Nothing Special   »   [go: up one dir, main page]

WO2021152737A1 - 波長変換部材、バックライトユニット、及び画像表示装置 - Google Patents

波長変換部材、バックライトユニット、及び画像表示装置 Download PDF

Info

Publication number
WO2021152737A1
WO2021152737A1 PCT/JP2020/003220 JP2020003220W WO2021152737A1 WO 2021152737 A1 WO2021152737 A1 WO 2021152737A1 JP 2020003220 W JP2020003220 W JP 2020003220W WO 2021152737 A1 WO2021152737 A1 WO 2021152737A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
meth
conversion member
acrylate
compound
Prior art date
Application number
PCT/JP2020/003220
Other languages
English (en)
French (fr)
Inventor
雄麻 吉田
智之 中村
真弓 佐藤
太 及川
勝義 坂本
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2020/003220 priority Critical patent/WO2021152737A1/ja
Publication of WO2021152737A1 publication Critical patent/WO2021152737A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present disclosure relates to a wavelength conversion member, a backlight unit, and an image display device.
  • the wavelength conversion member including the phosphor is arranged in, for example, the backlight unit of the image display device.
  • a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor emits light.
  • White light can be obtained from the red light and green light produced and the blue light transmitted through the wavelength conversion member.
  • the wavelength conversion member containing a phosphor usually has a cured product obtained by curing a curable composition containing the phosphor.
  • the curable composition includes a thermosetting type and a photocurable type, and a photocurable type curable composition is preferably used from the viewpoint of productivity.
  • the wavelength conversion member containing a phosphor at least a part of the cured product containing the phosphor may be covered with a coating material.
  • a barrier film having a barrier property against oxygen may be provided on one side or both sides of the cured product containing a phosphor.
  • a film-shaped wavelength conversion member containing a phosphor has been cut into a single-wafer shape and used for transportation or storage.
  • the rolled wavelength conversion member is used by unwinding it in a plane in the subsequent punching process or the like.
  • the rolled wavelength conversion member has a curl during storage, and it is difficult to return it to a flat shape by its own weight.
  • the wavelength conversion member is not sufficiently rewound, the light transmitted through the wavelength conversion member may be blurred when used as a backlight of an image display device.
  • the wavelength conversion member is subjected to a high temperature, the optical characteristics of the quantum dot phosphor deteriorate. It was found by the present inventors that it would end up. Therefore, it is desirable that the wavelength conversion member can be efficiently rewound into a flat surface at a relatively low temperature (for example, 45 ° C. or lower) without subjecting the wavelength conversion member to a high temperature.
  • an object of the present disclosure is to provide a wavelength conversion member that can be easily rewound after rolling, and a backlight unit and an image display device using the wavelength conversion member.
  • Means for solving the above problems include the following aspects.
  • a wavelength conversion layer containing a phosphor is provided, and the coefficient of thermal expansion below the glass transition temperature is 30 ppm / min when measured with a thermomechanical analyzer under the conditions of a load of 0.05 N and a heating rate of 10 ° C./min.
  • the wavelength conversion member includes a coating material arranged on one surface side or both surface sides of the wavelength conversion layer, and has a load of 0.05 N and a heating rate of 10 ° C./min in a thermomechanical analyzer.
  • the wavelength conversion member according to ⁇ 1> wherein the coefficient of thermal expansion of the coating material at a glass transition temperature or higher when measured under conditions is 0 ppm / ° C. or lower.
  • the wavelength conversion member contains a coating material, and is measured by a thermomechanical analyzer under the conditions of a load of 0.05 N and a temperature rise rate of 10 ° C./min from the coefficient of thermal expansion of the wavelength conversion member below the glass transition temperature.
  • the wavelength conversion member according to ⁇ 1> or ⁇ 2> wherein the value obtained by subtracting the coefficient of thermal expansion below the glass transition temperature of the coating material is 10 ppm / ° C. or higher.
  • ⁇ 4> The wavelength according to any one of ⁇ 1> to ⁇ 3>, wherein the storage elastic modulus is 3.7 GPa or less when measured with a dynamic viscoelasticity measuring device under the conditions of a frequency of 10 Hz and a temperature of 30 ° C. Conversion member.
  • ⁇ 5> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 4>, wherein the value measured by the following method is 6.0 mm or more: The wavelength conversion member processed into a rectangle having a width of 20 mm is arranged on the test table so as to project outward by 10 cm in length from the test table, and the height of the tip portion of the wavelength conversion member that hangs down by its own weight. , Measure the distance from the height of the reference plane of the test stand.
  • the wavelength conversion layer contains the phosphor, a thiol compound, at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound, and a photopolymerization initiator.
  • ⁇ 9> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 8>, which is formed in a roll shape.
  • a backlight unit including the wavelength conversion member according to any one of ⁇ 1> to ⁇ 8> and a light source.
  • An image display device including the backlight unit according to ⁇ 9>.
  • a wavelength conversion member that can be easily rewound after rolling, and a backlight unit and an image display device using the wavelength conversion member are provided.
  • each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “membrane” is used only in a part of the region in addition to the case where the layer or the membrane is formed in the entire region when the region in which the layer or the membrane is present is observed. The case where it is formed is also included.
  • laminated refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) allyl means at least one of allyl and methallyl
  • (meth) acrylic means acrylic and methacrylic.
  • (meth) acryloyl means at least one of acryloyl and methacryloyl.
  • the wavelength conversion member of the present disclosure has a wavelength conversion layer containing a phosphor, and is equal to or lower than the glass transition temperature when measured by a thermomechanical analysis (TMA) apparatus under the conditions of a load of 0.05 N and a heating rate of 10 ° C./min.
  • TMA thermomechanical analysis
  • coefficient of thermal expansion when the member is measured under the above conditions is also simply referred to as "coefficient of thermal expansion".
  • the coefficient of thermal expansion of the member below the glass transition temperature shall be measured in an arbitrary temperature range of 20 ° C. in the range from the glass transition temperature of -100 ° C. to the glass transition temperature.
  • the coefficient of thermal expansion of the member above the glass transition temperature shall be measured in an arbitrary temperature range of 20 ° C. in the range from the glass transition temperature to the glass transition temperature + 100 ° C.
  • the coefficient of thermal expansion of the member can be measured by, for example, the method described in Examples.
  • the wavelength conversion member of the present disclosure According to the wavelength conversion member of the present disclosure, rewinding after rolling can be performed efficiently. Although the exact reason is not clear, a correlation was found between the above coefficient of thermal expansion and the ease of curl return after rolling. From this, it is suggested that the behavior of thermal expansion of the wavelength conversion member affects the easiness of curling or the easiness of returning. A large coefficient of thermal expansion below the glass transition temperature or a coefficient of thermal expansion above the glass transition temperature of 0 ppm / ° C. indicates that the free volume in the resin material is large, and winding after rolling. It is presumed that it is easy to return to the original shape when returning.
  • the coefficient of thermal expansion of the wavelength conversion member below the glass transition temperature is 30 ppm / ° C. or higher
  • the coefficient of thermal expansion may be 32 ppm / ° C. or higher, or 35 ppm / ° C. or higher.
  • the coefficient of thermal expansion of the wavelength conversion member below the glass transition temperature may be 60 ppm / ° C. or lower, 50 ppm / ° C. or lower, or 45 ppm / ° C. or lower. good.
  • the coefficient of thermal expansion of the wavelength conversion member above the glass transition temperature When the coefficient of thermal expansion of the wavelength conversion member above the glass transition temperature is 0 ppm / ° C or less, the coefficient of thermal expansion may be -10 ppm / ° C or less, -20 ppm / ° C or less, or-. It may be 30 ppm / ° C. or less. From the viewpoint of shape stability, the coefficient of thermal expansion of the wavelength conversion member above the glass transition temperature may be -60 ppm / ° C or higher, -50 ppm / ° C or higher, or ⁇ 45 ppm / ° C or higher. It may be.
  • the coefficient of thermal expansion of the coating material above the glass transition temperature is preferably 0 ppm / ° C. or less. It was found that when the coefficient of thermal expansion of the coating material was in the above range, the amount of curl when rewound after rolling tended to be smaller. The reason for this is not clear, but it is presumed that the softening of the coating material makes it easier to follow the wavelength conversion layer and suppresses the amount of curl.
  • the coefficient of thermal expansion of the coating material above the glass transition temperature may be -10 ppm / ° C or lower, -20 ppm / ° C or lower, -50 ppm / ° C or lower, or ⁇ 70 ppm / ° C. It may be as follows. From the viewpoint of shape stability, the coefficient of thermal expansion of the coating material above the glass transition temperature may be ⁇ 100 ppm / ° C. or higher.
  • the value obtained by subtracting the coefficient of thermal expansion of the coating material below the glass transition temperature from the coefficient of thermal expansion below the glass transition temperature of the coating material (also the difference in the coefficient of thermal expansion). It was found that when the value was 10 ppm / ° C. or higher, the amount of curl when rewound after rolling tended to be smaller. The reason for this is not clear, but the large difference in thermal expansion indicates that the coating material follows the wavelength conversion layer, and that the amount of curl is suppressed by the coating material following the wavelength conversion layer. Guessed.
  • the difference in the coefficient of thermal expansion may be 12 ppm / ° C. or higher, or 14 ppm / ° C. or higher. From the viewpoint of shape stability, the difference in the coefficient of thermal expansion may be 120 ppm / ° C. or less, or 110 ppm / ° C. or less.
  • Examples of the method of adjusting the coefficient of thermal expansion include a method of adjusting the material, thickness, elastic modulus, laminated structure, etc. of the wavelength conversion layer and the coating material to be used later as needed.
  • the rolled wavelength conversion member is rewound by, for example, the following method. After the rolled wavelength conversion member is unwound and punched, a plurality of sheet-fed wavelength conversion members are sandwiched between glass plates and the like, and the wavelength conversion member is allowed to stand in a constant temperature bath at a temperature of 60 ° C. or lower for a predetermined time. do.
  • the curl amount is within 8.0 mm. It is preferably within 5.0 mm, more preferably within 3.0 mm.
  • the curl amount (warp amount) is the maximum value measured at 6 points at arbitrary ends of the punched wavelength conversion member.
  • the wavelength conversion member may be formed in a roll shape.
  • the wavelength conversion member of the present disclosure is suitable for rolling. By rolling the wavelength conversion member, it is possible to improve the transportation efficiency and the storage efficiency. Further, it is considered that the end portion of the wavelength conversion member can be reduced as compared with the case where the wavelength conversion member is processed into a single-wafer shape and transported or stored, so that deterioration of the end portion can be suppressed.
  • the shape of the wavelength conversion member is preferably film-like. Since the wavelength conversion member is in the form of a film, it can be suitably used for a backlight unit and can be suitably rolled.
  • the width and length of the wavelength conversion member are not particularly limited, and can be appropriately set according to, for example, the size of the image display device to be applied.
  • the width of the wavelength conversion member can be appropriately adjusted according to the application, and may be, for example, 10 mm to 5000 mm.
  • the length of the wavelength conversion member can be appropriately adjusted according to the application, and may be, for example, 0.5 m to 1000 m.
  • the length of the wavelength conversion member means the length in the winding direction, and the length orthogonal to this is the width of the wavelength conversion member.
  • the width of the wavelength conversion member can be appropriately adjusted according to the application, for example, even if it is 10 mm to 5000 mm. good.
  • the length of the wavelength conversion member can be appropriately adjusted according to the application, for example, 10 mm to 5000 mm. May be good.
  • the length of the wavelength conversion member means the length in the longitudinal direction
  • the width of the wavelength conversion member means the length in the lateral direction.
  • the length of one side of the square is included in either the width or the length of the wavelength conversion member.
  • the average thickness of the wavelength conversion member is, for example, preferably 100 ⁇ m to 500 ⁇ m, more preferably 120 ⁇ m to 400 ⁇ m, and even more preferably 150 ⁇ m to 300 ⁇ m.
  • the average thickness of the wavelength conversion member is 100 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness is 500 ⁇ m or less, when the wavelength conversion member is applied to the backlight unit, the backlight unit is used. There is a tendency to make it thinner.
  • the average thickness of the wavelength conversion member is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • One or both surfaces of the wavelength conversion member may be roughened.
  • the surface roughness Ra may be, for example, 0.5 ⁇ m or more.
  • Surface roughness Ra refers to a value measured using a 3D microscope (for example, Olympus Corporation, model OLS4100, magnification 10 times).
  • the measurement range is a line roughness with a length of 1289 ⁇ m.
  • the analysis parameter is the roughness parameter
  • the cutoff is ⁇ C; none, ⁇ S; none, ⁇ f; none.
  • ⁇ C, ⁇ S, and ⁇ f are methods for calculating the contour curve for calculating Ra.
  • the contour curve includes a cross-section curve, a roughness curve, and a waviness curve.
  • the cross-sectional curve is a curve obtained by applying a low-frequency filter having a cutoff value of ⁇ S to the measured cross-sectional curve.
  • the roughness curve is a contour curve obtained by blocking long wavelength components from the cross-sectional curve by a high-frequency filter having a cutoff value of ⁇ C.
  • the waviness curve is a contour curve obtained by sequentially applying contour curve filters having cutoff values ⁇ f and ⁇ C to the cross-sectional curve.
  • the ⁇ f contour curve filter blocks the long wavelength component
  • the ⁇ C contour curve filter blocks the short wavelength component.
  • the wavelength conversion member preferably has a total light transmittance of 55% or more, more preferably 60% or more, and further preferably 65% or more.
  • the total light transmittance of the wavelength conversion member can be measured according to the measurement method of JIS K 7361-1: 1997.
  • the wavelength conversion member preferably has a haze of 10% to 60%, more preferably 10% to 55%, and 10% to 50% from the viewpoint of further improving the light utilization efficiency. Is even more preferable.
  • the haze of the wavelength conversion member can be measured according to the measurement method of JIS K 7136: 2000.
  • the storage elastic modulus of the wavelength conversion member measured under the conditions of a frequency of 10 Hz and a temperature of 30 ° C. is preferably 4.1 GPa or less, and is preferably 3.9 GPa or less. More preferably, it is more preferably 3.7 GPa or less, particularly preferably 3.6 GPa or less, extremely preferably 3.0 GPa or less, and even more preferably 2.5 GPa or less. From the viewpoint of handleability, the storage elastic modulus is preferably 1.0 GPa or more, more preferably 1.5 GPa or more, and further preferably 1.8 GPa or more.
  • the storage elastic modulus of the wavelength conversion member can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the method of adjusting the storage elastic modulus of the wavelength conversion member is not particularly limited, and examples thereof include a method of adjusting the material, thickness, laminated structure, etc. of the wavelength conversion layer and the coating material to be used later as needed.
  • a value measured by the following method (hereinafter, may be referred to as a specific value) may be adjusted.
  • the wavelength conversion member processed into a rectangle having a width of 20 mm is arranged on a test table having a height of 10 cm or more so as to project outward by 10 cm in length from the test table, and the wavelength conversion member hangs down by its own weight. Measure the distance between the height of the tip of the test table and the height of the reference surface of the test table.
  • the height of the reference plane means the height on the test table on which the remaining portion of the processed wavelength conversion member other than the protruding portion is arranged.
  • the test table is not particularly limited in shape and size as long as it can fix the remaining portion of the wavelength conversion member processed into a rectangle having a width of 20 mm other than the portion protruding from the test table.
  • the specific value of the wavelength conversion member measured by the above method is preferably 6.0 mm or more, more preferably 8.0 mm or more, and 10 It is more preferably 0.0 mm or more.
  • the specific value of the wavelength conversion member measured by the above method is preferably 35.0 mm or less, more preferably 25.0 mm or less, and further preferably 15.0 mm or less. preferable.
  • the method of adjusting the specific value of the wavelength conversion member measured by the above method is not particularly limited, and for example, the material, thickness, elastic modulus, laminated structure, etc. of the wavelength conversion layer and the coating material to be used later, which will be used as necessary, are not particularly limited. There is a method of adjustment. For example, by reducing the thickness of the wavelength conversion member, the specific value measured by the above method tends to increase. Further, when a covering material is used, the specific value measured by the above method tends to increase by reducing the thickness of the covering material. Even if the covering material has a multi-layer structure and the base material layer includes an adhesive layer, the specific value measured by the above method tends to increase.
  • the wavelength conversion member may have a covering material arranged on one surface side or both surface sides of the wavelength conversion layer.
  • the average thickness of the covering material is preferably 8 ⁇ m or more, and may be 15 ⁇ m or more, or 20 ⁇ m or more. When the average thickness of the covering material is 8 ⁇ m or more, the handleability of the wavelength conversion member is improved, and the functions such as barrier property tend to be sufficient.
  • the average thickness of the coating material is preferably 150 ⁇ m or less, more preferably 100 ⁇ m or less, and even more preferably 80 ⁇ m or less. When the average thickness of the covering material is 150 ⁇ m or less, the decrease in light transmittance tends to be suppressed. In addition, it tends to be easy to rewind after rolling.
  • the average thickness of the coating material is preferably 8 ⁇ m to 150 ⁇ m, more preferably 15 ⁇ m to 100 ⁇ m, and even more preferably 20 ⁇ m to 80 ⁇ m.
  • the average thickness of the covering material is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • the covering material may be roughened.
  • the surface roughness Ra may be 0.5 ⁇ m or more.
  • the material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide such as nylon, and ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
  • the covering material may be one provided with a barrier layer for enhancing the barrier function (barrier film). Examples of the barrier layer include an inorganic layer containing an inorganic substance such as alumina and silica.
  • the coating material preferably has a barrier property against at least one of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the phosphor.
  • the coating material having a barrier property against at least one of oxygen and water is not particularly limited, and a barrier film having an inorganic layer or the like can be used.
  • Oxygen permeability of the dressing is preferably 0.5mL / (m 2 ⁇ 24h ⁇ atm) or less, more preferably 0.3mL / (m 2 ⁇ 24h ⁇ atm) or less, 0 and more preferably .1mL / (m 2 ⁇ 24h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 65%.
  • the water vapor permeability of the dressing for example, 5 ⁇ 10 -2 g / is preferably (m 2 ⁇ 24h ⁇ Pa) or less, 1 ⁇ 10 -2 g / ( m 2 ⁇ 24h ⁇ Pa) or less more preferably, even more preferably 5 ⁇ 10 -3 g / (m 2 ⁇ 24h ⁇ Pa) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 90%.
  • the covering material may be one in which a plurality of layers are laminated.
  • the covering material may be a laminated material such as a base material layer, a barrier layer, and a primer layer.
  • the wavelength conversion member of the present disclosure includes a wavelength conversion layer.
  • the wavelength conversion layer contains a phosphor.
  • the wavelength conversion layer may further contain a cured resin product, or may have a phosphor contained in the cured resin product. Further, the wavelength conversion layer may further contain a light diffusing material.
  • the wavelength conversion layer contains a phosphor that emits light when irradiated with light from a light source.
  • the type of the phosphor is not particularly limited, and examples thereof include an organic phosphor and an inorganic phosphor.
  • the organic phosphor include a naphthalimide compound and a perylene compound.
  • the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y ⁇ Cd) BO 2 : Eu, etc.
  • Red light emitting inorganic phosphor ZnS: Cu ⁇ Al, (Zn ⁇ Cd) S: Cu ⁇ Al, ZnS: Cu ⁇ Au ⁇ Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag ⁇ Cu, ( Zn ⁇ Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce ⁇ Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu ⁇ Co, MgO ⁇ nB 2 O 3 : Green luminescent inorganic phosphors such as Ge ⁇ Tb, LaOBr: Tb ⁇ Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag ⁇ Ga ⁇ Cl , Ca 2 B 4
  • a quantum dot phosphor is preferable from the viewpoint of excellent color reproducibility of the image display device.
  • the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound.
  • the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS.
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, GaNAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb.
  • IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSe .
  • Specific examples of the Group IV compound include Si, Ge, SiC, SiGe and the like.
  • the quantum dot phosphor may have a core-shell structure.
  • core / shell By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
  • the wavelength conversion layer may contain one kind of quantum dot phosphor alone, or may contain two or more kinds of quantum dot phosphors in combination. May be good.
  • Examples of a mode in which two or more types of quantum dot phosphors are contained in combination include a mode in which two or more types of quantum dot phosphors having different components but the same average particle size are contained, and a mode in which the components are the same although the average particle size is different. Examples thereof include an embodiment containing two or more types of quantum dot phosphors, and an embodiment containing two or more types of quantum dot phosphors having different components and average particle diameters.
  • the emission center wavelength of the quantum dot phosphor can be changed by changing at least one of the components of the quantum dot phosphor and the average particle size.
  • the wavelength conversion layer contains a quantum dot phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a quantum dot phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. You may be doing it.
  • the wavelength conversion layer containing the quantum dot phosphor G and the quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, the quantum dot phosphor G and the quantum dot phosphor R are green, respectively. Light and red light are emitted. As a result, white light can be obtained by the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
  • the content of the phosphor in the wavelength conversion layer is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass, based on the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable.
  • 0.01% by mass or more with respect to the entire wavelength conversion layer a sufficient wavelength conversion function tends to be obtained, and when the content of the phosphor is 1.0% by mass or less. , The aggregation of the phosphor tends to be suppressed.
  • the wavelength conversion layer may further contain a cured resin product.
  • the wavelength conversion layer may be a layer in which the above-mentioned phosphor is contained in the cured resin product.
  • the cured resin product preferably contains a sulfide structure from the viewpoint of adhesion to other members (coating material, etc.) of the cured resin product and suppression of wrinkles due to volume shrinkage during curing.
  • the cured resin composition containing a sulfide structure is obtained by curing a resin composition containing, for example, a thiol compound described later and a polymerizable compound having a carbon-carbon double bond that causes an enthiol reaction with a thiol group of the thiol compound. Obtainable.
  • the cured resin product preferably contains an alicyclic structure or an aromatic ring structure.
  • the cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymer compound having an alicyclic structure or an aromatic ring structure, which will be described later.
  • the cured resin product preferably contains an alkyleneoxy group.
  • the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product.
  • the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
  • the cured resin product containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
  • the wavelength conversion layer may be a cured product of a composition containing a phosphor, a polymerizable compound, and a photopolymerization initiator (hereinafter, also simply referred to as a resin composition).
  • the resin composition preferably contains a phosphor, a thiol compound, at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound, and a photopolymerization initiator.
  • the resin composition may optionally contain other components. Hereinafter, each component of the resin composition will be described in detail.
  • the resin composition contains a phosphor.
  • the details of the phosphor are as described above.
  • the quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium for dispersing the quantum dot phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds.
  • the quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid by using a dispersant, if necessary.
  • the organic solvent that can be used as the dispersion medium is not particularly limited unless precipitation and aggregation of the quantum dot phosphor are confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, etc. Examples thereof include toluene and hexane.
  • Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
  • the monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25 ° C.), and is a monofunctional (meth) acrylate compound having an alicyclic structure (preferably). Isobornyl (meth) acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate and the like can be mentioned.
  • dispersant used as needed examples include polyetheramine (JEFFAMINE M-1000, HUNTSMAN) and the like.
  • the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
  • the content of the quantum dot phosphor dispersion liquid in the resin composition is the total amount of the resin composition when the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is 1% by mass to 20% by mass. On the other hand, for example, it is preferably 1% by mass to 10% by mass.
  • the content of the quantum dot phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, preferably 0.05% by mass or more, based on the total amount of the resin composition. It is more preferably 0.5% by mass, and even more preferably 0.1% by mass to 0.5% by mass.
  • the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and the content of the quantum dot phosphor is 1.0. When it is mass% or less, the aggregation of the quantum dot phosphor tends to be suppressed.
  • the resin composition contains a polymerizable compound.
  • the polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound.
  • the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
  • the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
  • Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
  • the resin composition is selected from the group consisting of a thiol compound, a (meth) acrylic compound and a (meth) allyl compound as a polymerizable compound at least. It is preferable to include one kind.
  • a cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an enthiol reaction with a carbon-carbon double bond of a (meth) acryloyl group or a (meth) allyl group. include.
  • RSR', R and R' represents an organic group formed by an enthiol reaction with a carbon-carbon double bond of a (meth) acryloyl group or a (meth) allyl group.
  • the thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule.
  • the thiol compound contained in the resin composition may be only one kind or two or more kinds.
  • the thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
  • a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound”.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, methoxybutyl mercaptopropionate, and the like.
  • Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-.
  • the thiol compound preferably contains a polyfunctional thiol compound.
  • the ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound.
  • the thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
  • the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 18% by mass to 60% by mass.
  • the content of the thiol compound is 5% by mass or more, the adhesion of the wavelength conversion layer to the coating material tends to be further improved, and when the content of the thiol compound is 80% by mass or less, the wavelength conversion layer of the wavelength conversion layer tends to have better adhesion. Heat resistance and moisture heat resistance tend to be further improved.
  • the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group.
  • the (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
  • the monofunctional (meth) acrylic compound examples include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth).
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate
  • Acrylate Polyalkylene glycol monoaryl ether (meth) acrylate such as hexaethylene glycol monophenyl ether (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, methylene oxide-added cyclo (Meta) acrylate compound having an alicyclic structure such as decatorien (meth) acrylate; (meth) acrylate compound having a heterocycle such as (meth) acryloylmorpholine and tetrahydrofurfuryl (meth) acrylate; heptadecafluorodecyl (meth) ) Alkyl fluoride (meth) acrylates such as acrylates; 2-hydroxyethyl (meth) acrylates, 3-hydroxypropyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, trietylene N
  • N-Isopropyl (meth) acrylamide N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds. ..
  • polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • Polyalkylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
  • Tetra (meth) acrylate compounds tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
  • the (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product.
  • the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
  • the (meth) acrylic compound may have an alkyleneoxy group or may be a bifunctional (meth) acrylic compound having an alkyleneoxy group.
  • alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
  • the (meth) acrylic compound may have one type or two or more types of alkyleneoxy groups.
  • the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20. It is more preferably 10 pieces, and particularly preferably 3 to 5 pieces.
  • the (meth) acrylic compound When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance of the cured product tends to be superior.
  • the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
  • (meth) acrylic compound having an alkyleneoxy group examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylates; diethylene glycol monoethyl ether (meth) acrylates, triethylene glycol monobutyl ether (meth) acrylates, and the like.
  • Examples thereof include bisphenol-type di (meth) acrylate compounds such as ethoxylated bisphenol A-type di (meth) acrylate, propoxylated bisphenol A-type di (meth) acrylate, and propoxylated ethoxylated bisphenol A-type di (meth) acrylate.
  • bisphenol-type di (meth) acrylate compounds such as ethoxylated bisphenol A-type di (meth) acrylate, propoxylated bisphenol A-type di (meth) acrylate, and propoxylated ethoxylated bisphenol A-type di (meth) acrylate.
  • the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
  • the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group.
  • the (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
  • the (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
  • a (meth) allyl compound (excluding a thiol compound) having a polymerizable group other than the (meth) allyl group in the molecule shall be classified as a "(meth) allyl compound".
  • the monofunctional (meth) allyl compound examples include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
  • polyfunctional (meth) allyl compound examples include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth).
  • Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product.
  • At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
  • the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
  • the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
  • the polymerizable compound contains a thioether oligomer and a (meth) allyl compound as a thiol compound and a quantum dot phosphor is used as a phosphor
  • the quantum dot phosphor is in a state of a dispersion liquid dispersed in a silicone compound as a dispersion medium. Is preferable.
  • the polymerizable compound comprises a thiol compound that is not in the form of a thioether oligomer and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). It may include.
  • the quantum dot phosphor is a (meth) acrylic as a dispersion medium. It is preferably in the form of a compound, preferably a monofunctional (meth) acrylic compound, more preferably a dispersion dispersed in isobornyl (meth) acrylate.
  • the type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
  • the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (Methylthio) Phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) (2-Hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy
  • At least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence of the composition on the hue and the decrease in storage stability tend to be suppressed.
  • the resin composition may further contain a light diffusing material.
  • the light diffusing material include titanium oxide, barium sulfate, zinc oxide, calcium carbonate and the like.
  • the light diffusing material is preferably titanium oxide from the viewpoint of light scattering efficiency.
  • the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the average particle size of the light diffusing material is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, and even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the light diffusing material can be measured as follows.
  • the extracted light diffusing material is dispersed in purified water containing a surfactant to obtain a dispersion liquid.
  • the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device for example, Shimadzu Corporation, SALD-3000J
  • the value when the integration from the small diameter side is 50% (for example).
  • the median diameter (D50)) is defined as the average particle size of the light diffusing material.
  • the resin composition can be obtained by diluting the resin composition with a liquid medium, precipitating the light diffusing material by centrifugation or the like, and distributing the light diffusing material.
  • the average particle size of the light diffusing material in the cured product obtained by curing the resin composition containing the light diffusing material is the equivalent circle diameter (major axis) of 50 particles by observing the particles using a scanning electron microscope.
  • the geometric mean of the minor axis) can be calculated and calculated as the arithmetic mean value.
  • the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof.
  • the organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
  • organosiloxane examples include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like.
  • organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
  • organic phosphoric acid compound examples include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
  • organic phosphinate examples include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
  • organic sulfonic acid compound examples include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
  • carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
  • carboxylic acid ester examples include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo.
  • Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
  • polyolefin and its copolymer examples include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
  • polyol examples include glycerol, trimethylolethane, trimethylolpropane and the like.
  • alkanolamine examples include diethanolamine and triethanolamine.
  • organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bipolar and nonionic.
  • the light diffusing material may have a metal oxide layer containing a metal oxide on at least a part of the surface thereof.
  • the metal oxide contained in the metal oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria.
  • the metal oxide layer may be one layer or two or more layers.
  • the light diffusing material has two metal oxide layers, it preferably contains a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide.
  • the light diffusing material has a metal oxide layer, the dispersibility of the light diffusing material in the cured product tends to be improved.
  • the metal oxide layer and the organic material layer are provided on the surface of the light diffusing material in the order of the metal oxide layer and the organic material layer.
  • the light diffusing material has an organic material layer and two metal oxide layers, a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide are formed on the surface of the light diffusing material. It is preferable that the organic material layer is provided in the order of the first metal oxide layer, the second metal oxide layer, and the organic material layer (the organic material layer is the outermost layer).
  • the content of the light diffusing material in the wavelength conversion layer formed by curing the light diffusing material is, for example, 0.1% by mass to 1% by mass with respect to the total amount of the wavelength conversion layer. It is preferably 0.0% by mass, more preferably 0.2% by mass to 1.0% by mass, and even more preferably 0.3% by mass to 1.0% by mass.
  • the resin composition may further contain a liquid medium.
  • the liquid medium means a medium in a liquid state at room temperature (25 ° C.).
  • liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, and the like.
  • Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether
  • Solvents methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , Se-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol,
  • Diethylene glycol mono-n-hexyl ether Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc.
  • Glycol monoether solvent such as terpinene, terpineol, milsen, aloosimene, limonene, dipentene, pinene, carboxylic, ossimen, ferlandrene; straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, heterologous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acids Modified silicone oils such as modified silicone oils, fluorine-modified silicone oils; butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid, nona
  • the content of the liquid medium in the resin composition is preferably, for example, 1% by mass to 10% by mass, and 4% by mass, based on the total amount of the resin composition. It is more preferably about 10% by mass, and even more preferably 4% by mass to 7% by mass.
  • the resin composition may further contain components other than the above-mentioned components.
  • the resin composition may further contain components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, an antioxidant, and a carboxylic acid such as acetic acid.
  • a polymerization inhibitor such as a silane coupling agent, a surfactant, an adhesion imparting agent, an antioxidant, and a carboxylic acid such as acetic acid.
  • the resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
  • the wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions.
  • the wavelength conversion layer has different light emitting characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor.
  • a resin composition containing a second phosphor may be laminated with a second cured product layer obtained by curing the resin composition.
  • the average thickness of the wavelength conversion layer is not particularly limited, and is preferably, for example, 50 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m, and even more preferably 70 ⁇ m to 120 ⁇ m.
  • the average thickness of the wavelength conversion layer is 50 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness of the wavelength conversion layer is 200 ⁇ m or less, when the wavelength conversion member is applied to the backlight unit described later. In addition, there is a tendency that the backlight unit can be made thinner.
  • the average thickness of the wavelength conversion layer is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • the wavelength conversion layer preferably has a loss tangent (tan ⁇ ) of 0.4 to 1.5 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6.
  • the loss tangent (tan ⁇ ) of the wavelength conversion layer can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer preferably has a glass transition temperature (Tg) of 85 ° C. or higher, more preferably 85 ° C. to 160 ° C., and 90 ° C., from the viewpoint of further improving adhesion, heat resistance, and moist heat resistance. It is more preferably ° C. to 120 ° C.
  • the glass transition temperature (Tg) of the wavelength conversion layer can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer has a storage elastic modulus of 1 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving adhesion, heat resistance, and moisture heat resistance. It is preferably 5 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa, more preferably 5 ⁇ 10 7 Pa to 5 ⁇ 10 9 Pa.
  • the storage elastic modulus of the cured resin product can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays.
  • the wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • FIG. 1 shows an example of the schematic configuration of the wavelength conversion member.
  • the wavelength conversion member of the present disclosure is not limited to the configuration shown in FIG.
  • the wavelength conversion member 10 shown in FIG. 1 has a wavelength conversion layer 11 which is a film-like cured product, and film-like coating materials 12A and 12B provided on both sides of the wavelength conversion layer 11.
  • the types and average thicknesses of the covering material 12A and the covering material 12B may be the same or different.
  • the covering materials 12A and 12B may be roughened.
  • the wavelength conversion member having the configuration shown in FIG. 1 can be manufactured by, for example, the following manufacturing method.
  • a resin composition for forming a wavelength conversion layer is applied to the surface of a film-like coating material (hereinafter, also referred to as "first coating material") that is continuously conveyed to form a coating film.
  • first coating material a film-like coating material
  • the method for applying the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
  • a film-like coating material (hereinafter, also referred to as “second coating material”) that is continuously conveyed is attached onto the coating film of the resin composition.
  • the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the first coating material and the second coating material that can transmit the active energy rays. Then, by cutting out to a specified size, a wavelength conversion member having the configuration shown in FIG. 1 can be obtained.
  • the coating film is irradiated with the active energy rays before the second coating material is bonded to form a cured product layer. May be formed, and then a second covering material may be attached.
  • the backlight unit of the present disclosure includes a light source and a wavelength conversion member of the present disclosure.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • the light unit can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion member preferably includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light.
  • white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with a quantum dot phosphor R and a quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present disclosure may be an edge light type or a direct type.
  • Fig. 2 shows an example of the schematic configuration of the edge light type backlight unit.
  • the backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face
  • the wavelength conversion member 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion member 10, and a reflection plate 24 arranged to face the wavelength conversion member 10 via the light guide plate 22. ..
  • Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B is emitted.
  • the red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, an OCB (Optical Birefringence) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Birefringence
  • Examples of the (meth) acrylic compound include tricyclodecanedimethanol diacrylate (Shin-Nakamura Chemical Industry Co., Ltd., A-DCP) and ethoxylated bisphenol A diacrylate (Shin-Nakamura Chemical Industry Co., Ltd., ABE-300; alkyleneoxy). A group-containing compound) was used.
  • thiol compound pentaerythritol tetrakis (3-mercaptopropionate) (SC Organic Chemistry Co., Ltd., PEMP) was used.
  • UV-polymerization initiator 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (BASF, IRGACURE TPO) was used.
  • a CdSe / ZnS (core / shell) dispersion liquid (Nanosys, Gen3.5 QD Concentrate) was used.
  • Isobornyl acrylate (IBOA) was used as the dispersion medium for the CdSe / ZnS (core / shell) dispersion.
  • the CdSe / ZnS (core / shell) dispersion contains 86% by mass or more of isobornyl acrylate.
  • Acetic acid was used as the carboxylic acid.
  • Titanium oxide (The Chemours Company, Typure R-706, particle size 0.36 ⁇ m) was used as the light diffusing material.
  • a first metal oxide layer containing silicon oxide, a second metal oxide layer containing aluminum oxide, and an organic substance layer containing a polyol compound are formed as a first metal oxide layer and a second metal oxide layer. And the organic layer are provided in this order.
  • Barrier film 1 Barrier film with an average thickness of 75 ⁇ m (a PET film with a barrier component deposited on one side)
  • Barrier film 2 Barrier film with an average thickness of 25 ⁇ m (a PET film sputtered with a barrier component on one side)
  • Barrier film 3 Barrier film with an average thickness of 103 ⁇ m (a PET film coated on one side with a barrier component)
  • an ultraviolet irradiation device Igraphics Co., Ltd.
  • thermomechanical analysis was performed by a tensile method using a thermomechanical analysis (TMA) device (manufactured by TA Instruments, trade name: Q400). The thermomechanical analysis is performed twice in succession under the conditions of a load of 0.05 N and a heating rate of 10 ° C./min after mounting the cured product for evaluation in the device in the MD direction, and the thermomechanical analysis is performed from 30 ° C. to 50 in the second analysis. The average coefficient of thermal expansion from ° C. and 120 ° C. to 140 ° C. was calculated and used as the value of the coefficient of thermal expansion. The coefficient of thermal expansion of the barrier film was similarly measured using a thermomechanical analysis (TMA) device.
  • TMA thermomechanical analysis
  • Each wavelength conversion member obtained above was cut into dimensions having a width of 20 mm and a length of 20 cm to obtain a wavelength conversion member for evaluation.
  • One end of the processed wavelength conversion member is fixed to a table having a height of 10 cm or more so as to protrude 10 cm from the table, and the tip of the protruding wavelength conversion member is several mm below the horizontal plane of the table.
  • the measured specific values are shown in Table 2.
  • Each wavelength conversion member obtained above was wound around a winding core having a diameter of 6 inches, allowed to stand at 25 ° C. for 1000 hours, punched into a rectangle of 1470 mm ⁇ 850 mm, and 50 sheets were stacked and sandwiched between glass plates.
  • a wavelength conversion member for evaluation was obtained by allowing to stand at 45 ° C. for 24 hours, 60 ° C. for 4 hours, 60 ° C. for 10 hours, or 85 ° C. for 4 hours.
  • the curl amount (warp amount) is the maximum value measured at 6 points at the ends of the punched wavelength conversion member. The results are shown in Table 2.
  • Each wavelength conversion member obtained above is wound around a winding core having a diameter of 6 inches, allowed to stand at 25 ° C. for 1000 hours, punched into a rectangle of 1470 mm ⁇ 850 mm, and a spectroradiometer (PHOTO RESEARCH, PR-655). ) was used to measure the brightness. After measuring the brightness, 50 punched wavelength conversion members were stacked and sandwiched between glass plates, and allowed to stand at 45 ° C. for 24 hours, 60 ° C. for 4 hours, 60 ° C. for 10 hours, or 85 ° C. for 4 hours.
  • the curl amount was suppressed under any of the conditions of 45 ° C. for 24 hours, 60 ° C. for 4 hours, and 60 ° C. for 10 hours, and the change in optical characteristics was also suppressed. It had been. Under the condition of 85 ° C. for 4 hours, the amount of curl was small in Examples and Comparative Examples, but a change in optical characteristics was observed.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Abstract

波長変換部材は、蛍光体を含む波長変換層を有し、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときのガラス転移温度以下での熱膨張係数が30ppm/℃以上であるか、ガラス転移温度以上での熱膨張係数が0ppm/℃以下であるか、又はこれらの両方を満たす。

Description

波長変換部材、バックライトユニット、及び画像表示装置
 本開示は、波長変換部材、バックライトユニット、及び画像表示装置に関する。
 近年、液晶表示装置等の画像表示装置の分野において、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、特表2013-544018号公報及び国際公開第2016/052625号に記載のように、量子ドット蛍光体を含む波長変換部材が注目を集めている。
 蛍光体を含む波長変換部材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。量子ドット蛍光体を含む波長変換部材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。
 蛍光体を含む波長変換部材は、通常、蛍光体を含む硬化性組成物を硬化させた硬化物を有する。硬化性組成物としては熱硬化型及び光硬化型があり、生産性の観点からは光硬化型の硬化性組成物が好ましく用いられる。
 また、蛍光体を含む波長変換部材では、蛍光体を含む硬化物の少なくとも一部が被覆材によって被覆される場合がある。例えば、フィルム状の波長変換部材の場合、蛍光体を含む硬化物の片面又は両面に、酸素に対するバリア性を有するバリアフィルムが設けられることがある。
 従来、蛍光体を含むフィルム状の波長変換部材は、裁断して枚葉状に形成し、輸送又は保管に供されていた。一方、輸送又は保管の効率を向上する観点からは、波長変換部材をロール状に巻いた状態とする、すなわちロール化することが望ましい。
 ロール化された波長変換部材は、その後の打ち抜き加工等において平面状に巻き出して使用される。しかしながら、ロール化された波長変換部材は、保管中に巻き癖がついてしまい、自重で平面状に戻すことが困難である。また、波長変換部材の巻き戻しが不十分であると、画像表示装置のバックライトに使用したときに、波長変換部材を透過した光がぼやける等の影響がでる可能性がある。ここで、波長変換部材を例えば85℃程度の高温下に静置することで平面状に戻すことは可能であるが、波長変換部材を高温に供すると、量子ドット蛍光体の光学特性が劣化してしまうことが本発明者らによって見出された。そのため、波長変換部材を高温に供しなくとも、比較的低温(例えば45℃以下)で、効率的に平面状に巻き戻し可能であることが望ましい。
 上記事情に鑑み、本開示は、ロール化後の巻き戻しが容易である波長変換部材、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置を提供することを目的とする。
 上記課題を解決するための手段は、以下の態様を含む。
<1> 蛍光体を含む波長変換層を有し、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときのガラス転移温度以下での熱膨張係数が30ppm/℃以上であるか、ガラス転移温度以上での熱膨張係数が0ppm/℃以下であるか、又はこれらの両方を満たす、波長変換部材。
<2> 前記波長変換部材が、前記波長変換層の一方の面側又は両方の面側に配置される被覆材を含み、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときの前記被覆材のガラス転移温度以上での熱膨張係数が0ppm/℃以下である<1>に記載の波長変換部材。
<3> 前記波長変換部材が被覆材を含み、前記波長変換部材のガラス転移温度以下での熱膨張係数から、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときの前記被覆材のガラス転移温度以下での熱膨張係数を引いた値が10ppm/℃以上である、<1>又は<2>に記載の波長変換部材。
<4> 動的粘弾性測定装置で周波数10Hzかつ温度30℃の条件で測定したときの貯蔵弾性率が3.7GPa以下である、<1>~<3>のいずれか1項に記載の波長変換部材。
<5> 以下の方法により測定される値が6.0mm以上である、<1>~<4>のいずれか1項に記載の波長変換部材:
 試験台上に、幅20mmの矩形に加工された前記波長変換部材を、前記試験台から外側に、長さ10cm突出するように配置し、自重で下垂した前記波長変換部材の先端部の高さと、前記試験台の基準面の高さと、の距離を測定する。
<6> 前記蛍光体が量子ドット蛍光体を含む、<1>~<5>のいずれか1項に記載の波長変換部材。
<7> 前記量子ドット蛍光体がCd及びInの少なくとも一方を含む、<6>に記載の波長変換部材。
<8> 前記波長変換層が、前記蛍光体と、チオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、光重合開始剤と、を含有する樹脂組成物の硬化物を含む、<1>~<7>のいずれか1項に記載の波長変換部材。
<9> ロール状に形成されている、<1>~<8>のいずれか1項に記載の波長変換部材。
<10> <1>~<8>のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
<11> <9>に記載のバックライトユニットを備える画像表示装置。
 本開示によれば、ロール化後の巻き戻しが容易である波長変換部材、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置が提供される。
波長変換部材の概略構成の一例を示す模式断面図である。 バックライトユニットの概略構成の一例を示す図である。 液晶表示装置の概略構成の一例を示す図である。
 以下、本開示の実施形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリレート」とはアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」とはアリルとメタアリルの少なくとも一方を意味し、「(メタ)アクリル」とはアクリル及びメタクリルの少なくとも一方を表し、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、各図面において、実質的に同じ機能を有する部材には、全図面同じ符号を付与し、重複する説明は省略する場合がある。
≪波長変換部材≫
 本開示の波長変換部材は、蛍光体を含む波長変換層を有し、熱機械分析(TMA)装置で荷重0.05N、昇温速度10℃/分の条件で測定したときのガラス転移温度以下での熱膨張係数が30ppm/℃以上であるか、ガラス転移温度以上での熱膨張係数が0ppm/℃以下であるか、又はこれらの両方を満たす。以下、本開示において、上記条件で部材を測定したときの熱膨張係数を単に「熱膨張係数」ともいう。
 部材のガラス転移温度以下での熱膨張係数は、ガラス転移温度-100℃から当該ガラス転移温度までの範囲における任意の20℃の温度幅で測定するものとする。部材のガラス転移温度以上での熱膨張係数は、ガラス転移温度からガラス転移温度+100℃までの範囲における任意の20℃の温度幅で測定するものとする。具体的には、部材の熱膨張係数は、例えば実施例に記載の方法により測定することができる。
 本開示の波長変換部材によれば、ロール化後の巻き戻しを効率的に行うことができる。明確な理由は明らかではないが、上記の熱膨張係数と、ロール化後のカールの戻りやすさとの間に相関が見出された。このことから、波長変換部材の熱膨張の挙動がカールの生じやすさ又は戻りやすさに影響していることが示唆される。ガラス転移温度以下の熱膨張係数が大きい、又はガラス転移温度以上での熱膨張係数が0ppm/℃以下になることは、樹脂材料中の自由体積が大きいことを示しており、ロール化後の巻き戻し時に元の形状に戻りやすいものと推測される。
 波長変換部材のガラス転移温度以下での熱膨張係数が30ppm/℃以上である場合、当該熱膨張係数は32ppm/℃以上であってもよく、35ppm/℃以上であってもよい。形状安定性の観点からは、波長変換部材のガラス転移温度以下での熱膨張係数は60ppm/℃以下であってもよく、50ppm/℃以下であってもよく、45ppm/℃以下であってもよい。
 波長変換部材のガラス転移温度以上での熱膨張係数が0ppm/℃以下である場合、当該熱膨張係数は-10ppm/℃以下であってもよく、-20ppm/℃以下であってもよく、-30ppm/℃以下であってもよい。形状安定性の観点からは、波長変換部材のガラス転移温度以上での熱膨張係数は、-60ppm/℃以上であってもよく、-50ppm/℃以上であってもよく、-45ppm/℃以上であってもよい。
 波長変換部材が被覆材を含む場合、被覆材のガラス転移温度以上での熱膨張係数は0ppm/℃以下であることが好ましい。被覆材の熱膨張係数が上記範囲であると、ロール化後に巻き戻したときのカール量がより少ない傾向にあることが見出された。この理由は定かではないが、被覆材が軟化することで波長変換層に追従しやすくなりカール量が抑制されるためと推測される。
 被覆材のガラス転移温度以上での熱膨張係数は-10ppm/℃以下であってもよく、-20ppm/℃以下であってもよく、-50ppm/℃以下であってもよく、-70ppm/℃以下であってもよい。また、形状安定性の観点からは、被覆材のガラス転移温度以上での熱膨張係数は-100ppm/℃以上であってもよい。
 波長変換部材が被覆材を含む場合、前記波長変換部材のガラス転移温度以下での熱膨張係数から、前記被覆材のガラス転移温度以下での熱膨張係数を引いた値(熱膨張係数の差ともいう)が10ppm/℃以上であると、ロール化後に巻き戻したときのカール量がより少ない傾向にあることが見出された。この理由は定かではないが、熱膨張差が大きいことは被覆材が波長変換層に追従していることを示しており、被覆材が波長変換層に追従することでカール量が抑制されると推測される。上記熱膨張係数の差は12ppm/℃以上であってもよく、14ppm/℃以上であってもよい。形状安定性の観点からは、上記熱膨張係数の差は120ppm/℃以下であってもよく、110ppm/℃以下であってもよい。
 熱膨張係数を調節する方法としては、例えば、波長変換層及び必要に応じて用いられる後述の被覆材の材質、厚み、弾性率、積層構造等を調整する方法が挙げられる。
 ロール化された波長変換部材の巻き戻しは、例えば以下の方法で行う。ロール化された波長変換部材を巻きだして、打ち抜き加工を行った後、枚葉状に複数枚重ねた波長変換部材をガラス板等に挟み、60℃以下の条件で恒温槽内に所定時間静置する。例えば、1470mm×850mmの矩形に打ち抜き加工した波長変換部材を50枚重ねてガラス板に挟み、45℃の条件で24時間静置したときに、カール量(反り量)は8.0mm以内であることが好ましく、5.0mm以内であることがより好ましく、3.0mm以内であることがさらに好ましい。カール量(反り量)は、打ち抜き加工された波長変換部材の任意の端部6点にて測定したときの最大値とする。
 波長変換部材はロール状に形成されていてもよい。本開示の波長変換部材はロール化に適している。波長変換部材のロール化によれば、輸送効率及び保管効率を向上させることができる。さらに、波長変換部材を枚葉状に加工して輸送又は保存する場合と比べて、波長変換部材の端部を少なくすることができるため、端部劣化を抑制できると考えられる。
 波長変換部材の形状は、フィルム状であることが好ましい。波長変換部材がフィルム状であることで、バックライトユニットに好適に使用することができ、また、好適にロール化することができる。
 波長変換部材の幅及び長さは特に制限されず、例えば、適用する画像表示装置のサイズ等に応じて適宜設定することができる。
 ロール化された波長変換部材の場合、波長変換部材の幅は用途に応じて適宜調整することができ、例えば10mm~5000mmであってもよい。
 ロール化された波長変換部材の場合、波長変換部材の長さは用途に応じて適宜調整することができ、例えば0.5m~1000mであってもよい。
 ロール化された波長変換部材の場合、波長変換部材の長さとは巻き方向への長さをいい、これに直交する長さを波長変換部材の幅とする。
 ロール化された波長変換部材を巻きだして、打ち抜き加工を行った後の波長変換部材の場合、波長変換部材の幅は用途に応じて適宜調整することができ、例えば10mm~5000mmであってもよい。
 ロール化された波長変換部材を巻きだして、打ち抜き加工を行った後の波長変換部材の場合、波長変換部材の長さは用途に応じて適宜調整することができ、例えば10mm~5000mmであってもよい。
 打ち抜き加工を行った後の波長変換部材の場合、波長変換部材の長さとは長手方向の長さをいい、波長変換部材の幅とは短手方向の長さをいうものとする。波長変換部材が正方形である場合には、当該正方形の一辺の長さが上記波長変換部材の幅又は長さのいずれかの範囲に含まれていることが好ましい。
 波長変換部材の平均厚みは、例えば、100μm~500μmであることが好ましく、120μm~400μmであることがより好ましく、150μm~300μmであることがさらに好ましい。波長変換部材の平均厚みが100μm以上であると、波長変換効率がより向上する傾向にあり、平均厚みが500μm以下であると、波長変換部材をバックライトユニットに適用した場合に、バックライトユニットをより薄型化できる傾向にある。
 波長変換部材の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
 波長変換部材は、一方又は両方の面が粗面化されていてもよい。表面粗さRaは例えば0.5μm以上であってもよい。波長変換部材が粗面化されていると、取扱い性に優れ、隣接する部材と波長変換部材が密着することによる干渉縞を抑制することができる傾向にある。
 表面粗さRaは、3D顕微鏡(例えば、オリンパス株式会社、型式OLS4100、倍率10倍)を用いて測定される値をいう。測定範囲は、1289μm長さでの線粗さとする。解析方法は、解析パラメーターを粗さパラメーターとし、カットオフはλC;なし、λS;なし、λf;なしとする。
 ここで、λC、λS、λfは、Raを算出するための輪郭曲線の算出方法である。輪郭曲線には、断面曲線、粗さ曲線及びうねり曲線がある。断面曲線は、測定断面曲線にカットオフ値λSの低域フィルタを適用して得られる曲線である。粗さ曲線は、カットオフ値λCの高域フィルタによって、断面曲線から長波長成分を遮断して得た輪郭曲線である。うねり曲線は、断面曲線にカットオフ値λf及びλCの輪郭曲線フィルタを順次かけることによって得られる輪郭曲線である。λf輪郭曲線フィルタによって長波長成分を遮断し、λC輪郭曲線フィルタによって短波長成分を遮断している。
 波長変換部材は、光の利用効率をより向上させる観点から、全光線透過率が55%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることがさらに好ましい。波長変換部材の全光線透過率は、JIS K 7361-1:1997の測定法に準拠して測定することができる。
 また、波長変換部材は、光の利用効率をより向上させる観点から、ヘーズが10%~60%であることが好ましく、10%~55%であることがより好ましく、10%~50%であることがさらに好ましい。波長変換部材のヘーズは、JIS K 7136:2000の測定法に準拠して測定することができる。
 ロール化後の巻き戻しの容易性の観点からは、周波数10Hzかつ温度30℃の条件で測定した波長変換部材の貯蔵弾性率は、4.1GPa以下であることが好ましく、3.9GPa以下であることがより好ましく、3.7GPa以下であることがさらに好ましく、3.6GPa以下であることが特に好ましく、3.0GPa以下であることが極めて好ましく、2.5GPa以下であることがより極めて好ましい。取扱い性の観点からは、上記貯蔵弾性率は1.0GPa以上であることが好ましく、1.5GPa以上であることがより好ましく、1.8GPa以上であることがさらに好ましい。波長変換部材の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
 波長変換部材の貯蔵弾性率を調整する方法は特に制限されず、例えば、波長変換層及び必要に応じて用いられる後述の被覆材の材質、厚み、積層構造等を調整する方法が挙げられる。
 波長変換部材において、以下の方法で測定される値(以下、特定値ということがある)を調整してもよい。高さが10cm以上ある試験台上に、幅20mmの矩形に加工された前記波長変換部材を、当該試験台から外側に、長さ10cm突出するように配置し、自重で下垂した前記波長変換部材の先端部の高さと、前記試験台の基準面の高さと、の距離を測定する。ここで基準面の高さとは、前記加工された波長変換部材の、前記突出させた部分以外の残りの部分が配置されている試験台上の高さをいう。試験台は、幅20mmの矩形に加工された波長変換部材の、前記試験台から突出させた部分以外の残りの部分を固定できるものであればよく、その形状及び大きさは特に制限されない。
 ロール化後の巻き戻しの容易性の観点からは、波長変換部材の上記方法で測定される特定値は、6.0mm以上であることが好ましく、8.0mm以上であることがより好ましく、10.0mm以上であることがさらに好ましい。取扱い性の観点からは、波長変換部材の上記方法で測定される特定値は35.0mm以下であることが好ましく、25.0mm以下であることがより好ましく、15.0mm以下であることがさらに好ましい。
 波長変換部材の上記方法で測定される特定値を調整する方法は特に制限されず、例えば、波長変換層及び必要に応じて用いられる後述の被覆材の材質、厚み、弾性率、積層構造等を調整する方法が挙げられる。例えば、波長変換部材の厚みを小さくすることによって上記方法で測定される特定値が大きくなる傾向にある。また、被覆材を用いる場合には、被覆材の厚みを小さくすることによって上記方法で測定される特定値が大きくなる傾向にある。被覆材を多層構造とし、基材層に接着層を含めることによっても、上記方法で測定される特定値が大きくなる傾向にある。
<被覆材>
 波長変換部材は、波長変換層の一方の面側又は両方の面側に配置される被覆材を有してもよい。
 被覆材の平均厚みは、8μm以上であることが好ましく、15μm以上であってもよく、20μm以上であってもよい。被覆材の平均厚みが8μm以上であると、波長変換部材の取扱い性が向上し、バリア性等の機能が充分なものとなる傾向にある。また、被覆材の平均厚みは、150μm以下であることが好ましく、100μm以下であることがより好ましく、80μm以下であることがさらに好ましい。被覆材の平均厚みが150μm以下であると、光透過率の低下が抑えられる傾向にある。また、ロール化後の巻き戻しが容易となる傾向にある。以上の観点から、被覆材の平均厚みは、8μm~150μmであることが好ましく、15μm~100μmであることがより好ましく、20μm~80μmであることがさらに好ましい。
 被覆材の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
 被覆材は粗面化されていてもよい。この場合、波長変換層の一方の面側に配置される被覆材の、波長変換層とは対向しない側の面、又は波長変換層の両方の面側に配置される被覆材の、波長変換層とは対向しない側の面の少なくとも一方が、粗面化されていてもよい。例えば、表面粗さRaは、0.5μm以上であってもよい。波長変換部材が被覆材を有するとき、被覆材が粗面化されていると、画像変換部材の取扱い性に優れ、隣接する部材と波長変換部材が密着することによる干渉縞を抑制することができる傾向にある。
 被覆材の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレートが好ましい。
 被覆材は、バリア機能を高めるためのバリア層を備えたもの(バリアフィルム)であってもよい。バリア層としては、アルミナ、シリカ等の無機物を含む無機層が挙げられる。
 被覆材は、蛍光体の発光効率の低下を抑える観点から、酸素及び水の少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水の少なくとも一方に対するバリア性を有する被覆材としては特に制限されず、無機層を有するバリアフィルム等を用いることができる。
 被覆材の酸素透過率は、例えば、0.5mL/(m・24h・atm)以下であることが好ましく、0.3mL/(m・24h・atm)以下であることがより好ましく、0.1mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度65%の条件で測定することができる。
 また、被覆材の水蒸気透過率は、例えば、5×10-2g/(m・24h・Pa)以下であることが好ましく、1×10-2g/(m・24h・Pa)以下であることがより好ましく、5×10-3g/(m・24h・Pa)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度90%の条件で測定することができる。
 被覆材は、複数の層が積層されたものであってもよい。例えば、被覆材は、基材層、バリア層、プライマ層等が積層されたものであってもよい。
<波長変換層>
 本開示の波長変換部材は波長変換層を含む。波長変換層は、蛍光体を含む。波長変換層は、樹脂硬化物をさらに含んでもよく、蛍光体が樹脂硬化物に含まれた状態であってもよい。また、波長変換層は光拡散材をさらに含んでもよい。
〔蛍光体〕
 波長変換層は、光源から光を照射されることで発光する蛍光体を含む。蛍光体の種類は特に限定されるものではなく、例えば、有機蛍光体及び無機蛍光体を挙げることができる。
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
 蛍光体としては、画像表示装置の色再現性に優れる観点から、量子ドット蛍光体が好ましい。
 量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
 量子ドット蛍光体としては、コアシェル構造を有するものであってもよい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。
 また、量子ドット蛍光体としては、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。
 波長変換層が量子ドット蛍光体を含有する場合、波長変換層は、1種類の量子ドット蛍光体を単独で含有していてもよく、2種類以上の量子ドット蛍光体を組み合わせて含有していてもよい。2種類以上の量子ドット蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含有する態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。
 例えば、波長変換層は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rとを含有していてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含有する波長変換層に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、硬化物を透過する青色光とにより、白色光を得ることができる。
 波長変換層中の蛍光体の含有率は、波長変換層全体に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。蛍光体の含有率が波長変換層全体に対して0.01質量%以上であると、充分な波長変換機能が得られる傾向にあり、蛍光体の含有率が1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。
〔樹脂硬化物〕
 波長変換層は、樹脂硬化物をさらに含んでもよい。波長変換層は、上述の蛍光体が樹脂硬化物に含まれた状態の層であってもよい。
 樹脂硬化物の他部材(被覆材等)に対する密着性、及び硬化時の体積収縮によるシワの発生の抑制の観点からは、樹脂硬化物はスルフィド構造を含有することが好ましい。スルフィド構造を含有する樹脂硬化物は、例えば、後述するチオール化合物と、当該チオール化合物のチオール基とエンチオール反応を生じる炭素炭素二重結合を有する重合性化合物と、を含む樹脂組成物を硬化させて得ることができる。
 波長変換層の耐熱性及び耐湿熱性の観点からは、樹脂硬化物は脂環式構造又は芳香環構造を含有することが好ましい。脂環式構造又は芳香環構造を有する樹脂硬化物は、例えば、後述する重合性化合物として脂環式構造又は芳香環構造を有するものを含む樹脂組成物を硬化させて得ることができる。
 蛍光体と酸素との接触を抑制する観点からは、樹脂硬化物はアルキレンオキシ基を含有することが好ましい。樹脂硬化物がアルキレンオキシ基を含有すると、樹脂硬化物の極性が増大し、非極性の酸素が硬化物中の成分に溶解しにくくなる傾向にある。また、樹脂硬化物の柔軟性が増して被覆材との密着性が向上する傾向にある。
 アルキレンオキシ基を含有する樹脂硬化物は、例えば、後述する重合性化合物としてアルキレンオキシ基を有するものを含む樹脂組成物を硬化させて得ることができる。
-樹脂組成物-
 波長変換層は、蛍光体と、重合性化合物と、光重合開始剤と、を含む組成物(以下、単に樹脂組成物ともいう)の硬化物であってもよい。樹脂組成物は、蛍光体と、チオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、光重合開始剤と、を含有することが好ましい。樹脂組成物は、任意でその他の成分を含有していてもよい。
 以下、樹脂組成物の各成分について詳述する。
(蛍光体)
 樹脂組成物は、蛍光体を含有する。蛍光体の詳細は、上述のとおりである。
 蛍光体として量子ドット蛍光体を用いる場合、量子ドット蛍光体は、分散媒体に分散された量子ドット蛍光体分散液の状態で用いてもよい。量子ドット蛍光体を分散する分散媒体としては、各種有機溶剤、シリコーン化合物、及び単官能(メタ)アクリレート化合物が挙げられる。量子ドット蛍光体は、必要に応じて分散剤を用いて量子ドット蛍光体分散液の状態で用いてもよい。
 分散媒体として使用可能な有機溶剤としては、量子ドット蛍光体の沈降及び凝集が確認されなければ特に限定されるものではなく、アセトニトリル、メタノール、エタノール、アセトン、1-プロパノール、酢酸エチル、酢酸ブチル、トルエン、ヘキサン等が挙げられる。
 分散媒体として使用可能なシリコーン化合物としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイルなどが挙げられる。
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、脂環式構造を有する単官能(メタ)アクリレート化合物(好ましくはイソボルニル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレート)、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられる。
 必要に応じて用いられる分散剤としては、ポリエーテルアミン(JEFFAMINE M-1000、HUNTSMAN社)等が挙げられる。
 量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合は、1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましい。
 樹脂組成物中の量子ドット蛍光体分散液の含有率は、量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合が1質量%~20質量%である場合、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましい。
 また、樹脂組成物中の量子ドット蛍光体の含有率は、樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。量子ドット蛍光体の含有率が0.01質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が1.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。
(重合性化合物)
 樹脂組成物は、重合性化合物を含有する。樹脂組成物に含まれる重合性化合物は特に制限されず、チオール化合物、(メタ)アクリル化合物、(メタ)アリル化合物等が挙げられる。なお、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
 波長変換層の他部材(被覆材等)に対する密着性の観点からは、樹脂組成物は重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含むことが好ましい。
 重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含む樹脂組成物を硬化して得られる硬化物は、チオール基と(メタ)アクリロイル基又は(メタ)アリル基の炭素炭素二重結合との間でエンチオール反応が進行して形成されるスルフィド構造(R-S-R’、R及びR’は有機基を表す)を含む。これにより、波長変換層と被覆材との密着性が向上する傾向にある。また、波長変換層の光学特性がより向上する傾向にある。
 以下、チオール化合物、(メタ)アクリル化合物、及び(メタ)アリル化合物について詳述する。
A.チオール化合物
 チオール化合物は、1分子中に1個のチオール基を有する単官能チオール化合物であってもよく、1分子中に2個以上のチオール基を有する多官能チオール化合物であってもよい。樹脂組成物に含まれるチオール化合物は、1種のみでも2種以上であってもよい。
 チオール化合物は、分子中にチオール基以外の重合性基(例えば、(メタ)アクリロイル基、(メタ)アリル基)を有していても、有していなくてもよい。
 本開示において分子中にチオール基と、チオール基以外の重合性基を含む化合物は、「チオール化合物」に分類するものとする。
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。
 波長変換層と被覆材との密着性、耐熱性、及び耐湿熱性をより向上させる観点からは、チオール化合物は、多官能チオール化合物を含むことが好ましい。チオール化合物の全量に対する多官能チオール化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。
 チオール化合物は、(メタ)アクリル化合物と反応したチオエーテルオリゴマーの状態であってもよい。チオエーテルオリゴマーは、チオール化合物と(メタ)アクリル化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。
 樹脂組成物がチオール化合物を含有する場合、樹脂組成物中のチオール化合物の含有率は、樹脂組成物の全量に対して、例えば、5質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましく、18質量%~60質量%であることがさらに好ましい。
 チオール化合物の含有率が5質量%以上であると、波長変換層の被覆材との密着性がより向上する傾向にあり、チオール化合物の含有率が80質量%以下であると、波長変換層の耐熱性及び耐湿熱性がより向上する傾向にある。
B.(メタ)アクリル化合物
 (メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。樹脂組成物に含まれる(メタ)アクリル化合物は、1種でも2種以上であってもよい。
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物などが挙げられる。
 多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物などが挙げられる。
 (メタ)アクリル化合物は、硬化物の耐熱性及び耐湿熱性をより向上させる観点からは、脂環構造又は芳香環構造を有する(メタ)アクリレート化合物が好ましい。脂環構造又は芳香環構造としては、イソボルニル骨格、トリシクロデカン骨格、ビスフェノール骨格等が挙げられる。
 (メタ)アクリル化合物は、アルキレンオキシ基を有するものであってもよく、アルキレンオキシ基を有する2官能(メタ)アクリル化合物であってもよい。
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 (メタ)アクリル化合物が有するアルキレンオキシ基は、1種でも2種以上であってもよい。
 アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることが特に好ましい。
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、硬化物の耐熱性により優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。
 アルキレンオキシ基を有する(メタ)アクリル化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物などが挙げられる。
 アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
 樹脂組成物が(メタ)アクリル化合物を含有する場合、樹脂組成物中の(メタ)アクリル化合物の含有率は、樹脂組成物の全量に対して、例えば、40質量%~90質量%であってもよく、50質量%~80質量%であってもよい。
C.(メタ)アリル化合物
 (メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。樹脂組成物に含まれる(メタ)アリル化合物は、1種のみでも2種以上であってもよい。
 (メタ)アリル化合物は、分子中に(メタ)アリル基以外の重合性基(例えば、(メタ)アクリロイル基)を有していても、有していなくてもよい。
 本開示において分子中に(メタ)アリル基以外の重合性基を有する(メタ)アリル化合物(ただし、チオール化合物を除く)は、「(メタ)アリル化合物」に分類するものとする。
 単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。
 多官能(メタ)アリル化合物の具体例としては、ベンゼンジカルボン酸ジ(メタ)アリル、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1,3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1,3,4,6-テトラ(メタ)アリルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a,6a-ジメチルグリコールウリル等が挙げられる。
 (メタ)アリル化合物としては、硬化物の耐熱性及び耐湿熱性の観点から、トリ(メタ)アリルイソシアヌレート等のイソシアヌレート骨格を有する化合物、トリ(メタ)アリルシアヌレート、ベンゼンジカルボン酸ジ(メタ)アリル、及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、イソシアヌレート骨格を有する化合物がより好ましく、トリ(メタ)アリルイソシアヌレートがさらに好ましい。
 樹脂組成物が(メタ)アリル化合物を含有する場合、樹脂組成物中の(メタ)アリル化合物の含有率は、樹脂組成物の全量に対して、例えば、10質量%~50質量%であってもよく、15質量%~45質量%であってもよい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーと、(メタ)アリル化合物(好ましくは、多官能(メタ)アリル化合物)とを含むものであってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーと(メタ)アリル化合物とを含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体としてシリコーン化合物に分散された分散液の状態であることが好ましい。
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物(好ましくは多官能(メタ)アクリル化合物、より好ましくは2官能(メタ)アクリル化合物)とを含むものであってもよい。
 重合性化合物がチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物とを含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体として(メタ)アクリル化合物、好ましくは、単官能(メタ)アクリル化合物、より好ましくはイソボルニル(メタ)アクリレートに分散された分散液の状態であることが好ましい。
(光重合開始剤)
 樹脂組成物に含まれる光重合開始剤の種類は特に制限されず、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物などが挙げられる。樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。
 樹脂組成物中の光重合開始剤の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。
(光拡散材)
 光変換効率向上の観点から、樹脂組成物は、光拡散材をさらに含有していてもよい。光拡散材の具体例としては、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点からは光拡散材は酸化チタンであることが好ましい。酸化チタンはルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。
 光拡散材の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。
 本開示において光拡散材の平均粒子径は、以下のようにして測定することができる。
 光拡散材が樹脂組成物に含まれている場合、抽出した光拡散材を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を光拡散材の平均粒子径とする。樹脂組成物から光拡散材を抽出する方法としては、例えば、樹脂組成物を液状媒体で希釈し、遠心分離処理等により光拡散材を沈澱させて分収することで得ることができる。
 光拡散材を含む樹脂組成物を硬化して得られる硬化物中における光拡散材の平均粒子径は、走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求めることができる。
 樹脂組成物中で光拡散材が凝集するのを抑制する観点から、光拡散材は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール又は有機シランの少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物との反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物との共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
 樹脂組成物中における光拡散材の凝集が抑制されると、硬化物中における光拡散材の分散性が向上する傾向にある。
 光拡散材は、表面の少なくとも一部に金属酸化物を含む金属酸化物層を有していてもよい。金属酸化物層に含まれる金属酸化物としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。金属酸化物層は一層であっても二層以上であってもよい。光拡散材が二層の金属酸化物層を有する場合、二酸化ケイ素を含む第一金属酸化物層及び酸化アルミニウムを含む第二金属酸化物層を含むものであることが好ましい。
 光拡散材が金属酸化物層を有することで、硬化物中における光拡散材の分散性が向上する傾向にある。
 光拡散材が有機物を含む有機物層と金属酸化物層とを有する場合、光拡散材の表面に、金属酸化物層及び有機物層が、金属酸化物層及び有機物層の順に設けられることが好ましい。
 光拡散材が有機物層と二層の金属酸化物層とを有するものである場合、光拡散材の表面に、二酸化ケイ素を含む第一金属酸化物層、酸化アルミニウムを含む第二金属酸化物層及び有機物層が、第一金属酸化物層、第二金属酸化物層及び有機物層の順に設けられる(有機物層が最外層となる)ことが好ましい。
 樹脂組成物が光拡散材を含有する場合、これを硬化して形成される波長変換層における光拡散材の含有率は、波長変換層の全量に対して、例えば、0.1質量%~1.0質量%であることが好ましく、0.2質量%~1.0質量%であることがより好ましく、0.3質量%~1.0質量%であることがさらに好ましい。
(液状媒体)
 樹脂組成物は、液状媒体をさらに含有していてもよい。液状媒体とは、室温(25℃)において液体の状態の媒体をいう。
 液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイル;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸などが挙げられる。樹脂組成物が液状媒体を含有する場合、樹脂組成物は、1種類の液状媒体を単独で含有していてもよく、2種類以上の液状媒体を組み合わせて含有していてもよい。
 樹脂組成物が液状媒体を含有する場合、樹脂組成物中の液状媒体の含有率は、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。
(その他の成分)
 樹脂組成物は、上述した成分以外の成分をさらに含有していてもよい。例えば、樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤、酢酸等のカルボン酸などの成分をさらに含有していてもよい。各成分は、1種を単独で用いても2種以上を併用してもよい。
(樹脂組成物の調製方法)
 樹脂組成物は、蛍光体、重合性化合物、光重合開始剤、及び必要に応じてその他の成分を常法により混合することで調製することができる。
 波長変換層は、1種類の樹脂組成物を硬化したものであってもよく、2種類以上の樹脂組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換層は、第1の蛍光体を含有する樹脂組成物を硬化した第1の硬化物層と、第1の蛍光体とは発光特性が異なる第2の蛍光体を含有する樹脂組成物を硬化した第2の硬化物層とが積層されたものであってもよい。
 波長変換層の平均厚みは特に制限されず、例えば、50μm~200μmであることが好ましく、50μm~150μmであることがより好ましく、70μm~120μmであることがさらに好ましい。波長変換層の平均厚みが50μm以上であると、波長変換効率がより向上する傾向にあり、波長変換層の平均厚みが200μm以下であると、後述するバックライトユニットに波長変換部材を適用した場合に、バックライトユニットをより薄型化できる傾向にある。波長変換層の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
 波長変換層は、密着性をより向上させる観点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることがさらに好ましい。波長変換層の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
 波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、ガラス転移温度(Tg)が85℃以上であることが好ましく、85℃~160℃であることがより好ましく、90℃~120℃であることがさらに好ましい。波長変換層のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、周波数10Hzの条件で測定することができる。
 また、波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×10Pa~1×1010Paであることが好ましく、5×10Pa~1×1010Paであることがより好ましく、5×10Pa~5×10Paであることがさらに好ましい。樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。
 波長変換層は、例えば、樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。
 波長変換部材の概略構成の一例を図1に示す。但し、本開示の波長変換部材は図1の構成に限定されるものではない。
 図1に示す波長変換部材10は、フィルム状の硬化物である波長変換層11と、波長変換層11の両面に設けられたフィルム状の被覆材12A及び12Bと、を有する。被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。被覆材12A及び12Bは粗面化されていてもよい。
 図1に示す構成の波長変換部材は、例えば、以下のような製造方法により製造することができる。
 まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に波長変換層形成用の樹脂組成物を付与し、塗膜を形成する。樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。
 次いで、樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。その後、規定のサイズに切り出すことにより、図1に示す構成の波長変換部材を得ることができる。
 なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射して硬化物層を形成し、その後に第2の被覆材を貼り合わせてもよい。
≪バックライトユニット≫
 本開示のバックライトユニットは、光源と、本開示の波長変換部材と、を有する。
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。
 エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。
 図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24とを備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。
≪画像表示装置≫
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
 液晶表示装置の概略構成の一例を図3に示す。
 図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。
 次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例及び比較例>
(硬化性組成物の調製)
 表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、実施例及び比較例の硬化性組成物をそれぞれ調製した。
 なお、(メタ)アクリル化合物としては、トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社、A-DCP)及びエトキシ化ビスフェノールAジアクリレート(新中村化学工業株式会社、ABE-300;アルキレンオキシ基を含有する化合物)を用いた。
 チオール化合物として、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学株式会社、PEMP)を用いた。
 光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASF社、IRGACURE TPO)を用いた。
 量子ドット蛍光体分散液としては、CdSe/ZnS(コア/シェル)分散液(Nanosys社、Gen3.5 QD Concentrate)を用いた。このCdSe/ZnS(コア/シェル)分散液の分散媒体としては、イソボルニルアクリレート(IBOA)を使用した。CdSe/ZnS(コア/シェル)分散液中に、イソボルニルアクリレートが86質量%以上含有されている。
 カルボン酸として、酢酸を用いた。
 光拡散材として、酸化チタン(Chemours社、タイピュア R-706、粒子径0.36μm)を用いた。酸化チタンの表面には、酸化ケイ素を含む第一金属酸化物層、酸化アルミニウムを含む第二金属酸化物層及びポリオール化合物を含む有機物層が、第一金属酸化物層、第二金属酸化物層及び有機物層の順に設けられている。
Figure JPOXMLDOC01-appb-T000001
(波長変換部材の製造)
 以下の3種の異なるバリアフィルムのいずれかに、上記で得られた各硬化性組成物を70μm~90μmの厚みで塗布して塗膜を形成した。用いられた硬化性組成物及び波長変換層の厚み、並びにバリアフィルムの種類を表2に示す。
バリアフィルム1:平均厚み75μmのバリアフィルム(PETフィルムの片側にバリア成分を蒸着したもの)
バリアフィルム2:平均厚み25μmのバリアフィルム(PETフィルムの片側にバリア成分をスパッタしたもの)
バリアフィルム3:平均厚み103μmのバリアフィルム(PETフィルムの片側にバリア成分を塗布したもの)
 この塗膜上に、上記塗膜が形成されたバリアフィルムと同じバリアフィルムを貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射(照射量:1000mJ/cm)することにより、樹脂硬化物を含む波長変換層の両面に被覆材が配置された波長変換部材をそれぞれ得た。
(熱膨張係数)
 上記で得られた波長変換部材を幅4mm、長さ30mmの寸法に裁断して評価用硬化物を得た。そして、熱機械分析(TMA)装置(TAインスツルメンツ社製、商品名:Q400)を用いて引張法で熱機械分析を行った。熱機械分析は、前記装置に評価用硬化物をMD方向に装着後、荷重0.05N、昇温速度10℃/分の条件で連続して2回行い、2回目の分析における30℃から50℃及び120℃から140℃の平均熱膨張率を算出し、これを熱膨張係数の値とした。
 また、バリアフィルムについても熱機械分析(TMA)装置を用いて同様に熱膨張係数を測定した。
(ガラス転移温度、貯蔵弾性率、及び損失正接(tanδ))
 上記で得られた各波長変換部材を幅5mm、長さ40mmの寸法に裁断して評価用硬化物を得た。そして、動的粘弾性測定装置(Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、「引張モード、チャック間距離:25mm、周波数:10Hz、測定温度範囲:-20℃~180℃、昇温速度:10℃/分」の条件で、評価用硬化物の貯蔵弾性率(E’)、及び損失弾性率(E’’)を測定し、その比から損失正接(tanδ)を求めた。損失正接(tanδ)のピークトップ部分の温度からガラス転移温度(Tg)を求めた。
 また、バリアフィルムのガラス転移温度についても同様に測定した。
(特定値)
 上記で得られた各波長変換部材を幅20mm、長さ20cmの寸法に裁断して評価用の波長変換部材を得た。高さが10cm以上ある台に、加工した波長変換部材の一方の端が台から外側に10cmはみ出すように固定し、はみ出させた波長変換部材の先端が台の水平面に対して何mm下方にあるか測定した。測定された特定値を表2に示す。
〔評価〕
(カール量)
 上記で得られた各波長変換部材を直径6インチの巻き芯に巻き付けて25℃で1000時間静置した後、1470mm×850mmの矩形に打ち抜き加工し、これを50枚重ねてガラス板に挟み、45℃で24時間、60℃で4時間、60℃で10時間、又は85℃で4時間静置して評価用の波長変換部材を得た。カール量(反り量)は、打ち抜き加工された波長変換部材の端部6点にて測定したときの最大値とする。結果を表2に示す。
(光学特性)
 上記で得られた各波長変換部材を直径6インチの巻き芯に巻き付けて25℃で1000時間静置した後、1470mm×850mmの矩形に打ち抜き加工し、分光放射計(PHOTO RESEARCH社、PR-655)を用いて輝度を測定した。
 輝度を測定した後、打ち抜き加工した各波長変換部材を50枚重ねてガラス板に挟み、45℃で24時間、60℃で4時間、60℃で10時間、又は85℃で4時間静置し、分光放射計(PHOTO RESEARCH社、PR-655)を用いて輝度を再度測定し、1回目と2回目の測定で得られた輝度、及びWhite Pointの差分を評価した。結果を表2に示す。表2において、White pointeの差分が±0.001以内、かつ輝度の低下が3%以下であった場合にAと表示し、これ以外の場合にBと表示する。 
Figure JPOXMLDOC01-appb-T000002
 表2から分かるように、実施例においては、45℃で24時間、60℃で4時間、及び60℃で10時間のいずれの条件でもカール量が抑制されており、且つ光学特性の変化も抑制されていた。なお、85℃で4時間の条件では、実施例及び比較例においてカール量が少なかったが、光学特性の変化が観察された。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
 10…波長変換部材
 11…波長変換層
 12A…被覆材
 12B…被覆材
 20…バックライトユニット
 21…光源
 22…導光板 
 23…再帰反射性部材
 24…反射板
 30…液晶表示装置
 31…液晶セルユニット
 32…液晶セル
 33A…偏光板
 33B…偏光板
 L…青色光
 L…赤色光
 L…緑色光
 L…白色光

Claims (11)

  1.  蛍光体を含む波長変換層を有し、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときのガラス転移温度以下での熱膨張係数が30ppm/℃以上であるか、ガラス転移温度以上での熱膨張係数が0ppm/℃以下であるか、又はこれらの両方を満たす、波長変換部材。
  2.  前記波長変換部材が、前記波長変換層の一方の面側又は両方の面側に配置される被覆材を含み、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときの前記被覆材のガラス転移温度以上での熱膨張係数が0ppm/℃以下である請求項1に記載の波長変換部材。
  3.  前記波長変換部材が被覆材を含み、前記波長変換部材のガラス転移温度以下での熱膨張係数から、熱機械分析装置で荷重0.05N、昇温速度10℃/分の条件で測定したときの前記被覆材のガラス転移温度以下での熱膨張係数を引いた値が10ppm/℃以上である、請求項1又は請求項2に記載の波長変換部材。
  4.  動的粘弾性測定装置で周波数10Hzかつ温度30℃の条件で測定したときの貯蔵弾性率が3.7GPa以下である、請求項1~請求項3のいずれか1項に記載の波長変換部材。
  5.  以下の方法により測定される値が6.0mm以上である、請求項1~請求項4のいずれか1項に記載の波長変換部材:
     試験台上に、幅20mmの矩形に加工された前記波長変換部材を、前記試験台から外側に、長さ10cm突出するように配置し、自重で下垂した前記波長変換部材の先端部の高さと、前記試験台の基準面の高さと、の距離を測定する。
  6.  前記蛍光体が量子ドット蛍光体を含む、請求項1~請求項5のいずれか1項に記載の波長変換部材。
  7.  前記量子ドット蛍光体がCd及びInの少なくとも一方を含む、請求項6に記載の波長変換部材。
  8.  前記波長変換層が、
     前記蛍光体と、
     チオール化合物と、
     (メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、
     光重合開始剤と、
    を含有する樹脂組成物の硬化物を含む、請求項1~請求項7のいずれか1項に記載の波長変換部材。
  9.  ロール状に形成されている、請求項1~請求項8のいずれか1項に記載の波長変換部材。
  10.  請求項1~請求項8のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
  11.  請求項10に記載のバックライトユニットを備える画像表示装置。
PCT/JP2020/003220 2020-01-29 2020-01-29 波長変換部材、バックライトユニット、及び画像表示装置 WO2021152737A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003220 WO2021152737A1 (ja) 2020-01-29 2020-01-29 波長変換部材、バックライトユニット、及び画像表示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003220 WO2021152737A1 (ja) 2020-01-29 2020-01-29 波長変換部材、バックライトユニット、及び画像表示装置

Publications (1)

Publication Number Publication Date
WO2021152737A1 true WO2021152737A1 (ja) 2021-08-05

Family

ID=77078781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003220 WO2021152737A1 (ja) 2020-01-29 2020-01-29 波長変換部材、バックライトユニット、及び画像表示装置

Country Status (1)

Country Link
WO (1) WO2021152737A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052625A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
JP2017100350A (ja) * 2015-12-01 2017-06-08 凸版印刷株式会社 バリアフィルム及びそれを用いた波長変換シート、ディスプレイ
JP2018106097A (ja) * 2016-12-28 2018-07-05 大日本印刷株式会社 光波長変換部材、バックライト装置、および画像表示装置
WO2019064588A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材の製造方法、波長変換部材、バックライトユニット、画像表示装置、波長変換部材用樹脂組成物及び樹脂硬化物
WO2019066064A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置、波長変換用樹脂組成物及び波長変換用樹脂硬化物
WO2019077752A1 (ja) * 2017-10-20 2019-04-25 日立化成株式会社 バックライトユニット、画像表示装置及び波長変換部材

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016052625A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 バックライトユニット、液晶表示装置、波長変換部材、および光硬化性組成物
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
JP2017076482A (ja) * 2015-10-13 2017-04-20 大日本印刷株式会社 光波長変換シート、バックライト装置、および画像表示装置
JP2017100350A (ja) * 2015-12-01 2017-06-08 凸版印刷株式会社 バリアフィルム及びそれを用いた波長変換シート、ディスプレイ
JP2018106097A (ja) * 2016-12-28 2018-07-05 大日本印刷株式会社 光波長変換部材、バックライト装置、および画像表示装置
WO2019064588A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材の製造方法、波長変換部材、バックライトユニット、画像表示装置、波長変換部材用樹脂組成物及び樹脂硬化物
WO2019066064A1 (ja) * 2017-09-29 2019-04-04 日立化成株式会社 波長変換部材、バックライトユニット、画像表示装置、波長変換用樹脂組成物及び波長変換用樹脂硬化物
WO2019077752A1 (ja) * 2017-10-20 2019-04-25 日立化成株式会社 バックライトユニット、画像表示装置及び波長変換部材

Similar Documents

Publication Publication Date Title
WO2019189495A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2019186734A1 (ja) 波長変換部材、バックライトユニット、画像表示装置、硬化性組成物及び硬化物
JPWO2019077752A1 (ja) バックライトユニット、画像表示装置及び波長変換部材
JPWO2019189269A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP2019174562A (ja) 波長変換部材、バックライトユニット及び画像表示装置
WO2021029240A1 (ja) 波長変換材、波長変換材の製造方法、積層体、バックライトユニット、及び画像表示装置
WO2021106556A1 (ja) 波長変換部材及びその製造方法、バックライトユニット、並びに画像表示装置
JP6702515B2 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2021152737A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
JP6658990B1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2021152738A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2021152739A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2019189497A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
WO2019186735A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
JP6798655B1 (ja) 波長変換部材及びその使用、バックライトユニット、並びに画像表示装置
JP2021043462A (ja) 波長変換部材及びその使用、バックライトユニット、並びに画像表示装置
WO2020208754A1 (ja) 波長変換部材、バックライトユニット、及び画像表示装置
WO2019186730A1 (ja) 波長変換部材、バックライトユニット、画像表示装置及び硬化性組成物
TW202128434A (zh) 波長變換構件、背光單元以及圖像顯示裝置
TW202130000A (zh) 波長變換構件、背光單元以及圖像顯示裝置
TW202129999A (zh) 波長變換構件、背光單元以及圖像顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP