Nothing Special   »   [go: up one dir, main page]

WO2021172175A1 - 非水電解質二次電池の充放電方法および充放電システム - Google Patents

非水電解質二次電池の充放電方法および充放電システム Download PDF

Info

Publication number
WO2021172175A1
WO2021172175A1 PCT/JP2021/006229 JP2021006229W WO2021172175A1 WO 2021172175 A1 WO2021172175 A1 WO 2021172175A1 JP 2021006229 W JP2021006229 W JP 2021006229W WO 2021172175 A1 WO2021172175 A1 WO 2021172175A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
current
aqueous electrolyte
secondary battery
constant current
Prior art date
Application number
PCT/JP2021/006229
Other languages
English (en)
French (fr)
Inventor
隆弘 福岡
聡 蚊野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202180016878.2A priority Critical patent/CN115152076A/zh
Priority to US17/802,195 priority patent/US20230361367A1/en
Priority to JP2022503318A priority patent/JPWO2021172175A1/ja
Priority to EP21760826.4A priority patent/EP4113665A4/en
Publication of WO2021172175A1 publication Critical patent/WO2021172175A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a charging / discharging method and a charging / discharging system for a non-aqueous electrolyte secondary battery.
  • Non-aqueous electrolyte secondary batteries represented by lithium-ion secondary batteries have high energy density and high output, and have high energy density and high output, power sources for mobile devices such as smartphones, power sources for vehicles such as electric vehicles, and natural energy such as sunlight. It is seen as a promising storage device for batteries.
  • one aspect of the present invention includes a positive electrode, a negative electrode provided with a negative electrode current collector, and a non-aqueous electrolyte, and lithium metal is deposited on the negative electrode during charging and the lithium metal is not formed during discharging.
  • the charging step includes a charging step and a discharging step performed after the charging step, and the charging step has a current density of 1.0 mA / cm 2 or less.
  • a first step of performing constant-current charging at the first current I 1 of, after the first step, a second step of performing constant-current charging at the second current I 2 is larger than the first current I 1, the Including, in the discharge step, an amount of electricity corresponding to 20% or more and 80% or less of the fully charged amount is discharged.
  • Another aspect of the present invention includes a non-aqueous electrolyte secondary battery and a charging / discharging device, wherein the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode including a negative electrode current collector, and a non-aqueous electrolyte.
  • the lithium metal is deposited on the negative electrode at the time of charging, the lithium metal is dissolved in the non-aqueous electrolyte at the time of discharging, and the charging / discharging device includes a charging control unit and a discharge control unit.
  • the control unit performs the first constant current charging with the first current I 1 having a current density of 1.0 mA / cm 2 or less, and after the first constant current charging, the second current larger than the first current I 1.
  • the charge is controlled so that the second constant current charge is performed by I 2 , and the discharge control unit controls the discharge so as to discharge an amount of electricity corresponding to 20% or more and 80% or less of the full charge amount.
  • FIG. 1A shows a state of precipitation of lithium metal on the negative electrode current collector at a charging rate of 50% when the charging current value is 0.05C.
  • FIG. 1B shows a state of precipitation of lithium metal on the negative electrode current collector at a charging rate of 50% when the charging current value is 0.2C.
  • It is a schematic block diagram of the charge / discharge system of the non-aqueous electrolyte secondary battery which concerns on one Embodiment of this invention. It is a schematic perspective view which cut out a part of the non-aqueous electrolyte secondary battery used in the charge / discharge method and charge / discharge system which concerns on one Embodiment of this invention.
  • the method for charging and discharging a non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode including a negative electrode current collector, and a non-aqueous electrolyte, and lithium metal is deposited on the negative electrode during charging.
  • the present invention relates to a method for charging and discharging a non-aqueous electrolyte secondary battery in which the lithium metal dissolves in the non-aqueous electrolyte during discharge.
  • the above charging / discharging method includes a charging step and a discharging step performed after the charging step.
  • the charging step consists of a first step of performing constant current charging with a first current I 1 having a current density of 1.0 mA / cm 2 or less, and a second current I 2 which is larger than the first current I 1 after the first step. Includes a second step of constant current charging at.
  • the discharge step an amount of electricity corresponding to 20% or more and 80% or less of the fully charged amount is discharged. That is, discharge is performed until the discharge rate described later becomes 20% or 80% or less.
  • the current density (mA / cm 2 ) is the current density per unit facing area (1 cm 2 ) between the positive electrode and the negative electrode, and is the total area of the positive electrode mixture layer (or the positive electrode active material layer) facing the negative electrode. (Hereinafter, also referred to as the effective total area of the positive electrode), it is obtained by dividing the current value applied to the battery.
  • the effective total area of the positive electrode is, for example, when the positive electrode has positive electrode mixture layers on both sides of the positive electrode current collector, the total area of the positive electrode mixture layers on both sides (that is, the positive electrode collection of each positive electrode mixture layer on both sides). The total projected area on one and the other surface of the electric body).
  • the fully charged battery means a battery charged until the rated capacity reaches a voltage estimated to be charged (for example, 4.1 V).
  • the fully charged amount means the amount of electricity charged when a fully discharged battery is charged until it is fully charged.
  • a fully discharged battery means a battery that has been discharged to a voltage (for example, 3 V) at which the rated capacity is estimated to be discharged.
  • the ratio of the charged electricity amount to the fully charged amount is referred to as a charge rate.
  • the ratio of the amount of discharged electricity to the amount of full charge is called the discharge rate.
  • the charging rate is 100%. In the completely discharged state, the discharge rate is 100%.
  • the current density at the first current I 1 is as small as 1.0 mA / cm 2 or less, and lithium metal is likely to be deposited in a lump (granular shape) on the negative electrode current collector. Bulk Li is less likely to be isolated during discharge.
  • the charging rate can be increased as compared with the first step to shorten the charging time.
  • dendrite-like lithium metal is deposited to some extent, but it is deposited on the massive Li deposited at the initial stage of charging (mainly in the first step), and it is easy to be firmly integrated with the massive Li, and Li is isolated at the time of discharge. Is suppressed.
  • the first current I 1 may be 0.1 C or less.
  • the discharge rate at the end of the discharge step may be 50% or more and 80% or less, and may be 50% or more and 75% or less.
  • (1 / X) C represents the current value when the amount of electricity corresponding to the rated capacity is constantly charged or discharged in X hours.
  • 0.1C is a current value when a constant current charge or a constant current discharge is performed in 10 hours for an amount of electricity corresponding to the rated capacity.
  • (Charging step) In the first step, an amount of electricity corresponding to 5% or more and 15% or less of the total amount of electricity charged in the charging step (the total amount of electricity charged in the charging step) may be charged. In this case, it is easy to sufficiently precipitate massive Li. Further, in this case, by combining with a discharge step of discharging to a discharge rate of 20% or more and 80% or less, a sufficient amount of high-quality massive Li can be easily maintained on the negative electrode current collector through charging and discharging. For example, if the charge / discharge step does not include the pre-charge step described later, the first charge step may charge an amount of electricity corresponding to the full charge amount, and the total charge amount of the above charge step is the full charge amount. There may be.
  • the charging step may include a third step of performing constant current charging with a third current I 3 after the second step.
  • the current density J 2 in the second current I 2 is larger than the current density J 1 in the first current I 1 and 4.0 mA / cm 2 or less.
  • the current density J 3 at the third current I 3 may be larger than the current density J 2 at the second current I 2 and may be 4.0 mA / cm 2 or more.
  • the second current I 2 is larger than the first current I 1 and 0.4 C or less
  • the third current I 3 is larger than the second current I 2 and 0.4 C or more. May be good.
  • the third step By providing the third step and reducing the current density J 2 to 4.0 mA / cm 2 or less, the generation of dendrites in the second step is suppressed. Also in the second step, depending on the magnitude of the charging current (for example, when the current density J 2 is 2.0 mA / cm 2 or less), massive Li can be deposited. By increasing the current value in the order of the second step and the third step, charging can be performed efficiently in a short time. When the current density J 3 is 4.0 mA / cm 2 or more, it is easy to shorten the charging time while maintaining excellent cycle characteristics.
  • the current density J 1 is the first current I 1, for example, 0.1 mA / cm 2 or more, may also be 0.8 mA / cm 2 or less, 0.1 mA / cm 2 or more, 0.5 mA / cm 2 or less It may be.
  • Current density J 2 is the second current I 2, for example, 1.0 mA / cm 2 or more, may be 2.0 mA / cm 2 or less.
  • the current density J 3 is the third current I 3, for example, 8.0 mA / cm 2 or more, may be 10.0 mA / cm 2 or less.
  • the first current I 1 may be, for example, 0.01 C or more and 0.08 C or less, or 0.01 C or more and 0.05 C or less.
  • the second current I 2 may be, for example, 0.1 C or more and 0.2 C or less.
  • the third current I 3 may be 0.8 C or more and 1.0 C or less.
  • the ratio of the second current I 2 to the first current I 1 : I 2 / I 1 may be, for example, 1.25 or more, or 1.25 or more. It may be 4 or less.
  • the ratio of the third current I 3 to the second current I 2 : I 3 / I 2 may be, for example, 3 or more, 3 or more, and 10 or less.
  • the timing of ending each step of constant current charging may be controlled by, for example, the charging time, the amount of electricity charged, or the voltage, or may be controlled by the ratio of the amount of electricity charged to the total amount of electricity charged in the charging step. It may be controlled by the charge rate.
  • the amount of electricity charged (charging rate) may be estimated from the voltage. Based on the relationship between the amount of electricity charged and the voltage when the initial battery is charged to the rated capacity (charging rate 100%) with a constant current, the amount of electricity charged (charge rate) is estimated from the voltage, and the end-of-charge voltage is charged at each step. May be set.
  • the final charge voltage in the final step of constant current charging is that the amount of electricity corresponding to the rated capacity is charged based on the relationship between the amount of electricity charged and the voltage when the initial battery is constantly charged to the rated capacity. It may be set to the estimated voltage.
  • constant current charging may be performed so that the amount of electricity charged in the first step is 15% or less of the total amount of electricity charged in the charging step.
  • the total charging electricity amount of the first step and the second step is 50% or less of the total charging electricity amount of the charging step.
  • Constant current charging may be performed. In this case, it is easy to carry out the first step to the third step in a well-balanced manner, and it is easy to obtain the effect of improving the cycle characteristics.
  • the above charging step may further include a constant voltage charging step of charging at a constant voltage after the constant current charging step.
  • Constant voltage charging is performed, for example, until the current reaches a predetermined value (for example, 0.02C).
  • a predetermined value for example 0.02C
  • constant voltage charging may be performed at that voltage.
  • FIG. 1 is an SEM image showing the state of the negative electrode at the time of constant current charging of the non-aqueous electrolyte secondary battery.
  • FIG. 1A shows a state of precipitation of lithium metal on the negative electrode current collector at a charging rate of 50% when the charging current value is 0.05 C (0.5 mA / cm 2).
  • FIG. 1B shows a state of precipitation of lithium metal on the negative electrode current collector at a charging rate of 50% when the charging current value is 0.2 C (2.0 mA / cm 2).
  • the charging current density is as small as 0.5 mA / cm 2, and a large amount of massive lithium metal is deposited on the negative electrode current collector.
  • the charging current density is as large as 2.0 mA / cm 2, and a large amount of dendrite-like lithium metal is deposited on the negative electrode current collector.
  • discharge step In the discharge step, an amount of electricity corresponding to 20% or more and 80% or less of the fully charged amount is discharged.
  • the discharge may be a constant current discharge or a constant power discharge.
  • the timing of ending the discharge step may be controlled by, for example, the amount of discharged electricity (discharge rate) or the voltage.
  • the amount of electricity discharged (discharge rate) may be estimated by voltage.
  • the amount of discharge electricity (discharge rate) is based on the relationship between the amount of discharge electricity and the voltage when the initial fully charged battery is discharged to the rated capacity (discharge rate 100%) with a constant current. May be estimated and the discharge end voltage may be set.
  • the discharge end voltage is set to, for example, 3.5 V or more and 3.8 V or less.
  • Discharge current density in the discharge step for example, 2.0 mA / cm 2 or more and 20.0 mA / cm 2 or less.
  • the discharge current value in the discharge step is, for example, 0.2 C or more and 2 C or less.
  • the above charging / discharging method may further include a pre-charging step of performing constant current charging at a current I 0 having a current density of 0.5 mA / cm 2 or less before the first charging step.
  • a pre-charging step of performing constant current charging at a current I 0 having a current density of 0.5 mA / cm 2 or less before the first charging step.
  • the current I 0 is, for example, 0.05 C or less.
  • the current density J 0 at the current I 0 may be 0.1 mA / cm 2 or more and 0.5 mA / cm 2 or less, and 0.2 mA / cm 2 or more and 0. It may be 5 mA / cm 2 or less. From the viewpoint of forming a high-quality massive Li, the current I 0 may be 0.01 C or more and 0.05 C or less, or 0.02 C or more and 0.05 C or less.
  • the negative electrode having a charge rate of 100% may be obtained by charging an amount of electricity corresponding to the rated capacity in the pre-charge step.
  • a negative electrode having a charge rate of 80% or more and 100% or less may be obtained in the pre-charge step.
  • pre-discharging is performed so that a part of the lithium metal precipitated during charging of the pre-charging step remains. It may include steps.
  • the discharge may be a constant current charge or a constant power discharge.
  • the battery may be charged to a charge rate of 100% in the pre-charge step, and may be discharged to a discharge rate of 20% or more and 80% or less in the pre-discharge step.
  • the discharge end voltage is set to, for example, 3.5 V or more and 3.8 V or less.
  • Discharge current density at the preliminary discharge step is, for example, 2.0 mA / cm 2 or more and 20.0 mA / cm 2 or less.
  • the discharge current value in the pre-discharge step is, for example, 0.2 C or more and 2 C or less.
  • the non-aqueous electrolyte secondary battery charging / discharging system includes a non-aqueous electrolyte secondary battery and a charging / discharging device.
  • the non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode provided with a negative electrode current collector, and a non-aqueous electrolyte. Lithium metal is deposited on the negative electrode during charging, and the lithium metal is dissolved in the non-aqueous electrolyte during discharging. do.
  • the charge / discharge device includes a charge control unit and a discharge control unit.
  • the charge control unit performs the first constant current charging with the first current I 1 having a current density of 1.0 mA / cm 2 or less, and after the first constant current charging, the second current I larger than the first current I 1 second to perform constant current charging at 2, controls the charging.
  • the discharge control unit controls the discharge so as to discharge an amount of electricity corresponding to 20% or more and 80% or less of the full charge amount. In the first constant current charging, an amount of electricity corresponding to 5% or more and 15% or less of the full charge amount may be charged.
  • the first current I 1 may be 0.1 C or less.
  • the charge control unit may control the charge so that the third constant current charge is performed by the third current I 3 after the second constant current charge.
  • the current density J 2 is the second current I 2, greater than the current density J 1 in the first current I 1, and may be 4.0 mA / cm 2 or less.
  • the current density J 3 at the third current I 3 may be larger than the current density J 2 and may be 4.0 mA / cm 2 or more.
  • the second current I 2 may be larger than the first current I 1 and may be 0.4 C or less.
  • the third current I 3 may be larger than the second current I 2 and may be 0.4 C or more.
  • the charge control unit When the charge electricity amount reaches the first threshold value in the first constant current charge, the charge control unit ends the first constant current charge and starts the second constant current charge, and charges the charge electricity amount in the second constant current charge. When reaches the second threshold value, charging may be controlled so as to end the second constant current charging and start the third constant current charging.
  • the first threshold value may be the amount of charging electricity corresponding to 15% or less of the total amount of charging electricity.
  • the second threshold value may be the amount of charging electricity corresponding to 50% or less of the total amount of charging electricity.
  • FIG. 2 shows an example of a charge / discharge system according to an embodiment of the present invention.
  • the charging / discharging system includes a non-aqueous electrolyte secondary battery 11 and a charging / discharging device 12.
  • An external power source 13 that supplies electric power to the charging / discharging device 12 is connected to the charging / discharging device 12.
  • An external load 14 is connected to the non-aqueous electrolyte secondary battery 11.
  • the non-aqueous electrolyte secondary battery 11 includes a positive electrode, a negative electrode provided with a negative electrode current collector, and a non-aqueous electrolyte. Lithium metal is deposited on the negative electrode during charging, and the lithium metal is contained in the non-aqueous electrolyte during discharging. It is a melting type secondary battery.
  • the charging / discharging device 12 includes a charging control unit 15 including a charging circuit and a discharging control unit 16 including a discharging circuit.
  • the charge control unit 15 performs the first constant current charging with the first current I 1 having a current density of 1.0 mA / cm 2 or less, and after the first constant current charging, the second current I larger than the first current I 1 second to perform constant current charging at 2, controls the charging.
  • the first constant current charging an amount of electricity corresponding to 5% or more and 15% or less of the total amount of electricity to be charged is charged.
  • the charging / discharging device 12 includes a voltage detecting unit 17 that detects the voltage of the non-aqueous electrolyte secondary battery 11.
  • the voltage detection unit 17 may include a calculation unit that calculates the amount of electricity to be charged (charge rate) based on the voltage. Based on the voltage detected by the voltage detection unit 17 (the amount of electricity charged by the calculation unit), the charge control unit 15 switches from the first constant current charge to the second constant current charge, or the second End constant current charging.
  • the charge control unit 15 After the second constant current charging, the charge control unit 15 performs constant voltage charging at a predetermined voltage (for example, the final voltage of the second constant current charging).
  • the charging / discharging device 12 includes a current detecting unit 18 that detects a current.
  • the charge control unit 15 may control the constant voltage charging to end when the current detected by the current detection unit 18 reaches a threshold value.
  • the timing of the end of the first constant current charging to the second constant current charging is controlled by the voltage detected by the voltage detection unit 17, but may be controlled by the charging time.
  • the end of the first constant current charging may be controlled by the charging time
  • the end of the second constant current charging may be controlled by the voltage.
  • the discharge control unit 16 controls the discharge so as to discharge (constant current discharge or constant power discharge) an amount of electricity corresponding to 20% or more and 80% or less of the full charge amount.
  • the voltage detection unit 17 may include a calculation unit that calculates the amount of discharged electricity (discharge rate) based on the voltage.
  • the discharge control unit 16 controls the discharge so that the discharge ends when the voltage detected by the voltage detection unit 17 (the amount of discharge electricity (discharge rate) obtained by the calculation unit) reaches the threshold value.
  • the charge control unit 15 controls charging so as to perform constant current charging (preliminary charging) at a current I 0 having a current density of 0.5 mA / cm 2 or less before the first constant current charging. good.
  • the discharge control unit 16 discharges after the pre-charging and before the first constant current charging so that a part of the lithium metal deposited during the pre-charging remains. May be controlled.
  • the negative electrode includes a negative electrode current collector.
  • a negative electrode current collector for example, lithium metal is deposited on the surface of a negative electrode current collector by charging. More specifically, lithium ions contained in the non-aqueous electrolyte receive electrons on the negative electrode current collector and become lithium metal by charging, and are deposited on the surface of the negative electrode current collector. The lithium metal deposited on the surface of the negative electrode current collector is dissolved as lithium ions in the non-aqueous electrolyte by electric discharge.
  • the lithium ions contained in the non-aqueous electrolyte may be derived from the lithium salt added to the non-aqueous electrolyte, or may be supplied from the positive electrode active material by charging, and both of them may be used. There may be.
  • the negative electrode current collector may be a conductive sheet.
  • a conductive sheet a foil, a film or the like is used.
  • the thickness of the negative electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the surface of the conductive sheet may be smooth. As a result, the lithium metal derived from the positive electrode is likely to be evenly deposited on the conductive sheet during charging. Smoothing means that the maximum height roughness Rz of the conductive sheet is 20 ⁇ m or less. The maximum height roughness Rz of the conductive sheet may be 10 ⁇ m or less. The maximum height roughness Rz is measured according to JIS B 0601: 2013.
  • the material of the negative electrode current collector may be any conductive material other than lithium metal and lithium alloy.
  • the conductive material may be a metal material such as a metal or an alloy.
  • the conductive material is preferably a material that does not react with lithium. More specifically, a material that does not form any of lithium and an alloy or an intermetallic compound is preferable. Examples of such conductive materials include copper (Cu), nickel (Ni), iron (Fe), and alloys containing these metal elements, or graphite whose basal surface is preferentially exposed. ..
  • Examples of the alloy include copper alloys and stainless steel (SUS). Of these, copper and / or copper alloys having high conductivity are preferable.
  • the positive electrode contains a positive electrode active material that can occlude and release lithium ions.
  • the positive electrode active material include a composite oxide containing lithium and a metal Me other than lithium.
  • the metal Me contains at least a transition metal.
  • the composite oxide is advantageous in that the production cost is low and the average discharge voltage is high.
  • Lithium contained in the composite oxide is released from the positive electrode as lithium ions during charging and precipitated as lithium metal at the negative electrode.
  • the lithium metal is dissolved from the negative electrode to release lithium ions, which are occluded in the composite oxide of the positive electrode. That is, the lithium ions involved in charging and discharging are generally derived from the solute (lithium salt) in the non-aqueous electrolyte and the positive electrode active material. Therefore, the molar ratio of the total amount of lithium contained in the positive electrode and the negative electrode to mLi: mLi / mMe with respect to the amount of metal Me contained in the positive electrode may be 1.1 or less, for example.
  • Transition metals include nickel (Ni), cobalt (Co), manganese (Mn), iron (Fe), copper (Cu), chromium (Cr), titanium (Ti), niobium (Nb), zirconium (Zr), It may contain at least one element selected from the group consisting of vanadium (V), tantalum (Ta), tungsten (W) and molybdenum (Mo).
  • the metal Me may contain a metal other than the transition metal.
  • the metal other than the transition metal may contain at least one selected from the group consisting of aluminum (Al), magnesium (Mg), calcium (Ca), strontium (Sr), zinc (Zn) and silicon (Si). ..
  • the composite oxide may further contain boron (B) and the like in addition to the metal.
  • the composite oxide has a layered rock salt type crystal structure, and the metal Me other than lithium preferably contains nickel as a transition metal at least, and the atomic ratio of Ni to the metal Me: Ni / Me is It may be 0.65 or more.
  • the initial charge / discharge efficiency is lower than that of lithium cobalt oxide, and the lithium metal deposited on the negative electrode current collector during discharge (mainly in the form of a lump at the initial stage of charging). Li) tends to remain.
  • the atomic ratio of Ni to the metal Me: Ni / Me is preferably 0.65 or more and less than 1, more preferably 0.7 or more and less than 1, and further preferably 0.8 or more. Is less than 1.
  • the metal Me preferably contains Ni and at least one selected from the group consisting of Co, Mn and Al, and Ni, Co and More preferably, it contains Mn and / or Al.
  • the metal Me contains Co, the phase transition of the composite oxide containing Li and Ni is suppressed during charging and discharging, the stability of the crystal structure is improved, and the cycle characteristics are likely to be improved.
  • the metal Me contains Mn and / or Al, the thermal stability is improved.
  • the composite oxide satisfies the general formula (1): Li a Ni b M 1-b O 2 (0.9 ⁇ a ⁇ 1.2 and 0.65 ⁇ b ⁇ 1, and M is Co, Mn, Al. , Ti, Fe, Nb, B, Mg, Ca, Sr, Zr and W) may have a composition represented by at least one element selected from the group.
  • the proportion of Ni in metals other than Li is large, and massive Li tends to remain during discharge. Further, in this case, the capacity can be easily increased, and the effect of Ni and the effect of the element M can be obtained in a well-balanced manner.
  • y which indicates the composition ratio of Co
  • z which indicates the composition ratio of Al
  • z is more than 0 and 0.05 or less, it is easy to maintain high capacity and high output, and it is easy to improve thermal stability.
  • (1-yz) indicating the composition ratio of Ni satisfies 0.8 or more and less than 1.
  • the proportion of Ni in the metal other than Li is large, and it is easy to control the precipitation form of Li. Further, in this case, the capacity can be easily increased, and the effect of Ni and the effect of Co and Al can be obtained in a well-balanced manner.
  • the positive electrode active material for example, a transition metal fluoride, a polyanion, a fluorinated polyanion, a transition metal sulfide, or the like may be used in addition to the above-mentioned composite oxide.
  • the positive electrode includes, for example, a positive electrode current collector and a positive electrode mixture layer supported on the positive electrode current collector.
  • the positive electrode mixture layer contains, for example, a positive electrode active material, a conductive agent, and a binder.
  • the positive electrode mixture layer may be formed on one surface of the positive electrode current collector, or may be formed on both sides.
  • the positive electrode can be obtained, for example, by applying a positive electrode mixture slurry containing a positive electrode active material, a conductive agent, and a binder to the surface of a positive electrode current collector, drying the coating film, and then rolling the coating film.
  • the conductive agent is, for example, a carbon material.
  • the carbon material include carbon black, acetylene black, ketjen black, carbon nanotubes, graphite and the like.
  • binder examples include fluororesin, polyacrylonitrile, polyimide resin, acrylic resin, polyolefin resin, rubber-like polymer and the like.
  • fluororesin examples include polytetrafluoroethylene and polyvinylidene fluoride.
  • the positive electrode current collector may be a conductive sheet.
  • a conductive sheet a foil, a film or the like is used.
  • a carbon material may be coated on the surface of the positive electrode current collector.
  • the thickness of the positive electrode current collector is not particularly limited, and is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • Examples of the material of the positive electrode current collector (conductive sheet) include metal materials containing Al, Ti, Fe and the like.
  • the metal material may be Al, Al alloy, Ti, Ti alloy, Fe alloy or the like.
  • the Fe alloy may be stainless steel (SUS).
  • a separator may be arranged between the positive electrode and the negative electrode.
  • a porous sheet having ion permeability and insulating property is used as the separator.
  • the porous sheet include a thin film having microporous properties, a woven fabric, and a non-woven fabric.
  • the material of the separator is not particularly limited, but may be a polymer material.
  • the polymer material include olefin resin, polyamide resin, cellulose and the like.
  • the olefin resin include polyethylene, polypropylene and a copolymer of ethylene and propylene.
  • the separator may contain additives, if desired. Examples of the additive include an inorganic filler and the like.
  • Non-aqueous electrolyte The non-aqueous electrolyte having lithium ion conductivity includes, for example, a non-aqueous solvent, lithium ions and anions dissolved in the non-aqueous solvent.
  • the non-aqueous electrolyte may be liquid or gel.
  • the liquid non-aqueous electrolyte is prepared by dissolving the lithium salt in a non-aqueous solvent.
  • the dissolution of the lithium salt in a non-aqueous solvent produces lithium ions and anions.
  • the gel-like non-aqueous electrolyte contains a lithium salt and a matrix polymer, or a lithium salt and a non-aqueous solvent and a matrix polymer.
  • a matrix polymer for example, a polymer material that absorbs a non-aqueous solvent and gels is used. Examples of the polymer material include fluororesin, acrylic resin, and polyether resin.
  • lithium salt or anion known ones used for non-aqueous electrolytes of lithium secondary batteries can be used. Specifically, BF 4 -, ClO 4 - , PF 6 -, CF 3 SO 3 -, CF 3 CO 2 -, anions of imides include anions of oxalate complexes.
  • the anion of the oxalate complex may contain boron and / or phosphorus.
  • Examples of the anion of the oxalate complexes bis (oxalato) borate anion: B (C 2 O 4) 2 -, difluoro (oxalato) borate anion: BF 2 (C 2 O 4 ) -, PF 4 (C 2 O 4) -, PF 2 (C 2 O 4 ) 2 - etc.
  • the non-aqueous electrolyte may contain these anions alone or may contain two or more of these anions.
  • the non-aqueous electrolyte preferably contains at least an anion of an oxalate complex.
  • difluorooxalate borate anions are more preferred.
  • the interaction between the anion of the oxalate complex and lithium facilitates the uniform precipitation of lithium metal in the form of particles. Therefore, it becomes easy to suppress the local precipitation of the lithium metal.
  • Anions of the oxalate complex may be combined with other anions.
  • Other anions, PF 6 - and / or N (SO 2 F) 2 - may be an anion of imides and the like.
  • non-aqueous solvent examples include esters, ethers, nitriles, amides, and halogen substituents thereof.
  • the non-aqueous electrolyte may contain these non-aqueous solvents alone, or may contain two or more of these non-aqueous solvents.
  • halogen substituent examples include fluoride and the like.
  • Examples of the ester include carbonic acid ester and carboxylic acid ester.
  • Examples of the cyclic carbonate include ethylene carbonate and propylene carbonate.
  • Examples of the chain carbonic acid ester include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate and the like.
  • Examples of the cyclic carboxylic acid ester include ⁇ -butyrolactone and ⁇ -valerolactone.
  • Examples of the chain carboxylic acid ester include ethyl acetate, methyl propionate, methyl fluoropropionate and the like.
  • Examples of ether include cyclic ether and chain ether.
  • Examples of the cyclic ether include 1,3-dioxolane, 4-methyl-1,3-dioxolane, tetrahydrofuran, 2-methyltetrahydrofuran and the like.
  • Examples of the chain ether include 1,2-dimethoxyethane, diethyl ether, ethyl vinyl ether, methylphenyl ether, benzyl ethyl ether, diphenyl ether, dibenzyl ether, 1,2-diethoxyethane, diethylene glycol dimethyl ether and the like.
  • the non-aqueous solvent may contain a small amount of components such as vinylene carbonate (VC), fluoroethylene carbonate (FEC), and vinyl ethyl carbonate (VEC).
  • VC vinylene carbonate
  • FEC fluoroethylene carbonate
  • VEC vinyl ethyl carbonate
  • a film derived from the above components is formed on the negative electrode, and the film suppresses the formation of dendrites.
  • the concentration of the lithium salt in the non-aqueous electrolyte is, for example, 0.5 mol / L or more and 3.5 mol / L or less.
  • the concentration of anions in the non-aqueous electrolyte may be 0.5 mol / L or more and 3.5 mol / L or less.
  • the concentration of the anion of the oxalate complex in the non-aqueous electrolyte may be 0.05 mol / L or more and 1 mol / L or less.
  • Non-aqueous electrolyte secondary battery is a group of electrodes in which a positive electrode and a negative electrode are wound around a separator, and a structure in which a non-aqueous electrolyte is housed in an exterior body.
  • a winding type electrode group instead of the winding type electrode group, another form of electrode group such as a laminated type electrode group in which a positive electrode and a negative electrode are laminated via a separator may be applied.
  • the non-aqueous electrolyte secondary battery may be in any form such as a cylindrical type, a square type, a coin type, a button type, and a laminated type.
  • FIG. 3 is a schematic perspective view in which a part of the non-aqueous electrolyte secondary battery according to the embodiment of the present invention is cut out.
  • the battery includes a bottomed square battery case 4, an electrode group 1 housed in the battery case 4, and a non-aqueous electrolyte (not shown).
  • the electrode group 1 has a long strip-shaped negative electrode, a long strip-shaped positive electrode, and a separator that is interposed between them and prevents direct contact.
  • the electrode group 1 is formed by winding a negative electrode, a positive electrode, and a separator around a flat plate-shaped winding core and pulling out the winding core.
  • One end of the negative electrode lead 3 is attached to the negative electrode current collector of the negative electrode by welding or the like.
  • the other end of the negative electrode lead 3 is electrically connected to the negative electrode terminal 6 provided on the sealing plate 5 via a resin insulating plate (not shown).
  • the negative electrode terminal 6 is insulated from the sealing plate 5 by a resin gasket 7.
  • One end of the positive electrode lead 2 is attached to the positive electrode current collector of the positive electrode by welding or the like.
  • the other end of the positive electrode lead 2 is connected to the back surface of the sealing plate 5 via an insulating plate. That is, the positive electrode lead 2 is electrically connected to the battery case 4 that also serves as the positive electrode terminal.
  • the insulating plate separates the electrode group 1 and the sealing plate 5, and also separates the negative electrode lead 3 and the battery case 4.
  • the peripheral edge of the sealing plate 5 is fitted to the open end portion of the battery case 4, and the fitting portion is laser welded. In this way, the opening of the battery case 4 is sealed with the sealing plate 5.
  • the non-aqueous electrolyte injection hole provided in the sealing plate 5 is closed by the sealing 8.
  • Example 1 [Preparation of positive electrode] Lithium-nickel composite oxide (LiNi 0.9 Co 0.05 Al 0.05 O 2 ), acetylene black, and polyvinylidene fluoride (PVdF) are mixed in a mass ratio of 95: 2.5: 2.5. Then, after adding N-methyl-2-pyrrolidone (NMP), the mixture was stirred to prepare a positive electrode slurry. Next, the positive electrode slurry is applied to the surface of the Al foil which is the positive electrode current collector, the coating film is dried, and then rolled, and the positive electrode mixture layer (density 3.6 g / cm 3 ) is applied to both sides of the Al foil. Was formed to prepare a positive electrode.
  • NMP N-methyl-2-pyrrolidone
  • a non-aqueous electrolyte was prepared by dissolving a lithium salt in a mixed solvent.
  • LiPF 6 , LiN (FSO 2 ) 2 hereinafter referred to as LiFSI
  • LiBF 2 (C 2 O 4 ) hereinafter referred to as LiFOB
  • the concentration of LiPF 6 in the non-aqueous electrolyte was 0.5 mol / L.
  • the concentration of LiFSI in the non-aqueous electrolyte was 0.5 mol / L.
  • the content of LiFOB in the non-aqueous electrolyte was 1% by mass.
  • a positive electrode lead made of Al was attached to the positive electrode obtained above, and a negative electrode lead made of Ni was attached to the negative electrode obtained above.
  • the positive electrode and the negative electrode were spirally wound through a polyethylene thin film (separator) to prepare a wound electrode group.
  • the electrode group was housed in a bag-shaped exterior body formed of a laminated sheet provided with an Al layer, the non-aqueous electrolyte was injected, and then the exterior body was sealed to prepare a non-aqueous electrolyte secondary battery.
  • the electrode group was housed in the exterior body, a part of the positive electrode lead and a part of the negative electrode lead were exposed to the outside from the exterior body, respectively.
  • the molar ratio of the total amount of lithium contained in the positive electrode and the negative electrode mLi to the amount mMe of the metal Me (Ni, Co and Al in this case) possessed by the positive electrode is: mLi. / MMe was 0.8.
  • Preliminary charge / discharge Using the obtained battery, the following pre-charge / discharge was performed in an environment of 25 ° C. (Preliminary charge) Constant current charging was performed with a current I 0 of 0.05 C (0.5 mA / cm 2 ) until the voltage reached 4.1 V (up to a charge rate of 100%). (Preliminary discharge) After a 10-minute rest, constant current discharge was performed at 0.6 C (6.0 mA / cm 2 ) until the voltage reached 3.75 V (discharge rate up to 50%).
  • Second step Charge rate from a charge rate of 57.5% Constant current charging with a second current I 2 of 0.2 C (2.0 mA / cm 2) up to 100%
  • the end of the first step was controlled by the charging time.
  • the charging time (hr) was defined as the time calculated by (1 / I) ⁇ (X / 100) when charging an amount of electricity corresponding to the charging rate X (%) with the current value I (C).
  • the end of the second step was controlled by voltage. Specifically, in the second step, constant current charging was performed until the voltage reached 4.1 V, which is estimated to have a charging rate of 100%.
  • Example 2 As the non-aqueous electrolyte secondary battery, the same non-aqueous electrolyte secondary battery as in Example 1 was used. In the pre-discharge, the pre-charge / discharge was performed by the same method as in Example 1 except that the constant current discharge was performed at 0.6 C (6.0 mA / cm 2 ) until the voltage reached 3.6 V (up to a discharge rate of 75%). Was done. In the first step of the constant current charging step of the charge / discharge cycle test, constant current charging was performed with a first current I 1 of 0.05 C (0.5 mA / cm 2) from a charging rate of 25% to 36.25%.
  • Comparative Examples 1 and 2 As the non-aqueous electrolyte secondary battery, the same non-aqueous electrolyte secondary battery as in Example 1 was used. Pre-charging and discharging was performed by the same method as in Example 1. In the constant current charging step, constant current charging is performed with a current of 0.4 C (4.0 mA / cm 2 ) until the voltage reaches 4.1 V (up to 100% charging rate), and the discharge end voltage is the value shown in Table 1. A charge / discharge cycle test was conducted and evaluated by the same method as in Example 1. When the discharge end voltage of Comparative Example 3 is 3.0 V, the discharge is performed up to a discharge rate of 100%.
  • Table 1 shows the evaluation results of Examples 1 and 2 and Comparative Examples 1 and 2.
  • Example 1 a higher capacity retention rate was obtained as compared with Comparative Examples 1 and 2. In Example 1, a higher capacity retention rate was obtained.
  • Comparative Example 1 the charging current density at the initial stage of charging was as large as 4.0 mA / cm 2 , a large amount of dendrites were generated on the negative electrode current collector, Li was isolated, and the cycle characteristics were deteriorated.
  • Comparative Example 2 the charging current density at the initial stage of charging was as large as 4.0 mA / cm 2 , the discharge end voltage was low, and the discharge rate reached 100%, so that the cycle characteristics were significantly reduced.
  • Example 3 As the non-aqueous electrolyte secondary battery, the same non-aqueous electrolyte secondary battery as in Example 1 was used. Pre-charging and discharging were performed by the same method as in Example 1 except that the current I 0 in the pre-charging was 0.02 C (0.2 mA / cm 2 ), and a charge-discharge cycle test was performed and evaluated.
  • Example 4 As the non-aqueous electrolyte secondary battery, the same non-aqueous electrolyte secondary battery as in Example 1 was used. No pre-charging / discharging was performed. In the first step of the first cycle of the charge / discharge cycle test, constant current charging was performed with a first current I 1 of 0.05 C (0.5 mA / cm 2) from a charge rate of 0% to 15%. In the second step, constant current charging was performed with a second current I 2 of 0.2 C (2.0 mA / cm 2 ) from a charging rate of 15% to 100%.
  • Table 2 shows the evaluation results of Examples 3 to 4. Table 2 also shows the evaluation results of Example 1.
  • the non-aqueous electrolyte secondary battery charging / discharging method according to the present invention is suitably used for a non-aqueous electrolyte secondary battery of a type in which lithium metal is deposited on a negative electrode current collector during charging and the lithium metal is dissolved during discharging. Be done.
  • Electrode group 2 Positive electrode lead 3: Negative lead lead 4: Battery case 5: Seal plate, 6: Negative terminal, 7: Gasket, 8: Seal, 11: Non-aqueous electrolyte secondary battery, 12: Charging / discharging device, 13: external power supply, 14: external load, 15: charge control unit, 16: discharge control unit, 17: voltage detection unit, 18: current detection unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【解決手段】正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に負極にリチウム金属が析出し、放電時にリチウム金属が非水電解質中に溶解する非水電解質二次電池の充放電方法は、充電ステップと、充電ステップの後に行う放電ステップと、を含む。充電ステップは、電流密度が1.0mA/cm以下の第1電流Iで定電流充電を行う第1ステップと、第1ステップの後、第1電流Iよりも大きい第2電流Iで定電流充電を行う第2ステップと、を含む。放電ステップでは、満充電量の20%以上、80%以下に相当する電気量を放電する。

Description

非水電解質二次電池の充放電方法および充放電システム
 本発明は、非水電解質二次電池の充放電方法および充放電システムに関する。
 リチウムイオン二次電池に代表される非水電解質二次電池は、高エネルギー密度および高出力を有し、スマートフォン等のモバイル機器の電源、電気自動車等の車両の動力源、太陽光等の自然エネルギーの貯蔵装置等として有望視されている。
 ところで、電池の高容量化を目的として、充電時に負極集電体上にリチウム金属が析出し、放電時に当該リチウム金属が溶解するタイプの非水電解質二次電池が検討されている(例えば特許文献1)。
特開2001-243957号公報
 しかし、リチウム金属の析出形態を制御することは困難であり、デンドライトの生成の抑制は不十分である。充電時に負極集電体上にデンドライト状に析出したリチウム金属は、放電時に負極集電体側から溶解し始めるため、析出したリチウム金属の一部は放電時に負極(導電ネットワーク)から孤立し易い。充放電の繰り返しに伴いリチウム金属の負極からの孤立化が進み、サイクル特性が低下し易い。
 上記に鑑み、本発明の一側面は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に前記負極にリチウム金属が析出し、放電時に前記リチウム金属が前記非水電解質中に溶解する非水電解質二次電池の充放電方法に関し、充電ステップと、前記充電ステップの後に行う放電ステップと、を含み、前記充電ステップは、電流密度が1.0mA/cm以下の第1電流Iで定電流充電を行う第1ステップと、前記第1ステップの後、前記第1電流Iよりも大きい第2電流Iで定電流充電を行う第2ステップと、を含み、前記放電ステップでは、満充電量の20%以上、80%以下に相当する電気量を放電する。
 本発明の別の側面は、非水電解質二次電池と、充放電装置と、を備え、前記非水電解質二次電池は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に前記負極にリチウム金属が析出し、放電時に前記リチウム金属が前記非水電解質中に溶解し、前記充放電装置は、充電制御部と、放電制御部と、を備え、前記充電制御部は、電流密度が1.0mA/cm以下の第1電流Iで第1定電流充電を行い、前記第1定電流充電の後、前記第1電流Iよりも大きい第2電流Iで第2定電流充電を行うように、充電を制御し、前記放電制御部は、満充電量の20%以上、80%以下に相当する電気量を放電するように、放電を制御する、非水電解質二次電池の充放電システムに関する。
 本発明によれば、非水電解質二次電池のサイクル特性を高めることができる。
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。
非水電解質二次電池の定電流充電時の負極の走査型電子顕微鏡(SEM)による画像である。図1(a)は、充電電流値が0.05Cである場合の充電率50%での負極集電体上のリチウム金属の析出状態を示す。図1(b)は、充電電流値が0.2Cである場合の充電率50%での負極集電体上のリチウム金属の析出状態を示す。 本発明の一実施形態に係る非水電解質二次電池の充放電システムの概略構成図である。 本発明の一実施形態に係る充放電方法および充放電システムに用いられる非水電解質二次電池の一部を切り欠いた概略斜視図である。
[非水電解質二次電池の充放電方法]
 本発明の一実施形態に係る非水電解質二次電池の充放電方法は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に負極にリチウム金属が析出し、放電時に当該リチウム金属が非水電解質中に溶解する非水電解質二次電池の充放電方法に関する。上記の充放電方法は、充電ステップと、充電ステップの後に行う放電ステップと、を含む。充電ステップは、電流密度が1.0mA/cm以下の第1電流Iで定電流充電を行う第1ステップと、第1ステップの後、第1電流Iよりも大きい第2電流Iで定電流充電を行う第2ステップと、を含む。放電ステップでは、満充電量の20%以上、80%以下に相当する電気量を放電する。すなわち、後述の放電率が20%、80%以下になるまで放電する。
 なお、電流密度(mA/cm2)とは、正極と負極との単位対向面積(1cm2)あたりの電流密度であり、負極と対向する正極合材層(もしくは正極活物質層)の総面積(以下、正極の実効総面積とも称する。)で、電池に印加される電流値を除算して求められる。正極の実効総面積とは、例えば、正極が正極集電体の両面に正極合材層を有する場合は、両面の正極合材層の合計面積(つまり両面のそれぞれの正極合材層の正極集電体の一方および他方の表面への投影面積の合計)である。
 通常、充電ステップにより、電池を満充電状態にする。なお、満充電状態の電池とは、定格容量分が充電されたと推定される電圧(例えば4.1V)になるまで充電された電池を意味する。満充電量とは、完全放電状態の電池を満充電状態になるまで充電したときの充電電気量を意味する。完全放電状態の電池とは、定格容量分が放電されたと推定される電圧(例えば3V)になるまで放電された電池を意味する。以下、満充電量に対する充電された電気量の割合を充電率と称する。満充電量に対する放電された電気量の割合を放電率と称する。満充電状態のとき、充電率は100%である。完全放電状態のとき、放電率は100%である。
 上記の充電ステップおよび放電ステップを行う場合、放電時のリチウム金属の負極からの孤立化が抑制され、当該孤立化による容量低下が抑制される。充放電の繰り返しに伴う上記孤立化の進行によるサイクル特性の低下が抑制される。
 第1ステップ(充電初期)では、第1電流Iにおける電流密度が1.0mA/cm以下と小さく、負極集電体上にリチウム金属が塊状(粒状)に析出し易い。塊状Liは放電時に孤立化しにくい。第2ステップでは第1ステップよりも充電レートを大きくして、充電時間の短縮を図ることが可能である。第2ステップではデンドライト状のリチウム金属が、ある程度析出するが、充電初期(主に第1ステップ)に析出した塊状Li上に析出し、塊状Liと強固に一体化し易く、放電時にLiの孤立化が抑制される。第1電流Iは、0.1C以下であってもよい。
 満充電量の20%以上、80%以下に相当する電気量を放電する場合、放電ステップ終了時に負極集電体の表面に塊状Liを十分に残留させ易い。これにより、充放電を通じて負極集電体上に良質の塊状Liが維持され、充電時にリチウム金属が良質の塊状Li上に確実に析出し、塊状Liと強固に一体化し、放電時のLiの孤立化が抑制される。放電ステップ終了時の放電率は、50%以上、80%以下であってもよく、50%以上、75%以下であってもよい。
 なお、(1/X)Cは、定格容量に相当する電気量をX時間で定電流充電または定電流放電するときの電流値を表す。例えば、0.1Cは、定格容量に相当する電気量を10時間で定電流充電または定電流放電するときの電流値である。
(充電ステップ)
 第1ステップでは、充電ステップの全充電電気量(充電ステップで充電される全電気量)の5%以上、15%以下に相当する電気量を充電してもよい。この場合、塊状Liを十分に析出させ易い。また、この場合、20%以上、80%以下の放電率まで放電する放電ステップとの組み合わせにより、充放電を通じて負極集電体上に十分量の良質な塊状Liが維持され易い。例えば、充放電ステップが後述する予備充電ステップを含まない場合、初回の充電ステップで満充電量に相当する電気量を充電してもよく、上記の充電ステップの全充電電気量は満充電量であってもよい。
 充電ステップは、第2ステップの後、第3電流Iで定電流充電を行う第3ステップを含んでもよい。第1ステップ~第3ステップの定電流充電を行う場合、第2電流Iにおける電流密度Jは、第1電流Iにおける電流密度Jよりも大きく、かつ、4.0mA/cm以下であり、第3電流Iにおける電流密度Jは、第2電流Iにおける電流密度Jよりも大きく、かつ、4.0mA/cm以上であってもよい。第2電流Iは、第1電流Iよりも大きく、かつ、0.4C以下であり、第3電流Iは、第2電流Iよりも大きく、かつ、0.4C以上であってもよい。充電ステップが第1ステップ~第3ステップを含み、第1電流~第3電流を適切に設定する場合、サイクル特性が向上し易い。
 第3ステップを設け、電流密度Jを4.0mA/cm以下に小さくすることで、第2ステップでのデンドライトの生成が抑制される。第2ステップにおいても、充電電流の大きさによっては(例えば電流密度Jが2.0mA/cm以下の場合)、塊状Liが析出し得る。第2ステップおよび第3ステップの順に電流値を大きくすることで、短時間で効率良く充電することができる。電流密度Jが4.0mA/cm以上の場合、優れたサイクル特性を維持しつつ、充電時間の短縮を図り易い。
 第1電流Iにおける電流密度Jは、例えば、0.1mA/cm以上、0.8mA/cm以下であってもよく、0.1mA/cm以上、0.5mA/cm以下であってもよい。第2電流Iにおける電流密度Jは、例えば、1.0mA/cm以上、2.0mA/cm以下であってもよい。第3電流Iにおける電流密度Jは、例えば、8.0mA/cm以上、10.0mA/cm以下であってもよい。
 第1電流Iは、例えば、0.01C以上、0.08C以下であってもよく、0.01C以上、0.05C以下であってもよい。第2電流Iは、例えば、0.1C以上、0.2C以下であってもよい。第3電流Iは、0.8C以上、1.0C以下であってもよい。
 3ステップの定電流充電をバランス良く効率的に行う観点から、第1電流Iに対する第2電流Iの比:I/Iは、例えば、1.25以上でもよく、1.25以上、4以下でもよい。同様に、第2電流Iに対する第3電流Iの比:I/Iは、例えば、3以上でもよく、3以上、10以下でもよい。
 定電流充電の各ステップを終了するタイミングは、例えば、充電時間、充電電気量、または電圧で制御してもよく、充電ステップの全充電電気量に対する充電された電気量の割合で制御してもよく、充電率で制御してもよい。充電電気量(充電率)は、電圧により推定してもよい。初期の電池を定格容量分(充電率100%)まで定電流充電したときの充電電気量と電圧の関係に基づいて、電圧により充電電気量(充電率)を推定し、各ステップで充電終止電圧を設定してもよい。例えば、定電流充電の最終ステップの充電終止電圧は、初期の電池を定格容量分まで定電流充電したときの充電電気量と電圧の関係に基づいて、定格容量に相当する電気量が充電されたと推定される電圧に設定してもよい。
 第1ステップでは、第1ステップの充電電気量が、充電ステップの全充電電気量の15%以下となるように定電流充電を行ってもよい。第1ステップ~第3ステップの定電流充電を行う場合、第2ステップでは、第1ステップと第2ステップを合わせた充電電気量が、充電ステップの全充電電気量の50%以下となるように定電流充電を行ってもよい。この場合、第1ステップ~第3ステップをバランス良く実施し易く、サイクル特性の向上効果が得られ易い。
 充電をより確実に行うために、上記の充電ステップは、定電流充電ステップの後、一定の電圧で充電を行う定電圧充電ステップを更に含んでもよい。定電圧充電は、例えば、電流が所定値(例えば0.02C)になるまで行う。定電流充電の最終ステップを所定の電圧(例えば4.1V)になるまで行う場合、当該電圧で定電圧充電を行ってもよい。
 ここで、図1は、非水電解質二次電池の定電流充電時の負極の状態を示すSEM画像である。図1(a)は、充電電流値が0.05C(0.5mA/cm)である場合の充電率50%での負極集電体上のリチウム金属の析出状態を示す。図1(b)は、充電電流値が0.2C(2.0mA/cm)である場合の充電率50%での負極集電体上のリチウム金属の析出状態を示す。
 図1(a)の負極では、充電電流密度が0.5mA/cmと小さく、負極集電体の上に塊状のリチウム金属が多く析出している。一方、図1(b)の負極では、充電電流密度が2.0mA/cmと大きく、負極集電体の上にデンドライト状のリチウム金属が多く析出している。
(放電ステップ)
 放電ステップでは、満充電量の20%以上、80%以下に相当する電気量を放電する。放電は、定電流放電でもよく、定電力放電でもよい。放電ステップを終了するタイミングは、例えば、放電電気量(放電率)や電圧で制御してもよい。放電電気量(放電率)は電圧により推定してもよい。定電流放電の場合、満充電状態の初期の電池を定格容量分(放電率100%)まで定電流放電したときの放電電気量と電圧の関係に基づいて、電圧により放電電気量(放電率)を推定し、放電終止電圧を設定してもよい。放電率20%以上、80%以下まで放電する場合、放電終止電圧は、例えば、3.5V以上、3.8V以下に設定される。放電ステップでの放電電流密度は、例えば、2.0mA/cm以上、20.0mA/cm以下である。放電ステップでの放電電流値は、例えば、0.2C以上、2C以下である。
(予備充電ステップ)
 上記の充放電方法は、更に、初回の充電ステップの前に、電流密度が0.5mA/cm以下の電流Iで定電流充電を行う予備充電ステップを含んでもよい。予備充電ステップを行うことにより、図1(a)のSEM画像の負極のように、良質な塊状Liを負極集電体上に多く形成することができる。電流Iは、例えば、0.05C以下である。
 良質な塊状Li形成の観点から、電流Iにおける電流密度Jは、0.1mA/cm以上、0.5mA/cm以下であってもよく、0.2mA/cm以上、0.5mA/cm以下であってもよい。良質な塊状Li形成の観点から、電流Iは、0.01C以上、0.05C以下であってもよく、0.02C以上、0.05C以下であってもよい。
 後述の予備放電ステップを行う場合、予備充電ステップで、定格容量分に相当する電気量を充電し、充電率100%の負極を得てもよい。後述の予備放電ステップを行わない場合、予備充電ステップで、例えば、充電率が80%以上、100%以下の負極を得てもよい。
(予備放電ステップ)
 上記の充放電方法は、更に、予備充電ステップの後、かつ、初回の前記充電ステップの前に、前記予備充電ステップの充電時に析出したリチウム金属の一部が残留するように放電を行う予備放電ステップを含んでもよい。放電は、定電流充電でもよく、定電力放電でもよい。予備放電ステップを行うことにより、より良質な塊状Liを負極集電体上に効率的に残すことができる。
 例えば、予備充電ステップで充電率100%まで充電し、予備放電ステップで20%以上、80%以下の放電率まで放電してもよい。この場合、放電終止電圧は、例えば、3.5V以上、3.8V以下に設定される。予備放電ステップでの放電電流密度は、例えば、2.0mA/cm以上、20.0mA/cm以下である。予備放電ステップでの放電電流値は、例えば、0.2C以上、2C以下である。
[非水電解質二次電池の充放電システム]
 本発明の一実施形態に係る非水電解質二次電池の充放電システムは、非水電解質二次電池と、充放電装置と、を備える。非水電解質二次電池は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に負極にリチウム金属が析出し、放電時に当該リチウム金属が非水電解質中に溶解する。充放電装置は、充電制御部と放電制御部とを備える。充電制御部は、電流密度が1.0mA/cm以下の第1電流Iで第1定電流充電を行い、第1定電流充電の後、第1電流Iよりも大きい第2電流Iで第2定電流充電を行うように、充電を制御する。放電制御部は、満充電量の20%以上、80%以下に相当する電気量を放電するように、放電を制御する。第1定電流充電では、満充電量の5%以上、15%以下に相当する電気量を充電してもよい。第1電流Iは、0.1C以下であってもよい。
 充電制御部は、第2定電流充電の後、第3電流Iで第3定電流充電を行うように、充電を制御してもよい。この場合、第2電流Iにおける電流密度Jは、第1電流Iにおける電流密度Jよりも大きく、かつ、4.0mA/cm以下であってもよい。第3電流Iにおける電流密度Jは、電流密度Jよりも大きく、かつ、4.0mA/cm以上であってもよい。第2電流Iは、第1電流Iよりも大きく、かつ、0.4C以下であってもよい。第3電流Iは、第2電流Iよりも大きく、かつ、0.4C以上であってもよい。
 充電制御部は、第1定電流充電で充電電気量が第1の閾値に達すると、第1定電流充電を終了して第2定電流充電を開始し、第2定電流充電で充電電気量が第2の閾値に達すると、第2定電流充電を終了して第3定電流充電を開始するように、充電を制御してもよい。第1の閾値は、全充電電気量の15%以下に相当する充電電気量であってもよい。第2の閾値は、全充電電気量の50%以下に相当する充電電気量であってもよい
 ここで、図2は、本発明の実施形態に係る充放電システムの一例を示す。
 充放電システムは、非水電解質二次電池11と、充放電装置12と、を備える。充放電装置12には、充放電装置12に電力を供給する外部電源13が接続されている。非水電解質二次電池11には、外部負荷14が接続されている。非水電解質二次電池11は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に負極にリチウム金属が析出し、放電時に当該リチウム金属が非水電解質中に溶解するタイプの二次電池である。充放電装置12は、充電回路を備える充電制御部15と、放電回路を備える放電制御部16と、を具備する。
 充電制御部15は、電流密度が1.0mA/cm以下の第1電流Iで第1定電流充電を行い、第1定電流充電の後に第1電流Iよりも大きい第2電流Iで第2定電流充電を行うように、充電を制御する。第1定電流充電では、全充電電気量の5%以上、15%以下に相当する電気量を充電する。
 充放電装置12は、非水電解質二次電池11の電圧を検出する電圧検出部17を備える。電圧検出部17は、電圧に基づいて充電電気量(充電率)を演算する演算部を備えてもよい。電圧検出部17により検出された電圧(演算部により求められた充電電気量)に基づいて、充電制御部15により、第1定電流充電から第2定電流充電への切り替えを行ったり、第2定電流充電を終了する。
 充電制御部15は、第2定電流充電の後、所定の電圧(例えば第2定電流充電の終止電圧)で定電圧充電を行う。充放電装置12は、電流を検出する電流検出部18を備える。充電制御部15は、電流検出部18により検出された電流が閾値に達すると定電圧充電を終了するように制御してもよい。
 なお、図2では、第1定電流充電~第2定電流充電の終了のタイミングは、電圧検出部17で検出される電圧により制御しているが、充電時間により制御してもよい。例えば、第1定電流充電の終了は充電時間で制御し、第2定電流充電の終了は電圧で制御してもよい。
 放電制御部16は、満充電量の20%以上、80%以下に相当する電気量を放電(定電流放電または定電力放電)するように、放電を制御する。電圧検出部17は、電圧に基づいて放電電気量(放電率)を演算する演算部を備えてもよい。放電制御部16は、電圧検出部17により検出された電圧(演算部により求められた放電電気量(放電率))が閾値に達すると放電を終了するように、放電を制御する。
 充電制御部15は、初回の第1定電流充電の前に、電流密度が0.5mA/cm以下の電流Iで定電流充電(予備充電)を行うように、充電を制御してもよい。放電制御部16は、予備充電の後、かつ、初回の第1定電流充電の前に、予備充電時に析出したリチウム金属の一部が残留するように放電(予備放電)を行うように、放電を制御してもよい。
 以下、非水電解質二次電池の各構成要素について、更に具体的に説明する。
[負極]
 負極は、負極集電体を備える。リチウム二次電池では、例えば負極集電体の表面に、充電によりリチウム金属が析出する。より具体的には、非水電解質に含まれるリチウムイオンが、充電により、負極集電体上で電子を受け取ってリチウム金属になり、負極集電体の表面に析出する。負極集電体の表面に析出したリチウム金属は、放電により非水電解質中にリチウムイオンとして溶解する。なお、非水電解質に含まれるリチウムイオンは、非水電解質に添加したリチウム塩に由来するものであってもよく、充電により正極活物質から供給されるものであってもよく、これらの双方であってもよい。
 負極集電体は、導電性シートであればよい。導電性シートとしては、箔、フィルム等が利用される。負極集電体の厚みは、特に制限されず、例えば5μm以上、300μm以下である。
 導電性シートの表面は平滑であってもよい。これにより、充電の際、正極由来のリチウム金属が、導電性シート上に均等に析出し易くなる。平滑とは、導電性シートの最大高さ粗さRzが20μm以下であることをいう。導電性シートの最大高さ粗さRzは10μm以下であってもよい。最大高さ粗さRzは、JIS B 0601:2013に準じて測定される。
 負極集電体(導電性シート)の材質は、リチウム金属およびリチウム合金以外の導電性材料であればよい。導電性材料は、金属、合金等の金属材料であってもよい。導電性材料は、リチウムと反応しない材料が好ましい。より具体的には、リチウムと合金および金属間化合物のいずれも形成しない材料が好ましい。このような導電性材料は、例えば、銅(Cu)、ニッケル(Ni)、鉄(Fe)、およびこれらの金属元素を含む合金、あるいは、ベーサル面が優先的に露出している黒鉛が挙げられる。合金としては、銅合金、ステンレス鋼(SUS)等が挙げられる。中でも高い導電性を有する銅および/または銅合金が好ましい。
[正極]
 正極は、リチウムイオンを吸蔵および放出可能な正極活物質を含む。正極活物質としては、例えば、リチウムと、リチウム以外の金属Meとを含む複合酸化物が挙げられる。金属Meは少なくとも遷移金属を含む。複合酸化物は、製造コストが安く、平均放電電圧が高い点で有利である。
 複合酸化物に含まれるリチウムは、充電時にリチウムイオンとして正極から放出され、負極でリチウム金属として析出する。放電時には負極からリチウム金属が溶解してリチウムイオンが放出され、正極の複合酸化物に吸蔵される。すなわち、充放電に関与するリチウムイオンは、概ね、非水電解質中の溶質(リチウム塩)と正極活物質とに由来する。よって、正極が有する金属Meの量mMeに対する、正極および負極が有するリチウムの合計量mLiのモル比:mLi/mMeは、例えば、1.1以下であればよい。
 遷移金属は、ニッケル(Ni)と、コバルト(Co)、マンガン(Mn)、鉄(Fe)、銅(Cu)、クロム(Cr)、チタン(Ti)、ニオブ(Nb)、ジルコニウム(Zr)、バナジウム(V)、タンタル(Ta)、タングステン(W)およびモリブデン(Mo)からなる群より選択される少なくとも1種の元素と、を含んでもよい。
 金属Meは、遷移金属以外の金属を含んでもよい。遷移金属以外の金属は、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)およびシリコン(Si)からなる群より選択される少なくとも1種を含んでもよい。また、複合酸化物は、金属以外に、ホウ素(B)等を更に含んでもよい。
 高容量化の観点から、複合酸化物は層状岩塩型の結晶構造を有し、リチウム以外の金属Meは少なくとも遷移金属としてニッケルを含むことが好ましく、金属Meに対するNiの原子比:Ni/Meが0.65以上であってもよい。Ni/Meが0.65以上のニッケル系複合酸化物の場合、コバルト酸リチウムよりも、初回の充放電効率が小さく、放電時に負極集電体上に析出したリチウム金属(主に充電初期の塊状Li)が残存し易い。残存するリチウム金属の量が多い場合、20%以上、80%以下の放電率までの放電により残存させる塊状Liや上記の予備充電で負極集電体上に析出させる塊状Liと同様の作用を発揮し得る。複合酸化物において、金属Meに対するNiの原子比:Ni/Meは、好ましくは0.65以上、1未満であり、より好ましくは0.7以上、1未満であり、更に好ましくは0.8以上、1未満である。
 高容量化および出力特性の向上の観点から、中でも、金属Meは、Niと、Co、MnおよびAlからなる群より選択される少なくとも1種と、を含むことが好ましく、Niと、Coと、Mnおよび/またはAlと、を含むことがより好ましい。金属MeがCoを含む場合、充放電時において、LiとNiとを含む複合酸化物の相転移が抑制され、結晶構造の安定性が向上し、サイクル特性が向上し易い。金属MeがMnおよび/またはAlを含む場合、熱安定性が向上する。
 複合酸化物は、一般式(1):LiNi1-b(0.9≦a≦1.2および0.65≦b≦1を満たし、Mは、Co、Mn、Al、Ti、Fe、Nb、B、Mg、Ca、Sr、ZrおよびWからなる群より選択される少なくとも1種の元素である。)で表される組成を有してもよい。Li以外の金属に占めるNiの割合が大きく、放電時に塊状Liが残留し易い。また、この場合、高容量化し易いとともに、Niによる効果と、元素Mによる効果とが、バランス良く得られる。
 また、複合酸化物は、一般式(2):LiNi1-y-zCoAl(0.9≦a≦1.2、0<y≦0.2、0<z≦0.05およびy+z≦0.2)で表わされる組成を有してもよい。Coの組成比を示すyが0超、0.2以下である場合、高容量および高出力を維持し易く、かつ、充放電時の結晶構造の安定性が向上し易い。Alの組成比を示すzが0超、0.05以下である場合、高容量および高出力を維持し易く、かつ、熱安定性が向上し易い。Niの組成比を示す(1-y-z)は、0.8以上、1未満を満たす。この場合、Li以外の金属に占めるNiの割合が大きく、Liの析出形態を制御し易い。また、この場合、高容量化し易いとともに、Niによる効果と、CoおよびAlによる効果とが、バランス良く得られる。
 また、正極活物質としては、上記の複合酸化物以外に、例えば、遷移金属フッ化物、ポリアニオン、フッ素化ポリアニオン、遷移金属硫化物等を用いてもよい。
 正極は、例えば、正極集電体と、正極集電体に担持された正極合剤層とを備える。正極合剤層は、例えば、正極活物質と導電剤と結着剤とを含む。正極合剤層は、正極集電体の一方の表面に形成されてもよく、両面に形成されてもよい。正極は、例えば、正極集電体の表面に正極活物質と導電剤と結着剤とを含む正極合剤スラリーを塗布し、塗膜を乾燥させた後、圧延することにより得られる。
 導電剤は、例えば、炭素材料である。炭素材料としては、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、および黒鉛等が挙げられる。
 結着剤としては、例えば、フッ素樹脂、ポリアクリロニトリル、ポリイミド樹脂、アクリル樹脂、ポリオレフィン樹脂、ゴム状重合体等が挙げられる。フッ素樹脂としては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等が挙げられる。
 正極集電体は、導電性シートであればよい。導電性シートとしては、箔、フィルム等が利用される。正極集電体の表面には、炭素材料が塗布されていてもよい。正極集電体の厚みは、特に制限されず、例えば5μm以上、300μm以下である。
 正極集電体(導電性シート)の材質としては、例えば、Al、Ti、Fe等を含む金属材料が挙げられる。金属材料は、Al、Al合金、Ti、Ti合金、Fe合金等であってもよい。Fe合金は、ステンレス鋼(SUS)であってもよい。
[セパレータ]
 正極と負極との間にセパレータを配置してもよい。セパレータには、イオン透過性および絶縁性を有する多孔性シートが用いられる。多孔性シートとしては、例えば、微多孔を有する薄膜、織布、不織布等が挙げられる。セパレータの材質は特に限定されないが、高分子材料であってもよい。高分子材料としては、オレフィン樹脂、ポリアミド樹脂、セルロース等が挙げられる。オレフィン樹脂としては、ポリエチレン、ポリプロピレンおよびエチレンとプロピレンとの共重合体等が挙げられる。セパレータは、必要に応じて、添加剤を含んでもよい。添加剤としては、無機フィラー等が挙げられる。
[非水電解質]
 リチウムイオン伝導性を有する非水電解質は、例えば、非水溶媒と、非水溶媒に溶解したリチウムイオンとアニオンとを含んでいる。非水電解質は、液状でもよいし、ゲル状でもよい。
 液状の非水電解質は、リチウム塩を非水溶媒に溶解させることにより調製される。リチウム塩が非水溶媒中に溶解することにより、リチウムイオンおよびアニオンが生成する。
 ゲル状の非水電解質は、リチウム塩とマトリックスポリマー、あるいは、リチウム塩と非水溶媒とマトリックスポリマーとを含む。マトリックスポリマーとしては、例えば、非水溶媒を吸収してゲル化するポリマー材料が使用される。ポリマー材料としては、フッ素樹脂、アクリル樹脂、ポリエーテル樹脂等が挙げられる。
 リチウム塩またはアニオンとしては、リチウム二次電池の非水電解質に利用される公知のものが使用できる。具体的には、BF 、ClO 、PF 、CFSO 、CFCO 、イミド類のアニオン、オキサレート錯体のアニオン等が挙げられる。イミド類のアニオンとしては、N(SOF) 、N(SOCF 、N(C2m+1SO(C2n+1SO)y(mおよびnは、それぞれ独立して0または1以上の整数であり、xおよびyは、それぞれ独立して0、1または2であり、x+y=2を満たす。)等が挙げられる。オキサレート錯体のアニオンは、ホウ素および/またはリンを含有してもよい。オキサレート錯体のアニオンとしては、ビスオキサレートボレートアニオン:B(C 、ジフルオロオキサレートボレートアニオン:BF(C、PF(C、PF(C 等が挙げられる。非水電解質は、これらのアニオンを単独で含んでもよく、2種以上含んでもよい。
 リチウム金属がデンドライト状に析出するのを抑制する観点から、非水電解質は、少なくともオキサレート錯体のアニオンを含むことが好ましい。中でも、ジフルオロオキサレートボレートアニオンがより好ましい。オキサレート錯体のアニオンとリチウムとの相互作用により、リチウム金属が塊状(粒子状)で均一に析出し易くなる。そのため、リチウム金属の局所的な析出を抑制し易くなる。オキサレート錯体のアニオンと他のアニオンとを組み合わせてもよい。他のアニオンは、PF および/またはN(SOF) 等のイミド類のアニオンであってもよい。
 非水溶媒としては、例えば、エステル、エーテル、ニトリル、アミド、またはこれらのハロゲン置換体が挙げられる。非水電解質は、これらの非水溶媒を単独で含んでもよく、2種以上含んでもよい。ハロゲン置換体としては、フッ化物等が挙げられる。
 エステルとしては、例えば、炭酸エステル、カルボン酸エステル等が挙げられる。環状炭酸エステルとしては、エチレンカーボネート、プロピレンカーボネート等が挙げられる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン、γ-バレロラクトン等が挙げられる。鎖状カルボン酸エステルとしては、酢酸エチル、プロピオン酸メチル、フルオロプロピオン酸メチル等が挙げられる。
 エーテルとしては、環状エーテルおよび鎖状エーテルが挙げられる。環状エーテルとしては、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、テトラヒドロフラン、2-メチルテトラヒドロフラン等が挙げられる。鎖状エーテルとしては、1,2-ジメトキシエタン、ジエチルエーテル、エチルビニルエーテル、メチルフェニルエーテル、ベンジルエチルエーテル、ジフェニルエーテル、ジベンジルエーテル、1,2-ジエトキシエタン、ジエチレングリコールジメチルエーテル等が挙げられる。
 非水溶媒は、ビニレンカーボネート(VC)、フルオロエチレンカーボネート(FEC)、ビニルエチルカーボネート(VEC)等の成分を少量含んでもよい。この場合、負極上に上記成分に由来する被膜が形成され、被膜によりデンドライトの生成が抑制される。
 非水電解質中のリチウム塩の濃度は、例えば、0.5mol/L以上、3.5mol/L以下である。非水電解質中のアニオンの濃度を、0.5mol/L以上、3.5mol/L以下としてもよい。また、非水電解質中のオキサレート錯体のアニオンの濃度を、0.05mol/L以上、1mol/L以下としてもよい。
 非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群等、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型等、いずれの形態であってもよい。
 図3は、本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
 電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
 負極の負極集電体には、負極リード3の一端部が溶接等により取り付けられている。負極リード3の他端部は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端部が溶接等により取り付けられている。正極リード2の他端部は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。
[実施例]
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
《実施例1》
[正極の作製]
 リチウムニッケル複合酸化物(LiNi0.9Co0.05Al0.05)と、アセチレンブラックと、ポリフッ化ビニリデン(PVdF)とを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、攪拌し、正極スラリーを調製した。次に、正極集電体であるAl箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、Al箔の両面に正極合剤層(密度3.6g/cm)が形成された正極を作製した。
[負極の作製]
 電解銅箔(厚み10μm)を所定の電極サイズに切断し、負極集電体を得た。
[非水電解質の調製]
 混合溶媒にリチウム塩を溶解させて、非水電解質を調製した。混合溶媒には、フルオロエチレンカーボネート(FEC)と、エチルメチルカーボネート(EMC)と、ジメチルカーボネート(DMC)とを、FEC:EMC:DMC=20:5:75の容積比で混合したものを用いた。リチウム塩には、LiPFと、LiN(FSO(以下、LiFSIと称する。)と、LiBF(C)(以下、LiFOBと称する。)と、を用いた。非水電解質中のLiPFの濃度は、0.5mol/Lとした。非水電解質中のLiFSIの濃度は、0.5mol/Lとした。非水電解質中のLiFOBの含有量は、1質量%とした。
[電池の組み立て]
 上記で得られた正極にAl製の正極リードを取り付け、上記で得られた負極にNi製の負極リードを取り付けた。不活性ガス雰囲気中で、正極と負極とをポリエチレン薄膜(セパレータ)を介して渦巻状に捲回し、捲回型の電極群を作製した。電極群を、Al層を備えるラミネートシートで形成される袋状の外装体に収容し、上記非水電解質を注入した後、外装体を封止して非水電解質二次電池を作製した。なお、電極群を外装体に収容する際、正極リードおよび負極リードの一部は、それぞれ、外装体より外部に露出させた。
 なお、電極群に含まれるリチウムは全て正極に由来するため、正極が有する金属Me(ここではNi、CoおよびAl)の量mMeに対する、正極および負極が有するリチウムの合計量mLiのモル比:mLi/mMeは0.8であった。
[予備充放電]
 得られた電池を用いて、25℃の環境下で、以下の予備充放電を行った。
(予備充電)
 電圧が4.1Vになるまで(充電率100%まで)、0.05C(0.5mA/cm)の電流Iで定電流充電を行った。
(予備放電)
 10分休止後、電圧が3.75Vになるまで(放電率50%まで)、0.6C(6.0mA/cm)で定電流放電を行った。
[充放電サイクル試験]
 予備充放電後の電池を用いて、25℃の環境下で、以下の充放電サイクル試験を行った。
(充電)
 まず、以下の第1ステップ~第2ステップの定電流充電を行った。
 第1ステップ:充電率50%から充電率57.5%まで0.05C(0.5mA/cm)の第1電流Iで定電流充電
 第2ステップ:充電率57.5%から充電率100%まで0.2C(2.0mA/cm)の第2電流Iで定電流充電
 第1ステップの終了は充電時間により制御した。充電時間(hr)は、電流値I(C)で充電率X(%)分に相当する電気量を充電する場合、(1/I)×(X/100)で算出される時間とした。第2ステップの終了は電圧により制御した。具体的には、第2ステップでは、充電率100%と推定される電圧4.1Vになるまで定電流充電を行った。
 更に、上記の定電流充電を行った後、電流が0.02Cになるまで4.1Vの電圧で定電圧充電を行った。
(放電)
 10分間休止後、電圧が3.75Vになるまで(放電率50%まで)、0.6C(6.0mA/cm)で定電流放電を行った。
[評価]
 上記の充放電を1サイクルとして、100サイクル行った。1サイクル目の放電容量に対する100サイクル目の放電容量の割合を、容量維持率として求めた。
《実施例2》
 非水電解質二次電池には、実施例1と同じ非水電解質二次電池を用いた。予備放電において、電圧が3.6Vになるまで(放電率75%まで)0.6C(6.0mA/cm)で定電流放電を行った以外、実施例1と同様の方法により予備充放電を行った。充放電サイクル試験の定電流充電ステップの第1ステップでは、充電率25%から36.25%まで0.05C(0.5mA/cm)の第1電流Iで定電流充電を行った。第2ステップでは、充電率36.25%から100%まで0.2C(2.0mA/cm)の第2電流Iで定電流充電を行った。放電ステップでは、電圧が3.6V(放電率75%)になるまで0.6C(6.0mA/cm)で定電流放電を行った。上記以外、実施例1と同様の方法により充放電サイクル試験を行い、評価した。
《比較例1~2》
 非水電解質二次電池には、実施例1と同じ非水電解質二次電池を用いた。実施例1と同様の方法により予備充放電を行った。定電流充電ステップで、電圧が4.1Vになるまで(充電率100%まで)0.4C(4.0mA/cm)の電流で定電流充電を行い、放電終止電圧を表1に示す値とした以外、実施例1と同様の方法により充放電サイクル試験を行い、評価した。なお、比較例3の放電終止電圧が3.0Vの場合、放電率100%まで放電が行われる。
 実施例1~2および比較例1~2の評価結果を表1に示す。
 実施例1~2では、比較例1~2と比べて、高い容量維持率が得られた。実施例1では、より高い容量維持率が得られた。
 比較例1では、充電初期の充電電流密度が4.0mA/cmと大きく、負極集電体の上にデンドライトが多く生成し、Liの孤立化が進み、サイクル特性が低下した。比較例2では、充電初期の充電電流密度が4.0mA/cmと大きく、放電終止電圧が低く、放電率100%まで放電したため、サイクル特性が大幅に低下した。
Figure JPOXMLDOC01-appb-T000001
《実施例3》
 非水電解質二次電池には、実施例1と同じ非水電解質二次電池を用いた。予備充電での電流Iを0.02C(0.2mA/cm)とした以外、実施例1と同様の方法により予備充放電を行い、充放電サイクル試験を行い、評価した。
《実施例4》
 非水電解質二次電池には、実施例1と同じ非水電解質二次電池を用いた。予備充放電は行わなかった。充放電サイクル試験の1サイクル目の第1ステップでは、充電率0%から15%まで0.05C(0.5mA/cm)の第1電流Iで定電流充電を行った。第2ステップでは、充電率15%から100%まで0.2C(2.0mA/cm)の第2電流Iで定電流充電を行った。2サイクル目以降の第1ステップでは、充電率50%から57.5%まで0.05C(0.5mA/cm)の第1電流Iで定電流充電を行った。第2ステップでは、充電率57.5%から100%まで0.2C(2.0mA/cm)の第2電流Iで定電流充電を行った。上記以外、実施例1と同様の方法により充放電サイクル試験を行い、評価した。
 実施例3~4の評価結果を表2に示す。表2では実施例1の評価結果も示す。
 実施例1、3、4のいずれも高い容量維持率が得られた。予備充放電を行った実施例1、3では、より高い容量維持率が得られた。予備充電での充電レートが0.02C(0.2mA/cm)の実施例3では、更に高い容量維持率が得られた。
Figure JPOXMLDOC01-appb-T000002
 本発明に係る非水電解質二次電池の充放電方法は、充電時に負極集電体上にリチウム金属が析出し、放電時に当該リチウム金属が溶解するタイプの非水電解質二次電池に好適に用いられる。
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 1:電極群、2:正極リード、3:負極リード、4:電池ケース、5:封口板、6:負極端子、7:ガスケット、8:封栓、11:非水電解質二次電池、12:充放電装置、13:外部電源、14:外部負荷、15:充電制御部、16:放電制御部、17:電圧検出部、18:電流検出部
 

Claims (15)

  1.  正極と、負極集電体を備える負極と、非水電解質と、を備え、
     充電時に前記負極にリチウム金属が析出し、放電時に前記リチウム金属が前記非水電解質中に溶解する非水電解質二次電池の充放電方法であって、
     充電ステップと、前記充電ステップの後に行う放電ステップと、を含み、
     前記充電ステップは、電流密度が1.0mA/cm以下の第1電流Iで定電流充電を行う第1ステップと、前記第1ステップの後、前記第1電流Iよりも大きい第2電流Iで定電流充電を行う第2ステップと、を含み、
     前記放電ステップでは、満充電量の20%以上、80%以下に相当する電気量を放電する、非水電解質二次電池の充放電方法。
  2.  前記第1ステップでは、0.1C以下の前記第1電流Iで定電流充電を行う、請求項1に記載の非水電解質二次電池の充放電方法。
  3.  前記第1ステップでは、前記充電ステップの全充電電気量の5%以上、15%以下に相当する電気量を充電する、請求項1または2に記載の非水電解質二次電池の充放電方法。
  4.  前記充電ステップは、前記第2ステップの後、第3電流Iで定電流充電を行う第3ステップを含み、
     前記第2電流Iは、前記第1電流Iよりも大きく、かつ、電流密度が4.0mA/cm以下であり、
     前記第3電流Iは、前記第2電流Iよりも大きく、かつ、電流密度が4.0mA/cm以上である、
    請求項1または2に記載の非水電解質二次電池の充放電方法。
  5.  前記第2ステップでは、前記第1電流I1よりも大きく、かつ、0.4C以下の前記第2電流I2で定電流充電を行い、
     前記第3ステップでは、前記第2電流I2よりも大きく、かつ、0.4C以上の前記第3電流I3で定電流充電を行う、請求項4に記載の非水電解質二次電池の充放電方法。
  6.  前記第1ステップでは、前記第1ステップの充電電気量が、前記充電ステップの全充電電気量の15%以下となるように定電流充電を行い、
     前記第2ステップでは、前記第1ステップと前記第2ステップを合わせた充電電気量が、前記充電ステップの全充電電気量の50%以下となるように定電流充電を行う、
    請求項4または5に記載の非水電解質二次電池の充放電方法。
  7.  更に、初回の前記充電ステップの前に、電流密度が0.5mA/cm以下の電流Iで定電流充電を行う予備充電ステップを含む、請求項1~6のいずれか1項に記載の非水電解質二次電池の充放電方法。
  8.  前記予備充電ステップでは、0.05C以下の前記電流Iで定電流充電を行う、請求項7に記載の非水電解質二次電池の充放電方法。
  9.  前記正極は、層状岩塩型の結晶構造を有し、リチウムとニッケルとを含む複合酸化物を含み、
     前記複合酸化物は、一般式(1):LiNi1-bで表され、前記一般式(1)中、0.9≦a≦1.2および0.65≦b≦1を満たし、Mは、Co、Mn、Al、Ti、Fe、Nb、B、Mg、Ca、Sr、ZrおよびWからなる群より選択される少なくとも1種の元素である、請求項1~8のいずれか1項に記載の非水電解質二次電池の充放電方法。
  10.  前記負極集電体は、銅箔または銅合金箔である、請求項1~9のいずれか1項に記載の非水電解質二次電池の充放電方法。
  11.  非水電解質二次電池と、充放電装置と、を備え、
     前記非水電解質二次電池は、正極と、負極集電体を備える負極と、非水電解質と、を備え、充電時に前記負極にリチウム金属が析出し、放電時に前記リチウム金属が前記非水電解質中に溶解し、
     前記充放電装置は、充電制御部と、放電制御部と、を備え、
     前記充電制御部は、電流密度が1.0mA/cm以下の第1電流Iで第1定電流充電を行い、前記第1定電流充電の後、前記第1電流Iよりも大きい第2電流Iで第2定電流充電を行うように、充電を制御し、
     前記放電制御部は、満充電量の20%以上、80%以下に相当する電気量を放電するように、放電を制御する、
    非水電解質二次電池の充放電システム。
  12.  前記第1定電流充電では、全充電電気量の5%以上、15%以下に相当する電気量を充電する、請求項11に記載の非水電解質二次電池の充放電システム。
  13.  前記充電制御部は、前記第2定電流充電の後、第3電流Iで第3定電流充電を行うように、充電を制御し、
     前記第2電流Iは、前記第1電流Iよりも大きく、かつ、電流密度が4.0mA/cm以下であり、
     前記第3電流Iは、前記第2電流Iよりも大きく、かつ、電流密度が4.0mA/cm以上である、
    請求項11に記載の非水電解質二次電池の充放電システム。
  14.  前記充電制御部は、前記第1定電流充電で充電電気量が第1の閾値に達すると、前記第1定電流充電を終了して前記第2定電流充電を開始し、前記第2定電流充電で充電電気量が第2の閾値に達すると、前記第2定電流充電を終了して前記第3定電流充電を開始するように、充電を制御し、
     前記第1の閾値は、全充電電気量の15%以下に相当する充電電気量であり、
     前記第2の閾値は、全充電電気量の50%以下に相当する充電電気量である、
    請求項13に記載の非水電解質二次電池の充放電システム。
  15.  前記充電制御部は、初回の前記第1定電流充電の前に、電流密度が0.5mA/cm以下の電流Iで定電流充電を行うように、充電を制御する、請求項11~14のいずれか1項に記載の非水電解質二次電池の充放電システム。
     
PCT/JP2021/006229 2020-02-28 2021-02-18 非水電解質二次電池の充放電方法および充放電システム WO2021172175A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180016878.2A CN115152076A (zh) 2020-02-28 2021-02-18 非水电解质二次电池的充放电方法及充放电系统
US17/802,195 US20230361367A1 (en) 2020-02-28 2021-02-18 Charge and discharge method for nonaqueous electrolyte secondary battery, and charge and discharge system for nonaqueous electrolyte secondary battery
JP2022503318A JPWO2021172175A1 (ja) 2020-02-28 2021-02-18
EP21760826.4A EP4113665A4 (en) 2020-02-28 2021-02-18 CHARGING AND DISCHARGE METHOD FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY, AND CHARGING AND DISCHARGE SYSTEM FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-034464 2020-02-28
JP2020034464 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172175A1 true WO2021172175A1 (ja) 2021-09-02

Family

ID=77490938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006229 WO2021172175A1 (ja) 2020-02-28 2021-02-18 非水電解質二次電池の充放電方法および充放電システム

Country Status (5)

Country Link
US (1) US20230361367A1 (ja)
EP (1) EP4113665A4 (ja)
JP (1) JPWO2021172175A1 (ja)
CN (1) CN115152076A (ja)
WO (1) WO2021172175A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018246A1 (ja) * 2022-07-20 2024-01-25 日産自動車株式会社 全固体電池の製造方法
WO2024018247A1 (ja) * 2022-07-20 2024-01-25 日産自動車株式会社 リチウム二次電池の製造方法
WO2024053717A1 (ja) * 2022-09-08 2024-03-14 株式会社小松製作所 リチウムイオンキャパシタの製造方法
WO2024053711A1 (ja) * 2022-09-08 2024-03-14 旭化成株式会社 非水系リチウム蓄電素子
WO2024143118A1 (ja) * 2022-12-26 2024-07-04 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電制御方法、非水電解質二次電池の充電制御システム、およびそれらを用いた電源装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297310A (ja) * 1998-04-14 1999-10-29 Hitachi Maxell Ltd リチウムイオン二次電池およびその初回充電方法
JP2001243957A (ja) 2000-02-29 2001-09-07 Sanyo Electric Co Ltd リチウム二次電池
JP2004022521A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2004022522A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2020009724A (ja) * 2018-07-12 2020-01-16 トヨタ自動車株式会社 二次電池の充電方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500583A (en) * 1993-04-19 1996-03-19 Buckley; James Methods for extending the cycle life of solid, secondary electrolytic cells during recharge of the electrolytic cells
US10468729B2 (en) * 2014-01-10 2019-11-05 Envision Aesc Japan Ltd. Method for producing non-aqueous electrolyte secondary battery
US10122042B2 (en) * 2017-01-12 2018-11-06 StoreDot Ltd. Increasing cycling lifetime of fast-charging lithium ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11297310A (ja) * 1998-04-14 1999-10-29 Hitachi Maxell Ltd リチウムイオン二次電池およびその初回充電方法
JP2001243957A (ja) 2000-02-29 2001-09-07 Sanyo Electric Co Ltd リチウム二次電池
JP2004022521A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2004022522A (ja) * 2002-06-20 2004-01-22 Japan Storage Battery Co Ltd 非水電解質二次電池の製造方法
JP2020009724A (ja) * 2018-07-12 2020-01-16 トヨタ自動車株式会社 二次電池の充電方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018246A1 (ja) * 2022-07-20 2024-01-25 日産自動車株式会社 全固体電池の製造方法
WO2024018247A1 (ja) * 2022-07-20 2024-01-25 日産自動車株式会社 リチウム二次電池の製造方法
WO2024053717A1 (ja) * 2022-09-08 2024-03-14 株式会社小松製作所 リチウムイオンキャパシタの製造方法
WO2024053711A1 (ja) * 2022-09-08 2024-03-14 旭化成株式会社 非水系リチウム蓄電素子
WO2024143118A1 (ja) * 2022-12-26 2024-07-04 パナソニックIpマネジメント株式会社 非水電解質二次電池の充電制御方法、非水電解質二次電池の充電制御システム、およびそれらを用いた電源装置

Also Published As

Publication number Publication date
EP4113665A4 (en) 2023-09-20
US20230361367A1 (en) 2023-11-09
CN115152076A (zh) 2022-10-04
JPWO2021172175A1 (ja) 2021-09-02
EP4113665A1 (en) 2023-01-04

Similar Documents

Publication Publication Date Title
WO2021172175A1 (ja) 非水電解質二次電池の充放電方法および充放電システム
JP2021044254A5 (ja)
US10218000B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery
WO2016054843A1 (zh) 一种锂离子电池非水电解液及锂离子电池
JP7519635B2 (ja) リチウム二次電池
JP7281776B2 (ja) リチウム二次電池
US20240097187A1 (en) Lithium-ion battery
JP7378033B2 (ja) リチウム金属二次電池
CN111095615A (zh) 锂二次电池用负极、其制造方法以及包含其的锂二次电池
WO2003105268A1 (ja) 二次電池用電解液およびそれを用いた二次電池
WO2023070268A1 (zh) 一种电化学装置及包含该电化学装置的用电装置
JPWO2019181278A1 (ja) リチウム二次電池
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP2014067629A (ja) 非水電解質二次電池
WO2021172174A1 (ja) 非水電解質二次電池の充電方法および充電システム
JP6567442B2 (ja) リチウム二次電池の充放電方法
US10714794B2 (en) Lithium ion secondary battery and method of producing the lithium ion secondary battery
WO2022065088A1 (ja) 二次電池の充電方法および充電システム
JP5360860B2 (ja) 非水電解液二次電池
JP4078864B2 (ja) 二次電池用負極および二次電池
US20200381737A1 (en) Secondary battery
JP2021061136A (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法及びリチウムイオン二次電池の容量回復方法
JPH0917446A (ja) 非水電解液二次電池
JP6512110B2 (ja) 非水電解質二次電池
WO2022024568A1 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760826

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022503318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021760826

Country of ref document: EP

Effective date: 20220928