Nothing Special   »   [go: up one dir, main page]

WO2021261426A1 - ロボット制御装置 - Google Patents

ロボット制御装置 Download PDF

Info

Publication number
WO2021261426A1
WO2021261426A1 PCT/JP2021/023346 JP2021023346W WO2021261426A1 WO 2021261426 A1 WO2021261426 A1 WO 2021261426A1 JP 2021023346 W JP2021023346 W JP 2021023346W WO 2021261426 A1 WO2021261426 A1 WO 2021261426A1
Authority
WO
WIPO (PCT)
Prior art keywords
robot
load information
load
control
read
Prior art date
Application number
PCT/JP2021/023346
Other languages
English (en)
French (fr)
Inventor
心 畑中
慎太郎 堀
康広 内藤
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to DE112021002029.3T priority Critical patent/DE112021002029T5/de
Priority to JP2022531962A priority patent/JPWO2021261426A1/ja
Priority to US18/008,709 priority patent/US20230219219A1/en
Priority to CN202180044213.2A priority patent/CN115916479A/zh
Publication of WO2021261426A1 publication Critical patent/WO2021261426A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1653Programme controls characterised by the control loop parameters identification, estimation, stiffness, accuracy, error analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • B25J13/08Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
    • B25J13/085Force or torque sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/06Safety devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0081Programme-controlled manipulators with master teach-in means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/423Teaching successive positions by walk-through, i.e. the tool head or end effector being grasped and guided directly, with or without servo-assistance, to follow a path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36401Record play back, teach position and record it then play back
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39194Compensation gravity
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40599Force, torque sensor integrated in joint

Definitions

  • This disclosure relates to a robot control device.
  • control to operate the robot according to the external force applied by the user (hereinafter referred to as lead-through control) is performed.
  • lead-through control There is also gravity in the external force applied to the robot, and in order to prevent it from operating arbitrarily due to gravity, the motor uses information on the robot's own weight and information on the load attached to the robot (hereinafter referred to as load information). It is necessary to compensate for the generated torque.
  • the robot exchanges the hand attached to the tip and grips workpieces with different weights and positions of the center of gravity.
  • it is necessary to store the load information of the hand that may be attached or the work that may be gripped in advance, and to switch the load information each time the hand or work is changed.
  • the robot may move in a direction not intended by the user. Therefore, even if read-through control is performed based on inaccurate load information, it is desired to prevent the robot from suddenly moving in a direction not intended by the user.
  • One aspect of the present disclosure is a storage unit for storing load information including the mass of a load attached to the robot and the position of the center of gravity, and a robot provided with a sensor for detecting an external force, the external force detected by the sensor and the storage unit.
  • a read-through control unit that controls based on the load information stored in the storage unit and a load suitability determination unit that determines whether or not the load information stored in the storage unit is appropriate are provided, and the load suitability determination is made.
  • the read-through control unit is a robot control device that limits the operation of the robot when it is determined by the unit that the load information may be inappropriate.
  • the robot control device 1 according to the first embodiment of the present disclosure will be described below with reference to the drawings.
  • the robot control device 1 according to the present embodiment is, for example, a control device for controlling the robot 100 shown in FIG.
  • This robot 100 is a vertical 6-axis articulated collaborative robot, and has a base 110 installed on the floor surface and a swivel cylinder 120 rotatably supported with respect to the base 110 around the vertical first axis A. And a first arm 130 rotatably supported with respect to the swivel cylinder 120 around the horizontal second axis B. Further, the robot 100 has a second arm 140 rotatably supported with respect to the first arm 130 around the third axis C parallel to the second axis B, and three axes provided at the tip of the second arm 140. It is equipped with a wrist unit 150.
  • the wrist unit 150 is orthogonal to the first wrist element 151 rotatably supported with respect to the second arm 140 and the fourth axis D around the fourth axis D arranged in the plane including the first axis A.
  • a second wrist element 152 rotatably supported with respect to the first wrist element 151 is provided around the fifth axis E.
  • the wrist unit 150 is arranged in a plane parallel to the fourth axis D and is rotatably supported by the second wrist element 152 around the sixth axis F orthogonal to the fifth axis E. It is equipped with.
  • a torque sensor (sensor) 160 for detecting an external force acting on the robot 100 is arranged on each axis of the robot 100.
  • the torque sensor 160 may be provided on each shaft, or may be provided on any one or more of the shafts. Further, instead of the torque sensor 160, another sensor such as a force sensor may be adopted.
  • the robot control device 1 includes at least one processor and memory, and as shown in FIG. 1, a position command generation unit 2, a position control unit 3, a storage unit 4, a read-through control unit 5, and a read-through unit. It includes a sensitivity setting unit (load suitability determination unit) 6 and a switching unit 7. Further, the teaching operation panel 8 is connected to the robot control device 1, and the teaching operation panel 8 is provided with a changeover switch 9.
  • the position command generation unit 2 generates a position command based on a teaching program taught in advance or an operation by the user.
  • the position control unit 3 controls the motor 170 of each axis of the robot 100 based on the position command generated by the position command generation unit 2.
  • the lead-through control unit 5 controls the robot 100 based on the external force detected by the torque sensor 160 provided in the robot 100.
  • the lead-through sensitivity setting unit 6 sets the sensitivity of the lead-through control.
  • the changeover switch 9 is, for example, a switch that is turned on when the user presses it with a finger and is turned off when the user releases the finger.
  • the switching unit 7 switches to read-through control when the changeover switch 9 is turned on, and switches to position control when the changeover switch 9 is turned off.
  • the storage unit 4 stores the mass and the position of the center of gravity of each part of the robot 100, and the load information such as the mass of the load of the hand or work attached to the robot 100 and the position of the center of gravity. Since the mass and the position of the center of gravity of each part of the robot 100 are known, it is assumed that accurate information is stored. The mass of the load and the position of the center of gravity are set by the user each time the load is changed, and may not be set accurately.
  • the load information stored in the storage unit 4 is input to the position control unit 3, current information is input from the motor 170 of each axis of the robot 100, and position information is input from the encoder (not shown) provided in the motor 170. Feedback will be given.
  • the load information stored in the storage unit 4 is input to the read-through control unit 5, and the position information is input from the encoder.
  • the lead-through control unit 5 includes a load torque calculation unit 10 and an offset amount storage unit 11.
  • the load torque calculation unit 10 sequentially calculates the gravity load torque based on the load information input from the storage unit 4 and the position information input from the encoder.
  • the offset amount storage unit 11 stores the offset amount of the torque sensor 160.
  • the lead-through control unit 5 subtracts the offset amount stored in the offset amount storage unit 11 from the external force detected by the torque sensor 160, and also subtracts the gravity load torque calculated by the load torque calculation unit 10. As a result, an estimated value of the force applied by the user to the robot 100 is calculated.
  • the lead-through control unit 5 issues a torque command to the motor 170 by subtracting a value obtained by multiplying the calculated force estimation value by the gain K from the gravity load torque calculated by the load torque calculation unit 10. calculate.
  • the state of the changeover switch 9 and the estimated value of the force calculated by the lead-through control unit 5 are input to the lead-through sensitivity setting unit 6. As shown in FIG. 4, the read-through sensitivity setting unit 6 determines whether or not the changeover switch 9 is pressed (step S1), and waits until the changeover switch 9 is pressed.
  • step S2 When the changeover switch 9 is pressed, the read-through control is effectively switched (step S2), and it is determined whether or not the absolute value of the estimated value of the force input from the read-through control unit 5 is equal to or less than the predetermined threshold value T1. (Step S3). When the absolute value of the estimated value is larger than the threshold value T1, the gain K of the read-through control unit 5 is set to a predetermined value K1 close to 1 (step S4).
  • the read-through sensitivity setting unit 6 sets the gain K of the read-through control unit 5 to K0, which is smaller than K1 (step S5).
  • the threshold value T1 can be appropriately set as needed. Then, read-through control is performed using the set gain K, and the steps from step S2 are repeated until the changeover switch 9 is turned off (step S6).
  • Step S5 After the changeover switch 9 is turned off in the step S6, the read-through control is invalidated (step S7), and the procedure is completed.
  • the read-through when the read-through control is started, the read-through is when the absolute value of the estimated value initially calculated is larger than the threshold value T1.
  • the control sensitivity is reduced.
  • the movement of the robot 100 according to the force applied by the user can be limited, and even when inaccurate load information is stored, the robot 100 suddenly moves in a direction not intended by the user. It has the advantage of being able to prevent it from happening.
  • the robot 100 can be smoothly operated according to the force applied by the user, and the work using the read-through control can be facilitated. Even if inaccurate load information is set, when the estimated force value is small, even if the sensitivity is increased, it is possible to prevent sudden movement in a direction not intended by the user, improving workability. can do.
  • the gain K of the lead-through control is increased and the sensitivity is lowered.
  • the operating distance of the robot 100 that operates according to the force applied by the user in the read-through control may be limited to a predetermined value or less.
  • Step S21 it is determined whether or not the flag It_end indicating that the process has ended in an abnormal state is normal (step S21), and if it is abnormal, the read-through control is invalid. (Step S22).
  • the flag It_end is initialized to normal when the abnormal state is cleared.
  • step S23 it is determined whether or not the changeover switch 9 is in the ON state. If the changeover switch 9 is not in the ON state, the current position is stored as P1 (step S24).
  • step S25 it is determined whether or not the absolute value of the estimated force value is equal to or less than the predetermined threshold value T1 (step S25).
  • the switching unit 7 is effectively switched to the read-through control (step S26), the gain of the read-through control is set to K0, and the sensitivity of the read-through control is increased. It is made to (step S27).
  • step S28 it is determined whether or not the distance between the current position and P1 stored in step S24 is equal to or less than the predetermined threshold value L1 (step S28). ..
  • the switching unit 7 is effectively switched to the read-through control (step S29), the gain of the read-through control is set to K1, and the sensitivity of the read-through control is lowered (step). S30).
  • step S22 the read-through control is continued until the changeover switch 9 is switched to the off state, in which case the steps from step S25 are repeated (step S31). After the changeover switch 9 is switched to the off state, the read-through control is disabled (step S22). On the other hand, when it is determined in step S28 that the distance between the current position and P1 is larger than the threshold value L1, the flag It_end is switched to abnormal (true) (step S32), and the read-through control is disabled. (Step S22).
  • the set load information may be inaccurate. Therefore, in addition to lowering the sensitivity of the read-through control, the moving distance Is prevented from becoming excessive. Even if inaccurate load information is set, if the operating distance of the robot 100 is short, it is possible to prevent the robot 100 from moving significantly in a direction not intended by the user. This has the advantage that the robot 100 can be more reliably prevented from suddenly moving in a direction not intended by the user.
  • the axis of the robot 100 which operates according to the force applied by the user may be limited. For example, by limiting the read-through control to only the three wrist axes of the wrist unit 150, it is possible to prevent the robot 100 from moving significantly in a direction not intended by the user.
  • the robot control device 50 according to the second embodiment of the present disclosure will be described below with reference to the drawings.
  • the robot control device 50 according to the present embodiment is different from the robot control device 1 according to the first embodiment in that it includes a load information estimation unit 51.
  • reference numeral 52 is a monitor.
  • the load information estimation unit 51 sets a plurality of postures of the robot 100 for estimating the load information on the monitor 52. Display sequentially. Then, the load information estimation unit 51 instructs the user to operate the robot 100 by read-through control up to the displayed posture.
  • the load information estimation unit 51 When the user instructed to switch the changeover switch 9 to the on state and the robot 100 was operated in the vicinity of the displayed posture by the read-through control, the load information estimation unit 51 prompts the user to input a measurement command. Instruct. When the user inputs the load identification information and the measurement command according to the instruction, the load information estimation unit 51 records the external force detected by the torque sensor 160 at that time and the position of the motor 170.
  • the load information estimation unit 51 solves the equation of motion of the robot 100 by recording the external force for the three axes and the position of the motor 170 in the postures of the wrist units 150 having three or more axes in which gravity is applied differently. Therefore, the mass of the load, the position of the center of gravity, and the offset amount of the torque sensor 160 can be estimated.
  • the estimated mass of the load and the position of the center of gravity are stored in the storage unit 4 in association with the identification information of the load.
  • the estimated offset amount is stored in the offset amount storage unit 11 of the read-through control unit 5.
  • the load information estimation unit 51 waits for the input of the load identification information and the load information estimation command (step S11). ..
  • the load information estimation unit 51 commands the read-through sensitivity setting unit to set the gain K of the read-through control to K1 to reduce the sensitivity. (Step S12).
  • the load information estimation unit 51 determines whether or not the changeover switch 9 has been switched to the ON state (step S13), and when the changeover switch 9 is switched, determines whether or not the axis operated by the read-through control is the wrist axis. (Step S14).
  • the lead-through control is enabled (step S15), and when a shaft other than the wrist shaft is operated or when the changeover switch 9 is in the off state, the lead-through control is disabled (step S15). Step S16).
  • FIG. 4 or FIG. 4 or Read-through control may be performed according to the flowchart of FIG.
  • a flag indicating that the estimation has been performed is set, and a flag is set when the load stored in the storage unit 4 is selected and the read-through control is started. If is set, the gain may be set to K0.
  • the accurate load information may not be stored.
  • the sensitivity of the through control can be lowered to limit the operation of the robot 100. This prevents the robot 100 from suddenly moving in a direction contrary to the user's intention based on inaccurate load information when the robot 100 is operated by read-through control in the load information estimation work. can.
  • the sensitivity of the read-through control is lowered and the axis for enabling the read-through control is limited to the wrist axis only. Both were adopted, but only one of them may be used. Further, the moving distance of the robot 100 may be limited in the same manner as in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manipulator (AREA)

Abstract

ロボット(100)に装着する負荷の質量および重心位置を含む負荷情報を記憶する記憶部(4)と、外力を検出するセンサ(160)を備えたロボット(100)を、センサ(160)により検出された外力および記憶部(4)に記憶されている負荷情報に基づいて制御するリードスルー制御部(5)と、記憶部(4)に記憶されている負荷情報が適正か否かを判定する負荷適否判定部(6)とを備え、負荷適否判定部(6)により負荷情報が不適正である可能性があると判定された場合に、リードスルー制御部(5)が、ロボット(100)の動作を制限するロボット制御装置1である。

Description

ロボット制御装置
 本開示は、ロボット制御装置に関するものである。
 ユーザがロボットアームを直接手で押して操作しながら教示する、いわゆるリードスルー教示が知られている(例えば、特許文献1参照。)。
特開2019-55458号公報
 リードスルー教示においては、ユーザが加えた外力に応じてロボットを動作させる制御(以下、リードスルー制御という。)が行われる。ロボットに加わる外力には重力もあり、重力によって勝手に動作することを防ぐために、ロボットの自重の情報およびロボットに取り付けた負荷の自重の情報(以下、負荷情報という。)を用いて、モータが発生するトルクを補償する必要がある。
 また、ロボットは、先端に取り付けるハンドを交換したり、重量や重心位置の異なるワークを把持したりする。この場合、予め装着する可能性のあるハンドあるいは把持する可能性のあるワークの負荷情報を記憶しておき、ハンドやワークが変更される都度に、負荷情報を切り替える必要がある。
 しかしながら、記憶されている負荷情報が正確ではない場合に、リードスルー制御が行われると、ユーザが意図しない方向にロボットが動作してしまうことがある。したがって、不正確な負荷情報に基づいてリードスルー制御が行われても、ユーザが意図しない方向にロボットが急激に動作してしまうことを防止することが望まれている。
 本開示の一態様は、ロボットに装着する負荷の質量および重心位置を含む負荷情報を記憶する記憶部と、外力を検出するセンサを備えたロボットを、前記センサにより検出された外力および前記記憶部に記憶されている前記負荷情報に基づいて制御するリードスルー制御部と、前記記憶部に記憶されている前記負荷情報が適正か否かを判定する負荷適否判定部とを備え、該負荷適否判定部により前記負荷情報が不適正である可能性があると判定された場合に、前記リードスルー制御部が、前記ロボットの動作を制限するロボット制御装置である。
本開示の第1の実施形態に係るロボット制御装置の一例を示すブロック図である。 図1のロボット制御装置により制御されるロボットの一例を示す斜視図である。 図1のロボット制御装置のリードスルー制御部を説明するブロック図である。 図1のロボット制御装置によるリードスルー制御を説明するフローチャートである。 図4のリードスルー制御の変形例を示すフローチャートである。 本開示の第2の実施形態に係るロボット制御装置の一例を示すブロック図である。 図6のロボット制御装置のリードスルー制御部を説明するブロック図である。 図6のロボット制御装置によるリードスルー制御を説明するフローチャートである。
 本開示の第1の実施形態に係るロボット制御装置1について、図面を参照して以下に説明する。本実施形態に係るロボット制御装置1は、例えば、図2に示されるロボット100を制御する制御装置である。
 このロボット100は、垂直6軸多関節型の協働ロボットであり、床面に設置されるベース110と、鉛直な第1軸線A回りにベース110に対して回転可能に支持された旋回胴120と、水平な第2軸線B回りに旋回胴120に対して回転可能に支持された第1アーム130とを備えている。また、ロボット100は、第2軸線Bに平行な第3軸線C回りに第1アーム130に対して回転可能に支持された第2アーム140と、第2アーム140の先端に備えられた3軸の手首ユニット150とを備えている。
 手首ユニット150は、第1軸線Aを含む平面内に配置される第4軸線D回りに、第2アーム140に対して回転可能に支持された第1手首要素151と、第4軸線Dに直交する第5軸線E回りに第1手首要素151に対して回転可能に支持された第2手首要素152とを備えている。さらに、手首ユニット150は、第4軸線Dに平行な平面内に配置され第5軸線Eに直交する第6軸線F回りに、第2手首要素152に回転可能に支持された第3手首要素153を備えている。
 ロボット100の各軸には、ロボット100に作用する外力を検出するトルクセンサ(センサ)160が配置されている。トルクセンサ160は各軸に設けられていてもよいし、1以上のいずれかの軸に設けられていてもよい。また、トルクセンサ160に代えて、力センサ等の他のセンサを採用してもよい。
 ロボット制御装置1は、少なくとも1つのプロセッサおよびメモリを備え、図1に示されるように、位置指令生成部2と、位置制御部3と、記憶部4と、リードスルー制御部5と、リードスルー感度設定部(負荷適否判定部)6と、切替部7とを備えている。また、ロボット制御装置1には、教示操作盤8が接続され、教示操作盤8には切替スイッチ9が備えられている。
 位置指令生成部2は、予め教示された教示プログラムあるいはユーザによる操作に基づいて位置指令を生成する。位置制御部3は、位置指令生成部2により生成された位置指令に基づいて、ロボット100の各軸のモータ170を制御する。
 リードスルー制御部5は、ロボット100に備えられたトルクセンサ160により検出された外力に基づいてロボット100を制御する。リードスルー感度設定部6は、リードスルー制御の感度を設定する。
 切替スイッチ9は、例えば、ユーザが指で押下することによりオン状態となり、指を離すことによりオフ状態となるスイッチである。
 切替部7は、切替スイッチ9がオン状態となったときに、リードスルー制御に切り替え、切替スイッチ9がオフ状態となったときに位置制御に切り替える。
 記憶部4は、ロボット100の各部の質量および重心位置、並びに、ロボット100に装着するハンドあるいはワーク等の負荷の質量および重心位置等の負荷情報を記憶している。
 ロボット100の各部の質量および重心位置は既知であるため、正確な情報が記憶されているものとする。負荷の質量および重心位置は、負荷が変更される都度にユーザによって設定されるため、正確に設定されていない場合がある。
 位置制御部3には、記憶部4に記憶されている負荷情報が入力されるとともに、ロボット100の各軸のモータ170から電流情報、モータ170に備えられたエンコーダ(図示略)から位置情報がフィードバックされる。
 リードスルー制御部5には、記憶部4に記憶されている負荷情報が入力されるとともに、エンコーダから位置情報が入力される。
 リードスルー制御部5は、図3に示されるように、負荷トルク算出部10と、オフセット量記憶部11とを備えている。
 負荷トルク算出部10は、記憶部4から入力された負荷情報と、エンコーダから入力された位置情報とに基づいて重力負荷トルクを逐次算出する。
 オフセット量記憶部11は、トルクセンサ160のオフセット量を記憶している。
 リードスルー制御部5は、トルクセンサ160により検出された外力からオフセット量記憶部11に記憶されているオフセット量を減算するとともに、負荷トルク算出部10により算出された重力負荷トルクを減算する。これにより、ユーザがロボット100に加えた力の推定値が算出される。
 そして、リードスルー制御部5は、算出された力の推定値に、ゲインKを乗算した値を負荷トルク算出部10により算出された重力負荷トルクから減算することにより、モータ170へのトルク指令を算出する。ゲインKは、0≦K≦1であり、K=0に近づくほどリードスルー制御の感度が高くなり、K=1に近づくほどリードスルー制御の感度が低くなる。
 リードスルー感度設定部6には、切替スイッチ9の状態とリードスルー制御部5により算出された力の推定値とが入力される。リードスルー感度設定部6は、図4に示されるように、切替スイッチ9が押されたか否かを判定し(ステップS1)、切替スイッチ9が押されるまで待機する。
 切替スイッチ9が押されたときには、リードスルー制御有効に切り替えられ(ステップS2)、リードスルー制御部5から入力されてきた力の推定値の絶対値が所定の閾値T1以下か否かが判定される(ステップS3)。推定値の絶対値が閾値T1よりも大きい場合には、リードスルー制御部5のゲインKを1に近い所定値K1に設定する(ステップS4)。
 推定値の絶対値が閾値T1以下である場合には、リードスルー感度設定部6は、リードスルー制御部5のゲインKをK1よりも小さいK0に設定する(ステップS5)。閾値T1は、必要に応じて適当に設定することができる。
 そして、設定されたゲインKを用いてリードスルー制御が行われ、切替スイッチ9がオフとなるまで、ステップS2からの工程が繰り返される(ステップS6)。
 すなわち、最初に切替スイッチ9をオン状態に切り替えたときに、算出された力の推定値が閾値T1よりも大きい場合には、負荷情報が不正確である可能性があり、ゲインKを大きくすることによって、リードスルー制御の感度が下げられる。一方、ゲインKを大きくすることによって感度を下げた状態でリードスルー制御が行われている途中で、推定値の絶対値が閾値T1以下となった場合には、ゲインKがK0に設定される(ステップS5)。
 ステップS6の工程において切替スイッチ9がオフとなった後、リードスルー制御が無効に切り替えられ(ステップS7)、処置を完了する。
 このように構成された本実施形態に係るロボット制御装置1によれば、リードスルー制御が開始されたときに、最初に算出される推定値の絶対値が閾値T1よりも大きい場合に、リードスルー制御の感度が低下させられる。これにより、ユーザが加えた力に応じたロボット100の動作を制限することができ、不正確な負荷情報が記憶されている場合であっても、ロボット100がユーザの意図しない方向へ急激に動作してしまうことを防止できるという利点がある。
 一方、感度を抑えた状態でのリードスルー制御の途中において、推定値の絶対値が閾値T1以下となった場合には感度が増大させられる。その結果、ユーザが加えた力に応じてロボット100をスムーズに動作させることができ、リードスルー制御を用いた作業を容易にすることができる。不正確な負荷情報が設定されていたとしても、力の推定値が小さい状態では、感度を増大させても、ユーザの意図しない方向へ急激に動作してしまうことを防止でき、作業性を向上することができる。
 なお、本実施形態においては、リードスルー制御部5によるロボット100の動作の制限として、リードスルー制御のゲインKを増大させて感度を下げることを例示した。これに代えて、あるいは、これに加えて、リードスルー制御においてユーザが加えた力に応じて動作するロボット100の動作距離を所定値以下に制限してもよい。
 例えば、図5に示されるように、異常状態で終了したことを示すフラグIt_endが正常(false)であるか否かを判定し(ステップS21)、異常である場合には、リードスルー制御が無効にされる(ステップS22)。フラグIt_endは、異常状態が解除されたときに正常(false)に初期化される。
 一方、フラグIt_endがfalseである場合には、切替スイッチ9がオン状態か否かが判定される(ステップS23)。切替スイッチ9がオン状態ではない場合には、現在位置がP1として記憶される(ステップS24)。
 一方、切替スイッチ9がオン状態となった場合には、力の推定値の絶対値が所定の閾値T1以下であるか否かが判定される(ステップS25)。推定値の絶対値が閾値T1以下である場合には、切替部7がリードスルー制御有効に切り替えられる(ステップS26)とともに、リードスルー制御のゲインがK0に設定され、リードスルー制御の感度が増大させられる(ステップS27)。
 一方、推定値の絶対値が閾値T1よりも大きい場合には、現在位置とステップS24において記憶されていたP1との距離が所定の閾値L1以下であるか否かが判定される(ステップS28)。距離が閾値L1以下である場合には、切替部7がリードスルー制御有効に切り替えられる(ステップS29)とともに、リードスルー制御のゲインがK1に設定され、リードスルー制御の感度が低下させられる(ステップS30)。
 リードスルー制御は、切替スイッチ9がオフ状態に切り替えられるまで継続され、その場合にはステップS25からの工程が繰り返される(ステップS31)。切替スイッチ9がオフ状態に切り替えられた後、リードスルー制御が無効に切り替えられる(ステップS22)。
 一方、ステップS28において、現在位置とP1との距離が閾値L1よりも大きいと判定された場合には、フラグIt_endが異常(true)に切り替えられる(ステップS32)とともに、リードスルー制御が無効に切り替えられる(ステップS22)。
 すなわち、力の推定値の絶対値が閾値T1よりも大きい場合には、設定されている負荷情報が不正確である可能性があるので、リードスルー制御の感度を下げることに加えて、移動距離が過大になることを防止している。不正確な負荷情報が設定されていたとしても、ロボット100の動作距離が短ければ、ロボット100がユーザの意図しない方向へ大きく動作してしまうことを防止できる。これにより、ロボット100がユーザの意図しない方向へ急激に動作してしまうことをより確実に防止できるという利点がある。
 また、ロボット100の動作の他の制限として、ユーザが加えた力に応じて動作するロボット100の軸を制限してもよい。例えば、リードスルー制御を手首ユニット150の手首3軸のみに制限することにより、ロボット100がユーザの意図しない方向へ大きく動作してしまうことを防止できる。
 次に本開示の第2の実施形態に係るロボット制御装置50について、図面を参照して以下に説明する。
 本実施形態に係るロボット制御装置50は、図6および図7に示されるように、負荷情報推定部51を備えている点において第1の実施形態に係るロボット制御装置1と相違している。図中、符号52はモニタである。
 負荷情報推定部51は、例えば、教示操作盤8において、負荷の識別情報および負荷情報の推定指令が入力されたときに、モニタ52において、負荷情報を推定するためのロボット100の複数の姿勢を順次表示する。そして、負荷情報推定部51は、表示した姿勢までリードスルー制御によってロボット100を動作させるようユーザに指示する。
 ユーザが指示に従って、切替スイッチ9をオン状態に切り替え、リードスルー制御によって、表示された姿勢の近傍にロボット100が動作させられたときには、負荷情報推定部51は、測定指令を入力するようユーザに指示する。ユーザが、指示に従って、負荷の識別情報と測定指令とを入力したときには、負荷情報推定部51は、その時点でのトルクセンサ160により検出された外力と、モータ170の位置とを記録する。
 そして、負荷情報推定部51は、重力の掛かり方の異なる3軸以上の手首ユニット150の姿勢において、3軸分の外力とモータ170の位置とを記録することにより、ロボット100の運動方程式を解いて、負荷の質量、重心位置およびトルクセンサ160のオフセット量を推定することができる。推定された負荷の質量および重心位置は、負荷の識別情報に対応づけられて記憶部4に記憶される。推定されたオフセット量はリードスルー制御部5のオフセット量記憶部11に記憶される。
 この場合において、本実施形態に係るロボット制御装置50においては、図8に示されるように、負荷情報推定部51は、負荷の識別情報および負荷情報の推定指令の入力を待機する(ステップS11)。負荷の識別情報および負荷情報の推定指令が入力されたときには、負荷情報推定部51は、リードスルー感度設定部に指令して、リードスルー制御のゲインKをK1に設定することにより感度を低減する(ステップS12)。
 そして、負荷情報推定部51は、切替スイッチ9がオン状態に切り替えられたか否かを判定し(ステップS13)、切り替えられたときには、リードスルー制御によって動作させられる軸が手首軸か否かを判定する(ステップS14)。手首軸が動作させられる場合には、リードスルー制御が有効となり(ステップS15)、手首軸以外の軸が動作させられる場合および切替スイッチ9がオフ状態の場合にはリードスルー制御が無効になる(ステップS16)。
 負荷情報の推定作業が終了し、正確な負荷情報が記憶部に記憶された状態で、リードスルー制御を用いてロボット100の教示を行う場合には、推定指令を入力することなく、図4または図5のフローチャートに従ってリードスルー制御を実施すればよい。あるいは、負荷情報の推定を実施した負荷については、推定が実施済みである旨のフラグを立てておき、記憶部4に記憶されている負荷を選択してリードスルー制御を開始する際に、フラグが立っている場合には、ゲインをK0に設定することにしてもよい。
 このように、本実施形態に係るロボット制御装置50によれば、負荷情報推定部51による負荷情報の推定を指令する場合には、正確な負荷情報が記憶されていない可能性があるので、リードスルー制御の感度を低くして、ロボット100の動作を制限することができる。これにより、負荷情報の推定作業に際して、リードスルー制御によりロボット100を動作させる際に、不正確な負荷情報に基づいて、ロボット100がユーザの意図に反する方向に急激に動作してしまうことを防止できる。
 なお、本実施形態においては、負荷情報の推定作業に際してのロボット100の動作の制限として、リードスルー制御の感度を下げることと、リードスルー制御を有効にする軸を手首軸のみに限定することの両方を採用したが、いずれか一方のみでもよい。また、図5と同様にして、ロボット100の移動距離を制限することにしてもよい。
 本開示の実施形態について詳述したが、本開示は上述した個々の実施形態に限定されるものではない。これらの実施形態は、発明の要旨を逸脱しない範囲で、または、特許請求の範囲に記載された内容とその均等物から導き出される本発明の思想および趣旨を逸脱しない範囲で、種々の追加、置き換え、変更、部分的削除等が可能である。例えば、上述した実施形態において、各動作の順序や各処理の順序は、一例として示したものであり、これらに限定されるものではない。また、上述した実施形態の説明に数値または数式が用いられている場合も同様である。
 1,50 ロボット制御装置
 3 位置制御部
 4 記憶部
 5 リードスルー制御部
 6 リードスルー感度設定部(負荷適否判定部)
 9 切替スイッチ
 51 負荷情報推定部
 100 ロボット
 160 トルクセンサ(センサ)
 T1 閾値

Claims (8)

  1.  ロボットに装着する負荷の質量および重心位置を含む負荷情報を記憶する記憶部と、
     外力を検出するセンサを備えたロボットを、前記センサにより検出された外力および前記記憶部に記憶されている前記負荷情報に基づいて制御するリードスルー制御部と、
     前記記憶部に記憶されている前記負荷情報が適正か否かを判定する負荷適否判定部とを備え、
     該負荷適否判定部により前記負荷情報が不適正である可能性があると判定された場合に、前記リードスルー制御部が、前記ロボットの動作を制限するロボット制御装置。
  2.  前記ロボットを所定の姿勢に設定した状態で前記センサにより検出された前記外力に基づいて前記負荷情報を推定する負荷情報推定部を備え、
     前記負荷適否判定部は、前記負荷情報推定部により前記負荷情報が推定されていない場合には、前記記憶部に記憶されている前記負荷情報が不適正である可能性があると判定する請求項1に記載のロボット制御装置。
  3.  位置指令に基づいてロボットを制御する位置制御部と、
     該位置制御部による制御か前記リードスルー制御部による制御かを切り替える切替スイッチとを備え、
     前記負荷適否判定部が、前記切替スイッチにより、前記リードスルー制御部による制御に切り替えられたときに、前記センサにより検出された前記外力と前記負荷情報とに基づいて推定される、ユーザが加えた力の推定値が所定の閾値を超えている場合に、前記負荷情報が不適正である可能性があると判定する請求項1に記載のロボット制御装置。
  4.  前記推定値が前記閾値を超えることにより、前記ロボットの動作が制限された後に、前記推定値が前記閾値以下となった場合に、前記制限を解除する請求項3に記載のロボット制御装置。
  5.  前記負荷適否判定部により前記負荷情報が不適正である可能性があると判定された場合に、前記外力に対する前記ロボットの動作の感度を低下させる請求項1から請求項4のいずれかに記載のロボット制御装置。
  6.  前記負荷適否判定部により前記負荷情報が不適正である可能性があると判定された場合に、前記外力に応じた前記ロボットの動作距離を制限する請求項1から請求項5のいずれかに記載のロボット制御装置。
  7.  前記負荷適否判定部により前記負荷情報が不適正である可能性があると判定された場合に、前記外力に応じて動作する前記ロボットの軸を制限する請求項1から請求項6のいずれかに記載のロボット制御装置。
  8.  センサを備えるロボットの負荷情報と前記センサにより検出された外力とに基づいて前記ロボットの動作を制御するリードスルー制御部と、
     前記負荷情報が適正か否かを判定する判定部とを備え、
     前記リードスルー制御部が、前記判定部の判定結果に基づいて前記外力に対する前記ロボットの動作を制限するロボット制御装置。
PCT/JP2021/023346 2020-06-25 2021-06-21 ロボット制御装置 WO2021261426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112021002029.3T DE112021002029T5 (de) 2020-06-25 2021-06-21 Robotersteuerung
JP2022531962A JPWO2021261426A1 (ja) 2020-06-25 2021-06-21
US18/008,709 US20230219219A1 (en) 2020-06-25 2021-06-21 Robot controller
CN202180044213.2A CN115916479A (zh) 2020-06-25 2021-06-21 机器人控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020109582 2020-06-25
JP2020-109582 2020-06-25

Publications (1)

Publication Number Publication Date
WO2021261426A1 true WO2021261426A1 (ja) 2021-12-30

Family

ID=79281402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023346 WO2021261426A1 (ja) 2020-06-25 2021-06-21 ロボット制御装置

Country Status (5)

Country Link
US (1) US20230219219A1 (ja)
JP (1) JPWO2021261426A1 (ja)
CN (1) CN115916479A (ja)
DE (1) DE112021002029T5 (ja)
WO (1) WO2021261426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157275B1 (ja) * 2022-02-24 2022-10-19 ファナック株式会社 ロボット制御装置およびロボットシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344505A (ja) * 1991-05-21 1992-12-01 Hitachi Ltd 産業用ロボットの制御装置
JP2015199174A (ja) * 2014-04-09 2015-11-12 ファナック株式会社 リードスルー機能を有する人協調型産業用ロボット
JP2016087700A (ja) * 2014-10-29 2016-05-23 ファナック株式会社 負荷情報の設定を確認する機能を備えた制御装置
US20160375588A1 (en) * 2015-06-24 2016-12-29 Kuka Roboter Gmbh Switching A Control Of A Robot Into A Manual Operating Mode
JP2018114577A (ja) * 2017-01-17 2018-07-26 ファナック株式会社 ロボット制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060178775A1 (en) * 2005-02-04 2006-08-10 George Zhang Accelerometer to monitor movement of a tool assembly attached to a robot end effector
DE102014010638A1 (de) * 2014-07-17 2016-01-21 Kuka Roboter Gmbh Verfahren und Vorrichtung zum Steuern eines Roboters
JP6660102B2 (ja) * 2014-08-27 2020-03-04 キヤノン株式会社 ロボット教示装置およびその制御方法、ロボットシステム、プログラム
JP6378143B2 (ja) * 2015-07-16 2018-08-22 ファナック株式会社 エンドエフェクタの位置および姿勢を定めるガイド部を備えるロボットの教示装置
JP6489991B2 (ja) * 2015-10-02 2019-03-27 ファナック株式会社 ロボットを操作するハンドルを備えたロボット用操作装置
JP6423815B2 (ja) * 2016-03-30 2018-11-14 ファナック株式会社 人協働型のロボットシステム
CN109219924B (zh) * 2016-06-07 2022-03-25 三菱电机株式会社 异常诊断装置及异常诊断方法
JP6392910B2 (ja) * 2017-01-13 2018-09-19 ファナック株式会社 ロボットの安全確保動作機能を備えた人間協働ロボットシステム
JP6606145B2 (ja) * 2017-09-25 2019-11-13 ファナック株式会社 ロボットシステム
JP7091777B2 (ja) * 2018-03-30 2022-06-28 株式会社安川電機 ロボットシステム及び制御方法
JP6737831B2 (ja) * 2018-04-17 2020-08-12 ファナック株式会社 設置形態判定装置、設置形態判定用コンピュータプログラム及び記録媒体
KR102498624B1 (ko) * 2018-05-28 2023-02-10 삼성디스플레이 주식회사 압력센서 모듈 및 이를 포함하는 표시장치
JP6841802B2 (ja) * 2018-08-31 2021-03-10 ファナック株式会社 ロボットおよびロボットシステム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04344505A (ja) * 1991-05-21 1992-12-01 Hitachi Ltd 産業用ロボットの制御装置
JP2015199174A (ja) * 2014-04-09 2015-11-12 ファナック株式会社 リードスルー機能を有する人協調型産業用ロボット
JP2016087700A (ja) * 2014-10-29 2016-05-23 ファナック株式会社 負荷情報の設定を確認する機能を備えた制御装置
US20160375588A1 (en) * 2015-06-24 2016-12-29 Kuka Roboter Gmbh Switching A Control Of A Robot Into A Manual Operating Mode
JP2018114577A (ja) * 2017-01-17 2018-07-26 ファナック株式会社 ロボット制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7157275B1 (ja) * 2022-02-24 2022-10-19 ファナック株式会社 ロボット制御装置およびロボットシステム
WO2023162084A1 (ja) * 2022-02-24 2023-08-31 ファナック株式会社 ロボット制御装置およびロボットシステム
TWI823773B (zh) * 2022-02-24 2023-11-21 日商發那科股份有限公司 機器人控制裝置及機器人系統

Also Published As

Publication number Publication date
DE112021002029T5 (de) 2023-02-23
US20230219219A1 (en) 2023-07-13
CN115916479A (zh) 2023-04-04
JPWO2021261426A1 (ja) 2021-12-30

Similar Documents

Publication Publication Date Title
JP6619395B2 (ja) ロボットシステムおよびロボットの教示方法
KR101661810B1 (ko) 산업용 로봇의 매니퓰레이터 암의 포즈의 수동으로 안내되는 이동을 위한 방법 및 관련 산업용 로봇
US9211646B2 (en) Control apparatus and control method for robot arm, assembly robot, control program for robot arm, and control-purpose integrated electronic circuit for robot arm
US7212886B2 (en) Robot control apparatus and method
JP5910491B2 (ja) ロボットアーム教示システム及びロボットアーム教示方法
JP4517726B2 (ja) アシスト装置
WO2010088959A1 (en) Method for programming an industrial robot by lead-through
JP4997145B2 (ja) パワーアシスト装置およびその制御方法
JP2019081223A (ja) ロボットシステム
JP6044511B2 (ja) ロボットの制御方法及びロボットシステム
KR20130122970A (ko) 다관절형 로봇의 제어 장치, 제어 방법 및 제어 프로그램을 기록한 컴퓨터 판독가능한 기록 매체
JP2011506118A (ja) 産業用ロボット及び産業用ロボットのプログラミング方法
JP7481097B2 (ja) ロボット制御装置
WO2021261426A1 (ja) ロボット制御装置
JP2016190292A (ja) ロボット制御装置、ロボットシステムおよびロボット制御方法
KR101307782B1 (ko) 로봇의 직접 교시 및 재생 방법 및 이를 구현하는 로봇 제어 장치
JP4054984B2 (ja) ロボットの制御装置および制御方法
JP4873254B2 (ja) ロボットの直接教示装置
JP4134812B2 (ja) ロボット制御装置
JP5752565B2 (ja) ロボットアーム
JP7065721B2 (ja) ロボットシステム
JP7483597B2 (ja) 装着型ロボット
JP2019030931A (ja) ロボットの制御装置、制御方法およびロボット装置
JPH11198077A (ja) パワーアシスト付き助力アーム
JPH0683453A (ja) ロボット関節の負荷補償制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828016

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531962

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21828016

Country of ref document: EP

Kind code of ref document: A1