Nothing Special   »   [go: up one dir, main page]

WO2021130599A1 - 正極活物質、二次電池、電子機器 - Google Patents

正極活物質、二次電池、電子機器 Download PDF

Info

Publication number
WO2021130599A1
WO2021130599A1 PCT/IB2020/061919 IB2020061919W WO2021130599A1 WO 2021130599 A1 WO2021130599 A1 WO 2021130599A1 IB 2020061919 W IB2020061919 W IB 2020061919W WO 2021130599 A1 WO2021130599 A1 WO 2021130599A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
lithium
secondary battery
Prior art date
Application number
PCT/IB2020/061919
Other languages
English (en)
French (fr)
Inventor
三上真弓
斉藤丞
落合輝明
門馬洋平
中島佳美
浅田善治
種村和幸
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US17/788,844 priority Critical patent/US20230052866A1/en
Priority to KR1020227023036A priority patent/KR20220122655A/ko
Priority to CN202080089529.9A priority patent/CN114930579A/zh
Priority to DE112020006354.2T priority patent/DE112020006354T5/de
Priority to JP2021566378A priority patent/JPWO2021130599A1/ja
Publication of WO2021130599A1 publication Critical patent/WO2021130599A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8684Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M2004/8678Inert electrodes with catalytic activity, e.g. for fuel cells characterised by the polarity
    • H01M2004/8689Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the homogeneity of the present invention relates to a product, a method, or a manufacturing method.
  • the present invention relates to a process, machine, manufacture, or composition (composition of matter).
  • One aspect of the present invention relates to a semiconductor device, a display device, a light emitting device, a power storage device, a lighting device, an electronic device, or a method for manufacturing the same.
  • the electronic device refers to all devices having a power storage device, and the electro-optical device having the power storage device, the information terminal device having the power storage device, and the like are all electronic devices.
  • lithium ion secondary batteries lithium ion capacitors
  • air batteries air batteries
  • all-solid-state batteries all-solid-state batteries
  • high-power, high-capacity lithium-ion secondary batteries are rapidly expanding in demand with the development of the semiconductor industry, and have become indispensable to the modern information society as a source of rechargeable energy. ..
  • Patent Documents 1 to 3 the positive electrode active material contained in the positive electrode of the secondary battery is being actively improved.
  • Research on the crystal structure of the positive electrode active material has also been conducted (Non-Patent Documents 1 to 3).
  • X-ray diffraction is one of the methods used for analyzing the crystal structure of the positive electrode active material.
  • XRD data can be analyzed by using ICSD (Inorganic Crystal Structure Database) introduced in Non-Patent Document 4.
  • One aspect of the present invention is to provide a positive electrode active material in which a decrease in charge / discharge capacity in a charge / discharge cycle is suppressed by using it in a lithium ion secondary battery. Another issue is to provide a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging. Alternatively, one of the issues is to provide a positive electrode active material having a large charge / discharge capacity. Alternatively, one of the issues is to provide a secondary battery having high safety or reliability.
  • Another object of one aspect of the present invention is to provide a positive electrode active material, a power storage device, or a method for producing the same.
  • One aspect of the present invention is a positive electrode active material having lithium, cobalt, nickel, magnesium, and oxygen, and the lattice constant A surface of the a-axis of the outermost surface layer of the positive electrode active material is the internal a-axis.
  • the c-axis lattice constant C surface of the outermost surface layer is larger than the lattice constant A core of the above, and is larger than the internal c-axis lattice constant C core , which is a positive electrode active material.
  • the rate of change RA is preferably 0.05 or more and 0.07 or less
  • the rate of change RC is preferably 0.09 or more and 0.12 or less.
  • the lattice constant A Surface of a shaft of the outermost surface layer than the difference delta A between the lattice constant A core inside the a-axis, and the lattice constant C Surface of c-axis of the outermost surface layer, the inside of the c-axis and the difference delta C between the lattice constant C core is large.
  • Another aspect of the present invention is a positive electrode active material having lithium, cobalt, nickel, magnesium, and oxygen, and at least a part of the outermost surface layer of the positive electrode active material is a transition metal site layer. It is a positive electrode active material having a layered rock salt type crystal structure having alternating lithium site layers, and a part of the lithium site layer has a metal element having an atomic number larger than that of lithium.
  • the metal element having an atomic number larger than that of lithium is preferably magnesium, cobalt or aluminum.
  • the brightness of the lithium site layer is preferably 3% or more and 60% or less of the brightness of the transition metal site layer.
  • the concentration of nickel in the outermost surface layer is preferably 1 atomic% or less, and the concentration of nickel in the entire positive electrode active material is preferably 0.05% or more and 4% or less of the concentration of cobalt.
  • the spin density due to any one or more of the divalent nickel ion, the trivalent nickel ion, the divalent cobalt ion and the tetravalent cobalt ion is 2.0 ⁇ 10 17 spins / g or more. It is preferably 0 ⁇ 10 21 spins / g or less.
  • the positive electrode active material contains aluminum, and the concentration of aluminum in the entire positive electrode active material is preferably 0.05% or more and 4% or less of the concentration of cobalt.
  • the peak of the aluminum concentration is preferably located at a depth of 5 nm or more and 30 nm or less toward the center from the surface.
  • Another aspect of the present invention is a lithium ion secondary battery having a positive electrode active material, wherein the positive electrode active material has lithium, cobalt, nickel, magnesium, and oxygen, and is a positive electrode active material.
  • the a-axis lattice constant A surface of the outermost surface layer is larger than the internal a-axis lattice constant A core
  • the c-axis lattice constant C surface of the outermost surface layer of the positive electrode active material is the internal c-axis lattice constant. It is a lithium-ion secondary battery that is larger than C core.
  • Another aspect of the present invention is an electronic device having the above-mentioned secondary battery.
  • a positive electrode active material in which a decrease in charge / discharge capacity in a charge / discharge cycle is suppressed.
  • a positive electrode active material whose crystal structure does not easily collapse even after repeated charging and discharging.
  • a positive electrode active material having a large charge / discharge capacity.
  • a secondary battery having high safety or reliability.
  • a positive electrode active material it is possible to provide a positive electrode active material, a power storage device, or a method for producing the same.
  • FIG. 1A is a cross-sectional view of the positive electrode active material
  • FIGS. 1B, 1C1 and 1C2 are a part of a cross-sectional view of the positive electrode active material
  • 2A1 to 2C2 are a part of a cross-sectional view of the positive electrode active material
  • FIG. 3 is a cross-sectional view of the positive electrode active material.
  • FIG. 4 is a diagram for explaining the charging depth and the crystal structure of the positive electrode active material.
  • FIG. 5 is a diagram showing an XRD pattern calculated from the crystal structure.
  • FIG. 6 is a diagram for explaining the charging depth and the crystal structure of the positive electrode active material of the comparative example.
  • FIG. 7 is a diagram showing an XRD pattern calculated from the crystal structure.
  • FIG. 10 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 11 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 12 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 13 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 14 is a diagram illustrating a method for producing a positive electrode active material.
  • FIG. 15 is a diagram illustrating a method for producing a positive electrode active material.
  • 16A and 16B are cross-sectional views of the active material layer when a graphene compound is used as the conductive material.
  • 17A and 17B are diagrams illustrating an example of a secondary battery.
  • 18A to 18C are diagrams illustrating an example of a secondary battery.
  • 19A and 19B are diagrams illustrating an example of a secondary battery.
  • 20A to 20C are diagrams illustrating a coin-type secondary battery.
  • 21A to 21D are diagrams illustrating a cylindrical secondary battery.
  • 22A and 22B are diagrams illustrating an example of a secondary battery.
  • 23A to 23D are diagrams illustrating an example of a secondary battery.
  • 24A and 24B are diagrams illustrating an example of a secondary battery.
  • FIG. 25 is a diagram illustrating an example of a secondary battery.
  • 26A to 26C are diagrams illustrating a laminated type secondary battery.
  • 27A and 27B are diagrams illustrating a laminated secondary battery.
  • FIG. 28 is a diagram showing the appearance of the secondary battery.
  • FIG. 29 is a diagram showing the appearance of the secondary battery.
  • 30A to 30C are diagrams illustrating a method for manufacturing a secondary battery.
  • 31A to 31H are diagrams illustrating an example of an electronic device.
  • 32A to 32C are diagrams illustrating an example of an electronic device.
  • FIG. 33 is a diagram illustrating an example of an electronic device.
  • 34A to 34D are diagrams illustrating an example of an electronic device.
  • 35A to 35C are diagrams showing an example of an electronic device.
  • 36A to 36C are diagrams illustrating an example of a vehicle.
  • FIG. 37A to 37D are surface SEM images of the positive electrode active material.
  • FIG. 38A is a cross-sectional TEM image of the positive electrode active material.
  • 38B and 38C are partial limited field electron diffraction images of FIG. 38A.
  • 39A and 39B are microelectron diffraction images of the positive electrode active material.
  • FIG. 40A is a cross-sectional TEM image of the positive electrode active material.
  • 40B and 40C are microelectron diffraction images of a part of FIG. 40A.
  • FIG. 41A is a cross-sectional TEM image of the positive electrode active material.
  • 41B and 41C are microelectron diffraction images of a part of FIG. 41A.
  • 42A to 42C are cross-sectional STEM images of the positive electrode active material.
  • FIG. 43A is a cross-sectional STEM image of the positive electrode active material, and is a rotated view of FIG. 42B.
  • FIG. 43B is a measurement result of the brightness of FIG. 43A.
  • FIG. 44A is a graph in which the background is corrected from FIG. 43B.
  • FIG. 44B is a bright field image of a cross-sectional STEM of the positive electrode active material.
  • FIG. 45A is a cross-sectional HAADF-STEM image of the positive electrode active material. 45B to 45F are the results of EDX plane analysis.
  • FIG. 46A is a cross-sectional HAADF-STEM image of the positive electrode active material. 46B to 46D are the results of EDX plane analysis.
  • FIG. 47A is a cross-sectional HAADF-STEM image of the positive electrode active material.
  • 47B to 47E are views in which the brightness of the result of the EDX plane analysis is inverted.
  • FIG. 48 is a cross-sectional HAADF-STEM image of the positive electrode active material.
  • 49A and 49B are the results of EDX ray analysis of the positive electrode active material.
  • 50A and 50B are SEM images of the positive electrode active material.
  • 51A and 51B are grayscale values of the positive electrode active material.
  • 52A and 52B are luminance histograms of the positive electrode active material.
  • FIG. 53 is an XRD pattern of the positive electrode active material.
  • 54A and 54B are XRD patterns in which a part of FIG. 53 is enlarged.
  • FIG. 55 is an XRD pattern of the positive electrode active material.
  • 56A and 56B are XRD patterns in which a part of FIG. 55 is enlarged.
  • FIG. 57 is an XRD pattern of the positive electrode active material.
  • 58A and 58B are XRD patterns in which a part of FIG. 57 is enlarged.
  • FIG. 59 is an XRD pattern of the positive electrode active material.
  • 60A and 60B are XRD patterns obtained by enlarging a part of FIG. 59.
  • 61A and 61B are graphs showing the cycle characteristics of the positive electrode active material.
  • 62A and 62B are graphs showing the cycle characteristics of the positive electrode active material.
  • 63A and 63B are graphs showing the cycle characteristics of the positive electrode active material.
  • 64A and 64B are graphs showing the cycle characteristics of the positive electrode active material.
  • 65A and 65B are graphs showing the cycle characteristics of the positive electrode active material.
  • 66A and 66B are graphs showing the cycle characteristics of the positive electrode active material.
  • 67A and 67B are graphs showing the cycle characteristics of the positive electrode active material.
  • 68A and 68B are graphs showing the cycle characteristics of the positive electrode active material.
  • the Miller index is used for the notation of the crystal plane and the direction.
  • Individual planes indicating crystal planes are represented by ().
  • Crystallographically, the notation of the crystal plane, direction, and space group has a superscript bar attached to the number, but in the present specification and the like, due to the limitation of the application notation, instead of adding a bar above the number, the number is preceded. It may be expressed with a minus sign.
  • segregation refers to a phenomenon in which a certain element (for example, B) is spatially unevenly distributed in a solid composed of a plurality of elements (for example, A, B, C).
  • the surface of the positive electrode active material means the surface of the composite oxide including the surface layer portion including the outermost surface layer and the inside. Therefore, the positive electrode active material does not contain carbonic acid, hydroxy groups, etc. that are chemically adsorbed after production. Further, it does not include the electrolytic solution, binder, conductive material, or compounds derived from these, which are attached to the positive electrode active material. Further, the positive electrode active material does not necessarily have to be a region having lithium sites that contribute to charging / discharging.
  • the layered rock salt type crystal structure of a composite oxide containing lithium and a transition metal has a rock salt type ion arrangement in which cations and anions are alternately arranged, and the transition metal and lithium are present.
  • a crystal structure capable of two-dimensional diffusion of lithium because it is regularly arranged to form a two-dimensional plane. It should be noted that some defects such as cation or anion deficiency may be present, as long as lithium ions can be diffused two-dimensionally. Strictly speaking, the layered rock salt crystal structure may have a distorted lattice of rock salt crystals.
  • the rock salt type crystal structure means a structure in which cations and anions are alternately arranged. It should be noted that some cations or anions may be deficient.
  • a mixture means a mixture of a plurality of materials.
  • the one after the mutual diffusion of the elements of the mixture has occurred may be called a complex. Even if it has a partially unreacted material, it can be said to be a composite.
  • the positive electrode active material may be paraphrased as a composite, a composite oxide or a material.
  • the theoretical capacity of the positive electrode active material means the amount of electricity when all the lithium that can be inserted and removed from the positive electrode active material is desorbed.
  • the theoretical capacity of LiCoO 2 is 274 mAh / g
  • the theoretical capacity of LiNiO 2 is 274 mAh / g
  • the theoretical capacity of LiMn 2 O 4 is 148 mAh / g.
  • the charging depth when all the lithium that can be inserted and removed is inserted is 0, and the charging depth when all the lithium that can be inserted and removed from the positive electrode active material is removed is 1. And.
  • a general secondary battery using lithium cobalt oxide can only be charged to a charging depth of 0.4, a charging voltage of 4.3 V (in the case of counter electrode lithium), and a charging capacity of about 160 mAh / g.
  • a positive electrode active material having a charging depth of 0.74 or more and 0.9 or less is defined as a positive electrode active material charged at a high voltage. .. Therefore, for example, if the charging capacity of LiCoO 2 is 219.2 mAh / g, it is a positive electrode active material charged at a high voltage. Further, in LiCoO 2 , a constant current charge is performed in an environment of 25 ° C. with a charging voltage of 4.525 V or more and 4.7 V or less (in the case of counter electrode lithium), and then the current value is 0.01 C or the current value at the time of constant current charging.
  • the positive electrode active material after being charged at a constant voltage from 1/5 to 1/100 of the above is also referred to as a positive electrode active material charged at a high voltage.
  • C is an abbreviation for Capacity rate, and 1C refers to the magnitude of the current that fully charges or completely discharges the charge / discharge capacity of the secondary battery in one hour.
  • a positive electrode active material having a charging depth of 0.06 or less, or a positive electrode active material in which a capacity of 90% or more of the charging capacity is discharged from a state of being charged at a high voltage is defined as a sufficiently discharged positive electrode active material. ..
  • the charging capacity is 219.2 mAh / g, it is in a state of being charged at a high voltage, and the positive electrode active material after discharging 197.3 mAh / g or more, which is 90% of the charging capacity, is sufficient. It is a positive electrode active material discharged to.
  • the positive electrode active material after being discharged at a constant current until the battery voltage becomes 3 V or less (in the case of counter electrode lithium) in an environment of 25 ° C. is also defined as a sufficiently discharged positive electrode active material.
  • a lithium metal is used as a counter electrode
  • the secondary battery of one aspect of the present invention is this.
  • Other materials such as graphite and lithium titanate may be used for the negative electrode.
  • the properties of the positive electrode and the positive electrode active material of one aspect of the present invention, such as the crystal structure being less likely to collapse even after repeated charging and discharging, and good cycle characteristics being obtained, are not affected by the material of the negative electrode.
  • the secondary battery of one aspect of the present invention may be charged / discharged with a counterpolar lithium at a voltage higher than a general charging voltage of about 4.7 V, but may be charged / discharged at a lower voltage. You may. When charging / discharging at a lower voltage, it is expected that the cycle characteristics will be further improved as compared with those shown in the present specification and the like.
  • the charging voltage and the discharging voltage describe the voltage in the case of counter electrode lithium.
  • the charge / discharge voltage of the secondary battery changes depending on the material used for the negative electrode. For example, since the potential of graphite is about 0.1 V (vs Li / Li + ), the charge / discharge voltage of the negative electrode graphite is about 0.1 V lower than that of the counter electrode lithium.
  • FIG. 1A is a cross-sectional view of the positive electrode active material 100, which is one aspect of the present invention.
  • An enlarged view of the vicinity of AB in FIG. 1A is shown in FIGS. 1B, 1C1 and 1C2.
  • An enlarged view of the vicinity of CD in FIG. 1A is shown in FIGS. 2A1, 2A2, 2B1, 2B2, 2C1 and 2C2.
  • the positive electrode active material 100 has a surface layer portion 100a and an internal 100b.
  • the boundary between the surface layer portion 100a and the inner layer 100b is shown by a broken line.
  • a part of the crystal grain boundary is shown by a dashed line.
  • the positive electrode active material 100 has an outermost surface layer 100c as a part of the surface layer portion 100a.
  • FIG. 1B shows the boundary of the outermost surface layer 100c in the surface layer portion 100a with a two-dot dashed line.
  • the region from the surface of the positive electrode active material to the inside to about 10 nm is referred to as a surface layer portion 100a.
  • the surface created by cracks and cracks can also be called the surface.
  • the surface layer portion 100a may be referred to as a surface vicinity, a surface vicinity region, a shell, or the like.
  • a region deeper than the surface layer portion 100a of the positive electrode active material is referred to as an internal 100b.
  • the internal 100b may be referred to as an internal region or a core.
  • the region from the surface to the inside 100b up to 3 nm is referred to as the outermost surface layer 100c.
  • the positive electrode active material 100 preferably has a crystal structure in both the surface layer portion 100a and the internal 100b. Further, it is preferable that the a-axis lattice constant of the crystal structure of the surface layer portion 100a is larger than the a-axis lattice constant A core of the crystal structure of the inner 100b. Further, it is preferable that the b-axis lattice constant of the crystal structure of the surface layer portion 100a is larger than the b-axis lattice constant B core of the crystal structure of the inner 100b. Further, it is preferable that the c-axis lattice constant of the crystal structure of the surface layer portion 100a is larger than the c-axis lattice constant C core of the crystal structure of the inner 100b.
  • the outermost surface layer 100c of the positive electrode active material 100 also has a crystal structure. Further, it is preferable that the a-axis lattice constant A surface of the crystal structure of the outermost surface layer 100c is larger than the a-axis lattice constant of the surface layer portion 100a and the a-axis lattice constant A core of the inner 100b. Further, it is preferable that the b-axis lattice constant B surface of the crystal structure of the outermost surface layer 100c is larger than the b-axis lattice constant of the surface layer portion 100a and the b-axis lattice constant B core of the inner 100b.
  • the c-axis lattice constant C surface of the crystal structure of the outermost surface layer 100c is larger than the c-axis lattice constant of the surface layer portion 100a and the c-axis lattice constant C core of the inner 100b.
  • delta A to a value obtained by dividing the change rate R A in A core.
  • the delta C to a value obtained by dividing the change rate R C in C core.
  • the rate of change RA is preferably more than 0 and 0.12 or less, and more preferably 0.05 or more and 0.07 or less. Alternatively, it is preferably more than 0 and 0.07 or less. Alternatively, it is preferably 0.05 or more and 0.12 or less.
  • the rate of change RC is preferably more than 0 and 0.18 or less, more preferably 0.09 or more and 0.12 or less. Alternatively, it is preferably more than 0 and 0.12 or less. Alternatively, it is preferably 0.09 or more and 0.18 or less.
  • the lattice constant is calculated as belonging to the same space group for easy comparison between regions.
  • the layered rock salt type of R-3m cannot be described by Fm-3m, but the rock salt type of Fm-3m can be expressed by R-3m. Therefore, for example, when the inner 100b has the characteristic of a layered rock salt type of R-3m, and the surface layer portion 100a and the outermost layer 100c have the characteristics of a rock salt type of Fm-3m, the crystal structure of the layered rock salt type of the space group R-3m is formed.
  • the lattice constant is calculated by using it as a model, it becomes easy to compare the lattice constants of each region.
  • the a-axis will be described as a representative of the layered rock salt type of the space group R-3m.
  • the distance between anions may be used for comparison between regions instead of the lattice constant.
  • the rock salt type, the layered rock salt type, and the spinel type all have a cubic closest packed structure (ccp arrangement) of anions, and can be said to have almost the same anion packing.
  • ccp arrangement cubic closest packed structure
  • the present invention is not limited to this. It is preferable to select the optimum structure depending on the material of the positive electrode active material 100. For example, it is preferable to adopt a crystal structure that occupies the largest volume among the crystal structures of the positive electrode active material 100.
  • crystal structures such as rock salt type, spinel type, and olivine type can be used.
  • Determining whether the surface layer 100a, the interior 100b, and the outermost surface layer 100c have a crystal structure, and determining the lattice constant when the crystal structure is present, are determined, for example, by cross-sectional TEM, cross-sectional STEM, and limited-field electron diffraction. It can be performed by electron diffraction or the like including ultrafine electron diffraction.
  • a regular arrangement of atoms can be observed in a cross-sectional TEM image, a cross-sectional STEM image, or the like, it can be said that the crystal structure is present. Further, if a diffraction pattern having regular spots can be observed in an electron beam diffraction image or the like, it can be said that it has a crystal structure.
  • the crystal structure can be analyzed for a small region of about 20 nm for limited-field electron diffraction and for a smaller region of about 1 nm for microelectron diffraction, which is suitable for determining the lattice constants of the surface layer portion 100a and the outermost surface layer 100c. ..
  • the effective number of the lattice constant obtained by the electron diffraction method is two digits.
  • the lattice constants obtained from these electron diffraction methods may be corrected with reference to the lattice constants obtained from the powder XRD, literature values, and the like.
  • the internal 100b occupies most of the volume. Therefore, the lattice constant of the entire positive electrode active material 100 obtained by powder XRD can be considered to be equal to the lattice constant of the internal 100b obtained by electron diffraction. Therefore, the lattice of the surface layer portion 100a and the outermost surface layer 100c corrected from the ratio of the lattice constants of the inner 100b, the surface layer portion 100a and the outermost surface layer 100c obtained from the electron diffraction, and the lattice constants obtained from the powder XRD. A constant can be obtained.
  • the surface layer portion 100a has a higher concentration of the additive element described later than the inner layer 100b. Further, it is preferable that the additive has a concentration gradient. When there are a plurality of additive elements, it is preferable that the depth of the concentration peak from the surface differs depending on the additive element.
  • a certain additive element X preferably has a concentration gradient that increases from the inside 100b toward the surface, as shown by a gradation in FIG. 1C1.
  • the additive element X preferably having such a concentration gradient include magnesium, fluorine, titanium, silicon, phosphorus, boron and calcium.
  • the other additive element Y preferably has a concentration gradient and a concentration peak in a region deeper than that of FIG. 1C1, as shown by the gradation in FIG. 1C2.
  • the concentration peak may be present in the surface layer portion 100a or may be deeper than the surface layer portion 100a. It is preferable to have a concentration peak in a region other than the outermost surface layer 100c. For example, it is preferable to have a peak in a region of 5 nm or more and 30 nm from the surface.
  • Examples of the additive element Y preferably having such a concentration gradient include aluminum and manganese.
  • the crystal structure continuously changes from the inside 100b toward the surface layer portion 100a and the outermost surface layer 100c due to the above-mentioned concentration gradient of the additive element.
  • the inner 100b has a layered rock salt type crystal structure.
  • One of the characteristics of the layered rock salt type crystal structure is that the transition metal M layer and the lithium layer are alternately provided between the cubic closest packed structures of anions. Therefore, the internal 100b has a cross-sectional TEM or the like, and the transition metal M layer having a large atomic number observed at high brightness and the lithium layer observed at low brightness are alternately observed. Since both oxygen and fluorine, which are anions, have small atomic numbers, they are observed with the same brightness as lithium. These elements with low atomic numbers do not produce clear bright spots and may have only a slight difference in brightness from the background.
  • the crystal structure has a layered rock salt type crystal structure. This feature is seen when viewed from the direction perpendicular to the c-axis in the layered rock salt type crystal structure. Even if it has a layered rock salt type crystal structure, this feature may not be seen when viewed from other directions.
  • the additive element since the concentration of the additive element is high in the outermost surface layer 100c, the additive element enters a part of the lithium site. Since lithium sites are surrounded by anions such as oxygen, metal elements such as magnesium and aluminum are likely to enter among the additives. Further, a transition metal M, for example, cobalt may enter a part of the lithium site. Since all of these metals have an atomic number larger than that of lithium, they are observed with a higher brightness than lithium in a cross-sectional TEM or the like.
  • an additive element or lithium may be contained in a part of the transition metal M site.
  • the cross-section TEM or the like is observed with a lower brightness than the transition metal M.
  • the lithium site and the transition metal site have the same characteristics of the rock salt type crystal structure. It can be said that having the characteristics of the rock salt type crystal structure suggests that the additive element is present at a sufficient concentration.
  • the additive element is present at a sufficient concentration, it is possible to suppress the elution of the transition metal M and the separation of oxygen that may occur when charging at a high voltage. Therefore, the battery characteristics, particularly the continuous charge resistance, are improved, and a secondary battery with high safety and reliability can be obtained.
  • the outermost surface layer 100c preferably has the same layered rock salt type crystal structure as the inner layer 100b. This is because if the surface is covered only with a rock salt type crystal structure, the diffusion path of lithium is obstructed and the internal resistance may increase during charging and discharging. For the same reason, it is preferable that the rock salt type crystal structure is characterized only about 3 nm from the surface.
  • the outermost surface layer 100c has both the characteristics of the layered rock salt type crystal structure and the characteristics of the rock salt type crystal structure. That is, the outermost surface layer 100c has a layered rock salt type crystal structure in which layers observed with high brightness and layers observed with low brightness are alternately arranged in a cross-sectional TEM image or the like, and lithium is further formed as a part of lithium sites. It is preferable to have a metal having a higher atomic number.
  • the brightness of the lithium site layer is 3% or more and 60% or less of the brightness of the transition metal M site layer in the cross-sectional TEM image.
  • it is 4% or more and 50% or less.
  • it is 6% or more and 40% or less.
  • it is preferably 3% or more and 50% or less.
  • it is preferably 3% or more and 40% or less.
  • it is preferably 4% or more and 60% or less.
  • it is preferably 4% or more and 40% or less.
  • it is preferably 6% or more and 60% or less.
  • the lithium site layer and the transition metal M site layer used for comparison preferably have a width of 5 nm or more parallel to the arrangement of the transition metal M.
  • the brightness in the cross-section TEM or the like can be calculated by, for example, integrating the brightness of the pixels in the dark field image of the cross-section TEM.
  • the brightness of the transition metal M-site layer and the lithium-site layer can be calculated by integrating the brightness of the pixels in parallel with these layers.
  • the image may be a gray scale in which black has a brightness of 0 and white has a brightness of 255, and the brightness of each pixel may be integrated one column at a time.
  • the correction may be performed excluding the brightness derived from an element having a small atomic number such as oxygen.
  • a sample having a cross section of TEM or the like has a thickness of about 20 nm to 200 nm. Therefore, when the surface of the positive electrode active material 100 is uneven, accurate brightness may not be obtained in a portion shallow from the surface. Therefore, when comparing the brightness, it is necessary to perform the comparison between the parts where the brightness can be stably obtained. For example, when the maximum value of the brightness of the transition metal M site layer is 1, it is assumed that the transition metal M site layer having a brightness of 0.7 or more has a stable brightness.
  • the surface of the positive electrode active material 100 in the cross-sectional TEM image, the cross-sectional STEM image, etc. is the surface on which a metal element having an atomic number larger than that of lithium is first observed. More specifically, first, it is assumed that a nucleus of a metal element having an atomic number larger than that of lithium, that is, a peak of brightness in a cross-sectional TEM image or the like exists.
  • the outermost surface layer 100c of the positive electrode active material may have both the characteristics of the layered rock salt type crystal structure and the characteristics of the rock salt type crystal structure. If the crystal plane exposed on the surface of the positive electrode active material is substantially parallel to the (001) plane of R-3m, the above characteristics can be easily observed, but depending on the crystal plane, these characteristics may not be clearly observed. .. Therefore, the brightness ratio of the transition metal site layer to the lithium site layer does not necessarily have to be within the above range.
  • the characteristics of the layered rock salt type crystal structure and the rock salt type crystal structure can be analyzed by electron diffraction.
  • the rock salt type has one type of cation and has high symmetry.
  • the layered rock salt type has lower symmetry than the rock salt type because two types of cations are regularly arranged. Therefore, there are twice as many bright spots corresponding to a specific plane orientation as in the rock salt type.
  • the transition metal M is uniformly dissolved in the entire positive electrode active material 100. If the concentration of some transition metal M, for example nickel, is low, it may be below the lower limit of detection in the analysis of XPS, XPS and the like.
  • the amount of nickel in the lithium composite oxide is 0.5 atomic% or less.
  • the lower limit of detection of XPS and EDX is about 1 atomic%. Therefore, if nickel is uniformly dissolved in the entire positive electrode active material 100, it may be below the lower limit of detection by an analysis method such as XPS or EDX. In this case, it can be said that the fact that the nickel concentration is 1 atomic% or less and that the nickel concentration is 1 atomic% or less and that the nickel is solid-solved in the entire positive electrode active material 100.
  • the transition metal can be quantified even if the concentration is 1 atomic% or less.
  • the positive electrode active material 100 may have an additive element that is widely dissolved in the inside 100b of the positive electrode active material 100 and does not have a concentration gradient.
  • a part of the transition metal M contained in the positive electrode active material 100 for example, manganese may have a concentration gradient in which the concentration gradient increases from the inside 100b toward the surface.
  • the transition metal M contained in the positive electrode active material 100 it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium For example, at least one of manganese, cobalt and nickel can be used. That is, as the transition metal of the positive electrode active material 100, only cobalt may be used, only nickel may be used, two types of cobalt and manganese, two types of cobalt and nickel may be used, and cobalt may be used. , Manganese, and nickel may be used.
  • the positive electrode active material 100 is lithium cobalt oxide, lithium nickel oxide, lithium cobalt oxide in which a part of cobalt is substituted with manganese, lithium cobalt oxide in which a part of cobalt is substituted with nickel, and nickel-manganese-lithium cobalt oxide.
  • Such as, can have a composite oxide containing lithium and a transition metal M.
  • cobalt when used as the transition metal M contained in the positive electrode active material 100 in an amount of 75 atomic% or more, preferably 90 atomic% or more, more preferably 95 atomic% or more, it is relatively easy to synthesize, easy to handle, and has excellent cycle characteristics. There are many advantages such as. Further, when nickel is contained in addition to cobalt in the above range as the transition metal M, the displacement of the layered structure composed of the octahedron of cobalt and oxygen may be suppressed. Therefore, the crystal structure may become more stable especially in a charged state at a high temperature, which is preferable.
  • the transition metal M does not necessarily have to contain manganese.
  • the positive electrode active material 100 which does not substantially contain manganese, the above-mentioned advantages such as relatively easy synthesis, easy handling, and excellent cycle characteristics may be further increased.
  • the weight of manganese contained in the positive electrode active material 100 is, for example, 600 ppm or less, more preferably 100 ppm or less.
  • the raw material becomes cheaper than the case where the amount of cobalt is large.
  • the charge / discharge capacity per weight may increase, which is preferable.
  • the transition metal M does not necessarily have to contain nickel.
  • the additive element contained in the positive electrode active material 100 at least one of magnesium, fluorine, aluminum, titanium, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus and boron should be used. Is preferable. These additive elements may further stabilize the crystal structure of the positive electrode active material 100 as described later. That is, the positive electrode active material 100 is added with magnesium and fluorine-added lithium cobalt oxide, magnesium, fluorine and titanium-added lithium cobalt oxide, magnesium and fluorine-added lithium nickel-cobalate, magnesium and fluorine.
  • the additive element may be referred to as a mixture, a part of a raw material, an impurity element or the like.
  • the additive elements do not necessarily include magnesium, fluorine, aluminum, titanium, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus or boron.
  • the surface layer portion 100a having a high concentration of additives so that the layered structure composed of octahedrons of cobalt and oxygen is not broken even if lithium is removed from the positive electrode active material 100 by charging. That is, it is reinforced by the outer peripheral portion of the particles.
  • the concentration gradient of the additive element is preferably the same gradient in the entire surface layer portion 100a of the positive electrode active material 100. It may be said that it is preferable that the reinforcement derived from the high impurity concentration is uniformly present in the surface layer portion 100a. Even if a part of the surface layer portion 100a is reinforced, if there is a portion without reinforcement, stress may be concentrated on the portion without reinforcement. When stress is concentrated on a part of the particles, defects such as cracks may occur from the stress, which may lead to cracking of the positive electrode active material and a decrease in charge / discharge capacity.
  • homogeneity refers to a phenomenon in which a certain element (for example, A) is distributed in a specific region with the same characteristics in a solid composed of a plurality of elements (for example, A, B, C). It is sufficient that the concentrations of the elements in the specific regions are substantially the same. For example, the difference in element concentration between specific regions may be within 10%.
  • Specific areas include, for example, a surface layer, a surface, a convex portion, a concave portion, an interior, and the like.
  • the concentration gradient of all additive elements does not necessarily have to be uniform in all the surface layer portions 100a of the positive electrode active material 100.
  • Examples of the distribution of the additive element X near CD in FIG. 1A are shown in FIGS. 2A1, 2B1 and 2C1.
  • Examples of the distribution of the additive element Y near CD are shown in FIGS. 2A2, 2B2 and 2C2.
  • the additive element Y in FIG. 2C2 has a peak in a region other than the outermost surface layer as in FIG. 1C2. For example, it is preferable to have a peak in a region of more than 3 nm and up to 30 nm from the surface.
  • the positive electrode active material 100 may have an embedded portion 102 and a convex portion 103 as shown in FIG. 1A.
  • Additive elements may be present in the embedded portion 102 and the convex portion 103 at a higher concentration than the internal 100b or the surface layer portion 100a.
  • the positive electrode active material 100 may have recesses, cracks, dents, a V-shaped cross section, and the like. These are one of the defects, and repeated charging and discharging may cause elution of the transition metal M, collapse of the crystal structure, cracking of the main body, release of oxygen, and the like. However, if the embedded portion 102 is present so as to embed these, elution of the transition metal M and the like can be suppressed. Therefore, the positive electrode active material 100 having excellent reliability and cycle characteristics can be obtained.
  • the positive electrode active material 100 may have a convex portion 103 as a region where additive elements are unevenly distributed.
  • the additive element contained in the positive electrode active material 100 is excessive, the insertion and removal of lithium may be adversely affected.
  • the internal resistance may increase and the charge / discharge capacity may decrease.
  • the impurity element also referred to as an additive element
  • the impurity element needs to have an appropriate concentration in the positive electrode active material 100, but its adjustment is not easy.
  • the positive electrode active material 100 has a region in which impurity elements are unevenly distributed, a part of the excess impurities is removed from the inside 100b of the positive electrode active material 100, and an appropriate impurity concentration can be obtained in the inside 100b. ..
  • the ability to suppress an increase in the internal resistance of the secondary battery is an extremely preferable characteristic particularly in charging / discharging at a high rate, for example, charging / discharging at 2C or higher.
  • the positive electrode active material 100 having a region in which impurity elements are unevenly distributed it is permissible to mix impurities in an excessive amount to some extent in the manufacturing process. Therefore, the margin in production is widened, which is preferable.
  • uneven distribution means that the concentration of a certain element is different from that of another. It may be said that segregation, precipitation, non-uniformity, bias, high concentration or low concentration, and the like.
  • Magnesium which is one of the additive elements X, is divalent and is more stable when present at the lithium site than at the transition metal site in the layered rock salt type crystal structure, so that it easily enters the lithium site.
  • magnesium is present at an appropriate concentration in the lithium site of the surface layer portion 100a, it is possible to easily maintain the layered rock salt type crystal structure. Further, the presence of magnesium can suppress the release of oxygen around magnesium during high-voltage charging.
  • Magnesium is preferable because it does not adversely affect the insertion and removal of lithium during charging and discharging if the concentration is appropriate. However, an excess can adversely affect the insertion and removal of lithium. Therefore, as will be described later, it is preferable that the surface layer portion 100a has a higher concentration of the transition metal M than, for example, magnesium.
  • Aluminum which is one of the additive elements Y, is trivalent and may be present at transition metal sites in the layered rock salt type crystal structure. Aluminum can suppress the elution of surrounding cobalt. In addition, since aluminum has a strong binding force with oxygen, it is possible to suppress the departure of oxygen around aluminum. Therefore, if aluminum is used as an additive element, the positive electrode active material 100 whose crystal structure does not easily collapse even after repeated charging and discharging can be obtained.
  • Fluorine is a monovalent anion, and when a part of oxygen is replaced with fluorine in the surface layer portion 100a, the lithium desorption energy becomes small. This is because the change in the valence of cobalt ions due to lithium desorption changes from trivalent to tetravalent in the absence of fluorine and divalent to trivalent in the case of having fluorine, and the redox potentials are different. Therefore, when a part of oxygen is replaced with fluorine in the surface layer portion 100a of the positive electrode active material 100, it can be said that the separation and insertion of lithium ions in the vicinity of fluorine are likely to occur smoothly. Therefore, when used in a secondary battery, charge / discharge characteristics, rate characteristics, and the like are improved, which is preferable.
  • Titanium oxide is known to have superhydrophilicity. Therefore, by using the positive electrode active material 100 having a titanium oxide on the surface layer portion 100a, there is a possibility that the wettability with respect to a highly polar solvent may be improved. When a secondary battery is used, the contact between the positive electrode active material 100 and the highly polar electrolytic solution is good, and there is a possibility that an increase in internal resistance can be suppressed.
  • the positive electrode active material of one aspect of the present invention has a stable crystal structure even at a high voltage. Since the crystal structure of the positive electrode active material is stable in the charged state, it is possible to suppress a decrease in charge / discharge capacity due to repeated charging / discharging.
  • a short circuit of the secondary battery not only causes a problem in the charging operation and the discharging operation of the secondary battery, but also may cause heat generation and ignition.
  • the short-circuit current is suppressed even at a high charging voltage.
  • a short-circuit current is suppressed even at a high charging voltage. Therefore, it is possible to obtain a secondary battery having both high charge / discharge capacity and safety.
  • the concentration gradient of the additive element can be evaluated by using, for example, energy dispersive X-ray spectroscopy (EDX: Energy Dispersive X-ray Spectroscopy), EPMA (electron probe microanalysis), or the like.
  • EDX Energy Dispersive X-ray spectroscopy
  • EPMA electron probe microanalysis
  • linear analysis measuring while scanning linearly and evaluating the distribution of the atomic concentration in the positive electrode active material particles.
  • linear analysis the data extracted from the surface analysis of the EDX in the linear region may be referred to as the line analysis.
  • measuring a certain area without scanning is called point analysis.
  • the concentration of the additive element in the surface layer portion 100a including the outermost surface layer 100c of the positive electrode active material 100, the inner 100b, the vicinity of the grain boundary, and the like can be quantitatively analyzed.
  • the concentration distribution and maximum value of the additive element can be analyzed by EDX ray analysis.
  • the peak of the magnesium concentration in the surface layer portion 100a is from the surface of the positive electrode active material 100 to a depth of 3 nm toward the center, that is, the outermost surface layer 100c. It is preferably present at a depth of 1 nm, more preferably at a depth of 0.5 nm, and even more preferably at a depth of 0.5 nm.
  • the distribution of fluorine is preferably superimposed on the distribution of magnesium. Therefore, when EDX ray analysis is performed, the peak of the fluorine concentration in the surface layer portion 100a preferably exists up to a depth of 3 nm from the surface of the positive electrode active material 100 toward the center, that is, in the outermost surface layer 100c, up to a depth of 1 nm. It is more preferable that it is present in, and it is further preferable that it is present up to a depth of 0.5 nm.
  • the positive electrode active material 100 has aluminum as an additive element, it is preferable that the distribution is slightly different from that of magnesium and fluorine as described above.
  • the peak of magnesium concentration is closer to the surface than the peak of aluminum concentration of the surface layer portion 100a.
  • the peak of the aluminum concentration preferably exists at a depth of 0.5 nm or more and 50 nm or less toward the center from the surface of the positive electrode active material 100, and more preferably at a depth of 5 nm or more and 30 nm or less. Alternatively, it is preferably present at 0.5 nm or more and 30 nm or less. Alternatively, it is preferably present at 5 nm or more and 50 nm or less.
  • the ratio (I / M) of the number of atoms of the impurity element I and the transition metal M in the surface layer portion 100a is preferably 0.05 or more and 1.00 or less.
  • the ratio (Ti / M) of the number of atoms of titanium and the transition metal M is preferably 0.05 or more and 0.4 or less, and more preferably 0.1 or more and 0.3 or less.
  • the impurity element is magnesium
  • the ratio of the number of atoms (Mg / M) between magnesium and the transition metal M is preferably 0.4 or more and 1.5 or less, and more preferably 0.45 or more and 1.00 or less.
  • the ratio (F / M) of the number of atoms of fluorine and the transition metal M is preferably 0.05 or more and 1.5 or less, and more preferably 0.3 or more and 1.00 or less.
  • the surface of the positive electrode active material 100 in the EDX ray analysis result can be estimated as follows, for example.
  • the surface of the transition metal M such as oxygen or cobalt which is uniformly present in the inside 100b of the positive electrode active material 100, is halved of the detected amount in the inside 100b.
  • the positive electrode active material 100 is a composite oxide, it is preferable to estimate the surface using the amount of oxygen detected. Specifically, first, the average value Oave of the oxygen concentration is obtained from the region where the detected amount of oxygen in the internal 100b is stable. If oxygen O background believed to be due to chemical adsorption or background outside from the surface at this time is detected may be an average value O ave of the oxygen concentration from the measured values by subtracting the O background. The 1/2 of the mean value O ave, the measurement point that is shown closest measurements 1 / 2O ave, it can be estimated that the surface of the positive electrode active material.
  • the surface can also be estimated by using the transition metal M contained in the positive electrode active material 100. For example, when 95% or more of the transition metal M is cobalt, the surface can be estimated in the same manner as described above using the amount of cobalt detected. Alternatively, it can be estimated in the same manner by using the sum of the detected amounts of a plurality of transition metal Ms. The amount of transition metal M detected is suitable for surface estimation because it is not easily affected by chemisorption.
  • the ratio (I / M) of the additive element I and the transition metal M in the vicinity of the grain boundaries is preferably 0.020 or more and 0.50 or less. Further, it is preferably 0.025 or more and 0.30 or less. Further, it is preferably 0.030 or more and 0.20 or less. Alternatively, it is preferably 020 or more and 0.30 or less. Alternatively, it is preferably 020 or more and 0.20 or less. Alternatively, it is preferably 025 or more and 0.50 or less. Alternatively, it is preferably 025 or more and 0.20 or less. Alternatively, it is preferably 0.030 or more and 0.50 or less. Alternatively, it is preferably 0.030 or more and 0.30 or less.
  • the ratio of the atomic numbers of magnesium to cobalt is preferably 0.020 or more and 0.50 or less. Further, it is preferably 0.025 or more and 0.30 or less. Further, it is preferably 0.030 or more and 0.20 or less. Alternatively, it is preferably 0.020 or more and 0.30 or less. Alternatively, it is preferably 0.020 or more and 0.20 or less. Alternatively, it is preferably 0.025 or more and 0.50 or less. Alternatively, it is preferably 0.025 or more and 0.20 or less. Alternatively, it is preferably 0.030 or more and 0.50 or less. Alternatively, it is preferably 0.030 or more and 0.30 or less.
  • the positive electrode active material 100 may have a coating film on at least a part of the surface thereof.
  • FIG. 3 shows an example of the positive electrode active material 100 having the coating film 104.
  • the coating film 104 is preferably formed by depositing decomposition products of the electrolytic solution during charging and discharging, for example.
  • the coating 104 preferably has, for example, carbon, oxygen and fluorine.
  • LiBOB and / or SUN Suberonitrile
  • the coating film 104 has boron and / or nitrogen because it tends to be a good quality coating film. Further, the coating film 104 does not have to cover all of the positive electrode active material 100.
  • a material having a layered rock salt type crystal structure such as lithium cobalt oxide (LiCoO 2 ) has a high discharge capacity and is known to be excellent as a positive electrode active material for a secondary battery.
  • Examples of the material having a layered rock salt type crystal structure include a composite oxide represented by LiMO 2.
  • the positive electrode active material will be described with reference to FIGS. 4 to 7.
  • 4 to 7 show a case where cobalt is used as the transition metal M contained in the positive electrode active material.
  • the positive electrode active material shown in FIG. 6 is lithium cobalt oxide (LiCoO 2 ) to which fluorine and magnesium are not added by the production method described later. As described in Non-Patent Document 1 and Non-Patent Document 2, the crystal structure of lithium cobalt oxide shown in FIG. 6 changes depending on the charging depth.
  • lithium cobalt oxide having a charging depth of 0 has a region having a crystal structure of the space group R-3 m, lithium occupies an octahedral site, and a unit cell.
  • CoO 2 layer exists three layers in. Therefore, this crystal structure may be referred to as an O3 type crystal structure.
  • the CoO 2 layer is a structure in which an octahedral structure in which oxygen is coordinated to cobalt is continuous with a plane in a state of sharing a ridge.
  • the space group P-3m1 has a crystal structure, and one CoO 2 layer exists in the unit cell. Therefore, this crystal structure may be referred to as an O1 type crystal structure.
  • lithium cobalt oxide when the charging depth is about 0.8 has a crystal structure of the space group R-3 m.
  • This structure can be said to be a structure in which a structure of CoO 2 such as P-3m1 (O1) and a structure of LiCoO 2 such as R-3m (O3) are alternately laminated. Therefore, this crystal structure may be referred to as an H1-3 type crystal structure.
  • the number of cobalt atoms per unit cell is twice that of other structures.
  • the c-axis of the H1-3 type crystal structure is shown in a diagram in which the c-axis is halved of the unit cell.
  • the coordinates of cobalt and oxygen in the unit cell are set to Co (0, 0 , 0.42150 ⁇ 0.00016), O 1 (0). , 0, 0.27671 ⁇ 0.00045), O 2 (0, 0, 0.11535 ⁇ 0.00045).
  • O 1 and O 2 are oxygen atoms, respectively.
  • the H1-3 type crystal structure is represented by a unit cell using one cobalt and two oxygens.
  • the O3'type crystal structure of one aspect of the present invention is preferably represented by a unit cell using one cobalt and one oxygen.
  • the O3'structure is from the O3 structure compared to the H1-3 type structure. Indicates that the change is small. It is more preferable to use which unit cell to represent the crystal structure of the positive electrode active material. For example, in the Rietveld analysis of XRD, the GOF (goodness of fit) value should be selected to be smaller. Just do it.
  • the difference in volume is also large.
  • the difference in volume between the H1-3 type crystal structure and the discharged O3 type crystal structure is 3.0% or more.
  • the structure of the H1-3 type crystal structure in which two CoO layers are continuous such as P-3m1 (O1), is likely to be unstable.
  • the crystal structure of lithium cobalt oxide collapses when high voltage charging and discharging are repeated.
  • the collapse of the crystal structure causes deterioration of the cycle characteristics. This is because the crystal structure collapses, which reduces the number of sites where lithium can exist stably and makes it difficult to insert and remove lithium.
  • ⁇ Positive electrode active material according to one aspect of the present invention > ⁇ Crystal structure ⁇
  • the positive electrode active material 100 of one aspect of the present invention can reduce the deviation of the CoO 2 layer in repeated charging and discharging of a high voltage. Furthermore, the change in volume can be reduced. Therefore, the positive electrode active material of one aspect of the present invention can realize excellent cycle characteristics. Further, the positive electrode active material according to one aspect of the present invention can have a stable crystal structure in a high voltage charging state. Therefore, the positive electrode active material of one aspect of the present invention may not easily cause a short circuit when the high voltage charged state is maintained. In such a case, safety is further improved, which is preferable.
  • the positive electrode active material of one aspect of the present invention there is a small difference in volume between a sufficiently discharged state and a state charged at a high voltage when the change in crystal structure and the same number of transition metal M atoms are compared. ..
  • the crystal structure of the positive electrode active material 100 before and after charging and discharging is shown in FIG.
  • the positive electrode active material 100 is a composite oxide having lithium, cobalt as a transition metal M, and oxygen.
  • the crystal structure at a charge depth of 0 (discharged state) in FIG. 4 is R-3 m (O3), which is the same as in FIG.
  • the positive electrode active material 100 has a crystal having a structure different from that of the H1-3 type crystal structure when the charging depth is sufficiently charged.
  • this structure is a space group R-3m and is not a spinel-type crystal structure, ions such as cobalt and magnesium occupy the oxygen 6 coordination position, and the cation arrangement has symmetry similar to that of the spinel-type.
  • the symmetry of CoO 2 layers of this structure is the same as type O3. Therefore, this structure is referred to as an O3'type crystal structure or a pseudo-spinel type crystal structure in the present specification and the like.
  • the O3'type crystal structure may be paraphrased as a pseudo-spinel type crystal structure. Further, in both the O3 type crystal structure and the O3'type crystal structure, it is preferable that magnesium is dilutely present between the CoO 2 layers, that is, in the lithium site. Further, it is preferable that fluorine is randomly and dilutely present at the oxygen site.
  • a light element such as lithium may occupy the oxygen 4-coordination position, and in this case as well, the ion arrangement has symmetry similar to that of the spinel type.
  • the positive electrode active material 100 of one aspect of the present invention is not limited to this. It may be biased to some lithium sites. For example, like Li 0.5 CoO 2 belonging to the space group P2 / m, it may be present in some of the aligned lithium sites.
  • the distribution of lithium can be analyzed, for example, by neutron diffraction.
  • the O3'type crystal structure is a crystal structure similar to the CdCl 2 type crystal structure, although Li is randomly provided between the layers.
  • This crystal structure similar to CdCl type 2 is similar to the crystal structure when lithium nickel oxide is charged to a charging depth of 0.94 (Li 0.06 NiO 2 ), but contains a large amount of pure lithium cobalt oxide or cobalt. It is known that the layered rock salt type positive electrode active material usually does not have this crystal structure.
  • the change in crystal structure when a large amount of lithium is released by charging at a high voltage is suppressed as compared with the conventional positive electrode active material. For example, as indicated by a dotted line in FIG. 4, there is little deviation of CoO 2 layers in these crystal structures.
  • the positive electrode active material 100 has high crystal structure stability even when the charging voltage is high.
  • a charging voltage having an H1-3 type crystal structure for example, a charging voltage capable of maintaining an R-3m (O3) crystal structure even at a voltage of about 4.6 V based on the potential of lithium metal.
  • There is a region in which the charging voltage is further increased for example, a region in which an O3'type crystal structure can be obtained even at a voltage of about 4.65 V to 4.7 V with reference to the potential of the lithium metal.
  • H1-3 type crystals may be observed only.
  • the positive electrode active material 100 of one aspect of the present invention can have an O3'-type crystal structure. There are cases.
  • the crystal structure is unlikely to collapse even if charging and discharging are repeated at a high voltage.
  • the positive electrode active material 100 of one aspect of the present invention can maintain the crystal structure of R-3m (O3).
  • the O3'type crystal structure can be obtained even in a region where the charging voltage is further increased, for example, when the voltage of the secondary battery exceeds 4.5 V and is 4.6 V or less.
  • the positive electrode active material 100 of one aspect of the present invention may have an O3'type crystal structure.
  • the coordinates of cobalt and oxygen in the unit cell are in the range of Co (0,0,0.5), O (0,0,x), 0.20 ⁇ x ⁇ 0.25. Can be shown within.
  • the fluorine compound it is preferable to add the fluorine compound to lithium cobalt oxide before the heat treatment for distributing magnesium throughout the particles.
  • the addition of a fluorine compound causes the melting point of lithium cobalt oxide to drop. By lowering the melting point, it becomes easy to distribute magnesium throughout the particles at a temperature at which cationic mixing is unlikely to occur. Further, the presence of the fluorine compound can be expected to improve the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution.
  • the number of atoms of magnesium contained in the positive electrode active material of one aspect of the present invention is preferably 0.001 times or more and 0.1 times or less the number of atoms of the transition metal M, more preferably greater than 0.01 and less than 0.04. About 0.02 is more preferable. Alternatively, it is preferably 0.001 times or more and less than 0.04. Alternatively, it is preferably 0.01 or more and 0.1 or less.
  • the magnesium concentration shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using ICP-MS or the like, or a value of the blending of raw materials in the process of producing the positive electrode active material. It may be based.
  • One or more metals selected from, for example, nickel, aluminum, manganese, titanium, vanadium and chromium may be added to lithium cobaltate as a metal other than cobalt (hereinafter referred to as metal Z), particularly one or more of nickel and aluminum. It is preferable to add it.
  • metal Z a metal other than cobalt
  • Manganese, titanium, vanadium and chromium may be stable and easily tetravalent, and may have a high contribution to structural stability.
  • the crystal structure of the positive electrode active material according to one aspect of the present invention may become more stable, for example, in a state of being charged at a high voltage.
  • the metal Z is added at a concentration that does not significantly change the crystallinity of lithium cobalt oxide.
  • the amount is preferably such that the above-mentioned Jahn-Teller effect and the like are not exhibited.
  • transition metals such as nickel and manganese and aluminum are preferably present at cobalt sites, but some may be present at lithium sites.
  • Magnesium is preferably present in lithium sites.
  • Oxygen may be partially replaced with fluorine.
  • the charge / discharge capacity of the positive electrode active material may decrease.
  • the positive electrode active material of one aspect of the present invention has nickel as the metal Z in addition to magnesium, it may be possible to increase the charge / discharge capacity per weight and per volume.
  • the positive electrode active material of one aspect of the present invention has aluminum as the metal Z in addition to magnesium, the charge / discharge capacity per weight and per volume may be increased.
  • the positive electrode active material of one aspect of the present invention has nickel and aluminum in addition to magnesium, it may be possible to increase the charge / discharge capacity per weight and per volume.
  • the concentration of elements such as magnesium, metal Z, etc. contained in the positive electrode active material according to one aspect of the present invention is represented by using the number of atoms.
  • the number of nickel atoms contained in the positive electrode active material 100 of one aspect of the present invention is preferably more than 0% of the atomic number of cobalt and preferably 7.5% or less, preferably 0.05% or more and 4% or less, and is 0.1. % Or more and 2% or less are preferable, and 0.2% or more and 1% or less are more preferable. Alternatively, it is preferably more than 0% and 4% or less. Alternatively, it is preferably more than 0% and 2% or less. Alternatively, it is preferably 0.05% or more and 7.5% or less. Alternatively, it is preferably 0.05% or more and 2% or less. Alternatively, it is preferably 0.1% or more and 7.5% or less.
  • the nickel concentration shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using GD-MS, ICP-MS, or the like, or a raw material in the process of producing the positive electrode active material. It may be based on the value of the formulation.
  • Nickel contained in the above concentration easily dissolves uniformly in the entire positive electrode active material 100, and thus contributes to stabilization of the crystal structure of the internal 100b in particular. Further, when divalent nickel is present in the internal 100b, there is a possibility that a divalent additive element, for example, magnesium, which is randomly and dilutely present in lithium sites, can be present more stably in the vicinity thereof. Therefore, the elution of magnesium can be suppressed even after charging and discharging at a high voltage. Therefore, the charge / discharge cycle characteristics can be improved. As described above, when both the effect of nickel on the internal 100b and the effect of magnesium, aluminum, titanium, fluorine and the like on the surface layer portion 100a are combined, it is extremely effective in stabilizing the crystal structure at the time of high voltage charging.
  • the number of aluminum atoms contained in the positive electrode active material of one aspect of the present invention is preferably 0.05% or more and 4% or less, preferably 0.1% or more and 2% or less, and 0.3% or more 1 of the atomic number of cobalt. More preferably, it is 5.5% or less. Alternatively, it is preferably 0.05% or more and 2% or less. Alternatively, 0.1% or more and 4% or less are preferable.
  • the concentration of aluminum shown here may be, for example, a value obtained by elemental analysis of the entire particles of the positive electrode active material using GD-MS, ICP-MS, or the like, or a raw material in the process of producing the positive electrode active material. It may be based on the value of the formulation.
  • the positive electrode active material of one aspect of the present invention preferably has an element W, and it is preferable to use phosphorus as the element W. Further, it is more preferable that the positive electrode active material of one aspect of the present invention has a compound containing phosphorus and oxygen.
  • the positive electrode active material of one aspect of the present invention has a compound containing the element W, a short circuit may be suppressed when a high voltage charging state is maintained.
  • hydrogen fluoride generated by decomposition of the electrolytic solution may react with phosphorus to reduce the hydrogen fluoride concentration in the electrolytic solution. is there.
  • hydrogen fluoride When the electrolytic solution has LiPF 6 , hydrogen fluoride may be generated by hydrolysis. Further, hydrogen fluoride may be generated by the reaction between PVDF used as a component of the positive electrode and an alkali. By reducing the hydrogen fluoride concentration in the charged liquid, it may be possible to suppress corrosion of the current collector and peeling of the coating film. In addition, it may be possible to suppress a decrease in adhesiveness due to gelation or insolubilization of PVDF.
  • the stability in a high voltage charging state is extremely high.
  • the element X is phosphorus
  • the atomic number of phosphorus is preferably 1% or more and 20% or less, more preferably 2% or more and 10% or less, and further preferably 3% or more and 8% or less of the atomic number of cobalt.
  • it is preferably 1% or more and 10% or less.
  • it is preferably 1% or more and 8% or less.
  • it is preferably 2% or more and 20% or less.
  • it is preferably 2% or more and 8% or less.
  • it is preferably 3% or more and 20% or less.
  • the atomic number of magnesium is preferably 0.1% or more and 10% or less, more preferably 0.5% or more and 5% or less, and more preferably 0.7% or more and 4% or less of the atomic number of cobalt.
  • 0.1% or more and 5% or less are preferable.
  • 0.1% or more and 4% or less are preferable.
  • 0.5% or more and 10% or less are preferable.
  • 0.5% or more and 4% or less are preferable.
  • it is preferably 0.7% or more and 10% or less.
  • it is preferably 0.7% or more and 5% or less.
  • concentrations of phosphorus and magnesium shown here may be values obtained by elemental analysis of the entire particles of the positive electrode active material using, for example, ICP-MS or the like, or the blending of the raw materials in the process of producing the positive electrode active material. It may be based on a value.
  • the positive electrode active material may have cracks.
  • the progress of cracks may be suppressed by the presence of phosphorus, more specifically, for example, a compound containing phosphorus and oxygen inside the positive electrode active material having the cracks as the surface.
  • Magnesium is preferably distributed over the entire particles of the positive electrode active material 100 according to one aspect of the present invention, but in addition, the magnesium concentration in the surface layer portion 100a is preferably higher than the average of the entire particles. Alternatively, it is preferable that the magnesium concentration of the surface layer portion 100a is higher than the concentration of the internal 100b. For example, it is preferable that the magnesium concentration of the surface layer portion 100a measured by XPS or the like is higher than the average magnesium concentration of the entire particles measured by ICP-MS or the like. Alternatively, it is preferable that the magnesium concentration of the surface layer portion 100a measured by EDX surface analysis or the like is higher than the magnesium concentration of the internal 100b.
  • the concentration of the metal in the surface layer portion 100a is determined. It is preferably higher than the average of all particles. Alternatively, it is preferable that the concentration of the metal in the surface layer portion 100a is higher than that in the internal 100b. For example, it is preferable that the concentration of an element other than cobalt in the surface layer portion 100a measured by XPS or the like is higher than the concentration of the element in the average of all the particles measured by ICP-MS or the like. Alternatively, it is preferable that the concentration of the element other than cobalt in the surface layer portion 100a measured by EDX surface analysis or the like is higher than the concentration of the element other than cobalt in the inner 100b.
  • the surface layer portion is in a state where the bond is broken, and lithium is released from the surface during charging, so that the lithium concentration tends to be lower than that inside the crystal. Therefore, it is a part where the crystal structure is liable to collapse because it tends to be unstable. If the magnesium concentration of the surface layer portion 100a is high, the change in the crystal structure can be suppressed more effectively. Further, when the magnesium concentration of the surface layer portion 100a is high, it can be expected that the corrosion resistance to hydrofluoric acid generated by the decomposition of the electrolytic solution is improved.
  • the concentration of the surface layer portion 100a of the positive electrode active material 100 of one aspect of the present invention is higher than the average of all the particles.
  • the fluorine concentration of the surface layer portion 100a is higher than the concentration of the internal 100b.
  • the surface layer portion 100a of the positive electrode active material 100 preferably has a composition different from that of the inside, in which the concentration of additive elements such as magnesium and fluorine is higher than that of the inside 100b. Further, it is preferable that the composition has a stable crystal structure at room temperature (25 ° C.). Therefore, the surface layer portion 100a may have a crystal structure different from that of the internal 100b. For example, at least a part of the surface layer portion 100a of the positive electrode active material 100 according to one aspect of the present invention may have a rock salt type crystal structure. When the surface layer portion 100a and the inner 100b have different crystal structures, it is preferable that the crystal orientations of the surface layer portion 100a and the inner 100b are substantially the same.
  • Layered rock salt crystals and anions of rock salt crystals have a cubic closest packed structure (face-centered cubic lattice structure). It is presumed that the anion also has a cubic closest packed structure in the O3'type crystal. When they come into contact, there is a crystal plane in which the cubic close-packed structure composed of anions is oriented in the same direction.
  • the space group of layered rock salt type crystals and O3'type crystals is R-3m
  • the space group of rock salt type crystals Fm-3m (space group of general rock salt type crystals) and Fd-3m (the simplest symmetry).
  • the mirror index of the crystal plane satisfying the above conditions is different between the layered rock salt type crystal and the O3'type crystal and the rock salt type crystal.
  • the orientations of the crystals are substantially the same when the orientations of the cubic closest packed structures composed of anions are aligned. is there.
  • TEM transmission electron microscope
  • STEM scanning transmission electron microscope
  • HAADF-STEM high-angle scattering annular dark-field scanning transmission electron microscope
  • ABF-STEM that the orientations of the crystals in the two regions are roughly the same.
  • the angle formed by the repetition of the bright line and the dark line between the crystals is 5 degrees or less, more preferably 2.5 degrees or less. Can be observed. In some cases, light elements such as oxygen and fluorine cannot be clearly observed in the TEM image or the like, but in that case, the alignment of the metal elements can be used to determine the alignment.
  • the surface layer portion 100a has only MgO or a structure in which MgO and CoO (II) are solid-solved, it becomes difficult to insert and remove lithium. Therefore, the surface layer portion 100a needs to have at least cobalt, also lithium in the discharged state, and have a path for inserting and removing lithium. Further, it is preferable that the concentration of cobalt is higher than that of magnesium.
  • the additive element X is preferably located on the surface layer portion 100a of the particles of the positive electrode active material 100 according to one aspect of the present invention.
  • the positive electrode active material 100 of one aspect of the present invention may be covered with a film having an additive element X.
  • the magnesium concentration of the crystal grain boundary 101 of the positive electrode active material 100 and its vicinity is higher than that of the other regions of the inner 100b. Further, it is preferable that the fluorine concentration at the grain boundary 101 and its vicinity is also higher than that of the other regions inside 100b.
  • the grain boundary 101 is one of the surface defects. Therefore, as with the particle surface, it tends to be unstable and the crystal structure tends to change. Therefore, if the magnesium concentration at and near the grain boundary 101 is high, the change in the crystal structure can be suppressed more effectively.
  • the magnesium and fluorine concentrations in and near the grain boundaries are high, even if cracks occur along the grain boundaries 101 of the particles of the positive electrode active material 100 according to the present invention, the surface generated by the cracks Magnesium and fluorine concentrations increase in the vicinity. Therefore, the corrosion resistance to hydrofluoric acid can be enhanced even in the positive electrode active material after cracks have occurred.
  • the vicinity of the crystal grain boundary 101 means a region from the grain boundary to about 10 nm.
  • the grain boundary refers to a surface in which the arrangement of atoms changes, and can be observed with an electron microscope image. Specifically, it refers to a portion of the electron microscope image in which the angle formed by the repetition of the bright line and the dark line exceeds 5 degrees.
  • the median diameter (D50) is preferably 1 ⁇ m or more and 100 ⁇ m or less, more preferably 2 ⁇ m or more and 40 ⁇ m or less, and further preferably 5 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 40 ⁇ m or less.
  • it is preferably 1 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 2 ⁇ m or more and 30 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 100 ⁇ m or less. Alternatively, it is preferably 5 ⁇ m or more and 40 ⁇ m or less.
  • a certain positive electrode active material is the positive electrode active material 100 of one aspect of the present invention showing an O3'type crystal structure when charged at a high voltage. It can be determined by analysis using line diffraction, neutron diffraction, electron spin resonance (ESR), nuclear magnetic resonance (NMR), or the like.
  • ESR electron spin resonance
  • NMR nuclear magnetic resonance
  • XRD can analyze the symmetry of transition metals such as cobalt contained in the positive electrode active material with high resolution, compare the height of crystallinity and the orientation of crystals, and analyze the periodic strain and crystallite size of the lattice. It is preferable in that it is possible to obtain sufficient accuracy even if the positive electrode obtained by disassembling the secondary battery is measured as it is.
  • the positive electrode active material 100 is characterized in that the crystal structure does not change much between the state of being charged with a high voltage and the state of being discharged.
  • a material in which a crystal structure occupying 50 wt% or more in a state of being charged with a high voltage and having a large change from the state of being discharged is not preferable because it cannot withstand charging and discharging of a high voltage.
  • the desired crystal structure may not be obtained simply by adding an additive element. For example, even if lithium cobalt oxide having magnesium and fluorine is common, the O3'type crystal structure becomes 60 wt% or more when charged at a high voltage, and the H1-3 type crystal structure becomes 50 wt%.
  • the O3'type crystal structure becomes approximately 100 wt%, and when the predetermined voltage is further increased, an H1-3 type crystal structure may occur. Therefore, in order to determine whether or not the positive electrode active material 100 is one aspect of the present invention, it is necessary to analyze the crystal structure including XRD.
  • the positive electrode active material charged or discharged at a high voltage may change its crystal structure when exposed to the atmosphere.
  • the O3'type crystal structure may change to the H1-3 type crystal structure. Therefore, it is preferable to handle all the samples in an inert atmosphere such as an argon atmosphere.
  • a coin cell (CR2032 type, diameter 20 mm, height 3.2 mm) is made of counter-polar lithium. Can be charged.
  • a slurry in which a positive electrode active material, a conductive auxiliary agent, and a binder are mixed and coated on a positive electrode current collector of aluminum foil can be used.
  • Lithium metal can be used as the counter electrode.
  • the potential of the secondary battery and the potential of the positive electrode are different. Unless otherwise specified, the voltage and potential in the present specification and the like are the potential of the positive electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • polypropylene having a thickness of 25 ⁇ m can be used as the separator.
  • the positive electrode can and the negative electrode can, those made of stainless steel (SUS) can be used.
  • SUS stainless steel
  • the coin cell produced under the above conditions is constantly charged at an arbitrary voltage (for example, 4.6V, 4.65V or 4.7V) at 0.5C, and then charged at a constant voltage until the current value becomes 0.01C.
  • 1C can be 137 mA / g or 200 mA / g.
  • the temperature is 25 ° C.
  • XRD device D8 ADVANCE manufactured by Bruker AXS X-ray source: CuK ⁇ ray output: 40KV, 40mA Slit system: Div. Slit, 0.5 ° Detector: LynxEye Scan method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15 ° (degree) or more and 90 ° or less Step width (2 ⁇ ): 0.01 ° Setting counting time: 1 second / step sample table rotation: 15 rpm
  • the measurement sample is powder, it can be set by putting it in a glass sample folder or sprinkling the sample on a greased silicon non-reflective plate.
  • the measurement sample is a positive electrode
  • the positive electrode can be attached to the substrate with double-sided tape, and the positive electrode active material layer can be set according to the measurement surface required by the apparatus.
  • the ideal powder XRD pattern by CuK ⁇ 1 line calculated from the model of the O3'type crystal structure and the H1-3 type crystal structure is shown in FIGS. 5 and 7.
  • an ideal XRD pattern calculated from the crystal structures of LiCoO 2 (O3) having a charging depth of 0 and CoO 2 (O1) having a charging depth of 1 is also shown.
  • the pattern of LiCoO 2 (O3) and CoO 2 (O1) is one of the modules of Material Studio (BIOVIA) from the crystal structure information obtained from ICSD (Inorganic Crystal Structure Database) (see Non-Patent Document 4). It was created using the Reflex Power Diffraction.
  • the pattern of the H1-3 type crystal structure was similarly prepared from the crystal structure information described in Non-Patent Document 3.
  • the crystal structure was estimated from the XRD pattern of the positive electrode active material of one aspect of the present invention, and TOPAS ver. 3 (Crystal structure analysis software manufactured by Bruker) was used for fitting, and an XRD pattern was created in the same manner as the others.
  • the positive electrode active material 100 has an O3'type crystal structure when charged at a high voltage, but all the particles do not have to have an O3'type crystal structure. It may contain other crystal structures or may be partially amorphous. However, when Rietveld analysis is performed on the XRD pattern, the O3'type crystal structure is preferably 50 wt% or more, more preferably 60 wt% or more, and further preferably 66 wt% or more. When the O3'type crystal structure is 50 wt% or more, more preferably 60 wt% or more, still more preferably 66 wt% or more, the positive electrode active material having sufficiently excellent cycle characteristics can be obtained.
  • the O3'type crystal structure is preferably 35 wt% or more, more preferably 40 wt% or more, and 43 wt% when Rietveld analysis is performed. The above is more preferable.
  • the crystallite size of the O3'type crystal structure contained in the particles of the positive electrode active material is reduced to only about 1/10 of that of LiCoO 2 (O3) in the discharged state. Therefore, even under the same XRD measurement conditions as the positive electrode before charging / discharging, a clear peak of the O3'-type crystal structure can be confirmed after high-voltage charging.
  • simple LiCoO2 even if a part of the crystal structure resembles the O3'type crystal structure, the crystallite size becomes small and the peak becomes broad and small. The crystallite size can be obtained from the half width of the XRD peak.
  • the influence of the Jahn-Teller effect is small.
  • the positive electrode active material of one aspect of the present invention preferably has a layered rock salt type crystal structure and mainly contains cobalt as a transition metal. Further, in the positive electrode active material of one aspect of the present invention, the metal Z described above may be contained in addition to cobalt as long as the influence of the Jahn-Teller effect is small.
  • XRD analysis is used to consider the range of lattice constants in which the influence of the Jahn-Teller effect is presumed to be small.
  • FIG. 8 shows the results of calculating the a-axis and c-axis lattice constants using XRD when the positive electrode active material of one aspect of the present invention has a layered rock salt type crystal structure and has cobalt and nickel.
  • .. 8A is the result of the a-axis
  • FIG. 8B is the result of the c-axis.
  • the XRD pattern used in these calculations is the powder after the synthesis of the positive electrode active material and before being incorporated into the positive electrode.
  • the nickel concentration on the horizontal axis indicates the nickel concentration when the sum of the atomic numbers of cobalt and nickel is 100%.
  • the positive electrode active material was prepared in the same manner as in the production method of FIG. 11 described later, except that an aluminum source was not used.
  • the nickel concentration indicates the nickel concentration when the sum of the atomic numbers of cobalt and nickel in the positive electrode active material is 100%.
  • FIG. 9 shows the results of estimating the a-axis and c-axis lattice constants using XRD when the positive electrode active material of one aspect of the present invention has a layered rock salt type crystal structure and has cobalt and manganese. Shown. 9A is the result of the a-axis and FIG. 9B is the result of the c-axis.
  • the lattice constant shown in FIG. 9 is the powder after the synthesis of the positive electrode active material, and is based on the XRD measured before incorporating the positive electrode active material into the positive electrode.
  • the manganese concentration on the horizontal axis indicates the concentration of manganese when the sum of the atomic numbers of cobalt and manganese is 100%.
  • the positive electrode active material was prepared according to the production method of FIG. 11 described later, except that a manganese source was used instead of the nickel source and an aluminum source was not used.
  • the manganese concentration indicates the manganese concentration when the sum of the atomic numbers of cobalt and manganese is 100% in step S21.
  • FIG. 8C shows a value (a-axis / c-axis) obtained by dividing the a-axis lattice constant by the c-axis lattice constant for the positive electrode active material whose lattice constant results are shown in FIGS. 8A and 8B.
  • FIG. 9C shows a value (a-axis / c-axis) obtained by dividing the a-axis lattice constant by the c-axis lattice constant for the positive electrode active material whose lattice constant results are shown in FIGS. 9A and 9B.
  • the concentration of manganese is preferably 4% or less, for example.
  • the above range of nickel concentration and manganese concentration does not necessarily apply to the surface layer portion 100a. That is, in the surface layer portion 100a, the concentration may be higher than the above concentration.
  • the particles of the positive electrode active material in the non-charged state or the discharged state which can be estimated from the XRD pattern, have. in a layered rock-salt crystal structure, the lattice constant of a-axis is smaller than 2.814 ⁇ 10 -10 larger than m 2.817 ⁇ 10 -10 m, and a lattice constant of c-axis 14.05 ⁇ 10 -10 m it was found that preferably larger less than 14.07 ⁇ 10 -10 m.
  • the state in which charging / discharging is not performed may be, for example, the state of powder before producing the positive electrode of the secondary battery.
  • the value obtained by dividing the a-axis lattice constant by the c-axis lattice constant Is preferably greater than 0.20000 and less than 0.20049.
  • 2 ⁇ is 18.50 ° or more and 19.30 ° or less as the first.
  • a peak may be observed, and a second peak may be observed when 2 ⁇ is 38.00 ° or more and 38.80 ° or less.
  • the peak appearing in the powder XRD pattern reflects the crystal structure of the inside 100b of the positive electrode active material 100, which occupies most of the volume of the positive electrode active material 100.
  • the crystal structure of the surface layer portion 100a, the outermost surface layer 100c, and the like can be analyzed by electron diffraction or the like of the cross section of the positive electrode active material 100.
  • ⁇ XPS ⁇ In X-ray photoelectron spectroscopy (XPS), it is possible to analyze a region from the surface to a depth of about 2 to 8 nm (usually 5 nm or less), so that the concentration of each element is quantitatively measured in about half of the surface layer 100a. Can be analyzed. In addition, narrow scan analysis can be used to analyze the bonding state of elements. The quantification accuracy of XPS is often about ⁇ 1 atomic%, and the lower limit of detection is about 1 atomic% depending on the element.
  • the number of atoms of the additive element is preferably 1.6 times or more and 6.0 times or less of the number of atoms of the transition metal M, and is 1.8 times or more and 4 times. More preferably less than 0.0 times.
  • the atomic number of magnesium is preferably 1.6 times or more and 6.0 times or less of the atomic number of cobalt, and more preferably 1.8 times or more and less than 4.0 times.
  • the number of atoms of the halogen such as fluorine is preferably 0.2 times or more and 6.0 times or less, and more preferably 1.2 times or more and 4.0 times or less the number of atoms of the transition metal M.
  • monochromatic aluminum can be used as the X-ray source.
  • the take-out angle may be, for example, 45 °.
  • it can be measured with the following devices and conditions.
  • the peak showing the binding energy between fluorine and other elements is preferably 682 eV or more and less than 685 eV, and more preferably about 684.3 eV. .. This is a value different from both the binding energy of lithium fluoride, 685 eV, and the binding energy of magnesium fluoride, 686 eV. That is, when the positive electrode active material 100 of one aspect of the present invention has fluorine, it is preferably a bond other than lithium fluoride and magnesium fluoride.
  • the peak showing the binding energy of magnesium and other elements is preferably 1302 eV or more and less than 1304 eV, and more preferably about 1303 eV. This is a value different from the binding energy of magnesium fluoride of 1305 eV, which is close to the binding energy of magnesium oxide. That is, when the positive electrode active material 100 of one aspect of the present invention has magnesium, it is preferably a bond other than magnesium fluoride.
  • Additive elements that are preferably abundant in the surface layer 100a such as magnesium and aluminum, have concentrations measured by XPS or the like such as ICP-MS (inductively coupled plasma mass spectrometry) or GD-MS (glow discharge mass spectrometry). ) Etc., preferably higher than the concentration measured.
  • the concentration of the surface layer portion 100a is higher than the concentration of the internal 100b.
  • the processing can be performed by, for example, FIB (Focused Ion Beam).
  • the number of magnesium atoms is preferably 0.4 times or more and 1.5 times or less the number of cobalt atoms.
  • the ratio Mg / Co of the atomic number of magnesium as analyzed by ICP-MS is preferably 0.001 or more and 0.06 or less.
  • the nickel contained in the transition metal M is not unevenly distributed in the surface layer portion 100a but is distributed in the entire positive electrode active material 100. However, this does not apply when there is a region where the above-mentioned additive elements are unevenly distributed.
  • the positive electrode active material according to one aspect of the present invention preferably has cobalt and nickel as transition metals and magnesium as an additive element.
  • some Co 3+ is replaced with Ni 2+ and some Li + is replaced with Mg 2+.
  • the Ni 2+ may be reduced to Ni 3+ .
  • some Li + may be replaced with Mg 2+ , and the nearby Co 3+ may be reduced to Co 2+ accordingly .
  • some Co 3+ may be replaced with Mg 2+ , and the neighboring Co 3+ may be oxidized to Co 4+ accordingly .
  • the positive electrode active material according to one aspect of the present invention preferably has any one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+.
  • the spin density due to any one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ per weight of the positive electrode active material is 2.0 ⁇ 10 17 spins / g or more 1.0 ⁇ 10 21 spins /. It is preferably g or less.
  • the crystal structure is particularly stable in the charged state, which is preferable. If the magnesium concentration is too high, the spin density due to any one or more of Ni 2+ , Ni 3+ , Co 2+ and Co 4+ may be low.
  • the spin density in the positive electrode active material can be analyzed by using, for example, an electron spin resonance method (ESR) or the like.
  • ESR electron spin resonance method
  • ⁇ EPMA ⁇ EPMA Electro Probe Microanalysis
  • the concentration of each element may differ from the measurement results using other analytical methods.
  • the concentration of the additive present in the surface layer portion may be lower than the result of XPS.
  • the concentration of the additive present on the surface layer may be higher than the result of ICP-MS or the value of the blending of the raw materials in the process of producing the positive electrode active material.
  • the cross section of the positive electrode active material 100 of one aspect of the present invention is subjected to EPMA surface analysis, it is preferable to have a concentration gradient in which the concentration of the additive element increases from the inside toward the surface layer portion. More specifically, as shown in FIG. 1C1, magnesium, fluorine, titanium, and silicon preferably have a concentration gradient that increases from the inside toward the surface. Further, as shown in FIG. 2C2, it is preferable that aluminum has a concentration peak in a region deeper than the concentration peak of the above element. The peak of the aluminum concentration may be present in the surface layer portion or may be deeper than the surface layer portion.
  • the surface and surface layer of the positive electrode active material according to one aspect of the present invention do not contain carbonic acid, hydroxy groups, etc. chemically adsorbed after the positive electrode active material is produced. Further, it does not include an electrolytic solution, a binder, a conductive material, or a compound derived from these, which adheres to the surface of the positive electrode active material. Therefore, when quantifying the elements contained in the positive electrode active material, corrections may be made to exclude carbon, hydrogen, excess oxygen, excess fluorine, etc. that can be detected by surface analysis such as XPS and EPMA.
  • the positive electrode active material 100 preferably has a smooth surface and few irregularities.
  • the smooth surface and few irregularities is one factor indicating that the distribution of additive elements in the surface layer portion 100a is good.
  • the smooth surface and less unevenness can be determined from, for example, a cross-sectional SEM image or a cross-sectional TEM image of the positive electrode active material 100, a specific surface area of the positive electrode active material 100, and the like.
  • the smoothness of the surface can be quantified from the cross-sectional SEM image of the positive electrode active material 100 as follows.
  • the positive electrode active material 100 is processed by FIB or the like to expose the cross section. At this time, it is preferable to cover the positive electrode active material 100 with a protective film, a protective agent, or the like.
  • a protective film, a protective agent, or the like is photographed.
  • interface extraction is performed with image processing software. Further, the interface line between the protective film or the like and the positive electrode active material 100 is selected by an automatic selection tool or the like, and the data is extracted by spreadsheet software or the like.
  • this surface roughness is the surface roughness of the positive electrode active material at least at 400 nm on the outer circumference of the particles.
  • the roughness (RMS: root mean square surface roughness), which is an index of roughness, is less than 3 nm, preferably less than 1 nm, and more preferably less than 0.5 nm squared.
  • the mean square root surface roughness (RMS) is preferred.
  • the image processing software that performs noise processing, interface extraction, and the like is not particularly limited, but for example, "ImageJ" can be used.
  • the spreadsheet software and the like are not particularly limited, but for example, Microsoft Office Excel can be used.
  • the actual specific surface area A R measured by gas adsorption method by constant volume method, also from the ratio of the ideal specific surface area A i, that quantify the smoothness of the surface of the positive electrode active material 100 it can.
  • the ideal specific surface area A i is the same diameter of all particles with D50, the weight is the same, the shape obtained by calculation as an ideal sphere.
  • the median diameter D50 can be measured by a particle size distribution meter or the like using a laser diffraction / scattering method.
  • the specific surface area can be measured by, for example, a specific surface area measuring device using a gas adsorption method based on a constant volume method.
  • the positive electrode active material 100 it is preferable and the ideal specific surface area A i determined from the median diameter D50, the ratio A R / A i of the actual specific surface area A R is 2.1 or less ..
  • This embodiment can be used in combination with other embodiments.
  • a lithium source and a transition metal M source are prepared as materials for the composite oxide (LiMO 2 ) having lithium, a transition metal M, and oxygen.
  • lithium source for example, lithium carbonate, lithium fluoride, lithium hydroxide, lithium oxide and the like can be used.
  • the transition metal M it is preferable to use a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium.
  • a metal capable of forming a layered rock salt type composite oxide belonging to the space group R-3m together with lithium for example, at least one of manganese, cobalt and nickel can be used. That is, as the transition metal M source, only cobalt may be used, only nickel may be used, two types of cobalt and manganese, or two types of cobalt and nickel may be used, and cobalt, manganese, and nickel may be used. 3 types may be used.
  • the mixing ratio of cobalt, manganese, and nickel within a range capable of forming a layered rock salt type crystal structure is preferable. Further, aluminum may be added to these transition metals as long as a layered rock salt type crystal structure can be obtained.
  • transition metal M source oxides, hydroxides, etc. of the above metals exemplified as the transition metal M can be used.
  • cobalt source for example, cobalt oxide, cobalt hydroxide and the like can be used.
  • manganese source manganese oxide, manganese hydroxide and the like can be used.
  • nickel source nickel oxide, nickel hydroxide or the like can be used.
  • aluminum source aluminum oxide, aluminum hydroxide, or the like can be used.
  • step S12 the above lithium source and transition metal M source are mixed.
  • Mixing can be done dry or wet.
  • a ball mill, a bead mill or the like can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the pulverizing medium, for example.
  • step S13 the materials mixed above are heated.
  • This step may be referred to as firing or first heating to distinguish it from the subsequent heating step.
  • the heating is preferably performed at 800 ° C. or higher and lower than 1100 ° C., more preferably 900 ° C. or higher and 1000 ° C. or lower, and further preferably about 950 ° C. Alternatively, it is preferably 800 ° C. or higher and 1000 ° C. or lower. Alternatively, 900 ° C. or higher and 1100 ° C. or lower are preferable. If the temperature is too low, the decomposition and melting of the lithium source and the transition metal M source may be insufficient.
  • the heating time can be, for example, 1 hour or more and 100 hours or less, and preferably 2 hours or more and 20 hours or less. Alternatively, it is preferably 1 hour or more and 20 hours or less. Alternatively, it is preferably 2 hours or more and 100 hours or less. The shorter the heating time, the more productive and preferable.
  • the firing is preferably performed in an atmosphere such as dry air where there is little water (for example, a dew point of ⁇ 50 ° C. or lower, more preferably ⁇ 100 ° C. or lower).
  • the heating is performed at 1000 ° C. for 10 hours, the temperature rise is 200 ° C./h, and the flow rate in a dry atmosphere is 10 L / min.
  • the heated material can then be cooled to room temperature (25 ° C.).
  • the temperature lowering time from the specified temperature to room temperature is 10 hours or more and 50 hours or less.
  • cooling to room temperature in step S13 is not essential. If there is no problem in performing the subsequent steps S41 to S44, the cooling may be performed at a temperature higher than room temperature.
  • step S14 the material calcined above is recovered to obtain a composite oxide (LiMO 2) having lithium, a transition metal M, and oxygen.
  • a composite oxide LiMO 2
  • lithium cobalt oxide, lithium manganate, lithium nickel oxide, lithium cobalt oxide in which part of cobalt is replaced with manganese, lithium cobalt oxide in which part of cobalt is replaced with nickel, or nickel-manganese- Obtain lithium cobalt oxide and the like.
  • step S14 a composite oxide having lithium, a transition metal M and oxygen previously synthesized may be used. In this case, steps S11 to S13 can be omitted.
  • lithium cobalt oxide particles (trade name: CellSeed C-10N) manufactured by Nippon Chemical Industrial Co., Ltd. can be used as the composite oxide synthesized in advance.
  • This has a median diameter (D50) of about 12 ⁇ m, and in the impurity analysis by glow discharge mass spectrometry (GD-MS), the magnesium concentration and fluorine concentration are 50 ppm wt or less, and the calcium concentration, aluminum concentration and silicon concentration are 100 ppm wt or less.
  • Lithium cobaltate having a nickel concentration of 150 ppm wt or less, a sulfur concentration of 500 ppm wt or less, an arsenic concentration of 1100 ppm wt or less, and other element concentrations other than lithium, cobalt and oxygen of 150 ppm wt or less.
  • lithium cobalt oxide particles (trade name: CellSeed C-5H) manufactured by Nippon Chemical Industrial Co., Ltd. can also be used. This is lithium cobalt oxide having a median diameter (D50) of about 6.5 ⁇ m and an element concentration other than lithium, cobalt and oxygen in the impurity analysis by GD-MS, which is about the same as or less than C-10N. ..
  • cobalt is used as the metal M, and pre-synthesized lithium cobalt oxide particles (CellSeed C-10N manufactured by Nippon Chemical Industrial Co., Ltd.) are used.
  • a halogen source such as a fluorine source or a chlorine source and a magnesium source are prepared as materials for the mixture 902. It is also preferable to prepare a lithium source.
  • fluorine source examples include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), aluminum fluoride (AlF 3 ), titanium fluoride (TiF 4 ), cobalt fluoride (CoF 2 , CoF 3 ), and fluorine.
  • the fluorine source is not limited to solids, for example, fluorine (F 2 ), carbon fluoride, sulfur fluoride, oxygen fluoride (OF 2 , O 2 F 2 , O 3 F 2 , O 4 F 2 , O 2 F). Or the like may be mixed in the atmosphere in the heating step described later. Further, a plurality of fluorine sources may be mixed and used. Among them, lithium fluoride is preferable because it has a relatively low melting point of 848 ° C. among solid fluorine sources and is easily melted in the annealing step described later.
  • magnesium source for example, magnesium fluoride, magnesium oxide, magnesium hydroxide, magnesium carbonate and the like can be used.
  • lithium source for example, lithium fluoride or lithium carbonate can be used. That is, lithium fluoride can be used as both a lithium source and a fluorine source. Magnesium fluoride can be used as both a fluorine source and a magnesium source.
  • lithium fluoride LiF is prepared as a fluorine source
  • magnesium fluoride MgF 2 is prepared as a fluorine source and a magnesium source.
  • LiF: MgF 2 65:35 (molar ratio)
  • the effect of lowering the melting point is highest.
  • the amount of lithium fluoride increases, there is a concern that the amount of lithium becomes excessive and the cycle characteristics deteriorate.
  • the term "neighborhood" means a value larger than 0.9 times and smaller than 1.1 times the value.
  • a solvent is prepared.
  • ketones such as acetone, alcohols such as ethanol and isopropanol, ethers such as diethyl ether, dioxane, acetonitrile, N-methyl-2-pyrrolidone (NMP) and the like can be used. It is more preferable to use an aprotic solvent that does not easily react with lithium. In this embodiment, acetone is used.
  • step S22 the material of the above mixture 902 is mixed and pulverized.
  • Mixing can be done dry or wet, but wet is preferred as it can be pulverized to a smaller size.
  • a ball mill, a bead mill or the like can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the pulverizing medium, for example. It is preferable that the mixing and pulverization steps are sufficiently performed to pulverize the mixture 902.
  • step S23 the material mixed and pulverized above is recovered to obtain a mixture 902.
  • the mixture 902 preferably has a D50 (median diameter) of, for example, 600 nm or more and 20 ⁇ m or less, and more preferably 1 ⁇ m or more and 10 ⁇ m or less. Alternatively, it is preferably 600 nm or more and 10 ⁇ m or less. Alternatively, it is preferably 1 ⁇ m or more and 20 ⁇ m or less.
  • the mixture 902 pulverized in this way tends to uniformly adhere the mixture 902 to the surface of the particles of the composite oxide when mixed with the composite oxide having lithium, transition metal M and oxygen in a later step. ..
  • the mixture 902 is uniformly adhered to the surface of the composite oxide particles because halogen and magnesium are easily distributed on the surface layer of the composite oxide particles after heating. If there is a region on the surface layer that does not contain halogen and magnesium, it may be difficult to form an O3'type crystal structure described later in the charged state.
  • step S41 the LiMO 2 obtained in step S14 and the mixture 902 are mixed.
  • the mixing in step S31 is preferably made under milder conditions than the mixing in step S12 so as not to destroy the particles of the composite oxide.
  • the number of revolutions is smaller or the time is shorter than the mixing in step S12.
  • the dry type is a condition in which the particles are less likely to be destroyed than the wet type.
  • a ball mill, a bead mill or the like can be used for mixing.
  • zirconia balls it is preferable to use zirconia balls as the pulverizing medium, for example.
  • step S42 the material mixed above is recovered to obtain a mixture 903.
  • the present embodiment describes a method of adding a mixture of lithium fluoride and magnesium fluoride to lithium cobalt oxide having few impurities
  • one aspect of the present invention is not limited to this.
  • a starting material of lithium cobalt oxide to which a magnesium source, a fluorine source, or the like is added and calcined may be used. In this case, since it is not necessary to separate the steps of steps S11 to S14 and the steps of steps S21 to S23, it is simple and highly productive.
  • lithium cobalt oxide to which magnesium and fluorine have been added in advance may be used. If lithium cobalt oxide to which magnesium and fluorine are added is used, the steps up to step S42 can be omitted, which is more convenient.
  • a magnesium source and a fluorine source may be further added to lithium cobalt oxide to which magnesium and fluorine have been added in advance.
  • step S43 the mixture 903 is heated in an oxygen-containing atmosphere.
  • the heating is more preferably a heating having an effect of suppressing sticking so that the particles of the mixture 903 do not stick to each other.
  • This step may be called annealing to distinguish it from the previous heating step.
  • Examples of the heating having the effect of suppressing sticking include heating while stirring the mixture 903 and heating while vibrating the container containing the mixture 903.
  • the heating temperature in step S43 needs to be equal to or higher than the temperature at which the reaction between LiMO 2 and the mixture 902 proceeds.
  • the temperature at which the reaction proceeds here may be any temperature at which mutual diffusion of the elements contained in LiMO 2 and the mixture 902 occurs. Therefore, it may be lower than the melting temperature of these materials. For example, in oxides, solid phase diffusion occurs from 0.757 times the melting temperature T m (Tanman temperature T d). Therefore, for example, when LiMO 2 is LiCoO 2 , the melting point of LiCoO 2 is 1130 ° C., so the temperature in step S43 may be 500 ° C. or higher.
  • the temperature is higher than the temperature at which at least a part of the mixture 903 is melted because the reaction proceeds more easily. Therefore, the annealing temperature is preferably equal to or higher than the co-melting point of the mixture 902.
  • the co-melting point of LiF and MgF 2 is around 742 ° C., so that the temperature in step S43 is preferably 742 ° C. or higher.
  • the annealing temperature is more preferably 830 ° C. or higher.
  • the annealing temperature must be equal to or lower than the decomposition temperature of LiMO 2 (1130 ° C. in the case of LiCoO 2). Further, at a temperature near the decomposition temperature, there is a concern that LiMO 2 may be decomposed, although the amount is small. Therefore, the annealing temperature is preferably 1130 ° C. or lower, more preferably 1000 ° C. or lower, further preferably 950 ° C. or lower, and further preferably 900 ° C. or lower.
  • the annealing temperature is preferably 500 ° C. or higher and 1130 ° C. or lower, more preferably 500 ° C. or higher and 1000 ° C. or lower, further preferably 500 ° C. or higher and 950 ° C. or lower, and further preferably 500 ° C. or higher and 900 ° C. or lower.
  • 742 ° C. or higher and 1130 ° C. or lower is preferable, 742 ° C. or higher and 1000 ° C. or lower is more preferable, 742 ° C. or higher and 950 ° C. or lower is further preferable, and 742 ° C. or higher and 900 ° C. or lower is further preferable.
  • 830 ° C. or higher and 1130 ° C. or lower is preferable, 830 ° C. or higher and 1000 ° C. or lower is more preferable, 830 ° C. or higher and 950 ° C. or lower is further preferable, and 830 ° C. or higher and 900 ° C. or lower is further preferable.
  • some materials for example, lithium fluoride, which is a fluorine source, functions as a flux.
  • the annealing temperature can be lowered to the decomposition temperature of LiMO 2 or less, for example, 742 ° C or higher and 950 ° C or lower, and additives such as magnesium can be distributed on the surface layer to prepare a positive electrode active material having good characteristics. ..
  • the mixture 903 in an atmosphere containing lithium fluoride, that is, to heat the mixture 903 in a state where the partial pressure of lithium fluoride in the heating furnace is high. By such heating, volatilization of lithium fluoride in the mixture 903 can be suppressed.
  • Annealing is preferably performed at an appropriate time.
  • the appropriate annealing time varies depending on conditions such as the annealing temperature, the particle size and composition of LiMO 2 in step S14. Smaller particles may be more preferred at lower temperatures or shorter times than larger particles.
  • the annealing temperature is preferably, for example, 600 ° C. or higher and 950 ° C. or lower.
  • the annealing time is, for example, preferably 3 hours or more, more preferably 10 hours or more, and even more preferably 60 hours or more.
  • the annealing temperature is preferably, for example, 600 ° C. or higher and 950 ° C. or lower.
  • the annealing time is, for example, preferably 1 hour or more and 10 hours or less, and more preferably about 2 hours.
  • the temperature lowering time after annealing is preferably, for example, 10 hours or more and 50 hours or less.
  • step S44 the material annealed above can be recovered to prepare the positive electrode active material 100. At this time, it is preferable to further sift the recovered particles. By sieving, if the positive electrode active materials 100 are stuck to each other, this can be eliminated.
  • FIG. 10 Next, a production method different from that of FIG. 10 will be described with reference to FIGS. 11 to 14. Since there are many parts in common with FIG. 10, the different parts will be mainly described. For the common parts, the explanation of FIG. 10 can be taken into consideration.
  • step S14 a production method for mixing the LiMO 2 obtained in step S14 and the mixture 902 in step S41 has been described, but one aspect of the present invention is not limited to this. As shown in steps S31 and S32 of FIGS. 11 to 14, other additive elements may be further mixed.
  • additive element for example, one or more selected from nickel, aluminum, manganese, titanium, zirconium, vanadium, iron, chromium, niobium, cobalt, arsenic, zinc, silicon, sulfur, phosphorus and boron can be used.
  • 11 to 14 show an example in which two kinds of nickel source and aluminum source are used as additive elements in step S31 and step S32.
  • the oxides, hydroxides, fluorides and the like of each element in the form of fine powder.
  • the pulverization can be performed, for example, in a wet manner.
  • the nickel source and the aluminum source can be mixed in step S42 at the same time as the mixture 902. Since this method has a small number of annealings, it is highly productive and preferable.
  • a plurality of additive sources may be mixed in different steps.
  • the nickel source can be mixed in step S61-1 and the aluminum source can be mixed in step S61-2.
  • the mixing method can be changed.
  • nickel hydroxide is used as a nickel source and mixed by a solid phase method
  • aluminum alkoxide is used as an aluminum source and mixed by a sol-gel method.
  • the sol-gel method can be carried out, for example, as follows.
  • the additive element alkoxide is dissolved in alcohol.
  • the alcohol group contained in the alkoxide of the additive element preferably has 1 to 18 carbon atoms, and the carbon may be substituted or unsubstituted.
  • aluminum alkoxide aluminum isopropoxide, aluminum butoxide, aluminum ethoxyde and the like can be used.
  • the solvent alcohol for example, methanol, ethanol, propanol, 2-propanol, butanol, 2-butanol can be used. It is preferable to use an alcohol of the same type as the alkoxy group of the additive element.
  • the amount of water contained in the solvent is preferably 3% by volume or less, more preferably 0.3% by volume or less.
  • the object to be treated is mixed with an alcohol solution of the additive element alkoxide, and the mixture is stirred in an atmosphere containing water vapor.
  • annealing may be performed a plurality of times as step S53 and step S55, and the sticking suppression operation step S54 may be performed between them.
  • the annealing conditions of steps S53 and S55 can take into account the description of step S43.
  • Examples of the sticking suppressing operation include crushing with a pestle, mixing with a ball mill, mixing with a rotation / revolution mixer, sieving, and vibrating a container containing a composite oxide.
  • LiMO 2 and the mixture 902 may be mixed in step S41 and annealed, and then the nickel source and the aluminum source may be mixed in step S61. This is referred to as the mixture 904.
  • the mixture 904 is reannealed as step S63. As for the annealing conditions, the description in step S43 can be taken into consideration.
  • the step of introducing the additive element may be replaced.
  • the mixture 901 having a nickel source and an aluminum source and LiMO 2 may be mixed first, annealed in step S43, and then mixed with the mixture 902 having a magnesium source and a fluorine source. ..
  • the concentration of the additive element can be increased in the surface layer portion as compared with the inside of the particle.
  • the ratio of the number of atoms of the additive element to the reference can be made higher in the surface layer portion than in the inside.
  • This embodiment can be used in combination with other embodiments.
  • the positive electrode has a positive electrode active material layer and a positive electrode current collector.
  • the positive electrode active material layer has a positive electrode active material, and may have a conductive material and a binder.
  • As the positive electrode active material a positive electrode active material prepared by using the manufacturing method described in the previous embodiment is used.
  • the positive electrode active material described in the previous embodiment may be mixed with another positive electrode active material.
  • positive electrode active materials include, for example, an olivine type crystal structure, a layered rock salt type crystal structure, a composite oxide having a spinel type crystal structure, and the like.
  • examples thereof include compounds such as LiFePO 4 , LiFeO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , Cr 2 O 5 , and MnO 2.
  • lithium nickelate LiNiO 2 or LiNi 1-x M x O 2 (0 ⁇ x ⁇ 1) is added to a lithium-containing material having a spinel-type crystal structure containing manganese such as LiMn 2 O 4 as another positive electrode active material.
  • LiMn 2 O 4 LiMn 2 O 4
  • M Co, Al, etc.
  • a lithium manganese composite oxide represented by the composition formula Lia Mn b Mc Od can be used as another positive electrode active material.
  • the element M a metal element selected from other than lithium and manganese, or silicon and phosphorus are preferably used, and nickel is more preferable.
  • the composition of the metal, silicon, phosphorus, etc. of the entire particles of the lithium manganese composite oxide can be measured using, for example, ICP-MS (inductively coupled plasma mass spectrometer).
  • the oxygen composition of the entire particles of the lithium manganese composite oxide can be measured by using, for example, EDX (Energy Dispersive X-ray Analysis Method). Further, it can be obtained by using the valence evaluation of the molten gas analysis and the XAFS (X-ray absorption fine structure) analysis in combination with the ICPMS analysis.
  • the lithium manganese composite oxide refers to an oxide containing at least lithium and manganese, and includes chromium, cobalt, aluminum, nickel, iron, magnesium, molybdenum, zinc, indium, gallium, copper, titanium, niobium, and silicon. It may contain at least one element selected from the group consisting of and phosphorus and the like.
  • FIG. 16A shows a vertical cross-sectional view of the active material layer 200.
  • the active material layer 200 includes a granular positive electrode active material 100, graphene or graphene compound 201 as a conductive material, and a binder (not shown).
  • the graphene compound 201 refers to multi-layer graphene, multi-graphene, graphene oxide, multi-layer graphene, multi-graphene, reduced graphene oxide, reduced multi-layer graphene oxide, reduced multi-graphene oxide, graphene quantum. Including dots and the like.
  • the graphene compound has carbon, has a flat plate shape, a sheet shape, or the like, and has a two-dimensional structure formed by a carbon 6-membered ring. The two-dimensional structure formed by the carbon 6-membered ring may be called a carbon sheet.
  • the graphene compound may have a functional group. Further, the graphene compound preferably has a bent shape. The graphene compound may also be curled up into carbon nanofibers.
  • graphene oxide refers to a graphene oxide having carbon and oxygen, having a sheet-like shape, and having a functional group, particularly an epoxy group, a carboxy group or a hydroxy group.
  • reduced graphene oxide refers to graphene oxide having carbon and oxygen, having a sheet-like shape, and having a two-dimensional structure formed by a carbon 6-membered ring. It may be called a carbon sheet. Although one reduced graphene oxide functions, a plurality of reduced graphene oxides may be laminated.
  • the reduced graphene oxide preferably has a portion having a carbon concentration of more than 80 atomic% and an oxygen concentration of 2 atomic% or more and 15 atomic% or less. By setting such carbon concentration and oxygen concentration, it is possible to function as a highly conductive conductive material even in a small amount.
  • the reduced graphene oxide preferably has an intensity ratio G / D of G band and D band of 1 or more in the Raman spectrum.
  • the reduced graphene oxide having such a strength ratio can function as a highly conductive conductive material even in a small amount.
  • Graphene compounds may have excellent electrical properties such as high conductivity and excellent physical properties such as high flexibility and high mechanical strength.
  • the graphene compound has a sheet-like shape.
  • Graphene compounds may have curved surfaces, allowing surface contact with low contact resistance. Further, even if it is thin, the conductivity may be very high, and a conductive path can be efficiently formed in the active material layer with a small amount. Therefore, by using the graphene compound as the conductive material, the contact area between the active material and the conductive material can be increased. It is preferable that the graphene compound clings to at least a part of the active material particles. Also, it is preferable that the graphene compound is overlaid on at least a part of the active material particles.
  • the shape of the graphene compound matches at least a part of the shape of the active material particles.
  • the shape of the active material particles refers to, for example, the unevenness of a single active material particle or the unevenness formed by a plurality of active material particles.
  • the graphene compound surrounds at least a part of the active material particles. Further, the graphene compound may have holes.
  • active material particles having a small particle size for example, active material particles having a particle size of 1 ⁇ m or less are used, the specific surface area of the active material particles is large, and more conductive paths connecting the active material particles are required. In such a case, it is preferable to use a graphene compound that can efficiently form a conductive path even in a small amount.
  • a graphene compound as a conductive material for a secondary battery that requires rapid charging and rapid discharging.
  • a secondary battery for a two-wheeled or four-wheeled vehicle, a secondary battery for a drone, or the like may be required to have quick charge and quick discharge characteristics.
  • quick charging characteristics may be required for mobile electronic devices and the like.
  • Fast charging and fast discharging can be referred to as high-rate charging and high-rate discharging. For example, it refers to charging and discharging of 1C, 2C, or 5C or more.
  • the sheet-shaped graphene or graphene compound 201 is dispersed substantially uniformly inside the active material layer 200.
  • graphene or graphene compound 201 is schematically represented by a thick line, but it is actually a thin film having a thickness of a single layer or multiple layers of carbon molecules. Since the plurality of graphenes or graphene compounds 201 are formed so as to partially cover the plurality of granular positive electrode active materials 100 or to stick to the surface of the plurality of granular positive electrode active materials 100, they come into surface contact with each other. ing.
  • a network-like graphene compound sheet (hereinafter referred to as graphene compound net or graphene net) can be formed by binding a plurality of graphene or graphene compounds to each other.
  • the graphene net can also function as a binder that binds the active materials to each other. Therefore, since the amount of the binder can be reduced or not used, the ratio of the active material to the electrode volume and the electrode weight can be improved. That is, the charge / discharge capacity of the secondary battery can be increased.
  • graphene oxide as graphene or graphene compound 201, mix it with an active material to form a layer to be an active material layer 200, and then reduce it. That is, it is preferable that the finished active material layer has reduced graphene acid.
  • graphene oxide having extremely high dispersibility in a polar solvent for forming graphene or graphene compound 201 graphene or graphene compound 201 can be dispersed substantially uniformly inside the active material layer 200.
  • the graphene or graphene compound 201 remaining in the active material layer 200 partially overlaps and is dispersed to such an extent that they come into surface contact with each other. By doing so, a three-dimensional conductive path can be formed.
  • the graphene oxide may be reduced, for example, by heat treatment or by using a reducing agent.
  • graphene or graphene compound 201 enables surface contact with low contact resistance, and therefore, it is granular in a smaller amount than a normal conductive material.
  • the electrical conductivity between the positive electrode active material 100 and graphene or graphene compound 201 can be improved. Therefore, the ratio of the positive electrode active material 100 in the active material layer 200 can be increased. As a result, the discharge capacity of the secondary battery can be increased.
  • a spray-drying device in advance, it is possible to cover the entire surface of the active material to form a graphene compound as a conductive material as a film, and further to form a conductive path between the active materials with the graphene compound.
  • the graphene compound may be mixed with the material used for forming the graphene compound and used for the active material layer 200.
  • particles used as a catalyst in forming a graphene compound may be mixed with the graphene compound.
  • the catalyst for forming the graphene compound include particles having silicon oxide (SiO 2 , SiO x (x ⁇ 2)), aluminum oxide, iron, nickel, ruthenium, iridium, platinum, copper, germanium and the like. ..
  • the particles preferably have a D50 of 1 ⁇ m or less, and more preferably 100 nm or less.
  • binder for example, it is preferable to use a rubber material such as styrene-butadiene rubber (SBR), styrene-isoprene-styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, or ethylene-propylene-diene copolymer. Further, fluororubber can be used as the binder.
  • SBR styrene-butadiene rubber
  • fluororubber can be used as the binder.
  • the binder for example, it is preferable to use a water-soluble polymer.
  • a water-soluble polymer for example, a polysaccharide or the like can be used.
  • the polysaccharide cellulose derivatives such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose, diacetyl cellulose and regenerated cellulose, starch and the like can be used. Further, it is more preferable to use these water-soluble polymers in combination with the above-mentioned rubber material.
  • the binder includes polystyrene, methyl polyacrylate, polymethyl methacrylate (polymethyl methacrylate, PMMA), sodium polyacrylate, polyvinyl alcohol (PVA), polyethylene oxide (PEO), polypropylene oxide, polyimide, polyvinyl chloride.
  • PVA polyvinyl alcohol
  • PEO polyethylene oxide
  • PEO polypropylene oxide
  • polyimide polyvinyl chloride.
  • Polytetrafluoroethylene, polyethylene, polypropylene, polyisobutylene, polyethylene terephthalate, nylon, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), ethylenepropylene diene polymer, polyvinyl acetate, nitrocellulose and the like are preferably used. ..
  • the binder may be used in combination of a plurality of the above.
  • a material having a particularly excellent viscosity adjusting effect may be used in combination with another material.
  • a rubber material or the like has excellent adhesive strength and elastic strength, but it may be difficult to adjust the viscosity when mixed with a solvent. In such a case, for example, it is preferable to mix with a material having a particularly excellent viscosity adjusting effect.
  • a material having a particularly excellent viscosity adjusting effect for example, a water-soluble polymer may be used.
  • the water-soluble polymer having a particularly excellent viscosity adjusting effect the above-mentioned polysaccharides such as carboxymethyl cellulose (CMC), methyl cellulose, ethyl cellulose, hydroxypropyl cellulose and cellulose derivatives such as diacetyl cellulose and regenerated cellulose, and starch are used. be able to.
  • CMC carboxymethyl cellulose
  • methyl cellulose methyl cellulose
  • ethyl cellulose methyl cellulose
  • hydroxypropyl cellulose hydroxypropyl cellulose
  • cellulose derivatives such as diacetyl cellulose and regenerated cellulose
  • the solubility of the cellulose derivative such as carboxymethyl cellulose is increased by using a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose, and the effect as a viscosity adjusting agent is easily exhibited.
  • a salt such as a sodium salt or an ammonium salt of carboxymethyl cellulose
  • the cellulose and the cellulose derivative used as the binder of the electrode include salts thereof.
  • the water-soluble polymer stabilizes its viscosity by being dissolved in water, and can stably disperse an active material and other materials to be combined as a binder, such as styrene-butadiene rubber, in an aqueous solution. Further, since it has a functional group, it is expected that it can be easily stably adsorbed on the surface of the active material. In addition, many cellulose derivatives such as carboxymethyl cellulose have functional groups such as hydroxyl groups and carboxyl groups, and because they have functional groups, the polymers interact with each other and exist widely covering the surface of the active material. There is expected.
  • the immobile membrane is a membrane having no electrical conductivity or a membrane having extremely low electrical conductivity.
  • the battery reaction potential may be changed. Decomposition of the electrolytic solution can be suppressed. Further, it is more desirable that the passivation membrane suppresses the conductivity of electricity and can conduct lithium ions.
  • the current collector a material having high conductivity such as a metal such as stainless steel, gold, platinum, aluminum, and titanium, and an alloy thereof can be used. Further, it is preferable that the material used for the positive electrode current collector does not elute at the potential of the positive electrode. Further, an aluminum alloy to which an element for improving heat resistance such as silicon, titanium, neodymium, scandium, and molybdenum is added can be used. Further, it may be formed of a metal element that reacts with silicon to form VDD.
  • metal elements that react with silicon to form silicide include zirconium, titanium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, cobalt, nickel and the like.
  • a foil-like shape, a plate-like shape, a sheet-like shape, a net-like shape, a punching metal-like shape, an expanded metal-like shape, or the like can be appropriately used. It is preferable to use a current collector having a thickness of 5 ⁇ m or more and 30 ⁇ m or less.
  • the negative electrode has a negative electrode active material layer and a negative electrode current collector. Further, the negative electrode active material layer may have a conductive material and a binder.
  • Negative electrode active material for example, an alloy-based material, a carbon-based material, or the like can be used.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium can be used.
  • a material containing at least one of silicon, tin, gallium, aluminum, germanium, lead, antimony, bismuth, silver, zinc, cadmium, indium and the like can be used.
  • Such an element has a larger charge / discharge capacity than carbon, and in particular, silicon has a large theoretical capacity of 4200 mAh / g. Therefore, it is preferable to use silicon as the negative electrode active material. Moreover, you may use the compound which has these elements.
  • an element capable of performing a charge / discharge reaction by an alloying / dealloying reaction with lithium, a compound having the element, and the like may be referred to as an alloy-based material.
  • SiO refers to, for example, silicon monoxide.
  • SiO can also be expressed as SiO x.
  • x preferably has a value in the vicinity of 1.
  • x is preferably 0.2 or more and 1.5 or less, and more preferably 0.3 or more and 1.2 or less.
  • it is preferably 0.2 or more and 1.2 or less.
  • it is preferably 0.3 or more and 1.5 or less.
  • graphite graphitizable carbon (soft carbon), graphitizable carbon (hard carbon), carbon nanotubes, graphene, carbon black and the like may be used.
  • Examples of graphite include artificial graphite and natural graphite.
  • Examples of artificial graphite include mesocarbon microbeads (MCMB), coke-based artificial graphite, and pitch-based artificial graphite.
  • MCMB mesocarbon microbeads
  • the artificial graphite spheroidal graphite having a spherical shape can be used.
  • MCMB may have a spherical shape, which is preferable.
  • MCMB is relatively easy to reduce its surface area and may be preferable.
  • Examples of natural graphite include scaly graphite and spheroidized natural graphite.
  • Graphite exhibits a potential as low as lithium metal when lithium ions are inserted into graphite (during the formation of a lithium-graphite intercalation compound) (0.05 V or more and 0.3 V or less vs. Li / Li +). As a result, the lithium ion secondary battery can exhibit a high operating voltage. Further, graphite is preferable because it has advantages such as relatively high charge / discharge capacity per unit volume, relatively small volume expansion, low cost, and high safety as compared with lithium metal.
  • titanium dioxide TiO 2
  • lithium titanium oxide Li 4 Ti 5 O 12
  • lithium-graphite interlayer compound Li x C 6
  • niobium pentoxide Nb 2 O 5
  • Oxides such as tungsten (WO 2 ) and molybdenum oxide (MoO 2 ) can be used.
  • Li 2.6 Co 0.4 N 3 shows a large charge / discharge capacity (900 mAh / g, 1890 mAh / cm 3 ) and is preferable.
  • lithium ions are contained in the negative electrode active material, so that it can be combined with materials such as V 2 O 5 and Cr 3 O 8 which do not contain lithium ions as the positive electrode active material, which is preferable. .. Even when a material containing lithium ions is used as the positive electrode active material, a double nitride of lithium and a transition metal can be used as the negative electrode active material by desorbing the lithium ions contained in the positive electrode active material in advance.
  • a material that causes a conversion reaction can also be used as the negative electrode active material.
  • a transition metal oxide that does not form an alloy with lithium such as cobalt oxide (CoO), nickel oxide (NiO), and iron oxide (FeO)
  • CoO cobalt oxide
  • NiO nickel oxide
  • FeO iron oxide
  • oxides such as Fe 2 O 3 , CuO, Cu 2 O, RuO 2 , Cr 2 O 3 , sulfides such as CoS 0.89 , NiS, and CuS, and Zn 3 N 2 , Cu 3 N, Ge 3 N 4 or the like nitride, NiP 2, FeP 2, CoP 3 etc. phosphide, also at the FeF 3, BiF 3 fluoride and the like.
  • the same material as the conductive material and the binder that the positive electrode active material layer can have can be used.
  • the same material as the positive electrode current collector can be used for the negative electrode current collector.
  • the negative electrode current collector preferably uses a material that does not alloy with carrier ions such as lithium.
  • the electrolytic solution has a solvent and an electrolyte.
  • the solvent of the electrolytic solution is preferably an aproton organic solvent, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate, chloroethylene carbonate, vinylene carbonate, ⁇ -butylolactone, ⁇ -valerolactone, dimethyl carbonate.
  • DMC diethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • methyl formate methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl butyrate, 1,3-dioxane, 1,4 -Use one of dioxane, dimethoxyethane (DME), dimethyl sulfoxide, diethyl ether, methyl diglyme, acetonitrile, benzonitrile, tetrahydrofuran, sulfolane, sulton, etc., or two or more of them in any combination and ratio. be able to.
  • Ionic liquids consist of cations and anions, including organic cations and anions.
  • organic cation used in the electrolytic solution include aliphatic onium cations such as quaternary ammonium cations, tertiary sulfonium cations, and quaternary phosphonium cations, and aromatic cations such as imidazolium cations and pyridinium cations.
  • monovalent amide anion monovalent methide anion, fluorosulfonic acid anion, perfluoroalkyl sulfonic acid anion, tetrafluoroborate anion, perfluoroalkyl borate anion, hexafluorophosphate anion. , Or perfluoroalkyl phosphate anion and the like.
  • the electrolytic solution used for the secondary battery it is preferable to use a highly purified electrolytic solution having a small content of elements other than granular dust and constituent elements of the electrolytic solution (hereinafter, also simply referred to as “impurities”).
  • the weight ratio of impurities to the electrolytic solution is preferably 1% or less, preferably 0.1% or less, and more preferably 0.01% or less.
  • Additives may be added.
  • concentration of the material to be added may be, for example, 0.1 wt% or more and 5 wt% or less with respect to the entire solvent.
  • VC or LiBOB is particularly preferable because it tends to form a good film.
  • a polymer gel electrolyte obtained by swelling the polymer with an electrolytic solution may be used.
  • the secondary battery can be made thinner and lighter.
  • silicone gel acrylic gel, acrylonitrile gel, polyethylene oxide gel, polypropylene oxide gel, fluoropolymer gel and the like can be used.
  • polymer for example, a polymer having a polyalkylene oxide structure such as polyethylene oxide (PEO), PVDF, polyacrylonitrile, etc., and a copolymer containing them can be used.
  • PEO polyethylene oxide
  • PVDF-HFP which is a copolymer of PVDF and hexafluoropropylene (HFP)
  • the polymer to be formed may have a porous shape.
  • a solid electrolyte having an inorganic material such as a sulfide type or an oxide type, or a solid electrolyte having a polymer material such as PEO (polyethylene oxide) type can be used.
  • PEO polyethylene oxide
  • the secondary battery preferably has a separator.
  • a separator for example, paper, non-woven fabric, glass fiber, ceramics, or one formed of nylon (polyamide), vinylon (polyvinyl alcohol-based fiber), polyester, acrylic, polyolefin, synthetic fiber using polyurethane, etc. shall be used. Can be done. It is preferable that the separator is processed into an envelope shape and arranged so as to wrap either the positive electrode or the negative electrode.
  • the separator may have a multi-layer structure.
  • an organic material film such as polypropylene or polyethylene can be coated with a ceramic material, a fluorine material, a polyamide material, or a mixture thereof.
  • the ceramic material for example, aluminum oxide particles, silicon oxide particles and the like can be used.
  • the fluorine-based material for example, PVDF, polytetrafluoroethylene and the like can be used.
  • the polyamide-based material for example, nylon, aramid (meth-based aramid, para-based aramid) and the like can be used.
  • the oxidation resistance is improved by coating with a ceramic material, deterioration of the separator during high voltage charging / discharging can be suppressed, and the reliability of the secondary battery can be improved. Further, when a fluorine-based material is coated, the separator and the electrode are easily brought into close contact with each other, and the output characteristics can be improved. Coating a polyamide-based material, particularly aramid, improves heat resistance and thus can improve the safety of the secondary battery.
  • a mixed material of aluminum oxide and aramid may be coated on both sides of a polypropylene film.
  • the surface of the polypropylene film in contact with the positive electrode may be coated with a mixed material of aluminum oxide and aramid, and the surface in contact with the negative electrode may be coated with a fluorine-based material.
  • the safety of the secondary battery can be maintained even if the thickness of the entire separator is thin, so that the charge / discharge capacity per volume of the secondary battery can be increased.
  • the exterior body of the secondary battery for example, a metal material such as aluminum or a resin material can be used. Moreover, a film-like exterior body can also be used. As the film, for example, a metal thin film having excellent flexibility such as aluminum, stainless steel, copper, and nickel is provided on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, and polyamide, and an exterior is further formed on the metal thin film. A film having a three-layer structure provided with an insulating synthetic resin film such as a polyamide resin or a polyester resin can be used as the outer surface of the body.
  • the secondary battery 400 of one aspect of the present invention has a positive electrode 410, a solid electrolyte layer 420, and a negative electrode 430.
  • the positive electrode 410 has a positive electrode current collector 413 and a positive electrode active material layer 414.
  • the positive electrode active material layer 414 has a positive electrode active material 411 and a solid electrolyte 421.
  • As the positive electrode active material 411 a positive electrode active material prepared by using the manufacturing method described in the previous embodiment is used. Further, the positive electrode active material layer 414 may have a conductive auxiliary agent and a binder.
  • the solid electrolyte layer 420 has a solid electrolyte 421.
  • the solid electrolyte layer 420 is located between the positive electrode 410 and the negative electrode 430, and is a region having neither the positive electrode active material 411 nor the negative electrode active material 431.
  • the negative electrode 430 has a negative electrode current collector 433 and a negative electrode active material layer 434.
  • the negative electrode active material layer 434 has a negative electrode active material 431 and a solid electrolyte 421. Further, the negative electrode active material layer 434 may have a conductive auxiliary agent and a binder.
  • metallic lithium is used for the negative electrode 430, the negative electrode 430 does not have the solid electrolyte 421 as shown in FIG. 17B. It is preferable to use metallic lithium for the negative electrode 430 because the energy density of the secondary battery 400 can be improved.
  • solid electrolyte 421 of the solid electrolyte layer 420 for example, a sulfide-based solid electrolyte, an oxide-based solid electrolyte, a halide-based solid electrolyte, or the like can be used.
  • Sulfide-based solid electrolytes include thiosilicon- based (Li 10 GeP 2 S 12 , Li 3.25 Ge 0.25 P 0.75 S 4, etc.) and sulfide glass (70Li 2 S / 30P 2 S 5 , 30 Li). 2 S ⁇ 26B 2 S 3 ⁇ 44LiI, 63Li 2 S ⁇ 38SiS 2 ⁇ 1Li 3 PO 4, 57Li 2 S ⁇ 38SiS 2 ⁇ 5Li 4 SiO 4, 50Li 2 S ⁇ 50GeS 2 , etc.), sulfide crystallized glass (Li 7 P 3 S 11 , Li 3.25 P 0.95 S 4 etc.) are included. Sulfide-based solid electrolytes have advantages such as having a material having high conductivity, being able to be synthesized at a low temperature, and being relatively soft so that the conductive path can be easily maintained even after charging and discharging.
  • Oxide-based solid electrolytes include materials having a perovskite-type crystal structure (La 2 / 3-x Li 3x TIO 3, etc.) and materials having a NASICON-type crystal structure (Li 1-X Al X Ti 2-X (PO 4).
  • Oxide-based solid electrolytes have the advantage of being stable in the atmosphere.
  • the halide-based solid electrolyte includes LiAlCl 4 , Li 3 InBr 6 , LiF, LiCl, LiBr, LiI and the like. Further, a composite material in which the pores of porous aluminum oxide or porous silica are filled with these halide-based solid electrolytes can also be used as the solid electrolyte.
  • Li 1 + x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 1) (hereinafter referred to as LATP) having a NASICON type crystal structure is a secondary battery 400 of one aspect of the present invention, which is aluminum and titanium. Since the positive electrode active material used in the above contains elements that may be contained, a synergistic effect can be expected for improving the cycle characteristics, which is preferable. In addition, productivity can be expected to improve by reducing the number of processes.
  • the NASICON type crystal structure is a compound represented by M 2 (XO 4 ) 3 (M: transition metal, X: S, P, As, Mo, W, etc.), and is MO 6 It refers to having an octahedral and XO 4 tetrahedra are arranged three-dimensionally share vertices structure.
  • the exterior body of the secondary battery 400 As the exterior body of the secondary battery 400 according to one aspect of the present invention, various materials and shapes can be used, but it is preferable that the exterior body has a function of pressurizing the positive electrode, the solid electrolyte layer, and the negative electrode.
  • FIG. 18 is an example of a cell for evaluating the material of an all-solid-state battery.
  • FIG. 18A is a schematic cross-sectional view of the evaluation cell.
  • the evaluation cell has a lower member 761 and an upper member 762, and a fixing screw and a wing nut 764 for fixing them.
  • the evaluation material is fixed by pressing the plate 753.
  • An insulator 766 is provided between the lower member 761 made of a stainless steel material and the upper member 762. Further, an O-ring 765 for sealing is provided between the upper member 762 and the pressing screw 763.
  • FIG. 18B is an enlarged perspective view of the periphery of the evaluation material.
  • FIG. 18C As an evaluation material, an example of laminating a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is shown, and a cross-sectional view is shown in FIG. 18C.
  • the same reference numerals are used for the same parts in FIGS. 18A, 18B, and 18C.
  • the electrode plate 751 and the lower member 761 electrically connected to the positive electrode 750a correspond to the positive electrode terminals. It can be said that the electrode plate 753 and the upper member 762 that are electrically connected to the negative electrode 750c correspond to the negative electrode terminals.
  • the electrical resistance and the like can be measured while pressing the evaluation material through the electrode plate 751 and the electrode plate 753.
  • a package having excellent airtightness for the exterior body of the secondary battery according to one aspect of the present invention For example, a ceramic package or a resin package can be used. Further, when sealing the exterior body, it is preferable to shut off the outside air and perform it in a closed atmosphere, for example, in a glove box.
  • FIG. 19A shows a perspective view of a secondary battery of one aspect of the present invention having an exterior body and a shape different from that of FIG.
  • the secondary battery of FIG. 19A has external electrodes 771 and 772, and is sealed with an exterior body having a plurality of package members.
  • FIG. 19B An example of a cross section cut by a dashed line in FIG. 19A is shown in FIG. 19B.
  • the laminate having a positive electrode 750a, a solid electrolyte layer 750b, and a negative electrode 750c is a package member 770a having an electrode layer 773a provided on a flat plate, a frame-shaped package member 770b, and a package member 770c provided with an electrode layer 773b on a flat plate. It has a sealed structure surrounded by. Insulating materials such as resin materials and ceramics can be used for the package members 770a, 770b, and 770c.
  • the external electrode 771 is electrically connected to the positive electrode 750a via the electrode layer 773a and functions as a positive electrode terminal. Further, the external electrode 772 is electrically connected to the negative electrode 750c via the electrode layer 773b and functions as a negative electrode terminal.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • FIG. 20A is an external view of a coin-type (single-layer flat type) secondary battery
  • FIG. 20B is a cross-sectional view thereof.
  • a positive electrode can 301 that also serves as a positive electrode terminal and a negative electrode can 302 that also serves as a negative electrode terminal are insulated and sealed with a gasket 303 that is made of polypropylene or the like.
  • the positive electrode 304 is formed by a positive electrode current collector 305 and a positive electrode active material layer 306 provided in contact with the positive electrode current collector 305.
  • the negative electrode 307 is formed by a negative electrode current collector 308 and a negative electrode active material layer 309 provided in contact with the negative electrode current collector 308.
  • the positive electrode 304 and the negative electrode 307 used in the coin-type secondary battery 300 may have an active material layer formed on only one side thereof.
  • the positive electrode can 301 and the negative electrode can 302 metals such as nickel, aluminum, and titanium that are corrosion resistant to the electrolytic solution, or alloys thereof or alloys of these and other metals (for example, stainless steel) may be used. it can. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat with nickel, aluminum or the like.
  • the positive electrode can 301 is electrically connected to the positive electrode 304
  • the negative electrode can 302 is electrically connected to the negative electrode 307.
  • the electrolyte is impregnated with the negative electrode 307, the positive electrode 304, and the separator 310, and as shown in FIG. 20B, the positive electrode 304, the separator 310, the negative electrode 307, and the negative electrode can 302 are laminated in this order with the positive electrode can 301 facing down, and the positive electrode can The 301 and the negative electrode can 302 are crimped via the gasket 303 to manufacture a coin-shaped secondary battery 300.
  • a coin-type secondary battery 300 having a high charge / discharge capacity and excellent cycle characteristics can be obtained.
  • the flow of current when charging the secondary battery will be described with reference to FIG. 20C.
  • a secondary battery using lithium is regarded as one closed circuit, the movement of lithium ions and the flow of current are in the same direction.
  • the anode (anode) and the cathode (cathode) are exchanged by charging and discharging, and the oxidation reaction and the reduction reaction are exchanged. Therefore, an electrode having a high reaction potential is called a positive electrode.
  • An electrode having a low reaction potential is called a negative electrode. Therefore, in the present specification, the positive electrode is the "positive electrode” or “positive electrode” regardless of whether the battery is being charged, discharged, a reverse pulse current is applied, or a charging current is applied.
  • the negative electrode is referred to as the "positive electrode” and the negative electrode is referred to as the "negative electrode” or the "-pole (negative electrode)".
  • anode (anode) and cathode (cathode) related to the oxidation reaction and the reduction reaction are used, the charging and discharging are reversed, which may cause confusion. Therefore, the terms anode (anode) and cathode (cathode) are not used herein. If the terms anode (anode) and cathode (cathode) are used, specify whether they are charging or discharging, and also indicate whether they correspond to the positive electrode (positive electrode) or the negative electrode (negative electrode). To do.
  • a charger is connected to the two terminals shown in FIG. 20C, and the secondary battery 300 is charged. As the charging of the secondary battery 300 progresses, the potential difference between the electrodes increases.
  • FIG. 21A An external view of the cylindrical secondary battery 600 is shown in FIG. 21A.
  • FIG. 21B is a diagram schematically showing a cross section of the cylindrical secondary battery 600.
  • the cylindrical secondary battery 600 has a positive electrode cap (battery lid) 601 on the upper surface and a battery can (outer can) 602 on the side surface and the bottom surface.
  • the positive electrode cap and the battery can (outer can) 602 are insulated by a gasket (insulating packing) 610.
  • a battery element in which a strip-shaped positive electrode 604 and a negative electrode 606 are wound with a separator 605 sandwiched between them is provided inside the hollow cylindrical battery can 602.
  • the battery element is wound around the center pin.
  • One end of the battery can 602 is closed and the other end is open.
  • a metal such as nickel, aluminum, or titanium having corrosion resistance to an electrolytic solution, or an alloy thereof or an alloy between these and another metal (for example, stainless steel or the like) can be used. .. Further, in order to prevent corrosion by the electrolytic solution, it is preferable to coat the battery can 602 with nickel, aluminum or the like.
  • the battery element in which the positive electrode, the negative electrode, and the separator are wound is sandwiched between a pair of insulating plates 608 and 609 facing each other. Further, a non-aqueous electrolytic solution (not shown) is injected into the inside of the battery can 602 provided with the battery element.
  • the non-aqueous electrolyte solution the same one as that of a coin-type secondary battery can be used.
  • a positive electrode terminal (positive electrode current collecting lead) 603 is connected to the positive electrode 604, and a negative electrode terminal (negative electrode current collecting lead) 607 is connected to the negative electrode 606.
  • a metal material such as aluminum can be used for both the positive electrode terminal 603 and the negative electrode terminal 607.
  • the positive electrode terminal 603 is resistance welded to the safety valve mechanism 612, and the negative electrode terminal 607 is resistance welded to the bottom of the battery can 602.
  • the safety valve mechanism 612 is electrically connected to the positive electrode cap 601 via a PTC element (Positive Temperature Coefficient) 611.
  • the safety valve mechanism 612 disconnects the electrical connection between the positive electrode cap 601 and the positive electrode 604 when the increase in the internal pressure of the battery exceeds a predetermined threshold value.
  • the PTC element 611 is a heat-sensitive resistance element whose resistance increases when the temperature rises, and the amount of current is limited by the increase in resistance to prevent abnormal heat generation.
  • Barium titanate (BaTIO 3 ) -based semiconductor ceramics or the like can be used as the PTC element.
  • a plurality of secondary batteries 600 may be sandwiched between the conductive plate 613 and the conductive plate 614 to form the module 615.
  • the plurality of secondary batteries 600 may be connected in parallel, may be connected in series, or may be connected in parallel and then further connected in series.
  • FIG. 21D is a top view of the module 615.
  • the conductive plate 613 is shown by a dotted line for clarity.
  • the module 615 may have conductors 616 that electrically connect a plurality of secondary batteries 600.
  • a conductive plate can be superposed on the conducting wire 616.
  • the temperature control device 617 may be provided between the plurality of secondary batteries 600. When the secondary battery 600 is overheated, it can be cooled by the temperature control device 617, and when the secondary battery 600 is too cold, it can be heated by the temperature control device 617. Therefore, the performance of the module 615 is less affected by the outside air temperature.
  • the heat medium included in the temperature control device 617 preferably has insulating properties and nonflammability.
  • the battery pack includes a secondary battery 913 and a circuit board 900.
  • the secondary battery 913 is connected to the antenna 914 via the circuit board 900.
  • a label 910 is affixed to the secondary battery 913.
  • the secondary battery 913 is connected to the terminal 951 and the terminal 952.
  • the circuit board 900 is fixed by a seal 915.
  • the circuit board 900 has a terminal 911 and a circuit 912.
  • Terminal 911 is connected to terminal 951, terminal 952, antenna 914, and circuit 912.
  • a plurality of terminals 911 may be provided, and each of the plurality of terminals 911 may be used as a control signal input terminal, a power supply terminal, or the like.
  • the circuit 912 may be provided on the back surface of the circuit board 900.
  • the antenna 914 is not limited to a coil shape, and may be, for example, a linear shape or a plate shape. Further, antennas such as a flat antenna, an open surface antenna, a traveling wave antenna, an EH antenna, a magnetic field antenna, and a dielectric antenna may be used. Alternatively, the antenna 914 may be a flat conductor. This flat conductor can function as one of the conductors for electric field coupling. That is, the antenna 914 may function as one of the two conductors of the capacitor. As a result, electric power can be exchanged not only by an electromagnetic field and a magnetic field but also by an electric field.
  • the battery pack has a layer 916 between the antenna 914 and the secondary battery 913.
  • the layer 916 has a function capable of shielding the electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic material can be used as the layer 916.
  • the structure of the battery pack is not limited to FIG. 22.
  • antennas may be provided on each of the pair of facing surfaces of the secondary battery 913 shown in FIGS. 22A and 22B.
  • FIG. 23A is an external view showing one of the pair of surfaces
  • FIG. 23A is an external view showing the other of the pair of surfaces.
  • the description of the secondary battery shown in FIGS. 22A and 22B can be appropriately incorporated.
  • the antenna 914 is provided on one side of the pair of surfaces of the secondary battery 913 with the layer 916 interposed therebetween, and as shown in FIG. 23B, the layer 917 is provided on the other side of the pair of surfaces of the secondary battery 913.
  • An antenna 918 is provided sandwiching the antenna 918.
  • the layer 917 has a function capable of shielding the electromagnetic field generated by the secondary battery 913, for example.
  • a magnetic material can be used as the layer 917.
  • the antenna 918 has, for example, a function capable of performing data communication with an external device.
  • an antenna having a shape applicable to the antenna 914 can be applied.
  • a communication method between the secondary battery and other devices via the antenna 918 a response method that can be used between the secondary battery and other devices such as NFC (Near Field Communication) shall be applied. Can be done.
  • the display device 920 may be provided in the secondary battery 913 shown in FIGS. 22A and 22B.
  • the display device 920 is electrically connected to the terminal 911. It is not necessary to provide the label 910 in the portion where the display device 920 is provided.
  • the description of the secondary battery shown in FIGS. 22A and 22B can be appropriately incorporated.
  • the display device 920 may display, for example, an image showing whether or not charging is in progress, an image showing the amount of stored electricity, and the like.
  • an electronic paper for example, a liquid crystal display device, an electroluminescence (also referred to as EL) display device, or the like can be used.
  • the power consumption of the display device 920 can be reduced by using electronic paper.
  • the sensor 921 may be provided in the secondary battery 913 shown in FIGS. 22A and 22B.
  • the sensor 921 is electrically connected to the terminal 911 via the terminal 922.
  • the description of the secondary battery shown in FIGS. 22A and 22B can be appropriately incorporated.
  • Examples of the sensor 921 include displacement, position, speed, acceleration, angular velocity, rotation speed, distance, light, liquid, magnetism, temperature, chemical substance, voice, time, hardness, electric field, current, voltage, power, radiation, and flow rate. , Humidity, inclination, vibration, odor, or infrared rays may be measured.
  • data indicating the environment in which the secondary battery is placed can be detected and stored in the memory in the circuit 912.
  • the secondary battery 913 shown in FIG. 24A has a winding body 950 in which terminals 951 and 952 are provided inside the housing 930.
  • the wound body 950 is impregnated with the electrolytic solution inside the housing 930.
  • the terminal 952 is in contact with the housing 930, and the terminal 951 is not in contact with the housing 930 by using an insulating material or the like.
  • the housing 930 is shown separately for convenience, but in reality, the winding body 950 is covered with the housing 930, and the terminals 951 and 952 extend outside the housing 930.
  • a metal material for example, aluminum
  • a resin material can be used as the housing 930.
  • the housing 930 shown in FIG. 24A may be formed of a plurality of materials.
  • the housing 930a and the housing 930b are bonded to each other, and the winding body 950 is provided in the region surrounded by the housing 930a and the housing 930b.
  • an insulating material such as an organic resin can be used.
  • an antenna such as an antenna 914 may be provided inside the housing 930a.
  • a metal material can be used as the housing 930b.
  • the wound body 950 has a negative electrode 931, a positive electrode 932, and a separator 933.
  • the wound body 950 is a wound body in which the negative electrode 931 and the positive electrode 932 are overlapped and laminated with the separator 933 interposed therebetween, and the laminated sheet is wound.
  • a plurality of layers of the negative electrode 931, the positive electrode 932, and the separator 933 may be further laminated.
  • the negative electrode 931 is connected to the terminal 911 shown in FIG. 22 via one of the terminal 951 and the terminal 952.
  • the positive electrode 932 is connected to the terminal 911 shown in FIG. 22 via the other of the terminal 951 and the terminal 952.
  • the laminated type secondary battery will be described with reference to FIGS. 26 to 36. If the laminated secondary battery has a flexible structure, the secondary battery can be bent according to the deformation of the electronic device if it is mounted on an electronic device having at least a part of the flexible portion. it can.
  • the laminated type secondary battery 980 will be described with reference to FIG. 26.
  • the laminated secondary battery 980 has a winder 993 shown in FIG. 26A.
  • the wound body 993 has a negative electrode 994, a positive electrode 995, and a separator 996.
  • the negative electrode 994 and the positive electrode 995 are overlapped and laminated with the separator 996 interposed therebetween, and the laminated sheet is wound.
  • the number of layers of the negative electrode 994, the positive electrode 995, and the separator 996 may be appropriately designed according to the required charge / discharge capacity and the element volume.
  • the negative electrode 994 is connected to the negative electrode current collector (not shown) via one of the lead electrode 997 and the lead electrode 998
  • the positive electrode 995 is connected to the positive electrode current collector (not shown) via the other of the lead electrode 997 and the lead electrode 998. Is connected to.
  • the above-mentioned winding body 993 is housed in a space formed by bonding a film 981 as an exterior body and a film 982 having a recess by thermocompression bonding or the like, and is shown in FIG. 26C.
  • the secondary battery 980 can be manufactured as described above.
  • the wound body 993 has a lead electrode 997 and a lead electrode 998, and is impregnated with an electrolytic solution inside the film 981 and the film 982 having a recess.
  • a metal material such as aluminum or a resin material can be used. If a resin material is used as the material of the film 981 and the film 982 having the recesses, the film 981 and the film 982 having the recesses can be deformed when an external force is applied to produce a flexible storage battery. be able to.
  • FIGS. 26B and 26C show an example in which two films are used, a space may be formed by bending one film, and the above-mentioned winding body 993 may be stored in the space.
  • a secondary battery 980 having a high charge / discharge capacity and excellent cycle characteristics can be obtained.
  • the secondary battery 980 having a wound body in the space formed by the film serving as the exterior body has been described.
  • the space formed by the film serving as the exterior body may be formed. It may be a secondary battery having a plurality of strip-shaped positive electrodes, separators and negative electrodes.
  • the laminated type secondary battery 500 shown in FIG. 27A includes a positive electrode 503 having a positive electrode current collector 501 and a positive electrode active material layer 502, a negative electrode 506 having a negative electrode current collector 504 and a negative electrode active material layer 505, and a separator 507. , Electrolyte 508, and exterior body 509. A separator 507 is installed between the positive electrode 503 and the negative electrode 506 provided in the exterior body 509. Further, the inside of the exterior body 509 is filled with the electrolytic solution 508. As the electrolytic solution 508, the electrolytic solution shown in the third embodiment can be used.
  • the positive electrode current collector 501 and the negative electrode current collector 504 also serve as terminals for obtaining electrical contact with the outside. Therefore, a part of the positive electrode current collector 501 and the negative electrode current collector 504 may be arranged so as to be exposed to the outside from the exterior body 509. Further, the positive electrode current collector 501 and the negative electrode current collector 504 are not exposed to the outside from the exterior body 509, and the lead electrode is ultrasonically bonded to the positive electrode current collector 501 or the negative electrode current collector 504 using a lead electrode. The lead electrode may be exposed to the outside.
  • the exterior body 509 has a highly flexible metal such as aluminum, stainless steel, copper, and nickel on a film made of a material such as polyethylene, polypropylene, polycarbonate, ionomer, and polyamide.
  • a three-layer structure laminate film in which a thin film is provided and an insulating synthetic resin film such as a polyamide resin or a polyester resin is provided on the metal thin film as the outer surface of the exterior body can be used.
  • FIG. 27B an example of the cross-sectional structure of the laminated secondary battery 500 is shown in FIG. 27B.
  • FIG. 27A shows an example of being composed of two current collectors for simplicity, it is actually composed of a plurality of electrode layers as shown in FIG. 27B.
  • the number of electrode layers is 16 as an example. Even if the number of electrode layers is 16, the secondary battery 500 has flexibility.
  • FIG. 27B shows a structure in which the negative electrode current collector 504 has eight layers and the positive electrode current collector 501 has eight layers, for a total of 16 layers. Note that FIG. 27B shows a cross section of the negative electrode extraction portion, in which eight layers of negative electrode current collectors 504 are ultrasonically bonded.
  • the number of electrode layers is not limited to 16, and may be large or small. When the number of electrode layers is large, a secondary battery having a larger charge / discharge capacity can be used. Further, when the number of electrode layers is small, the thickness can be reduced and a secondary battery having excellent flexibility can be obtained.
  • FIGS. 28 and 29 an example of an external view of the laminated type secondary battery 500 is shown in FIGS. 28 and 29.
  • 28 and 29 have a positive electrode 503, a negative electrode 506, a separator 507, an exterior body 509, a positive electrode lead electrode 510, and a negative electrode lead electrode 511.
  • FIG. 30A shows an external view of the positive electrode 503 and the negative electrode 506.
  • the positive electrode 503 has a positive electrode current collector 501, and the positive electrode active material layer 502 is formed on the surface of the positive electrode current collector 501. Further, the positive electrode 503 has a region (hereinafter, referred to as a tab region) in which the positive electrode current collector 501 is partially exposed.
  • the negative electrode 506 has a negative electrode current collector 504, and the negative electrode active material layer 505 is formed on the surface of the negative electrode current collector 504. Further, the negative electrode 506 has a region where the negative electrode current collector 504 is partially exposed, that is, a tab region.
  • the area and shape of the tab region of the positive electrode and the negative electrode are not limited to the example shown in FIG. 30A.
  • FIG. 30B shows the negative electrode 506, the separator 507, and the positive electrode 503 laminated.
  • an example in which 5 sets of negative electrodes and 4 sets of positive electrodes are used is shown.
  • the tab regions of the positive electrode 503 are joined to each other, and the positive electrode lead electrode 510 is joined to the tab region of the positive electrode on the outermost surface.
  • bonding for example, ultrasonic welding or the like may be used.
  • the tab regions of the negative electrode 506 are bonded to each other, and the negative electrode lead electrode 511 is bonded to the tab region of the negative electrode on the outermost surface.
  • the negative electrode 506, the separator 507, and the positive electrode 503 are arranged on the exterior body 509.
  • the exterior body 509 is bent at the portion shown by the broken line. After that, the outer peripheral portion of the exterior body 509 is joined. For example, thermocompression bonding may be used for joining. At this time, a region (hereinafter, referred to as an introduction port) that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution 508 can be put in later.
  • an introduction port a region that is not joined to a part (or one side) of the exterior body 509 is provided so that the electrolytic solution 508 can be put in later.
  • the electrolytic solution 508 (not shown) is introduced into the exterior body 509 from the introduction port provided in the exterior body 509.
  • the electrolytic solution 508 is preferably introduced in a reduced pressure atmosphere or an inert atmosphere.
  • the inlet is joined. In this way, the laminated type secondary battery 500 can be manufactured.
  • an all-solid-state battery by applying a predetermined pressure in the stacking direction of the laminated positive electrodes and negative electrodes, it is possible to maintain a good contact state of the interface inside.
  • a predetermined pressure in the stacking direction of the positive electrode and the negative electrode expansion in the stacking direction due to charging / discharging of the all-solid-state battery can be suppressed, and the reliability of the all-solid-state battery can be improved.
  • This embodiment can be used in combination with other embodiments as appropriate.
  • FIGS. 31A to 31G show examples of mounting a bendable secondary battery in an electronic device described in the previous embodiment.
  • Electronic devices to which bendable secondary batteries are applied include, for example, television devices (also called televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones. (Also referred to as a mobile phone or a mobile phone device), a portable game machine, a mobile information terminal, a sound reproduction device, a large game machine such as a pachinko machine, and the like.
  • a rechargeable battery having a flexible shape along the inner or outer wall of a house or building, or along the curved surface of the interior or exterior of an automobile.
  • FIG. 31A shows an example of a mobile phone.
  • the mobile phone 7400 includes an operation button 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like, in addition to the display unit 7402 incorporated in the housing 7401.
  • the mobile phone 7400 has a secondary battery 7407.
  • the secondary battery of one aspect of the present invention it is possible to provide a lightweight and long-life mobile phone.
  • FIG. 31B shows a curved state of the mobile phone 7400.
  • the secondary battery 7407 provided inside the mobile phone 7400 is also bent.
  • the state of the bent secondary battery 7407 is shown in FIG. 31C.
  • the secondary battery 7407 is a thin storage battery.
  • the secondary battery 7407 is fixed in a bent state.
  • the secondary battery 7407 has a lead electrode electrically connected to the current collector.
  • the current collector is a copper foil, which is partially alloyed with gallium to improve the adhesion to the active material layer in contact with the current collector, and the reliability of the secondary battery 7407 in a bent state is improved. It has a high composition.
  • FIG. 31D shows an example of a bangle type display device.
  • the portable display device 7100 includes a housing 7101, a display unit 7102, an operation button 7103, and a secondary battery 7104.
  • FIG. 31E shows the state of the bent secondary battery 7104.
  • the housing is deformed and the curvature of a part or all of the secondary battery 7104 changes.
  • the degree of bending at an arbitrary point of the curve is represented by the value of the radius of the corresponding circle, which is called the radius of curvature, and the reciprocal of the radius of curvature is called the curvature.
  • a part or all of the main surface of the housing or the secondary battery 7104 changes within the range of the radius of curvature of 40 mm or more and 150 mm or less. High reliability can be maintained as long as the radius of curvature on the main surface of the secondary battery 7104 is in the range of 40 mm or more and 150 mm or less.
  • a lightweight and long-life portable display device can be provided.
  • FIG. 31F shows an example of a wristwatch-type portable information terminal.
  • the mobile information terminal 7200 includes a housing 7201, a display unit 7202, a band 7203, a buckle 7204, an operation button 7205, an input / output terminal 7206, and the like.
  • the personal digital assistant 7200 can execute various applications such as mobile phone, e-mail, text viewing and creation, music playback, Internet communication, and computer games.
  • the display unit 7202 is provided with a curved display surface, and can display along the curved display surface. Further, the display unit 7202 is provided with a touch sensor and can be operated by touching the screen with a finger or a stylus. For example, the application can be started by touching the icon 7207 displayed on the display unit 7202.
  • the operation button 7205 can have various functions such as power on / off operation, wireless communication on / off operation, manner mode execution / cancellation, and power saving mode execution / cancellation. ..
  • the function of the operation button 7205 can be freely set by the operating system incorporated in the mobile information terminal 7200.
  • the personal digital assistant 7200 can execute short-range wireless communication standardized for communication. For example, by communicating with a headset capable of wireless communication, it is possible to make a hands-free call.
  • the mobile information terminal 7200 is provided with an input / output terminal 7206, and data can be directly exchanged with another information terminal via a connector. It is also possible to charge via the input / output terminal 7206. The charging operation may be performed by wireless power supply without going through the input / output terminal 7206.
  • the display unit 7202 of the portable information terminal 7200 has a secondary battery according to an aspect of the present invention.
  • the secondary battery of one aspect of the present invention it is possible to provide a lightweight and long-life portable information terminal.
  • the secondary battery 7104 shown in FIG. 31E can be incorporated in a curved state inside the housing 7201 or in a bendable state inside the band 7203.
  • the portable information terminal 7200 preferably has a sensor.
  • a human body sensor such as a fingerprint sensor, a pulse sensor, or a body temperature sensor, a touch sensor, a pressure sensor, an acceleration sensor, or the like is preferably mounted.
  • FIG. 31G shows an example of an armband-shaped display device.
  • the display device 7300 has a display unit 7304 and has a secondary battery according to an aspect of the present invention. Further, the display device 7300 can be provided with a touch sensor in the display unit 7304, and can also function as a portable information terminal.
  • the display surface of the display unit 7304 is curved, and display can be performed along the curved display surface. Further, the display device 7300 can change the display status by the communication standard short-range wireless communication or the like.
  • the display device 7300 is provided with an input / output terminal, and data can be directly exchanged with another information terminal via a connector. It can also be charged via the input / output terminals.
  • the charging operation may be performed by wireless power supply without going through the input / output terminals.
  • the secondary battery of one aspect of the present invention as the secondary battery of the display device 7300, a lightweight and long-life display device can be provided.
  • the secondary battery of one aspect of the present invention as the secondary battery in the daily electronic device, a lightweight and long-life product can be provided.
  • daily electronic devices include electric toothbrushes, electric shavers, electric beauty devices, etc.
  • the secondary batteries of these products are compact and lightweight with a stick-shaped shape in consideration of user-friendliness.
  • a secondary battery having a large charge / discharge capacity is desired.
  • FIG. 31H is a perspective view of a device also called a cigarette-containing smoking device (electronic cigarette).
  • the electronic cigarette 7500 is composed of an atomizer 7501 including a heating element, a secondary battery 7504 for supplying electric power to the atomizer, and a cartridge 7502 including a liquid supply bottle and a sensor.
  • a protection circuit for preventing overcharging or overdischarging of the secondary battery 7504 may be electrically connected to the secondary battery 7504.
  • the secondary battery 7504 shown in FIG. 31H has an external terminal so that it can be connected to a charging device. Since the secondary battery 7504 becomes the tip portion when it is held, it is desirable that the total length is short and the weight is light. Since the secondary battery of one aspect of the present invention has a high charge / discharge capacity and good cycle characteristics, it is possible to provide a compact and lightweight electronic cigarette 7500 that can be used for a long period of time.
  • FIGS. 32A and 32B show an example of a tablet terminal that can be folded in half.
  • the tablet terminal 9600 shown in FIGS. 32A and 32B has a housing 9630a, a housing 9630b, a movable portion 9640 connecting the housing 9630a and the housing 9630b, a display unit 9631 having a display unit 9631a and a display unit 9631b, and a switch 9625. It has a switch 9627, a fastener 9629, and an operation switch 9628.
  • FIG. 32A shows a state in which the tablet terminal 9600 is opened
  • FIG. 32B shows a state in which the tablet terminal 9600 is closed.
  • the tablet terminal 9600 has a power storage body 9635 inside the housing 9630a and the housing 9630b.
  • the power storage body 9635 passes through the movable portion 9640 and is provided over the housing 9630a and the housing 9630b.
  • the display unit 9631 can use all or a part of the area as the touch panel area, and can input data by touching an image, characters, an input form, or the like including an icon displayed in the area.
  • a keyboard button may be displayed on the entire surface of the display unit 9631a on the housing 9630a side, and information such as characters and images may be displayed on the display unit 9631b on the housing 9630b side.
  • the keyboard may be displayed on the display unit 9631b on the housing 9630b side, and information such as characters and images may be displayed on the display unit 9631a on the housing 9630a side.
  • the keyboard display switching button on the touch panel may be displayed on the display unit 9631, and the keyboard may be displayed on the display unit 9631 by touching the button with a finger or a stylus.
  • touch input can be simultaneously performed on the touch panel area of the display unit 9631a on the housing 9630a side and the touch panel area of the display unit 9631b on the housing 9630b side.
  • the switch 9625 to the switch 9627 may be not only an interface for operating the tablet terminal 9600 but also an interface capable of switching various functions.
  • at least one of the switch 9625 to the switch 9627 may function as a switch for switching the power on / off of the tablet terminal 9600.
  • at least one of the switch 9625 to the switch 9627 may have a function of switching the display direction such as vertical display or horizontal display, or a function of switching between black and white display and color display.
  • at least one of the switch 9625 to the switch 9627 may have a function of adjusting the brightness of the display unit 9631.
  • the brightness of the display unit 9631 can be optimized according to the amount of external light during use detected by the optical sensor built in the tablet terminal 9600.
  • the tablet terminal may incorporate not only an optical sensor but also other detection devices such as a gyro, an acceleration sensor, and other sensors that detect the inclination.
  • FIG. 32A shows an example in which the display areas of the display unit 9631a on the housing 9630a side and the display unit 9631b on the housing 9630b side are almost the same, but the display areas of the display unit 9631a and the display unit 9631b are particularly different. It is not limited, and one size and the other size may be different, and the display quality may be different. For example, one may be a display panel capable of displaying a higher definition than the other.
  • FIG. 32B shows a tablet-type terminal 9600 closed in half.
  • the tablet-type terminal 9600 has a charge / discharge control circuit 9634 including a housing 9630, a solar cell 9633, and a DCDC converter 9636. Further, as the storage body 9635, the power storage body according to one aspect of the present invention is used.
  • the tablet terminal 9600 can be folded in half, the housing 9630a and the housing 9630b can be folded so as to overlap each other when not in use. Since the display unit 9631 can be protected by folding, the durability of the tablet terminal 9600 can be improved. Further, since the power storage body 9635 using the secondary battery of one aspect of the present invention has a high charge / discharge capacity and good cycle characteristics, it is possible to provide a tablet terminal 9600 that can be used for a long time over a long period of time. ..
  • the tablet terminal 9600 shown in FIGS. 32A and 32B displays various information (still images, moving images, text images, etc.), a calendar, a date, a time, and the like on the display unit. It can have a function, a touch input function for touch input operation or editing of information displayed on a display unit, a function for controlling processing by various software (programs), and the like.
  • Electric power can be supplied to a touch panel, a display unit, a video signal processing unit, or the like by a solar cell 9633 mounted on the surface of the tablet terminal 9600.
  • the solar cell 9633 can be provided on one side or both sides of the housing 9630, and can be configured to efficiently charge the power storage body 9635.
  • As the storage body 9635 if a lithium ion battery is used, there is an advantage that the size can be reduced.
  • FIG. 32C shows the solar cell 9633, the storage body 9635, the DCDC converter 9636, the converter 9637, the switches SW1 to SW3, and the display unit 9631. This is the location corresponding to the charge / discharge control circuit 9634 shown in FIG. 32B.
  • the electric power generated by the solar cell is stepped up or down by the DCDC converter 9636 so as to be a voltage for charging the storage body 9635. Then, when the electric power from the solar cell 9633 is used for the operation of the display unit 9631, the switch SW1 is turned on, and the converter 9637 boosts or lowers the voltage required for the display unit 9631. Further, when the display is not performed on the display unit 9631, the SW1 may be turned off and the SW2 may be turned on to charge the power storage body 9635.
  • the solar cell 9633 is shown as an example of the power generation means, but is not particularly limited, and the storage body 9635 is charged by another power generation means such as a piezoelectric element (piezo element) or a thermoelectric conversion element (Peltier element). It may be.
  • a non-contact power transmission module that wirelessly (non-contactly) transmits and receives power for charging, or a configuration in which other charging means are combined may be used.
  • FIG. 33 shows an example of another electronic device.
  • the display device 8000 is an example of an electronic device using the secondary battery 8004 according to one aspect of the present invention.
  • the display device 8000 corresponds to a display device for receiving TV broadcasts, and includes a housing 8001, a display unit 8002, a speaker unit 8003, a secondary battery 8004, and the like.
  • the secondary battery 8004 according to one aspect of the present invention is provided inside the housing 8001.
  • the display device 8000 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8004. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the display device 8000 can be used by using the secondary battery 8004 according to one aspect of the present invention as an uninterruptible power supply.
  • the display unit 8002 includes a light emitting device equipped with a light emitting element such as a liquid crystal display device and an organic EL element in each pixel, an electrophoresis display device, a DMD (Digital Micromirror Device), a PDP (Plasma Display Panel), and a FED (Field Emission Display). ), Etc., a semiconductor display device can be used.
  • a light emitting element such as a liquid crystal display device and an organic EL element in each pixel
  • an electrophoresis display device such as a liquid crystal display device and an organic EL element in each pixel
  • a DMD Digital Micromirror Device
  • PDP Plasma Display Panel
  • FED Field Emission Display
  • the display device includes all information display devices such as those for receiving TV broadcasts, those for personal computers, and those for displaying advertisements.
  • the stationary lighting device 8100 is an example of an electronic device using the secondary battery 8103 according to one aspect of the present invention.
  • the lighting device 8100 includes a housing 8101, a light source 8102, a secondary battery 8103, and the like.
  • FIG. 33 illustrates a case where the secondary battery 8103 is provided inside the ceiling 8104 in which the housing 8101 and the light source 8102 are installed, but the secondary battery 8103 is provided inside the housing 8101. It may have been done.
  • the lighting device 8100 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8103. Therefore, even when the power cannot be supplied from the commercial power supply due to a power failure or the like, the lighting device 8100 can be used by using the secondary battery 8103 according to one aspect of the present invention as an uninterruptible power supply.
  • FIG. 33 illustrates the stationary lighting device 8100 provided on the ceiling 8104
  • the secondary battery according to one aspect of the present invention includes, for example, a side wall 8105, a floor 8106, a window 8107, etc. other than the ceiling 8104. It can be used for a stationary lighting device provided in the above, or it can be used for a desktop lighting device or the like.
  • the light source 8102 an artificial light source that artificially obtains light by using electric power can be used.
  • incandescent lamps, discharge lamps such as fluorescent lamps, and light emitting elements such as LEDs and organic EL elements are examples of the artificial light sources.
  • the air conditioner having the indoor unit 8200 and the outdoor unit 8204 is an example of an electronic device using the secondary battery 8203 according to one aspect of the present invention.
  • the indoor unit 8200 has a housing 8201, an air outlet 8202, a secondary battery 8203, and the like.
  • FIG. 33 illustrates the case where the secondary battery 8203 is provided in the indoor unit 8200, the secondary battery 8203 may be provided in the outdoor unit 8204. Alternatively, the secondary battery 8203 may be provided in both the indoor unit 8200 and the outdoor unit 8204.
  • the air conditioner can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8203.
  • the secondary battery 8203 when the secondary battery 8203 is provided in both the indoor unit 8200 and the outdoor unit 8204, the secondary battery 8203 according to one aspect of the present invention is provided even when power cannot be supplied from a commercial power source due to a power failure or the like.
  • the air conditioner can be used by using the power supply as an uninterruptible power supply.
  • FIG. 33 illustrates a separate type air conditioner composed of an indoor unit and an outdoor unit
  • the integrated air conditioner having the functions of the indoor unit and the outdoor unit in one housing may be used.
  • a secondary battery according to one aspect of the present invention can also be used.
  • the electric refrigerator-freezer 8300 is an example of an electronic device using the secondary battery 8304 according to one aspect of the present invention.
  • the electric refrigerator-freezer 8300 has a housing 8301, a refrigerator door 8302, a freezer door 8303, a secondary battery 8304, and the like.
  • the secondary battery 8304 is provided inside the housing 8301.
  • the electric refrigerator-freezer 8300 can be supplied with electric power from a commercial power source, or can use the electric power stored in the secondary battery 8304. Therefore, even when the power cannot be supplied from the commercial power source due to a power failure or the like, the electric refrigerator-freezer 8300 can be used by using the secondary battery 8304 according to one aspect of the present invention as an uninterruptible power supply.
  • high-frequency heating devices such as microwave ovens and electronic devices such as electric rice cookers require high electric power in a short time. Therefore, by using the secondary battery according to one aspect of the present invention as an auxiliary power source for assisting the electric power that cannot be covered by the commercial power source, it is possible to prevent the breaker of the commercial power source from being tripped when the electronic device is used. ..
  • the power usage rate the ratio of the amount of power actually used (called the power usage rate) to the total amount of power that can be supplied by the supply source of commercial power is low.
  • the power usage rate the ratio of the amount of power actually used (called the power usage rate) to the total amount of power that can be supplied by the supply source of commercial power.
  • the cycle characteristics of the secondary battery can be improved and the reliability can be improved. Further, according to one aspect of the present invention, it is possible to use a secondary battery having a high charge / discharge capacity, thereby improving the characteristics of the secondary battery, and thus reducing the size and weight of the secondary battery itself. be able to. Therefore, by mounting the secondary battery, which is one aspect of the present invention, in the electronic device described in the present embodiment, it is possible to obtain an electronic device having a longer life and a lighter weight.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • FIG. 34A shows an example of a wearable device.
  • Wearable devices use a secondary battery as a power source.
  • a wearable device that can perform wireless charging as well as wired charging with the connector part to be connected is exposed. It is desired.
  • the secondary battery according to one aspect of the present invention can be mounted on the spectacle-type device 4000 as shown in FIG. 34A.
  • the spectacle-type device 4000 has a frame 4000a and a display unit 4000b.
  • By mounting the secondary battery on the temple portion of the curved frame 4000a it is possible to obtain a spectacle-type device 4000 that is lightweight, has a good weight balance, and has a long continuous use time.
  • By providing the secondary battery, which is one aspect of the present invention it is possible to realize a configuration capable of saving space due to the miniaturization of the housing.
  • the headset type device 4001 can be equipped with a secondary battery, which is one aspect of the present invention.
  • the headset-type device 4001 has at least a microphone unit 4001a, a flexible pipe 4001b, and an earphone unit 4001c.
  • a secondary battery can be provided in the flexible pipe 4001b or in the earphone portion 4001c.
  • the secondary battery according to one aspect of the present invention can be mounted on the device 4002 that can be directly attached to the body.
  • the secondary battery 4002b can be provided in the thin housing 4002a of the device 4002.
  • the secondary battery according to one aspect of the present invention can be mounted on the device 4003 that can be attached to clothes.
  • the secondary battery 4003b can be provided in the thin housing 4003a of the device 4003.
  • the belt type device 4006 can be equipped with a secondary battery which is one aspect of the present invention.
  • the belt-type device 4006 has a belt portion 4006a and a wireless power supply receiving portion 4006b, and a secondary battery can be mounted inside the belt portion 4006a.
  • the wristwatch type device 4005 can be equipped with a secondary battery, which is one aspect of the present invention.
  • the wristwatch-type device 4005 has a display unit 4005a and a belt unit 4005b, and a secondary battery can be provided on the display unit 4005a or the belt unit 4005b.
  • a secondary battery which is one aspect of the present invention, it is possible to realize a configuration capable of saving space due to the miniaturization of the housing.
  • the wristwatch type device 4005 is a wearable device of a type that is directly wrapped around the wrist, a sensor for measuring the pulse, blood pressure, etc. of the user may be mounted. It is possible to manage the health by accumulating data on the amount of exercise and health of the user.
  • FIG. 34B shows a perspective view of the wristwatch-type device 4005 removed from the arm.
  • FIG. 34C shows a state in which the secondary battery 913 is built in.
  • the secondary battery 913 is the secondary battery shown in the fourth embodiment.
  • the secondary battery 913 is provided at a position overlapping the display unit 4005a, and is compact and lightweight.
  • FIG. 34D shows an example of a wireless earphone.
  • a wireless earphone having a pair of main bodies 4100a and a main body 4100b is shown, but it does not necessarily have to be a pair.
  • the main bodies 4100a and 4100b have a driver unit 4101, an antenna 4102, and a secondary battery 4103. It may have a display unit 4104. Further, it is preferable to have a substrate on which a circuit such as a wireless IC is mounted, a charging terminal, or the like. It may also have a microphone.
  • the case 4110 has a secondary battery 4111. Further, it is preferable to have a substrate on which circuits such as a wireless IC and a charge control IC are mounted, and a charging terminal. It may also have a display unit, a button, and the like.
  • the main bodies 4100a and 4100b can wirelessly communicate with other electronic devices such as smartphones. As a result, sound data and the like sent from other electronic devices can be reproduced by the main bodies 4100a and 4100b. If the main bodies 4100a and 4100b have a microphone, the sound acquired by the microphone can be sent to another electronic device, and the sound data processed by the electronic device can be sent to the main bodies 4100a and 4100b again for reproduction. .. As a result, it can be used as a translator, for example.
  • the secondary battery 4111 included in the case 4100 can be charged from the secondary battery 4103 included in the main body 4100a.
  • the secondary battery 4111 and the secondary battery 4103 the coin-type secondary battery, the cylindrical secondary battery, and the like of the above-described embodiment can be used.
  • the secondary battery using the positive electrode active material 100 obtained in the first embodiment as the positive electrode has a high energy density, and by using the secondary battery 4103 and the secondary battery 4111, the space can be saved due to the miniaturization of the wireless earphone. It is possible to realize a configuration that can correspond to.
  • FIG. 35A shows an example of a cleaning robot.
  • the cleaning robot 6300 has a display unit 6302 arranged on the upper surface of the housing 6301, a plurality of cameras 6303 arranged on the side surface, a brush 6304, an operation button 6305, a secondary battery 6306, various sensors, and the like.
  • the cleaning robot 6300 is provided with tires, suction ports, and the like.
  • the cleaning robot 6300 is self-propelled, can detect dust 6310, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 6300 can analyze the image taken by the camera 6303 and determine the presence or absence of obstacles such as walls, furniture, and steps. Further, when an object that is likely to be entangled with the brush 6304 such as wiring is detected by image analysis, the rotation of the brush 6304 can be stopped.
  • the cleaning robot 6300 includes a secondary battery 6306 according to an aspect of the present invention, and a semiconductor device or an electronic component inside the cleaning robot 6300. By using the secondary battery 6306 according to one aspect of the present invention for the cleaning robot 6300, the cleaning robot 6300 can be made into a highly reliable electronic device with a long operating time.
  • FIG. 35B shows an example of a robot.
  • the robot 6400 shown in FIG. 35B includes a secondary battery 6409, an illuminance sensor 6401, a microphone 6402, an upper camera 6403, a speaker 6404, a display unit 6405, a lower camera 6406 and an obstacle sensor 6407, a moving mechanism 6408, an arithmetic unit, and the like.
  • the microphone 6402 has a function of detecting a user's voice, environmental sound, and the like. Further, the speaker 6404 has a function of emitting sound. The robot 6400 can communicate with the user by using the microphone 6402 and the speaker 6404.
  • the display unit 6405 has a function of displaying various information.
  • the robot 6400 can display the information desired by the user on the display unit 6405.
  • the display unit 6405 may be equipped with a touch panel. Further, the display unit 6405 may be a removable information terminal, and by installing the display unit 6405 at a fixed position of the robot 6400, charging and data transfer are possible.
  • the upper camera 6403 and the lower camera 6406 have a function of photographing the surroundings of the robot 6400. Further, the obstacle sensor 6407 can detect the presence or absence of an obstacle in the traveling direction when the robot 6400 moves forward by using the moving mechanism 6408. The robot 6400 can recognize the surrounding environment and move safely by using the upper camera 6403, the lower camera 6406, and the obstacle sensor 6407.
  • the robot 6400 includes a secondary battery 6409 secondary battery according to one aspect of the present invention, and a semiconductor device or an electronic component inside the robot 6400.
  • the secondary battery according to one aspect of the present invention for the robot 6400, the robot 6400 can be made into a highly reliable electronic device having a long operating time.
  • FIG. 35C shows an example of an air vehicle.
  • the flying object 6500 shown in FIG. 35C has a propeller 6501, a camera 6502, a secondary battery 6503, and the like, and has a function of autonomously flying.
  • the image data taken by the camera 6502 is stored in the electronic component 6504.
  • the electronic component 6504 can analyze the image data and detect the presence or absence of an obstacle when moving.
  • the remaining battery level can be estimated from the change in the storage capacity of the secondary battery 6503 by the electronic component 6504.
  • the flying object 6500 includes a secondary battery 6503 according to one aspect of the present invention inside the flying object 6500. By using the secondary battery according to one aspect of the present invention for the flying object 6500, the flying object 6500 can be made into a highly reliable electronic device having a long operating time.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • a next-generation clean energy vehicle such as a hybrid vehicle (HV), an electric vehicle (EV), or a plug-in hybrid vehicle (PHV) can be realized.
  • HV hybrid vehicle
  • EV electric vehicle
  • PSV plug-in hybrid vehicle
  • FIG. 36 illustrates a vehicle using a secondary battery, which is one aspect of the present invention.
  • the automobile 8400 shown in FIG. 36A is an electric vehicle that uses an electric motor as a power source for traveling. Alternatively, it is a hybrid vehicle in which an electric motor and an engine can be appropriately selected and used as a power source for driving. By using one aspect of the present invention, a vehicle having a long cruising range can be realized.
  • the automobile 8400 has a secondary battery.
  • the modules of the secondary battery shown in FIGS. 21C and 21D may be used side by side with respect to the floor portion in the vehicle.
  • a battery pack in which a plurality of secondary batteries shown in FIG. 24 are combined may be installed on the floor portion in the vehicle.
  • the secondary battery can not only drive the electric motor 8406, but also supply electric power to a light emitting device such as a headlight 8401 and a room light (not shown).
  • the secondary battery can supply electric power to display devices such as a speedometer and a tachometer included in the automobile 8400.
  • the secondary battery can supply electric power to a semiconductor device such as a navigation system included in the automobile 8400.
  • the automobile 8500 shown in FIG. 36B can charge the secondary battery of the automobile 8500 by receiving electric power from an external charging facility by a plug-in method, a non-contact power supply method, or the like.
  • FIG. 36B shows a state in which the secondary battery 8024 mounted on the automobile 8500 is being charged from the ground-mounted charging device 8021 via the cable 8022.
  • the charging method, connector specifications, and the like may be appropriately performed by a predetermined method such as CHAdeMO (registered trademark) or combo.
  • the charging device 8021 may be a charging station provided in a commercial facility or a household power source.
  • the plug-in technology can charge the secondary battery 8024 mounted on the automobile 8500 by supplying electric power from the outside. Charging can be performed by converting AC power into DC power via a conversion device such as an ACDC converter.
  • the power receiving device on the vehicle and supply electric power from the ground power transmission device in a non-contact manner to charge the vehicle.
  • this non-contact power supply system by incorporating a power transmission device on the road or the outer wall, it is possible to charge the battery not only while the vehicle is stopped but also while the vehicle is running.
  • the non-contact power feeding method may be used to transmit and receive electric power between vehicles.
  • a solar cell may be provided on the exterior portion of the vehicle to charge the secondary battery when the vehicle is stopped or running.
  • An electromagnetic induction method or a magnetic field resonance method can be used for such non-contact power supply.
  • FIG. 36C is an example of a two-wheeled vehicle using the secondary battery of one aspect of the present invention.
  • the scooter 8600 shown in FIG. 36C includes a secondary battery 8602, a side mirror 8601, and a turn signal 8603.
  • the secondary battery 8602 can supply electricity to the turn signal 8603.
  • the scooter 8600 shown in FIG. 36C can store the secondary battery 8602 in the storage under the seat 8604.
  • the secondary battery 8602 can be stored in the under-seat storage 8604 even if the under-seat storage 8604 is small.
  • the secondary battery 8602 is removable, and when charging, the secondary battery 8602 may be carried indoors, charged, and stored before traveling.
  • the cycle characteristics of the secondary battery are improved, and the charge / discharge capacity of the secondary battery can be increased. Therefore, the secondary battery itself can be made smaller and lighter. If the secondary battery itself can be made smaller and lighter, it will contribute to the weight reduction of the vehicle, and thus the cruising range can be improved. Further, the secondary battery mounted on the vehicle can also be used as a power supply source other than the vehicle. In this case, for example, it is possible to avoid using a commercial power source during peak power demand. Avoiding the use of commercial power during peak power demand can contribute to energy savings and reduction of carbon dioxide emissions. Further, if the cycle characteristics are good, the secondary battery can be used for a long period of time, so that the amount of rare metals such as cobalt used can be reduced.
  • This embodiment can be implemented in combination with other embodiments as appropriate.
  • the positive electrode active material 100 according to one aspect of the present invention was prepared and its characteristics were analyzed.
  • LiMO 2 in step S14 a commercially available lithium cobalt oxide (CellSeed C-10N manufactured by Nippon Chemical Industrial Co., Ltd.) having cobalt as the transition metal M and having no particular additive element was prepared. Lithium fluoride and magnesium fluoride were mixed with this by the solid phase method in the same manner as in steps S21 to S23, step S41 and step S42. When the number of atoms of cobalt was 100, the addition was made so that the number of molecules of lithium fluoride was 0.33 and the number of molecules of magnesium fluoride was 1. This was designated as a mixture 903.
  • annealing was performed in the same manner as in step S43. 30 g of the mixture 903 was placed in a square alumina container, a lid was placed, and the mixture was heated in a muffle furnace. Oxygen gas was introduced by purging the inside of the furnace, and it did not flow during heating. The annealing temperature was 900 ° C. and the annealing time was 20 hours.
  • Nickel hydroxide and aluminum hydroxide were added and mixed with the composite oxide after heating in the same manner as in steps S31, S32, S61 and S62.
  • the number of atoms of cobalt was 100, the addition was made so that the number of atoms of nickel was 0.5 and the number of atoms of aluminum was 0.5. This was designated as a mixture 904.
  • step S63 annealing was performed in the same manner as in step S63.
  • 100 g of the mixture 904 was placed in a square alumina container, a lid was placed, and the mixture was heated in a muffle furnace.
  • the flow rate of oxygen gas during heating was 10 L / min.
  • the annealing temperature was 850 ° C., and the annealing time was 10 hours.
  • the positive electrode active material thus produced was used as sample 1-1 (step S66).
  • step S43 was performed at 850 ° C. for 60 hours at a flow rate of oxygen gas during heating at 10 L / min, and the annealing in step S63 was performed at 850 ° C. for 2 hours.
  • Sample 1-2 was performed at 850 ° C. for 60 hours at a flow rate of oxygen gas during heating at 10 L / min, and the annealing in step S63 was performed at 850 ° C. for 2 hours.
  • a nickel source and an aluminum source are mixed together with a magnesium source and a fluorine source, and annealing in step S43 is performed at 850 ° C. for 60 hours, and the flow rate of oxygen gas during heating is 10 L / min.
  • Samples 1-3 were prepared in the same manner as in Sample 1-1.
  • the nickel source and the aluminum source are first mixed with lithium cobalt oxide, and annealing in step S43 (850 ° C., 2 hours, flow rate of oxygen gas during heating 10 L / min) is performed.
  • the magnesium source and the fluorine source were mixed later, and the sample was prepared in the same manner as in Sample 1-1 except that the magnesium source and the fluorine source were mixed and annealed (850 ° C., 2 hours) in step S63, and used as Sample 1-4.
  • a sample 1- was prepared by using aluminum isopropoxide (Al (O-i-Pr) 3 ) as an aluminum source and mixing it with a nickel source in a different process. It was set to 5. At this time, isopropanol was used as the solvent for Al isopropoxide.
  • the mixture obtained by mixing S61-1 and Al isopropoxide were reacted with water contained in the atmosphere for 17 hours with stirring, and then dried in a ventilation drying furnace at 80 ° C. for 3 hours to dry. Further, annealing in step S63 (850 ° C., 2 hours) was performed. Other conditions were the same as in Sample 1-2.
  • a sample 1-7 was prepared by repeating the annealing and sticking suppression operations a plurality of times.
  • the first and second annealings were at 900 ° C. for 10 hours
  • the third annealing was at 920 ° C. for 10 hours.
  • the composite oxide was placed in a mortar and crushed with a pestle as a sticking suppression operation.
  • Other conditions were the same as in Sample 1-3.
  • sample 1-8 was prepared in the same manner as sample 1-7 except that the third annealing temperature was set to 900 ° C.
  • sample 2 was lithium cobalt oxide (CellSeed C-10N, manufactured by Nippon Chemical Industrial Co., Ltd.) having cobalt as a transition metal and having no additive element.
  • lithium cobalt oxide CellSeed C-10N, manufactured by Nippon Chemical Industrial Co., Ltd.
  • Sample 3 was prepared in the same manner as in Sample 1-3 except that the nickel source and the aluminum source were not used.
  • Sample 4 was prepared in the same manner as in Sample 1-5 except that the nickel source and the aluminum source were not used.
  • sample 5 was prepared in the same manner as in Sample 1-5 except that the aluminum source was not used.
  • sample 6 was prepared in the same manner as in sample 1-5 except that a nickel source was not used.
  • lithium fluoride is added so that the number of molecules of lithium fluoride is 0.17 and the number of molecules of magnesium fluoride is 0.5, and the annealing temperature in step S43 is 900 ° C. for 20 hours.
  • a titanium source was used instead of the aluminum source, and titanium isopropoxide (TTIP) was used as the titanium source.
  • Table 1 shows the preparation conditions for Samples 1-1 to 8. As is clear from Table 1, all of Samples 1-1 to 1-8 are annealed after adding a magnesium source, a fluorine source, a nickel source and an aluminum source to LiCoO 2 which does not have an additive element. Since they are common to each other, they may all be referred to as sample 1 in order to distinguish them from samples having no common points.
  • FIG. 37A is a surface SEM image of sample 1-2
  • FIG. 37B is a surface SEM image of sample 1-3
  • FIG. 37C is a surface SEM image of sample 1-4
  • FIG. 37D is a surface SEM image of sample 2. It was observed that all of Samples 1-2 to 1-4 that were annealed with additives had rounded corners, few irregularities, and a smooth surface. On the other hand, the unannealed sample 2 was observed to have relatively sharp corners, many irregularities, and a rough surface.
  • FIG. 38A is a cross-sectional TEM image of the positive electrode active material from the surface to a depth of about 3 ⁇ m.
  • the limited field electron diffraction image of area1 shown by the white circle in FIG. 38A is shown in FIG. 38B.
  • Some of the bright spots in FIG. 38B are designated as 1, 2, 3 and O as shown in FIG. 38C.
  • O is transmitted light, 1, 2 and 3 are diffraction spots.
  • Area1 has a depth of 50 nm or more from the surface and is inside the positive electrode active material.
  • the inside of the positive electrode active material has a layered rock salt type crystal structure.
  • the a-axis lattice constant was 2.88 ⁇
  • the c-axis lattice constant was 14.37 ⁇ . Note that 1 ⁇ is 10-10 m.
  • the difference from the literature value is considered to be a measurement error.
  • FIG. 39A shows a microelectron diffraction image inside the positive electrode active material. Some of the bright spots in FIG. 39A are designated as 1, 2, 3 and O as shown in FIG. 39B.
  • the inside of the positive electrode active material has a layered rock salt type crystal structure.
  • the a-axis lattice constant A core was 2.84 ⁇
  • the c-axis lattice constant was C core 14.4 ⁇ .
  • FIG. 40A is a cross-sectional TEM image from the surface of the positive electrode active material to a depth of about 40 nm.
  • the microelectron diffraction image of point2 shown by * in FIG. 40A is shown in FIG. 40B.
  • Some of the bright spots in FIG. 40B are designated as 1, 2, 3 and O as shown in FIG. 40C.
  • Point 2 has a depth of about 13 nm from the surface, and is a portion of the inside of the positive electrode active material where the concentration of aluminum is high in the linear EDX ray analysis described later.
  • the inside of the positive electrode active material has a layered rock salt type crystal structure.
  • the a-axis lattice constant was 2.86 ⁇
  • the c-axis lattice constant was 14.4 ⁇ .
  • the values were close to the values calculated from FIGS. 39A and 39B, and it was shown that there was no large difference in the lattice constant even in the region where the aluminum concentration was high if it was inside.
  • FIG. 41A is a cross-sectional TEM image of the positive electrode active material from the surface to a depth of about 30 nm.
  • the microelectron diffraction image of point 1 shown by * in FIG. 41A is shown in FIG. 41B.
  • Some of the bright spots in FIG. 41B are designated as 1, 2, 3 and O as shown in FIG. 41C.
  • Point1 is the outermost surface layer of the surface layer portion of the positive electrode active material.
  • the crystal structure identified from the diffraction image of such an arrangement is the layered rock salt type.
  • the crystal structure is close to the rock salt type. Therefore, it can be said that the outermost surface layer from which this diffraction image is obtained has the characteristics of a layered rock salt type crystal structure, but also has some characteristics of a rock salt type crystal structure.
  • the difference in brightness in such a diffraction image corresponds to the difference in brightness in the TEM image or the like shown in FIG. 43B or the like.
  • the a-axis lattice constant A surface was 3.02 ⁇
  • the c-axis lattice constant C surface was 15.96 ⁇ .
  • Table 2 shows the lattice constants of the inner and outermost layers obtained above. Reference values are also shown for comparison.
  • the a-axis lattice constant A surface of the outermost surface layer which is a part of the surface layer portion calculated by microelectron diffraction, is 3.02 ⁇ . , It was larger than 2.84 ⁇ of the internal a-axis lattice constant A core calculated by ultra-fine electron diffraction.
  • the c-axis lattice constant C surface of the outermost surface layer was 15.96 ⁇ , which was larger than the internal c-axis lattice constant C core calculated by microelectron diffraction of 14.4 ⁇ .
  • Table 3 shows the difference and the rate of change of the lattice constants of the inner surface layer and the outermost surface layer obtained by microelectron diffraction.
  • the lattice constant A Surface of a shaft of the outermost surface layer than 0.18 ⁇ difference delta A between the lattice constant A core inside the a-axis, c-axis lattice constant of the outermost layer and C Surface, towards 1.56 ⁇ difference delta C between the lattice constant C core inside the c-axis is larger.
  • the lattice constant A Surface of a shaft of the outermost layer, the change rate R A between the lattice constant A core inside the a-axis was 0.063.
  • the lattice constant C Surface of c-axis of the outermost surface layer, the rate of change R C of the lattice constant C core inside the c axis was 0.108.
  • FIGS. 42A to 42C The cross-sectional STEM images of the positive electrode active material of the sample 1-1 prepared above are shown in FIGS. 42A to 42C.
  • FIG. 42A is a cross-sectional STEM image from the surface of the positive electrode active material to a depth of about 15 nm.
  • FIG. 42B is a cross-sectional STEM image in a range of about 6 nm in depth and about 8 nm in width from the surface of the positive electrode active material.
  • FIG. 42C is a cross-sectional STEM image from the surface to a depth of about 3.5 nm. These are darkfield images.
  • a layer of transition metal M was observed as a row of strong white bright spots inside the positive electrode active material, and it was observed that it had a layered rock salt type crystal structure and high crystallinity.
  • the surface of the positive electrode active material was substantially parallel to the (001) plane of the layered rock salt type crystal structure.
  • the lithium layer existing between the transition metal M layers was only slightly gray, and almost no bright spots were observed. The same was true for oxygen forming an octahedron centered on the transition metal M. In this cross-sectional STEM image, it became clear that elements with small atomic numbers such as lithium and oxygen did not produce clear bright spots.
  • FIGS. 43A to 44B The results of comparing the brightness of the transition metal M-site layer and the lithium-site layer using the cross-sectional STEM image of FIG. 42B are shown in FIGS. 43A to 44B.
  • FIG. 43A is a view obtained by rotating FIG. 42B by 90 °.
  • the brightness was integrated in parallel with the transition metal M site layer.
  • FIG. 43B is a graph showing the brightness of each pixel sequence.
  • the brightness derived from anions such as oxygen atoms was corrected as the background. Specifically, the vertices of the valleys of each peak were approximated by a straight line and corrected. The background is shown by the dotted line in FIG. 43B.
  • FIG. 44A shows the corrected graph.
  • the horizontal axis is the depth from the surface.
  • the first peak of the brightness of the metal element was used as the surface.
  • the vertical axis is intensity, and the maximum number of white pixels up to a depth of 6 nm is set to 1 for normalization.
  • FIG. 44B shows the figure of FIG. 43A with the brightness inverted in order to improve visibility.
  • the transition metal M-site layer was present with high brightness in the region where the depth from the surface was deeper than 3 nm. There were no peaks in the lithium site layer between the transition metal M site layers.
  • the peaks of both the transition metal M-site layer and the lithium-site layer were low, and sufficient strength could not be obtained. There is a possibility that the error is due to the unevenness of the positive electrode active material.
  • the brightness of the transition metal M-site layer was 0.7 or more, which is the maximum value, and sufficient strength was obtained.
  • a peak lower than that of the transition metal M-site layer was observed in the lithium site layer (arrow in FIG. 44A dotted line). This low peak is considered to indicate the presence of an additive metal element or transition metal M in the lithium site layer.
  • the peak of this lithium site layer was 3% or more and 60% or less of the maximum value, more specifically 4% or more and 50% or less, and more specifically 6% or more and 40% or less. Moreover, it was 5% or more and 65% or less, and more specifically, 8% or more and 50% or less, as compared with the strength of the transition metal site layer having sufficient strength at the beginning.
  • FIGS. 45A, 46A and 47A show HAADF-STEM images of the same cross section including the surface and interior of the positive electrode active material.
  • FIG. 45B is a mapping image of fluorine in the same portion as the HAADF-STEM image
  • FIG. 45C is a mapping image of carbon
  • FIG. 45D is magnesium
  • FIG. 45E is oxygen
  • FIG. 45F is aluminum
  • FIG. 46B is a mapping image of nickel in the same portion as the HAADF-STEM image
  • FIG. 46C is a mapping image of silicon
  • FIG. 46D is a cobalt mapping image.
  • FIGS. 47B to 47E the mapping images of some elements with their brightness inverted are shown in FIGS. 47B to 47E.
  • FIG. 47B is a mapping image of fluorine with inverted brightness
  • FIG. 47C is a mapping image of magnesium
  • FIG. 47D is an aluminum
  • FIG. 47E is a mapping image of nickel.
  • FIG. 48 is a cross-sectional STEM image including the surface and the inside of the positive electrode active material.
  • the area surrounded by the white line in FIG. 48 is the measurement area.
  • the analysis was performed from the outside to the inside of the positive electrode active material 100.
  • the results are shown in FIGS. 49A and 49B.
  • the horizontal axis shows the distance from the measurement start point (Distance), and the vertical axis shows the atomic% (Atomic%).
  • the lower limit of detection in EDX ray analysis depends on the element, but is approximately 1 atomic%.
  • FIG. 49B is an enlarged view of a part of FIG. 49A. From FIGS. 49A and 49B, it was confirmed that magnesium and fluorine were present in the outermost surface layer and had a concentration gradient in which the concentration increased from the inside toward the surface. The surface concentration was the highest and the peak was sharp. The distribution of silicon had a similar tendency.
  • the peak magnesium concentration was at a measurement point of 4.0 atomic% and a distance of 4.6 nm.
  • the peak of the fluorine concentration was at a measurement point of 4.0 atomic% and a distance of 4.4 nm.
  • the peaks of aluminum concentration were deeper than the peaks of magnesium and fluorine and were distributed broadly over a distance of 20 nm or more.
  • the peak of the aluminum concentration was a measurement point of 3.9 atomic% and a distance of 16.1 nm.
  • Nickel was below the lower limit of detection at all measurement points, that is, less than 1 atomic%.
  • Oxygen was also detected from the outside of the surface of the positive electrode active material. It is considered that the influence of carbonic acid and hydroxy groups chemically adsorbed on the surface after the production of the positive electrode active material, or the background.
  • the surface was estimated as follows from the amount of oxygen detected. First, the range of 20-40 nm indicated by the arrow in FIG. 49A was defined as the region in which the atomic% of oxygen was stable. The average atomic% of oxygen in this region was 54.4%. Further, the range of a distance of 0 to 3 nm was defined as a region in which the atomic% of chemically adsorbed oxygen was stable in the background. The average Obaccg round in this region was 11.8%. 42.6% of the result of subtracting Obackground from Oave was taken as the corrected average Oave of oxygen. Therefore, 1 / 2O ave was 21.3%. The closest oxygen measurement point was at a distance of 4.4 nm. Therefore, in this example and the like, a distance of 4.4 nm is estimated as the surface. This was the same measurement point as the peak concentration of fluorine.
  • the positive electrode active material of one aspect of the present invention has magnesium and fluorine in the surface layer portion, particularly the outermost surface layer, and has a concentration gradient from the inside to the surface. It was confirmed to be 100. It was also confirmed that the aluminum concentration peak exists at a position deeper than the magnesium and fluorine concentrations.
  • the peak magnesium concentration was 0.2 nm in depth.
  • the peak of fluorine concentration was 0 nm in depth.
  • the peak concentration of aluminum was 11.7 nm deep.
  • Measurement conditions include acceleration voltage or magnification.
  • a conductive coating was applied to Sample 1-1 and Sample 2 as an observation pretreatment. Specifically, platinum sputtering was performed for 20 seconds. Observation was performed using a scanning electron microscope device SU8030 manufactured by Hitachi High-Tech. The measurement conditions are an acceleration voltage of 5 kV and a magnification of 5000 times, and other measurement conditions are a working distance of 5.0 mm, an emission current of 9 to 10.5 ⁇ A, an extraction voltage of 5.8 V, an SEU mode (Upper contrast-electric detector), and an ABC mode. (Auto Brightness Control Control) was also set to be the same, and the observation was performed with autofocus.
  • FIG. 50A shows an SEM image of sample 1-1
  • FIG. 50B shows an SEM image of sample 2. It was observed that the surface of Sample 1-1, which was heated after adding the additive element, was smoother than that of Sample 2.
  • the target area of the next image analysis is shown by a square. The area of the target area was 4 ⁇ m ⁇ 4 ⁇ m, and the same area was used for all the samples. The inside of the target area was set to be horizontal as an SEM observation surface.
  • the present inventors have focused on the fact that in the images shown in FIGS. 50A and 50B, the surface state of the positive electrode active material is photographed with a change in brightness.
  • the change in brightness I thought that it might be possible to quantify information about surface irregularities by image analysis.
  • FIGS. 50A and 50B were analyzed using the image processing software "ImageJ", and an attempt was made to quantify the surface smoothness of the positive electrode active material.
  • ImageJ is an example of image processing software for performing the analysis, and is not limited to "ImageJ”.
  • the grayscale image represents one pixel with 8 bits and includes brightness (brightness information).
  • the dark part has a low number of gradations, and the bright part has a high number of gradations.
  • This value is called a grayscale value.
  • the histogram is a three-dimensional representation of the gradation distribution in the target area, and is also called a luminance histogram. By acquiring the luminance histogram, it is possible to visually understand and evaluate the unevenness of the positive electrode active material.
  • an 8-bit grayscale image was acquired from the images of Sample 1-1 and Sample 2, and further, a grayscale value and a luminance histogram were acquired.
  • FIG. 51A shows the grayscale values of sample 1-1
  • FIG. 51B shows the grayscale values of sample 2.
  • the x-axis indicates a grayscale value
  • the y-axis indicates the number of counts
  • the number of counts is shown on the log scale (log count).
  • FIGS. 52A and 52B show luminance histograms of Sample 1-1 and Sample 2.
  • the difference between the maximum value and the minimum value was 120 or less.
  • the standard deviation was also small and the variation was smaller.
  • Electrode density> Next, using Sample 1-1, positive electrodes with different conductive materials and pressing conditions were prepared, and the electrode density was evaluated.
  • a positive electrode active material, a conductive material and PVDF were mixed to prepare a slurry, and the slurry was applied to an aluminum current collector.
  • NMP was used as the solvent for the slurry.
  • a weak press was performed on the positive electrode 0 to 5 times, and a strong press was performed 0 or 1 times.
  • the weak press was 210 kN / m and the strong press was 1467 klN / m.
  • a calendar roll was used for both presses.
  • Table 5 shows the compounding ratio, press conditions, conductive material, and electrode density (g / cc).
  • the electrode density after pressing is more likely to be higher when AB and graphene are mixed and used than when AB alone is used as the conductive material. Further, under the condition that AB and graphene were mixed and used, the conductive material was 1 wt%, and the weak press was performed twice or more, the electrode density was 3.72 g / cc or more.
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-shaped battery cell was manufactured.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • the positive electrode can and the negative electrode are those made of stainless steel (SUS) were used.
  • the structure of the secondary battery produced as described above was first measured after the first charge.
  • the charging voltage was 4.65V or 4.7V.
  • the charging temperature was 25 ° C. or 45 ° C.
  • the charging method was CC / CV (0.5 C, each voltage, 0.05 Cut).
  • 1C was set to 200 mA / g.
  • the charging capacity is shown in Table 6.
  • the charged secondary battery was disassembled in a glove box having an argon atmosphere, the positive electrode was taken out, and the positive electrode was washed with DMC (dimethyl carbonate) to remove the electrolytic solution.
  • the removed positive electrode was attached to a flat substrate with double-sided tape, and sealed in a dedicated cell in an argon atmosphere.
  • the positive electrode active material layer was set according to the measurement surface required by the apparatus. The XRD measurement was performed at room temperature regardless of the temperature at the time of charging.
  • XRD device D8 ADVANCE manufactured by Bruker AXS X-ray source: CuK ⁇ ray output: 40KV, 40mA Slit system: Div. Slit, 0.5 ° Detector: LynxEye Scan method: 2 ⁇ / ⁇ continuous scan Measurement range (2 ⁇ ): 15 ° (degree) or more and 75 ° or less Step width (2 ⁇ ): 0.01 ° Setting counting time: 1 second / step sample table rotation: 15 rpm
  • FIG. 53 is an XRD pattern of each voltage and each temperature of the sample 1-7 and the sample 2 after charging.
  • Sample 1-7 has an O3'type crystal structure under any conditions of 4.65 V25 ° C., 4.65 V45 ° C., 4.7 V25 ° C., and 4.7 C45 ° C. .. Further, at 4.7C45 ° C., it had H1-3 type and O1 type crystal structures in addition to O3'type. The best O3'type crystallinity was under the condition of 4.65 V45 ° C.
  • Sample 2 mainly had an H1-3 type crystal structure at both 4.7 V25 ° C and 4.7C 45 ° C. Almost no peak was observed due to the O3'type crystal structure.
  • the charging temperature of Sample 1-7 was set to 0 ° C., 25 ° C., 45 ° C., 65 ° C. or 85 ° C., and the structure after the second charging was measured.
  • the charging method was CC / CV (0.5C, 4.7V, 0.05Cut), and the discharging method was CC (0.5C, 2.5Vcut).
  • the charge / discharge capacity is shown in Table 7.
  • the positive electrode was taken out from the secondary battery and XRD measurement was performed.
  • FIG. 55 is an XRD pattern of each temperature after charging.
  • the XRD patterns of O1, H1-3, O3'and R-3m (LiCoO 2) before charging are also shown.
  • the second charge has an O3'type crystal structure under the conditions of 4.7 V25 ° C. and 4.7 V 45 ° C. as in the first charge. At 4.7C 45 ° C., it had an O1 type crystal structure in addition to the O3'type. It was presumed that the crystallinity was low under the conditions of 4.7V 65 ° C. and 4.7V 85 ° C., and that the crystal structure was different from that of O1, H1-3, and O3'.
  • the positive electrode was taken out from the secondary battery and XRD measurement was performed.
  • FIG. 57 is an XRD pattern after each charge / discharge.
  • the XRD patterns of O1, H1-3, O3'and R-3m (LiCoO 2) before charging are also shown.
  • FIG. 59 is an XRD pattern after each charge / discharge.
  • the XRD patterns of O1, H1-3, O3'and R-3m (LiCoO 2) before charging are also shown.
  • a positive electrode was obtained by the above steps.
  • the amount of the positive electrode supported was approximately 7 mg / cm 2 .
  • the density was 3.8 g / cc or more.
  • a CR2032 type (diameter 20 mm, height 3.2 mm) coin-shaped battery cell was manufactured.
  • Lithium metal was used as the counter electrode.
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • VC vinylene carbonate
  • Polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • the positive electrode can and the negative electrode are those made of stainless steel (SUS) were used.
  • the charging voltage was 4.4V, 4.5V or 4.6V.
  • the measurement temperature was 25 ° C., 45 ° C., 50 ° C., 55 ° C., 60 ° C., 65 ° C. or 85 ° C.
  • Charging was CC / CV (0.5C, each voltage, 0.05Cut), discharging was CC (0.5C, 2.5Vcut), and a 10-minute pause was provided before the next charging.
  • 1C was set to 200 mA / g.
  • FIG. 61A shows the charge / discharge cycle characteristics of sample 1-1 having a charging voltage of 4.4 V
  • FIG. 61B shows the charge / discharge cycle characteristics of sample 2 (comparative example).
  • FIG. 62A shows the charge / discharge cycle characteristics of sample 1-1 having a charging voltage of 4.5 V
  • FIG. 62B shows the charge / discharge cycle characteristics of sample 2 (comparative example).
  • FIG. 63A shows the charge / discharge cycle characteristics of sample 1-1 having a charging voltage of 4.6 V
  • FIG. 63B shows the charge / discharge cycle characteristics of sample 2 (comparative example).
  • Sample 1-1 showed very good cycle characteristics from 25 ° C to 85 ° C.
  • the charge / discharge cycle characteristics of Sample 2 (Comparative Example) were also relatively good, but were not as good as those of Sample 1-1.
  • Sample 1-1 showed very good charge / discharge cycle characteristics from 25 ° C to 65 ° C. In addition, the discharge capacity also increased because the charging voltage was increased. On the other hand, in Sample 2 (Comparative Example), the discharge capacity decreased as the charge / discharge cycle was repeated at any temperature.
  • sample 2 (comparative example) had a sharp decrease in discharge capacity by 20 cycles at all temperatures from 25 ° C to 60 ° C.
  • sample 1-1 exceeded the characteristics of sample 2 (comparative example) at all temperatures from 25 ° C to 60 ° C. In particular, from 25 ° C to 55 ° C, extremely good charge / discharge cycle characteristics were exhibited.
  • the charging voltage was 4.65V or 4.7V.
  • the measurement temperature was 25 ° C. or 45 ° C.
  • Charge CC / CV 0.5C, each voltage, 0.05Cut
  • discharge CC 0.5C, sample 1-5 only 2.5Vcut, otherwise 3 hours cut
  • FIG. 64A shows the charge / discharge cycle characteristics of Samples 1-5, Samples 1-7, and Sample 3 at a charging voltage of 4.65 V and a measurement temperature of 25 ° C.
  • FIG. 64B shows the charge / discharge cycle characteristics of Samples 1-5, Samples 1-7, and Sample 3 at a charging voltage of 4.65 V and a measurement temperature of 45 ° C.
  • FIG. 65A shows the charge / discharge cycle characteristics of Samples 1-3, Samples 1-5, Samples 1-7, and Sample 3 at a charging voltage of 4.7 V and a measurement temperature of 25 ° C.
  • FIG. 65B shows the charge / discharge cycle characteristics of Samples 1-5, Samples 1-7, and Sample 3 at a charging voltage of 4.7 V and a measurement temperature of 45 ° C.
  • Samples 1-3, Samples 1-5 and Samples 1-7 having magnesium, fluorine, nickel and aluminum as additive elements showed good charge / discharge cycle characteristics up to a charging voltage of 4.7 V.
  • Sample 3 without nickel and aluminum had slightly inferior charge / discharge cycle characteristics.
  • Sample 1-5 showed relatively good charge / discharge cycle characteristics even at 4.65 V. On the other hand, at 4.7 V, the discharge capacity of each sample was significantly reduced by about 20 cycles.
  • the charging voltage was 4.6 V and the measurement temperature was 25 ° C.
  • Charging was CC / CV (0.5C, 4.6V, 0.05Cut), discharging was CC (0.5C, 2.5Vcut), and a 10-minute rest period was provided before the next charging.
  • FIGS. 66A and 66B The charge / discharge cycle characteristics are shown in FIGS. 66A and 66B.
  • FIG. 66A is the discharge capacity
  • FIG. 66B is the discharge capacity retention rate.
  • the charging voltage was 4.6 V, and the measured temperature was 25 ° C or 45 ° C.
  • Charging was CC / CV (0.5C, 4.6V, 0.05Cut), discharging was CC (0.5C, 2.5Vcut), and a 10-minute rest period was provided before the next charging.
  • FIG. 67A shows the charge / discharge cycle characteristics of Sample 1-8, Sample 2, Sample 7, and Sample 8 at a measurement temperature of 25 ° C.
  • FIG. 67B shows the charge / discharge cycle characteristics of Sample 1-8, Sample 2, Sample 7, and Sample 8 at a measurement temperature of 45 ° C.
  • the positive electrode active material according to one aspect of the present invention has a positive electrode activity in which a decrease in charge / discharge capacity is suppressed even when a high voltage such as 4.5 V, 4.6 V, and even 4.7 V is repeatedly charged and discharged in the half cell. It was shown to be a substance. In addition, it showed good cycle characteristics even at relatively high temperatures such as 45 ° C, 55 ° C, and 65 ° C. This is because the positive electrode active material of one aspect of the present invention has an additive element in the surface layer portion, so that the crystal structure is not easily collapsed. Furthermore, it was confirmed that the cycle characteristics at high temperature or high voltage charge / discharge were improved because nickel was used as the transition metal.
  • a secondary battery of negative electrode graphite was prepared using the positive electrode active material of Sample 1-1 prepared above, and the charge / discharge cycle characteristics were evaluated.
  • the positive electrode was prepared in the same manner as the half cell.
  • VGCF registered trademark
  • Showa Denko KK which is a vapor-grown carbon fiber
  • LiPF 6 lithium hexafluorophosphate
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Polypropylene having a thickness of 25 ⁇ m was used as the separator.
  • a laminated film was used for the exterior body.
  • the charging voltage was 4.5V or 4.6V.
  • the measurement temperature was 25 ° C. or 45 ° C.
  • Charging was CC / CV (0.5C, each voltage, 0.05Cut), discharging was CC (0.5C, 3Vcut), and a 10-minute pause was provided before the next charging.
  • FIG. 68A shows the charge / discharge cycle characteristics of Sample 1-1 when the measurement temperature is 25 ° C.
  • FIG. 68B shows the charge / discharge cycle characteristics of Sample 1-1 when the measurement temperature is 45 ° C.
  • Sample 1-1 showed good charge / discharge cycle characteristics.
  • 100 Positive electrode active material
  • 100a Surface layer part
  • 100b Inside
  • 100c Outermost layer
  • 101 Crystal grain boundary
  • 102 Embedded part
  • 103 Convex part
  • 104 Coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

充放電を繰り返しても結晶構造が崩れにくい正極活物質を提供する。充放電容量が大きい正極活物質を提供する。 リチウムと、コバルトと、ニッケルと、マグネシウムと、酸素を有する正極活物質であって、正極活物質の 表面層のa軸の格子定数は、内部のa軸の格子定数よりも大きく、 表面層のc軸の格子定数は、内部のc軸の格子定数よりも大きい正極活物質。 表面層のa軸の格子定数と、内部のa軸の格子定数との変化率は0を超えて0.12以下が好ましく、 表面層のc軸の格子定数と、内部のc軸の格子定数との変化率は0を超えて0.18以下であることが好ましい。

Description

正極活物質、二次電池、電子機器
本発明の一様態は、物、方法、又は、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、又は、組成物(コンポジション・オブ・マター)に関する。本発明の一態様は、半導体装置、表示装置、発光装置、蓄電装置、照明装置、電子機器またはそれらの製造方法に関する。
なお、本明細書中において電子機器とは、蓄電装置を有する装置全般を指し、蓄電装置を有する電気光学装置、蓄電装置を有する情報端末装置などは全て電子機器である。
近年、リチウムイオン二次電池、リチウムイオンキャパシタ、空気電池、全固体電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高容量であるリチウムイオン二次電池は半導体産業の発展と併せて急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
なかでもモバイル電子機器向け二次電池等では、重量あたりの放電容量が大きく、サイクル特性に優れた二次電池の需要が高い。これらの需要に応えるため、二次電池の正極が有する正極活物質の改良が盛んに行われている(例えば特許文献1乃至特許文献3)。また、正極活物質の結晶構造に関する研究も行われている(非特許文献1乃至非特許文献3)。
またX線回折(XRD)は、正極活物質の結晶構造の解析に用いられる手法の一つである。非特許文献4に紹介されているICSD(Inorganic Crystal Structure Database)を用いることにより、XRDデータの解析を行うことができる。
特開平8−236114号公報 特開2002−124262号公報 特開2002−358953号公報
Toyoki Okumura et al,"Correlation of lithium ion distribution and X−ray absorption near−edge structure in O3−and O2−lithium cobalt oxides from first−principle calculation",Journal of Materials Chemistry,2012,22,p.17340−17348 Motohashi,T.et al,"Electronic phase diagram of the layered cobalt oxide system LixCoO2(0.0≦x≦1.0)",Physical Review B,80(16);165114 Zhaohui Chen et al,"Staging Phase Transitions in LixCoO2",Journal of The Electrochemical Society,2002,149(12) A1604−A1609 Belsky,A.et al.,"New developments in the Inorganic Crystal Structure Database(ICSD):accessibility in support of materials research and design",Acta Cryst.,(2002)B58 364−369.
しかしながらリチウムイオン二次電池およびそれに用いられる正極活物質には、充放電容量、サイクル特性、信頼性、安全性、又はコストといった様々な面で改善の余地が残されている。
本発明の一態様は、リチウムイオン二次電池に用いることで、充放電サイクルにおける充放電容量の低下が抑制された正極活物質を提供することを課題の一とする。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質を提供することを課題の一とする。または、充放電容量が大きい正極活物質を提供することを課題の一とする。または、安全性又は信頼性の高い二次電池を提供することを課題の一とする。
また本発明の一態様は、正極活物質、蓄電装置、又はそれらの作製方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、リチウムと、コバルトと、ニッケルと、マグネシウムと、酸素を有する正極活物質であって、正極活物質の最表面層のa軸の格子定数Asurfaceは、内部のa軸の格子定数Acoreよりも大きく、最表面層のc軸の格子定数Csurfaceは、内部のc軸の格子定数Ccoreよりも大きい、正極活物質である。
上記において、最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの差Δを格子定数Acoreで割った変化率Rは0を超えて0.12以下であり、最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの差Δを格子定数Ccoreで割った変化率Rは0を超えて0.18以下であることが好ましい。
上記において、変化率Rは0.05以上0.07以下であり、変化率Rは0.09以上0.12以下であることが好ましい。
上記において、最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの差Δよりも、最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの差Δが大きいことが好ましい。
また本発明の別の一態様は、リチウムと、コバルトと、ニッケルと、マグネシウムと、酸素とを有する正極活物質であって、正極活物質の最表面層の少なくとも一部は遷移金属サイト層とリチウムサイト層とを交互に有する層状岩塩型の結晶構造を有し、リチウムサイト層の一部はリチウムより原子番号の大きい金属元素を有する、正極活物質である。
上記において、リチウムより原子番号の大きい金属元素は、マグネシウム、コバルトまたはアルミニウムであることが好ましい。
上記において、最表面層の断面TEM像において、リチウムサイト層の輝度は、遷移金属サイト層の輝度の3%以上60%以下であることが好ましい。
上記において、最表面層におけるニッケルの濃度は1原子%以下であり、正極活物質全体におけるニッケルの濃度は、コバルトの濃度の0.05%以上4%以下であることが好ましい。
上記において、最表面層は、極微電子線回折像において空間群Fm−3mまたはFd−3mに属する岩塩型の結晶構造を示す輝点が観察され、かつ空間群R−3mに属する層状岩塩型の結晶構造を示す輝点が観察される領域を有し、内部は、極微電子線回折像において空間群R−3mに属する層状岩塩型の結晶構造を示す輝点が観察される領域を有することが好ましい。
上記において、2価のニッケルイオン、3価のニッケルイオン、2価のコバルトイオン及び4価のコバルトイオンのいずれか一以上に起因するスピン密度が、2.0×1017spins/g以上1.0×1021spins/g以下であることが好ましい。
上記において、正極活物質はアルミニウムを有し、正極活物質全体におけるアルミニウムの濃度は、コバルトの濃度の0.05%以上4%以下であることが好ましい。
上記において、正極活物質の断面についてのエネルギー分散型X線分析において、アルミニウム濃度のピークは表面から中心に向かった深さ5nm以上30nm以下に位置することが好ましい。
また本発明の別の一態様は、正極活物質を有するリチウムイオン二次電池であって、正極活物質はリチウムと、コバルトと、ニッケルと、マグネシウムと、酸素とを有し、正極活物質の最表面層のa軸の格子定数Asurfaceは、内部のa軸の格子定数Acoreよりも大きく、正極活物質の最表面層のc軸の格子定数Csurfaceは、内部のc軸の格子定数Ccoreよりも大きい、リチウムイオン二次電池である。
また本発明の別の一態様は、上記の二次電池を有する電子機器である。
本発明の一態様により、リチウムイオン二次電池に用いることで、充放電サイクルにおける充放電容量の低下が抑制された正極活物質を提供することができる。または、充放電を繰り返しても結晶構造が崩れにくい正極活物質を提供することができる。または、充放電容量が大きい正極活物質を提供することができる。または、安全性又は信頼性の高い二次電池を提供することができる。
また本発明の一態様により、正極活物質、蓄電装置、又はそれらの作製方法を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1Aは正極活物質の断面図、図1B、図1C1および図1C2は正極活物質の断面図の一部である。
図2A1乃至図2C2は正極活物質の断面図の一部である。
図3は正極活物質の断面図である。
図4は正極活物質の充電深度と結晶構造を説明する図である。
図5は結晶構造から計算されるXRDパターンを示す図である。
図6は比較例の正極活物質の充電深度と結晶構造を説明する図である。
図7は結晶構造から計算されるXRDパターンを示す図である。
図8A乃至図8CはXRDから算出される格子定数である。
図9A乃至図9CはXRDから算出される格子定数である。
図10は正極活物質の作製方法を説明する図である。
図11は正極活物質の作製方法を説明する図である。
図12は正極活物質の作製方法を説明する図である。
図13は正極活物質の作製方法を説明する図である。
図14は正極活物質の作製方法を説明する図である。
図15は正極活物質の作製方法を説明する図である。
図16Aおよび図16Bは導電材としてグラフェン化合物を用いた場合の活物質層の断面図である。
図17Aおよび図17Bは二次電池の例を説明する図である。
図18A乃至図18Cは二次電池の例を説明する図である。
図19Aおよび図19Bは二次電池の例を説明する図である。
図20A乃至図20Cはコイン型二次電池を説明する図である。
図21A乃至図21Dは円筒型二次電池を説明する図である。
図22Aおよび図22Bは二次電池の例を説明する図である。
図23A乃至図23Dは二次電池の例を説明する図である。
図24Aおよび図24Bは二次電池の例を説明する図である。
図25は二次電池の例を説明する図である。
図26A乃至図26Cはラミネート型の二次電池を説明する図である。
図27Aおよび図27Bはラミネート型の二次電池を説明する図である。
図28は二次電池の外観を示す図である。
図29は二次電池の外観を示す図である。
図30A乃至図30Cは二次電池の作製方法を説明する図である。
図31A乃至図31Hは電子機器の一例を説明する図である。
図32A乃至図32Cは電子機器の一例を説明する図である。
図33は電子機器の一例を説明する図である。
図34A乃至図34Dは電子機器の一例を説明する図である。
図35A乃至図35Cは、電子機器の一例を示す図である。
図36A乃至図36Cは車両の一例を説明する図である。
図37A乃至図37Dは正極活物質の表面SEM像である。
図38Aは正極活物質の断面TEM像である。図38Bおよび図38Cは図38Aの一部の制限視野電子線回折像である。
図39Aおよび図39Bは正極活物質の極微電子線回折像である。
図40Aは正極活物質の断面TEM像である。図40Bおよび図40Cは図40Aの一部の極微電子線回折像である。
図41Aは正極活物質の断面TEM像である。図41Bおよび図41Cは図41Aの一部の極微電子線回折像である。
図42A乃至図42Cは正極活物質の断面STEM像である。
図43Aは正極活物質の断面STEM像であり図42Bを回転させた図である。図43Bは図43Aの輝度の測定結果である。
図44Aは図43Bからバックグラウンドを補正したグラフである。図44Bは正極活物質の断面STEMの明視野像である。
図45Aは正極活物質の断面HAADF−STEM像である。図45B乃至図45FはEDX面分析の結果である。
図46Aは正極活物質の断面HAADF−STEM像である。図46B乃至図46DはEDX面分析の結果である。
図47Aは正極活物質の断面HAADF−STEM像である。図47B乃至図47EはEDX面分析の結果の明度を反転させた図である。
図48は正極活物質の断面HAADF−STEM像である。
図49Aおよび図49Bは正極活物質のEDX線分析の結果である。
図50Aおよび図50Bは正極活物質のSEM像である。
図51Aおよび図51Bは正極活物質のグレースケール値である。
図52Aおよび図52Bは正極活物質の輝度ヒストグラムである。
図53は正極活物質のXRDパターンである。
図54Aおよび図54Bは図53の一部を拡大したXRDパターンである。
図55は正極活物質のXRDパターンである。
図56Aおよび図56Bは図55の一部を拡大したXRDパターンである。
図57は正極活物質のXRDパターンである。
図58Aおよび図58Bは図57の一部を拡大したXRDパターンである。
図59は正極活物質のXRDパターンである。
図60Aおよび図60Bは図59の一部を拡大したXRDパターンである。
図61Aおよび図61Bは正極活物質のサイクル特性を示すグラフである。
図62Aおよび図62Bは正極活物質のサイクル特性を示すグラフである。
図63Aおよび図63Bは正極活物質のサイクル特性を示すグラフである。
図64Aおよび図64Bは正極活物質のサイクル特性を示すグラフである。
図65Aおよび図65Bは正極活物質のサイクル特性を示すグラフである。
図66Aおよび図66Bは正極活物質のサイクル特性を示すグラフである。
図67Aおよび図67Bは正極活物質のサイクル特性を示すグラフである。
図68Aおよび図68Bは正極活物質のサイクル特性を示すグラフである。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
また本明細書等において結晶面および方向の表記にはミラー指数を用いる。結晶面を示す個別面は( )で表す。結晶面、方向および空間群の表記は、結晶学上、数字に上付きのバーを付すが、本明細書等では出願表記の制約上、数字の上にバーを付す代わりに、数字の前に−(マイナス符号)を付して表現する場合がある。
本明細書等において、偏析とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばB)が空間的に不均一に分布する現象をいう。
また正極活物質の表面とは、上記最表面層を含む表層部および内部等を含む複合酸化物の表面をいうこととする。そのため正極活物質は、作製後に化学吸着した炭酸、ヒドロキシ基等は含まないとする。また正極活物質に付着した電解液、バインダ、導電材、またはこれら由来の化合物も含まないとする。また正極活物質は必ずしもすべてが充放電に寄与するリチウムサイトを有する領域でなくてもよい。
本明細書等において、リチウムと遷移金属を含む複合酸化物が有する層状岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列する岩塩型のイオン配列を有し、遷移金属とリチウムが規則配列して二次元平面を形成するため、リチウムの二次元的拡散が可能である結晶構造をいう。なお一部に陽イオンまたは陰イオンの欠損等の欠陥があってもよく、リチウムイオンの二次元的拡散が可能であればよい。また、層状岩塩型結晶構造は、厳密に言えば、岩塩型結晶の格子が歪んだ構造となっている場合がある。
また本明細書等において、岩塩型の結晶構造とは、陽イオンと陰イオンが交互に配列している構造をいう。なお一部に陽イオンまたは陰イオンの欠損があってもよい。
また本明細書等において混合物とは、複数の材料を混合したものをいう。混合物のうち混合物が有する元素の相互拡散が起きた後のものは複合物といってもよい。一部未反応の材料を有していても複合物といってよい。また正極活物質を複合物、複合酸化物または材料と言い換えてもよい。
また本明細書等において、正極活物質の理論容量とは、正極活物質が有する挿入脱離可能なリチウムが全て脱離した場合の電気量をいう。たとえばLiCoOの理論容量は274mAh/g、LiNiOの理論容量は274mAh/g、LiMnの理論容量は148mAh/gである。
また本明細書等において、挿入脱離可能なリチウムが全て挿入されているときの充電深度を0、正極活物質が有する挿入脱離可能なリチウムが全て脱離したときの充電深度を1ということとする。
一般的に層状岩塩型の結晶構造を有する正極活物質では、遷移金属と酸素からなる層状構造の間のリチウムが減少すると、結晶構造が不安定になる。そのため一般的なコバルト酸リチウムを用いた二次電池では、充電深度0.4、充電電圧4.3V(対極リチウムの場合)、充電容量160mAh/g程度までの充電にとどめる。
これに対して充電深度が0.74以上0.9以下、より詳細には充電深度が0.8以上0.83以下の正極活物質を、高電圧で充電された正極活物質ということとする。そのため、例えばLiCoOにおいて充電容量が219.2mAh/gに充電されていれば、高電圧で充電された正極活物質である。またLiCoOにおいて、25℃環境下で、充電電圧を4.525V以上4.7V以下(対極リチウムの場合)として定電流充電し、その後電流値が0.01C、あるいは定電流充電時の電流値の1/5から1/100程度となるまで定電圧充電した後の正極活物質も、高電圧で充電された正極活物質ということとする。なおCはCapacity rateの略であり、1Cは二次電池の充放電容量を1時間で完全充電または完全放電させる電流の大きさをいう。
正極活物質については、リチウムイオンを挿入することを放電という。また充電深度が0.06以下の正極活物質、または高電圧で充電された状態から充電容量の90%以上の容量を放電した正極活物質を、十分に放電された正極活物質ということとする。例えばLiCoOにおいて充電容量が219.2mAh/gならば高電圧で充電された状態であり、ここから充電容量の90%である197.3mAh/g以上を放電した後の正極活物質は、十分に放電された正極活物質である。また、LiCoOにおいて、25℃環境下で電池電圧が3V以下(対極リチウムの場合)となるまで定電流放電した後の正極活物質も、十分に放電された正極活物質ということとする。
また本明細書等において、本発明の一態様の正極および正極活物質用いた二次電池として、対極にリチウム金属を用いる例を示す場合があるが、本発明の一態様の二次電池はこれに限らない。負極に他の材料、例えば黒鉛、チタン酸リチウム等を用いてもよい。本発明の一態様の正極および正極活物質の、充放電を繰り返しても結晶構造が崩れにくく、良好なサイクル特性を得られる等の性質は、負極の材料に影響されない。また本発明の一態様の二次電池について、対極リチウムで充電電圧4.7V程度の一般的な充電電圧よりも高い電圧で充放電する例を示す場合があるが、より低い電圧で充放電をしてもよい。より低い電圧で充放電する場合は本明細書等で示すよりもさらにサイクル特性がよくなることが見込まれる。
また本明細書等において、特に記載ない限り充電電圧および放電電圧は対極リチウムの場合の電圧を述べる。ただし同じ正極であっても、負極に用いる材料によって二次電池の充放電電圧は変化する。たとえば黒鉛の電位は約0.1V(vs Li/Li)であるので、負極黒鉛の場合は対極リチウムの場合よりも充放電電圧が約0.1V低くなる。
(実施の形態1)
本実施の形態では、図1乃至図9を用いて本発明の一態様の正極活物質について説明する。
図1Aは本発明の一態様である正極活物質100の断面図である。図1A中のA−B付近を拡大した図を図1B、図1C1および図1C2に示す。図1A中のC−D付近を拡大した図を図2A1、図2A2、図2B1、図2B2、図2C1および図2C2に示す。
図1A乃至図2C2に示すように、正極活物質100は、表層部100aと、内部100bを有する。これらの図中に破線で表層部100aと内部100bの境界を示す。また図1Aに一点破線で結晶粒界の一部を示す。また正極活物質100は、表層部100aの一部に最表面層100cを有する。図1Bに二点破線で表層部100aの中の最表面層100cの境界を示す。
本明細書等において、正極活物質の表面から内部に向かって10nm程度までの領域を表層部100aと呼ぶ。ひびやクラックにより生じた面も表面といってよい。表層部100aを、表面近傍、または表面近傍領域またはシェルなどといってもよい。また正極活物質の表層部100aより深い領域を、内部100bと呼ぶ。内部100bを、内部領域またはコアなどといってもよい。また正極活物質の表層部100aのうち、表面から内部100bに向かって3nmまでの領域を最表面層100cと呼ぶ。
<各領域と格子定数>
本発明の一態様の正極活物質100は、表層部100aおよび内部100bともに結晶構造を有することが好ましい。また表層部100aの結晶構造のa軸の格子定数の方が、内部100bの結晶構造のa軸の格子定数Acoreよりも大きいことが好ましい。また表層部100aの結晶構造のb軸の格子定数の方が、内部100bの結晶構造のb軸の格子定数Bcoreよりも大きいことが好ましい。また表層部100aの結晶構造のc軸の格子定数の方が、内部100bの結晶構造のc軸の格子定数Ccoreよりも大きいことが好ましい。
さらに正極活物質100の最表面層100cも結晶構造を有することが好ましい。また最表面層100cの結晶構造のa軸の格子定数Asurfaceの方が、表層部100aのa軸の格子定数および内部100bのa軸の格子定数Acoreよりも大きいことが好ましい。また最表面層100cの結晶構造のb軸の格子定数Bsurfaceの方が、表層部100aのb軸の格子定数および内部100bのb軸の格子定数Bcoreよりも大きいことが好ましい。また最表面層100cの結晶構造のc軸の格子定数Csurfaceの方が、表層部100aのc軸の格子定数および内部100bのc軸の格子定数Ccoreよりも大きいことが好ましい。
また最表面層のa軸の格子定数Asurfaceから、内部のa軸の格子定数Acoreを引いた差をΔとする。同様に最表面層のc軸の格子定数Csurfaceから、内部のc軸の格子定数Ccoreを引いた差をΔとする。このときΔよりもΔが大きいことが好ましい。
また下記数式1および数式2に示すように、ΔをAcoreで割った値を変化率Rとする。またΔをCcoreで割った値を変化率Rとする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
このとき変化率Rは0を超えて0.12以下が好ましく、0.05以上0.07以下がより好ましい。または0を超えて0.07以下が好ましい。または0.05以上0.12以下が好ましい。
また変化率Rは0を超えて0.18以下が好ましく、0.09以上0.12以下がより好ましい。または0を超えて0.12以下が好ましい。または0.09以上0.18以下が好ましい。
格子定数は、領域間で比較しやすくするために、同じ空間群に属するものとして算出する。
たとえばいずれの領域も同じ結晶構造、同じ空間群で、ユニットセルあたりの原子数も同じとなるモデルとして用いて算出することが好ましい。たとえばR−3mの層状岩塩型をFm−3mで記述することはできないが、Fm−3mの岩塩型をR−3mで表現することは可能である。そのためたとえば内部100bがR−3mの層状岩塩型、表層部100aおよび最表面層100cがFm−3mの岩塩型の特徴を有する場合は、いずれも空間群R−3mの層状岩塩型の結晶構造をモデルとして用いて格子定数を算出すると、各領域の格子定数の比較が容易になる。なお空間群R−3mの層状岩塩型の結晶構造ではa軸とb軸の長さが等しくなるため、以降では空間群R−3mの層状岩塩型については代表してa軸について述べる。
また、全ての領域を同じ空間群で記述することが難しくても、陰イオンのパッキングがほぼ共通する場合は、陰イオンの数が同じモデルは同等の対称性を有するということができる。このときは、格子定数に代えて陰イオン間の距離を領域間の比較に用いてもよい。たとえば岩塩型、層状岩塩型およびスピネル型はいずれも陰イオンが立方最密充填構造(ccp配列)であり、陰イオンのパッキングがほぼ共通する構造といえる。このような場合は、空間群が異なっても、対称性が近しいものとして比較することができる。陰イオン間の距離はたとえばXRDパターンをRietveld解析した結果から算出することができる。
以降では各領域の格子定数の算出について空間群R−3mの層状岩塩型の結晶構造をモデルとして用いる例について説明するが、これに限らない。正極活物質100の材料によって最適な構造を選定することが好ましい。たとえば正極活物質100が有する結晶構造のうち最も大きな体積を占める結晶構造を採用することが好ましい。層状岩塩型の他には、たとえば岩塩型、スピネル型、オリビン型等の結晶構造を用いることができる。
表層部100a、内部100b、および最表面層100cが結晶構造を有するか否かの判断、および結晶構造を有する場合の格子定数の決定は、たとえば断面TEM、断面STEM、および制限視野電子線回折、極微電子線回折をはじめとする電子線回折等により行うことができる。
断面TEM像、断面STEM像等において規則的な原子の配列が観察できれば、結晶構造を有するということができる。また電子線回折像等において規則的なスポットを有する回折パターンが観察できれば、結晶構造を有するということができる。
制限視野電子線回折は20nm程度の小さな領域、極微電子線回折は1nm程度のさらに小さな領域について結晶構造の解析が可能であり、表層部100aおよび最表面層100cの格子定数の決定に好適である。
ただしこれらの電子線回折法ではカメラ長の歪み等に起因する測定誤差が生じる場合がある。そのため電子線回折法により得られた格子定数の有効数字は2桁とすることが好ましい。またはこれらの電子線回折法から得られた格子定数を、粉末XRDから得られた格子定数、または文献値等を参照して補正してもよい。
たとえば、正極活物質100では内部100bが体積の大半を占める。そのため粉末XRDにより求めた正極活物質100全体の格子定数は、電子線回折により求めた内部100bの格子定数と等しいと考えることができる。そこで、電子線回折から得られた内部100b、表層部100aおよび最表面層100cの格子定数の比と、粉末XRDから得られた格子定数から、補正された表層部100aおよび最表面層100cの格子定数を求めることができる。
表層部100aは内部100bよりも後述する添加物元素の濃度が高いことが好ましい。また添加物は濃度勾配を有していることが好ましい。また添加物元素が複数ある場合は、添加物元素によって、濃度のピークの表面からの深さが異なっていることが好ましい。
たとえばある添加物元素Xは図1C1にグラデーションで示すように、内部100bから表面に向かって高くなる濃度勾配を有することが好ましい。このような濃度勾配を有することが好ましい添加物元素Xとして、例えばマグネシウム、フッ素、チタン、ケイ素、リン、ホウ素およびカルシウム等が挙げられる。
別の添加物元素Yは図1C2にグラデーションで示すように、濃度勾配を有しかつ図1C1よりも深い領域に濃度のピークを有することが好ましい。濃度のピークは表層部100aに存在してもよいし、表層部100aより深くてもよい。最表面層100cではない領域に濃度のピークを有することが好ましい。たとえば表面から5nm以上30nmまでの領域にピークを有することが好ましい。このような濃度勾配を有することが好ましい添加物元素Yとして、例えばアルミニウムおよびマンガンが挙げられる。
また添加物元素の上述のような濃度勾配に起因して、内部100bから、表層部100aおよび最表面層100cに向かって結晶構造が連続的に変化することが好ましい。
たとえば内部100bが層状岩塩型の結晶構造を有している場合について説明する。層状岩塩型の結晶構造の特徴の一つは、陰イオンの立方最密充填構造の間に、遷移金属M層と、リチウム層を交互に有することである。そのため内部100bは断面TEM等で、強い輝度で観察される原子番号の大きい遷移金属M層と、弱い輝度で観察されるリチウム層が交互に観察される。なお陰イオンの酸素およびフッ素は、いずれも原子番号が小さいためリチウムと同程度の輝度で観察される。これらの原子番号の小さい元素は明瞭な輝点とならず、バックグラウンドとわずかな明度の差があるのみの場合もある。
本明細書等では、断面TEM像等において強い輝度で観察される層と、弱い輝度で観察される層を交互に有する場合、層状岩塩型の結晶構造の特徴を有するとする。なおこの特徴は、層状岩塩型の結晶構造におけるc軸に垂直な方向からみた場合にみられるものである。層状岩塩型の結晶構造を有しても、その他の方向からみた場合はこの特徴がみられない場合がある。
一方最表面層100cでは添加物元素の濃度が高いため、リチウムサイトの一部に添加物元素が入る。なおリチウムサイトは酸素等の陰イオンに囲まれているため、添加物の中でもマグネシウム、アルミニウム等の金属元素が入りやすい。またリチウムサイトの一部に遷移金属M、たとえばコバルトが入る場合がある。これらの金属はいずれもリチウムよりも原子番号が大きいため、断面TEM等ではリチウムより強い輝度で観察される。
なお遷移金属Mサイトの一部に添加物元素またはリチウムが入る場合もある。この場合断面TEM等では遷移金属Mよりも弱い輝度で観察される。
このように陽イオンの置換が多く生じると、リチウムサイトと遷移金属サイトとの違いのない岩塩型の結晶構造の特徴を有するようになる。岩塩型の結晶構造の特徴を有することは、添加物元素が十分な濃度で存在していることを示唆するともいえる。添加物元素が十分な濃度で存在していると、高電圧で充電する際に生じうる遷移金属Mの溶出、および酸素の離脱等を抑制できる。そのため電池特性、特に連続充電耐性が向上し、安全性および信頼性の高い二次電池とすることができる。
一方で最表面層100cは、内部100bと同じ層状岩塩型の結晶構造の特徴も有していることが好ましい。岩塩型の結晶構造のみで表面が覆われると、リチウムの拡散経路が阻害され、充放電の際に内部抵抗が上昇する恐れがあるためである。同じ理由で、岩塩型の結晶構造の特徴を有するのは、表面から3nm程度に限られることが好ましい。
そのため最表面層100cは、層状岩塩型の結晶構造の特徴と、岩塩型の結晶構造の特徴の両方を有していることが好ましい。すなわち最表面層100cは、断面TEM像等において強い輝度で観察される層と、弱い輝度で観察される層を交互に有する層状岩塩型の結晶構造を有し、さらにリチウムサイトの一部にリチウムより原子番号の大きい金属を有することが好ましい。
最表面層100cのリチウムサイトの一部に、添加物元素が好ましい濃度で存在していると、断面TEM像においてリチウムサイト層の輝度が遷移金属Mサイト層の輝度の3%以上60%以下となる。より好ましくは4%以上50%以下となる。さらに好ましくは6%以上40%以下となる。または3%以上50%以下が好ましい。または3%以上40%以下が好ましい。または4%以上60%以下が好ましい。または4%以上40%以下が好ましい。または6%以上60%以下が好ましい。または6%以上50%以下が好ましい。なお比較に用いるリチウムサイト層および遷移金属Mサイト層は遷移金属Mの配列と平行に5nm以上の幅を有していることが好ましい。
断面TEM等における輝度は、たとえば断面TEMの暗視野像中のピクセルの輝度を積算することで算出できる。同様に遷移金属Mサイト層およびリチウムサイト層の輝度は、これらの層と平行にピクセルの輝度を積算することで算出できる。具体的には画像を、黒を輝度0、白を輝度255とするグレースケールとし各ピクセルの輝度を1列ずつ積算すればよい。また金属サイト層の輝度の比較を容易にするために、酸素等の原子番号の小さい元素に由来する輝度を除く補正をしてもよい。
なお断面TEM等の試料は20nmから200nm程度の厚さを有する。そのため正極活物質100の表面に凹凸がある場合、表面から浅い部分では正確な輝度が得られない場合がある。そのため輝度を比較する場合は、輝度が安定して得られる部分同士で行う必要がある。たとえば遷移金属Mサイト層の輝度の最大値を1としたとき、0.7以上の輝度を有する遷移金属Mサイト層は、安定した輝度が得られているとする。
なお本明細書等において、断面TEM像、断面STEM像等における正極活物質100の表面とは、最初にリチウムより原子番号の大きい金属元素が観察される面とする。より詳細には最初にリチウムより原子番号の大きい金属元素の原子核、つまり断面TEM像等における輝度のピークが存在する点とする。
なお、正極活物質の最表面層100cの少なくとも一部が上述のように、層状岩塩型の結晶構造の特徴と、岩塩型の結晶構造の特徴の両方を有していればよい。正極活物質の表面に露出する結晶面がR−3mの(001)面と概略平行であれば上記の特徴が観察しやすいが、結晶面によっては、これらの特徴が明瞭に観察できない場合がある。そのため遷移金属サイト層とリチウムサイト層の輝度比が必ずしも上記の範囲内でなくてもよい。
また、電子線回折によっても層状岩塩型の結晶構造と岩塩型の結晶構造の特徴を分析することができる。
岩塩型は、陽イオンが1種類であって対称性が高い。一方層状岩塩型は2種類の陽イオンが規則配列しているために岩塩型よりも対称性が低い。そのため、特定の面方位に相当する輝点が岩塩型の2倍存在する。
また岩塩型と層状岩塩型の両方の特徴を有する結晶構造の場合、回折像では、強い輝度の輝点と、弱い輝度の輝点とが交互に配列する面方位が存在する。岩塩型と層状岩塩型で共通する輝点は強い輝度となり、層状岩塩型のみで生じる輝点は弱い輝度となる。
なお遷移金属M、特にコバルトおよびニッケルは正極活物質100の全体に均一に固溶していることが好ましい。なお一部の遷移金属M、たとえばニッケルの濃度が低い場合、XPS、XPS等の分析において検出下限以下となる場合がある。
たとえばニッケルの原子数がコバルトの原子数と比較して2原子%以下であるならば、リチウム複合酸化物中のニッケルは0.5原子%以下となる。一方XPSおよびEDXの検出下限はおおむね1原子%程度である。そのためニッケルが正極活物質100の全体に均一に固溶していれば、XPS、EDX等の分析方法で検出下限以下となりうる。この場合検出下限以下となることは、ニッケルの濃度が1原子%以下であること、また正極活物質100の全体に固溶していることを示唆するともいえる。
一方で、ICP−MS等を用いれば濃度が1原子%以下でも遷移金属を定量することが可能である。
なお正極活物質100の内部100bに広く固溶し、濃度勾配を有さない添加物元素を有していてもよい。また正極活物質100が有する遷移金属Mの一部、たとえばマンガンが内部100bから表面に向かって濃くなる濃度勾配を有していてもよい。
<含有元素>
正極活物質100は、リチウムと、遷移金属Mと、酸素と、添加物元素と、を有する。正極活物質100はLiMOで表される複合酸化物に添加物元素が添加されたものといってもよい。ただし本発明の一態様の正極活物質はLiMOで表されるリチウム複合酸化物の結晶構造を有すればよく、その組成が厳密にLi:M:O=1:1:2に限定されるものではない。
正極活物質100が有する遷移金属Mとしては、リチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。たとえばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり正極活物質100が有する遷移金属としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。つまり正極活物質100は、コバルト酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、ニッケル−マンガン−コバルト酸リチウム等の、リチウムと遷移金属Mを含む複合酸化物を有することができる。
特に正極活物質100が有する遷移金属Mとしてコバルトを75原子%以上、好ましくは90原子%以上、さらに好ましくは95原子%以上用いると、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するなど利点が多い。また遷移金属Mとして上記の範囲のコバルトに加えてニッケルを有すると、コバルトと酸素の八面体からなる層状構造のずれを抑制する場合がある。そのため特に高温での充電状態において結晶構造がより安定になる場合があり好ましい。
なお遷移金属Mとして、必ずしもマンガンを含まなくてもよい。マンガンを実質的に含まない正極活物質100とすることで、合成が比較的容易で取り扱いやすく、優れたサイクル特性を有するといった上記の利点がより大きくなる場合がある。正極活物質100に含まれるマンガンの重量はたとえば600ppm以下、より好ましくは100ppm以下であることが好ましい。
一方、正極活物質100が有する遷移金属Mとしてニッケルを33原子%以上、好ましくは60原子%以上、さらに好ましくは80原子%以上用いると、コバルトが多い場合と比較して原料が安価になる場合があり、また重量あたりの充放電容量が増加する場合があり好ましい。
なお遷移金属Mとして、必ずしもニッケルを含まなくてもよい。
正極活物質100が有する添加物元素としては、マグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素のうち少なくとも一を用いることが好ましい。これらの添加物元素が、後述するように正極活物質100が有する結晶構造をより安定化させる場合がある。つまり正極活物質100は、マグネシウムおよびフッ素が添加されたコバルト酸リチウム、マグネシウム、フッ素およびチタンが添加されたコバルト酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト酸リチウム、マグネシウムおよびフッ素が添加されたコバルト−アルミニウム酸リチウム、ニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−コバルト−アルミニウム酸リチウム、マグネシウムおよびフッ素が添加されたニッケル−マンガン−コバルト酸リチウム等を有することができる。なお本明細書等において添加物元素は混合物、原料の一部、不純物元素などといってもよい。
なお添加物元素として、必ずしもマグネシウム、フッ素、アルミニウム、チタン、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リンまたはホウ素を含まなくてもよい。
本発明の一態様の正極活物質100では、充電により正極活物質100からリチウムが抜けても、コバルトと酸素の八面体からなる層状構造が壊れないよう、添加物の濃度の高い表層部100a、すなわち粒子の外周部により補強されている。
また添加物元素の濃度勾配は、正極活物質100の表層部100a全体において同じような勾配であることが好ましい。不純物濃度の高さに由来する補強が表層部100aに均質に存在することが好ましいといってもよい。表層部100aの一部に補強があっても、補強のない部分が存在すれば、ない部分に応力が集中する恐れがある。粒子の一部に応力が集中すると、そこからクラック等の欠陥が生じ、正極活物質の割れおよび充放電容量の低下につながる恐れがある。
なお本明細書等において均質とは、複数の元素(例えばA,B,C)からなる固体において、ある元素(例えばA)が特定の領域に同様の特徴を有して分布する現象をいう。なお特定の領域同士の元素の濃度が実質的に同一であればよい。たとえば特定領域同士の元素濃度の差が10%以内であればよい。特定の領域としてはたとえば表層部、表面、凸部、凹部、内部などが挙げられる。
ただし必ずしも、正極活物質100の表層部100a全てにおいて全添加物元素の濃度勾配が均質でなくてもよい。図1AのC−D付近の添加物元素Xの分布の例を図2A1、図2B1および図2C1に示す。C−D付近の添加物元素Yの分布の例を図2A2、図2B2および図2C2に示す。
例えば図2A1および図2A2に示すように、添加物元素Xおよび添加物元素Yのどちらも存在しない表層部100aの領域があってもよい。また図2B1および図2B2に示すように、添加物元素Xが存在するが、添加物元素Yが存在しない領域があってもよい。また図2C1および図2C2に示すように、添加物元素Xは存在しないが、添加物元素Yが存在する領域があってもよい。図2C2における添加物元素Yは、図1C2と同様に最表面層ではない領域にピークを有することが好ましい。たとえば表面から3nmを超えて30nmまでの領域にピークを有することが好ましい。
また正極活物質100は図1Aに示すような、埋め込み部102および凸部103を有していてもよい。埋め込み部102および凸部103に、内部100bまたは表層部100aよりも高濃度に添加物元素が存在していてもよい。
正極活物質100は凹部、クラック、窪み、断面V字形などを有する場合がある。これらは欠陥の一つであり、充放電を繰り返すとこれらから遷移金属Mの溶出、結晶構造の崩れ、本体の割れ、酸素の離脱などが生じる恐れがある。しかしこれらを埋め込むように埋め込み部102が存在すると、遷移金属Mの溶出などを抑制することができる。そのため信頼性およびサイクル特性の優れた正極活物質100とすることができる。
また正極活物質100は添加物元素が偏在する領域として凸部103を有していてもよい。
上述したように正極活物質100が有する添加物元素は、過剰であるとリチウムの挿入および離脱に悪影響が出る恐れがある。また二次電池としたときに内部抵抗の上昇、充放電容量の低下等を招く恐れもある。一方、不足であると表層部100a全体に分布せず、結晶構造の劣化を抑制する効果が不十分になる恐れがある。このように不純物元素(添加物元素ともいう)は正極活物質100において適切な濃度である必要があるが、その調整は容易ではない。
そのため正極活物質100が、不純物元素が偏在する領域を有していると、過剰な不純物の一部が正極活物質100の内部100bから除かれ、内部100bにおいて適切な不純物濃度とすることができる。これにより二次電池としたときの内部抵抗の上昇、充放電容量の低下等を抑制することができる。二次電池の内部抵抗の上昇を抑制できることは、特に高レートでの充放電、たとえば2C以上での充放電において極めて好ましい特性である。
また不純物元素が偏在している領域を有する正極活物質100では、作製工程においてある程度過剰に不純物を混合することが許容される。そのため生産におけるマージンが広くなり好ましい。
なお本明細書等において、偏在とはある元素の濃度が他と異なることをいう。偏析、析出、不均一、偏り、濃度が高いまたは濃度が低い、などといってもよい。
添加物元素Xの一つであるマグネシウムは2価であり、層状岩塩型の結晶構造における遷移金属サイトよりもリチウムサイトに存在する方が安定であるため、リチウムサイトに入りやすい。マグネシウムが表層部100aのリチウムサイトに適切な濃度で存在することで、層状岩塩型の結晶構造を保持しやすくできる。またマグネシウムが存在することで、高電圧充電時のマグネシウムの周囲の酸素の離脱を抑制することができる。マグネシウムは、適切な濃度であれば充放電に伴うリチウムの挿入および離脱に悪影響を及ぼさず好ましい。しかしながら、過剰であるとリチウムの挿入および離脱に悪影響が出る恐れがある。そのため後述するように、表層部100aはたとえばマグネシウムよりも遷移金属Mの濃度が高いことが好ましい。
添加物元素Yの一つであるアルミニウムは3価であり、層状岩塩型の結晶構造における遷移金属サイトに存在しうる。アルミニウムは周囲のコバルトの溶出を抑制することができる。またアルミニウムは酸素との結合力が強いため、アルミニウムの周囲の酸素の離脱を抑制することができる。そのため添加物元素としてアルミニウムを有すると充放電を繰り返しても結晶構造が崩れにくい正極活物質100とすることができる。
フッ素は1価の陰イオンであり、表層部100aにおいて酸素の一部がフッ素に置換されていると、リチウム離脱エネルギーが小さくなる。これは、リチウム脱離に伴うコバルトイオンの価数の変化が、フッ素を有さない場合は3価から4価、フッ素を有する場合は2価から3価となり、酸化還元電位が異なることによる。そのため正極活物質100の表層部100aにおいて酸素の一部がフッ素に置換されていると、フッ素近傍のリチウムイオンの離脱及び挿入がスムースに起きやすいと言える。そのため二次電池に用いたときに充放電特性、レート特性等が向上し好ましい。
チタン酸化物は超親水性を有することが知られている。そのため、表層部100aにチタン酸化物を有する正極活物質100とすることで、極性の高い溶媒に対して濡れ性がよくなる可能性がある。二次電池としたときに正極活物質100と、極性の高い電解液との界面の接触が良好となり、内部抵抗の上昇を抑制できる可能性がある。
二次電池の充電電圧の上昇に伴い、正極の電圧は一般的に上昇する。本発明の一態様の正極活物質は、高い電圧においても安定な結晶構造を有する。充電状態において正極活物質の結晶構造が安定であることにより、充放電の繰り返しに伴う充放電容量の低下を抑制することができる。
また、二次電池のショートは二次電池の充電動作や放電動作における不具合を引き起こすのみでなく、発熱および発火を招く恐れがある。安全な二次電池を実現するためには、高い充電電圧においてもショート電流が抑制されることが好ましい。本発明の一態様の正極活物質100は、高い充電電圧においてもショート電流が抑制される。そのため高い充放電容量と安全性と、を両立した二次電池とすることができる。
添加物元素の濃度勾配は、例えば、エネルギー分散型X線分光法(EDX:Energy Dispersive X−ray Spectroscopy)、EPMA(電子プローブ微小分析)等を用いて評価できる。EDX測定のうち、領域内を走査しながら測定し、領域内を2次元に評価することをEDX面分析と呼ぶ。また線状に走査しながら測定し、原子濃度について正極活物質粒子内の分布を評価することを線分析と呼ぶ。さらにEDXの面分析から、線状の領域のデータを抽出したものを線分析と呼ぶ場合もある。またある領域について走査せずに測定することを点分析と呼ぶ。
EDX面分析(例えば元素マッピング)により、正極活物質100の最表面層100cを含む表層部100a、内部100bおよび結晶粒界近傍等における、添加物元素の濃度を定量的に分析することができる。また、EDX線分析により、添加物元素の濃度分布および最大値を分析することができる。
添加物元素としてマグネシウムを有する正極活物質100についてEDX線分析をしたとき、表層部100aのマグネシウム濃度のピークは、正極活物質100の表面から中心に向かった深さ3nmまで、つまり最表面層100cに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
また添加物元素としてマグネシウムおよびフッ素を有する正極活物質100では、フッ素の分布は、マグネシウムの分布と重畳することが好ましい。そのためEDX線分析をしたとき、表層部100aのフッ素濃度のピークは、正極活物質100の表面から中心に向かった深さ3nmまで、つまり最表面層100cに存在することが好ましく、深さ1nmまでに存在することがより好ましく、深さ0.5nmまでに存在することがさらに好ましい。
なお、全ての添加物元素が同様の濃度分布でなくてもよい。たとえば正極活物質100が添加物元素としてアルミニウムを有する場合は上述したようにマグネシウムおよびフッ素と若干異なる分布となっていることが好ましい。たとえばEDX線分析をしたとき、表層部100aのアルミニウム濃度のピークよりも、マグネシウム濃度のピークが表面に近いことが好ましい。例えばアルミニウム濃度のピークは正極活物質100の表面から中心に向かった深さ0.5nm以上50nm以下に存在することが好ましく、深さ5nm以上30nm以下に存在することがより好ましい。または0.5nm以上30nm以下に存在することが好ましい。または5nm以上50nm以下に存在することが好ましい。
また正極活物質100について線分析または面分析をしたとき、表層部100aにおける不純物元素Iと遷移金属Mの原子数の比(I/M)は0.05以上1.00以下が好ましい。さらに不純物元素がチタンである場合、チタンと遷移金属Mの原子数の比(Ti/M)は0.05以上0.4以下が好ましく、0.1以上0.3以下がより好ましい。また不純物元素がマグネシウムである場合、マグネシウムと遷移金属Mの原子数の比(Mg/M)は0.4以上1.5以下が好ましく、0.45以上1.00以下がより好ましい。また不純物元素がフッ素である場合、フッ素と遷移金属Mの原子数の比(F/M)は0.05以上1.5以下が好ましく、0.3以上1.00以下がより好ましい。
なおEDX線分析結果における正極活物質100の表面は、たとえば以下のように推定することができる。正極活物質100の内部100bにおいて均一に存在する元素、たとえば酸素またはコバルト等の遷移金属Mについて、内部100bの検出量の1/2となった点を表面とする。
正極活物質100は複合酸化物であるので、酸素の検出量を用いて表面を推定することが好ましい。具体的には、まず内部100bの酸素の検出量が安定している領域から酸素濃度の平均値Oaveを求める。このとき表面より外に化学吸着またはバックグラウンドによると考えられる酸素Obackgroundが検出される場合は、測定値からObackgroundを減じて酸素濃度の平均値Oaveとすることができる。この平均値Oaveの1/2の値、つまり1/2Oaveに最も近い測定値を示した測定点を、正極活物質の表面であると推定することができる。
また正極活物質100が有する遷移金属Mを用いても表面を推定することができる。たとえば遷移金属Mの95%以上がコバルトである場合は、コバルトの検出量を用いて上記と同様に表面を推定することができる。または複数の遷移金属Mの検出量の和を用いて同様に推定することができる。遷移金属Mの検出量は化学吸着の影響を受けにくい点で、表面の推定に好適である。
また正極活物質100について線分析または面分析をしたとき、結晶粒界近傍における添加物元素Iと遷移金属Mの比(I/M)は0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または020以上0.30以下が好ましい。または020以上0.20以下が好ましい。または025以上0.50以下が好ましい。または025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
たとえば添加物元素がマグネシウム、遷移金属Mがコバルトであるときは、マグネシウムとコバルトの原子数の比(Mg/Co)は、0.020以上0.50以下が好ましい。さらには0.025以上0.30以下が好ましい。さらには0.030以上0.20以下が好ましい。または0.020以上0.30以下が好ましい。または0.020以上0.20以下が好ましい。または0.025以上0.50以下が好ましい。または0.025以上0.20以下が好ましい。または0.030以上0.50以下が好ましい。または0.030以上0.30以下が好ましい。
また正極活物質100は、表面の少なくとも一部に被膜を有していてもよい。図3に被膜104を有する正極活物質100の例を示す。
被膜104はたとえば充放電に伴い電解液の分解物が堆積して形成されたものであることが好ましい。特に高電圧の充電を繰り返す場合、正極活物質100の表面に電解液由来の被膜を有することで、充放電サイクル特性が向上することが期待される。これは正極活物質表面のインピーダンスの上昇を抑制する、または遷移金属Mの溶出を抑制する、等の理由による。被膜104はたとえば炭素、酸素およびフッ素を有することが好ましい。さらに電解液の一部にLiBOB、および/またはSUN(スベロニトリル)を用いた場合などは良質な被膜を得られやすい。そのため、被膜104はホウ素および/または窒素を有すると、良質な被膜となりやすくより好ましい。また被膜104は正極活物質100の全てを覆っていなくてもよい。
<結晶構造>
コバルト酸リチウム(LiCoO)などの層状岩塩型の結晶構造を有する材料は、放電容量が高く、二次電池の正極活物質として優れることが知られている。層状岩塩型の結晶構造を有する材料として例えば、LiMOで表される複合酸化物が挙げられる。
遷移金属化合物におけるヤーン・テラー効果は、遷移金属のd軌道の電子の数により、その効果の強さが異なることが知られている。
ニッケルを有する化合物においては、ヤーン・テラー効果により歪みが生じやすい場合がある。よって、LiNiOにおいて高電圧における充放電を行った場合、歪みに起因する結晶構造の崩れが生じる懸念がある。LiCoOにおいてはヤーン・テラー効果の影響が小さいことが示唆され、高電圧で充電されたときの耐性がより優れる場合があり好ましい。
図4乃至図7を用いて、正極活物質について説明する。図4乃至図7では、正極活物質が有する遷移金属Mとしてコバルトを用いる場合について述べる。
<従来の正極活物質>
図6に示す正極活物質は、後述する作製方法にてフッ素およびマグネシウムが添加されないコバルト酸リチウム(LiCoO)である。図6に示すコバルト酸リチウムは、非特許文献1および非特許文献2等で述べられているように、充電深度によって結晶構造が変化する。
図6に示すように、充電深度0(放電状態)であるコバルト酸リチウムは、空間群R−3mの結晶構造を有する領域を有し、リチウムが8面体(Octahedral)サイトを占有し、ユニットセル中にCoO層が3層存在する。そのためこの結晶構造を、O3型結晶構造と呼ぶ場合がある。なお、CoO層とはコバルトに酸素が6配位した8面体構造が、稜共有の状態で平面に連続した構造をいうこととする。
また充電深度1のときは、空間群P−3m1の結晶構造を有し、ユニットセル中にCoO層が1層存在する。そのためこの結晶構造を、O1型結晶構造と呼ぶ場合がある。
また充電深度が0.8程度のときのコバルト酸リチウムは、空間群R−3mの結晶構造を有する。この構造は、P−3m1(O1)のようなCoOの構造と、R−3m(O3)のようなLiCoOの構造と、が交互に積層された構造ともいえる。そのためこの結晶構造を、H1−3型結晶構造と呼ぶ場合がある。なお、実際にはH1−3型結晶構造は、ユニットセルあたりのコバルト原子の数が他の構造の2倍となっている。しかし図6をはじめ本明細書では、他の結晶構造と比較しやすくするためH1−3型結晶構造のc軸をユニットセルの1/2にした図で示すこととする。
H1−3型結晶構造は一例として、非特許文献3に記載があるように、ユニットセルにおけるコバルトと酸素の座標を、Co(0、0、0.42150±0.00016)、O(0、0、0.27671±0.00045)、O(0、0、0.11535±0.00045)と表すことができる。OおよびOはそれぞれ酸素原子である。このようにH1−3型結晶構造は、1つのコバルトおよび2つの酸素を用いたユニットセルにより表される。一方、後述するように、本発明の一態様のO3’型の結晶構造は好ましくは、1つのコバルトおよび1つの酸素を用いたユニットセルにより表される。これは、O3’の構造の場合とH1−3型構造の場合では、コバルトと酸素との対称性が異なり、O3’の構造の方が、H1−3型構造に比べてO3の構造からの変化が小さいことを示す。正極活物質が有する結晶構造をいずれのユニットセルを用いて表すのがより好ましいか、の選択は例えば、XRDのリートベルト解析において、GOF(goodness of fit)の値がより小さくなるように選択すればよい。
充電電圧がリチウム金属の酸化還元電位を基準に4.6V以上になるような高電圧の充電、あるいは充電深度が0.8以上になるような深い深度の充電と、放電とを繰り返すと、コバルト酸リチウムはH1−3型結晶構造と、放電状態のR−3m(O3)の構造と、の間で結晶構造の変化(つまり、非平衡な相変化)を繰り返すことになる。
しかしながら、これらの2つの結晶構造は、CoO層のずれが大きい。図6に点線および矢印で示すように、H1−3型結晶構造では、CoO層がR−3m(O3)から大きくずれている。このようなダイナミックな構造変化は、結晶構造の安定性に悪影響を与えうる。
さらに体積の差も大きい。同数のコバルト原子あたりで比較した場合、H1−3型結晶構造と放電状態のO3型結晶構造の体積の差は3.0%以上である。
加えて、H1−3型結晶構造が有する、P−3m1(O1)のようなCoO層が連続した構造は不安定である可能性が高い。
そのため、高電圧の充放電を繰り返すとコバルト酸リチウムの結晶構造は崩れていく。結晶構造の崩れが、サイクル特性の悪化を引き起こす。これは、結晶構造が崩れることで、リチウムが安定して存在できるサイトが減少し、またリチウムの挿入脱離が難しくなるためである。
<本発明の一態様の正極活物質>
≪結晶構造≫
本発明の一態様の正極活物質100は、高電圧の充放電の繰り返しにおいて、CoO層のずれを小さくすることができる。さらに、体積の変化を小さくすることができる。よって、本発明の一態様の正極活物質は、優れたサイクル特性を実現することができる。また、本発明の一態様の正極活物質は、高電圧の充電状態において安定な結晶構造を取り得る。よって、本発明の一態様の正極活物質は、高電圧の充電状態を保持した場合において、ショートが生じづらい場合がある。そのような場合には安全性がより向上するため、好ましい。
本発明の一態様の正極活物質では、十分に放電された状態と、高電圧で充電された状態における、結晶構造の変化および同数の遷移金属M原子あたりで比較した場合の体積の差が小さい。
正極活物質100の充放電前後の結晶構造を、図4に示す。正極活物質100はリチウムと、遷移金属Mとしてコバルトと、酸素と、を有する複合酸化物である。上記に加えて添加物としてマグネシウムを有することが好ましい。また添加物としてフッ素を有することが好ましい。
図4の充電深度0(放電状態)の結晶構造は、図6と同じR−3m(O3)である。一方、正極活物質100は、十分に充電された充電深度の場合、H1−3型結晶構造とは異なる構造の結晶を有する。本構造は、空間群R−3mであり、スピネル型結晶構造ではないものの、コバルト、マグネシウム等のイオンが酸素6配位位置を占め、陽イオンの配列がスピネル型と似た対称性を有する。また本構造のCoO層の対称性はO3型と同じである。よって、本構造を本明細書等では、O3’型結晶構造、または擬スピネル型の結晶構造と呼称する。したがって、O3’型結晶構造を、擬スピネル型の結晶構造と言い換えてもよい。また、O3型結晶構造及びO3’型結晶構造のいずれの場合も、CoO層の間、つまりリチウムサイトに、希薄にマグネシウムが存在することが好ましい。また、酸素サイトに、ランダムかつ希薄に、フッ素が存在することが好ましい。
なお、O3’型結晶構造は、リチウムなどの軽元素は酸素4配位位置を占める場合があり、この場合もイオンの配列がスピネル型と似た対称性を有する。
また図4ではリチウムが全てのリチウムサイトに同じ確率で存在するように示したが、本発明の一態様の正極活物質100はこれに限らない。一部のリチウムサイトに偏って存在していてもよい。例えば空間群P2/mに属するLi0.5CoOと同様に、整列した一部のリチウムサイトに存在していてもよい。リチウムの分布は、たとえば中性子回折により分析することができる。
またO3’型の結晶構造は、層間にランダムにLiを有するもののCdCl型の結晶構造に類似する結晶構造であるということもできる。このCdCl型に類似した結晶構造は、ニッケル酸リチウムを充電深度0.94まで充電したとき(Li0.06NiO)の結晶構造と近いが、純粋なコバルト酸リチウム、またはコバルトを多く含む層状岩塩型の正極活物質では通常この結晶構造を取らないことが知られている。
本発明の一態様の正極活物質100では、高電圧で充電し多くのリチウムが離脱したときの、結晶構造の変化が、従来の正極活物質よりも抑制されている。例えば、図4中に点線で示すように、これらの結晶構造ではCoO層のずれがほとんどない。
より詳細に説明すれば、本発明の一態様の正極活物質100は、充電電圧が高い場合にも結晶構造の安定性が高い。例えば、従来の正極活物質においてはH1−3型結晶構造となる充電電圧、例えばリチウム金属の電位を基準として4.6V程度の電圧においてもR−3m(O3)の結晶構造を保持できる充電電圧の領域が存在し、さらに充電電圧を高めた領域、例えばリチウム金属の電位を基準として4.65V乃至4.7V程度の電圧においてもO3’型の結晶構造を取り得る領域が存在する。さらに充電電圧を高めるとようやく、H1−3型結晶が観測される場合がある。また、充電電圧がより低い場合(たとえば充電電圧がリチウム金属の電位を基準として4.5V以上4.6V未満)でも、本発明の一態様の正極活物質100はO3’型結晶構造を取り得る場合が有る。
そのため、本発明の一態様の正極活物質100においては、高電圧で充放電を繰り返しても結晶構造が崩れにくい。
なお、二次電池において例えば負極活物質として黒鉛を用いる場合には、上記よりも黒鉛の電位の分だけ二次電池の電圧が低下する。黒鉛の電位はリチウム金属の電位を基準として0.05V乃至0.2V程度である。そのため例えば負極活物質に黒鉛を用いた二次電池の電圧が4.3V以上4.5V以下においても本発明の一態様の正極活物質100はR−3m(O3)の結晶構造を保持でき、さらに充電電圧を高めた領域、例えば二次電池の電圧が4.5Vを超えて4.6V以下においてもO3’型結晶構造を取り得る。さらには、充電電圧がより低い場合、例えば二次電池の電圧が4.2V以上4.3V未満でも、本発明の一態様の正極活物質100はO3’型結晶構造を取り得る場合が有る。
なおO3’型の結晶構造は、ユニットセルにおけるコバルトと酸素の座標を、Co(0,0,0.5)、O(0,0,x)、0.20≦x≦0.25の範囲内で示すことができる。
CoO層間、つまりリチウムサイトにランダムかつ希薄に存在する添加物、たとえばマグネシウムは、高電圧で充電したときにCoO層のずれを抑制する効果がある。そのためCoO層間にマグネシウムが存在すると、O3’型の結晶構造になりやすい。そのためマグネシウムは本発明の一態様の正極活物質100の粒子全体に分布していることが好ましい。またマグネシウムを粒子全体に分布させるために、本発明の一態様の正極活物質100の作製工程において、加熱処理を行うことが好ましい。
しかしながら、加熱処理の温度が高すぎると、カチオンミキシングが生じて添加物、たとえばマグネシウムがコバルトサイトに入る可能性が高まる。コバルトサイトに存在するマグネシウムは、高電圧充電時においてR−3mの構造を保つ効果がない。さらに、加熱処理の温度が高すぎると、コバルトが還元されて2価になってしまう、リチウムが蒸散するなどの悪影響も懸念される。
そこで、マグネシウムを粒子全体に分布させるための加熱処理よりも前に、コバルト酸リチウムにフッ素化合物を加えておくことが好ましい。フッ素化合物を加えることでコバルト酸リチウムの融点降下が起こる。融点降下させることで、カチオンミキシングが生じにくい温度で、マグネシウムを粒子全体に分布させることが容易となる。さらにフッ素化合物の存在により、電解液が分解して生じたフッ酸に対する耐食性が向上することが期待できる。
なお、マグネシウム濃度を所望の値以上に高くすると、結晶構造の安定化への効果が小さくなってしまう場合がある。マグネシウムが、リチウムサイトに加えて、コバルトサイトにも入るようになるためと考えられる。本発明の一態様の正極活物質が有するマグネシウムの原子数は、遷移金属Mの原子数の0.001倍以上0.1倍以下が好ましく、0.01より大きく0.04未満がより好ましく、0.02程度がさらに好ましい。または0.001倍以上0.04未満が好ましい。または0.01以上0.1以下が好ましい。ここで示すマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
コバルト酸リチウムにコバルト以外の金属(以下、金属Z)として、例えばニッケル、アルミニウム、マンガン、チタン、バナジウムおよびクロムから選ばれる一以上の金属を添加してもよく、特にニッケルおよびアルミニウムの一以上を添加することが好ましい。マンガン、チタン、バナジウムおよびクロムは安定に4価を取りやすい場合があり、構造安定性への寄与が高い場合がある。金属Zを添加することにより本発明の一態様の正極活物質では例えば、高電圧での充電状態において結晶構造がより安定になる場合がある。ここで、本発明の一態様の正極活物質において、金属Zは、コバルト酸リチウムの結晶性を大きく変えることのない濃度で添加されることが好ましい。例えば、前述のヤーン・テラー効果等を発現しない程度の量であることが好ましい。
図4中の凡例に示すように、ニッケル、マンガンをはじめとする遷移金属およびアルミニウムはコバルトサイトに存在することが好ましいが、一部がリチウムサイトに存在していてもよい。またマグネシウムはリチウムサイトに存在することが好ましい。酸素は、一部がフッ素と置換されていてもよい。
本発明の一態様の正極活物質のマグネシウム濃度が高くなるのに伴って正極活物質の充放電容量が減少することがある。その要因として例えば、リチウムサイトにマグネシウムが入ることにより、充放電に寄与するリチウム量が減少することが挙げられる。また、過剰なマグネシウムが、充放電に寄与しないマグネシウム化合物を生成する場合もある。本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてニッケルを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えて、金属Zとしてアルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。また本発明の一態様の正極活物質がマグネシウムに加えてニッケルおよびアルミニウムを有することにより、重量あたりおよび体積あたりの充放電容量を高めることができる場合がある。
以下に、本発明の一態様の正極活物質が有するマグネシウム、金属Z、等の元素の濃度を、原子数を用いて表す。
本発明の一態様の正極活物質100が有するニッケルの原子数は、コバルトの原子数の0%を超えて7.5%以下が好ましく、0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.2%以上1%以下がより好ましい。または0%を超えて4%以下が好ましい。または0%を超えて2%以下が好ましい。または0.05%以上7.5%以下が好ましい。または0.05%以上2%以下が好ましい。または0.1%以上7.5%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すニッケルの濃度は例えば、GD−MS、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
上記の濃度で含まれるニッケルは正極活物質100の全体に均一に固溶しやすいため、特に内部100bの結晶構造の安定化に寄与する。また内部100bに2価のニッケルが存在すると、その近くではリチウムサイトにランダムかつ希薄に存在する2価の添加物元素、たとえばマグネシウムがより安定に存在できる可能性がある。そのため高電圧での充放電を経てもマグネシウムの溶出が抑制されうる。そのため充放電サイクル特性が向上しうる。このように内部100bにおけるニッケルの効果と、表層部100aにおけるマグネシウム、アルミニウム、チタン、フッ素等の効果と、を両方併せ持つと、高電圧充電時の結晶構造の安定化に極めて効果的である。
本発明の一態様の正極活物質が有するアルミニウムの原子数は、コバルトの原子数の0.05%以上4%以下が好ましく、0.1%以上2%以下が好ましく、0.3%以上1.5%以下がより好ましい。または0.05%以上2%以下が好ましい。または0.1%以上4%以下が好ましい。ここで示すアルミニウムの濃度は例えば、GD−MS、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
本発明の一態様の正極活物質は、元素Wを有することが好ましく、元素Wとしてリンを用いることが好ましい。また、本発明の一態様の正極活物質は、リンと酸素を含む化合物を有することがより好ましい。
本発明の一態様の正極活物質が元素Wを含む化合物を有することにより、高電圧の充電状態を保持した場合において、ショートを抑制できる場合がある。
本発明の一態様の正極活物質が元素Xとしてリンを有する場合には、電解液の分解により発生したフッ化水素とリンが反応し、電解液中のフッ化水素濃度が低下する可能性がある。
電解液がLiPFを有する場合、加水分解により、フッ化水素が発生する場合がある。また、正極の構成要素として用いられるPVDFとアルカリとの反応によりフッ化水素が発生する場合もある。電荷液中のフッ化水素濃度が低下することにより、集電体の腐食や被膜はがれを抑制できる場合がある。また、PVDFのゲル化や不溶化による接着性の低下を抑制できる場合がある。
本発明の一態様の正極活物質が元素Xに加えてマグネシウムを有する場合、高電圧の充電状態における安定性が極めて高い。元素Xがリンである場合、リンの原子数は、コバルトの原子数の1%以上20%以下が好ましく、2%以上10%以下がより好ましく、3%以上8%以下がさらに好ましい。または1%以上10%以下が好ましい。または1%以上8%以下が好ましい。または2%以上20%以下が好ましい。または2%以上8%以下が好ましい。または3%以上20%以下が好ましい。または3%以上10%以下が好ましい。加えてマグネシウムの原子数は、コバルトの原子数の0.1%以上10%以下が好ましく、0.5%以上5%以下がより好ましく、0.7%以上4%以下がより好ましい。または0.1%以上5%以下が好ましい。または0.1%以上4%以下が好ましい。または0.5%以上10%以下が好ましい。または0.5%以上4%以下が好ましい。または0.7%以上10%以下が好ましい。または0.7%以上5%以下が好ましい。ここで示すリンおよびマグネシウムの濃度は例えば、ICP−MS等を用いて正極活物質の粒子全体の元素分析を行った値であってもよいし、正極活物質の作製の過程における原料の配合の値に基づいてもよい。
正極活物質はクラックを有することがある。クラックを表面とした正極活物質の内部にリン、より具体的には例えばリンと酸素を含む化合物が存在することにより、クラックの進行が抑制される場合がある。
≪表層部≫
マグネシウムは本発明の一態様の正極活物質100の粒子全体に分布していることが好ましいが、これに加えて表層部100aのマグネシウム濃度が、粒子全体の平均よりも高いことが好ましい。または、表層部100aのマグネシウム濃度が、内部100bの濃度よりも高いことが好ましい。例えば、XPS等で測定される表層部100aのマグネシウム濃度が、ICP−MS等で測定される粒子全体の平均のマグネシウム濃度よりも高いことが好ましい。または、EDX面分析等で測定される表層部100aのマグネシウム濃度が、内部100bのマグネシウム濃度よりも高いことが好ましい。
また、本発明の一態様の正極活物質100がコバルト以外の元素、例えばニッケル、アルミニウム、マンガン、鉄およびクロムから選ばれる一以上の金属を有する場合において、該金属の表層部100aにおける濃度が、粒子全体の平均よりも高いことが好ましい。または、該金属の表層部100aにおける濃度が、内部100bよりも高いことが好ましい。例えば、XPS等で測定される表層部100aのコバルト以外の元素の濃度が、ICP−MS等で測定される粒子全体の平均における該元素の濃度よりも高いことが好ましい。または、EDX面分析等で測定される表層部100aのコバルト以外の元素の濃度が、内部100bのコバルト以外の元素の濃度よりも高いことが好ましい。
表層部は、結晶内部と異なり結合が切断された状態である上に、充電時には表面からリチウムが抜けていくので内部よりもリチウム濃度が低くなりやすい部分である。そのため、不安定になりやすく結晶構造が崩れやすい部分である。表層部100aのマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。また表層部100aのマグネシウム濃度が高いと、電解液が分解して生じたフッ酸に対する耐食性が向上することも期待できる。
またフッ素も、本発明の一態様の正極活物質100の表層部100aの濃度が、粒子全体の平均よりも高いことが好ましい。または、表層部100aのフッ素濃度が、内部100bの濃度よりも高いことが好ましい。電解液に接する領域である表層部100aにフッ素が存在することで、フッ酸に対する耐食性を効果的に向上させることができる。
このように本発明の一態様の正極活物質100の表層部100aは内部100bよりも、添加物元素、たとえばマグネシウムおよびフッ素の濃度が高い、内部と異なる組成であることが好ましい。またその組成として室温(25℃)で安定な結晶構造をとることが好ましい。そのため、表層部100aは内部100bと異なる結晶構造を有していてもよい。例えば、本発明の一態様の正極活物質100の表層部100aの少なくとも一部が、岩塩型の結晶構造を有していてもよい。また表層部100aと内部100bが異なる結晶構造を有する場合、表層部100aと内部100bの結晶の配向が概略一致していることが好ましい。
層状岩塩型結晶、および岩塩型結晶の陰イオンは立方最密充填構造(面心立方格子構造)をとる。O3’型結晶も、陰イオンは立方最密充填構造をとると推定される。これらが接するとき、陰イオンにより構成される立方最密充填構造の向きが揃う結晶面が存在する。ただし、層状岩塩型結晶およびO3’型結晶の空間群はR−3mであり、岩塩型結晶の空間群Fm−3m(一般的な岩塩型結晶の空間群)およびFd−3m(最も単純な対称性を有する岩塩型結晶の空間群)とは異なるため、上記の条件を満たす結晶面のミラー指数は層状岩塩型結晶およびO3’型結晶と、岩塩型結晶では異なる。本明細書では、層状岩塩型結晶、O3’型結晶、および岩塩型結晶において、陰イオンにより構成される立方最密充填構造の向きが揃うとき、結晶の配向が概略一致する、と言う場合がある。
二つの領域の結晶の配向が概略一致することは、TEM(透過電子顕微鏡)像、STEM(走査透過電子顕微鏡)像、HAADF−STEM(高角散乱環状暗視野走査透過電子顕微鏡)像、ABF−STEM(環状明視野走査透過電子顕微鏡)像等から判断することができる。X線回折(XRD)、電子線回折、中性子線回折等も判断の材料にすることができる。TEM像等では、陽イオンと陰イオンの配列が、明線と暗線の繰り返しとして観察できる。層状岩塩型結晶と岩塩型結晶において立方最密充填構造の向きが揃うと、結晶間で、明線と暗線の繰り返しのなす角度が5度以下、より好ましくは2.5度以下である様子が観察できる。なお、TEM像等では酸素、フッ素をはじめとする軽元素は明確に観察できない場合があるが、その場合は金属元素の配列で配向の一致を判断することができる。
ただし表層部100aがMgOのみ、またはMgOとCoO(II)が固溶した構造のみでは、リチウムの挿入脱離が難しくなってしまう。そのため表層部100aは少なくともコバルトを有し、放電状態においてはリチウムも有し、リチウムの挿入脱離の経路を有している必要がある。また、マグネシウムよりもコバルトの濃度が高いことが好ましい。
また、添加物元素Xは本発明の一態様の正極活物質100の粒子の表層部100aに位置することが好ましい。例えば本発明の一態様の正極活物質100は、添加物元素Xを有する被膜に覆われていてもよい。
≪粒界≫
本発明の一態様の正極活物質100が有する添加物元素は、上記で説明した分布に加え、一部は図1Aに示すように結晶粒界101に偏析していることがより好ましい。
より具体的には、正極活物質100の結晶粒界101およびその近傍のマグネシウム濃度が、内部100bの他の領域よりも高いことが好ましい。また結晶粒界101およびその近傍のフッ素濃度も内部100bの他の領域より高いことが好ましい。
結晶粒界101は面欠陥の一つである。そのため粒子表面と同様不安定になりやすく結晶構造の変化が始まりやすい。そのため、結晶粒界101およびその近傍のマグネシウム濃度が高ければ、結晶構造の変化をより効果的に抑制することができる。
また、結晶粒界およびその近傍のマグネシウムおよびフッ素濃度が高い場合、本発明の一態様の正極活物質100の粒子の結晶粒界101に沿ってクラックが生じた場合でも、クラックにより生じた表面の近傍でマグネシウムおよびフッ素濃度が高くなる。そのためクラックが生じた後の正極活物質においてもフッ酸に対する耐食性を高めることができる。
なお本明細書等において、結晶粒界101の近傍とは、粒界から10nm程度までの領域をいうこととする。また結晶粒界とは、原子の配列に変化のある面をいい、電子顕微鏡像で観察することができる。具体的には、電子顕微鏡像で明線と暗線の繰り返しのなす角度が5度を超えた箇所をいうこととする。
≪粒径≫
本発明の一態様の正極活物質100の粒径は、大きすぎるとリチウムの拡散が難しくなる、集電体に塗工したときに活物質層の表面が粗くなりすぎる、等の問題がある。一方、小さすぎると、集電体への塗工時に活物質層を担持しにくくなる、電解液との反応が過剰に進む等の問題点も生じる。そのため、メディアン径(D50)が、1μm以上100μm以下が好ましく、2μm以上40μm以下であることがより好ましく、5μm以上30μm以下がさらに好ましい。または1μm以上40μm以下が好ましい。または1μm以上30μm以下が好ましい。または2μm以上100μm以下が好ましい。または2μm以上30μm以下が好ましい。または5μm以上100μm以下が好ましい。または5μm以上40μm以下が好ましい。
<分析方法>
ある正極活物質が、高電圧で充電されたときO3’型の結晶構造を示す本発明の一態様の正極活物質100であるか否かは、高電圧で充電された正極を、XRD、電子線回折、中性子回折、電子スピン共鳴(ESR)、核磁気共鳴(NMR)等を用いて解析することで判断できる。特にXRDは、正極活物質が有するコバルト等の遷移金属の対称性を高分解能で解析できる、結晶性の高さおよび結晶の配向性を比較できる、格子の周期性歪みおよび結晶子サイズの解析ができる、二次電池を解体して得た正極をそのまま測定しても十分な精度を得られる、等の点で好ましい。
本発明の一態様の正極活物質100は、これまで述べたように高電圧で充電した状態と放電状態とで結晶構造の変化が少ないことが特徴である。高電圧で充電した状態で、放電状態との変化が大きな結晶構造が50wt%以上を占める材料は、高電圧の充放電に耐えられないため好ましくない。そして添加物元素を添加するだけでは目的の結晶構造をとらない場合があることに注意が必要である。例えばマグネシウムおよびフッ素を有するコバルト酸リチウム、という点で共通していても、高電圧で充電した状態でO3’型の結晶構造が60wt%以上になる場合と、H1−3型結晶構造が50wt%以上を占める場合と、がある。また、所定の電圧では、O3’型の結晶構造がほぼ100wt%になり、さらに当該所定の電圧をあげるとH1−3型結晶構造が生じる場合もある。そのため、本発明の一態様の正極活物質100であるか否かを判断するには、XRDをはじめとする結晶構造についての解析が必要である。
ただし、高電圧で充電した状態または放電状態の正極活物質は、大気に触れると結晶構造の変化を起こす場合がある。例えばO3’型の結晶構造からH1−3型結晶構造に変化する場合がある。そのため、サンプルはすべてアルゴン雰囲気等の不活性雰囲気でハンドリングすることが好ましい。
≪充電方法≫
ある複合酸化物が、本発明の一態様の正極活物質100であるか否かを判断するための高電圧充電は、例えば対極リチウムでコインセル(CR2032タイプ、直径20mm高さ3.2mm)を作製して充電することができる。
より具体的には、正極には、正極活物質、導電助剤およびバインダを混合したスラリーを、アルミニウム箔の正極集電体に塗工したものを用いることができる。
対極にはリチウム金属を用いることができる。なお対極にリチウム金属以外の材料を用いたときは、二次電池の電位と正極の電位が異なる。本明細書等における電圧および電位は、特に言及しない場合、正極の電位である。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、ビニレンカーボネート(VC)が2wt%で混合されたものを用いることができる。
セパレータには厚さ25μmのポリプロピレンを用いることができる。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いることができる。
上記条件で作製したコインセルを、任意の電圧(たとえば4.6V、4.65Vまたは4.7V)、0.5Cで定電流充電し、その後電流値が0.01Cとなるまで定電圧充電する。なお1Cは137mA/gまたは200mA/gとすることができる。温度は25℃とする。このようにして充電した後に、コインセルをアルゴン雰囲気のグローブボックス中で解体して正極を取り出せば、高電圧で充電された正極活物質を得られる。この後に各種分析を行う際、外界成分との反応を抑制するため、アルゴン雰囲気で密封することが好ましい。例えばXRDは、アルゴン雰囲気の密閉容器内に封入して行うことができる。
≪XRD≫
XRD測定の装置および条件は特に限定されない。たとえば下記のような装置および条件で測定することができる。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :CuKα線
出力 :40KV、40mA
スリット系 :Div.Slit、0.5°
検出器:LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°(degree)以上90°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
測定サンプルが粉末の場合は、ガラスのサンプルフォルダーに入れる、またはグリースを塗ったシリコン無反射板にサンプルを振りかける、等の手法でセッティングすることができる。測定サンプルが正極の場合は、正極を基板に両面テープで貼り付け、正極活物質層を装置の要求する測定面に合わせてセッティングすることができる。
O3’型の結晶構造と、H1−3型結晶構造のモデルから計算される、CuKα1線による理想的な粉末XRDパターンを図5および図7に示す。また比較のため充電深度0のLiCoO(O3)と、充電深度1のCoO(O1)の結晶構造から計算される理想的なXRDパターンも示す。なお、LiCoO(O3)およびCoO(O1)のパターンはICSD(Inorganic Crystal Structure Database)(非特許文献4参照)より入手した結晶構造情報からMaterials Studio(BIOVIA)のモジュールの一つである、Reflex Powder Diffractionを用いて作成した。2θの範囲は15°から75°とし、Step size=0.01、波長λ1=1.540562×10−10m、λ2は設定なし、Monochromatorはsingleとした。H1−3型結晶構造のパターンは非特許文献3に記載の結晶構造情報から同様に作成した。O3’型の結晶構造のパターンは本発明の一態様の正極活物質のXRDパターンから結晶構造を推定し、TOPAS ver.3(Bruker社製結晶構造解析ソフトウェア)を用いてフィッティングし、他と同様にXRDパターンを作成した。
図5に示すように、O3’型の結晶構造では、2θ=19.30±0.20°(19.10°以上19.50°以下)、および2θ=45.55±0.10°(45.45°以上45.65°以下)に回折ピークが出現する。より詳しく述べれば、2θ=19.30±0.10°(19.20°以上19.40°以下)、および2θ=45.55±0.05°(45.50°以上45.60以下)に鋭い回折ピークが出現する。しかし図7に示すように、H1−3型結晶構造およびCoO(P−3m1、O1)ではこれらの位置にピークは出現しない。そのため、高電圧で充電された状態で2θ=19.30±0.20°、および2θ=45.55±0.10°のピークが出現することは、本発明の一態様の正極活物質100の特徴であるといえる。
これは、充電深度0の結晶構造と、高電圧充電したときの結晶構造で、XRDの回折ピークが出現する位置が近いということもできる。より具体的には、両者の主な回折ピークのうち2つ以上、より好ましくは3つ以上において、ピークが出現する位置の差が、2θ=0.7以下、より好ましくは2θ=0.5以下であるということができる。
なお、本発明の一態様の正極活物質100は高電圧で充電したときO3’型の結晶構造を有するが、粒子のすべてがO3’型の結晶構造でなくてもよい。他の結晶構造を含んでいてもよいし、一部が非晶質であってもよい。ただし、XRDパターンについてリートベルト解析を行ったとき、O3’型の結晶構造が50wt%以上であることが好ましく、60wt%以上であることがより好ましく、66wt%以上であることがさらに好ましい。O3’型の結晶構造が50wt%以上、より好ましくは60wt%以上、さらに好ましくは66wt%以上あれば、十分にサイクル特性に優れた正極活物質とすることができる。
また、測定開始から100サイクル以上の充放電を経ても、リートベルト解析を行ったときO3’型の結晶構造が35wt%以上であることが好ましく、40wt%以上であることがより好ましく、43wt%以上であることがさらに好ましい。
また、正極活物質の粒子が有するO3’型の結晶構造の結晶子サイズは、放電状態のLiCoO(O3)の1/10程度までしか低下しない。そのため、充放電前の正極と同じXRDの測定条件であっても、高電圧充電後に明瞭なO3’型の結晶構造のピークが確認できる。一方単純なLiCoO2では、一部がO3’型の結晶構造に似た構造を取りえたとしても、結晶子サイズが小さくなり、ピークはブロードで小さくなる。結晶子サイズは、XRDピークの半値幅から求めることができる。
本発明の一態様の正極活物質においては、前述の通り、ヤーン・テラー効果の影響が小さいことが好ましい。本発明の一態様の正極活物質は、層状岩塩型の結晶構造を有し、遷移金属としてコバルトを主として有することが好ましい。また、本発明の一態様の正極活物質において、ヤーン・テラー効果の影響が小さい範囲であれば、コバルトの他に、先に述べた金属Zを有してもよい。
正極活物質において、XRD分析を用いて、ヤーン・テラー効果の影響が小さいと推測される格子定数の範囲について考察する。
図8は、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとニッケルを有する場合において、XRDを用いてa軸およびc軸の格子定数を算出した結果を示す。図8Aがa軸、図8Bがc軸の結果である。なお、これらの算出に用いたXRDパターンは、正極活物質の合成を行った後の粉体であり、正極に組み込む前のものである。横軸のニッケル濃度は、コバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。正極活物質は、アルミニウム源を用いない他は後述する図11の作製方法と同様に作製した。ニッケルの濃度は、正極活物質においてコバルトとニッケルの原子数の和を100%とした場合のニッケルの濃度を示す。
図9には、本発明の一態様の正極活物質が層状岩塩型の結晶構造を有し、コバルトとマンガンを有する場合において、XRDを用いてa軸およびc軸の格子定数を見積もった結果を示す。図9Aがa軸、図9Bがc軸の結果である。なお、図9に示す格子定数は、正極活物質の合成を行った後の粉体であり、正極に組み込む前に測定したXRDによるものである。横軸のマンガン濃度は、コバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。正極活物質は、ニッケル源に代えてマンガン源を用い、さらにアルミニウム源を用いない他は後述する図11の作製方法に準じて作製した。マンガンの濃度は、ステップS21においてコバルトとマンガンの原子数の和を100%とした場合のマンガンの濃度を示す。
図8Cには、図8Aおよび図8Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。図9Cには、図9Aおよび図9Bに格子定数の結果を示した正極活物質について、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)を示す。
図8Cより、ニッケル濃度が5%と7.5%ではa軸/c軸が顕著に変化する傾向がみられ、a軸の歪みが大きくなっている。この歪みはヤーン・テラー歪みである可能性がある。ニッケル濃度が7.5%未満において、ヤーン・テラー歪みの小さい、優れた正極活物質が得られることが示唆される。
次に、図9Aより、マンガン濃度が5%以上においては、格子定数の変化の挙動が異なり、ベガード則に従わないことが示唆される。よって、マンガン濃度が5%以上では結晶構造が異なることが示唆される。よって、マンガンの濃度は例えば、4%以下が好ましい。
なお、上記のニッケル濃度およびマンガン濃度の範囲は、表層部100aにおいては必ずしもあてはまらない。すなわち、表層部100aにおいては、上記の濃度より高くてもよい場合がある。
以上より、格子定数の好ましい範囲について考察を行ったところ、本発明の一態様の正極活物質において、XRDパターンから推定できる、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数が2.814×10−10mより大きく2.817×10−10mより小さく、かつc軸の格子定数が14.05×10−10mより大きく14.07×10−10mより小さいことが好ましいことがわかった。充放電を行わない状態とは例えば、二次電池の正極を作製する前の粉体の状態であってもよい。
あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、a軸の格子定数をc軸の格子定数で割った値(a軸/c軸)が0.20000より大きく0.20049より小さいことが好ましい。
あるいは、充放電を行わない状態、あるいは放電状態の正極活物質の粒子が有する層状岩塩型の結晶構造において、XRD分析をしたとき、2θが18.50°以上19.30°以下に第1のピークが観測され、かつ2θが38.00°以上38.80°以下に第2のピークが観測される場合がある。
なお粉体XRDパターンに出現するピークは、正極活物質100の体積の大半を占める、正極活物質100の内部100bの結晶構造を反映したものである。表層部100a、最表面層100c等の結晶構造は、正極活物質100の断面の電子線回折等で分析することができる。
≪XPS≫
X線光電子分光(XPS)では、表面から2乃至8nm程度(通常5nm以下)の深さまでの領域の分析が可能であるため、表層部100aの約半分の領域について、各元素の濃度を定量的に分析することができる。また、ナロースキャン分析をすれば元素の結合状態を分析することができる。なおXPSの定量精度は多くの場合±1原子%程度、検出下限は元素にもよるが約1原子%である。
本発明の一態様の正極活物質100についてXPS分析をしたとき、添加物元素の原子数は遷移金属Mの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。添加物がマグネシウム、遷移金属Mがコバルトである場合は、マグネシウムの原子数はコバルトの原子数の1.6倍以上6.0倍以下が好ましく、1.8倍以上4.0倍未満がより好ましい。またフッ素等のハロゲンの原子数は、遷移金属Mの原子数の0.2倍以上6.0倍以下が好ましく、1.2倍以上4.0倍以下がより好ましい。
XPS分析を行う場合には例えば、X線源として単色化アルミニウムを用いることができる。また、取出角は例えば45°とすればよい。たとえば下記の装置および条件で測定することができる。
 測定装置 :PHI 社製QuanteraII
 X線源 :単色化Al(1486.6eV)
 検出領域 :100μmφ
 検出深さ :約4~5nm(取出角45°)
 測定スペクトル :ワイドスキャン,各検出元素のナロースキャン
また、本発明の一態様の正極活物質100についてXPS分析したとき、フッ素と他の元素の結合エネルギーを示すピークは682eV以上685eV未満であることが好ましく、684.3eV程度であることがさらに好ましい。これは、フッ化リチウムの結合エネルギーである685eV、およびフッ化マグネシウムの結合エネルギーである686eVのいずれとも異なる値である。つまり、本発明の一態様の正極活物質100がフッ素を有する場合、フッ化リチウムおよびフッ化マグネシウム以外の結合であることが好ましい。
さらに、本発明の一態様の正極活物質100についてXPS分析したとき、マグネシウムと他の元素の結合エネルギーを示すピークは、1302eV以上1304eV未満であることが好ましく、1303eV程度であることがさらに好ましい。これは、フッ化マグネシウムの結合エネルギーである1305eVと異なる値であり、酸化マグネシウムの結合エネルギーに近い値である。つまり、本発明の一態様の正極活物質100がマグネシウムを有する場合、フッ化マグネシウム以外の結合であることが好ましい。
表層部100aに多く存在することが好ましい添加物元素、たとえばマグネシウムおよびアルミニウムは、XPS等で測定される濃度が、ICP−MS(誘導結合プラズマ質量分析)、あるいはGD−MS(グロー放電質量分析法)等で測定される濃度よりも高いことが好ましい。
マグネシウムおよびアルミニウムは、加工によりその断面を露出させ、断面をTEM−EDXを用いて分析する場合に、表層部100aの濃度が、内部100bの濃度に比べて高いことが好ましい。加工は例えばFIB(Focused Ion Beam)により行うことができる。
XPS(X線光電子分光)の分析において、マグネシウムの原子数はコバルトの原子数の0.4倍以上1.5倍以下であることが好ましい。一方ICP−MSの分析によるマグネシウムの原子数の比Mg/Coは0.001以上0.06以下であることが好ましい。
一方、遷移金属Mに含まれるニッケルは表層部100aに偏在せず、正極活物質100全体に分布していることが好ましい。ただし前述した添加物元素が偏在する領域が存在する場合はこの限りではない。
≪ESR≫
上述したように本発明の一態様の正極活物質では、遷移金属としてコバルトおよびニッケルを有し、添加物元素としてマグネシウムを有することが好ましい。その結果一部のCo3+がNi2+に置換され、また一部のLiがMg2+に置換されることが好ましい。LiがMg2+に置換されることに伴い、当該Ni2+は還元されて、Ni3+になる場合がある。また、一部のLiがMg2+に置換され、それに伴い近傍のCo3+が還元されてCo2+になる場合がある。また、一部のCo3+がMg2+に置換され、それに伴い近傍のCo3+が酸化されてCo4+になる場合がある。
したがって、本発明の一態様である正極活物質は、Ni2+、Ni3+、Co2+及びCo4+のいずれか一以上を有することが好ましい。また、正極活物質の重量当たりのNi2+、Ni3+、Co2+及びCo4+のいずれか一以上に起因するスピン密度が、2.0×1017spins/g以上1.0×1021spins/g以下であることが好ましい。前述のスピン密度を有する正極活物質とすることで、特に充電状態での結晶構造が安定となり好ましい。なお、マグネシウム濃度が高すぎると、Ni2+、Ni3+、Co2+及びCo4+のいずれか一以上に起因するスピン密度が低くなる場合がある。
正極活物質中のスピン密度は、例えば、電子スピン共鳴法(ESR:Electron Spin Resonance)などを用いて分析することができる。
≪EPMA≫
EPMA(電子プローブ微小分析)は元素の定量が可能である。面分析ならば各元素の分布を分析することができる。
EPMAでは表面から約1μm程度の深さまでの領域を分析する。そのため、各元素の濃度は他の分析法を用いた測定結果と異なる場合がある。たとえば正極活物質100の表面分析を行ったとき、表層部に存在する添加物の濃度が、XPSの結果より低くなる場合がある。また表層部に存在する添加物の濃度が、ICP−MSの結果または正極活物質の作製の過程における原料の配合の値より高くなる場合がある。
本発明の一態様の正極活物質100の断面についてEPMA面分析をしたとき、添加物元素の濃度が内部から表層部に向かって高くなる濃度勾配を有することが好ましい。より詳細には、図1C1に示すようにマグネシウム、フッ素、チタン、ケイ素は内部から表面に向かって高くなる濃度勾配を有することが好ましい。また図2C2に示すようにアルミニウムは上記元素の濃度のピークよりも深い領域に濃度のピークを有することが好ましい。アルミニウム濃度のピークは表層部に存在してもよいし、表層部より深くてもよい。
なお本発明の一態様の正極活物質の表面および表層部には、正極活物質作製後に化学吸着した炭酸、ヒドロキシ基等は含まないとする。また正極活物質の表面に付着した電解液、バインダ、導電材、またはこれら由来の化合物も含まないとする。そのため正極活物質が有する元素を定量するときは、XPSおよびEPMAをはじめとする表面分析で検出されうる炭素、水素、過剰な酸素、過剰なフッ素等を除外する補正をしてもよい。
≪表面粗さと比表面積≫
本発明の一態様の正極活物質100は、表面がなめらかで凹凸が少ないことが好ましい。表面がなめらかで凹凸が少ないことは、表層部100aにおける添加物元素の分布が良好であることを示す一つの要素である。
表面がなめらかで凹凸が少ないことは、たとえば正極活物質100の断面SEM像または断面TEM像、正極活物質100の比表面積等から判断することができる。
たとえば以下のように、正極活物質100の断面SEM像から表面のなめらかさを数値化することができる。
まず正極活物質100をFIB等により加工して断面を露出させる。このとき保護膜、保護剤等で正極活物質100を覆うことが好ましい。次に保護膜等と正極活物質100との界面のSEM像を撮影する。該SEM像に画像処理ソフトでノイズ処理を行う。たとえばガウスぼかし(σ=2)を行った後、二値化を行う。さらに画像処理ソフトで界面抽出を行う。さらに自動選択ツール等で保護膜等と正極活物質100との界面ラインを選択し、データを表計算ソフト等に抽出する。表計算ソフト等の機能を用いて、回帰曲線(二次回帰)から補正を行い、傾き補正後データからラフネス算出用パラメータを求め、標準偏差を算出した二乗平均平方根表面粗さ(RMS)を求めた。また、この表面粗さは、正極活物質は少なくとも粒子外周の400nmにおける表面粗さである。
本実施の形態の正極活物質100の粒子表面においては、ラフネスの指標である粗さ(RMS:二乗平均平方根表面粗さ)は3nm未満、好ましくは1nm未満、さらに好ましくは0.5nm未満の二乗平均平方根表面粗さ(RMS)であることが好ましい。
なおノイズ処理、界面抽出等を行う画像処理ソフトについては特に限定されないが、たとえば「ImageJ」を用いることができる。また表計算ソフト等についても特に限定されないが、たとえばMicrosoft Office Excelを用いることができる。
またたとえば、定容法によるガス吸着法にて測定した実際の比表面積Aと、理想的な比表面積Aとの比からも、正極活物質100の表面のなめらかさを数値化することができる。
理想的な比表面積Aは、すべての粒子の直径がD50と同じであり、重量が同じであり、形状は理想的な球であるとして計算して求める。
メディアン径D50は、レーザ回折・散乱法を用いた粒度分布計等によって測定することができる。比表面積は、たとえば定容法によるガス吸着法を用いた比表面積測定装置等によって測定することができる。
本発明の一態様の正極活物質100は、メディアン径D50から求めた理想的な比表面積Aと、実際の比表面積Aの比A/Aが2.1以下であることが好ましい。
本実施の形態は、他の実施の形態と組み合わせ用いることができる。
(実施の形態2)
本実施の形態では、図10乃至図14を用いて本発明の一態様の正極活物質の作製方法の例について説明する。
<ステップS11>
図10のステップS11として、まずリチウム、遷移金属Mおよび酸素を有する複合酸化物(LiMO)の材料として、リチウム源および遷移金属M源を用意する。
リチウム源としては、例えば炭酸リチウム、フッ化リチウム、水酸化リチウム、酸化リチウム等を用いることができる。
遷移金属Mとしてはリチウムとともに空間群R−3mに属する層状岩塩型の複合酸化物を形成しうる金属を用いことが好ましい。たとえばマンガン、コバルト、ニッケルのうち少なくとも一を用いることができる。つまり遷移金属M源としてコバルトのみを用いてもよいし、ニッケルのみを用いてもよいし、コバルトとマンガンの2種、またはコバルトとニッケルの2種を用いてもよいし、コバルト、マンガン、ニッケルの3種を用いてもよい。
層状岩塩型の複合酸化物を形成しうる金属を用いる場合、層状岩塩型の結晶構造をとりうる範囲のコバルト、マンガン、ニッケルの混合比とすることが好ましい。また、層状岩塩型の結晶構造をとりうる範囲で、これらの遷移金属にアルミニウムを加えてもよい。
遷移金属M源としては、遷移金属Mとして例示した上記金属の酸化物、水酸化物等を用いることができる。コバルト源としては、例えば酸化コバルト、水酸化コバルト等を用いることができる。マンガン源としては、酸化マンガン、水酸化マンガン等を用いることができる。ニッケル源としては、酸化ニッケル、水酸化ニッケル等を用いることができる。アルミニウム源としては、酸化アルミニウム、水酸化アルミニウム、等を用いることができる。
<ステップS12>
次にステップS12として、上記のリチウム源および遷移金属M源を混合する。混合は乾式または湿式で行うことができる。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。
<ステップS13>
次にステップS13として、上記で混合した材料を加熱する。本工程は、後の加熱工程との区別のために、焼成または第1の加熱という場合がある。加熱は800℃以上1100℃未満で行うことが好ましく、900℃以上1000℃以下で行うことがより好ましく、950℃程度がさらに好ましい。または800℃以上1000℃以下が好ましい。または900℃以上1100℃以下が好ましい。温度が低すぎると、リチウム源および遷移金属M源の分解および溶融が不十分となるおそれがある。一方温度が高すぎると、遷移金属Mとして用いる、酸化還元反応を担う金属が過剰に還元される、リチウムが蒸散するなどの原因で欠陥が生じるおそれがある。例えば遷移金属Mとしてコバルトを用いた場合、コバルトが2価となる欠陥が生じうる。
加熱時間はたとえば1時間以上100時間以下行うことができ、2時間以上20時間以下とすることが好ましい。または1時間以上20時間以下が好ましい。または2時間以上100時間以下が好ましい。加熱時間は短い方が生産的で好ましい。焼成は、乾燥空気等の水が少ない雰囲気(例えば露点−50℃以下、より好ましくは−100℃以下)で行うことが好ましい。例えば1000℃で10時間加熱することとし、昇温は200℃/h、乾燥雰囲気の流量は10L/minとすることが好ましい。その後加熱した材料を室温(25℃)まで冷却することができる。例えば規定温度から室温までの降温時間を10時間以上50時間以下とすることが好ましい。
ただし、ステップS13における室温までの冷却は必須ではない。その後のステップS41乃至ステップS44の工程を行うのに問題がなければ、冷却は室温より高い温度までとしてもよい。
<ステップS14>
次にステップS14として、上記で焼成した材料を回収し、リチウム、遷移金属Mおよび酸素を有する複合酸化物(LiMO)を得る。具体的には、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、コバルトの一部がマンガンで置換されたコバルト酸リチウム、コバルトの一部がニッケルで置換されたコバルト酸リチウム、またはニッケル−マンガン−コバルト酸リチウムなどを得る。
また、ステップS14としてあらかじめ合成されたリチウム、遷移金属Mおよび酸素を有する複合酸化物を用いてもよい。この場合、ステップS11乃至ステップS13を省略することができる。
例えば、あらかじめ合成された複合酸化物として、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC−10N)を用いることができる。これはメディアン径(D50)が約12μmであり、グロー放電質量分析法(GD−MS)による不純物分析において、マグネシウム濃度およびフッ素濃度が50ppm wt以下、カルシウム濃度、アルミニウム濃度およびシリコン濃度が100ppm wt以下、ニッケル濃度が150ppm wt以下、硫黄濃度が500ppm wt以下、ヒ素濃度が1100ppm wt以下、その他のリチウム、コバルトおよび酸素以外の元素濃度が150ppm wt以下である、コバルト酸リチウムである。
または、日本化学工業株式会社製のコバルト酸リチウム粒子(商品名:セルシードC−5H)を用いることもできる。これはメディアン径(D50)が約6.5μmであり、GD−MSによる不純物分析において、リチウム、コバルトおよび酸素以外の元素濃度がC−10Nと同程度かそれ以下である、コバルト酸リチウムである。
本実施の形態では、金属Mとしてコバルトを用い、あらかじめ合成されたコバルト酸リチウム粒子(日本化学工業株式会社製セルシードC−10N)を用いることとする。
<ステップS21>
次にステップS21として、混合物902の材料として、フッ素源また塩素源等のハロゲン源およびマグネシウム源を用意する。またリチウム源も用意することが好ましい。
フッ素源としては、例えばフッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化アルミニウム(AlF)、フッ化チタン(TiF)、フッ化コバルト(CoF、CoF)、フッ化ニッケル(NiF)、フッ化ジルコニウム(ZrF)、フッ化バナジウム(VF)、フッ化マンガン、フッ化鉄、フッ化クロム、フッ化ニオブ、フッ化亜鉛(ZnF)、フッ化カルシウム(CaF)フッ化ナトリウム(NaF)、フッ化カリウム(KF)、フッ化バリウム(BaF)、フッ化セリウム(CeF)、フッ化ランタン(LaF)六フッ化アルミニウムナトリウム(NaAlF)等を用いることができる。またフッ素源は固体に限られず、たとえばフッ素(F)、フッ化炭素、フッ化硫黄、フッ化酸素(OF、O、O、O、OF)等を用い、後述する加熱工程において雰囲気中に混合してもよい。また複数のフッ素源を混合して用いてもよい。なかでも、フッ化リチウムは固体のフッ素源のなかでは融点が848℃と比較的低く、後述するアニール工程で溶融しやすいため好ましい。
マグネシウム源としては、例えばフッ化マグネシウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム等を用いることができる。
リチウム源としては、例えばフッ化リチウム、炭酸リチウムを用いることができる。つまり、フッ化リチウムはリチウム源としてもフッ素源としても用いることができる。またフッ化マグネシウムはフッ素源としてもマグネシウム源としても用いることができる。
本実施の形態では、フッ素源としてフッ化リチウムLiFを用意し、フッ素源およびマグネシウム源としてフッ化マグネシウムMgFを用意することとする。フッ化リチウムLiFとフッ化マグネシウムMgFは、LiF:MgF=65:35(モル比)程度で混合すると融点を下げる効果が最も高くなる。一方、フッ化リチウムが多くなると、リチウムが過剰になりすぎてサイクル特性が悪化する懸念がある。そのため、フッ化リチウムLiFとフッ化マグネシウムMgFのモル比は、LiF:MgF=x:1(0≦x≦1.9)であることが好ましく、LiF:MgF=x:1(0.1≦x≦0.5)がより好ましく、LiF:MgF=x:1(x=0.33近傍)がさらに好ましい。なお本明細書等において近傍とは、その値の0.9倍より大きく1.1倍より小さい値とする。
また、次の混合および粉砕工程を湿式で行う場合は、溶媒を用意する。溶媒としてはアセトン等のケトン、エタノールおよびイソプロパノール等のアルコール、ジエチルエーテル等のエーテル、ジオキサン、アセトニトリル、N−メチル−2−ピロリドン(NMP)等を用いることができる。リチウムと反応が起こりにくい、非プロトン性溶媒を用いることがより好ましい。本実施の形態では、アセトンを用いることとする。
<ステップS22>
次に、ステップS22において、上記の混合物902の材料を混合および粉砕する。混合は乾式または湿式で行うことができるが、湿式はより小さく粉砕することができるため好ましい。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。この混合および粉砕工程を十分に行い、混合物902を微粉化することが好ましい。
<ステップS23>
次に、ステップS23において、上記で混合、粉砕した材料を回収し、混合物902を得る。混合物902は、例えばD50(メディアン径)が600nm以上20μm以下であることが好ましく、1μm以上10μm以下であることがより好ましい。または600nm以上10μm以下が好ましい。または1μm以上20μm以下が好ましい。このように微粉化された混合物902ならば、後の工程でリチウム、遷移金属Mおよび酸素を有する複合酸化物と混合したときに、複合酸化物の粒子の表面に混合物902を均一に付着させやすい。複合酸化物の粒子の表面に混合物902が均一に付着していると、加熱後に複合酸化物粒子の表層部にもれなくハロゲンおよびマグネシウムを分布させやすいため好ましい。表層部にハロゲンおよびマグネシウムが含まれない領域があると、充電状態において後述するO3’型の結晶構造になりにくいおそれがある。
<ステップS41>
次にステップS41において、ステップS14で得られるLiMOと、混合物902と、を混合する。リチウム、遷移金属および酸素を有する複合酸化物中の遷移金属の原子数Mと、混合物902が有するマグネシウムの原子数Mgとの比は、M:Mg=100:y(0.1≦y≦6)であることが好ましく、M:Mg=100:y(0.3≦y≦3)であることがより好ましい。
ステップS31の混合は、複合酸化物の粒子を破壊しないためにステップS12の混合よりも穏やかな条件とすることが好ましい。例えば、ステップS12の混合よりも回転数が少ない、または時間が短い条件とすることが好ましい。また湿式よりも乾式のほうが粒子を破壊しにくい条件であると言える。混合には例えばボールミル、ビーズミル等を用いることができる。ボールミルを用いる場合は、例えば粉砕メディアとしてジルコニアボールを用いることが好ましい。
<ステップS42>
次にステップS42において、上記で混合した材料を回収し、混合物903を得る。
なお、本実施の形態ではフッ化リチウムおよびフッ化マグネシウムの混合物を、不純物の少ないコバルト酸リチウムに添加する方法について説明しているが、本発明の一態様はこれに限らない。ステップS42の混合物903の代わりに、コバルト酸リチウムの出発材料にマグネシウム源およびフッ素源等を添加して焼成したものを用いてもよい。この場合は、ステップS11乃至ステップS14の工程と、ステップS21乃至ステップS23の工程を分ける必要がないため簡便で生産性が高い。
または、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いてもよい。マグネシウムおよびフッ素が添加されたコバルト酸リチウムを用いれば、ステップS42までの工程を省略することができより簡便である。
さらに、あらかじめマグネシウムおよびフッ素が添加されたコバルト酸リチウムに、さらにマグネシウム源およびフッ素源を添加してもよい。
<ステップS43>
次にステップS43において、混合物903を、酸素を含む雰囲気中で加熱する。該加熱は、混合物903の粒子同士が固着しないよう、固着抑制効果のある加熱とするとより好ましい。本工程は先の加熱工程との区別のためにアニールという場合がある。
固着抑制効果のある加熱としては、たとえば混合物903を攪拌しながらの加熱、混合物903の入った容器を振動させながらの加熱等をあげることができる。
ステップS43における加熱温度はLiMOと混合物902の反応が進む温度以上である必要がある。ここでいう反応が進む温度とは、LiMOと混合物902の有する元素の相互拡散が起こる温度であればよい。そのためこれらの材料の溶融温度より低くてもよい。例えば、酸化物では溶融温度Tの0.757倍(タンマン温度T)から固相拡散が起こる。そのため例えばLiMOがLiCoOの場合、LiCoOの融点が1130℃であるので、ステップS43の温度は500℃以上であればよい。
ただし混合物903の少なくとも一部が溶融する温度以上であるとより反応が進みやすく好ましい。そのためアニール温度は混合物902の共融点以上であることが好ましい。混合物902がLiF及びMgFを有する場合、LiFとMgFの共融点は742℃付近であるため、ステップS43の温度を742℃以上とすると好ましい。
また、LiCoO:LiF:MgF=100:0.33:1(モル比)となるように混合した混合物903は、示差走査熱量測定(DSC測定)において830℃付近に吸熱ピークが観測される。よって、アニール温度としては830℃以上がより好ましい。
アニール温度は高い方が反応が進みやすく、アニール時間が短く済み、生産性が高く好ましい。
ただしアニールする温度はLiMOの分解温度(LiCoOの場合は1130℃)以下である必要がある。また分解温度の近傍の温度では、微量ではあるがLiMOの分解が懸念される。そのため、アニール温度としては、1130℃以下であることが好ましく、1000℃以下であるとより好ましく、950℃以下であるとさらに好ましく、900℃以下であるとさらに好ましい。
よって、アニール温度としては、500℃以上1130℃以下が好ましく、500℃以上1000℃以下がより好ましく、500℃以上950℃以下がさらに好ましく、500℃以上900℃以下がさらに好ましい。また、742℃以上1130℃以下が好ましく、742℃以上1000℃以下がより好ましく、742℃以上950℃以下がさらに好ましく、742℃以上900℃以下がさらに好ましい。また、830℃以上1130℃以下が好ましく、830℃以上1000℃以下がより好ましく、830℃以上950℃以下がさらに好ましく、830℃以上900℃以下がさらに好ましい。
さらに混合物903を加熱する際、雰囲気中のフッ素またはフッ化物の分圧を適切な範囲に制御することが好ましい。
本実施の形態で説明する作製方法では、一部の材料、例えばフッ素源であるフッ化リチウムが融剤として機能する。この機能によりアニール温度をLiMOの分解温度以下、たとえば742℃以上950℃以下にまで低温化でき、表層部にマグネシウムをはじめとする添加物を分布させ、良好な特性の正極活物質を作製できる。
しかし気体のフッ化リチウムは酸素よりも軽いため、加熱によりフッ化リチウムが揮発すると混合物903中のフッ化リチウムが減少する。すると融剤としての機能が弱くなってしまう。よって、フッ化リチウムの揮発を抑制しつつ、加熱する必要がある。なおフッ素源等としてフッ化リチウムを用いなかったとしても、LiMO表面のLiとFが反応して、フッ化リチウムが生じ、揮発する可能性もある。そのため、フッ化リチウムより融点が高いフッ化物を用いたとしても、同じように揮発の抑制が必要である。
そこで、フッ化リチウムを含む雰囲気で混合物903を加熱すること、すなわち、加熱炉内のフッ化リチウムの分圧が高い状態で混合物903を加熱することが好ましい。このような加熱により混合物903中のフッ化リチウムの揮発を抑制することができる。
アニールは、適切な時間で行うことが好ましい。適切なアニール時間は、アニール温度、ステップS14のLiMOの粒子の大きさおよび組成等の条件により変化する。粒子が小さい場合は、大きい場合よりも低い温度または短い時間がより好ましい場合がある。
例えばステップS14の粒子のメディアン径(D50)が12μm程度の場合、アニール温度は例えば600℃以上950℃以下が好ましい。アニール時間は例えば3時間以上が好ましく、10時間以上がより好ましく、60時間以上がさらに好ましい。
一方、ステップS24の粒子のメディアン径(D50)が5μm程度の場合、アニール温度は例えば600℃以上950℃以下が好ましい。アニール時間は例えば1時間以上10時間以下が好ましく、2時間程度がより好ましい。
アニール後の降温時間は、例えば10時間以上50時間以下とすることが好ましい。
<ステップS44>
次にステップS44において上記でアニールをした材料を回収し、正極活物質100を作製することができる。このとき、回収された粒子をさらに、ふるいにかけることが好ましい。ふるいにかけることで、正極活物質100同士が固着していた場合、これを解消することができる。
次に、図11乃至図14を用いて図10と異なる作製方法について説明する。なお、図10と共通する部分が多いため、異なる部分について主に説明する。共通する部分については図10についての説明を参酌することができる。
図10ではステップS41においてステップS14で得られるLiMOと、混合物902と、を混合する作製方法について説明したが、本発明の一態様はこれに限らない。図11乃至図14のステップS31、ステップS32に示すように、さらに他の添加物元素を混合してもよい。
添加物元素としては、例えば、ニッケル、アルミニウム、マンガン、チタン、ジルコニウム、バナジウム、鉄、クロム、ニオブ、コバルト、ヒ素、亜鉛、ケイ素、硫黄、リン、ホウ素より選ばれる一以上を用いることができる。図11乃至図14ではステップS31としてニッケル源、ステップS32としてアルミニウム源の2種を添加物元素として用いる例を示す。
これらの添加物元素は、各元素の酸化物、水酸化物、フッ化物等を微粉化して用いることが好ましい。微粉化は、たとえば湿式で行うことができる。
図11に示すように、ニッケル源およびアルミニウム源は、混合物902と同時にステップS42で混合することができる。この方法はアニール回数が少ないため、生産性が高く好ましい。
また図12に示すように、複数の添加物源を異なるステップで混合してもよい。たとえばステップS61−1でニッケル源を混合し、ステップS61−2でアルミニウム源を混合することができる。このように複数のステップで添加物源を混合する場合、混合手法を変えることができる。たとえばステップS61−1ではニッケル源として水酸化ニッケルを用いて固相法で混合し、ステップS61−2ではアルミニウム源としてアルミニウムアルコキシドを用いてゾルゲル法で混合する、といった工程が可能となる。このような工程を経ることで、添加物元素の分布をより良好にすることができる場合がある。
ゾルゲル法はたとえば以下のように行うことができる。
まず、添加物元素のアルコキシドをアルコールに溶解する。添加物元素のアルコキシドが有するアルコシキ基は、炭素数が1乃至18であることが好ましく、炭素は置換していても無置換であってもよい。
たとえばアルミニウムアルコキシドとして、アルミニウムイソプロポキシド、アルミニウムブトキシド、アルミニウムエトキシド等を用いることができる。
溶媒のアルコールには、例えばメタノール、エタノール、プロパノール、2−プロパノール、ブタノール、2−ブタノールを用いることができる。添加物元素のアルコキシ基と同種のアルコールを用いることが好ましい。溶媒に含まれる水は3体積%以下が好ましく、0.3体積%以下であることがより好ましい。溶媒としてアルコールを用いることで、水を用いる場合よりも作製工程におけるLiMOの劣化を抑制することができる。
次に添加物元素のアルコキシドのアルコール溶液に、被処理物を混合し、水蒸気を含む雰囲気中で撹拌する。
Oを含む雰囲気中に置くことで、添加物元素のアルコキシドの加水分解が起こる。続いて生成物同士で脱水縮合が起こる。この加水分解と縮合反応が繰り返し生じることで、添加物元素の酸化物のゾルが生成される。この反応が被処理物上でも生じ、表面に添加物元素を含む層が形成される。その後、被処理物を回収し、アルコールを気化させて混合物903を得る。
また図13に示すように、ステップS53およびステップS55としてアニールを複数回行い、その間に固着抑制操作ステップS54を行ってもよい。ステップS53およびステップS55のアニール条件は、ステップS43の記載を参酌することができる。固着抑制操作としては、乳棒で解砕する、ボールミルを用いて混合する、自転公転式ミキサーを用いて混合する、ふるいにかける、複合酸化物の入った容器を振動させる、等があげられる。
また図14に示すように、ステップS41でLiMOと混合物902を混合し、アニールしてから、ニッケル源およびアルミニウム源をステップS61で混合してもよい。これを混合物904とする。ステップS63として混合物904を再度アニールする。アニール条件はステップS43の記載を参酌することができる。
また添加物元素を導入する工程は入れ替えてもよい。たとえば図15に示すように、まずニッケル源とアルミニウム源を有する混合物901と、LiMOとを混合し、ステップS43でアニールしてから、マグネシウム源およびフッ素源を有する混合物902と混合してもよい。
このように、遷移金属Mと添加物を導入する工程を分けることにより、それぞれの元素の深さ方向のプロファイルを変えることができる場合がある。例えば、粒子の内部に比べて表層部で添加物元素の濃度を高めることができる。また、遷移金属Mの原子数を基準とし、該基準に対する添加物元素の原子数の比を、内部よりも表層部において、より高くすることができる。
本実施の形態は、他の実施の形態と組み合わせて用いることができる。
(実施の形態3)
本実施の形態では、図16乃至図19用いて本発明の一態様の二次電池の例について説明する。
<二次電池の構成例1>
以下に、正極、負極および電解液が、外装体に包まれている二次電池を例にとって説明する。
〔正極〕
正極は、正極活物質層および正極集電体を有する。正極活物質層は正極活物質を有し、導電材およびバインダを有していてもよい。正極活物質には、先の実施の形態で説明した作製方法を用いて作製した正極活物質を用いる。
また先の実施の形態で説明した正極活物質と、他の正極活物質を混合して用いてもよい。
他の正極活物質としてはたとえばオリビン型の結晶構造、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等がある。例えば、LiFePO、LiFeO、LiNiO、LiMn、V、Cr、MnO等の化合物があげられる。
また、他の正極活物質としてLiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、ニッケル酸リチウム(LiNiOやLiNi1−x(0<x<1)(M=Co、Al等))を混合すると好ましい。該構成とすることによって、二次電池の特性を向上させることができる。
また、他の正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP−MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICPMS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
以下に一例として、活物質層200に導電材としてグラフェンまたはグラフェン化合物を用いる場合の断面構成例を説明する。
図16Aに、活物質層200の縦断面図を示す。活物質層200は、粒状の正極活物質100と、導電材としてのグラフェンまたはグラフェン化合物201と、バインダ(図示せず)と、を含む。
本明細書等においてグラフェン化合物201とは、多層グラフェン、マルチグラフェン、酸化グラフェン、多層酸化グラフェン、マルチ酸化グラフェン、還元された酸化グラフェン、還元された多層酸化グラフェン、還元されたマルチ酸化グラフェン、グラフェン量子ドット等を含む。グラフェン化合物とは、炭素を有し、平板状、シート状等の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。該炭素6員環で形成された二次元的構造は炭素シートといってもよい。グラフェン化合物は官能基を有してもよい。またグラフェン化合物は屈曲した形状を有することが好ましい。またグラフェン化合物は丸まってカーボンナノファイバーのようになっていてもよい。
本明細書等において酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、官能基、特にエポキシ基、カルボキシ基またはヒドロキシ基を有するものをいう。
本明細書等において還元された酸化グラフェンとは、炭素と、酸素を有し、シート状の形状を有し、炭素6員環で形成された二次元的構造を有するものをいう。炭素シートといってもよい。還元された酸化グラフェンは1枚でも機能するが、複数枚が積層されていてもよい。還元された酸化グラフェンは、炭素の濃度が80atomic%より大きく、酸素の濃度が2atomic%以上15atomic%以下である部分を有することが好ましい。このような炭素濃度および酸素濃度とすることで、少量でも導電性の高い導電材として機能することができる。また還元された酸化グラフェンは、ラマンスペクトルにおけるGバンドとDバンドの強度比G/Dが1以上であるであることが好ましい。このような強度比である還元された酸化グラフェンは、少量でも導電性の高い導電材として機能することができる。
グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物はシート状の形状を有する。グラフェン化合物は、湾曲面を有する場合があり、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電材として用いることにより、活物質と導電材との接触面積を増大させることができる。なお、グラフェン化合物が活物質粒子の少なくとも一部にまとわりついていると好ましい。また、グラフェン化合物が活物質粒子の少なくとも一部の上に重なっていると好ましい。また、グラフェン化合物の形状が活物質粒子の形状の少なくとも一部に一致していると好ましい。該活物質粒子の形状とは、たとえば、単一の活物質粒子が有する凹凸、または複数の活物質粒子によって形成される凹凸をいう。また、グラフェン化合物が活物質粒子の少なくとも一部を囲んでいることが好ましい。また、グラフェン化合物は穴が空いていてもよい。
粒子径の小さい活物質粒子、例えば1μm以下の活物質粒子を用いる場合には、活物質粒子の比表面積が大きく、活物質粒子同士を繋ぐ導電パスがより多く必要となる。このような場合には、少ない量でも効率よく導電パスを形成することができるグラフェン化合物を用いると好ましい。
上述のような性質を有するため、急速充電および急速放電が要求される二次電池には、グラフェン化合物を導電材として用いることが特に有効である。例えば2輪または4輪の車両用二次電池、ドローン用二次電池などは急速充電および急速放電特性が要求される場合がある。またモバイル電子機器などでは急速充電特性が要求される場合がある。急速充電および急速放電は、高レートの充電および高レートの放電といってもよい。たとえば1C、2C、または5C以上の充電および放電をいうこととする。
活物質層200の縦断面においては、図16Bに示すように、活物質層200の内部において概略均一にシート状のグラフェンまたはグラフェン化合物201が分散する。図16Bにおいてはグラフェンまたはグラフェン化合物201を模式的に太線で表しているが、実際には炭素分子の単層又は多層の厚みを有する薄膜である。複数のグラフェンまたはグラフェン化合物201は、複数の粒状の正極活物質100を一部覆うように、あるいは複数の粒状の正極活物質100の表面上に張り付くように形成されているため、互いに面接触している。
ここで、複数のグラフェンまたはグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダとしても機能することができる。よって、バインダの量を少なくすることができる、又は使用しないことができるため、電極体積や電極重量に占める活物質の比率を向上させることができる。すなわち、二次電池の充放電容量を増加させることができる。
ここで、グラフェンまたはグラフェン化合物201として酸化グラフェンを用い、活物質と混合して活物質層200となる層を形成後、還元することが好ましい。つまり完成後の活物質層は還元された酸グラフェンを有することが好ましい。グラフェンまたはグラフェン化合物201の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェンまたはグラフェン化合物201を活物質層200の内部において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層200に残留するグラフェンまたはグラフェン化合物201は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
従って、活物質と点接触するアセチレンブラック等の粒状の導電材と異なり、グラフェンまたはグラフェン化合物201は接触抵抗の低い面接触を可能とするものであるから、通常の導電材よりも少量で粒状の正極活物質100とグラフェンまたはグラフェン化合物201との電気伝導性を向上させることができる。よって、正極活物質100の活物質層200における比率を増加させることができる。これにより、二次電池の放電容量を増加させることができる。
また、予め、スプレードライ装置を用いることで、活物質の表面全体を覆って導電材であるグラフェン化合物を被膜として形成し、さらに活物質同士間をグラフェン化合物で導電パスを形成することもできる。
またグラフェン化合物と共に、グラフェン化合物を形成する際に用いる材料を混合して活物質層200に用いてもよい。たとえばグラフェン化合物を形成する際の触媒として用いる粒子を、グラフェン化合物と共に混合してもよい。グラフェン化合物を形成する際の触媒としてはたとえば、酸化ケイ素(SiO、SiO(x<2))、酸化アルミニウム、鉄、ニッケル、ルテニウム、イリジウム、プラチナ、銅、ゲルマニウム等を有する粒子が挙げられる。該粒子はD50が1μm以下であると好ましく、100nm以下であることがより好ましい。
[バインダ]
バインダとしては、例えば、スチレン−ブタジエンゴム(SBR)、スチレン−イソプレン−スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン−プロピレン−ジエン共重合体などのゴム材料を用いることが好ましい。またバインダとして、フッ素ゴムを用いることができる。
また、バインダとしては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用するとさらに好ましい。
または、バインダとしては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート、PMMA)、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVDF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
バインダは上記のうち複数を組み合わせて使用してもよい。
例えば粘度調整効果の特に優れた材料と、他の材料とを組み合わせて使用してもよい。例えばゴム材料等は接着力や弾性力に優れる反面、溶媒に混合した場合に粘度調整が難しい場合がある。このような場合には例えば、粘度調整効果の特に優れた材料と混合することが好ましい。粘度調整効果の特に優れた材料としては、例えば水溶性高分子を用いるとよい。また、粘度調整効果に特に優れた水溶性高分子としては、前述の多糖類、例えばカルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロースおよびジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉を用いることができる。
なお、カルボキシメチルセルロースなどのセルロース誘導体は、例えばカルボキシメチルセルロースのナトリウム塩やアンモニウム塩などの塩とすることにより溶解度が上がり、粘度調整剤としての効果を発揮しやすくなる。溶解度が高くなることにより電極のスラリーを作製する際に活物質や他の構成要素との分散性を高めることもできる。本明細書においては、電極のバインダとして使用するセルロースおよびセルロース誘導体としては、それらの塩も含むものとする。
水溶性高分子は水に溶解することにより粘度を安定化させ、また活物質や、バインダとして組み合わせる他の材料、例えばスチレンブタジエンゴムなどを、水溶液中に安定して分散させることができる。また、官能基を有するために活物質表面に安定に吸着しやすいことが期待される。また、例えばカルボキシメチルセルロースなどのセルロース誘導体は、例えば水酸基やカルボキシル基などの官能基を有する材料が多く、官能基を有するために高分子同士が相互作用し、活物質表面を広く覆って存在することが期待される。
活物質表面を覆う、または表面に接するバインダが膜を形成する場合には、不動態膜としての役割を果たして電解液の分解を抑える効果も期待される。ここで、不動態膜とは、電気の伝導性のない膜、または電気伝導性の極めて低い膜であり、例えば活物質の表面に不動態膜が形成された場合には、電池反応電位において、電解液の分解を抑制することができる。また、不動態膜は、電気の伝導性を抑えるとともに、リチウムイオンは伝導できるとさらに望ましい。
[正極集電体]
集電体としては、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また正極集電体に用いる材料は、正極の電位で溶出しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体は、箔状、板状、シート状、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体は、厚みが5μm以上30μm以下のものを用いるとよい。
〔負極〕
負極は、負極活物質層および負極集電体を有する。また、負極活物質層は、導電材およびバインダを有していてもよい。
[負極活物質]
負極活物質としては、例えば合金系材料や炭素系材料等を用いることができる。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて充放電容量が大きく、特にシリコンは理論容量が4200mAh/gと大きい。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOと表すこともできる。ここでxは1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。または0.2以上1.2以下が好ましい。または0.3以上1.5以下が好ましい。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛は、リチウムイオンが黒鉛に挿入されたとき(リチウム−黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05V以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの充放電容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム−黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi3−xN(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質層が有することのできる導電材およびバインダとしては、正極活物質層が有することのできる導電材およびバインダと同様の材料を用いることができる。
[負極集電体]
負極集電体には、正極集電体と同様の材料を用いることができる。なお負極集電体は、リチウム等のキャリアイオンと合金化しない材料を用いることが好ましい。
〔電解液〕
電解液は、溶媒と電解質を有する。電解液の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ−ブチロラクトン、γ−バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、酪酸メチル、1,3−ジオキサン、1,4−ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、二次電池の内部短絡や、過充電等によって内部温度が上昇しても、二次電池の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
二次電池に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert−ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、リチウムビス(オキサレート)ボレート(LiBOB)、またスクシノニトリル、アジポニトリル等のジニトリル化合物などの添加剤を添加してもよい。添加する材料の濃度は、例えば溶媒全体に対して0.1wt%以上5wt%以下とすればよい。VCまたはLiBOBは良好な被膜を形成しやすく、特に好ましい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーゲル電解質を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。
ゲル化されるポリマーとして、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等を用いることができる。
ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF−HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
〔セパレータ〕
また二次電池は、セパレータを有することが好ましい。セパレータとしては、例えば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。セパレータはエンベロープ状に加工し、正極または負極のいずれか一方を包むように配置することが好ましい。
セパレータは多層構造であってもよい。例えばポリプロピレン、ポリエチレン等の有機材料フィルムに、セラミック系材料、フッ素系材料、ポリアミド系材料、またはこれらを混合したもの等をコートすることができる。セラミック系材料としては、例えば酸化アルミニウム粒子、酸化シリコン粒子等を用いることができる。フッ素系材料としては、例えばPVDF、ポリテトラフルオロエチレン等を用いることができる。ポリアミド系材料としては、例えばナイロン、アラミド(メタ系アラミド、パラ系アラミド)等を用いることができる。
セラミック系材料をコートすると耐酸化性が向上するため、高電圧充放電の際のセパレータの劣化を抑制し、二次電池の信頼性を向上させることができる。またフッ素系材料をコートするとセパレータと電極が密着しやすくなり、出力特性を向上させることができる。ポリアミド系材料、特にアラミドをコートすると、耐熱性が向上するため、二次電池の安全性を向上させることができる。
例えばポリプロピレンのフィルムの両面に酸化アルミニウムとアラミドの混合材料をコートしてもよい。また、ポリプロピレンのフィルムの、正極と接する面に酸化アルミニウムとアラミドの混合材料をコートし、負極と接する面にフッ素系材料をコートしてもよい。
多層構造のセパレータを用いると、セパレータ全体の厚さが薄くても二次電池の安全性を保つことができるため、二次電池の体積あたりの充放電容量を大きくすることができる。
〔外装体〕
二次電池が有する外装体としては、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。また、フィルム状の外装体を用いることもできる。フィルムとしては、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
<二次電池の構成例2>
以下に、二次電池の構成の一例として、固体電解質層を用いた二次電池の構成について説明する。
図17Aに示すように、本発明の一態様の二次電池400は、正極410、固体電解質層420および負極430を有する。
正極410は正極集電体413および正極活物質層414を有する。正極活物質層414は正極活物質411および固体電解質421を有する。正極活物質411には、先の実施の形態で説明した作製方法を用いて作製した正極活物質を用いる。また正極活物質層414は、導電助剤およびバインダを有していてもよい。
固体電解質層420は固体電解質421を有する。固体電解質層420は、正極410と負極430の間に位置し、正極活物質411および負極活物質431のいずれも有さない領域である。
負極430は負極集電体433および負極活物質層434を有する。負極活物質層434は負極活物質431および固体電解質421を有する。また負極活物質層434は、導電助剤およびバインダを有していてもよい。なお、負極430に金属リチウムを用いる場合は、図17Bのように、固体電解質421を有さない負極430とすることができる。負極430に金属リチウムを用いると、二次電池400のエネルギー密度を向上させることができ好ましい。
固体電解質層420が有する固体電解質421としては、例えば硫化物系固体電解質、酸化物系固体電解質、ハロゲン化物系固体電解質等を用いることができる。
硫化物系固体電解質には、チオシリコン系(Li10GeP12、Li3.25Ge0.250.75等)、硫化物ガラス(70LiS・30P、30LiS・26B・44LiI、63LiS・38SiS・1LiPO、57LiS・38SiS・5LiSiO、50LiS・50GeS等)、硫化物結晶化ガラス(Li11、Li3.250.95等)が含まれる。硫化物系固体電解質は、高い伝導度を有する材料がある、低い温度で合成可能、また比較的やわらかいため充放電を経ても導電経路が保たれやすい等の利点がある。
酸化物系固体電解質には、ペロブスカイト型結晶構造を有する材料(La2/3−xLi3xTiO等)、NASICON型結晶構造を有する材料(Li1−XAlTi2−X(PO等)、ガーネット型結晶構造を有する材料(LiLaZr12等)、LISICON型結晶構造を有する材料(Li14ZnGe16等)、LLZO(LiLaZr12)、酸化物ガラス(LiPO−LiSiO、50LiSiO・50LiBO等)、酸化物結晶化ガラス(Li1.07Al0.69Ti1.46(PO、Li1.5Al0.5Ge1.5(PO等)が含まれる。酸化物系固体電解質は、大気中で安定であるといった利点がある。
ハロゲン化物系固体電解質には、LiAlCl、LiInBr、LiF、LiCl、LiBr、LiI等が含まれる。また、これらハロゲン化物系固体電解質を、ポーラス酸化アルミニウムやポーラスシリカの細孔に充填したコンポジット材料も固体電解質として用いることができる。
また、異なる固体電解質を混合して用いてもよい。
中でも、NASICON型結晶構造を有するLi1+xAlTi2−x(PO(0<x<1)(以下、LATP)は、アルミニウムとチタンという、本発明の一態様の二次電池400に用いる正極活物質が有してもよい元素を含むため、サイクル特性の向上について相乗効果が期待でき好ましい。また、工程の削減による生産性の向上も期待できる。なお本明細書等において、NASICON型結晶構造とは、M(XO(M:遷移金属、X:S、P、As、Mo、W等)で表される化合物であり、MO八面体とXO四面体が頂点を共有して3次元的に配列した構造を有するものをいう。
〔外装体と二次電池の形状〕
本発明の一態様の二次電池400の外装体には、様々な材料および形状のものを用いることができるが、正極、固体電解質層および負極を加圧する機能を有することが好ましい。
例えば図18は、全固体電池の材料を評価するセルの一例である。
図18Aは評価セルの断面模式図であり、評価セルは、下部部材761と、上部部材762と、それらを固定する固定ねじや蝶ナット764を有し、押さえ込みねじ763を回転させることで電極用プレート753を押して評価材料を固定している。ステンレス材料で構成された下部部材761と、上部部材762との間には絶縁体766が設けられている。また上部部材762と、押さえ込みねじ763の間には密閉するためのOリング765が設けられている。
評価材料は、電極用プレート751に載せられ、周りを絶縁管752で囲み、上方から電極用プレート753で押されている状態となっている。この評価材料周辺を拡大した斜視図が図18Bである。
評価材料としては、正極750a、固体電解質層750b、負極750cの積層の例を示しており、断面図を図18Cに示す。なお、図18A、図18B、図18Cにおいて同じ箇所には同じ符号を用いる。
正極750aと電気的に接続される電極用プレート751および下部部材761は、正極端子に相当するということができる。負極750cと電気的に接続される電極用プレート753および上部部材762は、負極端子に相当するということができる。電極用プレート751および電極用プレート753を介して評価材料に押圧をかけながら電気抵抗などを測定することができる。
また、本発明の一態様の二次電池の外装体には、気密性に優れたパッケージを使用することが好ましい。例えばセラミックパッケージや樹脂パッケージを用いることができる。また、外装体を封止する際には、外気を遮断し、密閉した雰囲気下、例えばグローブボックス内で行うことが好ましい。
図19Aに、図18と異なる外装体および形状を有する本発明の一態様の二次電池の斜視図を示す。図19Aの二次電池は、外部電極771、772を有し、複数のパッケージ部材を有する外装体で封止されている。
図19A中の一点破線で切断した断面の一例を図19Bに示す。正極750a、固体電解質層750bおよび負極750cを有する積層体は、平板に電極層773aが設けられたパッケージ部材770aと、枠状のパッケージ部材770bと、平板に電極層773bが設けられたパッケージ部材770cと、で囲まれて封止された構造となっている。パッケージ部材770a、770b、770cには、絶縁材料、例えば樹脂材料やセラミックを用いることができる。
外部電極771は、電極層773aを介して電気的に正極750aと電気的に接続され、正極端子として機能する。また、外部電極772は、電極層773bを介して電気的に負極750cと電気的に接続され、負極端子として機能する。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態4)
本実施の形態では、先の実施の形態で説明した正極を有する二次電池の形状の例について説明する。本実施の形態で説明する二次電池に用いる材料は、先の実施の形態の記載を参酌することができる。
<コイン型二次電池>
まずコイン型の二次電池の一例について説明する。図20Aはコイン型(単層偏平型)の二次電池の外観図であり、図20Bは、その断面図である。
コイン型の二次電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
なお、コイン型の二次電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310を電解質に含浸させ、図20Bに示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の二次電池300を製造する。
正極304に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れたコイン型の二次電池300とすることができる。
ここで図20Cを用いて二次電池の充電時の電流の流れを説明する。リチウムを用いた二次電池を一つの閉回路とみなした時、リチウムイオンの動きと電流の流れは同じ向きになる。なお、リチウムを用いた二次電池では、充電と放電でアノード(陽極)とカソード(陰極)が入れ替わり、酸化反応と還元反応とが入れ替わることになるため、反応電位が高い電極を正極と呼び、反応電位が低い電極を負極と呼ぶ。したがって、本明細書においては、充電中であっても、放電中であっても、逆パルス電流を流す場合であっても、充電電流を流す場合であっても、正極は「正極」または「+極(プラス極)」と呼び、負極は「負極」または「−極(マイナス極)」と呼ぶこととする。酸化反応や還元反応に関連したアノード(陽極)やカソード(陰極)という用語を用いると、充電時と放電時とでは、逆になってしまい、混乱を招く可能性がある。したがって、アノード(陽極)やカソード(陰極)という用語は、本明細書においては用いないこととする。仮にアノード(陽極)やカソード(陰極)という用語を用いる場合には、充電時か放電時かを明記し、正極(プラス極)と負極(マイナス極)のどちらに対応するものかも併記することとする。
図20Cに示す2つの端子には充電器が接続され、二次電池300が充電される。二次電池300の充電が進めば、電極間の電位差は大きくなる。
<円筒型二次電池>
次に円筒型の二次電池の例について図21を参照して説明する。円筒型の二次電池600の外観図を図21Aに示す。図21Bは、円筒型の二次電池600の断面を模式的に示した図である。図21Bに示すように、円筒型の二次電池600は、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を電池缶602に被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の二次電池と同様のものを用いることができる。
円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
また、図21Cのように複数の二次電池600を、導電板613および導電板614の間に挟んでモジュール615を構成してもよい。複数の二次電池600は、並列接続されていてもよいし、直列接続されていてもよいし、並列に接続された後さらに直列に接続されていてもよい。複数の二次電池600を有するモジュール615を構成することで、大きな電力を取り出すことができる。
図21Dはモジュール615の上面図である。図を明瞭にするために導電板613を点線で示した。図21Dに示すようにモジュール615は、複数の二次電池600を電気的に接続する導線616を有していてもよい。導線616上に導電板を重畳して設けることができる。また複数の二次電池600の間に温度制御装置617を有していてもよい。二次電池600が過熱されたときは、温度制御装置617により冷却し、二次電池600が冷えすぎているときは温度制御装置617により加熱することができる。そのためモジュール615の性能が外気温に影響されにくくなる。温度制御装置617が有する熱媒体は絶縁性と不燃性を有することが好ましい。
正極604に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた円筒型の二次電池600とすることができる。
<二次電池の構造例>
二次電池の別の構造例について、図22乃至図26を用いて説明する。
図22A及び図22Bは、電池パックの外観図を示す図である。電池パックは、二次電池913と、回路基板900と、を有する。二次電池913は、回路基板900を介して、アンテナ914に接続されている。また、二次電池913には、ラベル910が貼られている。さらに、図22Bに示すように、二次電池913は、端子951と、端子952と、に接続されている。また回路基板900は、シール915で固定されている。
回路基板900は、端子911と、回路912と、を有する。端子911は、端子951、端子952、アンテナ914、及び回路912に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914は、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ914は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体としてアンテナ914を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
電池パックは、アンテナ914と、二次電池913との間に層916を有する。層916は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層916としては、例えば磁性体を用いることができる。
なお、電池パックの構造は、図22に限定されない。
例えば、図23A及び図23Bに示すように、図22A及び図22Bに示す二次電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよい。図23Aは、上記一対の面の一方を示した外観図であり、図23Aは、上記一対の面の他方を示した外観図である。なお、図22A及び図22Bに示す二次電池と同じ部分については、図22A及び図22Bに示す二次電池の説明を適宜援用できる。
図23Aに示すように、二次電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図23Bに示すように、二次電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。層917は、例えば二次電池913による電磁界を遮蔽することができる機能を有する。層917としては、例えば磁性体を用いることができる。
上記構造にすることにより、アンテナ914及びアンテナ918の両方のサイズを大きくすることができる。アンテナ918は、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918には、例えばアンテナ914に適用可能な形状のアンテナを適用することができる。アンテナ918を介した二次電池と他の機器との通信方式としては、NFC(近距離無線通信)など、二次電池と他の機器との間で用いることができる応答方式などを適用することができる。
又は、図23Cに示すように、図22A及び図22Bに示す二次電池913に表示装置920を設けてもよい。表示装置920は、端子911に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくてもよい。なお、図22A及び図22Bに示す二次電池と同じ部分については、図22A及び図22Bに示す二次電池の説明を適宜援用できる。
表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。
又は、図23Dに示すように、図22A及び図22Bに示す二次電池913にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的に接続される。なお、図22A及び図22Bに示す二次電池と同じ部分については、図22A及び図22Bに示す二次電池の説明を適宜援用できる。
センサ921としては、例えば、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定することができる機能を有すればよい。センサ921を設けることにより、例えば、二次電池が置かれている環境を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
さらに、二次電池913の構造例について図24及び図25を用いて説明する。
図24Aに示す二次電池913は、筐体930の内部に端子951と端子952が設けられた捲回体950を有する。捲回体950は、筐体930の内部で電解液に含浸される。端子952は、筐体930に接し、端子951は、絶縁材などを用いることにより筐体930に接していない。なお、図24Aでは、便宜のため、筐体930を分離して図示しているが、実際は、捲回体950が筐体930に覆われ、端子951及び端子952が筐体930の外に延在している。筐体930としては、金属材料(例えばアルミニウムなど)又は樹脂材料を用いることができる。
なお、図24Bに示すように、図24Aに示す筐体930を複数の材料によって形成してもよい。例えば、図24Bに示す二次電池913は、筐体930aと筐体930bが貼り合わされており、筐体930a及び筐体930bで囲まれた領域に捲回体950が設けられている。
筐体930aとしては、有機樹脂など、絶縁材料を用いることができる。特に、アンテナが形成される面に有機樹脂などの材料を用いることにより、二次電池913による電界の遮蔽を抑制できる。なお、筐体930aによる電界の遮蔽が小さければ、筐体930aの内部にアンテナ914などのアンテナを設けてもよい。筐体930bとしては、例えば金属材料を用いることができる。
さらに、捲回体950の構造について図25に示す。捲回体950は、負極931と、正極932と、セパレータ933と、を有する。捲回体950は、セパレータ933を挟んで負極931と、正極932が重なり合って積層され、該積層シートを捲回させた捲回体である。なお、負極931と、正極932と、セパレータ933と、の積層を、さらに複数重ねてもよい。
負極931は、端子951及び端子952の一方を介して図22に示す端子911に接続される。正極932は、端子951及び端子952の他方を介して図22に示す端子911に接続される。
正極932に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池913とすることができる。
<ラミネート型二次電池>
次に、ラミネート型の二次電池の例について、図26乃至図36を参照して説明する。ラミネート型の二次電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれば、電子機器の変形に合わせて二次電池も曲げることもできる。
図26を用いて、ラミネート型の二次電池980について説明する。ラミネート型の二次電池980は、図26Aに示す捲回体993を有する。捲回体993は、負極994と、正極995と、セパレータ996と、を有する。捲回体993は、図25で説明した捲回体950と同様に、セパレータ996を挟んで負極994と、正極995とが重なり合って積層され、該積層シートを捲回したものである。
なお、負極994、正極995およびセパレータ996からなる積層の積層数は、必要な充放電容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される。
図26Bに示すように、外装体となるフィルム981と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上述した捲回体993を収納することで、図26Cに示すように二次電池980を作製することができる。捲回体993は、リード電極997およびリード電極998を有し、フィルム981と、凹部を有するフィルム982との内部で電解液に含浸される。
フィルム981と、凹部を有するフィルム982は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製することができる。
また、図26Bおよび図26Cでは2枚のフィルムを用いる例を示しているが、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体993を収納してもよい。
正極995に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池980とすることができる。
また図26では外装体となるフィルムにより形成された空間に捲回体を有する二次電池980の例について説明したが、例えば図27のように、外装体となるフィルムにより形成された空間に、短冊状の複数の正極、セパレータおよび負極を有する二次電池としてもよい。
図27Aに示すラミネート型の二次電池500は、正極集電体501および正極活物質層502を有する正極503と、負極集電体504および負極活物質層505を有する負極506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体509内に設けられた正極503と負極506との間にセパレータ507が設置されている。また、外装体509内は、電解液508で満たされている。電解液508には、実施の形態3で示した電解液を用いることができる。
図27Aに示すラミネート型の二次電池500において、正極集電体501および負極集電体504は、外部との電気的接触を得る端子の役割も兼ねている。そのため、正極集電体501および負極集電体504の一部は、外装体509から外側に露出するように配置してもよい。また、正極集電体501および負極集電体504を、外装体509から外側に露出させず、リード電極を用いてそのリード電極と正極集電体501、或いは負極集電体504と超音波接合させてリード電極を外側に露出するようにしてもよい。
ラミネート型の二次電池500において、外装体509には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のラミネートフィルムを用いることができる。
また、ラミネート型の二次電池500の断面構造の一例を図27Bに示す。図27Aでは簡略のため、2つの集電体で構成する例を示しているが、実際は、図27Bに示すように、複数の電極層で構成する。
図27Bでは、一例として、電極層数を16としている。なお、電極層数を16としても二次電池500は、可撓性を有する。図27Bでは負極集電体504が8層と、正極集電体501が8層の合計16層の構造を示している。なお、図27Bは負極の取り出し部の断面を示しており、8層の負極集電体504を超音波接合させている。勿論、電極層数は16に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、より多くの充放電容量を有する二次電池とすることができる。また、電極層数が少ない場合には、薄型化でき、可撓性に優れた二次電池とすることができる。
ここで、ラミネート型の二次電池500の外観図の一例を図28及び図29に示す。図28及び図29は、正極503、負極506、セパレータ507、外装体509、正極リード電極510及び負極リード電極511を有する。
図30Aは正極503及び負極506の外観図を示す。正極503は正極集電体501を有し、正極活物質層502は正極集電体501の表面に形成されている。また、正極503は正極集電体501が一部露出する領域(以下、タブ領域という)を有する。負極506は負極集電体504を有し、負極活物質層505は負極集電体504の表面に形成されている。また、負極506は負極集電体504が一部露出する領域、すなわちタブ領域を有する。正極及び負極が有するタブ領域の面積や形状は、図30Aに示す例に限られない。
<ラミネート型二次電池の作製方法>
ここで、図28に外観図を示すラミネート型二次電池の作製方法の一例について、図30B、図30Cを用いて説明する。
まず、負極506、セパレータ507及び正極503を積層する。図30Bに積層された負極506、セパレータ507及び正極503を示す。ここでは負極を5組、正極を4組使用する例を示す。次に、正極503のタブ領域同士の接合と、最表面の正極のタブ領域への正極リード電極510の接合を行う。接合には、例えば超音波溶接等を用いればよい。同様に、負極506のタブ領域同士の接合と、最表面の負極のタブ領域への負極リード電極511の接合を行う。
次に外装体509上に、負極506、セパレータ507及び正極503を配置する。
次に、図30Cに示すように、外装体509を破線で示した部分で折り曲げる。その後、外装体509の外周部を接合する。接合には例えば熱圧着等を用いればよい。この時、後に電解液508を入れることができるように、外装体509の一部(または一辺)に接合されない領域(以下、導入口という)を設ける。
次に、外装体509に設けられた導入口から、電解液508(図示しない。)を外装体509の内側へ導入する。電解液508の導入は、減圧雰囲気下、或いは不活性雰囲気下で行うことが好ましい。そして最後に、導入口を接合する。このようにして、ラミネート型の二次電池500を作製することができる。
正極503に、先の実施の形態で説明した正極活物質を用いることで、充放電容量が高くサイクル特性に優れた二次電池500とすることができる。
全固体電池においては、積層した正極や負極の積層方向に所定の圧力を加えることで、内部における界面の接触状態を良好に保つことができる。正極や負極の積層方向に所定の圧力を加えることで、全固体電池の充放電によって積層方向に膨張することを抑えることができ、全固体電池の信頼性を向上させることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて用いることができる。
(実施の形態5)
本実施の形態では、本発明の一態様である二次電池を電子機器に実装する例について説明する。
まず、先の実施の形態で説明した、曲げることのできる二次電池を電子機器に実装する例を、図31A乃至図31Gに示す。曲げることのできる二次電池を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、フレキシブルな形状を備える二次電池を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図31Aは、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、二次電池7407を有している。上記の二次電池7407に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯電話機を提供できる。
図31Bは、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている二次電池7407も湾曲される。また、その時、曲げられた二次電池7407の状態を図31Cに示す。二次電池7407は薄型の蓄電池である。二次電池7407は曲げられた状態で固定されている。なお、二次電池7407は集電体と電気的に接続されたリード電極を有している。例えば、集電体は銅箔であり、一部ガリウムと合金化させて、集電体と接する活物質層との密着性を向上し、二次電池7407が曲げられた状態での信頼性が高い構成となっている。
図31Dは、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び二次電池7104を備える。また、図31Eに曲げられた二次電池7104の状態を示す。二次電池7104は曲げられた状態で使用者の腕への装着時に、筐体が変形して二次電池7104の一部または全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径の値で表したものを曲率半径と呼び、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半径が40mm以上150mm以下の範囲内で筐体または二次電池7104の主表面の一部または全部が変化する。二次電池7104の主表面における曲率半径が40mm以上150mm以下の範囲であれば、高い信頼性を維持できる。上記の二次電池7104に本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯表示装置を提供できる。
図31Fは、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
携帯情報端末7200の表示部7202には、本発明の一態様の二次電池を有している。本発明の一態様の二次電池を用いることで、軽量で長寿命な携帯情報端末を提供できる。例えば、図31Eに示した二次電池7104を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことができる。
携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図31Gは、腕章型の表示装置の一例を示している。表示装置7300は、表示部7304を有し、本発明の一態様の二次電池を有している。また、表示装置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させることもできる。
表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状況を変更することができる。
また、表示装置7300は入出力端子を備え、他の情報端末とコネクタを介して直接データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
表示装置7300が有する二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な表示装置を提供できる。
また、先の実施の形態で示したサイクル特性のよい二次電池を電子機器に実装する例を図31H、図32および図33を用いて説明する。
日用電子機器に二次電池として本発明の一態様の二次電池を用いることで、軽量で長寿命な製品を提供できる。例えば、日用電子機器として、電動歯ブラシ、電気シェーバー、電動美容機器などが挙げられ、それらの製品の二次電池としては、使用者の持ちやすさを考え、形状をスティック状とし、小型、軽量、且つ、充放電容量の大きな二次電池が望まれている。
図31Hはタバコ収容喫煙装置(電子タバコ)とも呼ばれる装置の斜視図である。図31Hにおいて電子タバコ7500は、加熱素子を含むアトマイザ7501と、アトマイザに電力を供給する二次電池7504と、液体供給ボトルやセンサなどを含むカートリッジ7502で構成されている。安全性を高めるため、二次電池7504の過充電や過放電を防ぐ保護回路を二次電池7504に電気的に接続してもよい。図31Hに示した二次電池7504は、充電機器と接続できるように外部端子を有している。二次電池7504は持った場合に先端部分となるため、トータルの長さが短く、且つ、重量が軽いことが望ましい。本発明の一態様の二次電池は充放電容量が高く、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができる小型であり、且つ、軽量の電子タバコ7500を提供できる。
次に、図32Aおよび図32Bに、2つ折り可能なタブレット型端末の一例を示す。図32Aおよび図32Bに示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631aと表示部9631bを有する表示部9631、スイッチ9625乃至スイッチ9627、留め具9629、操作スイッチ9628、を有する。表示部9631には、可撓性を有するパネルを用いることで、より広い表示部を有するタブレット端末とすることができる。図32Aは、タブレット型端末9600を開いた状態を示し、図32Bは、タブレット型端末9600を閉じた状態を示している。
また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
表示部9631は、全て又は一部の領域をタッチパネルの領域とすることができ、また当該領域に表示されたアイコンを含む画像、文字、入力フォームなどに触れることでデータ入力をすることができる。例えば、筐体9630a側の表示部9631aの全面にキーボードボタンを表示させて、筐体9630b側の表示部9631bに文字、画像などの情報を表示させて用いてもよい。
また、筐体9630b側の表示部9631bにキーボードを表示させて、筐体9630a側の表示部9631aに文字、画像などの情報を表示させて用いてもよい。また、表示部9631にタッチパネルのキーボード表示切り替えボタンを表示するようにして、当該ボタンに指やスタイラスなどで触れることで表示部9631にキーボードを表示するようにしてもよい。
また、筐体9630a側の表示部9631aのタッチパネルの領域と筐体9630b側の表示部9631bのタッチパネルの領域に対して同時にタッチ入力することもできる。
また、スイッチ9625乃至スイッチ9627には、タブレット型端末9600を操作するためのインターフェースだけでなく、様々な機能の切り替えを行うことができるインターフェースとしてもよい。例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、タブレット型端末9600の電源のオン・オフを切り替えるスイッチとして機能してもよい。また、例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、縦表示又は横表示などの表示の向きを切り替える機能、又は白黒表示やカラー表示の切り替える機能を有してもよい。また、例えば、スイッチ9625乃至スイッチ9627の少なくとも一は、表示部9631の輝度を調整する機能を有してもよい。また、表示部9631の輝度は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて最適なものとすることができる。なお、タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
また、図32Aでは筐体9630a側の表示部9631aと筐体9630b側の表示部9631bの表示面積とがほぼ同じ例を示しているが、表示部9631a及び表示部9631bのそれぞれの表示面積は特に限定されず、一方のサイズと他方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
図32Bは、タブレット型端末9600を2つ折りに閉じた状態であり、タブレット型端末9600は、筐体9630、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634を有する。また、蓄電体9635として、本発明の一態様に係る蓄電体を用いる。
なお、上述の通り、タブレット型端末9600は2つ折りが可能であるため、未使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631を保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の二次電池を用いた蓄電体9635は充放電容量が高く、良好なサイクル特性を有するため、長期間に渡って長時間の使用ができるタブレット型端末9600を提供できる。
また、この他にも図32Aおよび図32Bに示したタブレット型端末9600は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末9600の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。なお蓄電体9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
また、図32Bに示す充放電制御回路9634の構成、および動作について図32Cにブロック図を示し説明する。図32Cには、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図32Bに示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
図33に、他の電子機器の例を示す。図33において、表示装置8000は、本発明の一態様に係る二次電池8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、二次電池8004等を有する。本発明の一態様に係る二次電池8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、二次電池8004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8004を無停電電源として用いることで、表示装置8000の利用が可能となる。
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
図33において、据え付け型の照明装置8100は、本発明の一態様に係る二次電池8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、二次電池8103等を有する。図33では、二次電池8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、二次電池8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、二次電池8103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8103を無停電電源として用いることで、照明装置8100の利用が可能となる。
なお、図33では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る二次電池は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
図33において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る二次電池8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、二次電池8203等を有する。図33では、二次電池8203が、室内機8200に設けられている場合を例示しているが、二次電池8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、二次電池8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、二次電池8203に蓄積された電力を用いることもできる。特に、室内機8200と室外機8204の両方に二次電池8203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
なお、図33では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る二次電池を用いることもできる。
図33において、電気冷凍冷蔵庫8300は、本発明の一態様に係る二次電池8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、二次電池8304等を有する。図33では、二次電池8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、二次電池8304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る二次電池8304を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。
なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電子機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補助するための補助電源として、本発明の一態様に係る二次電池を用いることで、電子機器の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、二次電池に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、二次電池8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、二次電池8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
本発明の一態様により、二次電池のサイクル特性が良好となり、信頼性を向上させることができる。また、本発明の一態様によれば、充放電容量が高い二次電池とすることができ、よって、二次電池の特性を向上することができ、よって、二次電池自体を小型軽量化することができる。そのため本発明の一態様である二次電池を、本実施の形態で説明した電子機器に搭載することで、より長寿命で、より軽量な電子機器とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、先の実施の形態で説明した二次電池を用いた電子機器の例について図34A乃至図35Cを用いて説明する。
図34Aは、ウェアラブルデバイスの例を示している。ウェアラブルデバイスは、電源として二次電池を用いる。また、使用者が生活または屋外で使用する場合において、防沫性能、耐水性能または防塵性能を高めるため、接続するコネクタ部分が露出している有線による充電だけでなく、無線充電も行えるウェアラブルデバイスが望まれている。
例えば、図34Aに示すような眼鏡型デバイス4000に本発明の一態様である二次電池を搭載することができる。眼鏡型デバイス4000は、フレーム4000aと、表示部4000bを有する。湾曲を有するフレーム4000aのテンプル部に二次電池を搭載することで、軽量であり、且つ、重量バランスがよく継続使用時間の長い眼鏡型デバイス4000とすることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ヘッドセット型デバイス4001に本発明の一態様である二次電池を搭載することができる。ヘッドセット型デバイス4001は、少なくともマイク部4001aと、フレキシブルパイプ4001bと、イヤフォン部4001cを有する。フレキシブルパイプ4001b内やイヤフォン部4001c内に二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、身体に直接取り付け可能なデバイス4002に本発明の一態様である二次電池を搭載することができる。デバイス4002の薄型の筐体4002aの中に、二次電池4002bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、衣服に取り付け可能なデバイス4003に本発明の一態様である二次電池を搭載することができる。デバイス4003の薄型の筐体4003aの中に、二次電池4003bを設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、ベルト型デバイス4006に本発明の一態様である二次電池を搭載することができる。ベルト型デバイス4006は、ベルト部4006aおよびワイヤレス給電受電部4006bを有し、ベルト部4006aの内部に、二次電池を搭載することができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
また、腕時計型デバイス4005に本発明の一態様である二次電池を搭載することができる。腕時計型デバイス4005は表示部4005aおよびベルト部4005bを有し、表示部4005aまたはベルト部4005bに、二次電池を設けることができる。本発明の一態様である二次電池を備えることで、筐体の小型化に伴う省スペース化に対応できる構成を実現することができる。
表示部4005aには、時刻だけでなく、メールや電話の着信等、様々な情報を表示することができる。
また、腕時計型デバイス4005は、腕に直接巻きつけるタイプのウェアラブルデバイスであるため、使用者の脈拍、血圧等を測定するセンサを搭載してもよい。使用者の運動量および健康に関するデータを蓄積し、健康を管理することができる。
図34Bに腕から取り外した腕時計型デバイス4005の斜視図を示す。
また、側面図を図34Cに示す。図34Cには、内部に二次電池913を内蔵している様子を示している。二次電池913は実施の形態4に示した二次電池である。二次電池913は表示部4005aと重なる位置に設けられており、小型、且つ、軽量である。
図34Dはワイヤレスイヤホンの例を示している。ここでは一対の本体4100aおよび本体4100bを有するワイヤレスイヤホンを図示するが、必ずしも一対でなくてもよい。
本体4100aおよび4100bは、ドライバユニット4101、アンテナ4102、二次電池4103を有する。表示部4104を有していてもよい。また無線用IC等の回路が載った基板、充電用端子等を有することが好ましい。またマイクを有していてもよい。
ケース4110は、二次電池4111を有する。また無線用IC、充電制御IC等の回路が載った基板、充電用端子を有することが好ましい。また表示部、ボタン等を有していてもよい。
本体4100aおよび4100bは、スマートフォン等の他の電子機器と無線で通信することができる。これにより他の電子機器から送られた音データ等を本体4100aおよび4100bで再生することができる。また本体4100aおよび4100bがマイクを有すれば、マイクで取得した音を他の電子機器に送り、該電子機器により処理をした後の音データを再び本体4100aおよび4100bに送って再生することができる。これにより、たとえば翻訳機として用いることもできる。
またケース4100が有する二次電池4111から、本体4100aが有する二次電池4103に充電を行うことができる。二次電池4111および二次電池4103としては先の実施の形態のコイン型二次電池、円筒型二次電池等を用いることができる。実施の形態1で得られる正極活物質100を正極に用いた二次電池は高エネルギー密度であり、二次電池4103および二次電池4111に用いることで、ワイヤレスイヤホンの小型化に伴う省スペース化に対応できる構成を実現することができる。
図35Aは、掃除ロボットの一例を示している。掃除ロボット6300は、筐体6301上面に配置された表示部6302、側面に配置された複数のカメラ6303、ブラシ6304、操作ボタン6305、二次電池6306、各種センサなどを有する。図示されていないが、掃除ロボット6300には、タイヤ、吸い込み口等が備えられている。掃除ロボット6300は自走し、ゴミ6310を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
例えば、掃除ロボット6300は、カメラ6303が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ6304に絡まりそうな物体を検知した場合は、ブラシ6304の回転を止めることができる。掃除ロボット6300は、その内部に本発明の一態様に係る二次電池6306と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池6306を掃除ロボット6300に用いることで、掃除ロボット6300を稼働時間が長く信頼性の高い電子機器とすることができる。
図35Bは、ロボットの一例を示している。図35Bに示すロボット6400は、二次電池6409、照度センサ6401、マイクロフォン6402、上部カメラ6403、スピーカ6404、表示部6405、下部カメラ6406および障害物センサ6407、移動機構6408、演算装置等を備える。
マイクロフォン6402は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ6404は、音声を発する機能を有する。ロボット6400は、マイクロフォン6402およびスピーカ6404を用いて、使用者とコミュニケーションをとることが可能である。
表示部6405は、種々の情報の表示を行う機能を有する。ロボット6400は、使用者の望みの情報を表示部6405に表示することが可能である。表示部6405は、タッチパネルを搭載していてもよい。また、表示部6405は取り外しのできる情報端末であっても良く、ロボット6400の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ6403および下部カメラ6406は、ロボット6400の周囲を撮像する機能を有する。また、障害物センサ6407は、移動機構6408を用いてロボット6400が前進する際の進行方向における障害物の有無を察知することができる。ロボット6400は、上部カメラ6403、下部カメラ6406および障害物センサ6407を用いて、周囲の環境を認識し、安全に移動することが可能である。
ロボット6400は、その内部に本発明の一態様に係る二次電池6409二次電池と、半導体装置または電子部品を備える。本発明の一態様に係る二次電池をロボット6400に用いることで、ロボット6400を稼働時間が長く信頼性の高い電子機器とすることができる。
図35Cは、飛行体の一例を示している。図35Cに示す飛行体6500は、プロペラ6501、カメラ6502、および二次電池6503などを有し、自律して飛行する機能を有する。
例えば、カメラ6502で撮影した画像データは、電子部品6504に記憶される。電子部品6504は、画像データを解析し、移動する際の障害物の有無などを察知することができる。また、電子部品6504によって二次電池6503の蓄電容量の変化から、バッテリ残量を推定することができる。飛行体6500は、その内部に本発明の一態様に係る二次電池6503を備える。本発明の一態様に係る二次電池を飛行体6500に用いることで、飛行体6500を稼働時間が長く信頼性の高い電子機器とすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、車両に本発明の一態様である二次電池を搭載する例を示す。
二次電池を車両に搭載すると、ハイブリッド車(HV)、電気自動車(EV)、又はプラグインハイブリッド車(PHV)等の次世代クリーンエネルギー自動車を実現できる。
図36において、本発明の一態様である二次電池を用いた車両を例示する。図36Aに示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。また、自動車8400は二次電池を有する。二次電池は、車内の床部分に対して、図21Cおよび図21Dに示した二次電池のモジュールを並べて使用すればよい。また、図24に示す二次電池を複数組み合わせた電池パックを車内の床部分に対して設置してもよい。二次電池は電気モーター8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。
また、二次電池は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、二次電池は、自動車8400が有するナビゲーションシステムなどの半導体装置に電力を供給することができる。
図36Bに示す自動車8500は、自動車8500が有する二次電池にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図36Bに、地上設置型の充電装置8021から自動車8500に搭載された二次電池8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクタの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された二次電池8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に二次電池の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
また、図36Cは、本発明の一態様の二次電池を用いた二輪車の一例である。図36Cに示すスクータ8600は、二次電池8602、サイドミラー8601、方向指示灯8603を備える。二次電池8602は、方向指示灯8603に電気を供給することができる。
また、図36Cに示すスクータ8600は、座席下収納8604に、二次電池8602を収納することができる。二次電池8602は、座席下収納8604が小型であっても、座席下収納8604に収納することができる。二次電池8602は、取り外し可能となっており、充電時には二次電池8602を屋内に持って運び、充電し、走行する前に収納すればよい。
本発明の一態様によれば、二次電池のサイクル特性が良好となり、二次電池の充放電容量を大きくすることができる。よって、二次電池自体を小型軽量化することができる。二次電池自体を小型軽量化できれば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した二次電池を車両以外の電力供給源として用いることもできる。この場合、例えば電力需要のピーク時に商用電源を用いることを回避することができる。電力需要のピーク時に商用電源を用いることを回避できれば、省エネルギー、および二酸化炭素の排出の削減に寄与することができる。また、サイクル特性が良好であれば二次電池を長期に渡って使用できるため、コバルトをはじめとする希少金属の使用量を減らすことができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、本発明の一態様の正極活物質100を作製し、その特徴を分析した。
<正極活物質の作製>
図14に示す作製方法を参照しながら本実施例で作製したサンプルについて説明する。
ステップS14のLiMOとして、遷移金属Mとしてコバルトを有し、添加物元素を特に有さない市販のコバルト酸リチウム(日本化学工業株式会社製、セルシードC−10N)を用意した。これにステップS21乃至ステップS23、ステップS41およびステップS42と同様に、固相法でフッ化リチウムおよびフッ化マグネシウムを混合した。コバルトの原子数を100としたとき、フッ化リチウム分子数が0.33、フッ化マグネシウムの分子数が1となるように添加した。これを混合物903とした。
次にステップS43と同様にアニールした。角型のアルミナの容器に混合物903を30g入れ、蓋を配してマッフル炉にて加熱した。炉内をパージして酸素ガスを導入し、加熱中はフローしなかった。アニール温度は900℃、アニール時間は20時間とした。
加熱後の複合酸化物に、ステップS31、ステップS32、ステップS61、ステップS62と同様に水酸化ニッケルおよび水酸化アルミニウムを添加し混合した。コバルトの原子数を100としたとき、ニッケルの原子数が0.5、アルミニウムの原子数が0.5となるように添加した。これを混合物904とした。
次にステップS63と同様にアニールした。角型のアルミナの容器に混合物904を100g入れ、蓋を配してマッフル炉にて加熱した。加熱中の酸素ガスの流量は10L/分とした。アニール温度は850℃、アニール時間は10時間とした。このようにして作製した正極活物質を、サンプル1−1とした(ステップS66)。
次にステップS43のアニールを850℃、60時間、加熱中の酸素ガスの流量10L/分とし、ステップS63のアニールを850℃、2時間とした他はサンプル1−1と同様に作製したものを、サンプル1−2とした。
次に図11に示す作製方法のように、マグネシウム源、フッ素源と共にニッケル源とアルミニウム源を混合し、ステップS43のアニールを850℃、60時間、加熱中の酸素ガスの流量10L/分、とした他はサンプル1−1と同様に作製したものを、サンプル1−3とした。
次に図15に示す作製方法のように、コバルト酸リチウムに先にニッケル源およびアルミニウム源を混合し、ステップS43のアニール(850℃、2時間、加熱中の酸素ガスの流量10L/分)を経てから、後にマグネシウム源およびフッ素源を混合し、ステップS63のアニール(850℃、2時間)を行った他はサンプル1−1と同様に作製したものを、サンプル1−4とした。
次に図12に示す作製方法のように、アルミニウム源としてアルミニウムイソプロポキシド(Al(O−i−Pr))を用いて、ニッケル源と異なる工程で混合して作製したものをサンプル1−5とした。このときAlイソプロポキシドの溶媒にはイソプロパノールを用いた。S61−1の混合で得られた混合物と、Alイソプロポキシドを、攪拌しながら大気に含まれる水と17時間反応させた後、80℃の通風乾燥炉で3時間乾燥させて乾固させ、さらにステップS63のアニール(850℃、2時間)を行った。他の条件はサンプル1−2と同様とした。
次にコバルトの原子数を100としたとき、フッ化リチウムの分子数が0.66、フッ化マグネシウムの分子数が2となるように添加し他はサンプル1−5と同様としたものを、サンプル1−6とした。
次に図13に示す作製方法のように、アニールと固着抑制操作を複数回繰り返して作製したものをサンプル1−7とした。このとき、1回目と2回目のアニールは900℃、10時間とし、3回目のアニールは920℃、10時間とした。アニールの間に固着抑制操作として、複合酸化物を乳鉢に入れ、乳棒で解砕した。他の条件はサンプル1−3と同様とした。
次に3回目のアニール温度を900℃とした他はサンプル1−7と同様に作製したものを、サンプル1−8とした。
また比較例として遷移金属としてコバルトを有し、特に添加物元素を有さないコバルト酸リチウム(日本化学工業株式会社製、セルシードC−10N)をサンプル2とした。
またニッケル源およびアルミニウム源を用いなかった他はサンプル1−3と同様に作製したものをサンプル3とした。
またニッケル源およびアルミニウム源を用いなかった他はサンプル1−5と同様に作製したものをサンプル4とした。
またアルミニウム源を用いなかった他はサンプル1−5と同様に作製したものをサンプル5とした。
またニッケル源を用いなかった他はサンプル1−5と同様に作製したものをサンプル6とした。
またコバルトの原子数を100としたとき、フッ化リチウムの分子数が0.17、フッ化マグネシウムの分子数が0.5となるように添加した他はサンプル3と同様に作製したものをサンプル7とした。
またコバルトの原子数を100としたとき、フッ化リチウムの分子数が0.17、フッ化マグネシウムの分子数が0.5となるように添加し、ステップS43におけるアニール温度を900℃、20時間とし、さらにアルミニウム源に代えてチタン源を用い、チタン源としてチタンイソプロポキシド(TTIP)を用いた他はサンプル6と同様に作製したものをサンプル8とした。
サンプル1−1乃至サンプル8の作製条件を表1に示す。表1からも明らかなように、サンプル1−1乃至サンプル1−8はいずれも、特に添加物元素を有さないLiCoOにマグネシウム源、フッ素源、ニッケル源およびアルミニウム源を添加した後、アニールしたものである点が共通しているため、共通点を有さないサンプルと区別する上でこれらを全てサンプル1と呼んでもよい。
Figure JPOXMLDOC01-appb-T000003
<SEM>
図37Aはサンプル1−2の、図37Bはサンプル1−3の、図37Cはサンプル1−4の、図37Dはサンプル2の表面SEM像である。添加物を加えアニールをしたサンプル1−2乃至サンプル1−4はいずれも角が丸く、凹凸が少なく、表面がなめらかである様子が観察された。一方、アニールをしていないサンプル2は比較的角が鋭く、凹凸が多く、表面がざらついている様子が観察された。
<電子線回折>
上記で作製したサンプル1−1の正極活物質について断面TEMおよび電子線回折法で分析した結果を、図38乃至図41に示す。
図38Aは正極活物質の表面から深さ3μm程度までの断面TEM像である。図38A中の白い円で示すarea1の制限視野電子線回折像を、図38Bに示す。図38Bの輝点の一部を図38Cに示すように1、2、3およびOとした。Oは透過光、1、2および3は回折スポットである。
area1は表面からの深さが50nm以上であり、正極活物質の内部である。内部の制限視野回折像の実測値は、1はd=0.144nm、2はd=0.138nm、3はd=0.479nmであった。面角度は∠1O2=17°、∠1O3=90°、∠2O3=74°であった。
これらの結果から、正極活物質の内部は層状岩塩型の結晶構造を有することが確認された。a軸の格子定数は2.88Å、c軸の格子定数は14.37Åであった。なお1Åは10−10mである。
なお層状岩塩型LiCoOの文献値は1がd=0.141nm、2がd=0.135nm、3がd=0.468nm、面角度が∠1O2=17°、∠1O3=90°、∠2O3=73°である。文献値との差は測定誤差だと考えられる。
図39Aに正極活物質の内部の極微電子線回折像を示す。図39Aの輝点の一部を図39Bに示すように1、2、3およびOとした。
内部の極微電子線回折像の実測値は、1はd=0.142nm、2はd=0.122nm、3はd=0.240nmであった。面角度は∠1O2=30°、∠1O3=90°、∠2O3=59°であった。
これらの結果からも、正極活物質の内部は層状岩塩型の結晶構造を有することが、確認された。a軸の格子定数Acoreは2.84Å、c軸の格子定数はCcore14.4Åであった。
図40Aは正極活物質の表面から深さ40nm程度までの断面TEM像である。図40Aに*で示すpoint2の極微電子線回折像を、図40Bに示す。図40Bの輝点の一部を図40Cに示すように1、2、3およびOとした。
Point2は表面からの深さが13nm程度であり、正極活物質の内部のうち、後述する線状EDX線分析においてアルミニウムの濃度が高い部分である。この部分の極微電子線回折像の実測値は、1はd=0.143nm、2はd=0.122nm、3はd=0.240nmであった。面角度は∠1O2=31°、∠1O3=89°、∠2O3=59°であった。
この結果からも、正極活物質の内部は層状岩塩型の結晶構造を有することが確認された。a軸の格子定数は2.86Å、c軸の格子定数は14.4Åであった。図39Aおよび図39Bから算出される値と近い値となり、アルミニウム濃度が高い領域でも内部であれば格子定数に大きな差がないことが示された。
図41Aは正極活物質の表面から深さ30nm程度までの断面TEM像である。図41Aに*で示すpoint1の極微電子線回折像を、図41Bに示す。図41Bの輝点の一部を図41Cに示すように1、2、3およびOとした。
point1は正極活物質の表層部のうち、最表面層である。最表面層の極微電子線回折像の実測値は、1はd=0.151nm、2はd=0.128nm、3はd=0.266nmであった。面角度は∠1O2=31°、∠1O3=90°、∠2O3=59°であった。
図41Bに示すように、最表面層の極微電子線回折像では、強い輝度の輝点と、矢印のような弱い輝度の輝点とが交互に配列していた。弱い輝度を含めた輝点の配列に注目した場合、このような配列の回折像から同定される結晶構造は層状岩塩型である。しかし強い輝度の輝点のみを抜粋した場合は、岩塩型に近い結晶構造であると判断できる。そのためこの回折像が得られた最表面層は層状岩塩型の結晶構造の特徴を有するが、一部岩塩型の結晶構造の特徴も有することを示すといえる。なおこのような回折像における輝度の差は、図43B等で示すTEM像等における輝度の差に対応している。
a軸の格子定数Asurfaceは3.02Å、c軸の格子定数Csurfaceは15.96Åであった。
上記で求めた内部と最表面層の格子定数を表2に示す。比較のため文献値も併せて示す。
Figure JPOXMLDOC01-appb-T000004
表2に示すように、本発明の一態様の正極活物質では、極微電子線回折により算出される表層部の一部である最表面層のa軸の格子定数Asurfaceは3.02Åであり、極微電子線回折により算出される内部のa軸の格子定数Acoreの2.84Åよりも大きかった。同様に最表面層のc軸の格子定数Csurfaceは15.96Åと、極微電子線回折により算出される内部のc軸の格子定数Ccoreの14.4Åよりも大きかった。
極微電子線回折により求めた内部と最表面層の格子定数の差と変化率を表3に示す。
Figure JPOXMLDOC01-appb-T000005
表3に示すように、最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの差Δの0.18Åよりも、最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの差Δの1.56Åの方が大きかった。
また最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの変化率Rは0.063であった。また最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの変化率Rは0.108であった。
これらから、内部と最表面層の格子定数の変化は、a軸方向よりもc軸方向の方が大きいことが明らかになった。
<断面STEMおよび輝度>
上記で作製したサンプル1−1の正極活物質の断面STEM像を図42A乃至図42Cに示す。図42Aは正極活物質の表面から深さ15nm程度までの断面STEM像である。図42Bは正極活物質の表面から深さ6nm程度、幅8nm程度の範囲の断面STEM像である。図42Cは表面から深さ3.5nm程度までの断面STEM像である。これらは暗視野像である。
図42Aに示すように、正極活物質の内部では遷移金属Mの層が強い白の輝点の列として観察され、層状岩塩型の結晶構造を有し、結晶性が高い様子が観察された。また正極活物質の表面が層状岩塩型の結晶構造の(001)面と概略平行であった。また遷移金属M層の間に存在するリチウム層はわずかに灰色となる程度で、輝点はほとんど観察されなかった。遷移金属Mを中心として8面体を形成する酸素も同様であった。この断面STEM像ではリチウムおよび酸素のような原子番号の小さい元素は、明瞭な輝点にならないことが明らかとなった。
一方図42Bおよび図42Cに示すように、最表面層ではリチウムサイトに弱い輝点が観察された。リチウムおよび酸素より輝度が高いため、リチウムよりも原子番号が大きい元素だと考えられる。また当該元素がリチウムサイトに存在することから陽イオンとなりうる元素だと考えられるため、これはリチウムより原子番号の大きい金属元素である。すなわち遷移金属Mまたは添加物元素の中の金属元素である。サンプル1−1が有する添加物元素のうち金属であるのはマグネシウムおよびアルミニウムである。そのため最表面層でリチウムサイトに存在する弱い輝点はコバルト、マグネシウムまたはアルミニウムだと考えられる。
図42Bの断面STEM像を用いて遷移金属Mサイト層とリチウムサイト層の輝度を比較した結果を図43A乃至図44Bに示す。図43Aは図42Bを90°回転させた図である。図43Aの画像について、遷移金属Mサイト層と平行に輝度を積算した。図43Bに各ピクセル列の輝度をグラフで示す。
次に金属元素の輝度を比較しやすくするため、酸素原子等の陰イオンに由来する輝度はバックグラウンドとして補正した。具体的には各ピークの谷の頂点同士を直線で近似し補正した。バックグラウンド(background)を図43Bに点線で示す。
図44Aに補正後のグラフを示す。横軸は表面からの深さである。最初の金属元素の輝度のピークを表面とした。また縦軸は強度(intensity)であり、深さ6nmまでの白ピクセル数の最大値を1として規格化した。図44Bに、視認性を高めるため図43Aの図を明度反転させて示す。
図44Aに示すように、表面からの深さが3nmより深い領域では、遷移金属Mサイト層が強い輝度で存在した。遷移金属Mサイト層の間のリチウムサイト層ではピークは存在しなかった。
一方、表面から0.8nm程度未満では遷移金属Mサイト層およびリチウムサイト層ともにピークが低く、十分な強度が得られなかった。正極活物質の凹凸に由来する誤差である可能性がある。しかし表面から0.8nm以上では遷移金属Mサイト層の輝度が最大値の0.7以上と十分な強度を得られた。
表面から深さ0.8nm程度から深さ3nmまでの領域ではリチウムサイト層に遷移金属Mサイト層より低いピークが観察された(図44A点線の矢印)。この低いピークは、リチウムサイト層に添加物の金属元素または遷移金属Mが存在していることを示すと考えられる。このリチウムサイト層のピークは、最大値の3%以上60%以下、より詳細には4%以上50%以下、さらに詳細には6%以上40%以下であった。また最初の十分な強度の遷移金属サイト層の強度と比較すると、5%以上65%以下、より詳細には8%以上50%以下であった。
<EDX線面分析>
上記で作製したサンプル1−1の正極活物質の断面の表層部についてEDX面分析を行った結果を、図45A乃至図47Eに示す。
比較を容易にするため、図45A、図46Aおよび図47Aに正極活物質の表面および内部を含む同じ断面HAADF−STEM像を示す。図45BはHAADF−STEM像と同じ部分のフッ素、図45Cは炭素、図45Dはマグネシウム、図45Eは酸素、図45Fはアルミニウムのマッピング像である。図46BはHAADF−STEM像と同じ部分のニッケル、図46Cはシリコン、図46Dはコバルトのマッピング像である。視認性を高めるため、一部の元素のマッピング像について明度反転したものを図47B乃至図47Eに示す。図47Bは明度反転したフッ素、図47Cはマグネシウム、図47Dはアルミニウム、図47Eはニッケルのマッピング像である。
図45乃至図47から、酸素およびコバルトは正極活物質全体に分布していることが明らかとなった。またマグネシウムおよびフッ素は表層部、特に最表面層の濃度が高かった。アルミニウムは、表面から30nm程度までにブロードに分布している様子が観察された。ニッケルはバックグラウンド以下の濃度と考えられた。
<EDX線分析>
次に、サンプル1−1の正極活物質の表層部についてEDX線分析を行った。図48は正極活物質の表面および内部を含む断面STEM像である。図48中の白線で囲まれた領域が測定領域である。図中の白矢印のように、正極活物質100の外から内部に向かって分析を行った。結果を図49Aおよび図49Bに示す。横軸に測定開始点からの距離(Distance)、縦軸に原子%(Atomic%)を示す。なおEDX線分析の検出下限は、元素によるがおおむね1原子%である。
図49Aの一部を拡大した図が図49Bである。図49Aおよび図49Bから、マグネシウムおよびフッ素が最表面層に存在し、内部から表面に向かって濃度が高くなる濃度勾配を有することが確認された。表面の濃度が最も高く、鋭いピークであった。シリコンの分布も同様の傾向であった。
マグネシウム濃度のピークは4.0原子%、距離4.6nmの測定点であった。フッ素濃度のピークは4.0原子%、距離4.4nmの測定点であった。
アルミニウムの濃度のピークは、マグネシウムおよびフッ素のピークよりも深い位置にあり、20nm以上の距離にわたってブロードに分布していた。アルミニウム濃度のピークは3.9原子%、距離16.1nmの測定点であった。
ニッケルは全ての測定点で検出下限以下、つまり1原子%未満であった。
酸素は正極活物質の表面より外からも検出された。正極活物質作製後に表面に化学吸着した炭酸およびヒドロキシ基等の影響、またはバックグラウンドと考えられる。
断面STEM試料をFIBで作製する時に炭素の保護膜を形成したため、正極活物質の表面より外に炭素が多く検出されている。表面より内部の炭素はバックグラウンドと考えられる。
表面は酸素の検出量から以下のように推定した。まず図49Aに矢印で示す20−40nmの範囲を酸素の原子%が安定している領域とした。この領域の酸素の原子%の平均は54.4%であった。また距離0−3nmの範囲をバックグラウンドまたは化学吸着した酸素の原子%が安定している領域とした。この領域の平均Obackgroundは11.8%であった。OaveからObackgroundを減じた結果の42.6%を、補正された酸素の平均Oaveとした。そのため1/2Oaveは21.3%となった。これに最も近い酸素の測定点は、距離4.4nmであった。そこで本実施例等では距離4.4nmを表面と推定することとした。これはフッ素の濃度のピークと同じ測定点であった。
なおコバルトの検出量から表面を推定する場合は以下のようになる。距離20−40nmの範囲をコバルトの原子%が安定している領域とした。この領域のコバルトの平均Coaveは37.8原子%であった。そのため1/2Coaveは18.9原子%であった。これに最も近いコバルトの測定点は、距離4.6nmであった。
このように、酸素とコバルトのいずれを用いてもほとんど同じ距離の測定点が表面であると推定される。これらの結果から、上記の方法はいずれも表面を推定するのに妥当な方法であるといえる。
このようにEDX面分析および線分析から、本発明の一態様の正極活物質はマグネシウムとフッ素を表層部、なかでも最表面層に有し、内部から表面に向かって濃度勾配を有する正極活物質100であることが確認された。またアルミニウムの濃度ピークはマグネシウムおよびフッ素の濃度よりも深い位置に存在することが確認された。
表面を酸素の検出量から推定した距離4.4nmとした場合、マグネシウム濃度のピークは深さ0.2nmであった。フッ素濃度のピークは深さ0nmであった。アルミニウムの濃度のピークは深さ11.7nmであった。
<活物質表面の凹凸>
次に、上記で作製した正極活物質の表面の滑らかさについて、サンプル1−1およびサンプル2の表面の凹凸を、以下の方法により測定して評価した。
まずサンプル1−1およびサンプル2のSEM像を取得した。このときサンプル1−1およびサンプル2に対するSEMの測定条件を同じとした。測定条件としては加速電圧又は倍率が挙げられる。本実施例では、観察前処理としてサンプル1−1およびサンプル2に導電性コーティングを施した。具体的には白金スパッタリングを20秒行った。日立ハイテク社製走査電子顕微鏡装置SU8030を用いて観察を行った。測定条件は、加速電圧5kV、倍率5000倍とし、その他の測定条件としてワーキングディスタンス5.0mm、エミッション電流9~10.5μA、引き出し電圧5.8V、SEUモード(Upper secondary−electron detector)、ABCモード(Auto Brightness Contrast Control)も同じになるようにし、オートフォーカスで観察した。
図50Aにサンプル1−1の、図50Bにサンプル2のSEM像をそれぞれ示す。添加物元素を加えた後加熱したサンプル1−1は、サンプル2よりも表面が滑らかである様子が観察された。それぞれの図中に、次に行う画像解析の対象領域を四角で示した。対象領域の面積は4μm×4μmであり、全てのサンプルで同じ面積とした。対象領域内はSEM観察面として水平になるようにした。
ここで本発明者等は図50Aおよび図50Bに示す画像において、正極活物質の表面状態は輝度変化を伴って撮影されることに着目した。輝度変化を利用することで、画像解析によって表面の凹凸に関する情報を数値化できるのはないかと考えた。
そこで本実施例では図50Aおよび図50Bに示す画像を、画像処理ソフト「ImageJ」を用いて解析し、正極活物質の表面なめらかさについて数値化することを試みた。なお、当該解析を実施する画像処理ソフトとして「ImageJ」は例示であって、「ImageJ」に限定されるものではない。
まず「ImageJ」を用いて、図50Aおよび図50Bに示す画像をそれぞれ、8ビットに変換した画像(これをグレースケール画像と呼ぶ)を取得する。グレースケール画像は、1画素を8ビットで表したものであり、輝度(明るさ情報)を含んでいる。たとえば8ビットのグレースケール画像では、輝度を2の8乗=256階調で表すことができる。暗い部分は階調数が低くなり、明るい部分は階調数が高くなる。階調数と関連付けて輝度変化を数値化することを試みた。当該数値をグレースケール値と呼ぶ。グレースケール値を取得することで正極活物質の凹凸を数値として評価することが可能となる。
さらに対象領域の輝度変化をヒストグラムで表すことも可能となる。ヒストグラムとは対象領域における階調分布を立体的に示したもので、輝度ヒストグラムとも呼ぶ。輝度ヒストグラムを取得することで正極活物質の凹凸を視覚的にわかりやすく、評価することが可能となる。
上記に従ってサンプル1−1およびサンプル2の画像から8ビットのグレースケール画像を取得し、さらにグレースケール値、及び輝度ヒストグラムを取得した。
図51Aにサンプル1−1の、図51Bにサンプル2のグレースケール値を示す。x軸はグレースケール値(grayscale)を示し、y軸はカウント数を示し、x軸に示すグレースケール値の存在割合に対応した値である。カウント数はログスケールで示した(log count)。また図52Aおよび図52Bにはサンプル1−1およびサンプル2の輝度ヒストグラムを示す。
図51Aおよび図51Bに示すグラフより、グレースケール値の最小値及び最大値を含む範囲がわかる。最大値及び最小値をサンプル1−1は96以上206以下に有し、サンプル2は82以上206以下に有することが分かった。以下の表4に、最小値、最大値、最大値と最小値の差(最大値−最小値)、および標準偏差を示す。
Figure JPOXMLDOC01-appb-T000006
表4に示すように、表面が滑らかなサンプル1−1は、最大値と最小値の差が120以下となった。また標準偏差も小さくよりばらつきが小さかった。
またサンプル1−1およびサンプル2について、同じ条件で作製された別のサンプルを8つ選んで、本実施例と同様な画像解析を行った。8つのサンプルを検証しても、上記と同様な傾向であった。
このような画像解析によりなめらかな様子を定量化して確認することができた。マグネシウム、フッ素、ニッケルおよびアルミニウムを加えて加熱した正極活物質は表面に凹凸が少なく、なめらかとなることがわかった。
<電極密度>
次に、サンプル1−1を用い、導電材およびプレスの条件を変えた正極を作製し、電極密度を評価した。
まず正極活物質、導電材およびPVDFを混合してスラリーを作製し、該スラリーをアルミニウムの集電体に塗工した。導電材には、ABのみ、ABとグラフェンの混合物(AB:グラフェン=8:2、重量比)、またはABとVGCF(登録商標)(昭和電工(株)製)の混合物(AB:VGCF=8:2、重量比)を用いた。スラリーの溶媒としてNMPを用いた。
乾燥させた後、正極に弱いプレスを0回乃至5回、強いプレスを0回または1回行った。弱いプレスは210kN/m、強いプレスは1467klN/mとした。いずれのプレスにもカレンダーロールを用いた。
表5に配合比、プレス条件、導電材、および電極密度(g/cc)を示す。
Figure JPOXMLDOC01-appb-T000007
表5に示すように、ABのみを導電材とするよりも、ABとグラフェンを混合して用いた方がプレス後の電極密度が高くなりやすいことが明らかとなった。またABとグラフェンを混合して用い、導電材を1wt%とし、弱いプレスを2回以上行った条件は、電極密度が3.72g/cc以上となった。
<XRD>
上記で作製したサンプル1−7およびサンプル2について、対極リチウムの二次電池を作製し、充電後の結晶構造をXRDにより分析した。
まず正極活物質、ABおよびPVDFを、活物質:AB:PVDF=95:3:2(重量比)で混合してスラリーを作製し、該スラリーをアルミニウムの集電体に塗工した。スラリーの溶媒としてNMPを用いた。
正極の作製工程において加圧は行わなかった。
作製した正極を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の電池セルを作製した。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)で混合したものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
上記のように作製した二次電池について、まず初回の充電後構造を測定した。充電電圧は4.65Vまたは4.7Vとした。充電温度は25℃または45℃とした。充電方法はCC/CV(0.5C,各電圧,0.05Ccut)とした。なお本実施例等の充電後結晶構造の測定において1Cは200mA/gとした。充電容量を表6に示す。
Figure JPOXMLDOC01-appb-T000008
そして充電状態の二次電池をアルゴン雰囲気のグローブボックス内で解体して正極を取り出し、DMC(ジメチルカーボネート)で洗浄して電解液を取り除いた。取り出した正極を平坦な基板に両面テープで貼り付け、アルゴン雰囲気にて専用のセルに封入した。正極活物質層を装置の要求する測定面に合わせてセッティングした。充電時の温度に関わらず、XRD測定は室温で行った。
XRD測定の装置および条件は下記の通りとした。
XRD装置 :Bruker AXS社製、D8 ADVANCE
X線源 :CuKα線
出力 :40KV、40mA
スリット系 :Div.Slit、0.5°
検出器 :LynxEye
スキャン方式 :2θ/θ連続スキャン
測定範囲(2θ) :15°(degree)以上75°以下
ステップ幅(2θ) :0.01°設定
計数時間 :1秒間/ステップ
試料台回転 :15rpm
図53は充電後のサンプル1−7およびサンプル2の各電圧、各温度のXRDパターンである。18°≦2θ≦21.5°を拡大したパターンを図54Aに、36°≦2θ=47°を拡大したパターンを図54Bに示す。比較のためO1、H1−3およびO3’のXRDパターンを併せて示す。
図53乃至図54Bから、サンプル1−7は4.65V25℃、4.65V45℃、4.7V25℃、4.7C45℃のいずれの条件でもO3’型の結晶構造を有することが明らかとなった。また4.7C45℃ではO3’型に加えてH1−3型およびO1型の結晶構造も有していた。最もO3’型の結晶性がよいのは4.65V45℃の条件であった。
またサンプル2は4.7V25℃、4.7C45℃ともに、主にH1−3型の結晶構造を有することが明らかとなった。O3’型の結晶構造に由来するピークはほとんど見られなかった。
次に、サンプル1−7について充電温度を0℃、25℃、45℃、65℃または85℃とし、2回目の充電後構造を測定した。充電方法はCC/CV(0.5C,4.7V,0.05Ccut)、放電方法はCC(0.5C,2.5Vcut)とした。充放電容量を表7に示す。
Figure JPOXMLDOC01-appb-T000009
そして上記と同様に二次電池から正極を取り出しXRD測定を行った。
図55は充電後の各温度のXRDパターンである。18°≦2θ≦21.5°を拡大したパターンを図56Aに、36°≦2θ=47°を拡大したパターンを図56Bに示す。比較のためO1、H1−3、O3’および充電前のR−3m(LiCoO)のXRDパターンを併せて示す。
初回の充電と同様に、2回目の充電でも4.7V25℃、4.7V45℃の条件でO3’型の結晶構造を有することが明らかとなった。4.7C45℃ではO3’型に加えてO1型の結晶構造も有していた。4.7V65℃および4.7V85℃の条件では結晶性が低く、O1、H1−3、O3’いずれとも異なる結晶構造を有することが推測された。
次に、サンプル1−7について充電温度25℃における初回の充放電、30回目の充放電、および50回目の充放電後の構造を測定した。充電方法はCC/CV(0.5C,4.7V,0.05Ccut)、放電方法はCC(0.5C,2.5Vcut)とした。充放電容量を表8に示す。
Figure JPOXMLDOC01-appb-T000010
そして上記と同様に二次電池から正極を取り出しXRD測定を行った。
図57は各充放電後のXRDパターンである。18°≦2θ≦21.5°を拡大したパターンを図58Aに、36°≦2θ=47°を拡大したパターンを図58Bに示す。比較のためO1、H1−3、O3’および充電前のR−3m(LiCoO)のXRDパターンを併せて示す。
初回、30回目、50回目のいずれも、放電後にはR−3m(LiCoO)の結晶構造を有することが確認された。充放電サイクルが増えるに従い、特に充電時のピークはブロードになり結晶性が低下する傾向にあった。
また初回充電時にはO3’型の結晶構造を有するものの、30回目および50回目の充電時にはH1−3型の結晶構造を有することが推測された。また50回目の充電時にはR−3m(LiCoO)の結晶構造も存在することが推測された。これは正極活物質の表層部の劣化が進み、充電しても内部のリチウムの一部が正極活物質内に残るためだと考えられる。一方で50サイクルを経ても160mAh/gを超える放電容量を維持していることは、十分に劣化が進みにくい正極活物質であると言える。
次に、サンプル1−7について充放電温度45℃における初回の充放電、10回目の充放電、および50回目の充放電後の構造を測定した。充電方法はCC/CV(0.5C,4.7V,0.05Ccut)、放電方法はCC(0.5C,2.5Vcut)とした。充放電容量を表9に示す。
Figure JPOXMLDOC01-appb-T000011
図59は各充放電後のXRDパターンである。18°≦2θ≦21.5°を拡大したパターンを図60Aに、36°≦2θ=47°を拡大したパターンを図60Bに示す。比較のためO1、H1−3、O3’および充電前のR−3m(LiCoO)のXRDパターンを併せて示す。
初回充電時にはO3’の結晶構造を有し、初回放電時にはR−3m(LiCoO)の結晶構造を有することが確認された。その後は25℃における充放電サイクルよりも劣化が早く進み、50回目となると、充電時と放電時の結晶構造の変化が少なく、リチウムの挿入脱離反応が減少していることが推測された。
<ハーフセル充放電サイクル特性>
上記で作製したサンプル1−1と、サンプル2の正極活物質を用いて対極リチウムの二次電池を作製し、充放電サイクル特性を評価した。
まず正極活物質、ABおよびPVDFを、活物質:AB:PVDF=95:3:2(重量比)で混合してスラリーを作製し、該スラリーをアルミニウムの集電体に塗工した。スラリーの溶媒としてNMPを用いた。
集電体にスラリーを塗工した後、溶媒を揮発させた。その後、210kN/mで加圧を行った後、さらに1467kN/mで加圧を行った。以上の工程により、正極を得た。正極の担持量はおよそ7mg/cmとした。密度は3.8g/cc以上であった。
作製した正極を用いて、CR2032タイプ(直径20mm高さ3.2mm)のコイン型の電池セルを作製した。
対極にはリチウム金属を用いた。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、で混合したものに、ビニレンカーボネート(VC)を2wt%添加したものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
正極缶及び負極缶には、ステンレス(SUS)で形成されているものを用いた。
充放電サイクル特性の評価において、充電電圧は4.4V、4.5Vまたは4.6Vとした。測定温度は25℃、45℃、50℃、55℃、60℃、65℃または85℃とした。充電はCC/CV(0.5C,各電圧,0.05Ccut)、放電はCC(0.5C,2.5Vcut)とし、次の充電の前に10分休止時間を設けた。なお本実施例等において1Cは200mA/gとした。
図61Aに充電電圧4.4Vのサンプル1−1、図61Bにサンプル2(比較例)の充放電サイクル特性を示す。図62Aに充電電圧4.5Vのサンプル1−1、図62Bにサンプル2(比較例)の充放電サイクル特性を示す。図63Aに充電電圧4.6Vのサンプル1−1、図63Bにサンプル2(比較例)の充放電サイクル特性を示す。
充電電圧4.4Vにおいては、サンプル1−1は25℃から85℃まで極めて良好なサイクル特性を示した。サンプル2(比較例)の充放電サイクル特性も比較的良好であったものの、サンプル1−1には及ばなかった。
充電電圧4.5Vにおいては、サンプル1−1は25℃から65℃まで極めて良好な充放電サイクル特性を示した。また充電電圧を高くしたため放電容量も増大した。一方サンプル2(比較例)はいずれの温度でも充放電サイクルを繰り返すに従い放電容量の減少が生じた。
充電電圧4.6Vにおいては、サンプル2(比較例)は25℃から60℃までの全ての温度で20サイクルまでに急激な放電容量の低下が生じていた。一方サンプル1−1は25℃から60℃までの全ての温度でサンプル2(比較例)の特性を上回っていた。特に25℃から55℃までは極めて良好な充放電サイクル特性を示した。
次に、上記で作製したサンプル1−3、サンプル1−5、サンプル1−7およびサンプル3を用いて同様に対極リチウムの二次電池を作製し、充放電サイクル特性を評価した。
充電電圧は4.65Vまたは4.7Vとした。測定温度は25℃または45℃とした。充電はCC/CV(0.5C,各電圧,0.05Ccut)、放電はCC(0.5C,サンプル1−5のみ2.5Vcut,それ以外は3時間cut)とし、次の充電の前に10分休止時間を設けた。
図64Aに充電電圧4.65V、測定温度25℃のサンプル1−5、サンプル1−7およびサンプル3の充放電サイクル特性を示す。図64Bに充電電圧4.65V、測定温度45℃のサンプル1−5、サンプル1−7およびサンプル3の充放電サイクル特性を示す。図65Aに充電電圧4.7V、測定温度25℃のサンプル1−3、サンプル1−5、サンプル1−7およびサンプル3の充放電サイクル特性を示す。図65Bに充電電圧4.7V、測定温度45℃のサンプル1−5、サンプル1−7およびサンプル3の充放電サイクル特性を示す。
測定温度25℃において、添加物元素としてマグネシウム、フッ素、ニッケルおよびアルミニウムを有するサンプル1−3、サンプル1−5およびサンプル1−7は充電電圧4.7Vまで良好な充放電サイクル特性を示した。ニッケルとアルミニウムを有さないサンプル3は、これらよりやや劣る充放電サイクル特性であった。
測定温度45℃において、サンプル1−5は4.65Vでも比較的良好な充放電サイクル特性を示した。一方、4.7Vではいずれのサンプルも20サイクル程度までに放電容量が大きく低下した。
次に、上記で作製したサンプル1−6、サンプル4、サンプル5およびサンプル6を用いて同様に対極リチウムの二次電池を作製し、充放電サイクル特性を評価した。
充電電圧は4.6V、測定温度は25℃とした。充電はCC/CV(0.5C,4.6V,0.05Ccut)、放電はCC(0.5C,2.5Vcut)とし、次の充電の前に10分休止時間を設けた。
図66Aおよび図66Bに充放電サイクル特性を示す。図66Aは放電容量、図66Bは放電容量維持率である。
サンプル1−6、サンプル4、サンプル5およびサンプル6のいずれも良好な充放電サイクル特性を示したが、ニッケルおよびアルミニウムを有するサンプル1−5が最も放電容量維持率が良好であった。ニッケルを有するサンプル5は、サンプル1−6に次いで良好な放電容量維持率を示した。このようにニッケルを有することで充放電サイクル特性が向上することが明らかとなった。
次に上記で作製したサンプル1−8、サンプル2、サンプル7およびサンプル8を用いて同様に対極リチウムの二次電池を作製し、充放電サイクル特性を評価した。
充電電圧は4.6V、測定温度は25℃または45℃とした。充電はCC/CV(0.5C,4.6V,0.05Ccut)、放電はCC(0.5C,2.5Vcut)とし、次の充電の前に10分休止時間を設けた。
図67Aに測定温度25℃のサンプル1−8、サンプル2、サンプル7およびサンプル8の充放電サイクル特性を示す。図67Bに測定温度45℃のサンプル1−8、サンプル2、サンプル7およびサンプル8の充放電サイクル特性を示す。
サンプル1−8、サンプル7およびサンプル8のいずれも良好な充放電サイクル特性を示した。特に測定温度45℃のとき、マグネシウム、フッ素、ニッケルおよびアルミニウムを有するサンプル1−8は極めて良好な充放電サイクル特性を示した。
このように、サンプル8のように添加物としてマグネシウム、フッ素およびチタンを有する場合よりも、サンプル1−8のように添加物としてマグネシウム、フッ素、ニッケルおよびアルミニウムを有する方が良好な特性を示すことが示された。これは45℃というやや高温においてより顕著であった。
このように本発明の一態様の正極活物質は、ハーフセルにおいて4.5V、4.6V、さらには4.7Vといった高電圧の充放電を繰り返しても充放電容量の低下が抑制された正極活物質であることが示された。また45℃、55℃、65℃といった比較的高温でも良好なサイクル特性を示した。これは本発明の一態様の正極活物質が添加物元素を表層部に有しているため、結晶構造が崩れにくいためである。さらに遷移金属としてニッケルを有するため、高温または高電圧充放電におけるサイクル特性が改善していることが確認された。
<フルセルサイクル特性>
上記で作製したサンプル1−1の正極活物質を用いて負極黒鉛の二次電池を作製し、充放電サイクル特性を評価した。
正極は、ハーフセルと同様に作製した。
負極は、負極活物質として黒鉛を用い、導電材として気相成長炭素繊維であるVGCF(登録商標)(昭和電工(株)製)を1.5wt%混合した。
電解液が有する電解質には、1mol/Lの六フッ化リン酸リチウム(LiPF)を用い、電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)がEC:DEC=3:7(体積比)、で混合したものを用いた。
セパレータには厚さ25μmのポリプロピレンを用いた。
外装体にはラミネートフィルムを用いた。
充電電圧は4.5Vまたは4.6Vとした。測定温度は25℃または45℃とした。充電はCC/CV(0.5C,各電圧,0.05Ccut)、放電はCC(0.5C,3Vcut)とし、次の充電の前に10分休止時間を設けた。
図68Aに測定温度が25℃のときのサンプル1−1の充放電サイクル特性を示す。図68Bに測定温度が45℃のときのサンプル1−1の充放電サイクル特性を示す。
フルセルの充電電圧4.5Vにおいて、サンプル1−1は良好な充放電サイクル特性を示した。
100:正極活物質、100a:表層部、100b:内部、100c:最表面層、101:結晶粒界、102:埋め込み部、103:凸部、104:被膜

Claims (14)

  1.  リチウムと、コバルトと、ニッケルと、マグネシウムと、酸素を有する正極活物質であって、
     前記正極活物質の最表面層のa軸の格子定数Asurfaceは、内部のa軸の格子定数Acoreよりも大きく、
     前記最表面層のc軸の格子定数Csurfaceは、前記内部のc軸の格子定数Ccoreよりも大きい、正極活物質。
  2.  請求項1において、
     前記最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの差Δを前記格子定数Acoreで割った変化率Rは0を超えて0.12以下であり、
     前記最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの差Δを前記格子定数Ccoreで割った変化率Rは0を超えて0.18以下である、正極活物質。
  3.  請求項2において、
     前記変化率Rは0.05以上0.07以下であり、
     前記変化率Rは0.09以上0.12以下である、正極活物質。
  4.  請求項1乃至請求項3のいずれか一において、
     前記最表面層のa軸の格子定数Asurfaceと、内部のa軸の格子定数Acoreとの差Δよりも、
     前記最表面層のc軸の格子定数Csurfaceと、内部のc軸の格子定数Ccoreとの差Δが大きい、正極活物質。
  5.  リチウムと、コバルトと、ニッケルと、マグネシウムと、酸素とを有する正極活物質であって、
     前記正極活物質の最表面層の少なくとも一部は遷移金属サイト層とリチウムサイト層とを交互に有する層状岩塩型の結晶構造を有し、
     前記リチウムサイト層の一部はリチウムより原子番号の大きい金属元素を有する、正極活物質。
  6.  請求項5において、
     前記リチウムより原子番号の大きい金属元素は、マグネシウム、コバルトまたはアルミニウムである、正極活物質。
  7.  請求項5または請求項6において、
     前記最表面層の断面TEM像において、
     前記リチウムサイト層の輝度は、前記遷移金属サイト層の輝度の3%以上60%以下である、正極活物質。
  8.  請求項1乃至請求項6のいずれか一において、
     前記最表面層におけるニッケルの濃度は1原子%以下であり、
     前記正極活物質全体におけるニッケルの濃度は、コバルトの濃度の0.05%以上4%以下である、正極活物質。
  9.  請求項1乃至請求項4のいずれか一において、
     前記最表面層は、極微電子線回折像において空間群Fm−3mまたはFd−3mに属する岩塩型の結晶構造を示す輝点が観察され、かつ空間群R−3mに属する層状岩塩型の結晶構造を示す輝点が観察される領域を有し、
     前記内部は、極微電子線回折像において空間群R−3mに属する層状岩塩型の結晶構造を示す輝点が観察される領域を有する、正極活物質。
  10.  請求項1乃至請求項9のいずれか一において、
     2価のニッケルイオン、3価のニッケルイオン、2価のコバルトイオン及び4価のコバルトイオンのいずれか一以上に起因するスピン密度が、2.0×1017spins/g以上1.0×1021spins/g以下である正極活物質。
  11.  請求項1乃至請求項10のいずれか一において、
     前記正極活物質はアルミニウムを有し、
     前記正極活物質全体におけるアルミニウムの濃度は、コバルトの濃度の0.05%以上4%以下である、正極活物質。
  12.  請求項11において、
     前記正極活物質の断面についてのエネルギー分散型X線分析において、前記アルミニウム濃度のピークは表面から中心に向かった深さ5nm以上30nm以下に位置する、正極活物質。
  13.  正極活物質を有するリチウムイオン二次電池であって、
     前記正極活物質はリチウムと、コバルトと、ニッケルと、マグネシウムと、酸素とを有し、
     前記正極活物質の最表面層のa軸の格子定数Asurfaceは、内部のa軸の格子定数Acoreよりも大きく、
     前記正極活物質の最表面層のc軸の格子定数Csurfaceは、内部のc軸の格子定数Ccoreよりも大きい、リチウムイオン二次電池。
  14.  請求項13に記載のリチウムイオン二次電池を有する電子機器。
PCT/IB2020/061919 2019-12-27 2020-12-15 正極活物質、二次電池、電子機器 WO2021130599A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/788,844 US20230052866A1 (en) 2019-12-27 2020-12-15 Positive electrode active material, secondary battery, and electronic device
KR1020227023036A KR20220122655A (ko) 2019-12-27 2020-12-15 양극 활물질, 이차 전지, 전자 기기
CN202080089529.9A CN114930579A (zh) 2019-12-27 2020-12-15 正极活性物质、二次电池、电子设备
DE112020006354.2T DE112020006354T5 (de) 2019-12-27 2020-12-15 Positivelektrodenaktivmaterial, Sekundärbatterie und elektronisches Gerät
JP2021566378A JPWO2021130599A1 (ja) 2019-12-27 2020-12-15

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019238662 2019-12-27
JP2019-238662 2019-12-27
JP2020178781 2020-10-26
JP2020-178781 2020-10-26

Publications (1)

Publication Number Publication Date
WO2021130599A1 true WO2021130599A1 (ja) 2021-07-01

Family

ID=76575270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/061919 WO2021130599A1 (ja) 2019-12-27 2020-12-15 正極活物質、二次電池、電子機器

Country Status (6)

Country Link
US (1) US20230052866A1 (ja)
JP (1) JPWO2021130599A1 (ja)
KR (1) KR20220122655A (ja)
CN (1) CN114930579A (ja)
DE (1) DE112020006354T5 (ja)
WO (1) WO2021130599A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863610A (zh) * 2023-01-05 2023-03-28 厦门海辰储能科技股份有限公司 正极材料、正极极片、电极组件、储能装置和用电设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116093308B (zh) * 2023-04-10 2023-07-07 中创新航科技集团股份有限公司 一种正极活性材料、含有其的正极片及电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138670A (ja) * 1994-11-11 1996-05-31 Toshiba Corp 非水溶媒二次電池
JP2004533104A (ja) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 リチウム二次電池用傾斜正極材
WO2014061654A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末並びに非水電解質二次電池
JP2015156363A (ja) * 2014-01-20 2015-08-27 日立マクセル株式会社 リチウム・コバルト含有複合酸化物及びその製造方法、並びにそのリチウム・コバルト含有複合酸化物を用いた非水二次電池用電極及びそれを用いた非水二次電池
JP2016031881A (ja) * 2014-07-30 2016-03-07 日立マクセル株式会社 非水電解質二次電池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172388B2 (ja) 1995-02-27 2001-06-04 三洋電機株式会社 リチウム二次電池
US7138209B2 (en) 2000-10-09 2006-11-21 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery and method of preparing same
KR100728108B1 (ko) 2001-04-02 2007-06-13 삼성에스디아이 주식회사 리튬 이차 전지용 양극 및 그의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08138670A (ja) * 1994-11-11 1996-05-31 Toshiba Corp 非水溶媒二次電池
JP2004533104A (ja) * 2001-06-15 2004-10-28 呉羽化学工業株式会社 リチウム二次電池用傾斜正極材
WO2014061654A1 (ja) * 2012-10-17 2014-04-24 戸田工業株式会社 Li-Ni複合酸化物粒子粉末並びに非水電解質二次電池
JP2015156363A (ja) * 2014-01-20 2015-08-27 日立マクセル株式会社 リチウム・コバルト含有複合酸化物及びその製造方法、並びにそのリチウム・コバルト含有複合酸化物を用いた非水二次電池用電極及びそれを用いた非水二次電池
JP2016031881A (ja) * 2014-07-30 2016-03-07 日立マクセル株式会社 非水電解質二次電池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115863610A (zh) * 2023-01-05 2023-03-28 厦门海辰储能科技股份有限公司 正极材料、正极极片、电极组件、储能装置和用电设备
CN115863610B (zh) * 2023-01-05 2024-01-30 厦门海辰储能科技股份有限公司 正极材料、正极极片、电极组件、储能装置和用电设备

Also Published As

Publication number Publication date
CN114930579A (zh) 2022-08-19
US20230052866A1 (en) 2023-02-16
JPWO2021130599A1 (ja) 2021-07-01
KR20220122655A (ko) 2022-09-02
DE112020006354T5 (de) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7401701B2 (ja) リチウムイオン二次電池の作製方法
JP7566840B2 (ja) リチウムイオン二次電池
JP2021007100A (ja) リチウムイオン二次電池
US11936036B2 (en) Positive electrode active material, secondary battery, and electronic device
WO2022200908A1 (ja) 電池、電子機器および車両
WO2022096989A1 (ja) 正極活物質、リチウムイオン二次電池、および車両
WO2021130599A1 (ja) 正極活物質、二次電池、電子機器
WO2021116819A1 (ja) 正極活物質の作製方法、キルン、加熱炉
WO2020261040A1 (ja) 正極活物質、正極、二次電池、およびこれらの作製方法
WO2023209477A1 (ja) リチウムイオン電池、及び電子機器
WO2023281346A1 (ja) 正極活物質
US20220359870A1 (en) Positive electrode active material, secondary battery, and vehicle
WO2021152417A1 (ja) 正極活物質、二次電池、電子機器
WO2022130100A1 (ja) イオン液体、二次電池、電子機器および車両
WO2022038448A1 (ja) 電極の作製方法、二次電池、電子機器および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021566378

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227023036

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20905907

Country of ref document: EP

Kind code of ref document: A1