表1-1に示す。
 測定の結果、試料B10の構造について、2回目の分岐化剤添加後の共役ジエン系重合体は平均5.2分岐の星形高分子構造を有し、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例6)水添共役ジエン系重合体(試料B11)
 初期ブタジエンを2,700g、スチレンを300g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を4.8mmol、重合開始剤として、n-ブチルリチウムを22mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を7.3mmol、反応停止剤としてメタノールを3.3mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B11)を得た。試料B11の水素添加率は60%であった。
 試料B11を分析した結果を表1-2に示す。
 測定の結果、試料B11におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例6、7、8)水添共役ジエン系重合体(順に試料B12、B13、B14)
 初期ブタジエンを2,295g、スチレンを300g、追添ブタジエンを405g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を21mmol、重合開始剤として、n-ブチルリチウムを110mmol、分岐化剤としてジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を35mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を5.9mmol、反応停止剤としてメタノールを8.6mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B12、試料B13、試料B14)を得た。試料B12、試料B13、試料B14の水素添加率は順に60.0%、88.0%、93.0%であった。
 試料B12、試料B13、試料B14を分析した結果を表1-2に示す。
 測定の結果、試料B12、B13及びB14におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.0分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例7)水添共役ジエン系重合体(試料B15)
 初期ブタジエンを1,950g、スチレンを1,050g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を2.1mmol、重合開始剤として、n-ブチルリチウムを19mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.3mmol、反応停止剤としてメタノールを2.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B15)を得た。試料B15の水素添加率は50%であった。
 試料B15を分析した結果を表1-3に示す。
 測定の結果、試料B15におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例9、10、11)水添共役ジエン系重合体(順に試料B16、B17、B18)
 初期ブタジエンを1,560g、スチレンを1,050g、追添ブタジエンを390g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を12mmol、重合開始剤として、n-ブチルリチウムを146mmol、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を30mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を7.2mmol、反応停止剤としてメタノールを0mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B16、試料B17、試料B18)を得た。試料B16、試料B17、試料B18の水素添加率は順に39.0%、64.0%、95.0%であった。
 試料B16、試料B17、試料B18を分析した結果を表1-3に示す。
 測定の結果、試料B16、B17及びB18におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例8)水添共役ジエン系重合体(試料B19)
 初期ブタジエンを2,220g、スチレンを780g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を5.5mmol、重合開始剤として、n-ブチルリチウムを19mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.3mmol、反応停止剤としてメタノールを2.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B19)を得た。試料B19の水素添加率は70%であった。
 試料B19を分析した結果を表1-4に示す。
 測定の結果、試料B19におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(比較例9)水添共役ジエン系重合体(試料B23)
 初期ブタジエンを3,000g、スチレンを0g、極性物質として、2,2-ビス(2-オキソラニル)プロパン(BOP)を4.3mmol、重合開始剤として、n-ブチルリチウムを21mmol、カップリング剤としてN,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を6.9mmol、反応停止剤としてメタノールを3.2mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B23)を得た。試料B23の水素添加率は60%であった。
 試料B23を分析した結果を表1-5に示す。
 測定の結果、試料B23におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例15、16、17)水添共役ジエン系重合体(順に試料B24、B25、B26)
 初期ブタジエンを3,000g、スチレンを0g、極性物質として、2,2-ビス(2-オキソラニル)プロパン(BOP)を6.8mmol、重合開始剤として、n-ブチルリチウムを45mmol、カップリング剤としてN,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を4.5mmol、反応停止剤としてメタノールを6.9mmolに変え、水素積算流量を調整した点以外は比較例1と同様の操作で水添共役ジエン系重合体(試料B24、試料B25、試料B26)を得た。試料B24、試料B25、試料B26の水素添加率は、それぞれ、順に60%、75%、94%であった。
 試料B24、試料B25、試料B26を分析した結果を表1-5に示す。
 測定の結果、試料B24、B25、B26におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例31)水添共役ジエン系重合体(試料B27)
 初期ブタジエンを1,887g、スチレンを780g、追添ブタジエンを333g、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を72mmol、重合開始剤として、n-ブチルリチウムを98mmol、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を22.6mmol、カップリング剤として2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を4.9mmol、反応停止剤としてメタノールを3.7mmolに変え、水素積算流量を調整した点以外は比較例3と同様の操作で水添共役ジエン系重合体(試料B27)を得た。試料B27の水素添加率は71.0%であった。
 試料B27を分析した結果を表1-5に示す。
 測定の結果、試料B27におけるカップリング剤添加前の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
 表1-1~1-5に記載の分岐化剤、カップリング剤は以下の化合物である。
〔分岐化剤〕
 BS-1:トリメトキシ(4-ビニルフェニル)シラン
 BS-2:ジメトキシメチル(4-ビニルフェニル)シラン
〔カップリング剤〕
 化合物1:N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン
 化合物2:2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン
 化合物3:四塩化ケイ素
 化合物4:1,3-ジメチル-2-イミダゾリジノン
 化合物5:N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン
[応用実施例1~2、4~11、15~17及び応用比較例1~9、応用実施例33]
 表1-1~1-5に示す、試料B1~B6、B8~B19、B23~B26、B27を原料ゴム成分として、以下に示す配合条件Cに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
(ゴム成分)
 ・共役ジエン系重合体若しくは水添共役ジエン系重合体(試料B1~B6、B8~B19、B23~B26、B27):100質量部
(配合条件C)
 各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
 ・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
 ・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
 ・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
 ・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 ・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):25.0質量部
 ・亜鉛華:2.5質量部
 ・ステアリン酸:1.0質量部
 ・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
 ・硫黄:2.2質量部
 ・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 ・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:222.4質量部
(混練り方法)
 上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料B1~B6、B8~B19、B23~B26、B27)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物(共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物)を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。
 応用比較例1~4、応用比較例6~9、応用実施例1~2、応用実施例4~11、応用実施例15~17、応用実施例33の結果については表2-1~2-5に示す。
 応用比較例5の結果については表3に示す。
(配合物ムーニー粘度)
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
 応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。応用比較例5の結果については、後述する配合条件Dの応用比較例10の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
 指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(破断強度及び破断伸び、並びに破壊特性)
 JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
 応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。応用比較例5の結果については、後述する配合条件Dの応用比較例10の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
(省燃費性能)
 レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
 50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
 応用比較例2~4及び応用実施例1~2、4~5については、応用比較例1の結果を100として指数化した。応用実施例6~8については、応用比較例6の結果を100として指数化した。応用実施例9~11については、応用比較例7の結果を100として指数化した。応用比較例8の結果を100として指数化した。応用実施例15~17については、応用比較例9の結果を100として指数化した。応用実施例33の結果については、応用比較例1の結果を100として指数化した。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では基準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表2-1~2-5及び表3に示す。
[応用比較例10]
 表1-1に示す、試料B8を原料ゴム成分として、以下に示す配合条件Dに従い、原料ゴム成分を含有するゴム組成物を得た。
(ゴム成分)
 ・共役ジエン系重合体若しくは水添共役ジエン系重合体(試料B8):100質量部
(配合条件D)
 各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
 ・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
 ・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
 ・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
 ・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 ・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):15.0質量部
 ・亜鉛華:2.5質量部
 ・ステアリン酸:1.0質量部
 ・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
 ・硫黄:2.2質量部
 ・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 ・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:212.4質量部
(混練り方法)
 上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料B8)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。その結果を表3に示す。
(配合物ムーニー粘度)
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
 配合条件Dにおける応用比較例10の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
 指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(破断強度及び破断伸び、破壊特性)
 JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
 配合条件Dにおける応用比較例10の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
[水添共役ジエン系重合体組成物(油展重合体)の製造]
(比較例10)水添共役ジエン系重合体組成物(試料C1)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
 予め水分除去した、1,3-ブタジエン(初期ブタジエン)を17.7g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.034mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.122mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
 1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。
 次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.041mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
 次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.019mmol/分の速度で添加した。
 得られた共役ジエン系重合体溶液を別の反応器に移し、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を30分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は50.0%であった。
 次に、得られた水添共役ジエン系重合体の溶液に酸化防止剤(BHT)を重合体100gあたり0.2gとなるように連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、水添共役ジエン系重合体組成物(試料C1)を得た。
 試料C1の物性を表4-1に示す。
 測定の結果、試料C1におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(比較例11)共役ジエン系重合体組成物(試料C2)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
 予め水分除去した、1,3-ブタジエン(初期ブタジエン)を14.2g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.215mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
 1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。重合が十分に安定したところで、1,3-ブタジエンとスチレンとを共重合しながら、2基目の反応基の底部より、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.032mmol/分の速度で添加し、主鎖分岐構造を有する共役ジエン系重合体を得る重合反応及び分岐化反応を行った。
 次に、2基目反応器の中間部より、予め水分除去した1,3-ブタジエン(追添ブタジエン)を3.5g/分の条件で追加添加し、さらに重合反応を行った。
 次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.013mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
 次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.018mmol/分の速度で添加した後、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.055g/分(n-ヘキサン溶液)で連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、共役ジエン系重合体組成物(試料C2)を得た。
 試料C2の物性を表4-1に示す。
 なお、分岐化剤添加前の重合体、分岐化剤添加後の重合体、及びカップリング剤添加後の各工程における重合体について、GPC測定による分子量と、粘度計付きGPC測定による分岐度との比較により、共役ジエン系重合体の構造を同定した。以下、同様に各試料の構造を同定した。測定の結果、試料C2における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例12)水添共役ジエン系重合体組成物(試料C3)
 内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機付槽型反応器である攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器として2基連結した。
 予め水分除去した、1,3-ブタジエン(初期ブタジエン)を14.2g/分、スチレンを10.9g/分、n-ヘキサンを175.2g/分の条件で混合した。この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn-ブチルリチウム(処理n-ブチルリチウム)を0.105mmol/分で添加、混合した後、反応器の底部に連続的に供給した。更に、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分の速度で、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.215mmol/分の速度で、攪拌機で激しく混合する1基目反応器の底部へ供給して重合を開始し、反応器内温を67℃に保持した。
 1基目反応器頂部より重合体溶液を連続的に抜き出し、2基目反応器の底部に連続的に供給し70℃で反応を継続し、さらに2基目の頂部よりスタティックミキサーへ供給した。重合が十分に安定したところで、1,3-ブタジエンとスチレンとを共重合しながら、2基目の反応基の底部より、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.032mmol/分の速度で添加し、主鎖分岐構造を有する共役ジエン系重合体を得る重合反応及び分岐化反応を行った。
 次に、2基目反応器の中間部より、予め水分除去した1,3-ブタジエン(追添ブタジエン)を3.5g/分の条件で追加添加し、さらに重合反応を行った。
 次に、反応器の出口より流出した重合体溶液に、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.013mmol/分の速度で連続的に添加し、スタティックミキサーを用いて混合し、カップリング反応した。このとき、反応器の出口より流出した重合体溶液にカップリング剤が添加されるまでの時間は4.8分、温度は68℃であり、重合工程における温度と、カップリング剤を添加するまでの温度との差は2℃であった。
 次に、カップリング反応した重合体溶液に、反応停止剤としてメタノールを0.018mmol/分の速度で添加して共役ジエン系重合体の溶液を得た。
 得られた共役ジエン系重合体の溶液を別の反応器に移し、上記で調製した水素添加触媒(T)を、共役ジエン系重合体100質量部当たり、Ti基準で60ppm添加し、水素圧0.8MPa、平均温度85℃で水素添加反応を20分間行って水添共役ジエン系重合体の溶液を得た。得られた水添共役ジエン系重合体中のブタジエンに由来する構造単位の水素添加率は20.0%であった。
 次に、得られた水添共役ジエン系重合体の溶液に酸化防止剤(BHT)を重合体100gあたり0.2gとなるように連続的に添加した。酸化防止剤と同時に、ゴム用軟化剤として重合体100gに対してSRAEオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が25.0gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、水添共役ジエン系重合体組成物(試料C3)を得た。
 試料C3の物性を表4-1に示す。
 測定の結果、試料C3における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(実施例18~20)水添共役ジエン系重合体組成物(順に試料C4、C5、C6)
 水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C4、試料C5、試料C6)を得た。(試料C4、試料C5、試料C6の水添共役ジエン系重合体における水素添加率は順に55.0%、87.0%、93.0%であった。
 試料C4、試料C5、試料C6を分析した結果を表4-1に示す。
 測定の結果、試料C4、C5及びC6における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均4つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(実施例21~23)水添共役ジエン系重合体組成物(順に試料C7、C8、C9)
 極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.056mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.163mmol/分、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.033mmol/分、カップリング剤として、3-(4-メチルピペラジン-1-イル)プロピルトリエトキシシラン(化合物6)を0.011mmol/分、反応停止剤としてメタノールを0.016mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C7、試料C8、試料C9)を得た。試料C7、試料C8、試料C9の水添共役ジエン系重合体における水素添加率は順に50.0%、84.0%、93.0%であった。
 試料C7、試料C8、試料C9を分析した結果を表4-1に示す。
 測定の結果、試料C7、C8及びC9における分岐化剤添加後の共役ジエン系重合体の構造は、平均4.2分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均1つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例13)水添共役ジエン系重合体組成物(試料C10)
 初期ブタジエンを21.5g/分、スチレンを7.2g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.036mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.130mmol/分、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.044mmol/分、反応停止剤としてメタノールを0.02mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C10)を得た。試料C10の水添共役ジエン系重合体における水素添加率は50.0%であった。
 試料C10を分析した結果を表4-2に示す。
 測定の結果、試料C10におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例24~26)水添共役ジエン系重合体組成物(順に試料C11、C12、C13)
 初期ブタジエンを17.2g/分、スチレンを7.2g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.051mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.170mmol/分、分岐化剤としてジメトキシメチル(4-ビニルフェニル)シラン(BS-2)を0.041mmol/分、追添ブタジエンを4.3g/分、カップリング剤として、3,3'-(ピペラジン-1,4-ジ-イル)ビス(N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミン)(化合物7)を0.012mmol/分、反応停止剤としてメタノールを0.016mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添共役ジエン系重合体組成物(試料C11、試料C12、試料C13)を得た。試料C11、試料C12、試料C13の水添共役ジエン系重合体における水素添加率は順に50.0%、82.0%、95.0%であった。
 試料C11、試料C12、試料C13を分析した結果を表4-2に示す。
 測定の結果、試料C11、C12及びC13における分岐化剤添加後の共役ジエン系重合体の構造は、平均3分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3.8つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
(比較例14)水添共役ジエン系重合体組成物(試料C14)
 初期ブタジエンを17.2g/分、スチレンを11.5g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.054mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.120mmol/分、カップリング剤として、N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン(化合物1)を0.041mmol/分、反応停止剤としてメタノールを0.018mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C14)を得た。試料C14の水添共役ジエン系重合体における水素添加率は60%であった。
 試料C14を分析した結果を表4-3に示す。
 測定の結果、試料C14におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例27~29)水添共役ジエン系重合体組成物(順に試料C15、C16、C17)
 初期ブタジエンを17.2g/分、スチレンを11.5g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.067mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.159mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.017mmol/分、反応停止剤としてメタノールを0.024mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C15、試料C16、試料C17)を得た。試料C15、試料C16、試料C17の水添共役ジエン系重合体における水素添加率は順に60.0%、82.0%、93.0%であった。
 試料C15、試料C16、試料C17を分析した結果を表4-3に示す。
 測定の結果、試料C15、C16及びC17におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(比較例15)水添共役ジエン系重合体組成物(試料C18)
 初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.098mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.242mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.030mmol/分、反応停止剤としてメタノールを0.044mmol/分に変え、水素添加触媒(T)を添加せず、水添反応を実施しなかった点以外は、比較例10と同じ操作により、共役ジエン系重合体組成物(試料C18)を得た。
 試料C18を分析した結果を表4-4に示す。
 測定の結果、試料C18におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例30)水添共役ジエン系重合体組成物(試料C19)
 初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.098mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.242mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.030mmol/分、反応停止剤としてメタノールを0.044mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例10と同じ操作により、水添共役ジエン系重合体組成物(試料C19)を得た。試料C19の水添共役ジエン系重合体における水素添加率は80%であった。
 試料C19を分析した結果を表4-4に示す。
 測定の結果、試料C19におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(比較例16)
 初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.018mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.121mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.012mmol/分、反応停止剤としてメタノールを0.025mmol/分に変え、水素添加触媒(T)を共役ジエン系重合体100質量部当たり、Ti基準で100ppm添加した点以外は、比較例10と同じ操作を実施した。水素添加反応途中で粘度が非常に高くなったために、水素添加反応が進行せず、途中で反応停止させ、共役ジエン系重合体組成物(試料C20)を得た。
 試料C20を分析した結果を表4-4に示す。
 測定の結果、試料C20におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例32)
 初期ブタジエンを17.9g/分、スチレンを9.8g/分、シクロヘキサン145.3g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.018mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.121mmol/分、カップリング剤として、N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン(化合物5)を0.012mmol/分、反応停止剤としてメタノールを0.025mmol/分に変え、水素添加触媒(T)を共役ジエン系重合体100質量部当たり、Ti基準で200ppm添加し、さらにシクロヘキサン中の共重合体濃度が12質量%になるようシクロヘキサンを添加した点以外は、比較例10と同じ操作を実施した。水素添加反応途中で粘度が非常に高くなったために、水素添加反応が進行せず、途中で反応停止させ、共役ジエン系重合体組成物(試料C21)を得た。
 試料C21を分析した結果を表4-4に示す。
 測定の結果、試料C21におけるカップリング剤添加前の共役ジエン系重合体の構造は、直鎖状高分子構造を有しており、星形高分子は有していないことがわかった。
(実施例33)
 初期ブタジエンを14.3g/分、スチレンを9.8g/分、極性物質として2,2-ビス(2-オキソラニル)プロパン(BOP)を0.027mmol/分、重合開始剤としてn-ブチルリチウム(重合開始n-ブチルリチウム)を0.194mmol/分、分岐化剤としてトリメトキシ(4-ビニルフェニル)シラン(BS-1)を0.048mmol/分、追添ブタジエンを4.3g/分、カップリング剤として、2,2-ジメトキシ-1-(3-卜リメトキシシリルプロピル)-1-アザ-2-シラシクロペンタン(化合物2)を0.010mmol/分、反応停止剤としてメタノールを0.010mmol/分に変え、水添反応における水素積算流量を調整した点以外は、比較例12と同じ操作により、水添反応は問題なく進行し、水添共役ジエン系重合体組成物(試料C22)を得た。試料C22の水添共役ジエン系重合体における水素添加率は50%であった。
 試料C22を分析した結果を表4-4に示す。
 測定の結果、試料C22における分岐化剤添加後の共役ジエン系重合体の構造は、平均3.9分岐の星形高分子構造を有し、カップリング剤添加後の共役ジエン系重合体は平均3.6つの星形構造の分岐鎖に、アルコキシシリル基を含むビニル系単量体に由来する部分を有していた。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
 表4-1~4-4に記載の分岐化剤、カップリング剤は以下の化合物である。
〔分岐化剤〕
 BS-1:トリメトキシ(4-ビニルフェニル)シラン
 BS-2:ジメトキシメチル(4-ビニルフェニル)シラン
〔カップリング剤〕
 化合物1:N,N-ビス(トリメチルシリル)アミノプロピルメチルトリエトキシシラン
 化合物5:N,N,N’,N’-テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン
 化合物6:3-(4-メチルピペラジン-1-イル)プロピルトリエトキシシラン
 化合物7:3,3'-(ピペラジン-1,4-ジ-イル)ビス(N,N-ビス(3-(トリエトキシシリル)プロピル)プロパン-1-アミン)
[応用実施例19~31及び応用比較例11~16、応用比較例19、応用実施例34、35]
 表4-1~4-4に示す、試料C1~C19、C20~C22を原料ゴム成分として、以下に示す配合条件Eに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
(ゴム成分)
 ・共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物(試料C1~C19、C20~C22):100質量部(ゴム用軟化剤抜きの質量部)
(配合条件E)
 各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
 ・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」
 窒素吸着比表面積170m2/g):50.0質量部
 ・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」
 窒素吸着比表面積220m2/g):25.0質量部
 ・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」)
 :5.0質量部
 ・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 ・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部(予め、試料C1~C19中に含まれるゴム用軟化剤として添加した量を含む)
 ・亜鉛華:2.5質量部
 ・ステアリン酸:1.0質量部
 ・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
 ・硫黄:2.2質量部
 ・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 ・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:234.9質量部
(混練り方法)
 上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料C1~C19、C20~C22)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。
 応用比較例11~15、応用実施例19~30、応用比較例19及び応用実施例34、35については、結果を表5-1~5-3に示す。
 応用比較例16及び応用実施例31については、その結果を表6に示す。
(配合物ムーニー粘度)
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
 応用比較例12、13及び応用実施例19~24については、比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
 指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(破断強度及び破断伸び、破壊特性)
 JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びとの測定値の積を破壊特性とした。
 応用比較例12、13及び応用実施例19~24については、応用比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。指数が大きいほど破断強度及び破断伸び、並びに破壊特性が良好であることを示す。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
(省燃費性能)
 レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
 50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
 応用比較例12、13及び応用実施例19~24については、応用比較例11の結果を100として指数化した。応用実施例25~27については、応用比較例14の結果を100として指数化した。応用実施例28~30については、応用比較例15の結果を100として指数化した。応用実施例34、35については、応用比較例19の結果を100として指数化した。配合条件Eにおける応用実施例31、応用比較例16の結果については、後述する配合条件Fにおける応用比較例17の結果を100として指数化した。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表5-1~5-3及び表6に示す。
[応用実施例32及び応用比較例17]
 表4-3に示す、試料C18、C19を原料ゴム成分として、以下に示す配合条件Fに従い、それぞれの原料ゴム成分を含有するゴム組成物を得た。
(ゴム成分)
 ・共役ジエン系重合体組成物若しくは水添共役ジエン系重合体組成物(試料C18、C19):100質量部(ゴム用軟化剤抜きの質量部)
(配合条件F)
 各配合剤の添加量は、ゴム用軟化剤を含まないゴム成分100質量部に対する質量部数で示した。
 ・シリカ1(エボニック デグサ社製の商品名「Ultrasil 700 0GR」窒素吸着比表面積170m2/g):50.0質量部
 ・シリカ2(ローディア社製の商品名「Zeosil Premium 2 00MP」窒素吸着比表面積220m2/g):25.0質量部
 ・カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
 ・シランカップリング剤(エボニック デグサ社製の商品名「Si75」、 ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
 ・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):27.5質量部(予め、試料C18、C19中に含まれるゴム用軟化剤として添加した量を含む)
 ・亜鉛華:2.5質量部
 ・ステアリン酸:1.0質量部
 ・老化防止剤(N-(1,3-ジメチルブチル)-N‘-フェニル-p-フ ェニレンジアミン):2.0質量部
 ・硫黄:2.2質量部
 ・加硫促進剤1(N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド):1.7質量部
 ・加硫促進剤2(ジフェニルグアニジン):2.0質量部
・合計:224.9質量部
(混練り方法)
 上記した材料を次の方法により混練してゴム組成物を得た。温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30~50rpmの条件で、原料ゴム成分(試料C18、C19)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、SRAEオイル、亜鉛華及びステアリン酸を混練した。このとき、密閉混合機の温度を制御し、排出温度は155~160℃で各ゴム組成物(配合物)を得た。
 次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により、配合物の排出温度を155~160℃に調整した。冷却後、第三段の混練として、70℃に設定したオープンロールにて、硫黄、加硫促進剤1、2を加えて混練してゴム組成物を得た。その後、得られたゴム組成物を成型し、160℃で20分間、加硫プレスにて加硫した。加硫前のゴム組成物、及び加硫後のゴム組成物を評価した。具体的には、下記の方法により評価した。その結果を表6に示す。
(配合物ムーニー粘度)
 上記で得た第二段の混練後、かつ、第三段の混練前の配合物を試料として、ムーニー粘度計を使用し、ISO 289に準拠して、130℃、1分間の予熱を行った後に、ローターを毎分2回転で4分間回転させた後の粘度を測定した。
 配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。
 指数が79以下であれば非常に良好(表中◎◎)であり、80~89であれば良好(表中◎)であり、90~99であれば実用上問題なく(表中に〇)、100~105であればやや悪く(表中△)、105以上では実用上問題がある(表中×)。
(破断強度及び破断伸び、破壊特性)
 JIS K6251の引張試験法に準拠し、破断強度及び破断伸びを測定した。また、破断強度と破断伸びの測定値の積を破壊特性とした。
 配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。指数が小さいほど加工性に優れることを示す。指数が大きいほど破断強度及び破断伸び(破壊強度)、並びに破壊特性が良好であることを示す。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では実用上問題がある(表中×)。
(省燃費性能)
 レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。
 50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。
 配合条件Fにおける応用実施例32の結果については、配合条件Fにおける応用比較例17の結果を100として指数化した。
 指数が121以上であれば非常に良好(表中◎◎)であり、111~120であれば良好(表中◎)であり、101~110であれば実用上問題なく(表中に〇)、95~100であればやや悪く(表中△)、94以下では準品に比べ燃費が悪化し、ラベリング制度における等級が低下する可能性がある(表中×)。結果を表5-1~5-3及び表6に示す。
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
[応用実施例36~54及び応用比較例20~24]
 表7-1及び表7-2に示す原料ゴム成分及び配合条件G-1~G13に従い、前述の配合条件Cと同様の混練り方法でそれぞれの原料ゴム成分を含有するゴム組成物を得た。
 さらには、前述の加硫前後のゴム組成物の評価方法と同様の方法で、配合物ムーニー粘度、破断強度、破断伸び、破壊特性、及び省燃費性能を測定した。
 応用実施例36~46の結果については、応用比較例20の結果を100として指数化した。応用実施例47の結果については、応用比較例21の結果を100として指数化した。応用実施例48の結果については、応用比較例22の結果を100として指数化した。応用実施例49~52の結果については、応用比較例23の結果を100として指数化した。応用実施例53、54の結果については、応用比較例24の結果を100として指数化した。
 評価結果を表8-1及び表8-2に示す。
Figure JPOXMLDOC01-appb-T000034
・シリカ3:エボニックデグッサ社製のVN3(N2SA:175m2/g)
・シリカ4:ソルベイジャパン(株)製の115GR(N2SA:115m2/g)
・シリカ5:エボニックデグッサ社製の9000GR(N2SA:235m2/g)
・カーボンブラック2:三菱化学(株)製のダイアブラックN339(N2SA:96m2/g、DBP吸収量:124mL/100g)
・カーボンブラック3:キャボットジャパン(株)製のショウブラックN330(N2SA:75m2/g)
・SRAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」)
・軟化剤1:出光興産(株)製のダイアナプロセスAH-24(アロマオイル)
・軟化剤2:アリゾナケミカル社製のSYLVARES SA85(αメチルスチレン系樹脂(α-メチルスチレンとスチレンとの共重合体)、軟化点:85℃)
・軟化剤3:サートマー社製のRICON100(液状SBR、スチレン含量:20質量%、ビニル含量:70質量%、重量平均分子量:4500)
・軟化剤4:Rutgers Chemicals社製のNOVARES C100(クマロンインデン樹脂、軟化点:95~105℃)
・軟化剤5:DRT社製のDercolyte L120(ポリリモネン樹脂、軟化点:120℃)
・軟化剤6:KRATON 社製のsylvatraxx 4150(ポリテルペン樹脂、軟化点:150℃)
・シランカップリング剤2:エボニックデグッサ社製のSi266
・シランカップリング剤3:エボニックデグッサ社製のSi69
・シランカップリング剤4:エボニックデグッサ社製のSi363
・老化防止剤:N-(1,3-ジメチルブチル)-N‘-フェニル-p-フェニレンジアミン
・ワックス:日本精蝋(株)製のオゾエース0355
・加硫促進剤1:N-シクロヘキシル-2-ベンゾチアジルスルフィンアミド
・加硫促進剤2:ジフェニルグアニジン
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
 表1-1~1-5、表2-1~2-5、表3、表4-1~4-4、表5-1~5-3、表6、表7-1~7-2、表8-1~8-2に示す通り、実施例1~30、実施例31~33の水添共役ジエン系重合体又は水添共役ジエン系重合体組成物は、比較例1~15、比較例16と比較して、コールドフローが抑制され、且つ加硫物とする際の配合物ムーニー粘度が低く、良好な加工性を示すことも確認された。
 さらには、表2-1~2-5、表3、表5-1~5-3、表6、表7-1~7-2、表8-1~8-2に示す通り、応用実施例1~32、応用実施例33~54のゴム組成物は、応用比較例1~17、応用比較例19~24と比較して、加硫物としたときに破断強度、破断伸び、破壊特性に優れることを確認された。特に、応用実施例1、5、6、9、10、12、15、16及び33の結果から、水素添加率が39~80%の範囲である場合に、強度と省燃費性能とのバランスに極めて優れることが確認された。
 本出願は、2020年4月6日出願の日本特許出願(特願2020-068489号)及び2020年4月6日出願の日本特許出願(特願2020-068479号)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の水添共役ジエン系重合体は、タイヤトレッド、自動車の内装及び外装品、防振ゴム、ベルト、履物、発泡体、各種工業用品用途の材料等として、産業上の利用可能性がある。

Claims (19)

  1.  粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率が30%以上99%未満である、水添共役ジエン系重合体。
  2.  GPCによる重量平均分子量が21万以上300万未満である、請求項1に記載の水添共役ジエン系重合体。
  3.  下記式(1)で表される構造単位、下記式(2)で表される構造単位、下記式(3)で表される構造単位、及び下記式(4)で表される構造単位の構成比(mol%)を、それぞれ順にa、b、c、及びdとしたとき、下記数式(S)を満たす、請求項1又は2に記載の水添共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000001
     数式(S):20≦(a+b)/(a+b+c+d)×100≦65
  4.  下記式(1)で表される構造単位、及び下記式(2)で表される構造単位の構成比(mol%)を、それぞれ順にa、及びbとしたとき、下記数式(T)を満たす、請求項1乃至3のいずれか一項に記載の水添共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000002
      数式(T):90≦(a)/(a+b)×100≦100
  5.  芳香族ビニル単量体を3質量%以上60質量%未満含む、請求項1乃至4のいずれか一項に記載の水添共役ジエン系重合体。
  6.  変性率が60質量%以上である、請求項1乃至5のいずれか一項に記載の水添共役ジエン系重合体水添共役ジエン系重合体。
  7.  粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が8.0以上である、請求項1乃至6のいずれか一項に記載の水添共役ジエン系重合体水添共役ジエン系重合体。
  8.  3分岐以上の星形高分子構造を有し、
     少なくとも一つの星形構造の分岐鎖に、アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分を有し、
     当該アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分において、更なる主鎖分岐構造を有する、請求項1乃至7のいずれか一項に記載の水添共役ジエン系重合体。
  9.  前記アルコキシシリル基又はハロシリル基を含むビニル系単量体に由来する部分が、下記式(5)又は(6)で表される化合物に基づく単量体単位であり、
     下記式(5)又は(6)で表される化合物に基づく単量体単位による高分子鎖の分岐点を有し、
     水添共役ジエン系重合体の少なくとも一端が、カップリング剤を用いてカップリングされている、請求項8に記載の水添共役ジエン系重合体。
    Figure JPOXMLDOC01-appb-C000003
    (式(5)中、R1は、水素原子又は炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     R2~R3は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     複数存在する場合のR1~R3は、各々独立している。
     X1は、ハロゲン原子を表す。複数存在する場合のX1は、各々独立している。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。)
    Figure JPOXMLDOC01-appb-C000004
    (式(6)中、R2~R5は、各々独立して、炭素数1~20のアルキル基又は炭素数6~20のアリール基を示し、その一部分に分岐構造を有していてもよい。
     複数存在する場合のR2~R5は、各々独立している。
     X2~X3は、各々独立して、ハロゲン原子を表す。複数存在する場合のX2~X3は、各々独立している。
     mは、0~2の整数を示し、nは、0~3の整数を示し、lは、0~3の整数を示す。(m+n+l)は、3を示す。
     aは、0~2の整数を示し、bは、0~3の整数を示し、cは、0~3の整数を示す。(a+b+c)は、3を示す。)
  10.  前記式(5)中、R1が水素原子であり、m=0である、前記式(5)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
  11.  前記式(6)中、m=0であり、b=0である、前記式(6)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
  12.  前記式(5)中、R1が水素原子であり、m=0であり、l=0であり、n=3である、前記式(5)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
  13.  前記式(6)中、m=0であり、l=0であり、n=3であり、a=0であり、b=0であり、c=3である、前記式(6)で表される化合物に基づく単量体単位を有する、請求項9に記載の水添共役ジエン系重合体。
  14.  分子量が30万以下の成分(成分LM)が20%以上80%以下である、請求項1乃至13のいずれか一項に記載の水添共役ジエン系重合体。
  15.  水素添加率が50%以上75%以下である、請求項1乃至14のいずれか一項に記載の水添共役ジエン系重合体。
  16.  下記工程(A)及び(E)を含み、さらに下記工程(B)及び(D)の内、少なくとも1つの工程を含み、
     工程(E)で得られる水添共役ジエン系重合体において、粘度検出器付きGPC-光散乱法測定法による分岐度(Bn)が2.5以上であり、共役ジエン化合物に由来する構造単位の水素添加率を30%以上99%未満である、水添共役ジエン系重合体の製造方法;
     工程(A):共役ジエン化合物単独、又は、共役ジエン化合物及び芳香族ビニル化合物を重合して、共役ジエン系重合体を得る工程、
     工程(B):共役ジエン系重合体末端に分岐化剤を反応させ、活性末端を有する分岐共役ジエン系重合体を含む共役ジエン系重合体溶液を得る工程、
     工程(D):共役ジエン系重合体末端にカップリング剤を反応させる工程、
     工程(E):共役ジエン系重合体を水素添加反応させることにより水添共役ジエン系重合体を得る工程。
  17.  前記工程(D)を含む、請求項16に記載の水添共役ジエン系重合体の製造方法。
  18.  請求項1乃至15のいずれか一項に記載の水添共役ジエン系重合体100質量部と、ゴム用軟化剤1~60質量部とを、含有する、水添共役ジエン系重合体組成物。
  19.  ゴム成分と、当該ゴム成分100質量部に対して5.0質量部以上150質量部以下の充填剤と、を含み、
     前記ゴム成分は、当該ゴム成分の総量100質量部に対して、請求項1乃至15のいずれか一項に記載の水添共役ジエン系重合体、若しくは請求項18に記載の水添共役ジエン系重合体組成物を10質量部以上含む、ゴム組成物。
PCT/JP2021/014550 2020-04-06 2021-04-05 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法 WO2021206068A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022514072A JP7381725B2 (ja) 2020-04-06 2021-04-05 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法
KR1020227029598A KR20220134596A (ko) 2020-04-06 2021-04-05 수소 첨가 공액 디엔계 중합체, 수소 첨가 공액 디엔계 중합체 조성물, 및 고무 조성물 그리고 수소 첨가 공액 디엔계 중합체의 제조 방법
EP21785487.6A EP4134382A4 (en) 2020-04-06 2021-04-05 HYDROGENATED CONJUGATED DIENE POLYMER, HYDROGENATED CONJUGATED DIENE POLYMER COMPOSITION, RUBBER COMPOSITION, AND METHOD FOR PRODUCING HYDROGENATED CONJUGATED DIENE POLYMER
US17/913,414 US20230138073A1 (en) 2020-04-06 2021-04-05 Hydrogenated Conjugated Diene-Based Polymer, Hydrogenated Conjugated Diene-Based Polymer Composition, Rubber Composition, and Method for Producing Hydrogenated Conjugated Diene-Based Polymer
CN202180022272.XA CN115298225A (zh) 2020-04-06 2021-04-05 氢化共轭二烯系聚合物、氢化共轭二烯系聚合物组合物和橡胶组合物以及氢化共轭二烯系聚合物的制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-068489 2020-04-06
JP2020-068479 2020-04-06
JP2020068479 2020-04-06
JP2020068489 2020-04-06

Publications (1)

Publication Number Publication Date
WO2021206068A1 true WO2021206068A1 (ja) 2021-10-14

Family

ID=78023487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014550 WO2021206068A1 (ja) 2020-04-06 2021-04-05 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法

Country Status (6)

Country Link
US (1) US20230138073A1 (ja)
EP (1) EP4134382A4 (ja)
JP (1) JP7381725B2 (ja)
KR (1) KR20220134596A (ja)
CN (1) CN115298225A (ja)
WO (1) WO2021206068A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065509A1 (ja) * 2020-09-28 2022-03-31 旭化成株式会社 ベール成形体
WO2022163152A1 (ja) * 2021-01-28 2022-08-04 旭化成株式会社 ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド
WO2024034673A1 (ja) * 2022-08-12 2024-02-15 旭化成株式会社 共役ジエン系重合体、成形体、共役ジエン系重合体の製造方法、ゴム組成物、及びタイヤ
WO2024090556A1 (ja) * 2022-10-28 2024-05-02 株式会社Eneosマテリアル 重合体組成物及びタイヤ

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114669294A (zh) * 2022-04-13 2022-06-28 宏业生物科技股份有限公司 2,2-二(2-呋喃基)丙烷加氢制2,2-二(2-四氢呋喃基)丙烷的复合催化剂

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPH11189616A (ja) 1997-12-26 1999-07-13 Bridgestone Corp 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2011089086A (ja) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd 変性共重合体およびそれを用いたゴム組成物
JP2013100449A (ja) * 2011-10-17 2013-05-23 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
WO2018034194A1 (ja) * 2016-08-19 2018-02-22 旭化成株式会社 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2019183101A (ja) * 2018-10-04 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物及びタイヤ
JP2020068489A (ja) 2018-10-25 2020-04-30 住友電気工業株式会社 伝送路構造
JP2020068479A (ja) 2018-10-25 2020-04-30 株式会社デンソー 半導体スイッチング素子駆動回路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20070626A1 (it) * 2007-03-29 2008-09-30 Polimeri Europa Spa Mescola vulcanizzabile comprendente copolineri ramificati vinilarene-diene coniugato parzialmente idrogenati
WO2009060931A1 (ja) * 2007-11-08 2009-05-14 Jsr Corporation 水添共役ジエン系(共)重合ゴム及びその製造方法
SG11201901330XA (en) * 2016-08-19 2019-03-28 Asahi Chemical Ind Modified conjugated diene-based polymer, production method thereof, rubber composition and tire
CN112979876B (zh) * 2019-12-12 2023-09-08 旭化成株式会社 支化共轭二烯系聚合物及其制造方法、橡胶组合物的制造方法以及轮胎的制造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPH11189616A (ja) 1997-12-26 1999-07-13 Bridgestone Corp 重合体の製造方法、得られた重合体、及びそれを用いたゴム組成物
JP2003171418A (ja) 2001-09-27 2003-06-20 Jsr Corp 共役ジオレフィン(共)重合ゴム、該(共)重合ゴムの製造方法、ゴム組成物およびタイヤ
JP2005290355A (ja) 2004-03-11 2005-10-20 Sumitomo Chemical Co Ltd 変性ジエン系重合体ゴム及びその製造方法
JP2011089086A (ja) * 2009-10-26 2011-05-06 Sumitomo Rubber Ind Ltd 変性共重合体およびそれを用いたゴム組成物
JP2013100449A (ja) * 2011-10-17 2013-05-23 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及び空気入りタイヤ
WO2018034194A1 (ja) * 2016-08-19 2018-02-22 旭化成株式会社 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2019183101A (ja) * 2018-10-04 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物及びタイヤ
JP2020068489A (ja) 2018-10-25 2020-04-30 住友電気工業株式会社 伝送路構造
JP2020068479A (ja) 2018-10-25 2020-04-30 株式会社デンソー 半導体スイッチング素子駆動回路

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I. M. KOLTHOFF ET AL., J. POLYM. SCI., vol. 1, 1946, pages 429
R. R. HAMPTON, ANALYTICAL CHEMISTRY, vol. 21, 1949, pages 923
TANAKA ET AL., POLYMER, vol. 22, 1981, pages 1721

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022065509A1 (ja) * 2020-09-28 2022-03-31 旭化成株式会社 ベール成形体
WO2022163152A1 (ja) * 2021-01-28 2022-08-04 旭化成株式会社 ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド
JP7525666B2 (ja) 2021-01-28 2024-07-30 旭化成株式会社 ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド
WO2024034673A1 (ja) * 2022-08-12 2024-02-15 旭化成株式会社 共役ジエン系重合体、成形体、共役ジエン系重合体の製造方法、ゴム組成物、及びタイヤ
WO2024090556A1 (ja) * 2022-10-28 2024-05-02 株式会社Eneosマテリアル 重合体組成物及びタイヤ

Also Published As

Publication number Publication date
JP7381725B2 (ja) 2023-11-15
US20230138073A1 (en) 2023-05-04
CN115298225A (zh) 2022-11-04
EP4134382A4 (en) 2023-09-27
EP4134382A1 (en) 2023-02-15
JPWO2021206068A1 (ja) 2021-10-14
KR20220134596A (ko) 2022-10-05

Similar Documents

Publication Publication Date Title
JP6796903B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ
JP6830103B2 (ja) 変性共役ジエン系重合体、ゴム組成物、及びタイヤ
JP5911524B2 (ja) 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP6777454B2 (ja) 変性共役ジエン系重合体組成物、トレッド用ゴム組成物、及びタイヤ
JP5127521B2 (ja) 変性共役ジエン系重合体及びその製造方法、並びに重合体組成物
JP7381725B2 (ja) 水添共役ジエン系重合体、水添共役ジエン系重合体組成物、及びゴム組成物並びに水添共役ジエン系重合体の製造方法
JP6769780B2 (ja) 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ
JP6836851B2 (ja) 変性共役ジエン系重合体組成物、サイドウォール用ゴム組成物、及びタイヤ
JP6516462B2 (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP6864160B2 (ja) 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、伸展共役ジエン系重合体、ゴム組成物、及びタイヤ
JP2016079217A (ja) 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP7315686B2 (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。
WO2021024811A1 (ja) 共役ジエン系重合体、分岐化剤、共役ジエン系重合体の製造方法、油展共役ジエン系重合体、ゴム組成物、及びタイヤ
JP7539250B2 (ja) 変性共役ジエン系重合体及びその製造方法、ゴム組成物、並びにタイヤ。
WO2021201289A1 (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
CN113372630A (zh) 共轭二烯系聚合物组合物以及轮胎
JP2019131723A (ja) 変性共役ジエン系重合体組成物及び製造方法、並びにタイヤ
KR102527631B1 (ko) 공액 디엔계 중합체 및 그의 제조 방법, 그리고 고무 조성물
JP2021165370A (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
JP2015214619A (ja) ゴム組成物
JP7356881B2 (ja) 共役ジエン系重合体組成物、及びタイヤ
JP2022083763A (ja) 共重合体、共重合体組成物、及びゴム組成物
WO2022163152A1 (ja) ゴム状重合体、ゴム状重合体の製造方法、ゴム組成物、及びタイヤ用トレッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227029598

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022514072

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217050761

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021785487

Country of ref document: EP

Effective date: 20221107