Nothing Special   »   [go: up one dir, main page]

WO2021200528A1 - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
WO2021200528A1
WO2021200528A1 PCT/JP2021/012470 JP2021012470W WO2021200528A1 WO 2021200528 A1 WO2021200528 A1 WO 2021200528A1 JP 2021012470 W JP2021012470 W JP 2021012470W WO 2021200528 A1 WO2021200528 A1 WO 2021200528A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
negative electrode
secondary battery
mass
electrolyte secondary
Prior art date
Application number
PCT/JP2021/012470
Other languages
English (en)
French (fr)
Inventor
祐 石黒
西谷 仁志
淵龍 仲
千咲希 藤友
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP21780813.8A priority Critical patent/EP4131465A1/en
Priority to US17/913,290 priority patent/US20230170527A1/en
Priority to JP2022512058A priority patent/JPWO2021200528A1/ja
Priority to CN202180025370.9A priority patent/CN115362585A/zh
Publication of WO2021200528A1 publication Critical patent/WO2021200528A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a non-aqueous electrolyte secondary battery.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the non-aqueous electrolyte a non-aqueous electrolyte solution is mainly used.
  • the negative electrode comprises a negative electrode mixture containing a negative electrode active material capable of electrochemically occluding and releasing lithium ions.
  • a material capable of electrochemically occluding and releasing lithium ions is used.
  • a material for example, a carbonaceous material, a silicon-containing material, or the like is used.
  • a carbonaceous material that does not occlude and release lithium ions such as carbon fibers and carbon nanotubes, may be added to the negative electrode mixture.
  • Patent Document 1 describes a composite electrode agent containing particles containing an element capable of occluding and releasing lithium ions, carbon particles capable of occluding and releasing lithium ions, a multilayer carbon tube, and carbon nanofibers. We are proposing to use it for secondary batteries.
  • Patent Document 2 an active material, carbon fibers having a fiber diameter of 50 nm or more and 300 nm or less, carbon fibers having a fiber diameter of 5 nm or more and 400 nm or less, carbon black, and a binder are dry-mixed to obtain a mixture, and a liquid medium is added to the mixture. It is proposed to use an electrode produced by kneading and molding the kneaded product into a sheet for a lithium ion battery.
  • Silicon-containing materials have a large volume change due to occlusion and release of lithium ions. Therefore, when a silicon-containing material is used as the negative electrode active material, the conductive path between the negative electrode active material particles is cut, the negative electrode active material particles are likely to be isolated, and the cycle characteristics are likely to be deteriorated.
  • a negative electrode active material containing a silicon-containing material is used, combining carbon nanotubes makes it easy to secure conductivity between the negative electrode active material particles. On the other hand, by using carbon nanotubes, the surface area of the negative electrode mixture increases, side reactions increase, and the consumption of non-aqueous electrolyte becomes remarkable.
  • the present disclosure comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode includes a negative electrode mixture containing a negative electrode active material capable of electrochemically occluding and releasing lithium ions and carbon nanotubes.
  • the negative electrode active material contains a silicon-containing material and a carbonaceous material, and contains a silicon-containing material and a carbonaceous material.
  • the non-aqueous electrolyte contains at least one cyclic ester selected from the group consisting of cyclic sulfate esters, cyclic sulfite esters, and sultones.
  • the present invention relates to a non-aqueous electrolyte secondary battery in which the content of the carbon nanotubes in the negative electrode mixture is 0.005% by mass or more and 0.05% by mass or less.
  • Non-aqueous electrolyte It is possible to suppress the decrease of non-aqueous electrolyte when the secondary battery is repeatedly charged and discharged.
  • FIG. 1 is a schematic perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure is cut out.
  • Cyclic esters such as ethylene sulfite and propane sultone suppress the decrease of non-aqueous electrolyte after repeated charging and discharging even when the non-aqueous electrolyte containing such cyclic ester is combined with the negative electrode mixture containing no carbon nanotube. Does not contribute much to. However, when the non-aqueous electrolyte containing the cyclic ester as described above is combined with the negative electrode mixture containing a specific amount of carbon nanotubes, surprisingly, the decrease of the non-aqueous electrolyte after repeated charging and discharging is suppressed. Became clear.
  • the non-aqueous electrolyte secondary battery of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte.
  • the negative electrode includes a negative electrode mixture containing a negative electrode active material capable of electrochemically occluding and releasing lithium ions and carbon nanotubes.
  • Negative electrode active materials include silicon-containing materials and carbonaceous materials.
  • Non-aqueous electrolytes include at least one cyclic ester selected from the group consisting of cyclic sulfate esters, cyclic sulfite esters, and sultones.
  • the content of carbon nanotubes in the negative electrode mixture is 0.005% by mass or more and 0.05% by mass or less.
  • the silicon-containing material may be referred to as a Si-containing material
  • the carbon nanotube may be referred to as CNT.
  • the said cyclic ester may be simply referred to as a first component.
  • the non-aqueous electrolyte secondary battery of the present disclosure it is possible to suppress a decrease in the non-aqueous electrolyte after repeated charging and discharging as described above, despite the use of CNT.
  • the details of the reason why the decrease of the non-aqueous electrolyte is suppressed are not clear, but when the negative electrode mixture does not contain CNT, the effect of suppressing the decrease of the non-aqueous electrolyte can be obtained even if the first component is used as the non-aqueous electrolyte. Since it is not observed, it is considered that the action of the first component on CNT suppresses the side reaction in which CNT is directly or indirectly involved. By using the first component, a sufficient effect of suppressing the decrease of the non-aqueous electrolyte can be obtained to compensate for the decrease of the non-aqueous electrolyte due to the use of CNT.
  • the side reaction at the negative electrode is suppressed by using the first component, electrons are preferentially consumed in the charge / discharge reaction. Therefore, it is possible to suppress a decrease in capacity at the initial stage of charging / discharging. Further, since the negative electrode mixture contains CNT, cutting of the conductive path in the negative electrode mixture when charging and discharging are repeated is suppressed even though the Si-containing material is used as the negative electrode active material. In addition, since the first component suppresses side reactions even during repeated charging and discharging, it is possible to suppress a decrease in capacity after repeated charging and discharging. Therefore, excellent cycle characteristics can be ensured.
  • the content of CNT in the negative electrode mixture is less than 0.005% by mass, the decrease in non-aqueous electrolyte does not become apparent even if CNT is used in the negative electrode mixture. Even if the negative electrode mixture containing CNT with such a content is combined with the non-aqueous electrolyte containing the first component, the effect of suppressing the decrease of the non-aqueous electrolyte by the first component is hardly exhibited. On the other hand, even if the negative electrode mixture having a CNT content of more than 0.05% by mass is combined with the non-aqueous electrolyte containing the first component, the effect of suppressing the decrease of the non-aqueous electrolyte by the first component is small.
  • the content of CNT in the negative electrode mixture is about 0.1% by mass or more and 9% by mass as shown in Patent Documents 1 and 2. Is.
  • a non-aqueous electrolyte containing the first component is used, the consumption of the non-aqueous electrolyte is remarkably due to the use of CNT, and the effect of suppressing the decrease of the non-aqueous electrolyte by the first component is effective. , Little or even small.
  • the non-aqueous electrolyte secondary battery of the present disclosure will be specifically described below for each component.
  • the negative electrode includes a negative electrode mixture.
  • the negative electrode may include a negative electrode mixture and a negative electrode current collector that holds the negative electrode mixture.
  • the negative electrode usually includes a layered negative electrode mixture (hereinafter, referred to as a negative electrode mixture layer).
  • the negative electrode mixture contains a negative electrode active material and CNT.
  • the negative electrode mixture may further contain at least one selected from the group consisting of binders, thickeners, and conductive agents other than CNTs.
  • the negative electrode active material a material capable of electrochemically occluding and releasing lithium ions is used.
  • the negative electrode active material includes a Si-containing material and a carbonaceous material.
  • the carbonaceous material has a smaller degree of expansion and contraction during charging and discharging than the Si-containing material.
  • the negative electrode active material may contain other negative electrode active materials other than the Si-containing material and the carbonaceous material, if necessary.
  • examples of other negative electrode active materials include at least one selected from the group consisting of Sn simple substances, Sn alloys, and Sn compounds such as Sn oxides.
  • Si-containing material examples include Si alone, a silicon alloy, a silicon compound (silicon oxide, etc.), and a composite material in which silicon particles (fine Si phase) are dispersed in a lithium ion conductive phase (matrix). ..
  • silicon oxide examples include SiO x . x is, for example, 0.5 ⁇ x ⁇ 2, and may be 0.8 ⁇ x ⁇ 1.6.
  • the Si-containing material preferably contains the above-mentioned composite material.
  • the lithium ion conductive phase preferably contains at least one selected from the group consisting of a SiO 2 phase and a silicate phase.
  • the lithium ion conductive phase may further contain a carbon phase.
  • the lithium ion conductive phase can form an amorphous phase.
  • the Si-containing material includes a composite material in which silicon particles are dispersed in the SiO 2 phase, a composite material in which silicon particles are dispersed in the silicate phase, a composite material in which silicon particles are dispersed in the carbon phase, and the like. But it may be.
  • the SiO 2 phase is an amorphous phase containing 95% by mass or more of silicon dioxide.
  • the composite material in which silicon particles are dispersed in the SiO 2 phase is represented by SiO x , and x may be, for example, in the above range.
  • SiO x can be obtained, for example, by heat-treating silicon monoxide and separating it into a SiO 2 phase and a fine Si phase by a disproportionation reaction. When the particle cross section of SiO x is observed using a transmission electron microscope (TEM: Transmission Electron Microscope), silicon particles dispersed in the SiO 2 phase can be confirmed.
  • TEM Transmission Electron Microscope
  • the silicate phase preferably contains at least one of an alkali metal element (a group 1 element other than hydrogen in the long periodic table) and a group 2 element in the long periodic table.
  • Alkali metal elements include lithium (Li), potassium (K), sodium (Na) and the like.
  • Group 2 elements include magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and the like.
  • the lithium silicate phase may have a composition represented by the formula: Li 2y SiO 2 + y (0 ⁇ y ⁇ 2). y may be 1/2 or 1.
  • the composite material in which the silicon particles are dispersed in the silicate phase can be obtained, for example, by pulverizing a mixture of the silicate and the raw material silicon with stirring with a ball mill or the like, making the particles fine particles, and then heat-treating the mixture in an inert atmosphere. ..
  • the content of the silicon particles dispersed in the silicate phase may be 30% by mass or more and 95% by mass or less, and 35% by mass or more and 75% by mass or less with respect to the entire composite material. May be good.
  • the carbon phase contains, for example, amorphous carbon (amorphous carbon) having low crystallinity.
  • the amorphous carbon may be, for example, easily graphitized carbon (hard carbon) or non-graphitized carbon (soft carbon).
  • a composite material in which silicon particles are dispersed in a carbon phase can be obtained, for example, by crushing a mixture of a carbon source and a raw material silicon with a ball mill or the like while stirring to make fine particles, and then heat-treating the mixture in an inert atmosphere. can.
  • a saccharide such as carboxymethyl cellulose (CMC) or a water-soluble resin such as polyvinylpyrrolidone is used.
  • the composition of the Si-containing material is determined by, for example, obtaining a reflected electron image of a cross section of the negative electrode mixture layer with a field emission scanning electron microscope (FE-SEM: Field Emission Scanning Electron Microscope), and observing the particles of the Si-containing material. It is obtained by performing elemental analysis on the observed particles of the Si-containing material. For elemental analysis, for example, electron probe microanalyzer (EPMA) analysis or the like is used.
  • EPMA electron probe microanalyzer
  • the composition of the lithium ion conductive phase can also be determined by the above analysis.
  • Si-containing material one type may be used alone, or two or more types may be used in combination.
  • the Si-containing material is, for example, a particulate material.
  • the average particle size (D50) of the Si-containing material is, for example, 1 ⁇ m or more and 25 ⁇ m or less, preferably 4 ⁇ m or more and 15 ⁇ m or less. In the above range, good battery performance can be easily obtained.
  • the average particle size (D50) means a particle size (volume average particle size) at which the volume integrated value is 50% in the particle size distribution measured by the laser diffraction / scattering method.
  • the measuring device for example, "LA-750" manufactured by HORIBA, Ltd. (HORIBA) can be used.
  • At least a part of the particle surface of the Si-containing material may be coated with a conductive layer.
  • the conductive layer contains a conductive material such as conductive carbon.
  • the coating amount of the conductive layer is, for example, 1 part by mass or more and 10 parts by mass or less per 100 parts by mass in total of the Si-containing material particles and the conductive layer.
  • the Si-containing material particles having a conductive layer on the surface can be obtained, for example, by mixing coal pitch or the like with the Si-containing material particles and heat-treating in an inert atmosphere.
  • the Si-containing material has a large volume change due to expansion and contraction during charging and discharging. Therefore, as the ratio of the Si-containing material to the negative electrode active material increases, the cycle characteristics tend to deteriorate. According to the present disclosure, since the negative electrode mixture contains CNTs having a specific content, cutting of the conductive path is suppressed even when the ratio of the Si-containing material to the negative electrode active material is relatively large, and high cycle characteristics are ensured. Easy to do.
  • the ratio of the Si-containing material to the negative electrode active material is preferably 4% by mass or more, and may be 5% by mass or more.
  • the ratio of the Si-containing material is preferably 15% by mass or less, and may be 10% by mass or less.
  • Carbonate material examples include graphite, graphitized carbon (soft carbon), and graphitized carbon (hard carbon).
  • the carbonaceous material one type may be used alone, or two or more types may be used in combination.
  • Graphite is preferable as the carbonaceous material because it has excellent charge / discharge stability and has a small irreversible capacity.
  • Examples of graphite include natural graphite, artificial graphite, and graphitized mesophase carbon particles.
  • the graphite particles may partially contain amorphous carbon, easily graphitized carbon, and non-graphitized carbon.
  • Graphite is a carbonaceous material with a developed graphite-type crystal structure.
  • the interplanar spacing d002 of the (002) plane of graphite measured by the X-ray diffraction method may be, for example, 0.340 nm or less, 0.3354 nm or more, and 0.340 nm or less.
  • the graphite crystallite size Lc (002) may be, for example, 5 nm or more, 5 nm or more, or 200 nm or less.
  • the crystallite size Lc (002) is measured, for example, by the Scherrer method.
  • the ratio of the carbonaceous material to the negative electrode active material is, for example, 97% by mass or less, 96% by mass or less, or 95% by mass or less.
  • the ratio of the carbonaceous material to the negative electrode active material is, for example, 76% by mass or more, 80% by mass or more, 85% by mass or more, or 90% by mass or more.
  • the ratio of the total amount of the Si-containing material and the carbonaceous material to the negative electrode active material is preferably 90% by mass or more, and may be 95% by mass or more or 98% by mass or more.
  • the ratio of the total amount of the Si-containing material and the carbonaceous material to the negative electrode active material is 100% by mass or less.
  • the negative electrode active material may be composed of only a Si-containing material and a carbonaceous material.
  • CNT carbonaceous material having a nano-sized diameter and having a structure in which a sheet (graphene) of a six-membered ring network formed by carbon atoms is wound in a cylindrical shape. CNTs have excellent conductivity.
  • SWCNT single-walled carbon nanotube
  • MWCNT multi-walled carbon nanotube
  • the CNT preferably contains SWCNTs.
  • SWCNTs SWCNTs
  • the ratio of SWCNTs to CNTs is, for example, 50% or more, 75% or more, or 90% or more.
  • the ratio of SWCNTs to CNTs is 100% or less.
  • the ratio of SWCNTs to CNTs is the ratio of the number of SWCNTs to the total CNTs.
  • CNT CNT-containing negative electrode mixture
  • SEM Scanning Electron Microscope
  • the ratio of SWCNTs to the CNTs contained in the negative electrode mixture can be determined by the following method.
  • SEM image a plurality of (for example, 50 to 200) CNTs are arbitrarily selected and observed, the number of SWCNTs is obtained, and the ratio of the number of SWCNTs to the total number of selected CNTs is calculated.
  • the content of CNT in the negative electrode mixture is 0.005% by mass or more, may be 0.01% by mass or more, 0.015% by mass or more, or 0.02% by mass or more. ..
  • the content of CNT is 0.05% by mass or less, and may be 0.03% by mass or less.
  • the decrease of the non-aqueous electrolyte can be further suppressed by using the non-aqueous electrolyte containing the first component.
  • Quantitative analysis of CNTs is performed, for example, by combining Raman spectroscopy and thermogravimetric analysis.
  • the average diameter of CNTs may be, for example, 1 nm or more and 10 nm or less, and may be 1 nm or more and 5 nm or less.
  • the average length of CNTs may be, for example, 1 ⁇ m or more and 100 ⁇ m or less, and 5 ⁇ m or more and 20 ⁇ m or less.
  • the average length and average diameter of CNTs can be determined from the cross section of the negative electrode mixture layer or the image of CNTs using at least one of SEM and TEM. More specifically, in the captured image, a plurality of (for example, 50 to 200) CNTs are arbitrarily selected, the length and the diameter are measured, and the average length and the average diameter are obtained by averaging each of them. Be done.
  • the length of the CNT means the length when the CNT is stretched in a straight line.
  • the binder for example, a resin material is used.
  • the binder include fluororesins (eg, polytetrafluoroethylene, polyvinylidene fluoride), polyolefin resins (eg, polyethylene, polypropylene), polyamide resins (eg, aramid resins), and polyimide resins (eg, polyimides, polyamides). Imid), acrylic resins (eg, polyacrylic acid, polymethacrylic acid, acrylic acid-methacrylic acid copolymers, ethylene-acrylic acid copolymers, or salts thereof), vinyl resins (eg, polyvinylacetate), rubber.
  • Plastic materials for example, styrene-butadiene copolymer rubber (SBR)
  • SBR styrene-butadiene copolymer rubber
  • Examples of the thickener include cellulose derivatives such as cellulose ether.
  • Examples of the cellulose derivative include CMC and its modified product, methyl cellulose and the like.
  • Modified CMCs also include salts of CMC.
  • Examples of the salt include alkali metal salts (for example, sodium salts), ammonium salts and the like.
  • One type of thickener may be used alone, or two or more types may be used in combination.
  • Examples of the conductive agent other than CNT include conductive fibers and conductive particles other than CNT.
  • Examples of conductive fibers include carbon fibers and metal fibers.
  • Examples of the conductive particles include conductive carbon (carbon black and the like), metal powder and the like.
  • As the conductive agent one type may be used alone, or two or more types may be used in combination.
  • the negative electrode current collector is selected according to the type of non-aqueous electrolyte secondary battery.
  • Examples of the negative electrode current collector include a sheet-shaped one.
  • a metal foil or the like may be used.
  • a porous current collector may be used.
  • Examples of the porous current collector include a net-like one, a punching sheet, and an expanded metal.
  • Examples of the material of the negative electrode current collector include stainless steel, nickel, nickel alloy, copper, and copper alloy.
  • the thickness of the negative electrode current collector is not particularly limited, but may be, for example, 1 to 50 ⁇ m and 5 to 30 ⁇ m.
  • the negative electrode can be formed, for example, by applying a negative electrode slurry in which the constituent components of the negative electrode mixture are dispersed in a dispersion medium to the surface of the negative electrode current collector and drying it.
  • the dried coating film may be rolled if necessary.
  • the negative electrode mixture layer may be formed on one surface of the sheet-shaped negative electrode current collector, or may be formed on both surfaces.
  • the dispersion medium is not particularly limited, but is, for example, water, alcohol (for example, ethanol), ether (for example, tetrahydrofuran), amide (for example, dimethylformamide), N-methyl-2-pyrrolidone (NMP), or these.
  • a mixed solvent can be mentioned.
  • the positive electrode may include a positive electrode current collector and a positive electrode mixture layer supported on the surface of the positive electrode current collector.
  • the positive electrode mixture layer can be formed by applying a positive electrode slurry in which a positive electrode mixture is dispersed in a dispersion medium to the surface of a positive electrode current collector and drying it. The dried coating film may be rolled if necessary.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both surfaces.
  • the positive electrode mixture contains a positive electrode active material as an essential component, and may contain a binder, a conductive agent, and the like as optional components.
  • the dispersion medium can be selected from, for example, those exemplified for the negative electrode.
  • a composite oxide containing lithium and a transition metal is used as the positive electrode active material.
  • the transition metal include Ni, Co, Mn and the like.
  • the composite oxide containing lithium and a transition metal include Li a CoO 2 , Li a NiO 2 , Li a MnO 2 , Li a Co b1 Ni 1-b1 O 2 , and Li a Co b1 M 1-b1 O.
  • examples thereof include c1, Li a Ni 1-b1 M b1 O c1 , Li a Mn 2 O 4 , and Li a Mn 2-b1 M b1 O 4.
  • a 0 to 1.2
  • b1 0 to 0.9
  • c1 2.0 to 2.3.
  • M is at least one selected from the group consisting of Na, Mg, Sc, Y, Mn, Fe, Co, Ni, Cu, Zn, Al, Cr, Pb, Sb and B.
  • the value a which indicates the molar ratio of lithium, increases or decreases with charge and discharge.
  • Li a Ni b2 M 1-b2 O 2 (0 ⁇ a ⁇ 1.2, 0.3 ⁇ b2 ⁇ 1), and M is at least one selected from the group consisting of Mn, Co and Al.
  • the resin material exemplified for the negative electrode can be used as the binder.
  • the conductive agent can be selected from, for example, those exemplified for the negative electrode.
  • Graphite may be used as the conductive agent.
  • the shape and thickness of the positive electrode current collector can be selected from the shapes and ranges described for the negative electrode current collector.
  • Examples of the material of the positive electrode current collector include stainless steel, aluminum, aluminum alloy, and titanium.
  • Non-aqueous electrolyte As the non-aqueous electrolyte, a liquid non-aqueous electrolyte is usually used.
  • the non-aqueous electrolyte usually contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent, and in addition to these, a first component is contained.
  • the first component at least one selected from the group consisting of cyclic sulfate ester, cyclic sulfite ester, and sultone is used.
  • cyclic sulfate ester examples include alkylene sulfate and alkenylene sulfate.
  • C 2-4 alkylene sulfate, C 2-4 alkenylene sulfate and the like may be used.
  • Specific examples of the cyclic sulfate ester include ethylene sulfate, propylene sulfate, trimethylene sulfate, butylene sulfate, and vinylene sulfate.
  • cyclic sulfite ester examples include alkylene sulphite and alkenylene sulphite.
  • alkylene sulphite As the cyclic sulfite ester, C 2-4 alkylene sulfite, C 2-4 alkenylene sulfite and the like may be used.
  • Specific examples of the cyclic sulfite ester include ethylene sulphite, propylene sulphite, trimethylene sulphite, butylene sulphite, and vinylen sulphite.
  • sultone examples include alkane sultone and alkene sultone.
  • sultone examples include C 3-5 alkane sultone, C 3-5 alkene sultone and the like may be used.
  • Specific examples of the sultone include 1,3-propane sultone, 1,4-butane sultone, and 1,3-propene sultone.
  • the first component also includes those having one or two or more substituents.
  • the first component may have a substituent on the carbon atom constituting the ring of the first component.
  • the substituent include an alkyl group, a hydroxyalkyl group, a hydroxy group, an alkoxy group, a halogen atom and the like.
  • the number of carbon atoms of the substituent may be 1 to 4 or 1 to 3.
  • the halogen atom include a chlorine atom and a fluorine atom.
  • C 2-4 alkylene sulfate, C 2-4 alkylene sulfite, C 3-5 alkane sultone, and C 3-5 alkene sultone are preferable.
  • the non-aqueous electrolyte may contain one kind of the first component or may contain two or more kinds in combination.
  • the content of the first component in the non-aqueous electrolyte is, for example, 5% by mass or less, and may be 3% by mass or less.
  • the content of the first component is in such a range, the decrease of the non-aqueous electrolyte can be further suppressed.
  • the content of the first component in the non-aqueous electrolyte is preferably 2% by mass or less.
  • the viscosity of the non-aqueous electrolyte can be suppressed to a low level and the charge / discharge reaction can proceed more uniformly, it is considered that the consumption of the non-aqueous electrolyte is suppressed as a whole.
  • the content of the first component in the non-aqueous electrolyte changes during storage or charging / discharging. Therefore, it is sufficient that the first component remains in the non-aqueous electrolyte in the non-aqueous electrolyte secondary battery at a concentration equal to or higher than the detection limit.
  • the content of the first component in the non-aqueous electrolyte may be 0.01% by mass or more.
  • the content of the first component in the non-aqueous electrolyte used in the production of the non-aqueous electrolyte secondary battery may be 0.1% by mass or more, 0.3% by mass or more, or 0.5% by mass. It may be the above.
  • the content of the first component in the non-aqueous electrolyte used in the production of the non-aqueous electrolyte secondary battery is, for example, 5% by mass or less, and may be 3% by mass or less or 2% by mass or less. These lower limit values and upper limit values can be arbitrarily combined.
  • the content of the first component in the non-aqueous electrolyte can be determined under the following conditions, for example, by using gas chromatography.
  • Measuring device GC-2010 Plus manufactured by Shimadzu Corporation Column: J & W HP-1 (1 ⁇ m x 60 m) Linear velocity: 30.0 cm / sec Injection port temperature: 270 ° C Detector: FID 290 ° C (sens.10 1 ) (Non-aqueous solvent)
  • non-aqueous solvent include cyclic carbonate esters, chain carbonate esters, cyclic carboxylic acid esters, and chain carboxylic acid esters.
  • the cyclic carbonate include propylene carbonate (PC) and ethylene carbonate (EC).
  • chain carbonic acid ester examples include diethyl carbonate (DEC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC) and the like.
  • cyclic carboxylic acid ester examples include ⁇ -butyrolactone (GBL) and ⁇ -valerolactone (GVL).
  • chain carboxylic acid ester examples include methyl formate, ethyl formate, propyl formate, methyl acetate (MA), ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and the like.
  • the non-aqueous electrolyte may contain one kind of non-aqueous solvent, or may contain two or more kinds in combination.
  • the non-aqueous electrolyte contains a chain carboxylic acid ester
  • side reactions are likely to occur when combined with a negative electrode mixture containing CNT.
  • the effect of using the first component can be remarkably obtained. Therefore, side reactions are suppressed and high cycle characteristics can be ensured.
  • the non-aqueous electrolyte contains at least MA as the chain carboxylic acid ester, such an effect becomes remarkable, which is more preferable.
  • lithium salt examples include LiClO 4 , LiBF 4 , LiPF 6 , LiAlCl 4 , LiSbF 6 , LiSCN, LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiB 10 Cl 10 , Lithium lower aliphatic carboxylic acid, and LiCl. , LiBr, LiI, borate, imide salt and the like.
  • Borates include bis (1,2-benzenediorate (2-) -O, O') lithium borate and bis (2,3-naphthalenedioleate (2-) -O, O') borate.
  • the imide salt include bisfluorosulfonylimide lithium (LiN (FSO 2 ) 2 ), bistrifluoromethanesulfonate imidelithium (LiN (CF 3 SO 2 ) 2 ), and trifluoromethanesulfonate nonafluorobutane sulfonate imidelithium (LiN).
  • the non-aqueous electrolyte may contain one type of lithium salt or a combination of two or more types.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol / L or more and 2 mol / L or less.
  • the non-aqueous electrolyte may contain other additives.
  • Other additives are referred to as the second component.
  • the second component for example, at least one selected from the group consisting of vinylene carbonate, fluoroethylene carbonate, and vinylethylene carbonate can be mentioned.
  • Separator usually, it is desirable to interpose a separator between the positive electrode and the negative electrode.
  • the separator has high ion permeability and has appropriate mechanical strength and insulation.
  • the separator for example, a microporous thin film, a woven fabric, or a non-woven fabric, or at least two laminates selected from these can be used.
  • polyolefin for example, polypropylene, polyethylene
  • polyethylene is preferable.
  • the non-aqueous electrolyte secondary battery there is a structure in which an electrode group in which a positive electrode and a negative electrode are wound via a separator and a structure in which a non-aqueous electrolyte is housed in an exterior body.
  • an electrode group in which a positive electrode and a negative electrode are wound via a separator a structure in which a non-aqueous electrolyte is housed in an exterior body.
  • another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 1 is a schematic perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present disclosure is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte.
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between them and prevents direct contact.
  • the electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat plate-shaped winding core and pulling out the winding core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate.
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • One end of the positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the insulating plate separates the electrode group 1 and the sealing plate 5, and also separates the negative electrode lead 3 and the battery case 4.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded. In this way, the opening of the battery case 4 is sealed with the sealing plate 5.
  • the electrolytic solution injection hole provided in the sealing plate 5 is closed by the sealing plug 8.
  • Negative Electrode An appropriate amount of water was added to the negative electrode mixture and mixed to obtain a negative electrode slurry.
  • a mixture of a negative electrode active material, a binder, and a conductive agent was used.
  • the negative electrode active material a mixture of a Si-containing material and graphite (average particle size (D50) 25 ⁇ m) was used.
  • the SiO x particles (x 1, average particle size (D50) 5 ⁇ m) were used.
  • the mass ratio of the Li 2y SiO 2 + y particles excluding the conductive layer and the SiO x particles excluding the conductive layer was 1: 1. In the negative electrode active material, the mass ratio of the Si-containing material excluding the conductive layer to graphite was 6:94.
  • binder sodium polyacrylate (PAA-Na), a sodium salt of CMC (CMC-Na), and SBR were used.
  • CMC-Na sodium polyacrylate
  • SBR sodium salt of CMC
  • conductive agent CNTs containing 90% by mass or more of SWCNTs (average diameter: about 1.6 nm, average length: about 5 ⁇ m) were used.
  • the CNT content in the negative electrode mixture was the value shown in Table 1.
  • the contents of PAA-Na, CMC-Na, and SBR in the negative electrode mixture were 1% by mass, respectively.
  • Negative electrode was obtained.
  • the non-aqueous electrolyte secondary battery after 400 cycles was disassembled, the remaining non-aqueous electrolyte was recovered, and the volume was determined.
  • the ratio (%) of the volume of the remaining non-aqueous electrolyte when the volume of the initial non-aqueous electrolyte was set to 100% was calculated.
  • Table 1 shows this ratio as the residual amount of non-aqueous electrolyte (%).
  • Table 1 shows the results of Examples and Comparative Examples. Table 1 also shows the content of CNTs in the negative electrode mixture (% by mass), the type of the first component added to the non-aqueous electrolyte, and the amount added (% by mass).
  • E1 to E6 are Examples 1 to 6
  • C1 to C9 are Comparative Examples 1 to 9.
  • E1 to E6 have a residual amount of non-aqueous electrolyte that is comparable to or exceeds the case where the negative electrode mixture does not contain CNT. Can be secured. Further, in E1 to E6, a high capacity retention rate can be secured and excellent cycle characteristics can be obtained (C1 to C5 and E1 to E6) as compared with the case where CNT is not used or the first component is not used. Comparison with).
  • the negative electrode mixture contains CNTs, which suppresses the cutting of the conductive path in the negative electrode mixture when charging and discharging are repeated, and the use of the first component causes the negative electrode mixture to contain CNTs. It is considered that this is because the side reaction in the case is suppressed and electrons are preferentially consumed in the charge / discharge reaction.
  • the residual amount of the non-aqueous electrolyte is almost the same as that of C8 and C3 which is a combination of the negative electrode mixture containing no CNT and the non-aqueous electrolyte containing the first component.
  • C8 and C3 which is a combination of the negative electrode mixture containing no CNT and the non-aqueous electrolyte containing the first component.
  • the non-aqueous electrolyte secondary battery of the present disclosure is useful as a main power source for mobile communication devices, portable electronic devices, and the like.
  • the applications of the non-aqueous electrolyte secondary battery are not limited to these.
  • Electrode group 2 Positive electrode lead 3 Negative electrode lead 4 Battery case 5 Seal plate 6 Negative terminal 7 Gasket 8 Seal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

非水電解質二次電池は、正極と、負極と、非水電解質と、を備える。前記負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質と、カーボンナノチューブと、を含む負極合剤を備える。前記負極活物質は、ケイ素含有材料および炭素質材料を含む。前記非水電解質は、環状硫酸エステル、環状亜硫酸エステル、およびスルトンからなる群より選択される少なくとも一種の環状エステルを含む。前記負極合剤中の前記カーボンナノチューブの含有量は、0.005質量%以上0.05質量%以下である。

Description

非水電解質二次電池
 本開示は、非水電解質二次電池に関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、正極と、負極と、非水電解質とを備える。非水電解質としては主に非水電解液が用いられている。負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質を含む負極合剤を備える。負極活物質には、リチウムイオンを電気化学的に吸蔵および放出可能な材料が用いられる。このような材料としては、例えば、炭素質材料、ケイ素含有材料などが用いられている。また、負極合剤には、炭素繊維、カーボンナノチューブなどのリチウムイオンを吸蔵および放出しない炭素質材料が添加されることがある。
 特許文献1は、リチウムイオンを吸蔵・放出可能な元素を含む粒子と、リチウムイオンを吸蔵・放出可能な炭素粒子と、多層カーボンチューブと、カーボンナノファイバと、を含む複合電極剤を、リチウムイオン二次電池に用いることを提案している。
 特許文献2は、活物質、繊維径50nm以上300nm以下の炭素繊維、繊維径5nm以上400nm以下の炭素繊維、カーボンブラック、およびバインダを乾式混合して混合物を得、この混合物に液媒体を加えて混練し、混練物をシート状に成形することにより製造される電極を、リチウムイオン電池に用いることを提案している。
特開2014-146519号公報 特開2014-160590号公報
 ケイ素含有材料は、リチウムイオンの吸蔵および放出に伴う体積変化が大きい。そのため、ケイ素含有材料を負極活物質として用いると、負極活物質粒子間の導電パスが切断されて負極活物質粒子が孤立し易くなり、サイクル特性が低下し易い。ケイ素含有材料を含む負極活物質を用いる場合、カーボンナノチューブを組み合わせると、負極活物質粒子間の導電性を確保し易くなる。一方で、カーボンナノチューブを用いることで負極合剤の表面積が増加して、副反応が増加し、非水電解質の消費が顕著になる。
 本開示の一側面は、正極と、負極と、非水電解質と、を備え、
 前記負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質と、カーボンナノチューブと、を含む負極合剤を備え、
 前記負極活物質は、ケイ素含有材料および炭素質材料を含み、
 前記非水電解質は、環状硫酸エステル、環状亜硫酸エステル、およびスルトンからなる群より選択される少なくとも一種の環状エステルを含み、
 前記負極合剤中の前記カーボンナノチューブの含有量は、0.005質量%以上0.05質量%以下である、非水電解質二次電池に関する。
 非水電解質二次電池の充放電を繰り返したときの非水電解質の減少を抑制できる。
図1は本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 非水電解質二次電池において、負極活物質として用いられるケイ素含有材料は、高容量であるものの、充放電時のリチウムイオンの吸蔵および放出に伴う体積変化が大きい。そのため、ケイ素含有材料を含む負極合剤では、負極活物質粒子間の導電パスが切断されて、負極活物質粒子が孤立し易くなる。その結果、サイクル特性の低下を招く。このような負極合剤に、さらにカーボンナノチューブを含有させると、負極活物質粒子間にカーボンナノチューブが介在することで、導電パスの切断が抑制され、比較的高いサイクル特性を確保できる。しかし、負極合剤がカーボンナノチューブを含む場合、負極合剤の表面積が増加して、副反応が増加することで、充放電を繰り返した後の非水電解質の減少が顕著になる。
 エチレンサルファイトおよびプロパンスルトンなどの環状エステルは、このような環状エステルを含む非水電解質を、カーボンナノチューブを含まない負極合剤と組み合わせても、充放電を繰り返した後の非水電解質の減少抑制にほとんど寄与しない。ところが、上記のような環状エステルを含む非水電解質を、特定量のカーボンナノチューブを含む負極合剤と組み合わせると、意外にも、充放電を繰り返した後の非水電解質の減少が抑制されることが明らかとなった。
 上記に鑑み、本開示の非水電解質二次電池は、正極と、負極と、非水電解質と、を備える。負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質と、カーボンナノチューブと、を含む負極合剤を備える。負極活物質は、ケイ素含有材料および炭素質材料を含む。非水電解質は、環状硫酸エステル、環状亜硫酸エステル、およびスルトンからなる群より選択される少なくとも一種の環状エステルを含む。負極合剤中のカーボンナノチューブの含有量は、0.005質量%以上0.05質量%以下である。以下、ケイ素含有材料を、Si含有材料と称し、カーボンナノチューブをCNTと称することがある。また、上記の環状エステルを単に第1成分と称することがある。
 このような構成により、本開示の非水電解質二次電池では、CNTを用いるにも拘わらず、上述のように、充放電を繰り返した後の非水電解質の減少を抑制できる。非水電解質の減少が抑制される理由の詳細は定かではないが、負極合剤にCNTが含まれない場合には、第1成分を非水電解質に用いても非水電解質の減少抑制効果が見られないことから、第1成分がCNTに作用することで、CNTが直接または間接的に関与する副反応が抑制されるためと考えられる。第1成分を用いることで、CNTの使用に伴う非水電解質の減少を補填するのに十分な非水電解質の減少抑制効果が得られる。
 本開示の非水電解質二次電池では、第1成分を用いることで、負極における副反応が抑制されるため、充放電反応に電子が優先的に消費される。そのため、充放電初期における容量の低下を抑制できる。また、負極合剤がCNTを含むことで、Si含有材料を負極活物質として用いるにも拘わらず、充放電を繰り返したときの負極合剤における導電パスの切断が抑制される。加えて、第1成分により、充放電を繰り返す間も副反応が抑制されるため、充放電を繰り返した後の容量の低下を抑制することができる。よって、優れたサイクル特性を確保することができる。
 なお、負極合剤中のCNTの含有量が0.005質量%未満では、CNTを負極合剤に用いても、非水電解質の減少が顕在化しない。このような含有量でCNTを含む負極合剤に、第1成分を含む非水電解質を組み合わせても、第1成分による非水電解質の減少抑制効果がほとんど発揮されない。一方、CNTの含有量が0.05質量%を超える負極合剤に、第1成分を含む非水電解質を組み合わせても、第1成分による非水電解質の減少抑制効果は小さい。従来の非水電解質二次電池において、負極合剤にCNTを用いる場合、特許文献1および2に示されるように、負極合剤中のCNTの含有量は0.1質量%以上9質量%程度である。このような従来の非水電解質二次電池において、第1成分を含む非水電解質を用いてもCNTを用いることによる非水電解質の消費が著しく、第1成分による非水電解質の減少抑制効果は、ほとんど得られないか、得られる場合でも小さい。
 以下に、本開示の非水電解質二次電池について構成要素ごとにより具体的に説明する。
 (負極)
 負極は、負極合剤を備える。負極は、負極合剤と負極合剤を保持する負極集電体とを備えていてもよい。負極は、通常、層状の負極合剤(以下、負極合剤層と称する)を備えている。負極合剤は、負極活物質およびCNTを含む。負極合剤は、さらに、結着剤、増粘剤、およびCNT以外の導電剤からなる群より選択される少なくとも一種を含んでもよい。
 (負極活物質)
 負極活物質としては、電気化学的にリチウムイオンを吸蔵および放出可能な材料が用いられる。負極活物質は、Si含有材料および炭素質材料を含む。炭素質材料は、Si含有材料よりも充放電時の膨張収縮の度合いが小さい。Si含有材料と炭素質材料とを併用することで、充放電の繰り返しの際、負極活物質粒子同士の間および負極合剤と負極集電体との間の接触状態をより良好に維持することができる。よって、炭素質材料をSi含有材料と組み合わせることで、Si含有材料の高容量を確保しながらも、高いサイクル特性を確保し易い。負極活物質は、必要に応じて、Si含有材料および炭素質材料以外の他の負極活物質を含んでもよい。他の負極活物質としては、例えば、Sn単体、Sn合金、およびSn酸化物などのSn化合物からなる群より選択される少なくとも一種が挙げられる。
 (Si含有材料)
 Si含有材料としては、Si単体、ケイ素合金、およびケイ素化合物(ケイ素酸化物など)、リチウムイオン伝導相(マトリックス)内にシリコン粒子(微細なSi相)が分散している複合材料などが挙げられる。ケイ素酸化物としては、SiOが挙げられる。xは、例えば0.5≦x<2であり、0.8≦x≦1.6であってもよい。
 より高いサイクル特性を確保する観点から、Si含有材料は、上記の複合材料を含むことが好ましい。リチウムイオン伝導相は、SiO相およびシリケート相からなる群より選択される少なくとも1種を含むことが好ましい。リチウムイオン伝導相は、さらに炭素相を含んでもよい。リチウムイオン伝導相は非晶質相を形成し得る。Si含有材料は、SiO相内にシリコン粒子が分散している複合材料、シリケート相内にシリコン粒子が分散している複合材料、炭素相内にシリコン粒子が分散している複合材料等を含んでもよい。
 SiO相は、二酸化ケイ素を95質量%以上含むアモルファス相である。SiO相内にシリコン粒子が分散した複合材料はSiOで表され、xは、例えば上記の範囲であってもよい。SiOは、例えば、一酸化ケイ素を熱処理し、不均化反応によりSiO相と微細なSi相とに分離することにより得られる。透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いてSiOの粒子断面を観察すると、SiO相内に分散しているシリコン粒子を確認することができる。
 シリケート相は、アルカリ金属元素(長周期型周期表の水素以外の第1族元素)および長周期型周期表の第2族元素の少なくとも一方を含むことが好ましい。アルカリ金属元素は、リチウム(Li)、カリウム(K)、ナトリウム(Na)等を含む。第2族元素は、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を含む。リチウムシリケート相は、式:Li2ySiO2+y(0<y<2)で表される組成を有し得る。yは1/2であってもよく、1であってもよい。シリケート相内にシリコン粒子が分散した複合材料は、例えば、シリケートと原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。
 シリケート相内に分散しているシリコン粒子の含有量は、複合材料の全体に対して、30質量%以上、95質量%以下であってもよく、35質量%以上、75質量%以下であってもよい。
 炭素相は、例えば、結晶性の低い無定形炭素(アモルファス炭素)を含む。無定形炭素は、例えば、易黒鉛化炭素(ハードカーボン)でもよく、難黒鉛化炭素(ソフトカーボン)でもよい。炭素相内にシリコン粒子が分散した複合材料は、例えば、炭素源と原料シリコンの混合物をボールミル等で撹拌しながら粉砕し、微粒子化した後、混合物を不活性雰囲気中で熱処理して得ることができる。炭素源には、例えば、カルボキシメチルセルロース(CMC)等の糖類やポリビニルピロリドン等の水溶性樹脂が用いられる。
 Si含有材料の組成は、例えば、電界放出型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)により負極合剤層の断面の反射電子像を得、Si含有材料の粒子を観察し、観察されたSi含有材料の粒子について元素分析を行うことにより求められる。元素分析には、例えば、電子線マイクロアナライザー(EPMA:Electron Probe Micro Analyzer)分析等が用いられる。上記分析により、リチウムイオン伝導相の組成も求めることができる。
 Si含有材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 Si含有材料は、例えば、粒子状材料である。Si含有材料の平均粒径(D50)は、例えば1μm以上、25μm以下であり、好ましくは4μm以上、15μm以下である。上記範囲では、良好な電池性能が得られ易い。
 なお、本明細書中、平均粒径(D50)とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
 導電性向上の観点から、Si含有材料の粒子表面の少なくとも一部は、導電層で被覆されていてもよい。導電層は、導電性炭素等の導電性材料を含む。導電層の被覆量は、例えば、Si含有材料粒子と導電層の合計100質量部あたり1質量部以上、10質量部以下である。表面に導電層を有するSi含有材料粒子は、例えば、石炭ピッチ等をSi含有材料粒子と混合し、不活性雰囲気中で熱処理することにより得られる。
 Si含有材料は、充放電時の膨張収縮に伴う体積変化が大きい。そのため、負極活物質に占めるSi含有材料の比率が大きくなると、サイクル特性が低下し易い。本開示によれば、負極合剤に特定の含有量のCNTを含むため、負極活物質に占めるSi含有材料の比率が比較的大きい場合でも、導電パスの切断が抑制され、高いサイクル特性を確保し易い。負極活物質に占めるSi含有材料の比率は、4質量%以上が好ましく、5質量%以上であってもよい。Si含有材料の比率は、15質量%以下が好ましく、10質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 (炭素質材料)
 炭素質材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)が挙げられる。炭素質材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 充放電の安定性に優れ、不可逆容量も少ないことから、中でも、炭素質材料としては黒鉛が好ましい。黒鉛としては、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子が挙げられる。黒鉛粒子は、部分的に、非晶質炭素、易黒鉛化炭素、難黒鉛化炭素を含んでもよい。
 黒鉛とは、黒鉛型結晶構造が発達した炭素質材料である。X線回折法により測定される黒鉛の(002)面の面間隔d002は、例えば、0.340nm以下であってもよく、0.3354nm以上、0.340nm以下であってもよい。また、黒鉛の結晶子サイズLc(002)は、例えば、5nm以上であってもよく、5nm以上、200nm以下であってもよい。結晶子サイズLc(002)は、例えばシェラー(Scherrer)法により測定される。黒鉛の(002)面の面間隔d002および結晶子サイズLc(002)が上記範囲内である場合、高容量が得られ易い。
 負極活物質に占める炭素質材料の比率は、例えば、97質量%以下であり、96質量%以下であってもよく、95質量%以下であってもよい。負極活物質に占める炭素質材料の比率は、例えば、76質量%以上であり、80質量%以上または85質量%以上であってもよく、90質量%以上であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。
 負極活物質中、Si含有材料および炭素質材料の総量が占める比率は、90質量%以上が好ましく、95質量%以上または98質量%以上であってもよい。負極活物質中、Si含有材料および炭素質材料の総量が占める比率は、100質量%以下である。負極活物質を、Si含有材料および炭素質材料のみで構成してもよい。
 (CNT)
 CNTは、炭素原子により形成される六員環ネットワークのシート(グラフェン)を筒状に巻いた構造を有する、直径がナノサイズの炭素質材料である。CNTは、優れた導電性を有する。筒状構造を構成するグラフェンの層数が1つの場合、単層CNT(SWCNT:single-walled carbon nanotube)と称する。上記の層数が複数の場合、複層CNT(MWCNT:multi-walled carbon nanotube)と称する。
 CNTは、SWCNTを含むことが好ましい。この場合、より高いサイクル特性を確保し易いことに加え、第1成分による非水電解質の減少抑制効果がさらに発揮され易くなる。
 CNTに占めるSWCNTの割合は、例えば、50%以上であり、75%以上であってもよく、90%以上であってもよい。CNTに占めるSWCNTの割合は、100%以下である。
 なお、CNTに占めるSWCNTの割合とは、CNT全体に対するSWCNTの本数の比率である。
 負極合剤にCNTが含まれることは、例えば、負極合剤層の断面の走査型電子顕微鏡(SEM:Scanning Electron Microscope)の画像により確認することができる。
 負極合剤に含まれるCNTに占めるSWCNTの割合は、以下の方法により求められる。
 SEMを用いて負極合剤層の断面またはCNTの画像を得る。SEM画像において、複数本(例えば50~200本)のCNTを任意に選出して観察し、SWCNTの本数を求め、選出したCNTの総本数に対するSWCNTの本数の割合を算出する。
 負極合剤中のCNTの含有量は、0.005質量%以上であり、0.01質量%以上または0.015質量%以上であってもよく、0.02質量%以上であってもよい。CNTの含有量がこのような範囲である場合、より高いサイクル特性を確保できるとともに、第1成分を含む非水電解質を用いることによる非水電解質の減少抑制効果がより顕在化し易い。CNTの含有量は、0.05質量%以下であり、0.03質量%以下であってもよい。CNTの含有量がこのような範囲である場合、第1成分を含む非水電解質を用いることにより非水電解質の減少をさらに抑制することができる。これらの下限値と上限値とは任意に組み合わせることができる。
 CNTの定量分析は、例えば、ラマン分光法および熱重量分析法を組み合わせて行われる。
 充放電時の導電性パスの切断を低減する観点から、CNTの平均直径は、例えば、1nm以上10nm以下であり、1nm以上5nm以下であってもよい。
 充放電時の導電性パスの切断を低減する観点から、CNTの平均長さは、例えば、1μm以上100μm以下であり、5μm以上20μm以下であってもよい。
 CNTの平均長さおよび平均直径は、SEMおよびTEMの少なくとも一方を用いて負極合剤層の断面またはCNTの画像から求めることができる。より具体的には、撮影した画像において、複数本(例えば50~200本)のCNTを任意に選出し、長さおよび直径を計測し、それぞれ平均化することにより平均長さおよび平均直径が求められる。なお、CNTの長さとは、CNTを直線状に伸ばしたときの長さを意味する。
 (その他)
 結着剤としては、例えば、樹脂材料が用いられる。結着剤としては、例えば、フッ素樹脂(例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン)、ポリオレフィン樹脂(例えば、ポリエチレン、ポリプロピレン)、ポリアミド樹脂(例えば、アラミド樹脂)、ポリイミド樹脂(例えば、ポリイミド、ポリアミドイミド)、アクリル樹脂(例えば、ポリアクリル酸、ポリメタクリル酸、アクリル酸-メタクリル酸共重合体、エチレン-アクリル酸共重合体、またはこれらの塩)、ビニル樹脂(例えば、ポリ酢酸ビニル)、ゴム状材料(例えば、スチレン-ブタジエン共重合ゴム(SBR))挙げられる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 増粘剤としては、例えば、セルロースエーテルなどのセルロース誘導体が挙げられる。セルロース誘導体としては、CMCおよびその変性体、メチルセルロースなどが挙げられる。CMCの変性体には、CMCの塩も含まれる。塩としては、アルカリ金属塩(例えば、ナトリウム塩)、アンモニウム塩などが挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 CNT以外の導電剤としては、例えば、CNT以外の導電性繊維、導電性粒子が挙げられる。導電性繊維としては、炭素繊維、金属繊維などが挙げられる。導電性粒子としては、導電性炭素(カーボンブラックなど)、金属粉末などが挙げられる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 負極集電体は、非水電解質二次電池の種類に応じて選択される。負極集電体としては、例えば、シート状のものが挙げられる。集電体としては、金属箔などを用いてもよい。また、集電体として多孔質のものを用いてもよい。多孔質の集電体としては、例えば、網状のもの、パンチングシート、エキスパンドメタルが挙げられる。
 負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金が例示される。
 負極集電体の厚さは、特に限定されないが、例えば、1~50μmであり、5~30μmであってもよい。
 負極は、例えば、負極合剤の構成成分を分散媒に分散させた負極スラリを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、シート状の負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
 分散媒としては、特に制限されないが、例えば、水、アルコール(例えば、エタノール)、エーテル(例えば、テトラヒドロフラン)、アミド(例えば、ジメチルホルムアミド)、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒が挙げられる。
 (正極)
 正極は、正極集電体と、正極集電体の表面に担持された正極合剤層とを備えてもよい。正極合剤層は、正極合剤を分散媒に分散させた正極スラリを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤等を含むことができる。分散媒としては、例えば、負極について例示したものから選択できる。
 正極活物質としては、例えば、リチウムと遷移金属とを含む複合酸化物が用いられる。遷移金属としては、例えば、Ni、Co、Mn等が挙げられる。リチウムと遷移金属とを含む複合酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCob1Ni1-b1、LiCob11-b1c1、LiNi1-b1b1c1、LiMn、LiMn2-b1b1が挙げられる。ここで、a=0~1.2、b1=0~0.9、c1=2.0~2.3である。Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、SbおよびBからなる群より選択される少なくとも1種である。なお、リチウムのモル比を示すa値は、充放電により増減する。
 中でも、LiNib21-b2(0<a≦1.2、0.3≦b2≦1であり、Mは、Mn、CoおよびAlからなる群より選択される少なくとも1種である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b2≦1を満たすことがより好ましい。結晶構造の安定性の観点から、LiNib2Coc2Al(0<a≦1.2、0.85≦b2<1、0<c2≦0.15、0<d≦0.1、b2+c2+d=1)が更に好ましい。
 結着剤としては、負極で例示した樹脂材料などを用いることができる。導電剤としては、例えば、負極で例示したものから選択できる。導電剤として、黒鉛を用いてもよい。
 正極集電体の形状および厚みは、負極集電体について説明した形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタンが挙げられる。
 (非水電解質)
 非水電解質としては、通常、液状の非水電解質が用いられる。非水電解質は、通常、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含んでおり、これらに加えて、第1成分を含む。
 (第1成分)
 第1成分としては、環状硫酸エステル、環状亜硫酸エステル、およびスルトンからなる群より選択される少なくとも一種が用いられる。第1成分は、少なくとも-S(=O)-O-または-S(=O)-O-などを、環を構成する単位として含んでもよい。
 環状硫酸エステルとしては、例えば、アルキレンサルフェート、アルケニレンサルフェートが挙げられる。環状硫酸エステルとしては、C2-4アルキレンサルフェート、C2-4アルケニレンサルフェートなどを用いてもよい。環状硫酸エステルの具体例としては、エチレンサルフェート、プロピレンサルフェート、トリメチレンサルフェート、ブチレンサルフェート、ビニレンサルフェートが挙げられる。
 環状亜硫酸エステルとしては、アルキレンサルファイト、アルケニレンサルファイトなどが挙げられる。環状亜硫酸エステルとしては、C2-4アルキレンサルファイト、C2-4アルケニレンサルファイトなどを用いてもよい。環状亜硫酸エステルの具体例としては、エチレンサルファイト、プロピレンサルファイト、トリメチレンサルファイト、ブチレンサルファイト、ビニレンサルファイトが挙げられる。
 スルトンとしては、アルカンスルトン、アルケンスルトンなどが挙げられる。スルトンとしては、C3-5アルカンスルトン、C3-5アルケンスルトンなどを用いてもよい。スルトンの具体例としては、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトンが挙げられる。
 第1成分には、1つまたは2つ以上の置換基を有するものも包含される。第1成分は、置換基を、第1成分の環を構成する炭素原子に有していてもよい。置換基としては、アルキル基、ヒドロキシアルキル基、ヒドロキシ基、アルコキシ基、ハロゲン原子などが挙げられる。置換基の炭素数は、1~4または1~3であってもよい。ハロゲン原子としては、塩素原子、フッ素原子などが挙げられる。
 第1成分としては、C2-4アルキレンサルフェート、C2-4アルキレンサルファイト、C3-5アルカンスルトン、C3-5アルケンスルトンが好ましい。
 非水電解質は、第1成分を1種含んでもよく、2種以上組み合わせて含んでもよい。
 非水電解質中の第1成分の含有量は、例えば、5質量%以下であり、3質量%以下であってもよい。第1成分の含有量がこのような範囲である場合、非水電解質の減少をさらに抑制することができる。非水電解質の減少抑制効果がさらに高まる観点からは、非水電解質中の第1成分の含有量を2質量%以下とすることが好ましい。この場合、非水電解質の粘度を低く抑えて、充放電反応をより均一に進行させることができることから、非水電解質の消費が全体として抑制されると考えられる。非水電解質二次電池では、保存または充放電の間、非水電解質中の第1成分の含有量は変化する。そのため、非水電解質二次電池における非水電解質中に、第1成分が検出限界以上の濃度で残存していればよい。非水電解質中の第1成分の含有量は、0.01質量%以上であってもよい。
 なお、非水電解質二次電池の製造に用いられる非水電解質中の第1成分の含有量は、0.1質量%以上であってもよく、0.3質量%以上または0.5質量%以上であってもよい。非水電解質二次電池の製造に用いられる非水電解質中の第1成分の含有量は、例えば、5質量%以下であり、3質量%以下または2質量%以下であってもよい。これらの下限値と上限値とは任意に組み合わせることができる。第1成分の含有量がこのような範囲である非水電解質を電池の製造に用いることで、充放電を繰り返した後の非水電解質の減少を効果的に抑制できる。
 非水電解質中の第1成分の含有量は、例えば、ガスクロマトグラフィーを用いて、下記の条件で求められる。
 測定装置:島津製作所製 GC-2010 Plus
 カラム:J&W製 HP-1(1μm×60m)
 線速度:30.0cm/sec
 注入口温度:270℃
 検出器:FID 290℃(sens.10
 (非水溶媒)
 非水溶媒としては、例えば、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステルが挙げられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル(MA)、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水電解質は、非水溶媒を1種含んでもよく、2種以上組み合わせて含んでもよい。非水電解質が、鎖状カルボン酸エステルを含む場合、CNTを含む負極合剤と組み合わせたときに副反応が起こり易い。しかし、このような場合であっても、第1成分を用いることによる効果が顕著に得られる。よって、副反応が抑制され、高いサイクル特性を確保することができる。非水電解質が、鎖状カルボン酸エステルとして少なくともMAを含む場合には、このような効果が顕著になるため、より好ましい。
 (リチウム塩)
 リチウム塩としては、例えば、LiClO、LiBF、LiPF、LiAlCl、LiSbF、LiSCN、LiCFSO、LiCFCO、LiAsF、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩、イミド塩が挙げられる。ホウ酸塩としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ホウ酸リチウム等が挙げられる。イミド塩としては、ビスフルオロスルホニルイミドリチウム(LiN(FSO)、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CFSO)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CFSO)(CSO))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(CSO)等が挙げられる。非水電解質は、リチウム塩を、1種含んでもよく、2種以上組み合わせて含んでもよい。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、2mol/L以下である。
 非水電解質は、他の添加剤を含んでもよい。他の添加剤を第2成分と称する。第2成分としては、例えば、ビニレンカーボネート、フルオロエチレンカーボネート、およびビニルエチレンカーボネートからなる群より選択される少なくとも1種が挙げられる。
 (セパレータ)
 通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、例えば、微多孔薄膜、織布、または不織布、もしくはこれらから選択される少なくとも2つの積層体を用いることができる。セパレータの材質としては、ポリオレフィン(例えば、ポリプロピレン、ポリエチレン)が好ましい。
 (その他)
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回された電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層された積層型の電極群等、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型等、いずれの形態であってもよい。
 以下、本開示に係る非水電解質二次電池の一例として角形の非水電解質二次電池の構造を、図1を参照しながら説明する。図1は、本開示の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード3の一端が溶接等により取り付けられている。負極リード3の他端は、樹脂製の絶縁板を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端が溶接等により取り付けられている。正極リード2の他端は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている電解液の注入孔は、封栓8により塞がれている。
 [実施例]
 以下、本開示を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 《実施例1~6および比較例1~9》
 下記の手順で、非水電解質二次電池を作製し、評価を行った。
 (1)負極の作製
 負極合剤に適量の水を加え、混合し、負極スラリを得た。負極合剤には、負極活物質と、結着剤と、導電剤との混合物を用いた。
 負極活物質には、Si含有材料と、黒鉛(平均粒径(D50)25μm)との混合物を用いた。Si含有材料には、表面が導電性炭素を含む導電層で被覆されたLi2ySiO2+y粒子(y=1、平均粒径(D50)10μm)および表面が導電性炭素を含む導電層で被覆されたSiO粒子(x=1、平均粒径(D50)5μm)を用いた。導電層を除くLi2ySiO2+y粒子と導電層を除くSiO粒子との質量比は、1:1とした。負極活物質において、導電層を除くSi含有材料と黒鉛との質量比は、6:94とした。
 結着剤には、ポリアクリル酸ナトリウム(PAA-Na)と、CMCのナトリウム塩(CMC-Na)と、SBRとを用いた。導電剤には、SWCNTを90質量%以上含むCNT(平均直径1.6nm程度、平均長さ5μm程度)を用いた。
 負極合剤中のCNTの含有量は、表1に示す値とした。負極合剤中のPAA-Na、CMC-Na、およびSBRの含有量は、それぞれ、1質量%とした。
 次に、銅箔の表面に負極スラリを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に負極合剤層(厚み80μm、密度1.6g/cm)を形成し、負極を得た。
 (2)正極の作製
 リチウム含有複合酸化物(LiNi0.8Co0.18Al0.02)95質量部に、アセチレンブラック2.5質量部と、ポリフッ化ビニリデン2.5質量部と、適量のNMPとを加え、混合し、正極スラリを得た。次に、アルミニウム箔の表面に正極スラリを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に正極合剤層(厚み95μm、密度3.6g/cm)を形成し、正極を得た。
 (3)非水電解質の調製
 ECとDMCとMAとの混合溶媒(EC:DMC:MA=20:60:20(体積比))に、LiPFおよび必要に応じて表1に示す第1成分を溶解させることにより、非水電解質を調製した。非水電解質中のLiPFの濃度は、1.35mol/Lとした。調製した非水電解質中の第1成分の濃度(初期濃度)は、表1中に第1成分添加量として示される値(質量%)とした。
 (4)非水電解質二次電池の作製
 上記で得られた正極にAl製の正極リードを取り付け、上記で得られた負極にNi製の負極リードを取り付けた。不活性ガス雰囲気中で、正極と負極とをポリエチレン薄膜(セパレータ)を介して渦巻状に捲回し、捲回型の電極群を作製した。電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、上記非水電解質の所定量を注入した後、外装体を封止して非水電解質二次電池を作製した。なお、電極群を外装体に収容する際、正極リードおよび負極リードの一部は、それぞれ、外装体より外部に露出させた。
 (評価)
 下記の手順で、非水電解質二次電池の充放電サイクルを行い、サイクル後の非水電解質の残存量および容量維持率を求めた。
 45℃環境下で、非水電解質二次電池の電圧が4.2Vになるまで0.5C(180mA)の電流で定電流充電を行い、その後、電流が0.05C(18mA)になるまで4.2Vの電圧で定電圧充電を行った。10分の休止の後、非水電解質二次電池の電圧が2.5Vになるまで0.7C(252mA)の電流で定電流放電を行った。このときの放電容量(Ci)を求めた。このような充電、休止および放電のサイクルを1サイクルとして、400サイクル繰り返し、400サイクル目の放電容量(Cc)を求めた。初期の放電容量Ciを100%としたときの放電容量Ccの比率(%)を容量維持率として求めた。
 また、400サイクル後の非水電解質二次電池を分解して、残存する非水電解質を回収し、体積を求めた。初期の非水電解質の体積を100%としたときの残存する非水電解質の体積の比率(%)を算出した。表1には、この比率を非水電解質残存量(%)として示す。
 実施例および比較例の結果を表1に示す。表1には、負極合剤中のCNTの含有量(質量%)、非水電解質に添加した第1成分の種類および添加量(質量%)も合わせて示した。表1中、E1~E6は、実施例1~6であり、C1~C9は、比較例1~9である。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、負極合剤がCNTを含む場合は、CNTを含まない場合に比べて非水電解質の残存量が3.3%減少する(C1とC2との比較)。一方、負極合剤にCNTが含まれない場合に、非水電解質に第1成分を添加しても、非水電解質の残存量はほとんど変わらない(C1とC3~C5との比較)。換言すると、負極合剤にCNTが含まれない場合には、第1成分は、非水電解質の減少抑制にほとんど貢献しない。ところが、CNTを含む負極合剤に、第1成分を含む非水電解質を組み合わせた場合、第1成分による非水電解質の減少抑制効果が発揮される。具体的には、第1成分を含まない非水電解質を用いたC2に比べて、E1~E6では、負極合剤がCNTを含まない場合に匹敵するまたはこれを超える非水電解質の残存量を確保することができる。また、E1~E6では、CNTを用いない場合または第1成分を用いない場合に比べて、高い容量維持率を確保することができ、優れたサイクル特性が得られる(C1~C5とE1~E6との比較)。これは、負極合剤がCNTを含むことで、充放電を繰り返したときの負極合剤における導電パスの切断が抑制されることに加え、第1成分を用いることで負極合剤がCNTを含む場合の副反応が抑制され、充放電反応に電子が優先的に消費されることによるものと考えられる。
 なお、負極合剤中のCNTの含有量が0.005質量%未満の場合には、CNTを用いることによる非水電解質の残存量の低下が顕在化しない(C8)。そのため、C8と、CNTを含まない負極合剤と第1成分を含む非水電解質とを組み合わせたC3と比較して、非水電解質の残存量はほとんど変わらない。負極合剤中のCNTの含有量が0.05質量%を超える負極と、第1成分を含む非水電解質とを組み合わせた場合、第1成分を用いることによる、非水電解質の残存量の低下抑制において、それほど顕著な効果が得られなくなる(E2およびC2とC7およびC9との比較)。
 本開示の非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。しかし、非水電解質二次電池の用途は、これらに限定されるものではない。
1  電極群
2  正極リード
3  負極リード
4  電池ケース
5  封口板
6  負極端子
7  ガスケット
8  封栓

Claims (8)

  1.  正極と、負極と、非水電解質と、を備え、
     前記負極は、電気化学的にリチウムイオンを吸蔵および放出可能な負極活物質と、カーボンナノチューブと、を含む負極合剤を備え、
     前記負極活物質は、ケイ素含有材料および炭素質材料を含み、
     前記非水電解質は、環状硫酸エステル、環状亜硫酸エステル、およびスルトンからなる群より選択される少なくとも一種の環状エステルを含み、
     前記負極合剤中の前記カーボンナノチューブの含有量は、0.005質量%以上0.05質量%以下である、非水電解質二次電池。
  2.  前記負極活物質に占める前記ケイ素含有材料の比率は、4質量%以上である、請求項1に記載の非水電解質二次電池。
  3.  前記環状エステルは、C2-4アルキレンサルフェート、C2-4アルキレンサルファイト、C3-5アルカンスルトン、およびC3-5アルケンスルトンからなる群より選択される少なくとも一種である、請求項1または2に記載の非水電解質二次電池。
  4.  前記非水電解質中の前記環状エステルの含有量は、5質量%以下である、請求項1~3のいずれか1項に記載の非水電解質二次電池。
  5.  前記カーボンナノチューブは、単層カーボンナノチューブを含む、請求項1~4のいずれか1項に記載の非水電解質二次電池。
  6.  前記カーボンナノチューブに占める前記単層カーボンナノチューブの割合は、90%以上である、請求項5に記載の非水電解質二次電池。
  7.  前記非水電解質は、さらに鎖状カルボン酸エステルを含む、請求項1~6のいずれか1項に記載の非水電解質二次電池。
  8.  前記非水電解質は、前記鎖状カルボン酸エステルとして少なくとも酢酸メチルを含む、請求項7に記載の非水電解質二次電池。
PCT/JP2021/012470 2020-03-31 2021-03-25 非水電解質二次電池 WO2021200528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21780813.8A EP4131465A1 (en) 2020-03-31 2021-03-25 Nonaqueous electrolyte secondary battery
US17/913,290 US20230170527A1 (en) 2020-03-31 2021-03-25 Nonaqueous electrolyte secondary battery
JP2022512058A JPWO2021200528A1 (ja) 2020-03-31 2021-03-25
CN202180025370.9A CN115362585A (zh) 2020-03-31 2021-03-25 非水电解质二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-064284 2020-03-31
JP2020064284 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021200528A1 true WO2021200528A1 (ja) 2021-10-07

Family

ID=77929870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012470 WO2021200528A1 (ja) 2020-03-31 2021-03-25 非水電解質二次電池

Country Status (5)

Country Link
US (1) US20230170527A1 (ja)
EP (1) EP4131465A1 (ja)
JP (1) JPWO2021200528A1 (ja)
CN (1) CN115362585A (ja)
WO (1) WO2021200528A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170410A (ja) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 電極、リチウム電池、電極製造方法及び電極コーティング用組成物
WO2013145108A1 (ja) * 2012-03-26 2013-10-03 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2014160590A (ja) 2013-02-20 2014-09-04 Showa Denko Kk 電池用電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009170410A (ja) * 2008-01-15 2009-07-30 Samsung Electronics Co Ltd 電極、リチウム電池、電極製造方法及び電極コーティング用組成物
WO2013145108A1 (ja) * 2012-03-26 2013-10-03 株式会社 東芝 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
JP2014146519A (ja) 2013-01-29 2014-08-14 Showa Denko Kk 複合電極材
JP2014160590A (ja) 2013-02-20 2014-09-04 Showa Denko Kk 電池用電極の製造方法

Also Published As

Publication number Publication date
CN115362585A (zh) 2022-11-18
JPWO2021200528A1 (ja) 2021-10-07
EP4131465A1 (en) 2023-02-08
US20230170527A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
JP7053130B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP7394324B2 (ja) 非水電解質二次電池
JP7223980B2 (ja) 正極材料および二次電池
KR20150067049A (ko) 리튬 이차 전지용 도전 조성물, 이를 포함하는 리튬 이차 전지용 양극 및 리튬 이차 전지
JP7228786B2 (ja) 非水電解質二次電池用負極および非水電解質二次電池
JPWO2017217408A1 (ja) リチウムイオン二次電池
JP2008198620A (ja) リチウム二次電池
JP7233011B2 (ja) 正極活物質および二次電池
WO2021124970A1 (ja) 非水電解質二次電池用正極及び非水電解質二次電池
JP7499443B2 (ja) 非水電解質二次電池
JP2022010459A (ja) リチウムイオン二次電池
WO2021117549A1 (ja) 非水電解液二次電池
WO2022045036A1 (ja) 非水電解質二次電池
WO2021172005A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2021200528A1 (ja) 非水電解質二次電池
WO2021153398A1 (ja) 非水電解質二次電池用負極および非水電解質二次電池
WO2023053764A1 (ja) 非水電解質二次電池
WO2023032499A1 (ja) 非水電解質二次電池
WO2023054060A1 (ja) 非水電解質二次電池
WO2022092136A1 (ja) 非水電解質二次電池
WO2021235131A1 (ja) 非水電解質二次電池
WO2023127227A1 (ja) 非水電解質二次電池
WO2023145603A1 (ja) 非水電解液二次電池用負極及び非水電解液二次電池
WO2023276526A1 (ja) 非水電解質二次電池
WO2021039119A1 (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21780813

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021780813

Country of ref document: EP

Effective date: 20221031